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CHAPTER I 
INTRODUCTION 

1.1 Background 

The catalytic oxidation of hydrocarbons is a dominant industrial route to the 
production of many important chemicals[1]. The catalytic combustion of hydrocarbons 
especially propane, is an important technology both for emission control and for 
energy production in the industrial sectors. 

The electrochemical promotion of catalysis (EPOC) or non-faradaic 
electrochemical modification of catalytic activity (NEMCA) has been studied extensively 
for more than 15 years almost exclusively in research laboratories but there is also a 
strong industrial interest and involvement aiming to its commercialization. NEMCA is 
an innovative concept which can be used to improve the catalytic activity. It is based 
on the control of the work function due to the electrochemical pumping of ions (O2-) 
by an applied potential between a solid electrolyte (Y2O3 -stabilized ZrO2, YSZ) and 
the surface of a porous catalyst (Pt)[2, 3]. Platinum is the catalyst most widely used 
for the combustion of propane and it has been studied by a large number of 
investigators [4-7]. NEMCA has been investigated in the field of catalytic and 
environmental protection. It is a potential phenomenon that could become a 
breakthrough in improvements on catalytic converters. 

The electrochemical promotion effect refers to the very pronounced and 
reversible changes in the catalytic properties of conductive catalysts deposited on 
solid electrolytes caused by application of small electrical currents or potentials. Yttria-
stabilized zirconia (YSZ) is commonly used as oxygen ion-conducting electrolyte 
material[8, 9]. However, this material is much more expensive than common catalyst 
supports such as alumina. In order to reducing the cost of YSZ, electrolyte thin films 
over common catalyst supports such as alumina were investigated. 
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It is therefore envisaged that in a commercially feasible NEMCA-enhanced 
catalytic converter be incorporated only a sufficient amount of YSZ in the form of a 
thin film deposited on a cheaper rigid support. A catalyst and the necessary electrodes 
are then deposited on the thin YSZ film. Techniques that have been used to deposit 
YSZ include chemical vapor deposition[10, 11], pulsed laser deposition[12-15], radio 
frequency(RF) sputtering[16, 17], ion beam sputtering[18], molecular beam epitaxy [19] 
and sol-gel deposition[20]. All of these techniques produced fully oxidized YSZ.  

 In this work, propane oxidation at Pt-YSZ was studied. YSZ was deposited on 
alumina disks by RF magnetron sputtering. The catalyst potential was measured 
between the working electrode (Pt) and the reference electrode (Au). Gold was 
selected because of its negligible catalytic activity in propane oxidation, as verified 
through blank experiments under our experimental conditions. Under open circuit, the 
cell operated as a regular catalytic reactor and the kinetics of the reaction were studied 
in conjunction with measurements of the cell potential. Under closed circuit, the effect 
of oxygen ion pumping on the catalytic activity of Pt was investigated. Both, open- and 
closed circuit results obtained with this catalyst electrode is evaluated in order to 
achieve optimal catalytic performances. 

1.2 Research objectives 

1.2.1 To fabricate YSZ thin film on alumina substrate. 
1.2.2 To study NEMCA effect at thin film cell and compare the dependence of 

propane oxidation rates on applied potentials and temperature at Pt-YSZ. 

1.3 Research scopes 

1.3.1 Effects of wired configuration cell between wireless and conventional 
methods. 

1.3.2 Effects of potential differences 0 volts up to 30 volts on reaction rates. 
1.3.3 Effects of the temperature with 200-500 C on reaction rates. 
1.3.4 Fixed feed compositions at 3% propane, 10% oxygen balance helium. 
1.3.5 Platinum and gold used as working and counter electrode, respectively. 
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CHAPTER II 
THEORY & LITERATURE REVIEW 

2.1 Theory 

2.1.1 Non-Faradaic Electrochemical Modification of Catalytic Activity  (NEMCA) 
Non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA),  or  

Electrochemical Promotion Of Catalysis (EPOC) is due to an electrochemically induced 
and controlled reversible spillover of ions from solid electrolyte onto the catalyst 
surface[1]. This phenomenon induces variation in the catalyst work function upon 
current or potential application and also improves catalytic converter function. NEMCA 
has been observed in O2-, Na+, K+, Pb2+ and H+ conductors [1, 21, 22] as solid 
electrolytes and used in solid electrolyte cell-reactors. For example the reaction under 
study is the oxidation of propane:  
 
           (1) 

 The cell consists of a dense solid electrolyte membrane and two electrodes, 
deposited on the two sides of the electrolyte. The circuit is open, gaseous propane is 
fed together with oxygen, the cell is operated as a regular catalytic reactor and the 
kinetics of the reaction were studied in conjunction with measurement of the cell 
potential. When the circuit is closed, a constant voltage is applied. An electrochemical 
oxygen of the cell was “pump” on the catalytic activity of electrode as shown in Figure 
2.1 

 
 
 
 

Figure 2.1 An O2- conducting solid electrolyte [23] 
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The parameters that are commonly used to quantify the magnitude of NEMCA effects 
[24] are: 

1) The rate enhancement ratio, , defined by: 

                       = r/r0            (2) 
where   r  is the electropromoted catalytic rate  

 r0 is the open-circuit rate, i.e. non-promoted catalytic rate 

2) The apparent Faradaic efficiency, ,  defined by : 

= (r- r0)/(I/nF)           (3) 
where I is the applied current,   

n is the charge of the promotion ion   
          F is Faraday’s constant 
 

2.1.2 Sputtering 
Sputter deposition is a physical vapor deposition (PVD) method  by sputtering 

is a process which particles are ejected from a solid target material due to 
bombardment of the target by energetic particles onto a substrate e.g. alumina. In 
sputtering, the target material and the substrate are placed in a vacuum chamber. A 
plasma is originated by ionizing a sputtering gas (generally a chemically inert, heavy 
gas like argon) and sputtering deposition usually uses an argon which is the most 
commonly employed process gas for sputter deposition processes and argon is a noble 
gas will not react with the target material and is relatively inexpensive (compared with 
the other noble gases (Krypton and Xenon). Sputtered atoms ejected from the target 
have a wide energy distribution deposit as a film on substrate (Figure 2.2). 

The Oerlikon Leybold Univex 350 RF sputtering system is a tool used for the 
deposition of both metal and dielectric films using two magnetron sputter guns.  A 
process wherein an argon plasma is generated, and charged argon ions are accelerated 
towards the target to kinetically knock target material off in random directions towards 
the substrate.  The rotation of the target and the angled sputter guns allows for good 
film thickness uniformity across a full 4” wafer.  

 

https://en.wikipedia.org/wiki/Sputtering
https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Argon


 

 

11 

 
 
 
 

 
 

Figure 2.2 Sputtering process 

RF or Radio Frequency Sputtering is technique implicated in the electrical 
potential of the current in the vacuum environment at radio frequencies to avoid a 
charge up types of sputtering target materials, which over time can result in arcing into 
the plasma that spews droplets appointing quality control issues on the thin films. RF 
Sputtering offers several advantages. A plasma throughout chamber at a lower pressure 
depending on gas sputter. The result is fewer ionized gas collisions equaling more 
efficient line-of-site deposition of the coating material.  

While RF Sputtering can be used for most types of thin film deposition, it has 
become choice of the thin film deposition technique for many types of dielectric 
coatings - insulating coatings which are non-conducting can take on a polarized charge. 
RF Sputtering is important for the semiconductor industry producing highly insulating 
oxide films between the thin film layers of microchip circuitry including aluminum 
oxide, silicon oxide and tantalum oxide.  
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2.1.3 Platinum 
The most common use of platinum is as a catalyst in chemical reactions. It is 

most important application in automobiles as a catalytic converter, which allows the 
complete combustion at low concentrations of unburned hydrocarbons from the 
exhaust into carbon dioxide and water vapor. At present 98 tones were used for 
vehicle emissions control devices. Platinum is the standard catalyst for many oxidation 
and reduction reactions in both acidic and basic electrolytes and would be an ideal 
candidate for process feasibility studies. 

The role of platinum in catalytic converters is oxidize carbon monoxide (CO) 
and hydrocarbons, so is often the metal choice for diesel applications. For powered 
vehicles platinum and palladium can be equally effective. However platinum has 

several advantages including high melting point,  interactions with poisons (such as 

sulfur  compounds) are restricted to the metal surface and also efficiently recycled. 

