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Chapter 1 Introduction 

The foreign exchange market is one of the biggest financial markets in the world with a huge 
trading value from several pairs of currencies. Over one trillion dollars in daily transactions 
are executed in this market over 24 hours of weekdays.  
 
Traders always have to deal with the dynamic of currency pairs for speculation in the FX 
market. The evidence that supports the existence of a speculation in the FX market is 
discovered by (Frankel and Froot 1985) who detect that the speculation in the FX market 
comes from the use of technical analysis. As there are tons of traders speculating in this 
market, the currency exchange rates can change rapidly due to speculation from many 
traders following and contrasting the releases of the important economic news. 
 
Historical data suggest that the currency price may not move in one certain direction 
immediately after a news release but is likely to fluctuate for a while after the 
announcement period. The reason could be that there are some big players speculating in 
the market who try to hedge their positions in their preferred direction after the news 
announcement. The price can temporarily become highly fluctuating after high-impact 
economic news relevant to the currency pair is released. This state of the market will be 
called the transient state in this context. The study from (Allen and Taylor 1990) supports 
this event that the short-term volatility is driven by a large number of speculators using 
technical analysis. The rapid change in the exchange rate price is accounted to the 
momentum of the use of technical analysis in the short term trading by (Schulmeister 1988). 
The studies from (Froot, Scharfstein et al. 1990)  point out that using the technical analysis 
to speculate in the short period, when new information arrives to the market, is preferred to 
the traders than using the fundamental analysis.  
 
Also, there is a study from (Goodman 1979)  that shows that a prediction result from 
technical analysis in a short time period is more accurate than using the fundamental; this 
can support a reason why the technical analysis is preferred. There is a confirmation that 
using the technical analysis to trade in the FX market is profitable from the study of (Levich 
and Thomas 1993).  
 
After the transient state, the dynamic of the currency pair will try to stabilize itself into a 
steady state and the price will follow the news result. With a high variance during a short 
time period after the news release, traders who open a position may face gain or loss due to 
their betting direction. For instance, the traders will gain a huge amount if they bet on the 
right direction. On the other hand, the wrong direction of the bet may force the traders to 
close their positions due to the use of leverage.  
 
Another stylized fact that can be observed is that the FX bid-ask spreads are usually 
widening when news is announced. This is another reason that could result in a forced 
closure due to the insufficient buffered money in their portfolios. The study by (Glosten and 
Milgrom 1985)  is the evidence supporting this fact. They state that the bid-ask spread will 
immediately widening when news is released and narrowing when the market absorbs the 
result of an announcement. The studies of (Bollerslev and Melvin 1994)  state that the 
exchange rate volatility increases price risk. The changes in bid-ask spreads occur because 
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the FX dealers try to gain some information advantage by strategically vary the bid-ask price 
to prevent losses from the uncertain situations as discovered by (Evans and Lyons 2002). 
With an immediate widening of the spread, the forced close condition can be met before 
prices begin trending and this can be disastrous for the traders. The violation of the forced 
closure rule is a huge ruin to the traders’ wealth because the position will be forced to close 
immediately with a market best price without caring how much losses are. 
 
Fortunately, the traders can prepare for the arrival of high-impact news since the 
announcement time and the level of the impact are scheduled and listed in 
www.forexfactory.com. For example, the traders know from the website in advance that the 
unemployment claims of USA will be announced on 02 Jan 2014 at 9:30 A.M. with a high 
impact level to the change of variance. 
 

 

Figure 1: Bid-Ask movement of EUR/USD after Unemployment claims is announced on 09/01/2014 at 20.30 (+7 
GMT) 

 
Figure 1 shows an example of how to make a profit based on an announcement of bad news 
in the EUR/USD market by placing an appropriate short position after the news is announced 
(line A) and closing the short position when a 200 points gain is reached (line B).  

Open short (News result is announced) (A) 

Close the position for 200 points (B) 

http://www.forexfactory.com/
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Figure 2: Bid-Ask movement of EUR/USD after Unemployment claims is announced on 30/01/2014 at 20.30 (+7 
GMT) 

  

Figure 2 shows the case in which traders enter the trade and immediately exit due to the 
stop loss triggered by spread widening. The reason is that under an uncertain condition large 
orders are more likely to raise dealer risk, and so the spread is widened by market makers to 
prevent the risk caused by the uncertainty (Biais 1993).   

 

Enter trade & Stop loss 
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Figure 3: Spread size of EUR/USD after Unemployment Claims is announced on 30/01/2014 at 20.30 (+7 GMT) 

Figure 3 shows an example of a spike in the spread after a news release, and the spread is 
narrowing exponentially fast in time. 
 
Unfortunately, it is impossible to know how much the spreads might spike with a given news 
release. Trading in news release environments is so dangerous due to many uncertain 
factors, but the potential rewards could be huge if the traders can find themselves on the 
right side of the position.  
 
A variety of entry strategies can be helpful for traders to enter the right initial position. 
However, how the traders take the profit from the matched order by closing the contract at 
the right price is also important.  

In this thesis we will try to improve the strategies for FX trading during news announcement 
period by using estimation and optimization techniques. 

The goal of this thesis is inspired by the view of individual traders who mainly speculate on 
the release of news. To gain some benefit from this situation, traders may set their market 
price order of either buy or sell at some optimal price and optimal lot size right after the 
news is announced.  
 
To find the optimal price to open a trading position with an optimal lot size, traders need to 
know that if the order is opened far from the current exchange rate level, they can be 
ensured that their order, if matched, could be a low risk trade. However, there is a high 
chance that the order is not matched and that gives zero gain to the traders. If the order is 
matched with a small lot size, this trade may not generate enough gain to compensate the 

Exponential decay 
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low chance of matching. On the other hand, if traders place the order closer to the current 
exchange rate level, the traders can be more confident that their order will be matched. 
However, this trade has a higher risk, so a smaller lot size should be used. Therefore, not 
only the optimal place of opening the order but also the optimal lot size must be taken into 
account in this situation.  
 
Intuitively, exchange rate level should go up after the good high-impact news is released and 
traders can decide to send whether a limit order or a stop order to try to make a profit. 
Using the limit order is effective in the situation that a reversal on currency price movement 
occurs after the order is matched.  For example, in the situation that the exchange rate is 
initially moving in the downward direction, the Limit Long order must be placed below the 
current exchange rate level. After the Limit Long order is matched, the direction of exchange 
rate is starting to change reversely to the upward direction, and when the price reaches a 
certain level, the trader can close the position. On the other hand, the stop order is more 
effective in the situation where the exchange rate is moving in the trending fashion after it 
passes through some level. For example, in the situation where the exchange rate is initially 
moving in the upward direction, the Stop Long order must be placed above the current 
exchange rate level. The Stop Long order is matched when the exchange rate level is passing 
through where the order is placed. The Stop Long order will be effective if the exchange rate 
keeps moving in the upward direction, and the trader can close the position when he enjoys 
enough profit.  
 
In conclusion, after a news release, traders may set up limit orders and expect for the price 
reversal after orders are matched, or to set up the stop orders in the direction that is 
consistent with the news and expect the price to move accordingly. However, due to the 
high volatility during the transient period, the forced closure risk is also high when the lot 
size is large. 
 
The primary objective of this thesis is to find the optimal entry price, lot size, and exit price 
for trading EUR/USD during the 15-minute period after the “Unemployment claims” of US is 
announced. The scope of this study consists of 

- Proposing models of exchange rate dynamic of the EUR/USD price and 
its spread. 

 
- Estimating the parameters of the FX model and the spread model.  

 
- Finding the most suitable strategy to trade in each situation of news 

announcement. We consider the following strategies: Stop Long order, 
Stop Short order, Limit Long order and Limit Short order.   

 
- Using an optimization method to find the optimal entry price, target exit 

price lot size for the chosen strategies. 
 

- Testing each strategy out-of-sample. 
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Chapter 2 Literature Review 

There are many models and techniques we use in this thesis especially in model selection 
and model estimation. This chapter provides a review of related literature on those models 
and techniques. Based on the study from (Johnson and Schneeweis 1994) that uses the 
empirical test to compare many models fitting the movement of 4 currency pairs in FX 
market when the macroeconomic news is released, they found that in the period that the 
news had an impact to the market, the dynamics of the currency pairs is better fitted to the 
complex model with jump diffusion than the simple model without jump.  
 
Their paper uses the weekly data collected once every Wednesday (or Thursday if 
Wednesday is a holiday) for 4 currencies which are UK pound, German mark, Japanese yen 
and French franc, all of which are compared with the US dollar. The weekly data cover the 
period for 20 years starting from January 7, 1976 to January 17, 1996. In contrast, we use 10-
second data in our study. However, we expect that a model with jumps should still provide a 
better fit with more recent data as high-frequency trading has become normal in the FX 
market. So the response from news releases should be quick and may drive the currency 
prices to move sharply which is expected to be captured by jumps. 
 
In addition to improve the fit, there is also a suggestion from (Engel and Hamilton 1990)  
who observe the behavior of the exchange rate using the quarterly FX data to conclude that 
using the regime switching is a good approximation for FX market. 

Instead of using quarterly data, (Marsh 2000)  uses the daily exchange rates for three 
currencies against US dollar and concludes that Markov regime switching model is well fitted 
to the data although the performance in out-of-sample parameter forecasting is low.  

Moreover, (Stephane and Zou 2011) had concluded that the Cox-Ingersoll-Ross regime 
switching model is better in parameter estimation than non-regime switching model for 
daily exchange rate data ranging from January 1 ,2000 to October 30 ,2011. They also 
suggest that using the regime switching model for daily data helps the investors detect some 
economic events especially when the dynamic of exchange rate is significantly different. 
With these backgrounds, we may expect that the model with the regime switching may give 
a better fit than the model without the regime switching. However, we rely on the 10-
second data rather than the daily data. So we will consider models with and without regime 
switching and choose the best model for our study.      

To estimate the regime switching model, many parameter values are concealed especially 
the state variable representing the market condition: the transient state and the steady 
state. The EM algorithm which is developed by (Dempster, Laird et al. 1977)  is an answer for 
this problem. The EM algorithm is widely used for parameter estimation when the data have 
missing values. The EM algorithm reduces the difficult task of optimizing the non-separable 
log-likelihood function by considering a sequence of simpler sub-problems for which the log-
likelihood value continuously improves in each step. This algorithm was used for estimating 
the maximum likelihood estimators in the cases where there are some missing values. The 
algorithm iterates between an expectation-step (E-step), which constructs an expectation 
function of log-likelihood using the currently estimated parameters, and a maximization-step 
(M-Step), which computes the best set of parameters that maximizes the expected complete 
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log-likelihood. The algorithm is terminated when the number of iterations exceeds a limit or 
the change in the set of parameters is less than a tolerance. There is also the comparison 
between the EM algorithm with Newton’s method by (Springer and Urban 2014). They 
conclude that EM is slower to converge in terms of the number of iterations but the 
computation costs for each of iteration is lower. However, the pro of using the EM algorithm 
is the simplicity for implementation with the consistent and unbiased estimators. In the cons 
side, EM has a slow linear convergence rate in some cases.  

In conclusion, we expect that the model with jump and regime switching may be a great 
choice for the scope of the thesis and we will develop an EM-based algorithm to estimate 
the parameter values of our models.       

Chapter 3 Data and Model  

3.1 EUR/USD data 

In this thesis there are two types of data used which are EUR/USD bid-ask quote data and 
news data. 

3.1.1 Tick-data bid-ask quote 

EUR/USD bid-ask quote data is published by www.truefx.com. This website gathers it from 
the real market quote. The data downloaded from this website is a tick-data consisting of 
bid-ask quote, date and time-stamp for 5 years ranging from January 7, 2010 to March 6, 
2014. From the tick data, we construct the 10-second data and use them in our study.   

3.1.2 News data 

The study from (Galati and Ho 2001) investigates that the releases of macroeconomic news 
of either the euro area or the United States have impacts on the EUR/USD currency. This 
thesis considers good and bad unemployment claims news which can be a proxy to indicate 
the current situation of the macroeconomics of the United States.  

Sometimes, there are other types of news announced close to the unemployment claims 
news. In this thesis we will consider only the period with a single news announcement which 
can be obviously classified into good and bad news.  

Note that: the good news means that the news released may strengthen the EUR currency 
or weaken the USD currency. Similarly, news will be characterized as bad news if the news 
released may weaken the EUR currency or strengthen the USD currency. For example, if the 
actual number of unemployment claims number turns out to be higher than forecast, it may 
weaken the USD currency. This shows the weakening US economy. Therefore, this news is 
characterized as good news for EUR/USD currency.       

Good news dataset is filtered from the cases in which actual unemployment claim number is 
higher than the forecast number and there are no other macroeconomic announcements 
within the range of 2 hours after the news is announced. The news is collected by hand 
ranging from January 7, 2010 to Jan 30, 2014, which consists of the announcement times, 
the forecasts of unemployment claim numbers and actual unemployment claim numbers. 
There are 38 good single news announcements during this period.   

http://www.truefx.com/
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Bad news dataset is filtered similarly to the good news cases except that the actual numbers 
are lower than the forecast numbers in this case. The news is collected by hand ranging from 
January 7, 2010 to December 26, 2013, which consists of the announcement times, the 
forecast numbers and the actual numbers. There are 43 bad single news announcements 
during this period.  

Note that unemployment claims news is announced weekly but the time of announcement 
is not fixed, but is known ahead of time. The time of news announcement is provided by 
www.forexfactory.com. Good and bad news datasets are shown in Table 22 and Table 23 
respectively in Appendix 1.  

3.1.3 Daily closing exchange rate for EUR/USD 

EUR/USD daily closing rate data is pulled from Bloomberg. The data covers 5 years ranging 
from January 1, 2010 to December 31, 2014. This daily data is used for volatility adjustments 
due to different market conditions as discussed later.   

3.2 Model 

We have two models in our study. The first model is for the exchange rate dynamic, which is 
assumed to follow a mean-reverting process with regime switching. The other model is for 
the bid-ask spread process. We assume a random spike in the spread after the news release 
with an exponential decay. 

3.2.1 Mean Reverting with regime switching model 
The study of (Johnson and Schneeweis 1994) assumes that the volatility of the currency 
price is high at the time of news announcement but it immediately goes back to its normal 
value in the next subsequent periods. To be more realistic, the volatility of the currency price 
after the news announcement is extremely high and stays high for a certain time period. 
However, the volatility of the price will move to its fundamental value in the steady state in 
the longer term. So, traders should not underestimate the volatility because it is related to 
the entry price and forced close of their position. For example, after the high-impact news is 
announced, the price dynamic may turn into the transient state which has a high volatility. If 
we do not adjust the entry price to deal with the market state, we may submit a buy order at 
a relatively high price, and once it is matched, the volatility and bring the price further down, 
causing us to close the position due to the forced close rule. Therefore, we expect that the 
switching of the parameters due to the changing of the market state may give a better result 
than a pricing model with fixed volatility.  This idea supports the use of a regime-switching 
model. 

(Engel and Hamilton 1990) shows that the currency price has mean-reverting effect in long 
horizon. Moreover, the study from (Johnson and Schneeweis 1994)  also suggests that the 
complex model with jump is preferred than the simple non-jump model. With these 
evidences we expect that using a mean reverting model with jump for the currency price 
movement will improve a fit.      

Before news is announced, dealers may try to adjust the spread to be wider a little bit for 
their own benefit by adjusting the bid-ask prices (lower the bid price or increasing the ask 
price) to be prompt for the arrivals of news to the market. When high-impact news arrives, 
the spreads width will increase. Once the market becomes clear on the direction of the price 

http://www.forexfactory.com/
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movement, the spreads will automatically be adjusted to be narrower and finally go back to 
the normal state.  

The mean-reverting with jump and regime-switching model is an extended form of the 
mean-reverting with jump process (Clewlow and Strickland 2000). 

Consider a mean-reverting with jump process: 

 𝑑𝑆𝑡
(𝑚)

𝑆𝑡
(𝑚)

= 𝜅 [𝛼 − 𝑙𝑛 𝑆𝑡
(𝑚)
] 𝑑𝑡 + 𝜎𝑑𝑊𝑡

(𝑚)
+ 𝜃𝑡

(𝑚)
𝑑𝑁𝑡

(𝑚)
 

( 1 ) 

In this model, 𝑆𝑡
(𝑚)

 is the asset price at time 𝑡 after the 𝑚𝑡ℎ news is announced. The process 
is mean reverting to the long-term log-price level 𝛼 with the mean reversion rate 𝜅 when 

jumps are ignored. 𝑊𝑡
(𝑚)

 is a standard Brownian motion. The size of jumps for 𝑚𝑡ℎnews at 

time 𝑡, 𝜃𝑡
(𝑚)
,is the extra parameter added to the usual mean-reverting process. We assume 

that 𝜃𝑡
(𝑚)
 is a log-normal distributed random variable where 𝑙𝑛(1 + 𝜃) ∼ 𝑁𝑜𝑟(𝜂, 𝜔2) ; 𝜂 is 

the mean jump size, 𝜔2is the variance of the jump and 𝑁𝑡 is a Poisson process with rate 𝜆 .  

In this thesis, we allow all parameter values to be switched between the transient and 

steady states. The state variable,𝑦𝑡
(𝑚), representing the state of a Markov chain is 

introduced to make all of the parameter’s values state-dependent. The price process is now 
given by 

 𝑑𝑆𝑡
(𝑚)

𝑆𝑡
(𝑚)

= 𝜅 (𝑦𝑡
(𝑚)
) [𝛼 (𝑦𝑡

(𝑚)
) − 𝑙𝑛 𝑆𝑡

(𝑚)
] 𝑑𝑡 + 𝜎 (𝑦𝑡

(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
) 𝑑𝑁𝑡

(𝑚)
 

( 2 ) 

 

where 𝑦𝑡
(𝑚)

 is assigned to be 1 or 2 for transient or steady state, respectively. Using the 

transformation 𝑎𝑡
(𝑚) = 𝑙𝑛 𝑆𝑡

(𝑚) and Ito’s lemma to obtain the return process for the 

𝑚𝑡ℎnews at time 𝑡, we have the following process: 

 𝑑𝑎𝑡
(𝑚)

= 𝜅 (𝑦𝑡
(𝑚)
) [�̅� (𝑦𝑡

(𝑚)
) − 𝑎𝑡

(𝑚)
]  𝑑𝑡 + 𝜎 (𝑦𝑡

(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
)) 𝑑𝑁𝑡

(𝑚)
 ( 3 ) 

where,  

 
�̅� (𝑦𝑡

(𝑚)
) =  𝛼 (𝑦𝑡

(𝑚)
) −

𝜎2 (𝑦𝑡
(𝑚)
)

2𝜅(𝑦𝑡
(𝑚)
)

 
( 4 ) 

In practice continuous measurements of 𝑆𝑡
(𝑚) are not possible. We consider the discrete 

time process Δ𝑎𝑡
(𝑚) insteads of 𝑑𝑎𝑡

(𝑚): 

 
Δ𝑎𝑡

(𝑚)
= Δ𝑧𝑡

(𝑚)
(𝑦𝑡

(𝑚)
) + ∑ 𝛿𝑡,𝑖

(𝑚)
(𝑦𝑡

(𝑚)
)

Δ𝑁𝑡
(𝑚)

𝑖=0

 

 

( 5 ) 

 

where, 

  Δ𝑧𝑡
(𝑚)

(𝑦𝑡
(𝑚)
)  =  𝜅 (𝑦𝑡

(𝑚)
) [�̅� (𝑦𝑡

(𝑚)
) − 𝑎𝑡

(𝑚)
]  Δ𝑡 + 𝜎 (𝑦𝑡

(𝑚)
) Δ𝑊𝑡

(𝑚)
 

 

( 6 ) 
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 𝛿𝑡,𝑖
(𝑚)

(𝑦𝑡
(𝑚)
)  =  𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
)) ∼𝑖𝑖𝑑 𝑁𝑜𝑟 (𝜂 (𝑦𝑡

(𝑚)
) , 𝜔2 (𝑦𝑡

(𝑚)
)) ( 7 ) 

𝛿𝑡,𝑖
(𝑚)

(𝑦𝑡
(𝑚)
) denote for the size of 𝑖𝑡ℎjump that occurs in (𝑡 − 1, 𝑡] of the regime  𝑦𝑡

(𝑚). 

With the unit time interval (𝑡 − 1, 𝑡], let 𝑥𝑡
(𝑚)

= Δ𝑎𝑡
(𝑚)

. So we can rewrite it as 

 
 𝑥𝑡
(𝑚)

= Δ𝑧𝑡
(𝑚)

(𝑦𝑡
(𝑚)
) + ∑ 𝛿𝑡,𝑖

(𝑚)
(𝑦𝑡

(𝑚)
)

𝛥𝑁𝑡
(𝑚)

𝑖=0

 

 

( 8 ) 

It is obvious that the discrete-time processes Δ𝑧𝑡
(𝑚)

, Δ𝑁𝑡
(𝑚)
 and 𝛿𝑡,𝑖

(𝑚)
 are mutually 

independent given 𝑦𝑡
(𝑚)
 and the term ∑ 𝛿𝑡,𝑖

(𝑚)
(𝑦𝑡

(𝑚)
)

Δ𝑁𝑡
(𝑚)

𝑖=0  can be interpreted as zero when 

Δ𝑁𝑡
(𝑚) = 0. Now, we may estimate the parameters of process 𝑆𝑡

(𝑚) which are 

𝜅, 𝛼 ̅, 𝜎2, 𝜂, 𝜔2, 𝜆 by using process 𝑥𝑡
(𝑚). 

