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CHAPTER 1

INTRODUCTION

1.1 Definitions and Notations

Recall some known definitions and notations here. For other terminologies, we
follow West’s book [22]. Unless we say otherwise, G denotes a simple, undirected,
finite, connected graph; V(G) and E(G) are the vertex set and the edge set of
G, respectively. A clique is a set of pairwise adjacent vertices in a graph; a clique
of size k is called a k-clique. A cycle is a graph with an equal number of vertices
and edges whose vertices can be placed around a circle so that two vertices are
adjacent if and only if they appear consecutively along the circle; the cycle with
n vertices is denoted by C,,. A complete graph is a graph whose vertices are
pairwise adjacent; the complete graph with n vertices is denoted by K,,. A graph
G is bipartite if V(G) is the union of two disjoint independent sets called partite
sets. A complete bipartite graph is a bipartite graph such that two vertices are
adjacent if and only if they are in different partite sets; the complete bipartite
graph with partite sets of size a and b is denoted by K,;. Given a graph G' and
S CV(G), G— S is the graph obtained from G by deleting all vertices of S. In
case S = {v}, we write G — v instead of G — {v}. The subgraph induced by S,
denoted by GJ[S] is the graph obtained from G by deleting all vertices of V(G)
outside S'. Given a graph H , a graph is said to be H -free if H is not its induced
subgraph. A graph is said to be a triangle-free if it does not contain a 3-clique. A

complement of a graph G, denoted by G, is the graph with the vertex set V(G)



defined by wv € F(G) if and only if uv € E(G). The join of graphs G and H,
written GV H , is the graph obtained from G and H by adding the edges between
all vertices of G and all vertices of H.

A coloring of a graph G is a mapping from V(G) to a set of colors S such that
adjacent vertices receive distinct colors. If |S| = ¢, then such coloring is called a
t-coloring. A graph is t-colorable if it has a t-coloring. The chromatic number of
G, denoted by x(G) is the smallest positive integer ¢ such that G is t-colorable.
A list assignment of a graph G is a mapping which assigns a set of colors, called
a list to each vertex v € V(G). A list assignment L of a graph G is said to be
a k-list assignment if |L(v)| = k for all v € V(G). A k-list assignment L of a
graph G is said to be a (k,t)-list assignment if [U,cy (g L(v)| = t. Given a list
assignment L of a graph G, a coloring f of G is an L-coloring of G if f(v) is
chosen from L(v) for each vertex v € V(G). A graph is L-colorable if it has an
L-coloring. Particularly, if L is a (k,k)-list assignment of a graph G, then any
L-coloring of G is a k-coloring of G. A graph G is (k,t)-choosable if G is L-
colorable for every (k,t)-list assignment L of G. If a graph G is (k,t)-choosable
for each positive integer ¢t then G is called k-choosable, and the smallest positive

integer k satisfying this property is called the list chromatic number of G denoted

by xi(G).

Example 1.1.1. Let L be the 2-list assignment of C5 as shown in Figure 1.1.1.
That is, L(v1) = {1,2}, L(ve) = {1,3}, L(vs) = {1,2}, L(vs) = {2,3} and
L(vs) = {1,3}. Because of [U,cy(c,) L(v)] =3, L is called a (2, 3)-list assign-
ment of Cs.

Let f be a coloring of Cjs as shown in Figure 1.1.1. That is, f(v;) = 2,
f(va) =3, f(vs) =1, f(vs) =3 and f(vs) = 1. Because of f(v) € L(v) for all

v e V(Cs), fisan L-coloring of Cj.



Figure 1.1.1: A (2, 3)-list assignment of Cj.

If there is no ambiguous, each list is written without commas and braces;
moreover, each box containing a color from each list represent its coloring in

order to simplify our figure. Figure 1.1.2 is the simplify figure of Figure 1.1.1.

Figure 1.1.2: A (2, 3)-list assignment of Cs.