  In a catalytic converter, the metal is formed of nanoparticles, which are 
dispersed over the whole surface of a highly porous support materials. As the catalyst 
temperature increase, the particles start to become mobile and can coalesce. 
Moreover, metals such as copper and silver have a high affinity for sulfur molecules, 
with react to form compounds such as metal sulfates or sulfides. As this catalyst, there 
will be progressively less metal available useful for reactions to take place. However, 
Platinum is different because it tends not to become totally or irreversibly poisoned, 
i.e. sulfur molecules inhibit rather than poison platinum based catalysts. 

Table 2.1 The physical and chemical properties of Platinum. 
Properties Value 
Symbol Pt 
Atomic Number 78 
Atomic Weight 195.09 
Density 21.45 gm/cc 
Melting Point 1772    C 
Boiling Point 3827    C 
Thermal Conductivity 0.716 W/cm/K @ 298.2 K 

https://en.wikipedia.org/wiki/Catalyst
https://en.wikipedia.org/wiki/Catalytic_converter
https://en.wikipedia.org/wiki/Vehicle_emissions_control
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The working electrode indicate the most important component of an 
electrochemical cell. It is at the interface between the working electrode and the 
solution that electron transfers of greatest interest occur. The commonly used working 
electrode materials are platinum, gold, carbon, and mercury. Among these, platinum 
is likely the favorite, showing good electrochemical, inertness and ease of fabrication 
into many forms. The disadvantage for use of platinum, other than its high cost. 
Lizarraga et al.,[25] present the variation of the catalytic activity for the propane 
oxidation corresponding to the sputtered and paste-Pt films. The values of sputtered-
Pt films was 50%, which higher than for Pt-paste films. The low values obtained for Pt-
paste films was due to the high OCV conversion. 

Table 2.2 NEMCA parameters obtained on the Pt- sputter and the Pt-paste 
electrochemical catalysts[25].  

Electrocatalyst    Anodic current                            
Pt-sputter films 500 153 22.4 

100 361 11.2 
50 480 7.8 

Pt-paste films 500 109 1.4 
100 274 1.2 

 
2.1.4 Gold 

Gold electrodes have similarly with platinum, but have limited usefulness in the 
positive potential range caused the oxidation of its surface. Both platinum and gold 
films are deposited by vacuum deposition, sputtering and screen-printing techniques. 
Adhesion layers are often used to produce well-adhering films. 

Gold ink is an excellent conductor of current, which makes it a very useful 
contact paste. This gold ink is also screen printable which makes it useful for fabricating 
electrochemical devices. This is a great ink for making electrical connections for 
electrochemical testing of fuel cells, ceramic substrates, electrochemical materials, 
and metals, and for making a gas tight seal. The physical and chemical properties of 
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gold and advantages and limitations of platinum and gold as shown in Table 2.3 and 
Table 2.4 , respectively. 

Table 2.3 The physical and chemical properties of gold. 
Properties Value 
Symbol Au 
Atomic Number 79 
Atomic Weight 196.97 
Density 21.45 gm/cc 

Melting Point 1064 °C 

Boiling Point 3827 °C 
Thermal Conductivity 0.716 W/cm/K @ 298.2 K 

 

Table 2.4 Advantages and limitations of platinum and gold. 
Materials Advantages Limitations 

Pt 
Available wire, flat plate & tube 
large range of sizes Pt-Rh alloy 
for rigidity 

Low hydrogen overvoltage so 
cathodic potential range limited and 
expensive 

Au 
Configurations same as Pt larger 
cathodic potential range 

Larger cathodic potential range 
anodic window limited by surface 
oxidation expensive 

 

2.1.5 Yttria-stabilized zirconia (YSZ) 
Yttria stabilized zirconia (YSZ), is an oxygen ion conductor for catalytic 

applications. This ceramic material be compound with several functionalities such as 
good thermal stability, selective bulk oxygen mobility and high surface oxygen vacancy 
concentration. These properties have been first exploited, utilizing YSZ as dense 
membranes, in applications of solid oxide fuel cells and electrochemical promotion 
of catalysis. More recently, YSZ, as nanopowders, has also been considered as a 
promising support for metallic nanoparticles [26]. 
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The mostly used composition of YSZ contains 8 mol% yttria, which stabilizes 

the cubic phase of zirconia [27, 28]. Zirconia (ZrO2) is a thermal insulator with high 
thermodynamic and chemical stability. Doping zirconia with yttria (Y2O3) replaces Zr4+ 

with Y3+ as shown in Figure 2.3.  
 

 

 

 

 

 
 

Figure 2.3 Yttria-stabilize zirconia cubic structure 

For advantages of YSZ, it’s has good ionic conductivity removes need for 
expensive electro catalysts. YSZ remains solid throughout, electrolyte does not 
vaporize and minimal corrosion.  

For disadvantages of YSZ at high temperature reduces voltage loss due to 
current which a problem with fuel cells and operation reduces the reaction energy of 
hydrogen ions and thermal expansion stresses in the material.[29] 

YSZ acts as solid electrolyte for oxygen ions and the surface and it’s interface 
with the electrode material play a central role in the relevant reactions: it is involved 
in the adsorption and oxidation of hydrocarbons, the formation of H2O and the 
oxidation of carbon monoxide at the anode as well as the dissociation and 
incorporation of oxygen at the cathode surface. 
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2.2 Literature review 

 Metal oxide films grown by physical vapor deposition (PVD) have been studied 
for use in solid oxide fuel cells (SOFCs) as thin electrolyte layers. Fuel cells basically 
use in oxygen-ion conductors, such as stabilized zirconia, have been utilized for electric 
power generation and developed as future alternatives for vehicle power supplies.[30]  
 

2.2.1 Catalyst Thin films Fabrication Method 
There are a number of approaches for thin film fabrication, such as chemical 

vapor deposition (CVD), spray coating, sol-gel, screen printing, DC magnetron sputtering, 
thermal evaporation, tape casting, dip-drawing, plaster casting and so on. 

Table 2.5 Advantages and disadvantages of catalyst fabrication method 

Techniques Advantages Disadvantages Ref. 
CVD - Make a gas-tight 

- Uniform thin electrolyte 
film below 5 m 

- Drawbacks of high cost  
- Low deposition rates 
- Corrosive gas 

[31]  

Spray 
coating 

- High deposition rates 
 

- Difficult to obtain a thin dense 
electrolyte film 

[32]  

Sol-gel - Thin dense films - Time consuming [33]  
Screen-
printing 

- Reduce cost of 
fabrication 
- No risk  
- Suitable For Small Scale 
Production 

- Low production rate 
- Difficult to maintain even 
penetration and print paste 

[34-
36]  

Sputtering - High deposition rates 
- High industrial 
productivity 

- Arcing and hysteresis when 
depositing metal oxide thin 
films 

[37]  
 

Thermal 
Evaporation 

- Low contamination  
- Improve deposition rate 

- Chemical interaction between 
the charge and cricible 

[38]  

Tape casting - Forming uniformly 
- Inexpensive, scaleable 

- Higher crack sensivity [36 , 
39]  
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For thin film fabrication techniques, R.F. sputtering is a widely used technique 
and frequently utilized for the production dense, high quality of YSZ thin film 
electrolytes and crack-free. The advantage of this technique is tailor-made, crack-free 
film and dense can be obtained[40]. 

Hong S et al.[41] Present a DC reactive magnetron sputtering by controlling the 
argon flow rate during process. A Zr84Y16 pellet was used. Argon was used as the 
sputtering gas and O2 gas was used as the reactive gas. Argon flow rates of 20, 30, 40 
sccm was studied. The fuel cells deposited with an argon flow rate of 40 sccm showed 
unstable behavior because shorting was appeared between electrodes due to the 
presence of pinholes in the YSZ electrolyte thin film. For argon flow rate of 30 sccm 
had an OCV value less than the theoretical value for the SOFC and also presence of 
pinholes at YSZ electrolyte. At deposited with an argon flow rate of 20 sccm had an 
OCV of 1.09 V, which is nearby the theoretical value and survived to the end of the 
measurement after 12h as depicted in Figure 2.4. 
 

Figure 2.4 Open circuit voltage (OCV) measurements with argon flow rates of 20, 30, 
and 40 sccm during deposition. OCV measurements maintained for 12 h but only 
with the lowest flow rate of argon (20 sccm) survived to the end of the 
measurement[41]. 

The measured peak power density of the fuel cells with an argon flow rate of 
30 sccm was 81 mW/cm2.   For an argon flow rate of 20 sccm was 158 mW/cm2 at 450 
°C. These differences in the peak power densities were induced by differences in the 
OCV and the YSZ electrolyte density.  
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Figure 2.5 Polarization curves of SOFCs with YSZ electrolytes fabricated by argon 
flow rates of 20 and 30 sccm[41]. 