By given the number of jumps in the interval (𝑡 − 1, 𝑡] or 𝛥𝑁𝑡
(𝑚)

, and the hidden state 𝑦𝑡
(𝑚)

 , 

𝑥𝑡
(𝑚) is a Normal random variable with mean  𝜅 (𝑦𝑡

(𝑚)
) [�̅� (𝑦𝑡

(𝑚)
) − 𝑙𝑛 𝑆𝑡

(𝑚)
] + 𝛥𝑁𝑡

(𝑚)
𝜂(𝑦𝑡

(𝑚)
) and 

variance 𝜎2(𝑦𝑡
(𝑚)
) + Δ𝑁𝑡

(𝑚)
𝜔2(𝑦𝑡

(𝑚)
). Furthermore, we may say that by given hidden state 𝑦𝑡

(𝑚),

𝑥𝑡
(𝑚) are independently and identically distributed with the density of Poisson-Normal as 

follows: 

 
𝑓 (𝑥𝑡

(𝑚)
|𝑦𝑡
(𝑚)
) =∑[𝜙 (𝑥𝑡

(𝑚)
; 𝜅 (𝑦𝑡

(𝑚)
) [�̅� (𝑦𝑡

(𝑚)
) − 𝑙𝑛 𝑆𝑡

(𝑚)
] + 𝑗𝜂 (𝑦𝑡

(𝑚)
) , 𝜎2 (𝑦𝑡

(𝑚)
)

∞ 

𝑗=0

+ 𝑗𝜔2 (𝑦𝑡
(𝑚)
))] 𝑒

−(𝜆(𝑦𝑡
(𝑚)

))
(𝜆 (𝑦𝑡

(𝑚)
))

𝑗

𝑗!
  

 
 

( 9 ) 

 

where 𝜙(𝑥 ; 𝑎, 𝑏) denote a Normal density at  𝑥 with mean 𝑎 and variance 𝑏. 

To be able to estimate for the Geometric Brownian motion with jump diffusion model, we 

define a new parameter 𝜌 (𝑦𝑡
(𝑚)
) = 𝜅(𝑦𝑡

(𝑚)
)�̅� (𝑦𝑡

(𝑚)
) and rearrange the model as follows: 

 𝑑𝑎𝑡
(𝑚)

= 𝜅 (𝑦𝑡
(𝑚)
) [�̅� (𝑦𝑡

(𝑚)
) − 𝑎𝑡

(𝑚)
]  𝑑𝑡 + 𝜎 (𝑦𝑡

(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
)) 𝑑𝑁𝑡

(𝑚)
 

𝑑𝑎𝑡
(𝑚)

= [𝜅 (𝑦𝑡
(𝑚)
) �̅� (𝑦𝑡

(𝑚)
) − 𝜅 (𝑦𝑡

(𝑚)
) 𝑎𝑡

(𝑚)
]  𝑑𝑡 + 𝜎 (𝑦𝑡

(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
))  

𝑑𝑎𝑡
(𝑚)

= [𝜌 (𝑦𝑡
(𝑚)
) − 𝜅 (𝑦𝑡

(𝑚)
) 𝑎𝑡

(𝑚)
]  𝑑𝑡 + 𝜎 (𝑦𝑡

(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
)) 

 

 

 
(10) 

We can see that by setting the parameter 𝜅(𝑦
𝑡
(𝑚)) = 0, the model will be changed into the 2-

regimes Geometric Brownian motion with jump diffusion model as follows: 

 𝑑𝑎𝑡
(𝑚)

= 𝜌(𝑦𝑡
(𝑚)
)  𝑑𝑡 + 𝜎 (𝑦𝑡

(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
)) 

 

(11) 

Similarly, we can derive 12 special-case (or nested) models in total which will be considered 
in this thesis as shown in Table 1. 
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Table 1: parameters of each model in the scope of the thesis 

3.2.2 Spread Model 

The spread model can be divided into two parts which are the spike phase and the stable 
phase. For the spike phase, we assume a constant spread estimated using the average 
spread of tick-data which occurs in the first ten seconds after each news announcement. For 
the stable spread, we will use exponential decay function to model the spread size of the 
bid-ask quote after the spike phase using the tenth seconds spread as a starting spread. 
Therefore, a model will have mathematical representations as follow: 

 
Φ𝑡
(𝑚)

= {
𝜉(𝑚) 𝑖𝑓 𝑡 < 10

𝜉(𝑚)𝑒−𝜁
(𝑚)(𝑡−10) 𝑖𝑓 𝑡 ≥ 10

 

 

(12) 

where, 

Φ𝑡
(𝑚) denote the spread of the bid-ask quote for the 𝑚𝑡ℎ news at time 𝑡 after the 

announcement. 

𝜉(𝑚) denote the spread of the bid-ask quote for the  𝑚𝑡ℎ news in the spike phase. 

𝜁(𝑚) denote the exponential decay rate of the bid-ask spread size for 𝑚𝑡ℎ news after the 
spike phase.     

Chapter 4 Methodology 

This section has four sub-sections which are model estimation, simulation, optimization and 
out-of-sample trading. 

Model Number  
of regimes 

𝜋 𝜆 𝝎𝟐 𝜂 𝝈𝟐 𝜅 𝜌 𝑞 

Pure Diffusion (PD) 1        

Geometric Brownian Motion (GBM) 1        

Mean-Reverting (MR) 1        

Pure Diffusion with Jump (PDJ) 1        

Geometric Brownian Motion with Jump 
(GBMJ) 

1        

Mean-Reverting with Jump (MRJ) 1        

2-Regime Pure Diffusion (2-PD) 2        

2-Regime Geometric Brownian Motion (2-
GBM) 

2        

2-Regime Mean-Reverting (2-MR) 2        

2-Regime Pure Diffusion with Jump (2-PDJ) 2        

2-Regime Geometric Brownian Motion with 
Jump (2-GBMJ) 

2        

2-Regime Mean-Reverting with Jump (2-
MRJ) 

2        
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In the estimation sub-section, we estimate the parameters of the currency price dynamic 
using the EM algorithm based on the ten-second exchange rate data following the first 20 
news announcements. This is done separately for good news and bad news. We fit each of 
the models outlined in Table 1, and use the AIC and BIC to choose the best models. Due to 
the changing market conditions between the in-sample period (first 20 news 
announcements) and the out-of-sample period (the remaining news announcements), we 
adjust the model parameters during the out-of-sample period by using a volatility ratio. In 
particular, the model parameters are scaled up (down) if forecasted volatility during the out-
of-sample period is higher (lower) than that during the in-sample period. We use a GARCH 
model to estimate the volatility.  

The parameters of the spreads will have 2 parts to estimate which are the spike spreads and 

the decaying part. The spike spreads measured by the 10𝑡ℎ second bid-ask spreads are 
collected from each news announcement during the in-sample period. For the decaying part, 
the decay rates will be estimated using linear regression on the linearized model of equation 
(12) to match each decay rate with a given spike spread. The kernel smoothing function will 
be applied to find a joint probability density function between the spike spreads and the 
decay rates.     

In the simulation sub-section, the Monte-Carlo simulation technique will be used to 
generate mid-prices for every ten seconds starting from the time of the news announcement 
until the next 15 minutes. The parameters, after the scaling, from the estimation step will be 
used to simulate the prices. This is done for each of the news announcements in the out-of-
sample period.  

Also, the spreads will be simulated in this step. Each consists of two parts which are spike 
part and decaying part. The size of the spike spread will be simulated using a fitted 
distribution. The decaying part is simulated using a fitted exponential decay rate parameter. 

After the simulation step, we will have simulated bid-ask prices for EUR/USD which are 
calculated by adding and subtracting the simulated spread to the mid-price. This simulated 
bid-ask prices will be used in the optimization step.      

In the optimization sub-section, an optimization method will be used to find the best price to 
place the order of buy or sell with the optimal volume and also the target price based on the 
simulated bid-ask prices. We do this for each of the out-of-sample trading scenarios. There 
will be 4 strategies to be considered in this sub-section which are Stop Long order, Stop 
Short order, Limit Long order and Limit Short order. The best strategy which is judged by the 
best Sharpe ratio of the in-sample trading with an appropriate chance of order matching will 
be used to trade in the out-of-sample sub-section. 

In the out-of-sample trading sub-section, the trading strategy and the optimal solution from 
the optimization sub-section will be applied to the out-of-sample data. To measure the 
performance of the strategy, the open-and-hold strategy will be used as a benchmark. This 
strategy will immediately open the position at the time that the economic news is 
announced to the market, and hold the position until the end of the trading period which is 
15 minutes after news is announced. The opened position of both the chosen strategy and 
the benchmark will be marked to market at the end of trading period. The performance is 
measured by the Sharpe ratio.               

We now provide the details of each step.          
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4.1 Price Estimation 

The purpose of this section is to estimate the parameters using news and the set of 𝑇 

observable returns  (𝑥1
(𝑚)

,𝑥2
(𝑚)

, … . , 𝑥𝑇
(𝑚)

)  for 𝑚 = 1,2,3,… ,𝑀.  

The reason that using maximum likelihood estimation for the case of a Poisson jump process 
is an unsuccessful approach is because the probability density function of log-returns turns 
out to be an infinite series due to the number of jumps (Beckers 1981). (Ball and Torous 
1985) uses the simplifier model which relaxes the condition of the number of jumps using 
the Bernoulli random variable for the approximated form of the Poisson-Normal density.  

Instead of using maximum likelihood estimation, the estimation method which will be used 
in this thesis is the EM algorithm based on the fact that the EM recursion will be more 
numerically robust than direct maximum likelihood. 

4.1.1 EM algorithm           

Consider the two sets of data which are Incomplete Dataset and Complete Dataset defined 

by the vector 𝑋𝑚and 𝐶𝑚 respectively where, 

𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ∶  𝑋𝑚 = (𝑥1
(𝑚)
, 𝑥2
(𝑚)
, … . , 𝑥𝑇

(𝑚)
)     ,𝑚 = 1,2,3,… ,𝑀 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ∶ 𝐶𝑚 = 

(

 
 
 
 

𝑥1
(𝑚)

… 𝑥𝑇
(𝑚)

𝑧1
(𝑚)

… 𝑧𝑇
(𝑚)

∆𝑁1
(𝑚)

… ∆𝑁𝑇
(𝑚)

𝛿Δ𝑁1
(𝑚)

… 𝛿Δ𝑁𝑇
(𝑚)

𝑦1
(𝑚)

… 𝑦𝑇
(𝑚)

)

 
 
 
 

   , 𝛿Δ𝑁𝑇
(𝑚)

= (𝛿
Δ𝑁𝑇

(𝑚)
,1

(𝑚)
, 𝛿
Δ𝑁𝑇

(𝑚)
,2

(𝑚)
, … , 𝛿

Δ𝑁𝑇
(𝑚)

,𝑇

(𝑚)
) 

By given the hidden parameter set  𝛩 = (𝜋, 𝜆, 𝜂, 𝜔2, 𝜅,  �̅�𝑟 , 𝜎
2, 𝑞) where 𝜋 = 𝑃(𝑦1 = 1), the 

complete log-likelihood of the complete dataset 𝐶1, 𝐶2, … , 𝐶𝑀can be defined by (See 

Appendix 2) 

 
𝑙𝑛(𝑓(𝐶1, 𝐶2, … , 𝐶𝑀|𝛩𝑟)) = ∑ 𝑙𝑛 (𝑃 (𝑦1

(𝑚)
))

𝑀

𝑚=1

+ ∑∑𝑙𝑛 (𝑃 (𝛥𝑁𝑡
(𝑚)
|𝑦𝑡
(𝑚)
))

𝑇

𝑡=1

𝑀

𝑚=1

 

+ ∑∑𝑙𝑛(𝑃 (𝛿
𝛥𝑁𝑡

(𝑚)

(𝑚)
|𝛥𝑁𝑡

(𝑚)
, 𝑦𝑡

(𝑚)
 ))

𝑇

𝑡=1

𝑀

𝑚=1

 

+ ∑∑𝑙𝑛(𝑃 (𝑧𝑡
(𝑚)
|𝑦𝑡
(𝑚)
, 𝛥𝑁𝑡

(𝑚)
))

𝑇

𝑡=1

𝑀

𝑚=1

 

+ ∑ ∑𝑙𝑛(𝑃(𝑦𝑡+1
(𝑚)
|𝑦𝑡
(𝑚)
)) 

𝑇−1

𝑡=1

𝑀

𝑚=1

, 𝑚 = 1,2,3,… ,𝑀 

 

 
 
 
 
 
 

(13) 

 

where, 𝑓(𝐶1, 𝐶2, … , 𝐶𝑀) is the joint distribution of complete dataset. 

The parameter set  𝛩 is hidden; the only observable data are returns 𝕏 = (𝑋
1
, 𝑋2, … , 𝑋𝑀). The 

EM algorithm starts from an initial parameter set 𝛩0. Then it computes the associated 

expectations and probabilities of the expected complete log-likelihood (Expectation step), 

and them maximizes the expected complete log-likelihood to obtain the new parameter set 
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Θ1 (Maximization step). The algorithm iterates between the Expectation and Maximization 

steps until the parameter set converges. In particular, we define the expected log complete 

likelihood at the 𝑟𝑡ℎ loop as  

𝑄(𝛩𝑟|𝛩𝑟−1) = 𝔼(𝑙𝑛(𝑓(𝐶1, 𝐶2, … , 𝐶𝑀)|𝛩𝑟) |𝕏, 𝛩𝑟−1)  ,𝑚 = 1,2,3,… ,𝑀 

where, 

𝛩𝑟 = (𝜋𝑟, 𝜆𝑟, 𝜂𝑟, 𝜔𝑟
2, 𝜅𝑟, �̅�𝑟 , 𝜎𝑟

2, 𝑞𝑟) 

is the parameter set from the 𝑟𝑡ℎ loop, and the expecation is taken over the unobserved 

data. 

Given the parameter set from the previous loop 𝛩𝑟−1, the new parameter can be found by 

maximizing  𝑄(𝛩|𝛩𝑟−1) with respect to the parameter set 𝛩. As the basis of an EM 

algorithm, the function 𝑄(𝛩|𝛩𝑟−1) can be determined by the computation in the 

Expectation-step. With the properties of EM, it can be shown that recursive computation 

of  𝛩𝑟 yields monotonic increasing in log-likelihood and the estimated parameters will finally 

converge to the maximum likelihood estimator �̂� for the original incomplete dataset 𝕏. 

4.1.1.1 Maximization-step 

This section will show how to compute each of parameters which are 𝜋, 𝜆, 𝜂, 𝜔2, �̅�, 𝜅, 𝜎2 and 

𝑞 respectively using the first-order condition and Lagrange multiplier method in the 

maximization step (See Appendix 3) 
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4.1.1.2 Expectation-Step 

This section will show how to compute each of the expected values which are needed in the 
maximization step. The conditional mean and variance for normal distribution are applied in 
this step.  

Consider the jump intensity �̂�𝑘, it can be observed that the distribution of 𝑥𝑡
(𝑚) given Δ𝑁𝑡

(𝑚) 

and regimes 𝑦𝑡
(𝑚)is Gaussian. The calculation for the  𝑟𝑡ℎ loop of 𝔼 [ 𝛥𝑁𝑡

(𝑚)
|𝕏, 𝛩𝑟−1, 𝑦𝑡

(𝑚)
= 𝑘] can 

be shown by 

𝔼 [ 𝛥𝑁𝑡
(𝑚)
|𝕏, 𝛩𝑟−1, 𝑦𝑡

(𝑚)
= 𝑘] =∑𝑠𝑃 (𝛥𝑁𝑡

(𝑚)
= 𝑠 |𝕏 , 𝛩𝑟−1, 𝑦𝑡

(𝑚)
= 𝑘)

∞

𝑠=0

 

=  ∑𝑠𝑃 (𝛥𝑁𝑡
(𝑚)

= 𝑠 |𝑥𝑡
(𝑚)
 , 𝛩𝑟−1, 𝑦𝑡

(𝑚)
= 𝑘)

∞

𝑠=0

 

=∑𝑠(
𝑃 (𝑥𝑡

(𝑚)
|𝛥𝑁𝑡

(𝑚)
= 𝑠,𝛩𝑟−1, 𝑦𝑡

(𝑚)
= 𝑘)𝑃 (𝛥𝑁𝑡

(𝑚)
= 𝑠 |𝛩𝑟−1, 𝑦𝑡

(𝑚)
= 𝑘)

𝑃 (𝑥𝑡
(𝑚)
 |𝛩𝑟−1, 𝑦𝑡

(𝑚)
= 𝑘)

)

∞

𝑠=0

 

=∑𝑠

(

 
 𝜙 (𝑥𝑡

(𝑚)
; 𝜌𝑘

(𝑟−1)
− 𝜅𝑘

(𝑟−1)
𝑙𝑛 (𝑆𝑡

(𝑚)
) + 𝑠𝜂𝑘

(𝑟−1)
, 𝜎𝑘

2(𝑟−1)
+ 𝑠𝜔𝑘

2(𝑟−1)
) 
(𝜆𝑘

(𝑟−1)
)
𝑠

𝑠!
𝑒−𝜆𝑘

(𝑟−1)

∑ 𝜙 (𝑥𝑡
(𝑚)
; 𝜌𝑘

(𝑟−1)
− 𝜅𝑘

(𝑟−1)
𝑙𝑛 (𝑆𝑡

(𝑚)
) + 𝑢𝜂𝑘

(𝑟−1)
, 𝜎𝑘

2(𝑟−1)
+ 𝑢𝜔𝑘

2(𝑟−1)
) 
(𝜆𝑘

(𝑟−1)
)
𝑢

𝑢!
𝑒−𝜆𝑘

(𝑟−1)
∞
𝑢=0  )

 
 

∞

𝑠=0

 

where, 𝜌𝑘
(𝑟−1)

= 𝜅𝑘
(𝑟−1)

�̅�𝑘
(𝑟−1)

   

Now consider  𝜂 ̂𝑘 and  �̂�𝑘
2 which are the mean and variance of jump size respectively. 

The value which will be computed in this part are ∑ 𝑗𝔼 [𝛿𝑡,𝑖
(𝑚)
|𝕏, Θr−1, ΔN𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘]∞

𝑗=0  

and ∑ 𝑗𝔼 [(𝛿𝑡,𝑖
(𝑚)

− �̂�
𝑘
)
2

|𝕏, 𝛩, 𝛥𝑁𝑡
(𝑚)

= 𝑗, 𝑦
𝑡
(𝑚) = 𝑘]∞

𝑗=0 . Using conditional normal distribution, we 

have, for the 𝑟𝑡ℎ loop, 

∑𝑗𝔼[𝛿𝑡,𝑖
(𝑚)
|𝕏,𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚) = 𝑗, 𝑦𝑡
(𝑚) = 𝑘]

∞

𝑗=0

=∑𝑗(𝑗𝜂𝑘
(𝑟−1) + (𝑥𝑡

(𝑚) − (𝜌𝑘
(𝑟−1)

− 𝜅𝑘
(𝑟−1) 𝑙𝑛 𝑆𝑡

(𝑚) + 𝑗𝜂𝑘
(𝑟−1)

)) (
𝜔𝑘
2(𝑟−1)

𝜎𝑘
2(𝑟−1) + 𝑗𝜔𝑘

2(𝑟−1)
))

∞

𝑗=0

 

and  

∑𝑗𝔼 [(𝛿𝑡,𝑖
(𝑚)

− �̂�𝑘)
2
|𝕏, 𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘]

∞

𝑗=0

=∑𝑗 (𝕍𝑎𝑟 [𝛿𝑡,𝑖
(𝑚)
|𝕏, 𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘]

∞

𝑗=0

+ (𝔼 [𝛿𝑡,𝑖
(𝑚)
|𝕏, 𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘] − �̂�𝑘)

2
) 

where, 

𝕍𝑎𝑟 [𝛿𝑡,𝑖
(𝑚)
|𝕏, 𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘] = 𝜔𝑘

2(𝑟−1)
− 𝜔𝑘

2(𝑟−1)
 (

𝜔𝑘
2(𝑟−1)

𝜎𝑘
2(𝑟−1)

+ 𝑗𝜔𝑘
2(𝑟−1)

). 

Consider �̂�𝑘   , �̂�𝑘 and  �̂�𝑘 which are the long-term mean of stock price, speed of mean 

reversion and volatility of stock respectively. The common terms which are needed for the 
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𝑟𝑡ℎ loop are   

𝑍𝑡
(𝑚)

= 𝔼 [𝑧𝑡
(𝑚)
|𝕏, 𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘] and 𝕍𝑎𝑟 [𝑧𝑡

(𝑚)
|𝕏, 𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘].  

The distribution of 𝑧𝑡
(𝑚)given 𝑥𝑡

(𝑚),𝑦𝑡
(𝑚) and Δ𝑁𝑡

(𝑚) is Gaussian, so conditional normal 

distribution will be applied to compute both values: 

𝔼 [𝑧𝑡
(𝑚)
|𝕏, 𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘]

=  (𝜌𝑘
(𝑟−1)

− 𝜅𝑘
(𝑟−1)

𝑙𝑛 𝑆𝑡
(𝑚)
)

+ (
𝜎𝑘
2(𝑟−1)

𝜎𝑘
2(𝑟−1)

+ 𝑗𝜔𝑘
2(𝑟−1)

)(𝑥𝑡
(𝑚)

− (𝜌𝑘
(𝑟−1)

− 𝜅𝑘
(𝑟−1)

𝑙𝑛 𝑆𝑡
(𝑚)

+ 𝑗𝜂𝑘
(𝑟−1)

)) 

𝕍𝑎𝑟 [𝑧𝑡
(𝑚)
|𝕏, 𝛩𝑟−1, 𝛥𝑁𝑡

(𝑚)
= 𝑗, 𝑦𝑡

(𝑚)
= 𝑘] = 𝜎𝑘

2(𝑟−1)
− 𝜎𝑘

2(𝑟−1)
 (

𝜎𝑘
2(𝑟−1)

𝜎𝑘
2(𝑟−1)

+ 𝑗𝜔𝑘
2(𝑟−1)

) 

Lastly, for 𝑃 (𝑦𝑡
(𝑚)

= 𝑘|𝕏, 𝛩𝑟−1) the forward-backward algorithm is applied to compute this 

probability value.  

4.1.1.3 Forward-Backward Algorithm 

The forward–backward algorithm is an algorithm used to find the probability of being in the 
unobservable state 𝑘 at time 𝑡 of the process given certain information. Formally, this 
algorithm can be classified into 3 sub-parts which are Forward Procedure, Backward 
Procedure and Smoothing Procedure. In the Forward procedure, the probability of being in 
state 𝑘 at time 𝑡 is computed by the past information from time 1 to time 𝑡. In the Backward 
procedure, the probability of being in state 𝑘 at time 𝑡 is computed backward from the 
future information from time T to time 𝑡 + 1. In the Smoothing Procedure, the process of 
this part is to normalize the product of the probability given from the Forward and Backward 
parts.  