Now, we consider (2,3)-choosability of Cs. The set of all (2,3)-list assign-
ments of C is divided into eight cases. L1, Lo, ..., Lg in Figure 1.1.3 represent a
(2, 3)-list assignments of C5 in each case

The (2,3)-list assignment L; contains four vertices with the same list while
Lo, L3, Ly and Ls contain three vertices with the same list. The list assignments
Lg, Ly and Lg contain only two vertices with the same list. It is shown in Fig-
ure 1.1.3 that Cs is L;-colorable for each : = 1,2,...,8.

O

Example 1.1.2. Let G be the graph with eight vertices in Figure 1.1.4. The

minimum number of colors in a 3-list assignment of G occurs when all vertices



Figure 1.1.3: Cj is (2, 3)-choosable.

are assigned by the same list of size 3 while the maximum number of colors in a
3-list assignment of G' occurs when all vertices are assigned by mutually disjoint

lists as shown in Figure 1.1.4.

Figure 1.1.4: A (3, 3)-list assignment and a (3,24) list assignment

O

Unless we say otherwise, our parameters k£, n and ¢ in this dissertation are
always positive integers such that ¢ > k and ¢ < kn because when t < k or
t > kn, there is no (k,t)-list assignment of a graph with n vertices, so it is
automatically (k,t)-choosable. If k > n then all graphs with n vertices are
(k,t)-choosable. Besides, when k > x;(G), a graph G is always (k,t)-choosable;
therefore, we focus on a positive integer k such that k£ < y;(G).

Let S CV(G). If L is a list assignment of G, we let L|g denote L restricted



to S and L(S) denote |J, ¢ L(v). For a color set A, let L — A be the new

vES
list assignment obtained from L by deleting all colors in A from L(v) for each
v € V(G). When A has only one color a, we write L — a instead of L — {a}.

Examples are illustrated in Figures 1.1.5.

Figure 1.1.5: the list assignment L|g of K;5[S] where S = {vy,vq,v3,v4} and the

list assignment L — {1,7} of Kj

1.2 History and Outline

The problem of list assignments was first studied in 1976 by Vizing [21] and by
Erdés, Rubin and Taylor [4]. The authors gave a characterization of 2-choosable
graphs. However, for a positive integer k£ > 3, there has been no literature
giving a complete solution of k-choosable graphs, yet only some specific classes
of graphs are investigated. For example, all planar graphs are 5-choosable, while
some planar graphs are 3-choosable. (See [11],[20],[19],[23],][24],[25], [26] for more
details.)

Finding the list chromatic number of a graph is considered to be a complicated
problem. Even in the case of bipartite graphs, a characterization of complete

bipartite graphs which are k-choosable is revealed only when k£ < 3. Let a and



b be positive integers such that a < 0. Then the complete bipartite graph K, is
2-choosable if and only if a =1 or (a,b) € {(2,0)|b < 3} and K, is 3-choosable
if and only if a < 2 or (a,b) € {(3,0)]b < 26} U {(4,b)|b < 20} U {(5,b)[b <
12} U{(6,b)|b < 10}. (See [4],[12],[17],[15].) Moreover, for 7 < a < b, Erdés et
al. showed in [4] that K, is not 3-choosable because K77 is not 3-choosable.
They defined a list assignment from the set of the seven lines in the Fano plane.
Given F = {{1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7},{3,4,7},{3,5,6}}, let
Ly be the 3-list assignment of K77 such that all seven vertices in each partite
set are assigned by distinct lists from F. Erdds et al. proved that K7r is not
Lz-colorable. Later, in 1996, Hanson, MacGillivray, and Toft [8] proved that
every complete bipartite graph with at most 13 vertices is 3-choosable. Hence,
the smallest complete bipartite graph which is not 3-choosable has 14 vertices.
Fitzpatrick and MacGillivray [5] added that every complete bipartite graph with
14 vertices except K77 is 3-choosable. Moreover, Lz is the unique list assignment
up to renaming the colors which prevents K77 from being 3-choosable. This
result inspires us to study more on 3-choosability of complete bipartite graphs
with fifteen vertices and sixteen vertices in Chapter III and Chapter IV.