The fuel cell fabricated with the lower argon flow rate show highest peak power 
densities and OCV values. After 12 h the OCV measurement, the performance drop 
related to the increased cathode resistance is clearly visible.  

2.2.2 Composition of Y/Zr   
Jankowski A.F. and Hayes J.P.[42] focus on the target synthesis method and the 

deposition parameters to produce the YSZ films which are synthesized by a 
homogeneous alloy of Zr-Y is formed to produce an alloy composition of 15at% Yttria. 
When oxidized, the resulting yttria-stabilized zirconia stoichiometry is (Y2O3)0.08(ZrO2)0.92. 
This 8% yttria composition yields the optimum oxygen-ion conductivity for cubic YSZ 
at elevated temperatures.[28]  

Park Y et al., [43] demonstrate YSZ thin film deposition on alumina substrate 

in Argon and oxidized at 400-1000 oC. Y-Zr complex target after deposition of metal 
film. Five YSZ with varied three compositions of Y/Zr (at %) =4/96, 16/84, 43/57 were 
prepared. In Figure 2.6, the Nyquist plots (a) Y/Zr=3/97 thickness: 250 nm (b) Y/Zr=3/97 
thickness: 50 nm and (c) Y/Zr=16/84 thickness: 320 nm are shown. A large of resistance 
decrease from 3.67×108 Ω (Figure 2.6(a)) to 1.79×105 Ω  (Figure 2.6(c)) was observed. 
However, the conductivity (Figure 2.6(c)) with a composition of yttrium concentration 
increase (Y/Zr=16/84) showed a highest value of conductivity is 3.42×10-9 S/cm. Hong 
et al., [41] and  Liu et al.,[44] also used Y16 Zr84 metallic pellet as the sputtering target. 

Higher conductivities were observed for thinner films which were thought to be due 
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to increased oxide conduction along the surface. Increasing the yttrium concentration 
at the surface also led to higher conductivity. 

To observe phase development after oxidation of the Y-Zr thin films, the 
results XRD patterns are shown in Figure 2.7. At 700    C, a clear crystalline phase is find 
out. The crystalline phase for Y-Zr film is achieved at a lower temperature than alumina 
thin film because it’s inherent high oxygen diffusivity. The observed crystalline peaks 
matching with combine phase of cubic and monoclinic (Figure 2.7(e)) that explained a 
crystalline phase of Y2O3 and ZrO2 for a solid solution having a composition in the 

range of about 3/97 ~ 16/84 of Y/Zr composition[45]. For increasing the yttrium 
concentration from 3at% (Figure 2.7(e)) to 16at% (Figure 2.7(f)) , the monoclinic phase 
in oxidized thin film disappears and clear cubic single phase is achieved at 700    C for 
2 h. as shown in Figure 2.7 

 

 

 

 

 

 

 

 
 
 

Figure 2.6 The Nyquist plots for Y/Zr 
(a) 3/97 thickness: 250 nm   (b) 3/97 thickness: 50 nm   (c) 16/84 thickness: 320 nm 
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Figure 2.7 XRD patterns for YSZ thin films (a) Substrate at room temperature              

(b) Substrate heat-treated at 700    C for 2 h (c) Y/Zr=3/97 film at room temperature   
(d) Y/Zr=3/97 film at 500    C for 10 h (e) Y/Zr=3/97 film at 700    C for 2 h  
(f) Y/Zr=16/84 film at 700    C for 2 h (g) Y/Zr=43/57 film at 700    C for 2 h. 

 
2.2.3 NEMCA 

Non-Faradaic electrochemical modification of catalytic activity (NEMCA effect), 
has been observed for a widely range of gas phase reactions over metals, such as Pt, 
Pd, Rh, Au, Ag, Ni [46-52] deposited on solid electrolyte. The solid electrolytes 
commonly used O2- conductors, like YSZ (Y2O3-stabilized ZrO2). A reaction exhibits the 
NEMCA effect when || > 1. When  > 1 the reaction is termed ‘electrophobic’, while 
when  < −1 the reaction is termed ‘electrophilic’ and also ‘volcano’ and ‘inverted 
volcano’ are type of NEMCA behavior as shown in Figure 2.8 
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Figure 2.8 Type of electrochemical promotion [23]    (a) Purely electrophobic              

(b) Purely electrophilic   (c) Volcano type    (d) Inverted volcano type 

Jiménez-Borja C. et al., [53] has been reported the electrochemically promoted 
combustion of natural gas mainly constituted by methane, ethane and propane at 
temperature 340 to 420    C over Pd/YSZ/Au. Methane oxidation exhibited electrophobic 
behavior, while ethane and propane exhibited inverted volcano behavior[54], as 
consumption rates were also increasing upon negative polarization. Application of 
negative overpotentials involved a strengthening of the oxygen chemisorption, leading 
to an increase of the reaction rate. However, negative overpotentials less exhibited 
than that observed for positive overpotentials. Because oxygen is more strongly 
adsorbed on the catalyst surface, a weakening of its chemisorptive bond is expected 
to have a significant impact on the reaction rate. 

The electrochemical promotion of CH4, C2H4, C2H6, and C3H6 and C3H8 oxidation 

has been investigated on the Pt/YSZ/Au system as shown in Table 2.6 
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Table 2.6 The electrochemical promotion focus on the Pt/YSZ/Au system 

 
Marwood and Vayenas achieve the ''wireless" technology in which a platinum 

film is deposited on a YSZ pellet side between two gold electrodes [60] shown in 
Figure 2.9. A bipolar configuration allows the polarization of the catalytic layer without 
any direct electrical connection[61]. To make a YSZ thin film by wireless technology. 
YSZ deposited on substrate, while two Au films deposited on left and right side of 
obtained YSZ thin film. 
 

 

 

 

 

 

 
Figure 2.9 The bipolar cell [61] 

Reaction Catalyst/electrolyte 
/electrode 

Type of 
NEMCA 

  Ref. 

CH4 Pt/YSZ/Au electrophobic 70 13 [55]  

C2H4 Pt/YSZ/Au eletrophilic 3 -704 [56]  
C2H6 Pt/YSZ/Au eletrophobic 20 500 [57]  
C3H6 Pt/YSZ/Au eletrophilic 6 -3000 [58]  

C3H8 Pt/YSZ/Au Inverted 
volcano 

1270 
 

40 to 730 
-330 to -2330 

[54]  

C3H8 Pt/YSZ/Au electrophobic 5.6 330 [24]  

C3H8 Pt/YSZ/Au electrophobic 7.8 480 [25]  

C3H8 Pt/YSZ/Au electrophobic 2 1650 [59]  
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Shunsuke Akasaka [62] was studied a YSZ thin film based limiting current-type 
oxygen and humidity sensor on silicon substrate. Pt pad electrode and Pt wiring 
connected to the Pt pad electrode. An 8% YSZ electrolyte was deposited by RF 
sputtering. Ar gas is in the sputtering chamber. The YSZ film growth rate increases as 
the Ar gas pressure decreases. Considering that a current plateau is observed in dry air. 
The current plateaus at the lower and higher voltage regions correspond to the 
reduction of oxygen and water vapor, respectively. (Figure 2.10 and Figure 2.11) 

 

 

 

 
 

Figure 2.10 Structure fabricated on a silicon substrate. 
 

 

 

 

 

 
 

Figure 2.11 Voltage-current Characteristics between 400-550 oC 

Hong S et al.,[63] fabricated dense thin film YSZ electrolytes on alumina 
substrate by sputtering  at 4:1 and 13:1 different ratio of Ar/O2 gas sputtering mixture. 
For electrochemical characterization show the ionic conductivity data of YSZ thin film. 
Moreover to enhanced ionic conductivity, it is more important to have pinhole-free 
thin film electrolyte in order to avoid electrical shorting which dramatically kills the 
fuel cell performance during the operation. The polarization behaviors and EIS results 
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of the fuel cell samples with YSZ electrolytes fabricated under 4:1 and 13:1 ratio of 
Ar:O2 are shown in Figure 2.12. The open circuit voltage (OCV) of sample was measured 

as 1.01 V which is near the theoretical value of the SOFC. Ar:O2 13:1 showed electrical 

shorting behavior while the other sample showed stable performance. 