Using this algorithm to find the value of 𝑃 (𝑦𝑡
(𝑚)

= 𝑘|𝕏,Θ)  for the 𝑟𝑡ℎ loop, we have 

𝑃(𝑦𝑡
(𝑚) = 𝑘|𝕏,𝛩𝑟−1) =

𝑃(𝕏, 𝑦𝑡
(𝑚) = 𝑘|𝛩𝑟−1)

∑ 𝑃(𝕏, 𝑦𝑡
(𝑚) = 𝑘|𝛩𝑟−1)2

𝑘=1

∝  𝑃(𝕏, 𝑦𝑡
(𝑚) = 𝑘|𝛩𝑟−1).  

Define the forward probability as  

𝐹𝑡(𝑦𝑡
(𝑚) = 𝑘) = 𝑃(𝑦𝑡

(𝑚) = 𝑘|𝑥1
(𝑚), 𝑥2

(𝑚), 𝑥3
(𝑚),… , 𝑥𝑡

(𝑚), 𝛩𝑟−1) 

and the backward probability as 

𝐵𝑡(𝑦𝑡
(𝑚) = 𝑘) = 𝑃(𝑥𝑇

(𝑚), 𝑥𝑇−1
(𝑚) , 𝑥𝑇−2

(𝑚) , … , 𝑥𝑡+1
(𝑚)|𝑦𝑡

(𝑚) = 𝑘,𝛩𝑟−1). 

Using the Bayes’ rule, we get 

  

𝑃 (𝕏, 𝑦𝑡
(𝑚)

= 𝑘|𝛩𝑟−1)

∝  𝑃 (𝑦𝑡
(𝑚)

= 𝑘|𝑥1
(𝑚)
, 𝑥2
(𝑚)
, 𝑥3
(𝑚)
, … , 𝑥𝑡

(𝑚)
, 𝛩𝑟−1)  𝑃 (𝑥𝑇

(𝑚)
, 𝑥𝑇−1
(𝑚)

, 𝑥𝑇−2
(𝑚)

, … , 𝑥𝑡+1
(𝑚)
|𝑦𝑡
(𝑚)

= 𝑘, 𝛩𝑟−1) 

∝ 𝐹𝑡 (𝑦𝑡
(𝑚)

= 𝑘)𝐵𝑡(𝑦𝑡
(𝑚)

= 𝑘) 
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Note that 𝕏 = (𝕏(1), 𝕏(2), …𝕏(𝑚)) where 𝕏(𝑚) = (𝑥1
(𝑚)
, 𝑥2
(𝑚)
, 𝑥3
(𝑚)
, … , 𝑥𝑇

(𝑚)
) and 𝕏(𝑚) is 

independent with 𝕏(𝑚′) for all 𝑚 ≠ 𝑚′. 

Now, the Forward Procedure is applied to find the value of 𝐹𝑡 (𝑦𝑡
(𝑚)

= 𝑘) by first computing 

probability 𝐹1 (𝑦1
(𝑚)

= 𝑘)  

𝐹1(𝑦1
(𝑚) = 𝑘) ∝∑𝑃(𝑦1

(𝑚) = 𝑘)𝑃(𝑥1
(𝑚)
|𝑦1
(𝑚) = 𝑘, 𝛥𝑁1

(𝑚) = 𝑛, 𝛩𝑟−1)

∞

𝑛=0

𝑃(𝛥𝑁1
(𝑚)|𝑦1

(𝑚) = 𝑘) 

∝ ∑𝜋𝑘
(𝑟−1)𝜙(𝑥1

(𝑚); 𝜌𝑘
(𝑟−1)

− 𝜅𝑘
(𝑟−1) 𝑙𝑛(𝑆1

(𝑚)
) + 𝑛𝜂𝑘

(𝑟−1), 𝜎𝑘
2(𝑟−1) + 𝑛𝜔𝑘

2(𝑟−1)
) 
(𝜆𝑘

(𝑟−1)
)
𝑛

𝑛!
𝑒−𝜆𝑘

(𝑟−1)

∞

𝑛=0

 

and then using the recursively transition to find the value of 𝐹𝑡 (𝑦𝑡
(𝑚)

= 𝑘) 

𝐹𝑡(𝑦𝑡
(𝑚) = 𝑘) ∝∑∑𝐹𝑡−1(𝑦𝑡−1

(𝑚) = 𝑗)𝑃(𝑦𝑡
(𝑚) = 𝑘|𝑦𝑡−1

(𝑚) = 𝑗)𝑃(𝑥𝑡
(𝑚)
|𝑦𝑡
(𝑚) = 𝑘, Δ𝑁𝑡

(𝑚) = 𝑛,Θr−1)

2

𝑗=1

∞

𝑛=0

𝑃(Δ𝑁𝑡
(𝑚)|𝑦𝑡

(𝑚) = 𝑘) 

∝ ∑∑𝐹𝑡−1(𝑦𝑡−1
(𝑚) = 𝑗)𝑞𝑗𝑘

(𝑟−1)𝜙(𝑥1
(𝑚); 𝜌𝑘

(𝑟−1)
− 𝜅𝑘

(𝑟−1) ln(𝑆1
(𝑚)
) + 𝑛𝜂𝑘

(𝑟−1), 𝜎𝑘
2(𝑟−1) + 𝑛𝜔𝑘

2(𝑟−1)
) 
(𝜆𝑘

(𝑟−1)
)
𝑛

𝑛!
𝑒−𝜆𝑘

(𝑟−1)

2

𝑗=1

∞

𝑛=0

 

After we get the value of 𝐹𝑇(𝑦𝑇
(𝑚) = 𝑘) from the Forward Procedure, it is more convenient 

to find 𝑃 (𝑦𝑡
(𝑚)

= 𝑘|𝕏, Θr−1) by using the value of 𝐹𝑡(𝑦𝑡
(𝑚) = 𝑘) and compute the backward 

probabilities from time 𝑇 back to time 1. Define 

 𝐺(𝑦𝑡
(𝑚) = 𝑘) ∝  𝑃(𝑦𝑡

(𝑚) = 𝑘|𝕏,𝛩𝑟−1) = ∑ 𝑃(𝑦𝑡
(𝑚) = 𝑘, 𝑦𝑡+1

(𝑚) = 𝑔|𝕏,𝛩𝑟−1)
2
𝑔=1  

∝∑𝑃(𝑦𝑡+1
(𝑚) = 𝑔|𝕏,𝛩𝑟−1)𝑃(𝑦𝑡

(𝑚) = 𝑘|𝑦𝑡+1
(𝑚) = 𝑔,𝕏,𝛩𝑟−1)

2

𝑔=1

 

∝∑𝐺(𝑦𝑡+1
(𝑚) = 𝑔)𝑃(𝑦𝑡

(𝑚) = 𝑘|𝑦𝑡+1
(𝑚) = 𝑔,𝕏(𝑚)[1: 𝑡], 𝛩𝑟−1)

2

𝑔=1

 

∝∑𝐺(𝑦𝑡+1
(𝑚) = 𝑔)(

𝑃(𝑦𝑡+1
(𝑚) = 𝑔|𝑦𝑡

(𝑚) = 𝑘, 𝕏(𝑚)[1: 𝑡], 𝛩𝑟−1)𝑃(𝑦𝑡
(𝑚) = 𝑘|𝕏(𝑚)[1: 𝑡], 𝛩𝑟−1)

𝑃(𝑦𝑡+1
(𝑚) = 𝑔|𝕏(𝑚)[1: 𝑡], 𝛩𝑟−1)

)

2

𝑔=1

 

∝∑𝐺(𝑦𝑡+1
(𝑚) = 𝑔)(

𝑞𝑘𝑔
(𝑟−1)𝐹𝑡(𝑦𝑡

(𝑚) = 𝑘)

∑ 𝑃(𝑦𝑡+1
(𝑚) = 𝑔|𝑦𝑡

(𝑚) = ℎ)2
ℎ=1 𝐹𝑡(𝑦𝑡

(𝑚) = ℎ)
)

2

𝑔=1

 

∝ ∑𝐺(𝑦𝑡+1
(𝑚) = 𝑔)(

𝑞𝑘𝑔
(𝑟−1)𝐹𝑡(𝑦𝑡

(𝑚) = 𝑘)

∑ 𝑞ℎ𝑔
(𝑟−1)2

ℎ=1 𝐹𝑡(𝑦𝑡
(𝑚) = ℎ)

)

2

𝑔=1

 

where 𝐺 (𝑦𝑇
(𝑚) = 𝑘) = 𝐹𝑇 (𝑦𝑇

(𝑚) = 𝑘)and 𝕏(𝑚)[1: 𝑡] = (𝑥1
(𝑚), 𝑥2

(𝑚), 𝑥3
(𝑚), … , 𝑥𝑡

(𝑚)) 

Therefore, 𝑃(𝑦𝑡
(𝑚) = 𝑘|𝕏, 𝛩𝑟−1) ∝  ∑ 𝐺(𝑦𝑡+1

(𝑚) = 𝑔)(
𝑞𝑘𝑔
(𝑟−1)

𝐹𝑡(𝑦𝑡
(𝑚)

=𝑘)

∑ 𝑞ℎ𝑔
(𝑟−1)2

ℎ=1 𝐹𝑡(𝑦𝑡
(𝑚)

=ℎ)
)2

𝑔=1  

4.1.2 Akaike Information Criterion (AIC) 
The Akaike Information Criterion method is a statistical method that used to compare the 
efficiency of the model. This method will compute the log-likelihood of the model as a 
reward and penalize it with the number of parameters fitted in the model. The main source 
of penalty is from the over-fitting parameter because the increase in the number of 
parameters in the model will almost always improve the log-likelihood. Given a log-
likelihood 𝑙𝑜𝑔𝑙𝑖𝑘 and the number of parameters 𝑛𝑃𝑎𝑟𝑎𝑚, AIC can be calculated by 

𝐴𝐼𝐶 =  −2(𝑙𝑜𝑔𝑙𝑖𝑘) + 2(𝑛𝑃𝑎𝑟𝑎𝑚) 
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Based on the formulation, the model with the lowest AIC is preferred. 

4.1.3 Bayesian Information Criterion (BIC) 
Similar to AIC, the Bayesian Information Criterion method can be used to compare the 
goodness-of-fit of the model. Given a log-likelihood 𝑙𝑜𝑔𝑙𝑖𝑘, the number of observations 
𝑛𝑂𝑏𝑠  and the number of parameters 𝑛𝑃𝑎𝑟𝑎𝑚, BIC can be calculated by 

𝐵𝐼𝐶 =  −2(𝑙𝑜𝑔𝑙𝑖𝑘) + (𝑛𝑃𝑎𝑟𝑎𝑚)(𝑙𝑛(𝑛𝑂𝑏𝑠)) 

Based on the formulation, the model with the lowest BIC is preferred. 

As shown from the mathematical expressions of the AIC and BIC, we can see that the AIC 
framework tries to select the best model accounting for the number of parameters but 
ignoring the number of observations. On the contrary, the BIC framework tries to find the 
best fitted model taking into the number of parameters and the number of observations.   

Study of (Acquah 2010)  shows that the AIC framework overcomes the BIC under the 
unstable data conditions (i.e. small sample size or large noise level).   

4.1.4 Volatility Scale Ratio 
As the parameters are fitted based on the in-sample data, the volatility of the currency 
movement during the out-of-sample period can be changed due to the change in the market 
condition, such as ECB (Euro central Bank) stimulates the economy system by QE 

(Quantitative Easing). Therefore, we use a volatility adjustment (Δ(𝑚)) to adjust the model 
parameters for each of the out-of-sample news announcements  

By assuming that in the out-of-sample data the 𝑚𝑡ℎ news will be announced on the date 𝑘, 
the volatility scale ratio for that news will be computed using GARCH(1,1) by 

𝛥(𝑚) = √
𝑣𝑘−1
(𝑚)

�̅�𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 
 

where 𝑣𝑘−1
(𝑚)  is the variance of the log-return on date 𝑘 − 1 based on the GARCH(1,1) model 

fitted using the daily data from the first date of the in-sample period to the day before the 

𝑚𝑡ℎ news is announced, and �̅�𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 is the mean of the variances of the log-return of the 

daily data during the in-sample period estimated from a GARCH(1,1) model using the data 
from January 1, 2010 to December 31, 2014. 

4.2 Spread Estimation 

The estimation of the spread will be divided into two parts which are the spike part and 
decaying part. The steps to estimate the spread parameters are as follow: 
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1. The estimation for the spike spread can be done by averaging all of the spreads 
of the tick-data during the first ten seconds after each of the news 
announcements. Then, we will store all of the averaged values in the 𝑀-
dimensional vector 𝜉 where 𝑀 is the number of news. Therefore, 𝜉 =

[𝜉(1) 𝜉(2) 𝜉(3)… 𝜉(𝑀)].  
  

2. Recall that the spread at time 𝑡 > 10 is Φ𝑡
(𝑚)

= 𝜉(𝑚)𝑒−𝜁
(𝑚)(𝑡−10). The estimation for 

the decaying spread can be done by using linear regression on the historical 
spreads for each news announcement after the spike phase (i.e. 10 seconds 

after the announcement time). The regression equation is 𝑙𝑛Φ𝑡
(𝑚)

= 𝑙𝑛 𝜉(𝑚) −

𝜁(𝑚)(𝑡 − 10). Then, we will store all of the parameter values in the 𝑀-
dimensional vector 𝜁 where 𝑀 is the number of news. Therefore, 𝜁 =

[𝜁(1) 𝜁(2) 𝜁(3)… 𝜁(𝑀)]. 
 

3. Use a Kernel smoothing function for estimating the joint probability density of 𝜉 
and 𝜁. Then, apply the 𝑡 −copula fitting between the smoothed 𝜉 and smoothed 

𝜁 which is characterized by the correlation matrix Ρ̂ and the degree of freedom 

Ν̂ for creating the joint distribution between 𝜉 and 𝜁.      
 
4.3 Simulation 

In this section price dynamic of the currency will be simulated with the model: 

𝑑𝑆𝑡
(𝑚)

𝑆𝑡
(𝑚)

= 𝜅 (𝑦𝑡
(𝑚)
) [𝛼 (𝑦𝑡

(𝑚)
) − 𝑙𝑛 𝑆𝑡

(𝑚)
] 𝑑𝑡 + Δ(𝑚)𝜎 (𝑦𝑡

(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
) 𝑑𝑁𝑡

(𝑚) 

where  𝑦𝑡
(𝑚) is assigned to be 1 or 2 according to transient state and steady state 

(Ball and Torous 1985)  come up with a simplified model for Poisson jump process using 
Bernoulli jump process. They state that if the return is computed for the very small time 
interval the Bernoulli model would converge to the Poisson model. Therefore, Bernoulli 
jump process will be used in the simulation for jumps instead of Poisson jump model to 
reduce the complexity of the infinite series representation of probability density function of 
log-return.  

In the optimization step, we need to compute the expected value of the terminal wealth for 
a given model and trading strategy. This quantity is complex, and hence we approximate the 
expectation by using a simulation technique. With the parameters from the estimation step, 
we will simulate the mid-price of the currency (after adjusting the volatility with a scaling 
ratio) to get 15 minutes of ten-seconds time-step data. We repeat this to obtain 5000 paths 
for each news announcement scenario. At the first time step the mid-price of the currency 
will be scaled to 1, so that the dynamic of the price will be the percentage change from the 
price right before the news announcement. 

Furthermore, we will also simulate spreads. Spreads are divided into two phases after the 
news announcement which are spike phase and decaying phase. 
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First, we will use 𝑡 −copula with the correlation matrix Ρ̂ and the degree of freedom  Ν̂ to 

create the joint distribution between spike spread size 𝜉 and decay rate 𝜁 as the vector �̂� = 
[ 𝜉  𝜁 ].    

We simulate the spike spread size and the decay rate following these steps: 

1. The spike spread size will be simulated by using inverse cumulative density function 

from the first column of  �̂� with the average spike spread sizes from historical 
data for each scenario. 
  

2. We will use the kernel smoothing to find the decay rate. Given the simulated spread 
size, we use the inverse cumulative density function with the second column of 

vector �̂�.  
The results from these steps are the simulated spike spread and the exponential decay rate 
which will be used in the decaying phase. In the decaying phase, spreads after the first ten 
seconds will be calculated using the equation (12). Declining of spread will start at the tenth 
second after the new announcement and continue until 15 minutes after the news 
announcement had passed. 
 
By adding to and subtracting from the simulated currency mid-prices with the half of the 
spreads, we will get the simulated ten-second bid-ask prices for EUR/USD for good and bad 
news.      

4.4 Optimization 

Suppose a trader has initial wealth 𝑊0at time 0 before the news is announced. When the 
news is announced, the price will start to fluctuate rapidly, and the trader will set an open 
position with a desired lot size at this time. When the order is placed the target price is also 
set and traders will do nothing until the currency price move up/down to the target price 
and then close the position. In another case that the price is unable to hit the target price 
before the 15-minute period has passed, the trader must close the position and realize the 
profit or loss. Also, there is a chance that the trader may hold too excessive position that the 
opened position will be forced to close when the buffered cash left in the portfolio is not 
sufficient. 

In this thesis, we will find the best strategy to trade the EUR/USD currency during the news 
announcement period. The strategies covered in this thesis are the Stop Long order, Stop 
Short order, Limit Long order and Limit Short order. The strategy with the best Sharpe ratio 
of the in-sample trading with an appropriate chance of order matching from in-sample test 
will be used in the out-of-sample trading. To compute the Sharpe ratio, we will calculate the 
Sharpe ratio only from the cases in which the order is matched. The reason is that the limit 
orders are rarely matched and the wealth data seem to be overly stable, making the Sharpe 
ratio computed from all cases too extreme. 

In this section, we will use one-step optimization to find the optimal price to open the 
position ( 𝛽1 ), lot size of the opened position ( 𝑉) and the target price to close the position ( 
𝛽2). The objective function of this optimization is based on maximizing expected wealth of 
trader when the position is closed by using the average wealth from each path due to the 
complexity in computing the expected value of wealth. The optimization problem for the 
good news is modeled as  
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𝑚𝑎𝑥(𝛽1,𝛽2,𝑉)∈ℝ3  { 
1

𝑄
∑ 𝑊𝑞
𝑄
𝑞=1   }   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝛽1, 𝛽2, 𝑉 ≥ 0 
𝛽2 ≥ 𝛽1 

where 𝑄 is the total number of simulated paths, 𝑊𝑞 is the trader’s wealth after the position 

is closed for price path 𝑞 (Note that for bad news we also use a similar model except for the 
last constraint which will be 𝛽2 ≤ 𝛽1 instead).  

In news trading, there are many factors to consider. The most important factor to consider is 
the possibility of a forced close in their position due to the high volatility after news is 
announced. Traders will be forced to close when the cash buffered in their portfolio, called 
free margin, is less than or equal to 30 percent of the total margin that traders pay for 
opening their trading position.  

To be precise, denote the free margin by 𝐹𝑡, which is the cash buffered at time 𝑡 in the 
portfolio. It can be calculated by subtracting the total margin denoted by 𝐾𝑡 from the sum of 
cash left in portfolio 𝜓𝑡  and unrealized profit  𝑈𝑡:  

𝐹𝑡 = 𝜓𝑡 + 𝑈𝑡 − 𝐾𝑡 

The position will be forced to close immediately if the cash buffered in the portfolio is less 
than 30 percent of the total margin, so we can set an inequality for the forced closure 
constraint as follows: 

 𝐹𝑡
𝐾𝑡
≥ 0.3 

(14) 

Traders will need to set their leverage ( 𝐿 ) for their portfolio due to the costly contract price 
which is fixed at 100,000 US dollar per contract. In the scope of this thesis, the leverage will 
be set at 2,000 times which is a normal case for the traders with less amount of money. 
Denote by  𝐵  the margin that traders need to place for each contract. Now cash left and 

total margins are fixed. Therefore, cash left 𝜓𝑡 can be calculated by 𝑊0 −
𝑉𝐵

𝐿
. 

Instead of viewing a free margin as a forced closure constraint, it is easier to view a forced 
closure constraint as the amount of unrealized return. Let 𝑟𝑡 denote the unrealized return 
for EUR/USD without leverage. The unrealized leveraged profit  𝑈𝑡  can be expressed as the 
product of the opened lot size 𝑉 with the unrealized leveraged return for each contract 𝐵𝑟𝑡. 
Therefore, the unrealized profit  𝑈𝑡  can be represented by 𝑉𝐵𝑟𝑡 . Thus, the inequality 
constraints for forced closure can be rewritten from equation (24) as: 

(𝑊0 −
𝑉𝐵

𝐿
) + (𝑉𝐵𝑟𝑡) ≥  0.3

𝑉𝐵

𝐿
𝛽1 

𝑟𝑡 ≥
0.3𝛽1
𝐿

+
1

𝐿
−
𝑊0

𝑉𝐵
 

With this inequality, it is shown that the return of the portfolio for all time 𝑡 must be greater 

than 
0.3𝛽1

𝐿
+
1

𝐿
−
𝑊0

𝑉𝐵
 to prevent position forced closure.   

There is also another constraint that prevents an immediate forced closure after the position 
is matched; due to the spread widening. It can be written as follows: 
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(𝑊0 −
𝑉𝐵
𝐿 ) − 𝑉𝐵 (

Φ0
𝛽1
)

𝐾𝑡
≥ 0.3 

where 𝑉𝐵 (
Φ0

𝛽1
) denote the unrealized loss due to the spread.   