Since k-choosability implies k-colorability, we have x(G) < x;(G) for every
graph G. Note that for a tree T, x(T) = xi(T) = 2; however, there exists
a graph of which such two parameters are significantly different. These graphs

was found in [21] and [4], for all positive integer k, the authors gave a non k-

2k—1

. ) with a list assignment

choosable complete bipartite graph K, ,, where m = (
L containing 2k — 1 colors such that K,,,, is not L-colorable. In other words,
K,.m isnot (k,2k—1)-choosable. We then are interested in exploring more results

when the total number of colors is not 2k — 1. We investigate (k,t)-choosability

of K, » when t # 2k — 1 in Chapter V.



Ganjari et al. [6] first defined (k,t)-choosability in order to generalize a
characterization of uniquely 2-list colorable graphs. Besides, Fitzpatrick and
MacGillivray [5] proved 3-choosability of complete bipartite graphs with 14 ver-

tices by showing the graphs is (3,t¢)-choosable for each positive integer .

The dissertation has six chapters, including this introduction in Chapter I.
Next, we start studying a (k,t)-list assignment of any graph in Chapter II. We
obtain a sufficient condition of a (k, t)-choosable graph with n vertices; if ¢ > kn—
k% + 1 then every graph with n vertices is always (k,t)-choosable. Moreover, we
prove that this bound is best possible because a graph with n vertices containing
k + 1-clique is not (k, kn — k?)-choosable. However, we also improve this bound
for a K -free graph; if k > kn —k? —2k+1, then every K -free graph with n
vertices is (k,t)-choosable and this bound is best possible for a Kj-free graph
with n vertices.

Chapter III and Chapter IV are devoted to solve the problem of the 3-
choosability of complete bipartite graphs with at most 16 vertices. In 2005, Fitz-
patrick and MacGillivray [5] extend the result in [4] and [8] to obtain a stronger
result that every complete bipartite graph with 14 vertices except K77 is 3-
choosable. Moreover, L is the unique list assignment up to renaming the colors
which prevents K77 from being 3-choosable. In order to keep extending this re-
sult to 16 vertices, we establish new strategies in Chapter III, which also lead to
an alternative proof of [5].

Chapter V focuses on (k,t)-choosability of K,,,, where m = (Zklgl). We
give results of (k,t)-choosability of K,,, when ¢t # 2k — 1; if ¢t < 2k —2 or
t > 2km—2k?+2k, then K,, , is L-colorable, while if 2k—1 <t < 17-2¥2—4k—4
then K, ,, is not (k,t)-choosable. In particularly, when k = 3, we integrate the

results in Chapters II, III and IV to conclude our results in Theorems 5.3.1 and



5.3.3. Finally, we summarize results from all chapters and introduce some future

work in Chapter VI.



CHAPTER II

ON (k,t)-CHOOSABILITY OF GRAPHS

2.1 Basic Properties and Examples

In Example 2.1.1, we show that Cy, is (2,t)-choosable for every positive in-
teger t and Cy,4q is (2,t)-choosable for every positive integer ¢ > 3. Moreover,

we show that Ky 3 is (2,t)-choosable for every positive integer ¢.

Example 2.1.1.
(i) Choosability of cycles. The cycle C,, is (2,t)-choosable unless n is odd and
t=2.

Note that a graph G is (2,2)-choosable if and only if G is 2-colorable. Hence,
C,, is (2,2)-choosable if and only if n is even. It remains to show that all of the
cycles are (2,t)-choosable for ¢ > 3.

Let t > 3 and L be a (2,t)-list assignment of C,,. Thus there are two adjacent
vertices vy, v, € V(G) such that L(vy) # L(v,). Let vg,v3...,v,-1 be remaining
vertices along the cycle C, where v; is adjacent to v;4q for ¢ = 1,2,....,n — 1.
First, we label v; by a color ¢ in L(v;) which is not in L(v,) and then we label
vertex vy by a color in L(vy) different from ¢ and so on. This algorithm guarantees
that each pair of adjacent vertices receives distinct colors.