 

 

 

 

 
 
 
 
 
Figure 2.12 (a) Polarization curves of fuel cells with YSZ electrolytes fabricated under 
4:1 and 13:1 ratio of Ar:O2 conditions measured at 450    C. (b) EIS spectra of the fuel 

cell with YSZ electrolytes fabricated under 4:1 ratio of Ar:O2 measured in different 

voltage condition. 
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CHAPTER III 
METHODOLOGY 

3.1 Catalyst preparation   

3.1.1 Sputtering of YSZ films 
 

 YSZ thin films were deposited using RF magnetron sputtering (Oerlikon Univex 
350 sputtering system). The target was zirconium yttrium (Zr84/Y16 at%) alloy sputtering 
target of 50.8 mm diameter and 6.35 mm thickness (99.9% purity, Edgetech industries) 
and the substrate were alumina disks of 20 mm diameter and 1.2 mm thickness (sliced 
from alumina rods, Coorstek Inc).  

The RF sputtering power has maximum power 600 W, and the source-to-
substrate distance was 10 cm. The vacuum reached 1.2x10-4 mbar and the argon flow 
rate was set to 20 sccm. The sputtering time was varied. ZrY alloy deposited on 
alumina substrates appeared metallic silver but became glassy transparent after 
calcination in air to form YSZ at 700 °C for 2 h [43]. The temperature was set so to 
reduce the monoclinic phase and promote only the cubic phase.  

The Oerlikon 350 single-chamber sputtering system is equipped with two RF 
sputtering guns. The sputtering process yields are greatly improved by the use of the 
magnetron, which uses magnetic fields to confine the plasma's electrons and increases 
the energy of the incident ions (Ar+) to the sputter target. The substrate can be rotated 
up to 20 RPM for improved uniformity. 

SEM micrographs of the deposited YSZ films were taken by JEOL mode JSE-
6400 scanning electron microscope and Link Isis Series 300 programmed energy 
dispersive x-ray spectroscopy (EDX) for the determination of elemental distribution. 
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3.1.2 Wireless experiment 
 

 Pt was deposited on the obtained YSZ thin films by wet impregnation. Two 
gold electrodes were sputtered on two opposite segments on the obtained YSZ thin 
films by sputtering (JOEL:JFC-1100E Ion sputtering).  
 
 
 
 
 

 
Figure 3.1 Wireless experiment (top view) 

 
 
 
 
 
 

 
Figure 3.2 Wireless experiment (cross-sectional view) 

 
3.1.3 Conventional experiment 

Gold paste was deposited on alumina substrate by screen-printing. This ink is 
dried at 100 – 150 °C for 10 - 15 min in a box oven and typically fired at 800 °C for 1 
hour in an oxidizing atmosphere to ensure adhesion prior to testing at the desired test 
temperature. Gold is deposited on the substrate first prior to the metal deposition. ZrY 
was deposited on half of gold and calcined in air 700 °C for 2 hr. Pt was deposited 
after layer of cell form in YSZ thin film. Pt was deposited by sputtering. 

 

 

Pt deposited on YSZ thin film  
via wet impregnation 

Au electrode by sputtering 
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Figure 3.3 Conventional experiment 

 
3.2 Cell testing 

3.2.1 NEMCA experiment  
 

NEMCA of propane oxidation was studied under a stoichiometric ratio of 
propane to oxygen, 1 kPa of C3H8 and  5 kPa of O2. balanced with He, at 200-500 °C, at 
atmospheric pressure and with electric potential in the range of 0-30 V by a power 
supply connected to a multimeter for current readings. The reaction gases were 
mixtures of propane , oxygen and helium as the vector gas. The gas composition was 
controlled by mass flow controllers. The reaction products were analyzed by an online 
IR spectrometer for CO2 concentrations data. which could be calculated into faradaic 
efficiency and rate enhancement ratios by using equation (4) and (5), respectively. The 
diagram of the experimental is shown in Figure 3.3  

= (r- r0)/(I/nF)           (4) 

    = r/r0             (5) 

where  r  is the electropromoted catalytic rate  
r0  is the open-circuit rate, i.e. non-promoted catalytic rate 
I   is the applied current   
n  is the charge of the promotion ion   
F  is Faraday’s constant (96485 C/mol) 
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Figure 3.4 Schematic diagram 
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3.3 Procedures of propane oxidation 

 
Figure 3.5 Procedures of propane oxidation 
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CHAPTER IV 
RESULTS AND DISCUSSION 

Electrochemical promotion of propane combustion was experimented. YSZ 
thin-film cell on alumina was studied in different preparation methods, the effects of 
potential differences and temperature on reaction rate were studied as well.  

4.1 Effects of Sputtering Conditions 

 Sputtering is a physical vapor deposition technique in which the material to be 
deposited is transported from a source to the wafers. Function of RF magnetron 
sputtering UNIVEX 350 includes power, gas flow rate and operating time. To study the 
effects of sputtering condition, EDX characterization was used as shown in Table 4.1.   

 Table 4.1 indicates elements of ZrY on alumina disk in different RF power, i.e. 
100 W and 150 W, at constant Ar flow rate of 40 sccm for 45 minutes. An increase in 
target power causes an increase in content of Zr and Y.  

Table 4.1 EDX characterization of ZrY on alumina disk in RF 100 W and 150 W at 
constant Ar flow rate of 40 sccm 

Element 
(at%) 

Ar 40 sccm 

RF 100 W RF 150 W 

OK 65.5 59.78 

AlK 34.07 37.15 

YL 00.09 01.12 

ZrL 00.34 01.95 

  

 According to Table 4.2, the ZrY on alumina varied in different Ar flow rate, i.e. 
20 sccm, 40 sccm and 60 sccm, at constant RF power of 250 W. The increase of Ar gas 
flow rate resulted in the decrease in content of Zr and Y on alumina. Therefore, flow 
rate at 20 sccm is the suitable flow rate to perform sputtering.  
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Table 4.2 EDX characterization of ZrY on alumina disk in different Ar flow rate; 20, 
40, 60 sccm at constant RF power of 250 W  

Element 
(at%) 

RF 250 W 

Ar 20 sccm Ar 40 sccm Ar 60 sccm 

OK 57.95 60.11 62.47 

AlK 38.05 39.18 37.14 

YL 01.45 00.19 00.12 

ZrL 02.55 00.53 00.27 

 

In conclusion, decrease in flow rate of Ar will increase the deposition of ZrY, 
by observing from the change in optical property of alumina which transformed from 
transparent to opaque. 

To compare effects of the applied potentials and temperatures on catalytic 
CO2 production rate, RF power and time of sputtering were varied at 0 to 30 volts and 
200 to 550 °C, respectively. 

 
4.2 Catalytic activity under open-circuit condition via wireless method 

 The electrochemical performances for the propane reaction were investigated 
under various atmospheric conditions including O2 balance He, pure He, and C3H8 
balance He. The catalytic reaction rate was experimented at 200-550 °C at different 
RF power and sputtering time. Sputtering power and time were varied at 400 W for 4 
h, 200 W for 4 h and 200 W for 8 h. The catalytic reaction rate under open circuit (i.e. 
with no current passing through the electrolyte) was increased from 6.61x10-10 to 
1.56x10-8 mol/s for 400 W for 4 h,  from 4.62x10-9 to 6.39x10-9 mol/s for 200 W for 4 h 
and from 2.2x10-10 to 1.17x10-8  mol/s for 200 W for 8 h, while the temperature was 
increased from 200 to 550 °C as shown in Figure 4.1 to 4.3. The results reveal that at 
400 W for 4 h sputtering condition, the catalyst exhibited high CO2 production rates 
due to bombardment of the target by high energetic particles onto a substrate. 

https://en.wikipedia.org/wiki/Particle
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Figure 4.1 CO2 production rates under open-circuit at sputtering power of              

400 W for 4 h 
 

 

 

 

 

 

 
 
 
 

 
Figure 4.2 CO2 production rates under open-circuit at sputtering power of            

200 W for 4 h 
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Figure 4.3 CO2 production rates under open-circuit at sputtering power of             

200 W for 8 h 
4.3 Catalytic activity under closed-circuit condition via wireless method 

The application of potential to the catalyst affects the activity of Pt deposited 
on alumina substrate. The catalytic activity of Pt for the propane oxidation can be 
promoted when a voltage is applied between the two gold electrodes.  

Figure 4.4 shows effects of the applied potential and temperature on catalytic 
CO2 production rate at sputtering power of 400 W for 4 h. The results shows the closed-
circuit catalytic CO2 production rates which increase from 6.61x10-10 to 1.98x10-8 mol/s, 
while the temperature increases from 200 to 550 °C. The corresponding maximum rate 
enhancement ratios are 4.33, 1, 1, 1.04 and 1.26 at 200, 300, 400, 500 and 550 °C, 
respectively.  