Consequently, to calculate the realized return, let 𝜏 denote the time when the position is 
closed, then 

 

𝑟𝜏 =
𝑃𝜏 − 𝛽1
𝛽1

 
𝑃𝜏 = 

{
 
 

 
 
𝛽2   𝑖𝑓 𝜏𝛽2 = 𝑚𝑖𝑛(𝜏𝛽2 , 𝑇, 𝜏𝑑)

𝑃𝑇   𝑖𝑓 𝑇 = 𝑚𝑖𝑛(𝜏𝛽2 , 𝑇, 𝜏𝑑)

𝑃𝑑    𝑖𝑓 𝜏𝑑 = 𝑚𝑖𝑛(𝜏𝛽2 , 𝑇, 𝜏𝑑)

 

𝜏 = 𝑚𝑖𝑛(𝜏𝛽2 , 𝑇, 𝜏𝑑) 

𝜏𝛽1 = 𝑖𝑛𝑓{𝑠 ≥ 0 ∶ 𝑃𝑠 ≤ 𝛽1 } 

𝜏𝛽2 = 𝑖𝑛𝑓{𝑠 ≥ 𝜏𝑜 ∶ 𝑃𝑠 ≥ 𝛽2} 

𝜏𝑑 = 𝑖𝑛𝑓{𝑠 ≥ 𝜏𝑜 ∶ 𝑃𝑠 ≤ 𝑃𝑑  } 

     
where, 

 𝑟𝜏 denote the currency return if the position is closed at time 𝜏  

𝑃𝑇 denote the price at time 𝑇 

𝑃𝑑 denote the price when the position is forced closed 

𝑃𝜏  denote the price when the position is closed 

𝜏0 denote the time that the trading order is matched 

𝜏𝛽1 denote the time when the position is opened, or infinity otherwise 

𝜏𝑑 denote the time when the position is forced close , or infinity otherwise 

𝜏𝛽2  denote the time when the price reaches the target price 𝛽2 after the position is 

opened 

In conclusion, the trader’s wealth 𝑊𝑞 can be calculated by the sum of cash left 𝜓𝜏 and 

leveraged realized profit/loss 𝑅𝜏 (in dollars amount) 

𝑊𝑞 = 𝜓𝜏 + 𝑅𝜏 

where 

 
𝑅𝜏 = 𝑉𝐵𝑟𝜏𝕀{𝜏0 < 𝑇}, 

and 𝕀 is an indicate function taking value one if the limit order is matched at time 𝜏0 < 𝑇 and 
zero otherwise. 

In Section 5.2 the results are reported as the currency returns. The percentage changes of 
the trader’s wealth are reported in Appendix 4. Note that this is for the case of the Limit 
Long position. For the other strategy, there will be a small change in the calculation. The 
differences are shown in Table 2. 
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Table 2 : Calculation of the currency return for the optimal trading for each order type  

Limit Long position order  
𝝉𝜷𝟏 = 𝒊𝒏𝒇{𝒔 ≥ 𝟎 ∶ 𝑷𝒔 ≤ 𝜷𝟏} 

𝝉𝒅 = 𝒊𝒏𝒇{𝒔 ≥ 𝝉𝒐 ∶ 𝑷𝒔 ≤ 𝑷𝒅 } 

𝒓𝝉 =
𝑷𝝉 − 𝜷𝟏
𝜷𝟏

 

 

Limit Short order 
𝝉𝜷𝟏 = 𝒊𝒏𝒇{𝒔 ≥ 𝟎 ∶ 𝑷𝒔 ≥ 𝜷𝟏 } 

𝝉𝒅 = 𝒊𝒏𝒇{𝒔 ≥ 𝝉𝒐 ∶ 𝑷𝒔 ≥ 𝑷𝒅 } 

𝒓𝝉 =
𝜷𝟏 − 𝑷𝝉
𝜷𝟏

 

 

Stop Long position order 
𝝉𝜷𝟏 = 𝒊𝒏𝒇{𝒔 ≥ 𝟎 ∶ 𝑷𝒔 ≥ 𝜷𝟏} 

𝝉𝒅 = 𝒊𝒏𝒇{𝒔 ≥ 𝝉𝒐 ∶ 𝑷𝒔 ≤ 𝑷𝒅 } 

𝒓𝝉 =
𝑷𝝉 − 𝜷𝟏
𝜷𝟏

 

 

Stop Short position order  
𝝉𝜷𝟏 = 𝒊𝒏𝒇{𝒔 ≥ 𝟎 ∶ 𝑷𝒔 ≤ 𝜷𝟏} 

𝝉𝒅 = 𝒊𝒏𝒇{𝒔 ≥ 𝝉𝒐 ∶ 𝑷𝒔 ≥ 𝑷𝒅 } 

𝒓𝝉 =
𝜷𝟏 − 𝑷𝝉
𝜷𝟏

 

 

4.5 Out of Sample Test 
We will compare our strategy with an open-and-hold strategy which chooses to open either 
a long or short position at the current market price when the news is announced. The 
position will be closed at price 𝑃𝜏 when the time reaches the limit (15 minutes).  We consider 
3 open-and-hold benchmarks which are the Always Long Strategy, the Always Short Strategy 
and the Mixed Long and Short Strategy.  
 
The Always Long Strategy will immediately open the long position at the best ask price when 
the news is announced and hold the position until the end of the trading period (15-minute 
holding). 
 
The Always Short Strategy will immediately open the short position at the best bid price 
when the news is announced and hold the position until the end of the trading period (15-
minute holding). 
 
The Mixed Long and Short Strategy will choose to open either the long or the short position, 
whichever provides a higher return, immediately when the news is announced and hold the 
position until the end of the trading period (15-minute holding). 
 

Let 𝑃0
𝑎𝑠𝑘 denote the market best ask price at the time that news is announced, and 𝑃0

𝑏𝑖𝑑 
denote the market best ask price at the time that news is announced. Let 𝐶𝑢𝑟𝜏 denote the 
currency return when the position is closed at time 𝜏. 

We use the currency return to measure the performance of the suggested strategy and 
benchmarks. The currency return from the benchmark strategies are computed as shown in 
Table 3. The results are reported in the Section 5.2 as the currency returns.  

Table 3 : Calculation of currency return for the benchmark for each order type 

Long position order 
𝝉𝒅 = 𝒊𝒏𝒇{𝒔 ≥ 𝝉𝒐 ∶ 𝑷𝒔 ≤ 𝑷𝒅 } 

𝑪𝒖𝒓𝝉 =
𝑷𝝉 −𝑷𝟎

𝒂𝒔𝒌

𝑷𝟎
𝒂𝒔𝒌

 

 

Short position order 
𝝉𝒅 = 𝒊𝒏𝒇{𝒔 ≥ 𝝉𝒐 ∶ 𝑷𝒔 ≤ 𝑷𝒅 } 

𝑪𝒖𝒓𝝉 =
𝑷𝟎
𝒃𝒊𝒅 − 𝑷𝝉

𝑷𝟎
𝒃𝒊𝒅

 

 



 

 

25 

 

Chapter 5 Result and Discussion 

5.1 Parameters Estimation and model selection 

  
Table 4 : Log-likelihood, AIC and BIC Value for good news 

Model Log-
likelihood 

# of 
parameter 

# of 
observation 

AIC  BIC 

2-Regime Pure Diffusion with Jump (2-
PDJ) 

15,100 10 1,800 -30,181 -30,126 

2-Regime Mean-Reverting with Jump  
(2-MRJ) 

15,101 14 1,800 -30,174 -30,097 

2-Regime Geometric Brownian Motion 
with Jump (2-GBMJ) 

15,055 12 1,800 -30,087 -30,021 

2-Regime Mean-Reverting (2-MR) 15,024 8 1,800 -30,033 -29,989 

2-Regime Pure Diffusion (2-PD) 15,017 4 1,800 -30,026 -30,004 

2-Regime Geometric Brownian Motion  
(2-GBM) 

15,017 6 1,800 -30,022 -29,989 

Geometric Brownian Motion with Jump 
(GBMJ) 

15,000 5 1,800 -29,991 -29,963 

Mean-Reverting with Jump (MRJ) 15,000 6 1,800 -29,989 -29,956 

Pure Diffusion with Jump (PDJ) 14,698 4 1,800 -29,388 -29,366 

Pure Diffusion (PD) 14,625 1 1,800 -29,248 -29,242 

Geometric Brownian Motion (GBM) 14,625 2 1,800 -29,246 -29,235 

Mean-Reverting (MR) 14,625 3 1,800 -29,244 -29,228 

 
Table 4 shows the performance of the model fitting for the good-news in-sample data using 
the AIC and BIC values. The model with the least AIC and BIC values is preferred which is the 
2-Regime pure diffusion with jump (2-PDJ). The dynamic of this model can be expressed by 
setting the parameters 𝜅 and �̅� to zero in full model given by equation (10).  
 
The AIC and BIC values from Table 4 obviously show that allowing regime switching improves 
the fit of the model as expected. We can see that all of the models with two regimes give the 
better result in model fitting, and the models with jump are better fitted to the exchange 
rate than the non-jump-model although the regime switching is allowed or not. We can see 
from the result that in the good-news announcement, allowing the regime switching to each 
parameter in the model is preferred to adding jump factor to the model. The proposed 2-
MRJ model gives the best log-likelihood value as expected due to higher number of 
parameters. This value shows that the proposed model has the best potential in estimation 
comparing with all others. However, the AIC and BIC values of the proposed model cannot 
overcome the simpler 2-PDJ model due to the penalty from the complexity of the model. 
Using the AIC and BIC values as a benchmark to justify the model in simulation, the model 
that will be used is 2-PDJ instead of the proposed model. 
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Table 5 : Log-likelihood, AIC and BIC Value for bad news 

Model Log-
likelihood 

# of 
parameter 

# of 
observation 

AIC BIC 

2-Regime Mean-Reverting with Jump  
(2-MRJ) 

14,948 14 1,800 -29,869 -29,792 

2-Regime Pure Diffusion with Jump (2-PDJ) 14,926 10 1,800 -29,833 -29,778 

2-Regime Geometric Brownian Motion 
with Jump (2-GBMJ) 

14,921 12 1,800 -29,818 -29,752 

Pure Diffusion with Jump (PDJ) 14,876 4 1,800 -29,745 -29,723 

Geometric Brownian Motion with Jump 
(GBMJ) 

14,877 5 1,800 -29,745 -29,717 

Mean-Reverting with Jump (MRJ) 14,877 6 1,800 -29,743 -29,710 

2-Regime Pure Diffusion (2-PD) 14,867 4 1,800 -29,727 -29,705 

2-Regime Geometric Brownian Motion  
(2-GBM) 

14,866 6 1,800 -29,720 -29,687 

2-Regime Mean-Reverting (2-MR) 14,811 8 1,800 -29,606 -29,562 

Pure Diffusion (PD) 14,518 1 1,800 -29,035 -29,029 

Geometric Brownian Motion (GBM) 14,518 2 1,800 -29,033 -29,022 

Mean-Reverting (MR) 14,519 3 1,800 -29,032 -29,015 

 
Table 5 shows the performance of the model fitting for the bad-news in-sample data using 
AIC and BIC values. The model with the least AIC and BIC values is preferred which is the 
proposed model: 2-Regime Mean-Reverting with Jump (2-MRJ).  
 
The AIC and BIC values from the Table 5 show that adding the jump parameters improves 
the fit of the model. We can see that all of the models with jumps are better fitted to the 
exchange rate than the non-jump-model. We can also see from the Table 5 that in the bad-
news announcement, adding jump parameters to the model is preferred than the regime 
switching. The proposed model 2-MRJ gives the best log-likelihood, AIC and BIC values as 
expected. Using the AIC and BIC values as a benchmark to justify the model in simulation, 
the model that will be used is 2-MRJ.  
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Table 6 : Good news parameters values of 2-regime pure diffusion with jump (2-PDJ) 
 Regime-1 Regime-2 

Parameter Values  Values  

𝝅 1.0000  0.0000  

𝝀 0.1544  0.3906  

𝝎𝟐 (x𝟏𝟎−𝟖) 0.8111  4.0887  

𝜼 (x𝟏𝟎−𝟔) -0.4668  -5.9176  

𝝈𝟐 (x𝟏𝟎−𝟗) 1.0057  2.0884  

q 0.9963  0.0037  

 
Table 6 shows the parameter value of the 2-regime pure diffusion with jump (2-PDJ) model. 
By setting the parameters 𝜅 and �̅� to zero in equation (10), the dynamic of the model is 
expressed as:  

𝑑𝑎𝑡
(𝑚)

= 𝜎 (𝑦𝑡
(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
)) 𝑑𝑁𝑡

(𝑚) 

The estimated parameter values suggest that the dynamic of the currency after the news 

announcement is mainly driven by the volatility 𝜎 (𝑦𝑡
(𝑚)
) and the jump size 𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦

𝑡
(𝑚))) 

. Since the jump size 𝑙𝑛(1 + 𝜃𝑡
(𝑚)

(𝑦𝑡
(𝑚)
))  is normally distributed with 𝜂 as the mean jump size 

and 𝜔2 as the variance of the jump size, the expected return from the model for each given 

regime 𝑦𝑡
(𝑚) can be calculated by 𝔼 [𝑑𝑎𝑡

(𝑚)
|𝛩] = 𝜆𝜂𝑑𝑡 which are the negative values for both 

regimes. Therefore, the suitable strategy for the good news announcement is to open a 
short position. 
 
The trading period last 15 minutes after the news is announced and is divided into 90 10-
second time-steps. Given that the regime is initially a transient regime, we expect that the 
regime will be changed from the transient regime to the steady regime during this period 
with probability of 1 − (0.9963)90 = 0.2837 or more. After the regime has been changed 
from the transient regime to the steady regime, it is obviously seen from Table 6 that the 
parameter values are significantly changed (e.g. the mean jump size 𝜂 is changed from -
0.4668 to -5.9176, as well as other parameter values.) The result in changing the regime 
makes the expected return to be more negative value.  
 
The Limit Short order needs to be placed above the current price and waits until the price 
moves up to where the order is placed. According to the suggestion from the model that the 
exchange rate is expected to instantly move in downward direction after the news 
announcement and drop faster after the regime switches, we expect that using the Limit 
Short order strategy, the submitted order will be rarely matched. With this reason the Limit 
Short order strategy is expected to be placed with a huge lot size to improve the Sharpe 
ratio when the order is matched. The advantage of using this strategy can have a huge gain 
from this strategy in the case that the order is matched which gives a large Sharpe ratio to 
this strategy as a trade-off with the order matching occurrence. 
 
However, using the Stop Short order strategy may give a lower Sharpe ratio than the Limit 
Short order strategy, given the order is matched, but can significantly improve the chance of 
order matching since the stop order can instantly follow the direction of the exchange rate 
at the current price. The opened order may have a lower lot size compared with the Limit 
Short order strategy because the Stop Short order strategy needs to follow the exchange 
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rate direction, so the entry price of the stop order will be worse than the limit order. 
Therefore, we expect that using the Stop Short order strategy will improve the chance of 
order matching with a lower lot size as a trade-off compared with the Limit Short order 
strategy. With this reason the Stop Short order strategy may give a lower Sharpe ratio if we 
are comparing with the Limit Short order strategy due to the smaller lot size and lower entry 
price.  

 
Table 7 : Bad news parameters values of 2-Regime Mean-Reverting with Jump (2-MRJ) 

 Regime-1 Regime-2 

Parameter Values  Values  

𝝅 0.7427  0.2573  

𝝀 0.1842  0.3557  

𝝎𝟐 (x𝟏𝟎−𝟖) 0.7302  3.0501  

𝜼 (x𝟏𝟎−𝟔) 5.8969  4.3869  

𝝈𝟐 (x𝟏𝟎−𝟗) 0.7843  1.3855  

𝜿 0.0068  0.0046  

�̅� (x𝟏𝟎−𝟕) 6.2796  7.4857  

q 0.9964  0.0036  

               
Table 7 shows the parameter values of the 2-Regimes Mean-Reverting with Jump (2-MRJ). 
The dynamic of the model is expressed as:  
 

𝑑𝑎𝑡
(𝑚)

= 𝜅 (𝑦𝑡
(𝑚)
) [�̅� (𝑦𝑡

(𝑚)
) − 𝑎𝑡

(𝑚)
]  𝑑𝑡 + 𝜎 (𝑦𝑡

(𝑚)
) 𝑑𝑊𝑡

(𝑚)
+ 𝑙𝑛(1 + 𝜃𝑡

(𝑚)
(𝑦𝑡

(𝑚)
)) 𝑑𝑁𝑡

(𝑚)
 

The estimated parameter values, the model suggest that the dynamic of the currency after 
the news announcement has a mean reversion effect due to the positive value of mean 

convert speed parameter 𝜅(𝑦
𝑡
(𝑚)). With a positive long-run mean �̅� (𝑦𝑡

(𝑚)
) and positive mean 

jump size 𝜂(𝑦
𝑡
(𝑚)), we expect that the long position can take advantage in this scenario.  

 
However, the choice that traders will choose the Stop Long order or Limit Long order to take 
action in this case is not yet obvious because the Limit Long order strategy can intuitively 
take advantage from the mean reversion effect but there is also a trade-off with the chance 
of order matching. On the other hand, the Stop Long order strategy is a great strategy for a 
trending markets but the entry may not be as low as that from the limit order. So to choose 
the strategy to trade during the bad news scenario, we will use the simulation. 
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5.2 In-sample Trading Simulation 
 
This section will show the simulation trading results of the good and bad news for each 
scenario. In each scenario, the exchange rate movement will be simulated for 5,000 paths 
and based on the simulated paths, we find the optimal open, lot size and target price. 
 
Each table reports the detailed simulation trading result for each strategy with each news 
result. It provides the volatility scale ratio (Scale Ratio), average currency returns (Currency 
Return), standard deviation (Std.), Sharpe ratio (Sharpe Ratio), optimal open prices (Open), 
optimal lot sizes (Lot), optimal target prices (Target), percentage matched orders 
(%Matched), and percentage forced close order (%Force).  
 
There are 18 scenarios for the good news and 23 scenarios for the bad news. Each scenario 
will be sorted in descending order by the volatility scale ratio in Scale Ratio column. 
 
Table 8 and Table 9 will report the results from the simulated trades using the Stop order 
strategies for good news scenarios. Table 10 and Table 11 will report the results from the 
simulated trades using the Limit order strategies for good news scenarios. Table 12 and 
Table 13 will report the results from the simulated trades using the Stop order strategies for 
bad news scenarios. Table 14 and Table 15 will report the results from the simulated trades 
using the Limit order strategies for bad news scenarios. 
 
There are also Table 16 and Table 17 which show the summary result from applying each 
strategy in the simulation trading. (Good and Bad news result respectively)  



 

 

30 

Table 8: In-sample result for each good news scenario using Stop Long order strategy trading on simulation 
Stop Long Strategy 

Scenario Scale Ratio Currency 
Return (%) 

Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced 

1 1.112 -0.008 0.055 -0.139 1.000 0.010 1.001 97.330 0.000 

2 0.978 -0.008 0.050 -0.156 1.000 0.010 1.001 96.440 0.000 

3 0.918 -0.009 0.049 -0.176 1.000 0.010 1.001 96.560 0.000 

4 0.881 -0.008 0.037 -0.207 1.000 0.023 1.000 96.780 0.000 

5 0.860 -0.007 0.029 -0.255 1.000 0.024 1.000 97.000 0.000 

6 0.842 -0.008 0.030 -0.270 1.000 0.023 1.000 96.330 0.000 

7 0.842 -0.008 0.030 -0.271 1.000 0.023 1.000 96.560 0.000 

8 0.840 -0.008 0.030 -0.277 1.000 0.022 1.000 96.560 0.000 

9 0.838 -0.009 0.031 -0.278 1.000 0.022 1.000 96.560 0.000 

10 0.814 -0.008 0.028 -0.292 1.000 0.013 1.000 97.220 0.000 

11 0.795 -0.008 0.027 -0.308 1.000 0.022 1.000 96.560 0.000 

12 0.783 -0.008 0.023 -0.338 1.000 0.023 1.000 96.670 0.000 

13 0.757 -0.010 0.007 -1.387 1.001 0.010 1.001 6.110 0.000 

14 0.727 -0.008 0.036 -0.230 1.000 0.022 1.000 99.330 0.000 

15 0.713 -0.009 0.043 -0.214 1.000 0.010 1.001 96.780 0.000 

16 0.691 -0.009 0.042 -0.211 1.000 0.010 1.001 99.330 0.000 

17 0.673 -0.008 0.041 -0.202 1.000 0.010 1.001 96.890 0.000 

18 0.672 -0.008 0.041 -0.204 1.000 0.010 1.001 96.890 0.000 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%) 
shows the currency return, which is calculated by averaging the currency return per trade 
from simulation paths in each scenario using only the matched order, in percent. Std. (%) 
shows the standard deviation of return only in the case that order is matched using the 
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading 
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot 
sizes from optimization. Target shows the optimal Closing price from optimization. 
%Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced 
closed.
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Table 9: In-sample result for each good news scenario using Stop Short order strategy trading on simulation 
Stop Short Strategy 

Scenario Scale Ratio Currency 
Return (%) 

Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced 

1 1.112 -0.001 0.055 -0.017 1.000 0.010 0.999 99.110 0.000 

2 0.978 0.000 0.048 -0.008 1.000 0.010 0.999 94.440 0.000 

3 0.918 0.000 0.048 -0.008 1.000 0.010 0.999 98.110 0.000 

4 0.881 0.000 0.046 0.003 1.000 24.330 0.999 94.560 0.000 

5 0.860 0.001 0.046 0.011 1.000 32.997 0.999 96.670 0.000 

6 0.842 0.001 0.042 0.028 1.000 57.316 0.999 91.110 0.240 

7 0.842 0.001 0.047 0.023 1.000 58.708 0.999 98.780 0.340 

8 0.840 0.001 0.047 0.031 1.000 33.034 0.999 99.670 0.000 

9 0.838 0.001 0.047 0.025 1.000 34.328 0.999 99.890 0.000 

10 0.814 0.001 0.046 0.019 1.000 32.811 0.999 98.330 0.000 

11 0.795 0.001 0.046 0.018 1.000 32.855 0.999 99.890 0.000 

12 0.783 0.000 0.046 0.011 1.000 32.300 0.999 99.890 0.000 

13 0.757 0.000 0.043 0.002 1.000 32.100 0.999 97.560 0.000 

14 0.727 0.000 0.042 0.002 1.000 0.856 0.999 97.890 0.000 

15 0.713 0.000 0.042 -0.008 1.000 0.010 0.999 98.440 0.000 

16 0.691 0.000 0.041 0.001 1.000 1.566 0.999 98.440 0.000 

17 0.673 0.000 0.039 -0.003 1.000 0.110 0.999 98.440 0.000 

18 0.672 0.000 0.040 -0.004 1.000 0.096 0.999 99.670 0.000 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%) 
shows the currency return, which is calculated by averaging the currency return per trade 
from simulation paths in each scenario using only the matched order, in percent. Std. (%) 
shows the standard deviation of return only in the case that order is matched using the 
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading 
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot 
sizes from optimization. Target shows the optimal Closing price from optimization. 
%Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced 
closed.
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Table 10: In-sample result for each good news scenario using Limit Long order strategy trading on simulation 

Limit Long Strategy 

Scenario Scale Ratio Currency 
Return (%) 

Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.112 0.012 0.015 0.782 0.999 67.201 1.001 8.000 0.000 