(ii) Choosability of Ky3. The complete bipartite graph K3 is (2,t)-choosable for
every positive integer t.
Let {uy,us} and {v1,ve,v3} be the partite sets of Ky3 and L be a (2,1)-list

assignment of Kys. If L(uy) N L(ug) # @, then u; and uy can be colored by
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the same color; hence, the remaining vertices in another partite set can be easily
colored. Otherwise, L(u;) N L(uy) = &. There are 4 possible ways to pick a color
from each of L(uy) and L(ug). Thus, we can choose ¢; € L(uy) and ¢y € L(usg)
such that {c1, o} is distinct from L(v;) for i = 1,2,3. Then, we can color v; by

a color which is neither ¢; nor ¢y in L(v;) for i =1,2,3. O

When we try to color all vertices of a graph with some conditions, it tends
to success and be easier if we have more colors. However, this is not true for a
(k,t)-list assignment. It may not be true that (k,t)-choosability implies (k,t41)-

choosability. Example 2.1.2 illustrates this fact.

Example 2.1.2. Let X,Y be the bipartite sets of Kjp10. To show that K19
is (3,4)-choosable, let L be a (3,4)-list assignment of Kjg19. For any u € X, at
least one of the numbers 1,2 is in L(u). Hence, each vertex in X can be colored
by only color 1 or 2. For all v € Y, at least one of the numbers 3,4 is in L(v).

Hence, we can color each vertex in Y by only color 3 or 4.

Figure 2.1.1: A (3,5)-list assignment of K7 19

To show that K010 is not (3,5)-choosable, let L be the (3, 5)-list assignment
as shown in Figure 2.1.1. At least three colors must be used to color all vertices
in each partite set of K 19. However, only five colors are available; hence, there

are u € X and v € Y receiving the same color. It is a contradiction.
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Although (k,t)-choosability does not imply (k,t+ 1)-choosability, if the num-
ber t is large enough, we can prove that (k,t)-choosability implies (k,t + 1)-
choosability. In Theorem 2.1.3, Hanson et.al. gives the number of colors we need

to guarantee this statement.

Theorem 2.1.3. [8] Let G be an n-vertex graph. If G is Ly -colorable for every

k-list assignment Ly such that |J,cy g L1(v)| =t and n(’;) < ("3, then G is

Lo -colorable for every k-list assignment Lo such that |UUEV(G) Ly(v)| > t.

Proof. Since n(’;) < (tgl), there exists a pair of colors which does not appear

together in a list, say 1,2. Then we construct a k-list assignment L; defined by

Ly(v) if 1 € Ly(v),
Ly(v) =
Ly(v) U{1} — {2} if 2 € Ly(v).
Since GG is not Ls-colorable, G is not Lj-colorable. O

Definition 2.1.4. [22] Given a collection of sets, A = {A1, As, ..., A,}, a System
of Distinct Representatives (SDR) of A is a set of distinct elements aq, as, . .. a,

such that a; € A; for all 7.

The following theorem shows the well-known necessary and sufficient condition
for the existence of an SDR. Indeed, Hall’s Theorem [7] is originally proved in the

language of an SDR and is equivalent to Manger’s Theorem [13].

Theorem 2.1.5. [22] Given a collection of sets, A= {A;, As,..., Ay}, an SDR

of A exists if and only if |, Ai| > |J| for all J C {1,2,...,n}.

icJ

Corollary 2.1.6. Let L be a list assignment of a graph G. If |L(S)| > |S| for
all S C V(G), then G is L-colorable. Moreover, there exists an L-coloring such

that each vertex of G assigned by distinct colors.
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Proof. Let V(G) = {vy,vy,...,v,}. From Theorem 2.1.5, there exist ¢; € L(vy), ¢z €
L(va),...,¢, € L(v,) such that ¢p,¢o,...,¢, are distinct. Thus we define f :

V(G) —{1,2,...,n} by f(v;) =c¢; hence, f is an L-coloring. O

Theorem 2.1.7 studies a more profound condition than one in Corollary 2.1.6
to conclude an L-colorable graph. Kierstead [10] and He et al. [9] used it to

investigate the list chromatic number on some complete multipartite graphs.