Figure 4.5 and Figure 4.6 show the closed-circuit catalytic CO2 production rates, 
at sputtering power of 200 W for 4 h and 200 W for 8 h which increase from 4.62x10-9 
to 6.83x10-9  mol/s and 2.2 x 10-10 to 1.23x10-8 mol/s, respectively. The corresponding 
highest rate enhancement ratios are 1, 1, 1, 1.2, 1.06 and 3, 1, 1, 1.07, 1.05 at 200, 300, 
400, 500 and 550 °C, respectively.  

In case of different RF power at constant time, the highest catalytic CO2 
production rate is 1.98x10-8 mol/s operated by sputtering at 400 W, while in case of 
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different time at constant power, the highest catalytic CO2 production rate is1.23x10-8 
mol/s operated by sputtering for 8 h. The CO2 production rate is not affected by 
changing the applied potentials. Consequently, the lower operating power of 
sputtering is experimented because it decreases arcing in sputtering process.  

The catalytic activity by wireless method cannot be found the current data 
probably due to wireless ones correspond to situations where platinum is not used as 
an electrode and is electronically isolated with voltage passing between the gold 
electrod. Part of the platinum film is therefore polarized with positive charge while the 
other part is polarized with negative charge. Thus, there is not a uniform catalyst work 
function as in the case when platinum is used as the working electrode. According to 
the theory, the wireless method could produce an infinitesimal value of current, but 
the present experiment is insufficient to detect the current. 

Current bypass may be the main problem to be encountered in the design and 
operation of such “wireless” NEMCA catalysts, consisting of two electrically biased 
electrodes with a large number of thin catalyst stripes or individual microscopic 
catalyst particles supported on electrolyte between the two end electrodes. [64] 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 CO2 production rates under closed-circuit at sputtering power of 400 W for 
4 h under various operating temperature of 200-550 oC 

 

max = 1.26 

max = 1.04 

max = 4.33 max = 1 max = 1 



 

 

35 

0

2E-09

4E-09

6E-09

8E-09

1E-08

1.2E-08

1.4E-08

0 5 10 15 20 25 30

r C
O

2
m

o
l/

s

Voltage (V)

200 C

300 C

400 C

500 C

550 C

0

1E-09

2E-09

3E-09

4E-09

5E-09

6E-09

7E-09

8E-09

0 5 10 15 20 25 30

r 
C

O
2

m
o

l/
s

Voltage (V)

200 C

300 C

400 C

500 C

550 C

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 CO2 production rates under closed-circuit at sputtering power of 200 W for 
4 h under various operating temperature of 200-550 °C 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.6 CO2 production rates under closed-circuit at sputtering power of 200 W for 

8 h under various operating temperature of 200-550 °C 
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4.4 Catalytic activity under closed-circuit condition via conventional method 

 The catalytic activities of the Pt/YSZ system in the oxidation of C3H8 under 
various operating temperature of 200-550 °C are shown in Figure 4.7 to 4.10. The 
catalytic activity measurements were performed by conventional method with both 
co-fed reactants as gaseous C3H8 and O2. Under closed circuit, the cell reactor operated 
as an electrochemical oxygen pump. A current was imposed through the oxygen ion 
(O2-) conducting electrolyte. 

4.4.1 Fabrication by ‘Au paste - YSZ thin film – Pt’ 
 Figure 4.7 shows the faradaic efficiency and rate enhancement ratios at 200 C. 
Under an open circuit (I=0), a stable steady-state rate of 3.53x10-9 mol/s was obtained. 
By imposing a voltage of 0.1-0.2 V, the faradaic efficiency and rate enhancement ratios 
were increased to 0.21 and 1.13, respectively. However, when the voltage was 
increased to 0.7 V, the faradaic yield and rate enhancement ratios were decreased. 
However, the voltage cannot be increased over 0.7 V due to appearance overload of 
current from multimeter measurement.  
 As the temperature was increased to 300 C and 400 C, the faradaic efficiency 
and rate enhancement ratios were increased to 0.41 and 1.11, respectively for 
temperature at 300 C, and increased to 0.5 and 1.05, respectively for temperature at 
400    C  while applying a voltage of 0.1 V. When voltage was increased, the faradaic 
efficiency and rate enhancement ratios were decreased because the cell reaction 
respond only at low voltage after the cell had stable rate under open-circuit at 4.18x10-

9 mol/s  and 9.48x10-9 mol/s at temperature 300    C and 400 C as shown in Figure 4.8 
and 4.9, respectively. 
 Figure 4.10 shows the faradaic efficiency and rate enhancement ratios at 
temperature 500 C. The highest value of faradaic efficiency is 1.87 at applied voltage 
of 0.1 V. The faradaic efficiency tends to decrease when higher voltage was applied 
due to increasing current that follow up with voltage. However, the rate enhancement 
ratios increased as the cell voltage was increased with the maximum value reaching 
to 1.22 when increased voltage to 0.9 V. 
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 For fabricating the thin film cell by Au paste-YSZ thin film-Pt, the observed 
electrochemical promotion behavior is unavailable due to faradaic efficiency 
parameter not exceed 1 because a catalytic reaction exhibits the NEMCA effect when 
|| > 1. It has only one value at 0.1 V at temperature 500 C, which exhibits the NEMCA 
effect while other temperature shows a value of  lower than 1 because of fracture 
in calcination process of YSZ thin film from ZrY sputtering on Au electrode, as a result, 
cell reaction cannot exhibit NEMCA behavior and faradaic efficiency that not exceed 1. 
 

 
Figure 4.7 Faradaic efficiency and rate enhancement ratio vs applied voltages  at  

200 C using Au paste-YSZ thin film-Pt

 
Figure 4.8 Faradaic efficiency and rate enhancement ratio vs applied voltages at    

300 C using Au paste - YSZ thin film – Pt 
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Figure 4.9 Faradaic efficiency and rate enhancement ratio vs applied voltages at   
400 C using Au paste - YSZ thin film – Pt 

 
 

 
 

Figure 4.10 Faradaic efficiency and rate enhancement ratio vs applied voltages at 
500 C using Au paste - YSZ thin film – Pt 
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4.4.2 Fabrication by ‘Au paste – YSZ (O2) thin film – Pt’  
 In the earlier fabrication by conventional method, which used ZrY sputtering 
target and calcined at 700   C in air to form YSZ thin films, the cell cannot exhibit NEMCA 
behavior. To improve cells performance, a homogeneous alloy of ZrY is processed into 
a planar magnetron target. The ZrY alloy target composition is designed to maximize 
the ion conductivity of the deposited YSZ as an electrolyte layer. The deposition 
chamber is cryogenically pumped from atmospheric pressure to a base pressure of 5 
x10-5 mbar within 40 minutes which includes a 1.2x10-2 mbar vacuum. ZrY target is 
sputtered with an argon-20% oxygen gas mixture to form thick Zr-Y-O films. The 
substrates are positioned horizontally 10 cm away from the center of the sputter 
deposition target at power of 200 W. 

 Figure 4.11-4.14 contain data obtained with the cell operating under closed 
circuit using YSZ thin film synthesized by an argon-20% oxygen gas feed mixture in 
sputtering process without calcination procedure. The figures show the effect of 
voltage, the electrical potential difference between the working (Pt) and counter 

electrode (Au paste), on the dimensionless parameter faradaic efficiency,  and rate 
enhancement ratios,  with temperature at 200 to 500   C. In figure 4.11-4.13, the 
reaction rates are decreased at forward scanning (O2- pumped towards the catalyst) 
while in the reverse scanning, the reaction rate still decreased continuously. This 
exhibited the ‘electrophilic’ type of NEMCA, which can be attributed not only to the 
electrochemically induced decrease in oxygen coverage and enhancement of propane 
chemisorption[65], but also to partial reduction of the surface upon electrochemical 
pumping of oxygen away from the catalyst[66]. The faradaic efficiency has the negative 
value due to %CO2 concentration less than open-circuit voltage. At the operating 
temperature of 500   C, rate enhancement ratios,  increased at both forward and 
reverse scanning as shown in Figure 4.14. The reaction exhibits the usual electrophobic 
behavior observed in a large number of NEMCA studies[67]. The faradaic efficiency was 
obtained, showing a number of values which exceed 1. At the operating temperature 
of 200    C - 400    C the effect is hardly faradaic. 
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 The rate enhancement ratios decreased between 200   C – 400   C and the 
faradaic efficiency is hardly consistent probably due to Au paste counter electrode in 
term of unevenness of surface in screen-printing process which resulted in non-
consistent of current and concentration of CO2 is reduced. Another problem 
encountered after calcination process, was Au paste falling off alumina substrate, 
therefore, it is difficult to control the uniformity of the surface. 