2 0.978 0.021 0.014 1.463 0.999 79.471 1.001 5.330 0.000 

3 0.918 0.009 0.012 0.763 0.999 82.822 1.001 4.560 2.440 

4 0.881 0.000 0.009 0.003 0.999 26.810 1.001 4.780 0.000 

5 0.860 0.008 0.012 0.665 0.999 86.833 1.001 4.670 2.380 

6 0.842 0.010 0.013 0.795 0.999 92.839 1.001 5.110 8.700 

7 0.842 0.009 0.013 0.700 0.999 92.243 1.001 5.220 6.380 

8 0.840 0.009 0.013 0.730 0.999 92.911 1.001 5.000 13.330 

9 0.838 0.004 0.013 0.311 0.999 110.669 1.001 4.780 48.840 

10 0.814 0.005 0.010 0.462 0.999 92.951 1.001 4.890 6.820 

11 0.795 0.005 0.011 0.433 0.999 101.973 1.001 5.110 26.090 

12 0.783 0.020 0.011 1.816 0.999 91.042 1.000 4.670 2.380 

13 0.757 0.005 0.008 0.680 0.999 89.850 1.001 4.330 2.560 

14 0.727 0.001 0.005 0.155 0.999 88.231 1.001 3.330 0.000 

15 0.713 0.006 0.005 1.121 0.999 97.669 1.001 3.110 0.000 

16 0.691 0.015 0.007 2.260 0.999 104.142 1.001 2.890 11.540 

17 0.673 0.018 0.006 3.022 0.999 104.331 1.001 2.560 4.350 

18 0.672 0.018 0.006 3.015 0.999 104.273 1.001 2.560 4.350 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%) 
shows the currency return, which is calculated by averaging the currency return per trade 
from simulation paths in each scenario using only the matched order, in percent. Std. (%) 
shows the standard deviation of return only in the case that order is matched using the 
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading 
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot 
sizes from optimization. Target shows the optimal Closing price from optimization. 
%Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced 
closed.
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Table 11: In-sample result for each good news scenario using Limit Short order strategy trading on simulation 
Limit Short Strategy 

Scenario Scale Ratio Currency 
Return (%) 

Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.112 0.004 0.012 0.316 1.001 67.031 0.999 6.670 0.000 

2 0.978 0.004 0.010 0.378 1.001 73.814 0.999 5.670 0.000 

3 0.918 0.009 0.011 0.853 1.001 83.042 0.999 4.670 2.380 

4 0.881 0.006 0.008 0.671 1.001 89.001 0.999 3.890 5.710 

5 0.860 0.006 0.008 0.808 1.001 83.736 0.999 3.780 2.940 

6 0.842 0.016 0.010 1.632 1.001 86.872 0.999 3.670 3.030 

7 0.842 0.018 0.010 1.883 1.001 87.090 0.999 3.560 0.000 

8 0.840 0.017 0.010 1.697 1.001 87.108 0.999 3.440 3.230 

9 0.838 0.015 0.010 1.553 1.001 87.225 0.999 3.560 0.000 

10 0.814 0.012 0.008 1.552 1.001 88.256 0.999 3.110 0.000 

11 0.795 0.007 0.008 0.894 1.001 88.571 0.999 3.330 0.000 

12 0.783 -0.005 0.026 -0.199 1.000 30.000 1.000 67.890 0.000 

13 0.757 0.016 0.008 2.005 1.001 87.926 0.999 2.890 0.000 

14 0.727 0.018 0.008 2.120 1.001 86.707 0.999 3.000 0.000 

15 0.713 0.017 0.008 2.000 1.001 92.335 0.999 2.890 0.000 

16 0.691 0.009 0.006 1.352 1.001 105.499 0.999 2.330 19.050 

17 0.673 0.027 0.008 3.184 1.001 98.354 1.000 2.330 0.000 

18 0.672 0.026 0.008 3.171 1.001 98.217 0.999 2.330 0.000 

 

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%) 
shows the currency return, which is calculated by averaging the currency return per trade 
from simulation paths in each scenario using only the matched order, in percent. Std. (%) 
shows the standard deviation of return only in the case that order is matched using the 
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading 
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot 
sizes from optimization. Target shows the optimal Closing price from optimization. 
%Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced 
closed. 
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Table 8 reports the results from the simulated trades based on the Stop Long order strategy 
on good news releases. The Sharpe ratio column obviously shows that using the Stop Long 
order in a good news scenario gives the average negative return in every trading case. This is 
obvious evidence that using Stop Long order for good news is not a suitable choice as 
suggested from the previous section.  
 
Table 8 also shows that using the stop order gives a high probability for sent order to be 
matched from the %Matched column. The lot size is small as expected. The reason is that 
the stop order has a high chance of order being matched, and preventing the position from 
being forced closed is a top priority to consider during the trade. Therefore, the sent order 
will have a small lot size as a trade-off with the frequently matched order. As shown in Table 
8 that there is no case of position forced close from the sent order which is consistent with 
the small lot size strategy. 
 
By comparing Table 8 with Table 9, which reports the results from the simulated trades 
based on the Stop Long order strategy on good news releases, it obviously shows that the 
Sharpe ratio obtained from using the short strategy in a good news scenario is improved in 
most of the trading cases. This is obvious evidence that using the short order during good 
news is a better choice than the long strategy. Table 9 also shows that the probability for 
sent order to be matched is high and the lot size is small as expected in many cases. Like 
what we see from Table 8, there is a very low chance of position forced close from the sent 
order. This can be concluded that using the stop order with an appropriate lot size during a 
good news announcement can prevent the forced close position. 
 
Table 10 reports the results from the simulated trades based on the Limit Long order 
strategy on good news releases. The Sharpe ratio from using the Limit Long order in a good 
news scenario is significantly higher than the Sharpe ratio from the stop order though the 
model suggests using the short strategy. The reason is that the optimal open with a large lot 
size is set at the place which is far from the current exchange rate which gives a better entry 
price if the order is matched. With this reason, the Limit Long strategy has a better entry 
price, if the order is matched, comparing with the stop order strategy but it has a lower 
chance of order to be matched as a trade-off. Using the Limit Long order is more likely to 
cause a position forced close as we can observe from the %Forced column which is 
absolutely higher than the stop order strategy. 
 
By comparing Table 10 with Table 11, which reports the results from the simulated trades 
based on the Limit Short order strategy on good news releases, The Limit Short order 
strategy also has a significantly lower chance of position forced close than the Limit Long 
order strategy on average. Also, the average Sharpe ratio from the Limit Short order in a 
good news scenario is better than the average Sharpe ratio from the Limit Long order (See 
Table 16 for detail). This is consistent with the suggestion from the model that using short 
order may give a better Sharpe ratio. Using a limit order gives a significantly better Sharpe 
ratio than the stop order with a trade-off that the position forced close is more likely and a 
lower chance of sent order to be matched.  
 
By comparing among all of the trading strategies, we find that using the Limit Short strategy, 
when a good news is released, gives the best result in terms of the Sharpe ratio with a low 
chance of order matching as a trade-off.  
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Table 12: In sample result for each bad news scenario using Stop Long order strategy trading on simulation 
Stop Long Strategy 

Scenario Scale Ratio Currency 
Return (%) 

Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.021 0.001 0.053 0.019 1.000 62.686 1.001 99.890 2.110 

2 0.958 0.001 0.051 0.023 1.000 56.438 1.001 98.330 4.750 

3 0.948 0.002 0.052 0.047 0.999 47.237 1.001 100.000 0.000 

4 0.909 0.000 0.050 0.010 1.000 62.580 1.001 99.780 1.890 

5 0.883 0.002 0.049 0.048 0.999 43.320 1.001 100.000 0.000 

6 0.862 0.002 0.047 0.036 1.000 40.069 1.001 98.670 0.000 

7 0.855 0.001 0.047 0.023 1.000 41.477 1.001 98.780 0.000 

8 0.839 0.002 0.046 0.035 1.000 36.730 1.001 98.890 0.000 

9 0.838 0.001 0.046 0.032 1.000 36.736 1.001 98.780 0.000 

10 0.811 -0.001 0.044 -0.013 1.000 0.010 1.001 96.330 0.000 

11 0.807 0.001 0.046 0.029 0.999 47.340 1.001 100.000 0.000 

12 0.806 0.002 0.044 0.054 0.999 30.932 1.001 100.000 0.000 

13 0.795 0.002 0.044 0.056 0.999 57.470 1.001 100.000 0.560 

14 0.792 0.000 0.042 -0.003 1.000 0.010 1.001 96.330 0.000 

15 0.777 0.000 0.045 0.003 1.000 64.671 1.001 99.890 1.330 

16 0.776 0.001 0.043 0.012 1.000 31.762 1.001 98.780 0.000 

17 0.775 0.000 0.045 0.004 1.000 61.746 1.001 99.890 0.670 

18 0.756 0.001 0.044 0.013 1.000 62.874 1.001 100.000 0.560 

19 0.739 0.000 0.042 0.012 1.000 37.578 1.001 98.560 0.000 

20 0.720 0.002 0.042 0.041 1.000 37.666 1.001 100.000 0.000 

21 0.689 0.000 0.040 0.010 1.000 34.804 1.001 99.220 0.000 

22 0.684 0.001 0.042 0.035 0.999 51.924 1.001 100.000 0.000 

23 0.670 0.002 0.040 0.041 1.000 44.188 1.001 99.890 0.000 

 

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%) 
shows the currency return, which is calculated by averaging the currency return per trade 
from simulation paths in each scenario using only the matched order, in percent. Std. (%) 
shows the standard deviation of return only in the case that order is matched using the 
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading 
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot 
sizes from optimization. Target shows the optimal Closing price from optimization. 
%Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced 
closed.
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Table 13: In sample result for each bad news scenario using Stop Short order strategy trading on simulation  
Stop Short Strategy 

Scenario Scale Ratio Currency 
Return (%) 

Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.021 -0.012 0.050 -0.231 1.000 0.010 0.999 96.780 0.000 

2 0.958 -0.012 0.049 -0.241 1.000 0.010 0.999 97.670 0.000 

3 0.948 -0.007 0.038 -0.184 1.000 0.020 1.000 97.440 0.000 

4 0.909 -0.011 0.049 -0.231 1.000 0.010 0.999 100.000 0.000 

5 0.883 -0.010 0.022 -0.478 1.000 0.021 1.000 78.560 0.000 

6 0.862 -0.012 0.046 -0.266 1.000 0.010 0.999 97.670 0.000 

7 0.855 -0.012 0.045 -0.266 1.000 0.010 0.999 97.330 0.000 

8 0.839 -0.012 0.045 -0.262 1.000 0.010 0.999 97.670 0.000 

9 0.838 -0.011 0.003 -3.853 0.999 0.010 0.999 5.110 0.000 

10 0.811 -0.011 0.044 -0.262 1.000 0.010 0.999 97.780 0.000 

11 0.807 -0.009 0.034 -0.258 1.000 0.020 1.000 92.220 0.000 

12 0.806 -0.010 0.038 -0.274 1.000 0.018 1.000 91.780 0.000 

13 0.795 -0.022 0.024 -0.915 1.000 0.010 0.999 23.780 0.000 

14 0.792 -0.014 0.043 -0.318 1.000 0.010 0.999 93.330 0.000 

15 0.777 -0.011 0.044 -0.249 1.000 0.010 0.999 99.000 0.000 

16 0.776 -0.017 0.037 -0.452 1.000 0.010 0.999 70.780 0.000 

17 0.775 -0.011 0.043 -0.259 1.000 0.010 0.999 98.780 0.000 

18 0.756 -0.008 0.034 -0.232 1.000 0.018 1.000 95.000 0.000 

19 0.739 -0.010 0.042 -0.244 1.000 0.010 0.999 99.440 0.000 

20 0.720 -0.014 0.005 -2.753 0.999 0.010 0.999 3.560 0.000 

21 0.689 -0.006 0.025 -0.252 1.000 0.036 1.000 99.220 0.000 

22 0.684 -0.010 0.040 -0.259 1.000 0.010 0.999 99.000 0.000 

23 0.670 -0.011 0.039 -0.281 1.000 0.010 0.999 97.890 0.000 

 

Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%) 
shows the currency return, which is calculated by averaging the currency return per trade 
from simulation paths in each scenario using only the matched order, in percent. Std. (%) 
shows the standard deviation of return only in the case that order is matched using the 
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading 
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot 
sizes from optimization. Target shows the optimal Closing price from optimization. 
%Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced 
closed.
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Table 14: In sample result for each bad news scenario using Limit Long order strategy trading on simulation 
Limit Long Strategy 

Scenario Scale Ratio Currency 
Return (%) 

Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.021 0.019 0.015 1.296 0.999 96.704 1.001 6.330 19.300 

2 0.958 0.021 0.014 1.493 0.999 93.868 1.001 5.890 11.320 

3 0.948 0.022 0.014 1.596 0.999 94.628 1.001 5.780 9.620 

4 0.909 0.012 0.009 1.453 0.999 89.336 1.001 5.000 0.000 

5 0.883 0.014 0.009 1.672 0.999 93.504 1.001 4.890 2.270 

6 0.862 0.021 0.009 2.179 0.999 93.966 1.001 4.000 2.780 

7 0.855 0.013 0.010 1.318 0.999 97.817 1.001 4.110 18.920 

8 0.839 0.014 0.011 1.256 0.999 107.242 1.001 4.000 27.780 

9 0.838 0.014 0.011 1.257 0.999 107.258 1.001 4.000 27.780 

10 0.811 0.018 0.010 1.733 0.999 90.478 1.001 3.890 2.860 

11 0.807 0.021 0.010 2.116 0.999 89.655 1.001 3.670 0.000 

12 0.806 0.017 0.010 1.636 0.999 101.529 1.001 3.670 21.210 

13 0.795 0.021 0.010 2.119 0.999 104.848 1.001 3.440 12.900 

14 0.792 0.022 0.010 2.173 0.999 105.068 1.001 3.440 12.900 

15 0.777 0.021 0.010 1.996 0.999 105.703 1.001 3.670 15.150 

16 0.776 0.021 0.010 1.997 0.999 105.729 1.001 3.670 15.150 

17 0.775 0.021 0.010 2.080 0.999 105.715 1.001 3.670 12.120 

18 0.756 0.018 0.010 1.751 0.999 117.161 1.001 3.220 41.380 

19 0.739 0.031 0.011 2.896 0.999 106.484 1.001 2.890 3.850 

20 0.720 0.024 0.008 2.902 0.999 110.301 1.001 2.330 4.760 

21 0.689 0.038 0.008 4.707 0.999 110.323 1.001 1.890 0.000 

22 0.684 0.031 0.008 4.045 0.999 111.165 1.001 1.890 0.000 

23 0.670 0.039 0.007 5.917 0.999 120.000 1.000 1.220 9.090 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%) 
shows the currency return, which is calculated by averaging the currency return per trade 
from simulation paths in each scenario using only the matched order, in percent. Std. (%) 
shows the standard deviation of return only in the case that order is matched using the 
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading 
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot 
sizes from optimization. Target shows the optimal Closing price from optimization. 
%Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced 
closed.
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Table 15: In sample result for each bad news scenario using Limit Short order strategy trading on simulation 
Limit Short Strategy 

Scenario Scale Ratio Currency 
Return (%) 

Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.021 0.020 0.016 1.232 1.001 80.502 0.999 8.000 1.390 

2 0.958 0.021 0.018 1.187 1.001 86.571 0.999 7.780 7.140 

3 0.948 0.023 0.019 1.253 1.001 90.181 0.999 7.780 11.430 

4 0.909 0.025 0.018 1.416 1.001 86.689 0.999 7.000 3.170 

5 0.883 0.026 0.017 1.527 1.001 85.093 0.999 7.110 0.000 

6 0.862 0.025 0.017 1.429 1.001 91.977 0.999 6.670 10.000 

7 0.855 0.026 0.017 1.548 1.001 92.158 0.999 6.220 8.930 

8 0.839 0.010 0.013 0.732 1.001 116.010 0.999 5.560 48.000 

9 0.838 0.010 0.013 0.730 1.001 115.960 0.999 5.560 48.000 

10 0.811 0.014 0.013 1.061 1.001 111.033 0.999 4.780 30.230 

11 0.807 0.009 0.013 0.720 1.001 120.000 0.999 4.780 51.160 

12 0.806 0.028 0.014 1.933 1.001 90.098 0.999 4.670 2.380 

13 0.795 0.015 0.012 1.196 1.001 102.709 0.999 4.780 16.280 

14 0.792 0.015 0.012 1.270 1.001 100.312 0.999 4.780 9.300 

15 0.777 0.021 0.011 1.805 1.001 100.651 0.999 4.110 8.110 

16 0.776 0.024 0.012 2.061 1.001 100.619 0.999 4.110 5.410 

17 0.775 0.023 0.012 1.988 1.001 100.725 0.999 4.220 5.260 

18 0.756 0.019 0.011 1.670 1.001 112.883 0.999 4.000 27.780 

19 0.739 0.027 0.012 2.185 1.001 110.127 0.999 3.560 21.880 

20 0.720 0.023 0.010 2.235 1.001 97.217 0.999 3.560 3.130 

21 0.689 0.029 0.011 2.687 1.001 111.036 0.999 3.440 16.130 

22 0.684 0.026 0.010 2.485 1.001 111.723 0.999 3.670 12.120 

23 0.670 0.029 0.010 2.764 1.001 111.224 0.999 3.440 9.680 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Currency Return (%) 
shows the currency return, which is calculated by averaging the currency return per trade 
from simulation paths in each scenario using only the matched order, in percent. Std. (%) 
shows the standard deviation of return only in the case that order is matched using the 
optimal solution set in percent. Sharpe Ratio shows the Sharpe ratio for each trading 
scenario. Open shows the optimal Open price from optimization. Lot shows the optimal lot 
sizes from optimization. Target shows the optimal Closing price from optimization. 
%Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced 
closed.
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Table 12 reports the results from the simulated trades based on the Stop Long order 
strategy on bad news releases. It obviously shows from the Sharpe ratio column that using 
the Stop Long order in a bad news scenario gives the average positive Sharpe ratio in most 
of the trading simulation cases with a high probability for sent order to be matched as can 
be seen from the %Matched column. This is expected from the parameter values of 2-MRJ 
model reported in Table 7. The lot size is reasonable for the initial wealth of $10,000 
because the maximum lot size in this case, with 2,000 times leverage, is 200 lots.  
 
As expected, with the higher lot size, the chance of position forced closure is increased. This 
can be observed from the %Forced column in Table 8 and Table 9 as a comparison.  
 
As shown in some trading cases from Table 12, we find that using the optimal lot size from 
optimization has a low chance of position forced closure. Although, there is a chance that 
the position forced closure condition is activated but we still have a positive return on 
average. This is because most of the trades are profitable, except the cases that the 
positions are forced closed, and the profits are able to fully cover the losses from the 
position forced close. 
 
Table 13 reports the results from the simulated trades based on the Stop Short order 
strategy on bad news releases. We can see that most trading simulation cases have negative 
returns. This suggests that it is better not-to-trade for those cases, or equivalently, to hold 
the cash in those scenarios. However, using a small lot size can prevent a huge loss occurred 
from the position forced closure.  
 
By comparing from both strategies (the Stop Long order strategy and the Stop Short order 
strategy), the Stop Long order give a better result in trading (in terms of the Sharpe ratio) 
than the Stop Short order strategy when the bad news is released to the market but there 
still are some scenarios that the position forced closure can be triggered with a small 
chance. The main reason is that the optimal lot size from the Stop Short order strategy is 
significantly lower than that of the Stop Long order strategy.  
 
Table 14 reports the results from the simulated trades based on the Limit Long order 
strategy on bad news releases. We can see from the Sharpe ratio column that using the Limit 
Long order in the bad news scenarios give the higher positive Sharpe ratio in every trading 
case with a lower probability of sent order to be matched than the Stop Long strategy from 
Table 12. However, the chance of position forced closure is significantly increased. We can 
observe from the %Forced column in Table 12 as a comparison.  
 
By comparing Table 14 with Table 15 which reports the results from the simulated trades 
based on the Limit Short order strategy on bad news releases, the Limit Long order strategy 
also has a significantly lower chance of position forced close than the Limit Short order 
strategy on average. Also, the average Sharpe ratio from the Limit Long order in a bad news 
scenario is better than the average Sharpe ratio from the Limit Short order (See Table 17 for 
detail). This is consistent with the suggestion from the parameter values of the model from 
Table 7 that using a long order may give a better Sharpe ratio than a short order.  
 
By Comparing Table 12 with Table 15, we can observe that using the Stop Long order (shown 
in Table 12) gives a worse Sharpe ratio than the Limit Short order which conflicts to the 
suggestion from the parameter values in the 2-MRJ model discussed from Table 7 in the 
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previous section that using a long strategy may give a better Sharpe ratio. The reasons are 
that the entry price of the limit order is better, if the order is matched, and that the lot size 
is larger than the stop order. Although the percentage of orders being matched is lower, it 
results in a higher Sharpe ratio for the limit order.   

 
Table 8 : Summary trading simulation statistic for In-sample trading case using 2-regimes pure diffusion with jump 
(2-PDJ) with a good news announcement 

Good News  2-Regimes Pure Diffusion  

Strategy Stop Long Stop Short Limit Long Limit Short 

Total Scenario 18 18 18 18 

Scenarios with Loss Trade in simulation 18 6 0 1 

Simulation paths for each scenario 5,000 5,000 5,000 5,000 

Average chance of order matched (%) 91.99% 97.83% 4.49% 7.17% 

Average currency return given trade (%) -0.00827 0.00031 0.00972 0.01224 

STD currency return given trade (%) 0.03486 0.04508 0.01009 0.00985 

Average Sharpe Ratio -0.23723 0.00688 0.96333 1.24264 

Forced Closure given trade (%) 0.00% 0.03% 7.78% 2.01% 

Average Lot Size 0.016 20.747 89.237 84.480 

 
Table 16 shows the summary result of trading simulation for good news with 2-PDJ model 
for each strategy using the optimal open prices, target prices and lot sizes. It can be seen 
that the Sharpe ratio (given there is a trade) of both limit order strategies give the better 
result than the stop order strategies in the trading simulation. However, the chance for the 
sent order to be matched is very low. With a low chance of order matching, the limit order 
strategy is not a good choice for the out-of-sample trading due to the limitation of the 
numbers of news. Also, we find that using the limit order is more likely to face with the 
higher chances for forced closure than the stop order. Therefore, using the Stop Short order 
is preferred with these reasons. 
 