Theorem 2.1.7. [10] Let L be a list assignment of a graph G and let S C V(G)
be a mazimal non-empty subset such that |L(S)| < |S|. If G[S] is L|g-colorable

then G is L-colorable.

To utilize Theorem 2.1.7 as well as simplify our proof, throughout the rest of
the dissertation, we will prove a stronger assumption by considering all nonempty
subsets S C V(G) such that |L(S)| < |S|. We apply this theorem to obtain the

expected results.

2.2 On (k,t)-choosability of Kj.,-free Graphs

In this section, we first find the parameters k& and ¢ such that an n-vertex
graph is (k,t)-choosable. Theorem 2.2.2 states that if ¢ > kn —k?+ 1, then every
n-vertex graph is always (k,t)-choosable and this bound is best possible because
an n-vertex graph containing a k-clique is not (k, kn—k?)-choosable. Fortunately,
this bound can be improved for Kj.,-free graphs. Theorem 2.2.11 states that if
k>3 and t > kn — k* — 2k + 1, then every n-vertex graph which is K -free is
always (k,t)-choosable and Theorem 2.2.12 states that if ¢ > 2n — 6, then every
n-vertex graph which is triangle-free is always (2,t)-choosable. Moreover, these

bounds are best possible, as well.
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The next lemma has a simple proof but quite powerful when we combine with

Theorem 2.1.7 in order to obtain Theorem 2.2.2.

Lemma 2.2.1. Let Ay, Ay, ..., A, be k-setsand J C {1,2,...,n}. If U, A >

p. then |Uie, Ail = p— (n — |J)k.

Proof. Suppose that |UJ,c; Ail <p— (n—[J])k. Thus |U;; 4| < [U,es Al +

|Uigs Ail <p—nk+|J|k+k(n—1[J]) =p. It is a contradiction. O

Theorem 2.2.2. For an n-vertez graph G, if t > kn — k* +1 then G is (k,t)-

choosable.

Proof. Let L be a (k,t)-list assignment of G such that ¢ > kn — k? + 1; that is,
we obtain |L(V(G))| =t > kn—k*+1. Let S C V(G). If |S| < k, then, together
with |L(S)| > k always, |L(S)| > |S|. Otherwise, |S| > k+ 1. By Lemma 2.2.1,
ILS)| > kn -k +1—(n—|SDk=k|S| -k +1=|S|+(k—-1)|S| -k +1>
|S|+(k—1)(k+1)—k*+1 =S|. Hence |L(S)| > |S]| for all S C V(G); therefore,

by Corollary 2.1.6, G is L-colorable. m

In particular, Theorem 2.2.2 can be rephrased in terms of a sufficient condition

of the existence of an SDR on k-sets, concluded in Corollary 2.2.3.

Corollary 2.2.3. Let Ay, Ao, ..., A, be k-sets. If |J_, Ai| > kn—k*+1, then

Ay, Ag, ..., A, have an SDR.

Next, we will prove the bound in Theorem 2.2.2 is best possible by giving an

n-vertex graph which is not (k, kn — k?)-choosable.

Theorem 2.2.4. An n-vertex graph containing a (k + 1)-clique is not (k,t)-

choosable where k <t < kn — k2.

Proof. Let G be an n-vertex graph containing (k + 1)-clique K and k <t <

kn — k*. Consider a (k,t)-list assignment L of G such that L(v) = {1,2,... k}
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for each vertex v in K. Because t —k < k(n—k—1), it is possible to construct a
(k,t)-list assignment L in which the union of lists for the rest n — k — 1 vertices
outside K is {k+1,k+2,...,t}. However, since every vertex in K receives the
same list of size k, we cannot color all vertices in this (k + 1)-clique. Therefore,

(G is not L-colorable. O

Theorem 2.2.4 shows the necessity of the first part in Theorem 2.2.14. The
sufficiency will be held by Theorem 2.2.11. Besides, Theorems 2.2.12 and 2.2.13
are provided to claim the statement for the case k = 2. To simplify the proofs of

our desired theorems, we prove a number of lemmas along the way.