 
Figure 4.11 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

200 C using Au paste – YSZ(O2) thin film – Pt 
 

 
Figure 4.12 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

300 C using Au paste – YSZ(O2) thin film – Pt 
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Figure 4.13 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

400 C using Au paste – YSZ(O2) thin film – Pt 
 

 
Figure 4.14 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

500 C using Au paste – YSZ(O2) thin film – Pt 
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4.4.3 Fabrication by ‘Au sputter – YSZ (O2) thin film 4 h– Pt’  
 The Au paste change into Au sputtered counter electrode resulted in smooth 
surface which attached to the substrates tightly. The YSZ thin film fabrication is similar 
to previous experiments, Ar/O2 mixture as sputtering gas with the same plasma power 
conditions mentioned above in operating time for 4 h.  

 From Figure 4.15, the results from the forward and reverse scanning presented 
a much higher NEMCA behavior than previous experiments, the higher faradaic 

efficiency;  values are observed at 0.1 – 0.7 V and 0.1-0.5 V in forward and reverse 
scanning, respectively. The increase in reaction rate is more profound at forward 
scanning while stable reaction rates are obtained at reverse scanning.  

 At 300 ºC (Figure 4.16), shows the faradaic efficiency parameter values exceed 
1 at low potentials (lower than 0.4 V). However, the reverse scanning did not exhibit 
the NEMCA effect. This performance is also observed at either forward or reverse 
scanning at 400 C as shown in Figure 4.17. However, the reaction rate can be reversed 
for both temperature at 300 C and 400 C. At 300 C, the highest reaction rate is 
constant in the range of 0.2 – 0.7 V for only forward scanning while at 400 C, the 
reaction rate is constant in the range of 0.1 – 0.7 V in both forward and reverse 
scanning. 

 At 500 ºC (Figure 4.18), shows the same effects of potential on  and  at Au 
paste – YSZ(O2) – Pt. The behavior compared with previous experiment at 500 C is 

the same qualitatively, but not quantitatively. Much lower  values were obtained 
because active sites of catalyst on Pt surface are lower than those of the previous 
experiment. Nevertheless the reaction rate has the same trend either at forward or 
reverse scanning. An explanation of this phenomenon is the temperature effect cause 
at high temperature, %CO2 concentration tend to increase continuously. Therefore, in 
order to study the temperature effect on cell reaction, the cell was cool down to 
room temperature then raise the cell temperature to 500 C again. The active catalyst 
was activated. The faradaic and rate enhancement ratio parameter still showing the 
same behavior. It can reproduce. The error bar was presented on graph. This ensures 
that temperature affected the cell reaction.  To affirm the reaction rate performance, 
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IR spectroscopy intensively record the dependence of CO2 concentration (%vol) on 
time (second) to show step change between steady open-circuit and close-circuit 
varied with forward scanning as shown in Figure 4.19. However, some data points may 
not be consistent with the majority because the recorder show delicate data in every 
second and due to some errors from the system and background noise from the 
environment. 

 
Figure 4.15 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

200 C using  Au sputter – YSZ(O2) thin film sputtered for 4 h – Pt 
 

 
Figure 4.16 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

300 C using Au sputter – YSZ(O2) thin film sputtered for 4 h – Pt 
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Figure 4.17 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

400 C using Au sputter – YSZ(O2) thin film sputtered for 4 h– Pt 
 

 
Figure 4.18 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

500 C using Au sputter – YSZ(O2) thin film sputtered for 4 h – Pt 
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Figure 4.19 CO2 concentration vs applied voltage at 500 C recorded by IR 

spectroscopy recorder 
 

4.4.4 Fabrication by ‘Au sputter – YSZ (O2) thin film 8 h– Pt’  
 The YSZ thin film sputtered for 4 h was studied. Investigation into the issue of 
increased thickness of YSZ thin film has been conducted. The catalytic and 
electrocatalytic experiments were carried out in operating time of 8 h to assess 
whether it would improve the NEMCA performance.  

 Figure 4.20 presents the values of the faradaic efficiency vs applied voltage at 

200 ºC. At forward scanning,  increased drastically with voltage to reach a maximum 

value of 0.91. At higher voltage,  decreased gradually to a value of 0.008. The same 

shape of curve is obtained during reverse scanning. However, at 200 C,  exhibited 
poor NEMCA effect but the catalytic activity and faradaic efficiency can exhibit 
reversible reaction from temperature at 200 C. It is phenomenon has been studied in 
time of sputtering YSZ for 8 h.  

From Figure 4.21, the reaction rates are constants at high voltage 0.4 – 1.0 V. 
during forward scanning. It shows better performance than YSZ thin film at 4 h at the 
same temperature which the reaction rate decreased in high voltage range 0.8 – 1.0 V. 
(Figure 4.16) . At 400 C, the reaction rate is similar to the rate at high temperature 500 
C due to the thicker layer of YSZ (8 h) which response to lower temperature so well. 
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 Figure 4.23 shows the reaction rate is enhanced electrochemically at both 
forward and reverse scanning. The highest  measured were 1.2 for forward and 1.4 
for reverse scanning. Vernoux et al [59], found that on Pt, the oxidation of propane 
exhibits electrophobic promotion. The reaction rate was electrochemically enhanced 
upon application of a positive voltage. However the slight differences in the 
experimental conditions (between YSZ(O2) 4 h and 8 h operating time) may affect the 
electrochemical promotion results both, quantitatively and qualitatively. NEMCA 
behavior at 500 C is similar to that of YSZ(O2) at 4 h. The reaction rate also has same 
trend in electrophobic type of NEMCA. The error bar was obtained indicates that it is 
reproducibility. To examine the type of NEMCA behavior, step change in open- and 
closed- circuit was experimented at forward scanning by IR spectroscopy recorder. CO2 
concentration in this case is stable as shown in Figure 4.24.  

 

 
 

Figure 4.20 Faradaic efficiency and rate enhancement ratio vs applied voltages at 
200 C using Au sputter – YSZ(O2) thin film sputtered for 8 h – Pt 
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Figure 4.21 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

300    C using Au sputter – YSZ(O2) thin film sputtered for 8 h – Pt 
 

 
Figure 4.22 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

400 C using Au sputter – YSZ(O2) thin film sputtered for 8 h – Pt 
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Figure 4.23 Faradaic efficiency and rate enhancement ratio vs applied voltages at 

500 C using Au sputter – YSZ(O2) thin film sputtered for 8 h – Pt 
 

 
Figure 4.24 CO2 concentration vs applied voltage at 500 C recorded by IR 

spectroscopy recorder 
Figure 4.25 and 4.26 present experimental data of Sareerat’s project. The pellet 

and electrode configurations used for NEMCA was studied. A Pt catalyst film and Au 
film are deposited onto both sides of the YSZ disk with the thickness of 1.2 mm. The 
reaction was operated under the same conditions. This study shows that NEMCA can 
significantly affect the catalytic activity of Pt catalyst. The values of the faradaic 
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both reversible in either faradaic efficiency or reaction rate. In comparison, the YSZ 
thin film exhibited similar phenomenon especially the rate enhancement ratio at 500 

   C, showing the same electrophobic behavior. 

 

 
Figure 4.25 Faradaic efficiency vs applied voltages at 200-500 C using pellet and 

electrode configuration [Sareerat’s project]. 
 

 
Figure 4.26  The rate enhancement ratio vs applied voltages at 200-500 C using 

pellet and electrode configuration [Sareerat’s project]. 
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4.5 Propane conversion  

 The percentages of propane conversion increase at temperature of 500 C and 
applied voltages up to 1.0 V. When YSZ(O2) was sputtered for 4 h using operating 
temperature at 200 – 400 C, the trends of propane conversion are not clear. The 
values present high conversion only at 500 C. When YSZ(O2) was sputtered for 8 h, 
the trends of propane conversion raised with temperature. However, the conversion 
at 200 C is higher than that at 300 C . The cause still remains undetermined, which 
could be a subject for future studies. 

 
Figure 4.27 Effect of temperature and cell voltage on propane conversion with 

YSZ(O2) thin film sputtered for 4 h. 