Table 9 Summary trading simulation statistic for In-sample trading case using 2-Regimes Mean-Reverting with 
Jump (2-MRJ) with a bad news announcement 

Bad News   2-Regimes Mean-Reverting with Jump Diffusion  

Strategy Stop Long Stop Short Limit Long Limit Short 

Total Scenario 23 23 23 23 

Scenarios with Loss Trade in simulation 2 23 0 0 

Simulation paths for each scenario 5,000 5,000 5,000 5,000 

Average chance of order matched (%) 99.22% 83.90% 3.76% 5.20% 

Average currency return given trade (%) 0.00112 -0.01143 0.02152 0.02116 

STD currency return given trade (%) 0.04524 0.03646 0.01023 0.01360 

Average Sharpe Ratio 0.02483 -0.31364 2.10320 1.55522 

Forced Closure given trade (%) 0.52% 0.00% 11.79% 15.52% 

Average Lot Size 43.05 0.01 102.54 101.11 

 



 

 

41 

Table 17 shows the summary result of trading simulation for bad news with 2-MRJ model for 
each strategy using the optimal open prices, target prices and lot sizes. Similar to the good 
news case, the Sharpe ratios (given there is a trade) of both limit order strategies are 
significantly better than those of the stop order strategies in the trading simulation. 
However, the chance for the sent order to be matched is also very low. Therefore, the Stop 
Long order is preferred with the same reasons. 

5.3 Out-of-Sample Trading Result 

This section shows the out-of-sample trading results of the good and bad news for each 
scenario with benchmark returns. These results are based on actual bid-ask quotes from the 
market. 
 
In each scenario, the bid-ask quote of the exchange rate will be normalized using the mid-
price of EUR/USD at the news announcement time by: 
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐵𝑖𝑑𝑡 =
𝐵𝑖𝑑 𝑝𝑟𝑖𝑐𝑒𝑡
𝑀𝑖𝑑 𝑝𝑟𝑖𝑐𝑒0

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐴𝑠𝑘𝑡 =
𝐴𝑠𝑘 𝑝𝑟𝑖𝑐𝑒𝑡
𝑀𝑖𝑑 𝑝𝑟𝑖𝑐𝑒0

 

 
Each table reports the detailed out-of-sample trading results for the chosen strategy 
compared with 3 open-and-hold benchmarks. It provides the volatility scale ratio (Scale 
Ratio), the currency return for each strategy (Currency Return), optimal open prices (Optimal 
Open), optimal target prices (Optimal Target) , actual open price for each strategy (Opened 
Price), optimal lot sizes (Optimal Lot) and strategy that the Mixed benchmark use to trade in 
each scenario (Strategy). In some cases, the value will be assigned as “N/A” which indicates 
that the order is not submitted due to a negative mean return from the trading simulation.   
 
There are 18 scenarios for the good news announcement and 23 scenarios for the bad news 
announcement. Each scenario will be sorted in descending order by the volatility scale ratio 
in Scale Ratio column. 
 
Each scenario is sorted in descending order by the volatility scale ratio in Scale Ratio column. 
Table 18 reports the results from the out-of-sample trades using the Stop Short order 
strategy with 3 open-and-hold benchmarks for good news scenarios. Table 20 reports the 
results from the out-of-sample trades using the Stop Long order strategy with 3 open-and-
hold benchmarks for bad news scenarios. There are also Table 19 and Table 21 which show 
the summary result which compare the suggested strategy with the benchmark in out-of-
sample trading. (summarized from Tables 18 and 20 respectively) 
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Table 18 shows the details of out-of-sample trades for each good-news scenario. The 
volatility scale ratio (Δ) estimated by GARCH for each scenario is used to adjust the 
parameter from estimation step. 
 
We can observe from Table 18 that the optimization suggests trading using the Stop Short 
order strategy for 12 out of 18 scenarios. This is because the in-sample trading simulation 
does not generate positive mean returns for the chosen strategy in those other 6 scenarios. 
The result from Table 18 also shows that 4 out of 6 scenarios that the optimization suggests 
to hold cash on hand give negative currency return for Always Short strategy. This shows the 
effectiveness of the forecasting performance from in-sample optimization that following the 
suggestion to hold cash in some trades are effective.  
 
The Mixed Strategy column shows that it is more efficient if the benchmark uses both Long 
and Short Strategy depending on how the movement of the market price is. However, this 
strategy cannot be implemented as we did not know ahead of time what the direction of the 
price movement is. 
 
Note that open prices at the first 10 seconds in all scenarios deviate a lot from the prices at 
the announcement time 0, and this makes the trades from the suggested strategy open at 
those open prices, which are the same as the open prices of Always Short strategy, instead 
of their proposed optimal entry prices.     
 
Returns reported in Table 18 are currency returns and thus do not account for the leverage 
ratio and the optimal lot size. When the optimal lot size and leverage are used and the 
returns are calculated based on the trader’s wealth, the magnitude of returns can be much 
larger. The results in terms of the returns of trader’s wealth are reported in Table 32 in 
Appendix 5. With leverage, using the optimal lot size can reduce the loss from forced 
closure, but the overall risk from leverage can be huge.  
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Table 19: Out-of-sample trading summary result using Stop Short order with 2-PDJ model for good news 
announced and three benchmark strategies 

Good News  Out-Of-Sample 

Strategy : Stop Short order Stop Short Always Short Always Long Mixed 

Total News 18 18 18 18 

Number of Trading Scenarios 12 18 18 18 

Currency Average return (%) -0.00825 -0.00756 -0.00628 0.02228 

STD Currency return (%) 0.02378 0.03866 0.04214 0.02687 

Sharpe Ratio -0.34697 -0.19542 -0.14896 0.82917 

Percent Win given trade (%) 41.67 38.89 44.44 83.33 

Force Close Occurrence given trade (%) 0.00% 5.6% 0.00% 0.00% 

Number of Out-of-sample loss Trade  7 11 10 3 

Forecasting Performance (%) 67% N/A N/A N/A 

 
Table 19 shows the summary results of the out-of-sample trades using the Stop Short order 
with 2-PDJ model, and the benchmark strategies. 
 
The Stop Short order strategy column shows the trading performance of using the Stop 
Short order strategy. We can see that given a trade occurs, this strategy has 41.67% of 
winning rate without any chance of the position forced closure.  
 
To measure the forecasting performance when the in-sample trading results predict losses in 
a given scenario, we introduce the forecasted performance row. This row reports the 
percentage of loss scenarios if the Always Short strategy is used given the in-sample trading 
simulation suggests no trade (Table 9). In this case, we have 67% accuracy so the suggestion 
from the in-sample result to hold cash in those scenarios is effective. 
 
Comparing all strategies, we can observe that the Sharpe ratio of using the Stop Short order 
strategy underperform all of the benchmarks. Table 34 in Appendix 5 reports the summary 
results with 2,000-time leverage and optimal lot size. As expected, the return and standard 
deviation are much larger in magnitude. It turned out that the Sharpe ratio with the leverage 
ratio is worse (more negative). 
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Table 20 shows the details for each bad-news scenario. There are 21 out of 23 scenarios that 
the optimization result suggests to trade. For most of the trading scenarios, the Long order 
can gain an advantage on average in 15-minute trading as we can observe from the Always 
Long strategy that the Currency Return column are positive in most scenarios.  
 
The Optimal Open for the Stop Long strategy does not provide any advantage for these 
scenarios as shown from the Opened price column that in all the scenarios, the best ask price 
jumps across the optimal open price when news is announced. Therefore, the Stop Long 
order is executed immediately at the best ask price which is not the optimal price from 
optimization.  
 
In the bad news scenarios in Table 20, we can also see from the Currency Return column of 
the Mixed strategy that some scenarios give negative return although we can look ahead of 
time and choose the best strategy to open the position. This indicates that it is better to hold 
cash than to trade in some scenarios because neither Long order nor Short order is 
profitable.  
 
Table 33 in Appendix 5 reports the results of the Stop Long strategy with optimal lot size and 
2,000-time leverage. The returns are much larger in the magnitude as expected. With the 
optimal lot size, all trades can avoid the force closure at the large leverage ratio. 
 
Table 21: Out-of-sample trading summary result using Stop Short order with 2-MRJ model for bad news 
announced and three benchmark strategies 

Bad News  Out-Of-Sample 

Strategy : Stop Long order Stop Long Always Short Always Long Mixed 

Total News 23 23 23 23 

Number of Trading Scenarios 21 23 23 23 

Currency Average return (%) -0.00619 -0.00791 -0.00452 0.01013 

STD Currency return (%) 0.01711 0.02505 0.01778 0.01260 

Sharpe Ratio -0.36188 -0.31592 -0.25437 0.80410 

Percent Win given trade (%) 33.33% 30.43% 34.78% 65.22% 

Force Close Occurrence given trade (%) 0.00% 0.00% 0.00% 0.00% 

Number of Out-of-sample loss Trade  12 13 15 6 

Forecasting Performance (%) 50% N/A N/A N/A 

     
Table 21 shows the summary results for the out-of-sample trades using Stop Long order 
strategy with 2-MRJ model and the benchmark strategies. 
 
We can see that the Sharpe ratio of using the Stop Long order strategy is the worst 
comparing with all other strategies. However, all strategies (except the Mixed Strategy) give 
the negative Sharpe ratios. The reason that the Sharpe ratio of the Stop Long order strategy 
is lower than the Always Long strategy mainly comes from avoiding the trade in scenario 14 
in Table 20 which is quite a high profit scenario comparing with others. In the bad news 
announcement, the forecasting performance for holding cash is 50% which is equal to 
tossing a fair coin. Comparing with the good news case, this suggestion is worse.  
We report the results of the Stop Long strategy with 2,000-time leverage and optimal lot size 
case by case in Table 33 and report the summary result in Table 35 in Appendix 5. As 
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expected, the returns and standard deviations are much larger in magnitude, but the Sharpe 
ratio improves a little (-0.250). 
 

Chapter 6 Conclusion and Further Study 

The objective of this thesis is to find the suitable trading strategy with the optimal solution 
for trading the EUR/USD currency in the Unemployment claims announcement period.  
 
This thesis presents the EUR/USD price dynamic, and an estimation method based on the 
EM algorithm. The models that best describe the dynamics of EUR/USD data during the 
announcement periods for the good news and bad news based on AIC and BIC are the two-
regime pure-diffusion with jumps (2-PDJ) and two-regime mean-reversion with jumps (2-
MRJ) respectively.  
 
The parameter values from the model estimation show that the result of the news 
announcement and the dynamic of the EUR/USD prices are inconsistent. More precisely, the 
model suggests us to open a short position after a release of good news, and to open a long 
position when the news result turns out to be bad. 
 
For the good news case, the estimated model suggests that prices are trending downward 
with no mean reversion. Although, the best strategy in our scope is the Limit Short order 
strategy judged by the Sharpe ratio, there is a trade-off for using this strategy which is the 
chance of order matching is significantly low compared with the stop order strategy. 
Therefore, the Stop Short order strategy is preferred for this situation due to the data 
limitation. Also, the optimal lot size from this strategy can help prevent the traders’ portfolio 
from the forced closure. 
 
In the out-of-sample cases, our strategy and the benchmarks (except for the Mixed strategy) 
have the negative Sharpe ratio and our strategy underperform all of the benchmarks. When 
the large leverage ratio is applied to our strategy, the magnitude of the risk to trader’s 
wealth is increased. The negative Sharpe ratio is also worse after the large leverage ratio is 
applied. In terms of preventing the position forced closure, the optimal lot size for the Stop 
Short order strategy does a great job, since this strategy can perfectly prevent the position 
forced closure for the out-of-sample data.     
 
For the bad news case, the estimated parameter values suggest that there is a mean 
reversion effect with a fast reverting speed to a mean value higher than the announced 
currency price. Although, the Limit Buy order strategy is obviously a good strategy to trade 
during this situation if the price goes down before it reverts back up to its mean, the trade-
off of using this strategy is that the chance of order matching is low. With this reason, the 
Stop Long order comes as an alternative choice. Due to the fast converging to the mean, 
there is a small trend from the entry price toward the mean if the current price is 
significantly lower than the mean, so using the Stop Long order will gain a small trending 
benefit while the currency price is converging to its mean value.  
 
In the out-of-sample trading, the result turns out to be a loss on average and our strategy 
underperforms all of the benchmarks. When the large leverage ratio is applied to our 
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strategy, it does a great adjustment in the lot size applied in trading since the Sharpe ratio is 
improved, and the forced closure condition is not activated. With these reasons, we can 
conclude that using optimal lot size in real trading with the large leverage ratio can help 
traders to improve their trading performance and prevent their loss from forced closure 
condition. However, the current strategy still yields a negative mean return. 
 
Since, the Mixed strategy has a look-ahead bias and cannot be implemented in reality. We 
use it to provide a high-performance benchmark for our comparison. In some scenarios, 
using the Mixed strategy gives a negative currency return. This shows that in some cases 
using neither long nor short strategy is the best. So the trading performance can be 
improved if we avoid some trades. Also, instead of trading using one strategy in all the cases, 
it is better to allow strategy to be adaptive to the current situation to improve the trading 
performance. We suggest to test on the combination with other strategies or to apply a 
longer trading period for a further study. 
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APPENDIX 
Appendix 1: News Data Table 

Table 22: Good news announced date 

News Date Announcement time(+7 GMT) Result (x𝟏𝟎𝟑) Forecast (x𝟏𝟎𝟑) 

2010/01/21 20:30 482 441 

2010/02/04 20:30 480 461 

2010/04/08 19:30 460 434 

2010/04/29 19:30 448 442 

2010/05/20 19:30 471 439 

2010/07/01 19:30 472 454 

2010/07/22 19:30 464 449 

2010/08/05 19:30 479 456 

2010/08/12 19:30 484 465 

2010/08/19 19:30 500 478 

2010/09/23 19:30 465 451 

2010/11/04 19:30 457 437 

2010/12/02 20:30 436 425 

2011/01/06 20:30 409 400 

2011/03/31 19:30 388 379 

2011/04/21 19:30 403 394 

2011/05/05 19:30 474 415 

2011/06/02 19:30 422 416 

2011/06/23 19:30 429 414 

2011/12/01 20:30 402 390 

2011/12/29 20:30 381 372 

2012/03/08 20:30 362 352 

2012/03/29 19:30 359 351 

2012/04/26 19:30 388 374 

2012/06/21 19:30 387 381 

2013/01/10 21:30 371 361 

2013/01/31 21:30 368 362 

2013/02/07 21:30 366 361 

2013/03/28 20:30 357 340 

2013/04/04 20:30 385 352 

2013/06/20 20:30 354 343 

2013/07/11 20:30 360 342 

2013/08/22 20:30 336 329 

2013/10/10 20:30 374 307 

2013/12/19 21:30 379 336 

2014/01/02 20:30 339 341 

2014/01/30 20:30 348 329 
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Table 23: Bad news announced date 
News Date Announcement time(+7 GMT) Result (x𝟏𝟎𝟑) Forecast (x𝟏𝟎𝟑) 

2010/01/07 20:30 434 449 

2010/02/11 20:30 440 460 

2010/03/25 19:30 442 452 

2010/07/08 19:30 454 461 

2010/08/26 19:30 473 488 

2010/09/30 19:30 453 458 

2010/10/07 19:30 445 454 

2010/10/28 19:30 434 453 

2010/12/09 20:30 421 426 

2010/12/30 20:30 388 416 

2011/01/20 20:30 404 422 

2011/02/03 20:30 415 420 

2011/02/10 20:30 383 411 

2011/03/03 20:30 368 394 

2011/05/19 19:30 409 421 

2011/06/16 19:30 414 421 

2011/07/28 19:30 398 413 

2011/09/29 19:30 391 420 

2011/10/06 19:30 401 411 

2011/11/17 20:30 388 396 

2011/12/08 20:30 381 397 

2011/12/22 20:30 364 376 

2012/02/02 20:30 367 373 

2012/02/09 20:30 358 369 

2012/03/22 19:30 348 353 

2012/04/19 19:30 386 370 

2012/05/03 19:30 365 381 

2013/01/17 21:30 335 369 

2013/01/24 21:30 330 359 

2013/02/14 21:30 341 361 

2013/03/21 20:30 336 343 

2013/04/11 20:30 346 362 

2013/04/25 20:30 339 352 
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Table 23(cont.): Bad news announced date 
News Date Announcement time(+7 GMT) Result (x𝟏𝟎𝟑) Forecast (x𝟏𝟎𝟑) 

2013/05/09 20:30 323 333 

2013/05/23 20:30 340 347 

2013/07/18 20:30 334 344 

2013/08/01 20:30 326 346 

2013/09/12 20:30 292 332 

2013/09/19 20:30 309 331 

2013/09/26 20:30 305 319 

2013/10/03 20:30 308 315 

2013/12/26 21:30 338 346 

Appendix 2: Deriving log complete likelihood 

For deriving the likelihood function, it is obvious that  
𝑓(𝐶1, 𝐶2, … , 𝐶𝑀) = 𝑃(𝐶1)𝑃(𝐶2, 𝐶3, … 𝐶𝑀|𝐶1) 

where, 

𝑃(𝐶1) = 𝑃 (𝑦1
(1), Δ𝑁1

(1), 𝛿
ΔN1

(1)

(1)
, 𝑧1
(1), 𝑦2

(1), Δ𝑁2
(1), 𝛿

Δ𝑁2
(1)

(1)
, 𝑧2
(1), … , 𝑦𝑇

(1), Δ𝑁𝑇
(1), 𝛿

Δ𝑁𝑇
(1)

(1)
, 𝑧𝑇
(1)). 

By recursively use of the properties of the conditional probability 𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐵, 𝐶|𝐴)𝑃(𝐴) 

, the equation will be rearranged into  

𝑃(𝐶1) = 𝑃(𝑦1
(1)
) [∏𝑃(Δ𝑁𝑡

(1)
|𝑦𝑡
(1)
)𝑃 (𝛿

Δ𝑁𝑡
(1)

(1)
|Δ𝑁𝑡

(1), 𝑦𝑡
(1))𝑃(𝑧𝑡

(1)
|𝑦𝑡
(1)
)

𝑇

𝑡=1

]∏𝑃(𝑦𝑡+1
(1)
|𝑦𝑡
(1)
)

𝑇−1

𝑡=1

. 

By recursively substitute to 𝑓(𝐶1, 𝐶2, … , 𝐶𝑀) 
, the complete likelihood function can be shown as follows: 

𝑓(𝐶1, 𝐶2, … , 𝐶𝑀) = 𝑃(𝐶1)𝑃(𝐶2, 𝐶3, …𝐶𝑀|𝐶1) 
=  𝑃(𝐶1)𝑃(𝐶2|𝐶1)𝑃(𝐶3|𝐶1, 𝐶2)…𝑃(𝐶𝑀|𝐶1, 𝐶2, … , 𝐶𝑀−1) 

 
Because of the Markov properties,  
The equation 𝑓(𝐶1, 𝐶2, … , 𝐶𝑀) =  𝑃(𝐶1)𝑃(𝐶2|𝐶1)𝑃(𝐶3|𝐶1, 𝐶2)…𝑃(𝐶𝑀|𝐶1, 𝐶2, … , 𝐶𝑀−1) can be written as 

 𝑓(𝐶1, 𝐶2, … , 𝐶𝑀) =  𝑃(𝐶1)𝑃(𝐶2|𝐶1)𝑃(𝐶3|𝐶2)…𝑃(𝐶𝑀|𝐶𝑀−1) 

=∏(𝑃(𝑦1)
(𝑚)) {[∏𝑃(Δ𝑁𝑡

(𝑚)
|𝑦𝑡
(𝑚)
)𝑃 (𝛿

Δ𝑁𝑡
(𝑚)

(𝑚)
|Δ𝑁𝑡

(𝑚), 𝑦𝑡
(𝑚))𝑃(𝑧𝑡

(𝑚)
|𝑦𝑡
(𝑚)
)

𝑇

𝑡=1

]∏𝑃(𝑦𝑡+1
(𝑚)
|𝑦𝑡
(𝑚)
)

𝑇−1

𝑡=1

} 

𝑀

𝑚=1

  

 
Therefore, the log complete likelihood can be written as: 

𝑙𝑛(𝑓(𝐶1, 𝐶2, … , 𝐶𝑀)|𝛩𝑟) = ∑ 𝑙𝑛 (𝑃(𝑦1
(𝑚)
))

𝑀

𝑚=1

+ ∑∑𝑙𝑛 (𝑃(𝛥𝑁𝑡
(𝑚)
|𝑦𝑡
(𝑚)
))

𝑇

𝑡=1

𝑀

𝑚=1

 

+∑∑𝑙𝑛(𝑃 (𝛿
𝛥𝑁𝑡

(𝑚)

(𝑚)
|𝛥𝑁𝑡

(𝑚), 𝑦𝑡
(𝑚) ))

𝑇

𝑡=1

𝑀

𝑚=1

 

+∑∑𝑙𝑛(𝑃(𝑧𝑡
(𝑚)
|𝑦𝑡
(𝑚), Δ𝑁𝑡

(𝑚)
))

𝑇

𝑡=1

𝑀

𝑚=1

 

+∑∑𝑙𝑛(𝑃(𝑦𝑡+1
(𝑚)|𝑦𝑡

(𝑚))) 

𝑇−1

𝑡=1

𝑀

𝑚=1

, 𝑚 = 1,2,3,… ,𝑀 

Appendix 3: Deriving M-step parameter 

Derive the Initial State Probability ( �̂� ) 

The parameter �̂�𝑘 can be derived by using the lagrange multiplier method with the 
constraint ∑ 𝜋𝑘

2
𝑘=1 = 1 for the expected log complete likelihood 

𝔼(𝑙𝑛(𝑓(𝐶1, 𝐶2, … , 𝐶𝑀)|𝛩𝑟) |𝕏, 𝛩𝑟−1).  