Lemma 2.2.5. Let G be an n-vertex graph. If k > n —2 and G is K1 -free,

then G is (k,t)-choosable for every positive integer t.

Proof. Let L be a (k,t)-list assignment of G where ¢ > k. By Theorem 2.1.7, it

suffices to show that VS C V(G), if |L(S)| < |S|, then G[S] is L|g-colorable.
Let S C V(G) such that |L(S)| < |S|. Recall that |L(S)| > k and |S| <n <

k+2; hence, |S|=k+1 or |S|=k+2.

Case 1. |S| =k + 1. We obtain |L(S)| = k. Since G is Kyii-free, G[5] is

k-colorable. Therefore, G[S] is L|g-colorable.

Case 2. |S| =k+2. Then S =V(G), so |L(S)| =k or k+ 1. Let u,v be

nonadjacent vertices of G. If L(u)NL(v) = &, then 2k = |L(u)UL(v)| <t < k+1.

Hence k < 1, which is a trivial case. Suppose that ¢ € L(u) N L(v).

Case 2.1 G —{u,v} is not a complete graph. It is easy to check that a k-vertex

graph which is not complete graph is always L’-colorable for every (k — 1)-list

assignment L'. Therefore, G —{u, v} is (L — c¢)-colorable. Together with coloring

u and v by ¢, we have that GG is L-colorable.

Case 2.2. G — {u,v} is a complete graph. Since G — {u,v} has k vertices,
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G — {u,v} is L|v(G—{uw})-colorable. Since G does not contain Kj.,, each of
vertices u,v is adjacent to at most k — 1 vertices in G — {u,v}. Therefore, u,v

can be colored. O

Corollary 2.2.6 is obtained from Lemma 2.2.5. This gives a characterization of
an upper bound of some graphs. It then suggests a simple proof to conclude that

n—1 if e, es € F(K,) are incident;
Xl(Kn — €1 — 62) =
n — 2 otherwise.

Corollary 2.2.6. Let G be an n-vertex graph. Then x;(G) < n —2 if and only

if G contains two pairs of nonadjacent vertices or an independent set of size 3.

Proof. Let k = |V(G)| — 2. Assume that G contains two pairs of nonadjacent
vertices or an independent set of size 3. Since G has k + 2 vertices, it is Kgyq-
free. By Lemma 2.2.5, G is (k,t)-choosable for every positive integer ¢ > k. i.e.
xi(G) <k=n-2.

Conversely, assume that x;(G) < k. Then G is k-colorable. Since k =n —2,
there exist three vertices assigned the same color or two pairs of vertices such that

each pair assigned the same color. O

The join of graphs G and H, written G V H, is the graph obtained from G

and H by adding the edges between all vertices of G and all vertices of H.

Lemma 2.2.7. Let G be a Kjyy1-free graph with k + 3 wvertices. Then G s
isomorphic to either Ky_1 V K4 or K,_o V Cs if and only if G — {u,v} contains

a k-clique for every pair of nonadjacent vertices u,v.

Proof. 1t is easy to check that the necessity is true. For sufficiency, assume that

G — {u,v} contains a k-clique for every pair of nonadjacent vertices u,v.
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KV K, K,V Cs
Figure 2.2.1: Examples of K 1V K4 or Kj_oV Cj

Since G has k+3 vertices and does not contain any (k+1)-clique, G contains
four distinct vertices wq, ug, vy, v9 such that wu; is not adjacent to v; for ¢+ =1, 2.
Let X = {uj,us,vi,v2} and H = G — X. By the assumption, G — {uy, v}
contains a k-clique. Since G — {uj,v1} has k + 1 vertices, exactly one vertex
among nonadjacent vertices wus, vy must be in such k-clique, say vy. That is,
V(H)U{ve} is a k-clique. Similarly, we may assume that V(H) U {v} is a k-
clique by considering G' — {ug,v2}. As a consequence, v; is not adjacent to vq;

otherwise, G contains a (k + 1)-clique. (See Figure 2.2.2.)

Figure 2.2.2: V(H)U{v;} and V(H)U{vs} are k-cliques while vy % uy, vy 5 usy

and vy ¢ vy.