 
Figure 4.28 Effect of temperature and cell voltage on propane conversion with 

YSZ(O2) thin film sputtered for 8 h. 
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4.6 Characterization of thin film electrolyte 

 Surface morphologies and cross sectional microstructures of the YSZ thin film 
on alumina substrate were investigated using scanning electron microscopy (SEM, JEOL 
JSM-35 CF). A more uniform film quality appeared with conventional method led to 
well-developed columnar grain YSZ films with uneven and rough surface morphology. 
However, the wireless method, there are no clear difference between YSZ thin films 
with alumina substrate. It appears to have clearer grain boundary in conventional 
condition. Crystalline structure of YSZ thin film was analyzed by X-ray diffraction (XRD, 
SIXMENS D5000). As indicated in XRD analysis in 2 range between 20 to 130. The 
characteristic of YSZ are observed peaks corresponding to standard JCPDS patterns for 
the YSZ crystal structure as shown in appendix E and F, respectively. 
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CHAPTER V  
CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

 The catalytic oxidation of propane on YSZ thin film on alumina substrates was 
studied under open-circuit and closed-circuit conditions. The cell operating by wireless 
method, the highest CO2 production rate is 1.98x10-8 mol/s sputtering condition at 400 
W for 4 h. As the cell operating by conventional method, the reaction exhibited a 
NEMCA effect of the electrophobic type at 500 C with co-fed argon and oxygen gas in 
sputtering thin film process. Nevertheless, the catalytic activity and faradaic efficiency 
being reversible both of forward and reverse scanning at 400 C for YSZ thin film is 
sputtered for 4 h and 200 C for YSZ thin film is sputtered for 8 h. 

 

5.2 Recommendations 

At temperature 500    C, the reaction rate was electrochemically enhanced both 
of forward and reverse scanning. In the future of work, all potentials are not necessary 
applied, just slight stimulate potentials. It’s possible that the reaction rate still 
increases continuously. 

Electrochemical promotion is a research issue that should explore the 
utilization of other catalysts, for example; non-conductive catalyst supporting material 
(i.e. alumina). An alternative to the catalytic process, which were affected by applied 
current or potentials, is based on the control work function of catalysts in order to 
improve the catalytic activity and product selectivity as well. 
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APPENDIX A 
YSZ THIN FILM BY SCREEN PRINTING METHOD 

  

 Screen-printing technology was developed to fabricate dense YSZ electrolyte 

film on alumina substrate. To reduce the cost of fabrication. YSZ powder was mixed 

with appropriate organic vehicles to make homogeneous and printing inks. The ink was 

extruded through a screen onto the substrate by scraping blade. Finally, the substrate 

with printed electrolyte film was dried and co-fired at high temperature to densify the 

YSZ film. The screen-printing technique is cost-effective and simple. This is the great 

commercial interest due to low-cost and high availability of such equipment on the 

market. 

- Printing ink preparation   

 YSZ particles and organic vehicle were used to prepare the printing ink. The 

organic vehicle contains ethylcellulose and terpineol as a binder and a plasticizer, 

respectively. Binders are intended primarily for good adhesion with the substrates[68]. 

YSZ and the organic vehicle (6 wt% ethylcellulose and 94% terpineol) were mixed in 

an agate mortar at a ratio of 60:40, 40:60 and 70:30 and ground to get a homogeneous 

paste.   

YSZ printing ink was screen printed though a screen mesh of 120 wires cm-1 

onto alumina disks by a rubber squeegee. The distance between the screen and the 

top surface of substrate was 5 mm. The wet YSZ-alumina pellets were dried in air and 

sintered at 1200 °C for 4 h at a heating rate of 5 °C/min to densify the YSZ films. 

The effect of YSZ content on the CO2 production rates was tested and the 

results were plotted in Figure A.1-A.3 . The viscosity of the printing ink increases with 

increasing YSZ content. The reaction rate of CO2 increased from 1.61 x 10-10  to  3.55 x 

10-9 mol s-1 at 60wt% YSZ , from 4.84 x 10-10 to 2.58 x 10-9 mol s-1 at 40wt% YSZ and 
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from 2.42x10-9 to 1.03x10-7 mol s-1 at 70wt% YSZ as the temperature increase from 200 

to 550 °C and the maximum rate enhancement ratios were 2, 1.33 and 1.33 at 60wt% 

, 40wt% and 70wt%, respectively. (FigureA.1 –A.3)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1 Effect of the applied potential and temperature on the electrochemically 
promoted propane oxidation on Pt catalyst deposited on YSZ thin films prepared by 

screen printing at 60wt% YSZ 
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Figure A.2 Effect of the applied potential and temperature on the electrochemically 
promoted propane oxidation on Pt catalyst deposited on YSZ thin films prepared by 

screen printing at 40wt% YSZ 
 

 
Figure A.3 Effect of the applied potential and temperature on the electrochemically 
promoted propane oxidation on Pt catalyst deposited on YSZ thin films prepared by 

screen printing at 70wt% YSZ 
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From experiment screen-printing technique by wireless method can not found 

current data same sputtering technique result in can not obtained faradaic efficiency 

parameter. The rate of CO2 and the rate enhancement ratios were carried out in each 

temperature. To improve the cell reaction, conventional method was  investigated by 

screen printing technique. The limitation of Au electrode can not available at high 

temperature. Therefore, Pt electrode  was used as counter and working electrode. The 

faradaic efficiency was obtained. The cell response at 5 V and 10 V of potentials that 

increase for a while until high potentials is reached, decrease in  is observed. (Figure 

A.4)  

Figure A.4 Faradaic efficiency on applied voltages at 200-500 C by Pt – YSZ – Pt by 
screen-printing technique 

 
- Microstructure of YSZ thin films 
The viscosity of the printing ink is very important for screen printing. The 

viscosity of ink can be controlled by adjusting the ratio of the YSZ powder to the 
organic vehicle. If the YSZ content is too low, a porous film is observed because of the 
volatilation of the during sintering of the film. If the YSZ content is too high, cracks are 
observed because of the poor rheology of the ink as shown in Figure A.5 and Figure 
A.6. 
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Figure A.5 Surface microstructure of screen-printed YSZ films at YSZ content 60 wt% 
 

Figure A.6 Surface microstructure of screen-printed YSZ films at YSZ content 70 wt% 
 

Table A.1 shows elemental analysis of yttria and zirconia in at%. At YSZ content 
of 70 wt%, the ratio is closer to 8 mol% yttria-stabilized zirconia, which yields the 
optimum oxygen-ion conductivity for cubic YSZ at elevated temperatures[69] and 
exhibits a nanocrystalline structure of Zr.85Y.15O1.93 (fcc)[40]. 
 
Table A.1 Surface elemental composition of screen-printed YSZ films. 

Element 
YSZ content 

60 wt% 70 wt% 
Y (at%) 16.45 15.42 
Zr (at%) 83.55 84.28 
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APPENDIX B 
CALCULATION FOR CATALYST PREPARATION 

 

Preparation of catalyst for wireless method  

 The chemical used for all the catalysts preparation 

- Chloropaltinic acid (38% Pt), Aldrich 

 

 Wet impregnation (WI) 

 

 From BET surface area of YSZ powder = 58.5749 m2 g-1 = 58.5749x104 cm2 g-1 

 From ICP Pt on YSZ = 239.6 mg L-1 

Surface area of Alumina disk = 1.912 cm2 

 

 Surface loading of platinum = 
𝟐𝟑𝟗.𝟔 ×𝟏𝟎−𝟑 𝒈 𝑳−𝟏

(𝟏𝟕.𝟎𝟕𝟐 𝒈 𝑳−𝟏)×(𝟓𝟖.𝟓𝟕𝟒𝟗×𝟏𝟎𝟒𝒄𝒎𝟐𝒈−𝟏)
 

 
     = 2.396 x 10-8 g Pt cm-2 

 

Then, Surface area of Alumina disk 1.912 cm2 ; 
 
 Required platinum  = 1.912 cm2 x 2.396 x 10-8 g cm-2 

 

    = 4.58 x 10-8 g of Pt 
 

Therefore, Chloroplatinic acid required in grams = 
100𝑔 × 4.58 ×10−8𝑔

38 𝑔
 

 
           = 1.205 x 10-7 g 
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APPENDIX C 
CALCULATION FOR THE RATE ENHANCEMENT RATIO AND FARADAIC EFFICIENCY 

Propane oxidation : C3H8 + 5O2  3CO2 + 4H2O 

 

Electrochemical propane oxidation : C3H8 + 10O2- 
 20e- + 3CO2 + 4H2O 

 

The rate enhancement ratio,   

   

 = 
𝑟

𝑟0
 

 
Where  r   =  the electrochemically promoted catalytic rate 
 r 0   =  the catalytic rate at open circuit 
 
 

The faradaic efficiency,  
 

 = 
(𝑟−𝑟0)

(𝐼/𝑛𝐹)
 

 
where I is the applied current   

n is the charge of the promotion ion   
          F is Faraday’s constant  (96485 C mol-1) 
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For example,  

Feed gas C3H8 16.67 cm3/min, O2 33.33 cm3/min, He 50 cm3/min 

No catalyst (blank) obtained CO2 concentration = 0.03 vol% 

At open circuit obtain CO2 concentration = 0.38 vol%  

At 500   C, 0.1 V. obtain CO2 concentration = 0.4 vol% and current 1.09×10-4 A.  