Let 𝑃(𝑦1
(𝑚) = 𝑘) = 𝜋𝑘. Therefore,  
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𝔼[∑ 𝑙𝑛 (𝑃(𝑦1
(𝑚)
))

𝑀

𝑚=1

|𝕏, 𝛩𝑟−1] 

= ∑∑𝔼[𝑙𝑛 (𝑃(𝑦1
(𝑚) = 𝑘)) |𝕏,𝛩𝑟−1, 𝑦1

(𝑚) = 𝑘]𝑃(𝑦1
(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

2

𝑘=1

𝑀

𝑚=1

 

= ∑∑𝑙𝑛(𝑃(𝑦1
(𝑚) = 𝑘))𝑃(𝑦1

(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

2

𝑘=1

𝑀

𝑚=1

 

= ∑∑𝑙𝑛(𝜋𝑘)𝑃(𝑦1
(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

2

𝑘=1

𝑀

𝑚=1

 

𝜕

𝜕𝜋𝑘 
[𝔼[∑ 𝑙𝑛 (𝑃(𝑦1

(𝑚)
))

𝑀

𝑚=1

|𝕏,𝛩𝑟−1] − ((∑𝜋𝑘

2

𝑘=1

) − 1)𝜇]   =  0   

where, μ is a lagrange multiplier variable. 

∑
𝑃(𝑦1

(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

𝜋𝑘

𝑀

𝑚=1

− 𝜇 = 0 

∑
𝑃(𝑦1

(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

𝜇

𝑀

𝑚=1

= �̂�𝑘 

∑∑
𝑃(𝑦1

(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

𝜇

2

𝑘=1

𝑀

𝑚=1

=∑𝜋𝑘

2

𝑘=1

= 1 

∑∑𝑃(𝑦1
(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

2

𝑘=1

𝑀

𝑚=1

= 𝜇 = 𝑀 

 

∑
𝑃(𝑦1

(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

𝑀

𝑀

𝑚=1

= �̂�𝑘  

Derive the Jump Intensity ( 𝝀 ̂)  

The parameter �̂�𝑘 can be derived by using the first order derivative method with respect 
to 𝜆𝑘 and setting it equal to zero for the expected log complete 
likelihood 𝔼(𝑙𝑛(𝑓(𝐶1, 𝐶2, … , 𝐶𝑀)|𝛩𝑟) |𝕏, 𝛩𝑟−1). First, we will consider the term 

𝔼[∑ ∑ 𝑙𝑛 (𝑃(𝛥𝑁𝑡
(𝑚)|𝑦𝑡

(𝑚)))𝑇
𝑡=1

𝑀
𝑚=1 |𝕏, 𝛩𝑟−1] which is the only term where the parameter 𝜆𝑘is 

concealed in.   

𝔼[∑∑𝑙𝑛 (𝑃(𝛥𝑁𝑡
(𝑚)|𝑦𝑡

(𝑚)))

𝑇

𝑡=1

𝑀

𝑚=1

|𝕏, Θr−1] =  ∑∑𝔼[𝑙𝑛 (𝑃(𝛥𝑁𝑡
(𝑚)|𝑦𝑡

(𝑚))) |𝕏, Θr−1]

𝑇

𝑡=1

𝑀

𝑚=1

 

 

where, 𝑃 (𝛥𝑁𝑡
(𝑚)
|𝑦
𝑡
(𝑚) = 𝑘) is the Poisson distribution with the parameter 𝜆𝑘. Therefore, 

𝔼[∑∑𝑙𝑛 (𝑃(𝛥𝑁𝑡
(𝑚)
|𝑦𝑡
(𝑚)
))

𝑇

𝑡=1

𝑀

𝑚=1

|𝕏,𝛩𝑟−1] 

= ∑∑𝔼[𝑙𝑛 (𝑃(𝛥𝑁𝑡
(𝑚)
|𝑦𝑡
(𝑚) = 𝑘)) |𝕏, 𝛩𝑟−1]

𝑇

𝑡=1

𝑀

𝑚=1

 

= ∑∑𝔼[𝑙𝑛(∏
𝜆𝑘
𝛥𝑁𝑡

(𝑚)
𝕀{𝑦𝑡

(𝑚)
=𝑘}
𝑒−𝜆𝑘𝕀{𝑦𝑡

(𝑚)
=𝑘}  

𝛥𝑁𝑡
(𝑚)!

2
𝑘=1 ) |𝕏, 𝛩𝑟−1]  

𝑇

𝑡=1

𝑀

𝑚=1

 

= ∑∑∑𝔼

2

𝑘=1

[ 𝛥𝑁𝑡
(𝑚)𝕀{𝑦𝑡

(𝑚) = 𝑘}𝑙𝑛(𝜆𝑘) − 𝜆𝑘𝕀{𝑦𝑡
(𝑚) = 𝑘} − 𝑙𝑛 (𝛥𝑁𝑡

(𝑚)!)|

𝑇

𝑡=1

 𝕏, 𝛩𝑟−1]

𝑀

𝑚=1

 

Using the first order derivative method with respect to 𝜆𝑘 and setting it equal to zero, we 
can rearrange it into 
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𝜕

𝜕𝜆𝑘 
[𝔼[∑∑𝑙𝑛 (𝑃(𝛥𝑁𝑡

(𝑚)
|𝑦𝑡
(𝑚)
))

𝑇

𝑡=1

𝑀

𝑚=1

|𝕏,𝛩𝑟−1]] = 0 

∑∑𝔼[
𝛥𝑁𝑡

(𝑚)

𝜆𝑘
𝕀{𝑦𝑡

(𝑚) = 𝑘} − 𝕀{𝑦𝑡
(𝑚) = 𝑘}|𝕏,𝛩𝑟−1] = 0

𝑇

𝑡=1

𝑀

𝑚=1

 

�̂�𝑘 =
∑ ∑ 𝔼[ 𝛥𝑁𝑡

(𝑚)
|𝕏,𝛩𝑟−1, 𝑦𝑡

(𝑚) = 𝑘]𝑃(𝑦𝑡
(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

𝑇
𝑡=1

𝑀
𝑚=1

∑ ∑ 𝑃(𝑦𝑡
(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

𝑇
𝑡=1

𝑀
𝑚=1

 

 

where, 𝔼[𝕀{𝑦𝑡
(𝑚) = 𝑘}|𝕏,Θ𝑟−1] =  𝑃(𝑦𝑡

(𝑚) = 𝑘|𝕏,𝛩𝑟−1) 

 

Derive the Mean of jump size (�̂�) and the Volatility of jump size (�̂�) 

The parameter �̂�𝑘 and �̂�𝑘
2 can be derived by using the first order derivative method for the 

expected log complete likelihood 𝔼(𝑙𝑛(𝑓(𝐶1, 𝐶2, … , 𝐶𝑀)|𝛩𝑟) |𝕏, 𝛩𝑟−1) with respect to 𝜂𝑘 and 𝜔𝑘
2 

respectively. We will set each differentiated equation equal to zero.  

We will consider the term 𝔼[∑ ∑ 𝑙𝑛 (𝑃 (𝛿
𝛥𝑁𝑡

(𝑚)
(𝑚)

|𝛥𝑁𝑡
(𝑚), 𝑦𝑡

(𝑚) ))𝑇
𝑡=1

𝑀
𝑚=1 |𝕏, Θr−1] which is the only 

term where the parameters 𝜂𝑘 and 𝜔𝑘
2 are concealed in. 

𝔼[∑∑𝑙𝑛 (𝑃 (𝛿
𝛥𝑁𝑡

(𝑚)
(𝑚)

|𝛥𝑁𝑡
(𝑚), 𝑦𝑡

(𝑚) ))

𝑇

𝑡=1

𝑀

𝑚=1

|𝕏, 𝛩𝑟−1] 

=  ∑∑∑∑𝔼[𝑙𝑛 (𝑃 (𝛿𝑡,𝑖
(𝑚)|𝛥𝑁𝑡

(𝑚) = 𝑗, 𝑦𝑡
(𝑚) = 𝑘)) |𝕏, 𝛩𝑟−1] 𝑃 (Δ𝑁𝑡

(𝑚) = 𝑗|𝕏, Θ𝑟−1, 𝑦𝑡
(𝑚) = 𝑘)𝑃 (𝑦𝑡

(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

∞

𝑗=0

2

𝑘=1

𝑇

𝑡=1

𝑀

𝑚=1

 

=  ∑∑∑∑𝔼[𝑗 (𝑙𝑛(2𝜋)−
1
2 −

1
2
𝑙𝑛(𝜔𝑘

2) −
1
2𝜔𝑘

2 (𝛿𝑡,𝑖
(𝑚) − 𝜂𝑘)

2
) |𝕏, 𝛩𝑟−1] 𝑃(𝛥𝑁𝑡

(𝑚) = 𝑗|𝕏, 𝛩𝑟−1, 𝑦𝑡
(𝑚) = 𝑘)𝑃 (𝑦𝑡

(𝑚) = 𝑘|𝕏, 𝛩𝑟−1)

∞

𝑗=0

2

𝑘=1

𝑇

𝑡=1

𝑀

𝑚=1

 

 
where, 𝛿𝑡,𝑖

(𝑚)|Δ𝑁𝑡
(𝑚) = 𝑗, 𝑦𝑡

(𝑚) = 𝑘 ∼𝑖𝑖𝑑 𝑁𝑜𝑟(𝜂𝑘, 𝜔𝑘
2) for 𝑖 = 1,2,3, … , 𝑗 

To find  �̂�𝑘, we will apply the first order derivative method with respect to 𝜂𝑘  
and set it equal to zero, we can rearrange it into 

𝜕

𝜕𝜂𝑘 
[𝔼[∑∑𝑙𝑛(𝑃 (𝛿

𝛥𝑁𝑡
(𝑚)

(𝑚)
|𝛥𝑁𝑡

(𝑚), 𝑦𝑡
(𝑚) ))

𝑇

𝑡=1

𝑀

𝑚=1

|𝕏,𝛩𝑟−1]] = 0 

∑∑∑∑𝔼[
𝑗
𝜔𝑘
2 (𝛿𝑡,𝑖

(𝑚) − 𝜂𝑘)|𝕏,𝛩𝑟−1] 𝑃(Δ𝑁𝑡
(𝑚) = 𝑗|𝕏,Θ𝑟−1, 𝑦𝑡

(𝑚) = 𝑘)𝑃(𝑦𝑡
(𝑚) = 𝑘|𝕏,𝛩𝑟−1)

∞

𝑗=0

2

𝑘=1

𝑇

𝑡=1

𝑀

𝑚=1

= 0 

 

�̂�𝑘 =
∑ ∑ ∑ 𝑗𝔼[𝛿𝑡,𝑖

(𝑚)
|𝕏,𝛩, 𝛥𝑁𝑡

(𝑚) = 𝑗, 𝑦𝑡
(𝑚) = 𝑘]𝑃(𝛥𝑁𝑡

(𝑚) = 𝑗|𝕏,𝛩, 𝑦𝑡
(𝑚) = 𝑘)𝑃(𝑦𝑡

(𝑚) = 𝑘|𝕏,𝛩)∞
𝑗=0  𝑇

𝑡=1
𝑀
𝑚=1

∑ ∑ ∑ 𝑗𝑃(𝛥𝑁𝑡
(𝑚) = 𝑗|𝕏,𝛩, 𝑦𝑡

(𝑚) = 𝑘)𝑃(𝑦𝑡
(𝑚) = 𝑘|𝕏,𝛩)∞

𝑗=0  𝑇
𝑡=1

𝑀
𝑚=1

 

To find �̂�𝑘
2, we will apply the first order derivative method with respect to 𝜔𝑘  

and set it equal to zero. We can rearrange it into 
𝜕

𝜕𝜔𝑘
2 [𝔼[∑∑𝑙𝑛 (𝑃 (𝛿

𝛥𝑁𝑡
(𝑚)

(𝑚)
|𝛥𝑁𝑡

(𝑚), 𝑦𝑡
(𝑚) ))

𝑇

𝑡=1

𝑀

𝑚=1

|𝕏, 𝛩𝑟−1]] = 0 

 ∑ ∑∑∑𝔼[𝑗(−
1
2𝜔𝑘

2 +
1

2(𝜔𝑘
2)2

(𝛿𝑡,𝑖
(𝑚) − 𝜂𝑘)

2
|𝕏, 𝛩𝑟−1] 𝑃 (Δ𝑁𝑡

(𝑚) = 𝑗|𝕏, Θ𝑟−1, 𝑦𝑡
(𝑚) = 𝑘) 𝑃 (𝑦𝑡

(𝑚) = 𝑘|𝕏, 𝛩𝑟−1) = 0

∞

𝑗=0

2

𝑘=1

𝑇

𝑡=1

𝑀

𝑚=1

 

�̂�𝑘
2 =

∑ ∑ ∑ 𝑗𝔼 [(𝛿𝑡,𝑖
(𝑚) − 𝜂𝑘)

2
|𝕏, 𝛩, 𝛥𝑁𝑡

(𝑚) = 𝑗, 𝑦𝑡
(𝑚) = 𝑘] 𝑃 (𝛥𝑁𝑡

(𝑚) = 𝑗|𝕏, 𝛩, 𝑦𝑡
(𝑚) = 𝑘) 𝑃 (𝑦𝑡

(𝑚) = 𝑘|𝕏, 𝛩)∞
𝑗=0  𝑇

𝑡=1
𝑀
𝑚=1

∑ ∑ ∑ 𝑗𝑃 (𝛥𝑁𝑡
(𝑚)

= 𝑗|𝕏,𝛩, 𝑦𝑡
(𝑚)

= 𝑘) 𝑃 (𝑦𝑡
(𝑚)

= 𝑘|𝕏, 𝛩)∞
𝑗=0  𝑇

𝑡=1
𝑀
𝑚=1
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Derive the Long-Term Mean (�̂̅�), the Mean Converging rate ( �̂�) and the 
Volatility (�̂�) 

The parameter �̂̅�𝑘 , �̂�𝑘  and �̂�𝑘2 can be derived by using the first order derivative method for the 

expected log complete likelihood 𝔼(𝑙𝑛(𝑓(𝐶1, 𝐶2, … , 𝐶𝑀)|𝛩𝑟) |𝕏, 𝛩𝑟−1) with respect to �̅�𝑘 ,  𝜅𝑘   
and 𝜎𝑘

2 respectively. We will set each differentiated equation equal to zero.  

We will consider the term 𝔼[∑ ∑ 𝑙𝑛 (𝑃(𝑧𝑡
(𝑚)|𝑦𝑡

(𝑚)))𝑇
𝑡=1

𝑀
𝑚=1 |𝕏, 𝛩𝑟−1] which is the only term 

where the parameters  �̅�𝑘 , 𝜅𝑘 and 𝜎𝑘
2 are concealed in. 
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Derive the Transition Probability ( �̂� )  

The parameter �̂�𝑖,𝑙 can be derived by using the lagrange multiplier method with the constraint 
∑ 𝑞𝑖,𝑙
2
𝑙=1 = 1 for the expected log complete likelihood 𝔼(𝑙𝑛(𝑓(𝐶1, 𝐶2, … , 𝐶𝑀)|𝛩𝑟) |𝕏, 𝛩𝑟−1). We will 

consider the term 𝔼[∑ ∑ 𝑙𝑛(𝑃(𝑦
𝑡+1
(𝑚)|𝑦

𝑡
(𝑚))) 𝑇−1

𝑡=1
𝑀
𝑚=1 |𝕏, 𝛩𝑟−1] which is the only term where the 

parameter �̂�𝑖,𝑙is concealed in. 

𝔼[∑∑ 𝑙𝑛 (𝑃(𝑦
𝑡+1
(𝑚)|𝑦

𝑡
(𝑚)))

𝑇−1

𝑡=1

𝑀

𝑚=1

|𝕏, 𝛩𝑟−1] =∑∑∑∑𝔼[𝕀 {𝑦
𝑡+1

(𝑚)
= 𝑙, 𝑦

𝑡
(𝑚) = 𝑖} 𝑙𝑛𝑞

𝑖,𝑙
|𝕏, Θ𝑟−1]

2

𝑙=1

2

𝑖=1

𝑇−1

𝑡=1

𝑀

𝑚=1

 

= ∑∑∑∑𝑃(𝑦𝑡+1
(𝑚)

= 𝑙, 𝑦𝑡
(𝑚)

= 𝑖|𝕏, Θ𝑟−1) 𝑙𝑛𝑞𝑖,𝑙

2

𝑙=1

2

𝑖=1

𝑇−1

𝑡=1

𝑀

𝑚=1

  

𝜕

𝜕𝑞𝑖,𝑙
[𝔼[∑∑𝑙𝑛 (𝑃(𝑦𝑡+1

(𝑚)
|𝑦𝑡
(𝑚)
))

𝑇−1

𝑡=1

𝑀

𝑚=1

|𝕏,𝛩𝑟−1] − (∑𝑞𝑖,𝑙

2

𝑙=1

− 1)𝜇]   =  0   

 where, 𝜇 is a lagrange multiplier variable. 

∑∑
𝑃(𝑦𝑡+1

(𝑚) = 𝑙, 𝑦𝑡
(𝑚) = 𝑖|𝕏, Θ𝑟−1)

𝑞𝑖,𝑙

𝑇−1

𝑡=1

𝑀

𝑚=1

− 𝜇 = 0 

∑∑
𝑃(𝑦𝑡+1

(𝑚) = 𝑙, 𝑦𝑡
(𝑚) = 𝑖|𝕏,Θ𝑟−1)

𝜇

𝑇−1

𝑡=1

𝑀

𝑚=1

= 𝑞𝑖,𝑙 

∑∑∑
𝑃(𝑦𝑡+1

(𝑚) = 𝑙, 𝑦𝑡
(𝑚) = 𝑖|𝕏,Θ𝑟−1)

𝜇

2

𝑙=1

𝑇−1

𝑡=1

𝑀

𝑚=1

=∑𝑞𝑖,𝑙

2

𝑙=1

= 1 

∑∑∑𝑃(𝑦𝑡+1
(𝑚) = 𝑙, 𝑦𝑡

(𝑚) = 𝑖|𝕏,Θ𝑟−1)

2

𝑙=1

𝑇−1

𝑡=1

𝑀

𝑚=1

= 𝜇 

∑∑𝑃(𝑦𝑡
(𝑚) = 𝑖|𝕏,Θ𝑟−1)

𝑇−1

𝑡=1

𝑀

𝑚=1

= 𝜇 

 

where, 

∑∑∑𝑃(𝑦𝑡+1
(𝑚) = 𝑙, 𝑦𝑡

(𝑚) = 𝑖|𝕏, Θ𝑟−1)

2

𝑙=1

𝑇−1

𝑡=1

𝑀

𝑚=1

= ∑∑∑𝑃(𝑦𝑡+1
(𝑚) = 𝑙|𝕏,Θ𝑟−1, 𝑦𝑡

(𝑚) = 𝑖)𝑃(𝑦𝑡
(𝑚) = 𝑖|𝕏,Θ𝑟−1)

2

𝑙=1

𝑇−1

𝑡=1

𝑀

𝑚=1

 

= ∑∑𝑃(𝑦𝑡
(𝑚) = 𝑖|𝕏,Θ𝑟−1)

𝑇−1

𝑡=1

𝑀

𝑚=1

 

Therefore, 

�̂�𝑖,𝑙 =
∑ ∑ 𝑃(𝑦𝑡+1

(𝑚)
= 𝑙, 𝑦𝑡

(𝑚)
= 𝑖|𝕏,𝛩𝑟−1)

𝑇−1
𝑡=1

𝑀
𝑚=1

∑ ∑ 𝑃(𝑦𝑡
(𝑚)

= 𝑖|𝕏, 𝛩𝑟−1)
𝑇−1
𝑡=1

𝑀
𝑚=1

   𝑓𝑜𝑟 𝑖, 𝑙 = 1,2 
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Appendix 4: Leveraged returns of in-sample trading   

This appendix shows the results from Section 5.2 using leveraged return. The returns which 
are shown in this appendix is the percentage of leveraged realized profit/loss using the fixed 
margin (𝐵) at 100,000 US dollar per contract and the leverage ratio (𝐿) at 2,000 times for the 
simulation trade.  
 