Suppose both u; and wuy are adjacent to every vertex in H. If X is not an
independent set, then G contains a (k + 1)-clique which is a contradiction. If X
is an independent set, then G is isomorphic to K;_; V K. Now, we can suppose
that there is w € V(H) such that w is not adjacent to w;.

We know that G —{uy, w} has k+1 vertices and contains a k-clique. Since vq
is not adjacent to v; and wuso, the vertex vy cannot be in the k-clique. Therefore,

V(H —w)U{vy,us} forms a k-clique. Besides, us is not adjacent to w; otherwise,
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V(H)U{v,us} forms a (k + 1)-clique. (See Figure 2.2.3.)

Figure 2.2.3: G — {w, uy,vo} is a complete graph with k vertices.

Similarly, considering G — {w, u2}, we obtain that V(H —w) U {va, uy } forms
a k-clique.

Finally, we consider G — {vy,v2}. Then w cannot be in any k-clique of G —
{v1,v2} because w is not adjacent to both u; and us. Then V(H —w)U{uq, us}
forms a k-clique. That is, u; is adjacent to us. (See Figure 2.2.4.) Therefore,
{w, vy, ug,ur,ve} forms a cycle of length 5 and H — w is a complete graph with

k — 2 vertices; moreover, all vertices of C'5 are adjacent to all vertices of H —w.

Figure 2.2.4: {w, vy, us,us,ve} forms a cycle of length 5

]

Lemma 2.2.8. If a (k + 3)-vertex graph is Ky -free, then it is (k,t)-choosable

fort >k+1.

Proof. Let G be a graph with k + 3 vertices and L be a (k,t)-list assignment
of G. Assume that G does not contain Kj i as a subgraph and ¢t > k+ 1. Let
S C V(G) such that |L(S)| < |S|. It suffices to show by Theorem 2.1.7 that
G[S] is L|g-colorable. If k& = 1 then G has no edges. Therefore, it is (1,1)-

choosable for every positive integer ¢t. If £k = 2, then G is triangle-free and has
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5 vertices which could be only C5 or a subgraph of K,3. By Example 2.1.1, G
is (2,t)-choosable for t > 3. If |S| = k+ 1,k + 2, then the statement holds by
Lemma 2.2.5.
Now, assume that £ > 3 and |S| =k + 3; that is, S = V(G).

Case 1. There exists a pair of nonadjacent vertices u,v € V(G) such that
G — {u,v} does not contain a k-clique. Since t = |L(V(G))| < |[V(G)| =k + 3,
we obtain ¢ < k+2. Moreover, L(u)NL(v) # @ since k > 3. Let ¢ € L(u)NL(v).
By Lemma 2.2.5, G — {u,v} is (L — ¢)|v(G—{uw})-colorable. Extend this to an
L-coloring of G' by coloring vertices u,v with color c.

Case 2. G — {u,v} contains a k-clique for every pair of nonadjacent vertices
u,v. Apply Lemma 2.2.7; G can be only two possible graphs. If G = K,_; V Ky,
then first color all vertices in Kj_; and then choose a remaining color in L(v) to
color v for each v € K;. Otherwise, G = Kj;_, V C5. Begin with coloring all
vertices of Kj_o; each vertex of C5 has at least two remaining colors. The total
number of remaining colors is at least t — (k —2) > 3. So, by Example 2.1.1,

every vertex of Cs can be colored. Therefore, GG is L-colorable. m

In the next two following lemmas, we focus on 2-list assignments. Both two

lemmas are prepared for Theorem 2.2.12.

Lemma 2.2.9. Graphs G; and Go in Figure 2.2.5 are (2,5)-choosable.

G1 G2

Figure 2.2.5: (2,5)-choosable graphs
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Proof. Let L be a (2,5)-list assignment of G;. Since |L(V(G —vg))| > 3, G —vg
has an L|y(g—v)-coloring, say ¢;. Now, ¢; can be extend to be an L-coloring
unless, without loss of generality, L(vg) = {1,2} and ¢;(ve) = 1, ¢ (v5) = 2.