(1.09×10-4 C/s) 

r = 
1

3
×

(0.4−0.03)

100
×(16.67+33.33+50)𝑐𝑚3𝑚𝑖𝑛−1×

1 𝑚𝑖𝑛

60 𝑠
×105𝑃𝑎

8314000 𝑐𝑚3 𝑃𝑎 𝐾−1𝑚𝑜𝑙−1×(30+273.15)𝐾  

  =   8.16x10-8  

r0 =
 

1

3
×

(0.38−0.03)

100
×(16.67+33.33+50)𝑐𝑚3𝑚𝑖𝑛−1×

1 𝑚𝑖𝑛

60 𝑠
×105𝑃𝑎

8314000 𝑐𝑚3 𝑃𝑎 𝐾−1𝑚𝑜𝑙−1×(30+273.15)𝐾
  

    = 7.72x10-8 

 

So,   =  
(𝑟−𝑟0)

(𝐼/𝑛𝐹)
  =   

(8.16 × 10−8−7.72×10−8𝑚𝑜𝑙 𝑠−1)

1.09×10−4 𝐶𝑠−1/(20×96485 𝐶𝑚𝑜𝑙−1)
    =   78.03 

 

        = 
𝑟

𝑟0
 = 

8.16𝑥10−8

7.72𝑥10−8  = 1.057 
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APPENDIX D 
CALCULATION FOR METAL FOR PROPANE OXIDATION 

 

Propane oxidation: C3H8 + 5O2    3CO2 + 4H2O 

 

The propane conversion was calculated = 
𝑃𝐶𝑂2

𝑃𝐶𝑂2+3𝑃𝐶3𝐻8

× 100%  

 

Where PCO2 are partial pressure of CO2 

 PC3H8 are the partial pressure of C3H8 in the outlet gas 
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APPENDIX E 
THE CHARACTERIZATION CATALYST BY SEM - EDX TECHNIQUE 

The cross-sectional morphologies of the fabricated YSZ thin film sample were 
observed using SEM.  

 

 

 

 

 

 

Figure E.1 SEM image of the cross sectional view of YSZ thin film deposited on 
alumina using wireless method: 400 W for 4 h 

 
 

 

 

 

 

 

 

Figure E.2 SEM image of the cross sectional view of YSZ thin film deposited on 
alumina using wireless method: 200 W for 4 h 
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Figure E.3 SEM image of the cross sectional view of YSZ thin film deposited on 
alumina using wireless method: 200 W for 8 h 

 

 

 

 

 

 

 

 
 

Figure E.4 SEM image of the cross sectional view of YSZ thin film deposited on 
alumina using conventional method: Au paste – YSZ(O2) - Pt 
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Figure E.5 SEM image of the cross sectional view of YSZ thin film deposited on 

alumina using conventional method: Au sputter – YSZ(O2) - Pt 
 

 

 

 

 

 

 

 

 

Figure E.6 SEM image of the cross sectional view of YSZ thin film deposited on 
alumina using conventional method: Au sputter – YSZ(O2) 8 h - Pt 
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 To optimize the performance of the YSZ electrolyte layer at elevated 

temperatures. When appropriately oxidized, the resulting yttria-stabilized zirconia 

stoichiometry is (Y2O3)0.08(ZrO2)0.92. This 8% yttria composition yields the optimum 

oxygen-ion conductivity for cubic YSZ. The YSZ sample is characterized using Energy 

Dispersive X-ray spectroscopy (EDX). The desired concentration of a YSZ film 

composed of 8% yttria is normally 5 at% Y, 29 at% Zr and 66 at% O. 

Table E.1 EDX characterization YSZ(O2) at 4 h sputtering 
 

 

 

 
 
Table E.2 EDX characterization YSZ(O2) at 8 h sputtering 

 

 

 

 

 

 

 

 

Element Wt% At% 
  OK 27.03 67.80 
  YL 08.45 03.81 
 ZrL 64.52 28.39 
Matrix Correction ZAF 

Element Wt% At% 
  OK 29.45 70.33 
  YL 10.74 04.62 
 ZrL 59.81 25.05 
Matrix Correction ZAF 
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For example,  (Y2O3)0.08(ZrO2)0.92 = 16 mol% of Y,  92mol% of Zr, 208mol% of O   

   Summary        = 16+92+208  = 316  

Percent of  element ; Y = 
16

316
𝑥100    5 at% 

       Zr = 
92

316
𝑥100    29 at% 

                     O = 
208

316
𝑥100   66 at% 

The results of calculation is as good as characterization.  
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APPENDIX F 
THE CHARACTERIZATION CATALYST BY XRD TECHNIQUE 

 The XRD analysis of YSZ thin film deposited on alumina substrate with 
different method. By analyzing these XRD patterns, confirmed that all of the samples 
are well-developed and finely crystalline for conventional method and observed that 
Au sputter – YSZ(O2) – Pt led to a more crystalline phase. 

 

Figure F.1 XRD patterns of YSZ films by wireless method : 200 W for 4 h condition 

 

Figure F.2 XRD patterns of YSZ films by conventional method :                                  
Au paste-YSZ-Pt condition 
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Figure F.3 XRD patterns of YSZ films by conventional method:                              
Au paste-YSZ(O2)-Pt condition 

 

 

Figure F.4 XRD patterns of YSZ films by conventional method:                               
Au sputter-YSZ(O2)-Pt condition 
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APPENDIX G 
IR SPECTROSCOPY AND GAS CHROMATOGRAPHY ANALYSIS 

Gas chromatography was used for the gas analysis compared with IR on-line 

spectroscopy. CO2 concentration was detected. From IR spectroscopy recorded in 

%vol of CO2   . Reactants were standards of C3H8 and O2 in He. The sample was 

collected amount 1 ml every applying potentials. From accuracy analysis of IR 

spectroscopy by gas chromatography has not error exceed 20-30% which are 

acceptable values for these experimental as shown in Table G.1. For example 

synthesized by conventional method: Au paste - YSZ (O2) – Pt 

Table G.1 Gas chromatography and on-line IR spectroscopy comparison  

Au paste- 
YSZ(O2)-Pt 

CO2 

%ERROR 
Gas 

chromatography 
On-line 

IR spectroscopy 
Temp Voltage Area mol/ml %vol mol/ml 
200 C Open circuit 973 3.51858E-08 0.117 4.78253E-08 26.43 

0.2 V. 1479 5.34839E-08 0.114 4.6599E-08 14.77 
0.4 V. 1119 4.04655E-08 0.103 4.21026E-08 3.89 
0.6 V. 950 3.43541E-08 0.102 4.16938E-08 17.60 
0.8 V. 785 2.83873E-08 0.096 3.92413E-08 27.66 

300 C open circuit 3216 1.16298E-07 0.25 1.02191E-07 13.80 
0.5 V. 2563 9.26837E-08 0.228 9.3198E-08 0.55 
1.0 V. 2178 7.87613E-08 0.208 8.50227E-08 7.36 

400 C open circuit 2745 9.92652E-08 0.238 9.72856E-08 2.03 
0.5 V. 3012 1.08921E-07 0.224 9.1563E-08 18.96 
1.0 V. 2987 1.08016E-07 0.22 8.99279E-08 20.11 

500 C open circuit 3498 1.26495E-07 0.38 1.5533E-07 18.56 
0.5 V. 4506 1.62947E-07 0.456 1.86396E-07 12.58 
1.0 V. 5971 2.15924E-07 0.489 1.99885E-07 8.02 
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For example;  

 Gas chromatography  

 

 

  

 

 

 

Figure G.1 Calibration curve of CO2 from Gas chromatography 
 

Peak area CO2 at 0.4 V ,200    C= 1119  = 1119 x 3.61622 x10-11 = 4.04 x10-8  mol/ml 

 IR-Spectroscopy 

IR-recorder at 0.4 V, 200    C  = 0.103 %vol   

         

= 
0.103 𝑐𝑚3𝑥1.01325 𝑏𝑎𝑟

100𝑐𝑚3𝑥83.14 𝑐𝑚3𝑏𝑎𝑟 𝑚𝑜𝑙−1𝐾−1𝑥298.15 𝐾
 

   

    = 4.21x10-8 mol/ml 

 

Error =    
4.21x10−8− 4.04 x10−8 

4.21x10−8  𝑥100    =    3.89 %Error

y = 3.61622E-11x
R² = 9.98984E-01
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