Table 24: In-sample result for each good news scenario using Stop Long order strategy trading on simulation 
Stop Long Strategy 

Scenario Scale  
Ratio 

Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.112 -0.001 0.005 -0.139 1.000 0.010 1.001 97.330 0.000 

2 0.978 -0.001 0.005 -0.156 1.000 0.010 1.001 96.440 0.000 

3 0.918 -0.001 0.005 -0.176 1.000 0.010 1.001 96.560 0.000 

4 0.881 -0.002 0.009 -0.207 1.000 0.023 1.000 96.780 0.000 

5 0.860 -0.002 0.007 -0.255 1.000 0.024 1.000 97.000 0.000 

6 0.842 -0.002 0.007 -0.270 1.000 0.023 1.000 96.330 0.000 

7 0.842 -0.002 0.007 -0.271 1.000 0.023 1.000 96.560 0.000 

8 0.840 -0.002 0.007 -0.277 1.000 0.022 1.000 96.560 0.000 

9 0.838 -0.002 0.007 -0.278 1.000 0.022 1.000 96.560 0.000 

10 0.814 -0.001 0.003 -0.292 1.000 0.013 1.000 97.220 0.000 

11 0.795 -0.002 0.006 -0.308 1.000 0.022 1.000 96.560 0.000 

12 0.783 -0.002 0.005 -0.338 1.000 0.023 1.000 96.670 0.000 

13 0.757 -0.001 0.001 -1.387 1.001 0.010 1.001 6.110 0.000 

14 0.727 -0.002 0.008 -0.230 1.000 0.022 1.000 99.330 0.000 

15 0.713 -0.001 0.004 -0.214 1.000 0.010 1.001 96.780 0.000 

16 0.691 -0.001 0.004 -0.211 1.000 0.010 1.001 99.330 0.000 

17 0.673 -0.001 0.004 -0.202 1.000 0.010 1.001 96.890 0.000 

18 0.672 -0.001 0.004 -0.204 1.000 0.010 1.001 96.890 0.000 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of 
leveraged return, which is calculated by averaging the return per trade from simulation paths in each 
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return 
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows 
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot 
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from 
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced closed. 
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Table 25: In-sample result for each good news scenario using Stop Short order strategy trading on simulation 
Stop Short Strategy 

Scenario Scale  
Ratio 

Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.112 0.000 0.006 -0.017 1.000 0.010 0.999 99.110 0.000 

2 0.978 0.000 0.005 -0.008 1.000 0.010 0.999 94.440 0.000 

3 0.918 0.000 0.005 -0.008 1.000 0.010 0.999 98.110 0.000 

4 0.881 0.034 11.092 0.003 1.000 24.330 0.999 94.560 0.000 

5 0.860 0.172 15.298 0.011 1.000 32.997 0.999 96.670 0.000 

6 0.842 0.672 24.253 0.028 1.000 57.316 0.999 91.110 0.240 

7 0.842 0.635 27.314 0.023 1.000 58.708 0.999 98.780 0.340 

8 0.840 0.475 15.506 0.031 1.000 33.034 0.999 99.670 0.000 

9 0.838 0.403 16.173 0.025 1.000 34.328 0.999 99.890 0.000 

10 0.814 0.285 14.929 0.019 1.000 32.811 0.999 98.330 0.000 

11 0.795 0.282 15.238 0.018 1.000 32.855 0.999 99.890 0.000 

12 0.783 0.159 14.771 0.011 1.000 32.300 0.999 99.890 0.000 

13 0.757 0.021 13.919 0.002 1.000 32.100 0.999 97.560 0.000 

14 0.727 0.001 0.361 0.002 1.000 0.856 0.999 97.890 0.000 

15 0.713 0.000 0.004 -0.008 1.000 0.010 0.999 98.440 0.000 

16 0.691 0.000 0.644 0.001 1.000 1.566 0.999 98.440 0.000 

17 0.673 0.000 0.043 -0.003 1.000 0.110 0.999 98.440 0.000 

18 0.672 0.000 0.038 -0.004 1.000 0.096 0.999 99.670 0.000 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of 
leveraged return, which is calculated by averaging the return per trade from simulation paths in each 
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return 
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows 
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot 
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from 
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Table 26: In-sample result for each good news scenario using Limit Long order strategy trading on simulation 
Limit Long Strategy 

Scenario Scale  
Ratio 

Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.112 7.922 10.128 0.782 0.999 67.201 1.001 8.000 0.000 

2 0.978 16.717 11.426 1.463 0.999 79.471 1.001 5.330 0.000 

3 0.918 7.352 9.632 0.763 0.999 82.822 1.001 4.560 2.440 

4 0.881 0.008 2.372 0.003 0.999 26.810 1.001 4.780 0.000 

5 0.860 6.697 10.065 0.665 0.999 86.833 1.001 4.670 2.380 

6 0.842 9.550 12.021 0.795 0.999 92.839 1.001 5.110 8.700 

7 0.842 8.418 12.024 0.700 0.999 92.243 1.001 5.220 6.380 

8 0.840 8.798 12.057 0.730 0.999 92.911 1.001 5.000 13.330 

9 0.838 4.306 13.861 0.311 0.999 110.669 1.001 4.780 48.840 

10 0.814 4.239 9.180 0.462 0.999 92.951 1.001 4.890 6.820 

11 0.795 4.955 11.447 0.433 0.999 101.973 1.001 5.110 26.090 

12 0.783 18.297 10.078 1.816 0.999 91.042 1.000 4.670 2.380 

13 0.757 4.677 6.873 0.680 0.999 89.850 1.001 4.330 2.560 

14 0.727 0.685 4.409 0.155 0.999 88.231 1.001 3.330 0.000 

15 0.713 5.422 4.835 1.121 0.999 97.669 1.001 3.110 0.000 

16 0.691 15.424 6.824 2.260 0.999 104.142 1.001 2.890 11.540 

17 0.673 19.254 6.371 3.022 0.999 104.331 1.001 2.560 4.350 

18 0.672 19.177 6.360 3.015 0.999 104.273 1.001 2.560 4.350 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of 
leveraged return, which is calculated by averaging the return per trade from simulation paths in each 
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return 
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows 
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot 
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from 
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Table 27: In-sample result for each good news scenario using Limit Short order strategy trading on simulation 
Limit Short Strategy 

Scenario Scale 
Ratio 

Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.112 2.558 8.096 0.316 1.001 67.031 0.999 6.670 0.000 

2 0.978 2.711 7.174 0.378 1.001 73.814 0.999 5.670 0.000 

3 0.918 7.579 8.886 0.853 1.001 83.042 0.999 4.670 2.380 

4 0.881 5.006 7.465 0.671 1.001 89.001 0.999 3.890 5.710 

5 0.860 5.075 6.279 0.808 1.001 83.736 0.999 3.780 2.940 

6 0.842 13.863 8.497 1.632 1.001 86.872 0.999 3.670 3.030 

7 0.842 15.770 8.377 1.883 1.001 87.090 0.999 3.560 0.000 

8 0.840 14.425 8.499 1.697 1.001 87.108 0.999 3.440 3.230 

9 0.838 13.282 8.554 1.553 1.001 87.225 0.999 3.560 0.000 

10 0.814 10.759 6.934 1.552 1.001 88.256 0.999 3.110 0.000 

11 0.795 6.162 6.894 0.894 1.001 88.571 0.999 3.330 0.000 

12 0.783 -1.578 7.931 -0.199 1.000 30.000 1.000 67.890 0.000 

13 0.757 14.239 7.103 2.005 1.001 87.926 0.999 2.890 0.000 

14 0.727 15.424 7.274 2.120 1.001 86.707 0.999 3.000 0.000 

15 0.713 15.541 7.771 2.000 1.001 92.335 0.999 2.890 0.000 

16 0.691 9.239 6.835 1.352 1.001 105.499 0.999 2.330 19.050 

17 0.673 26.483 8.317 3.184 1.001 98.354 1.000 2.330 0.000 

18 0.672 25.305 7.979 3.171 1.001 98.217 0.999 2.330 0.000 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of 
leveraged return, which is calculated by averaging the return per trade from simulation paths in each 
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return 
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows 
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot 
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from 
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced closed. 
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Table 28: In sample result for each bad news scenario using Stop Long order strategy trading on simulation 
Stop Long Strategy 

Scenario Scale 
Ratio 

Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.021 0.619 33.093 0.019 1.000 62.686 1.001 99.890 2.110 

2 0.958 0.667 28.538 0.023 1.000 56.438 1.001 98.330 4.750 

3 0.948 1.154 24.510 0.047 0.999 47.237 1.001 100.000 0.000 

4 0.909 0.303 31.127 0.010 1.000 62.580 1.001 99.780 1.890 

5 0.883 1.025 21.150 0.048 0.999 43.320 1.001 100.000 0.000 

6 0.862 0.665 18.693 0.036 1.000 40.069 1.001 98.670 0.000 

7 0.855 0.454 19.399 0.023 1.000 41.477 1.001 98.780 0.000 

8 0.839 0.589 16.729 0.035 1.000 36.730 1.001 98.890 0.000 

9 0.838 0.527 16.714 0.032 1.000 36.736 1.001 98.780 0.000 

10 0.811 0.000 0.004 -0.013 1.000 0.010 1.001 96.330 0.000 

11 0.807 0.642 21.850 0.029 0.999 47.340 1.001 100.000 0.000 

12 0.806 0.739 13.702 0.054 0.999 30.932 1.001 100.000 0.000 

13 0.795 1.407 25.268 0.056 0.999 57.470 1.001 100.000 0.560 

14 0.792 0.000 0.004 -0.003 1.000 0.010 1.001 96.330 0.000 

15 0.777 0.080 28.915 0.003 1.000 64.671 1.001 99.890 1.330 

16 0.776 0.161 13.710 0.012 1.000 31.762 1.001 98.780 0.000 

17 0.775 0.117 27.529 0.004 1.000 61.746 1.001 99.890 0.670 

18 0.756 0.366 27.672 0.013 1.000 62.874 1.001 100.000 0.560 

19 0.739 0.181 15.763 0.012 1.000 37.578 1.001 98.560 0.000 

20 0.720 0.649 15.733 0.041 1.000 37.666 1.001 100.000 0.000 

21 0.689 0.139 14.020 0.010 1.000 34.804 1.001 99.220 0.000 

22 0.684 0.755 21.598 0.035 0.999 51.924 1.001 100.000 0.000 

23 0.670 0.716 17.673 0.041 1.000 44.188 1.001 99.890 0.000 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of 
leveraged return, which is calculated by averaging the return per trade from simulation paths in each 
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return 
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows 
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot 
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from 
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Table 29: In sample result for each bad news scenario using Stop Short order strategy trading on simulation  

Stop Short Strategy 

Scenario Scale 
Ratio 

Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.021 -0.001 0.005 -0.231 1.000 0.010 0.999 96.780 0.000 

2 0.958 -0.001 0.005 -0.241 1.000 0.010 0.999 97.670 0.000 

3 0.948 -0.001 0.007 -0.184 1.000 0.020 1.000 97.440 0.000 

4 0.909 -0.001 0.005 -0.231 1.000 0.010 0.999 100.000 0.000 

5 0.883 -0.002 0.004 -0.478 1.000 0.021 1.000 78.560 0.000 

6 0.862 -0.001 0.005 -0.266 1.000 0.010 0.999 97.670 0.000 

7 0.855 -0.001 0.005 -0.266 1.000 0.010 0.999 97.330 0.000 

8 0.839 -0.001 0.005 -0.262 1.000 0.010 0.999 97.670 0.000 

9 0.838 -0.001 0.000 -3.853 0.999 0.010 0.999 5.110 0.000 

10 0.811 -0.001 0.004 -0.262 1.000 0.010 0.999 97.780 0.000 

11 0.807 -0.002 0.007 -0.258 1.000 0.020 1.000 92.220 0.000 

12 0.806 -0.002 0.007 -0.274 1.000 0.018 1.000 91.780 0.000 

13 0.795 -0.002 0.002 -0.915 1.000 0.010 0.999 23.780 0.000 

14 0.792 -0.001 0.004 -0.318 1.000 0.010 0.999 93.330 0.000 

15 0.777 -0.001 0.004 -0.249 1.000 0.010 0.999 99.000 0.000 

16 0.776 -0.002 0.004 -0.452 1.000 0.010 0.999 70.780 0.000 

17 0.775 -0.001 0.004 -0.259 1.000 0.010 0.999 98.780 0.000 

18 0.756 -0.001 0.006 -0.232 1.000 0.018 1.000 95.000 0.000 

19 0.739 -0.001 0.004 -0.244 1.000 0.010 0.999 99.440 0.000 

20 0.720 -0.001 0.001 -2.753 0.999 0.010 0.999 3.560 0.000 

21 0.689 -0.002 0.009 -0.252 1.000 0.036 1.000 99.220 0.000 

22 0.684 -0.001 0.004 -0.259 1.000 0.010 0.999 99.000 0.000 

23 0.670 -0.001 0.004 -0.281 1.000 0.010 0.999 97.890 0.000 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of 
leveraged return, which is calculated by averaging the return per trade from simulation paths in each 
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return 
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows 
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot 
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from 
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced closed. 



 

 

67 

Table 30: In sample result for each bad news scenario using Limit Long order strategy trading on simulation 
Limit Long Strategy 

Scenario Scale 
Ratio 

Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.021 18.689 14.420 1.296 0.999 96.704 1.001 6.330 19.300 

2 0.958 19.481 13.046 1.493 0.999 93.868 1.001 5.890 11.320 

3 0.948 20.970 13.136 1.596 0.999 94.628 1.001 5.780 9.620 

4 0.909 11.132 7.663 1.453 0.999 89.336 1.001 5.000 0.000 

5 0.883 13.524 8.088 1.672 0.999 93.504 1.001 4.890 2.270 

6 0.862 19.262 8.838 2.179 0.999 93.966 1.001 4.000 2.780 

7 0.855 12.653 9.602 1.318 0.999 97.817 1.001 4.110 18.920 

8 0.839 15.274 12.166 1.256 0.999 107.242 1.001 4.000 27.780 

9 0.838 15.294 12.167 1.257 0.999 107.258 1.001 4.000 27.780 

10 0.811 15.931 9.192 1.733 0.999 90.478 1.001 3.890 2.860 

11 0.807 19.006 8.981 2.116 0.999 89.655 1.001 3.670 0.000 

12 0.806 17.324 10.593 1.636 0.999 101.529 1.001 3.670 21.210 

13 0.795 22.382 10.564 2.119 0.999 104.848 1.001 3.440 12.900 

14 0.792 22.916 10.545 2.173 0.999 105.068 1.001 3.440 12.900 

15 0.777 21.697 10.872 1.996 0.999 105.703 1.001 3.670 15.150 

16 0.776 21.712 10.874 1.997 0.999 105.729 1.001 3.670 15.150 

17 0.775 22.448 10.792 2.080 0.999 105.715 1.001 3.670 12.120 

18 0.756 21.207 12.111 1.751 0.999 117.161 1.001 3.220 41.380 

19 0.739 33.282 11.493 2.896 0.999 106.484 1.001 2.890 3.850 

20 0.720 26.909 9.274 2.902 0.999 110.301 1.001 2.330 4.760 

21 0.689 42.319 8.991 4.707 0.999 110.323 1.001 1.890 0.000 

22 0.684 34.397 8.503 4.045 0.999 111.165 1.001 1.890 0.000 

23 0.670 47.387 8.008 5.917 0.999 120.000 1.000 1.220 9.090 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of 
leveraged return, which is calculated by averaging the return per trade from simulation paths in each 
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return 
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows 
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot 
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from 
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced closed.
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Table 31: In sample result for each bad news scenario using Limit Short order strategy trading on simulation 
Limit Short Strategy 

Scenario Scale  
Ratio 

Return (%) Std. (%) Sharpe Ratio Open Lot Target %Matched %Forced  

1 1.021 16.305 13.231 1.232 1.001 80.502 0.999 8.000 1.390 

2 0.958 18.109 15.257 1.187 1.001 86.571 0.999 7.780 7.140 

3 0.948 20.980 16.743 1.253 1.001 90.181 0.999 7.780 11.430 

4 0.909 21.744 15.351 1.416 1.001 86.689 0.999 7.000 3.170 

5 0.883 21.793 14.275 1.527 1.001 85.093 0.999 7.110 0.000 

6 0.862 22.680 15.872 1.429 1.001 91.977 0.999 6.670 10.000 

7 0.855 24.130 15.590 1.548 1.001 92.158 0.999 6.220 8.930 

8 0.839 11.310 15.459 0.732 1.001 116.010 0.999 5.560 48.000 

9 0.838 11.268 15.443 0.730 1.001 115.960 0.999 5.560 48.000 

10 0.811 15.107 14.233 1.061 1.001 111.033 0.999 4.780 30.230 

11 0.807 11.336 15.739 0.720 1.001 120.000 0.999 4.780 51.160 

12 0.806 24.932 12.899 1.933 1.001 90.098 0.999 4.670 2.380 

13 0.795 15.065 12.592 1.196 1.001 102.709 0.999 4.780 16.280 

14 0.792 15.333 12.069 1.270 1.001 100.312 0.999 4.780 9.300 

15 0.777 20.666 11.451 1.805 1.001 100.651 0.999 4.110 8.110 

16 0.776 24.294 11.786 2.061 1.001 100.619 0.999 4.110 5.410 

17 0.775 23.588 11.863 1.988 1.001 100.725 0.999 4.220 5.260 

18 0.756 21.525 12.886 1.670 1.001 112.883 0.999 4.000 27.780 

19 0.739 29.290 13.405 2.185 1.001 110.127 0.999 3.560 21.880 

20 0.720 22.664 10.142 2.235 1.001 97.217 0.999 3.560 3.130 

21 0.689 31.702 11.796 2.687 1.001 111.036 0.999 3.440 16.130 

22 0.684 29.083 11.702 2.485 1.001 111.723 0.999 3.670 12.120 

23 0.670 32.072 11.602 2.764 1.001 111.224 0.999 3.440 9.680 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the average of 
leveraged return, which is calculated by averaging the return per trade from simulation paths in each 
scenario using only the matched order, in percent. Std. (%) shows the standard deviation of return 
only in the case that order is matched using the optimal solution set in percent. Sharpe Ratio shows 
the Sharpe ratio for each trading scenario. Open shows the optimal Open price from optimization. Lot 
shows the optimal lot sizes from optimization. Target shows the optimal Closing price from 
optimization. %Matched shows the probability that the sent order will be matched from 5,000 trading 
simulated paths. %Forced shows the probability that the matched order will be forced closed. 
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Appendix 5: Leveraged returns of out-of-sample trading 

This appendix shows the results from Section 5.3 using leveraged return. The returns which 
are shown in this appendix is the percentage of leveraged realized profit/loss using the fixed 
margin (𝐵) at 100,000 US dollar per contract and the leverage ratio (𝐿) at 2,000 times for the 
out-of-sample trade. 
 

Table 32: Detailed out-of-sample trading for good news using 2-PDJ model with Stop Short order and three 
benchmark strategies (2,000 times leverage ratio is applied) 

Good News 2-Regimes Pure Diffusion with Jump (2-PDJ) 

  Return (%)         

  Scale Ratio Stop Short order Strategy Optimal  
Open 

Optimal  
Target 

Opened  
Price 

Optimal  
Lot Sizes 

1 1.1116 N/A N/A N/A N/A N/A 

2 0.9775 N/A N/A N/A N/A N/A 
3 0.9182 N/A N/A N/A N/A N/A 
4 0.8809 -10.253 0.99998 0.99900 0.99998 24.33028 
5 0.8602 -7.466 0.99999 0.99900 0.99998 32.99715 
6 0.8424 -8.225 0.99995 0.99900 0.99998 57.31578 
7 0.8419 -8.891 1.00002 0.99900 0.99998 58.70820 
8 0.8398 3.205 1.00004 0.99900 0.99999 33.03402 
9 0.8376 10.744 1.00005 0.99900 0.99985 34.32839 

10 0.8142 -6.089 1.00001 0.99900 0.99998 32.81075 

11 0.7946 -0.726 1.00005 0.99900 1.00000 32.85535 
12 0.7830 -19.053 1.00005 0.99900 0.99985 32.30013 
13 0.7569 1.201 1.00000 0.99900 0.99991 32.10029 
14 0.7266 0.108 1.00000 0.99906 0.99998 0.85629 
15 0.7130 N/A N/A N/A N/A N/A 
16 0.6910 0.115 1.00001 0.99906 0.99999 1.56578 
17 0.6734 N/A N/A N/A N/A N/A 
18 0.6719 N/A N/A N/A N/A N/A 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the leveraged 
return from using the Stop Short order strategy in out-of-sample trade. Optimal Open shows the 
optimal Open price. Optimal Target shows the optimal Closing price. Opened Price shows the actual 
normalized bid-ask quote price when news is announced. This depends on strategy: we use bid price 
for short and ask price for long positions. Optimal Lot Sizes shows the optimal lot sizes. “N/A” in 
Return (%) column means we do not submit an order because the chosen strategy suggests a negative 
mean return from the trading simulation.  
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Table 33: Detailed out-of-sample trading for bad news using 2-MRJ model with Stop Long order and three 
benchmark strategies (2,000 times leverage ratio is applied) 

Bad News 2-Regimes Mean-Reverting with Jump (2-MRJ) 

  Return (%)         

  Scale Ratio Stop Long order Strategy Optimal  
Open 

Optimal  
Target 

Opened  
Price 

Optimal  
Lot Sizes 

1 1.0213 6.896 0.99971 1.00100 1.00002 62.68645 

2 0.9577 19.189 1.00000 1.00100 1.00001 56.43788 

3 0.9484 -15.588 0.99936 1.00100 1.00002 47.23739 

4 0.9090 0.000 0.99994 1.00100 1.00002 62.57991 

5 0.8834 5.198 0.99900 1.00100 1.00002 43.32004 

6 0.8615 -10.017 1.00000 1.00100 1.00002 40.06876 

7 0.8546 -10.784 1.00000 1.00100 1.00002 41.47650 

8 0.8388 0.735 0.99999 1.00100 1.00001 36.72956 

9 0.8380 0.735 1.00000 1.00100 1.00002 36.73550 

10 0.8111 N/A N/A N/A N/A N/A 

11 0.8066 3.787 0.99924 1.00100 1.00002 47.34020 

12 0.8058 -7.424 0.99900 1.00100 1.00003 30.93170 

13 0.7947 -1.724 0.99900 1.00067 1.00001 57.46999 

14 0.7922 N/A N/A N/A N/A N/A 

15 0.7770 7.760 0.99983 1.00100 1.00015 64.67080 

16 0.7764 -10.799 1.00000 1.00100 1.00000 31.76168 

17 0.7752 -4.322 0.99990 1.00100 1.00000 61.74571 

18 0.7564 -2.515 0.99969 1.00100 0.99999 62.87445 

19 0.7389 -3.382 1.00000 1.00100 1.00001 37.57832 

20 0.7195 0.000 0.99966 1.00100 1.00001 37.66578 

21 0.6885 -10.441 0.99999 1.00100 0.99999 34.80360 

22 0.6838 -5.192 0.99901 1.00077 0.99999 51.92372 

23 0.6695 -2.651 0.99979 1.00100 0.99997 44.18797 

 
Scale Ratio shows the volatility ratio calculated by a GARCH model. Return (%) shows the leveraged 
return from using the Stop Short order strategy in out-of-sample trade. Optimal Open shows the 
optimal Open price. Optimal Target shows the optimal Closing price. Opened Price shows the actual 
normalized bid-ask quote price when news is announced. This depends on strategy: we use bid price 
for short and ask price for long positions. Optimal Lot Sizes shows the optimal lot sizes. “N/A” in 
Return (%) column means we do not submit an order because the chosen strategy suggests a negative 
mean return from the trading simulation 
. 
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Table 34: Out-of-sample trading summary result using Stop Short order with 2-PDJ model for good news 
announced and three benchmark strategies (2,000 times leverage ratio is applied) 

Good News  Out-Of-Sample 

Strategy : Stop Short order Stop Short 

Total News 18 

Number of Trading Scenarios 12 

Leveraged Average return (%) -3.778 

STD Leveraged return (%) 7.439 

Sharpe Ratio -0.508 

Percent Win given trade (%) 41.67 

Force Close Occurrence given trade (%) 0.00% 

Number of Out-of-sample loss Trade  7 

Forecasting Performance (%) 67% 

 
Table 35: Out-of-sample trading summary result using Stop Long order with 2-MRJ model for bad news 
announced and three benchmark strategies (2,000 times leverage ratio is applied) 

Bad News  Out-Of-Sample 

Strategy : Stop Long order Stop Long 

Total News 23 

Number of Trading Scenarios 21 

Currency Average return (%) -1.930 

STD Currency return (%) 7.727 

Sharpe Ratio -0.250 

Percent Win given trade (%) 42.85% 

Force Close Occurrence given trade (%) 0.00% 

Number of Out-of-sample loss Trade  12 

Forecasting Performance (%) 50% 
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