In such case, let ¢ be a new L|y(g_y)-coloring such that ¢o(vy) = A €
L(vy) — {¢p1(v2)} and ¢o(v) = ¢1(v) for the remaining vertices v. Notice that A
can be any color from {2,3,4,5}. If ¢, is a proper coloring then it can be extend
to be an L-coloring. In the remaining case, suppose ¢, is not a proper coloring.
That is, ¢o(v1) = A or ¢9(v3) = A. Both two cases have similar proof; hence, we
suppose that ¢o(vs) = A.

Again, we let ¢35 be a new L|y(g_y)-coloring such that ¢3(vs) = B € L(vs) —
{p2(v3)} and ¢3(v) = Po(v) for the remaining vertices v. If ¢3 is a proper coloring
then it can be extend to be an L-coloring. Otherwise, we define a new L|y (G—uvs)-
coloring and so on. Finally, if all new L|y(g_u)-colorings are not proper then
we know the list assignment L of G; shown in Figure 2.2.6. Since L have 5
colors, we know that {A, B,C} = {3,4,5}. Therefore, we easily investigate an

L-coloring of G.

Figure 2.2.6: The list assignment L of G,

Let L be a (2,5)-list assignment of Gy. Since |L(V(G3)| = 5, we obtain an
L-coloring of G — v3vg, say ¢;. The L-coloring ¢; is also an L-coloring of G5
unless ¢1(v3) = ¢1(vg). In such case, let ¢o be a new L-coloring of G — vzvg such

that ¢o(v3) = A € L(vs) — {¢2(vs3)} and ¢o(v) = ¢1(v) for the remaining vertices
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v. If ¢y is proper, then it is an L-coloring of G5. In case ¢y is not proper, we
define a new L-coloring of G — v3vg, We continue to define a new L-coloring of
G — vyvg similar to the proof of G;. Finally, if all new L-colorings of G —v3vg are
not proper, we obtain the list assignment L of G5 shown in Figure 2.2.7. Since
L have 5 colors, we know that {A, B,C, D} = {2,3,4,5}. Therefore, we easily

investigate an L-coloring of G5.

Figure 2.2.7: The list assignment L of Gq

]

Lemma 2.2.10. A triangle-free graph with siz vertices is (2,5)-choosable if and

only if it s neither K33 nor Ks3 —e.

Proof. The (2,5)-list assignment L of K33 or K33 — e shown in Figure 2.2.8 has

no proper coloring.

Figure 2.2.8: A (2,5)-list assignment of K33 and K33 —e

Let G be a triangle-free graph with six vertices and L be a (2,5)-list assign-
ment of G'. Assume that G is neither K33 nor K33 —e. If G has no cycle, G

can be easily colored. If G contains only one cycle, then we can color the cycle,
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and the remaining vertices outside the cycle can be easily colored. Assume G
contains at least 2 cycles. Since G is a triangle-free graph, G is one of the graphs

in Lemma 2.2.9. Therefore, G is L-colorable. [
Now, we are ready to prove our theorems. Start with Theorem 2.2.11.

Theorem 2.2.11. Let k > 3. A Kjq-free graph with n vertices is (k,t)-

choosable for t > kn — k? — 2k + 1.

Proof. Let k>3, t > kn—k*—2k+1 and G be a K -free graph with n vertices.
Let S C V(G) besuch that |L(S)| < |S]. We will prove that G[S] is L|g-colorable
in order to utilize Theorem 2.1.7. By Lemma 2.2.1, |S|k—k* -2k +1 < |L(9)| <
|S|. Hence |S| < k+3+ 25; e |S] <k+3.

If |S| < k+ 2, then G[S] is L|g-colorable by Lemma 2.2.5. If |S| =k + 3
and |L(S)| = k then by Lemma 2.2.1 we obtain t = |L(V(G))| < kn — k* — 2k,
a contradiction. Otherwise, |S| =k + 3 and |L(S)| > k + 1; hence G[S] is also

L|s-colorable by Lemma 2.2.8. O

It is worth mentioning that Theorem 2.2.11 is not true when k£ = 2. However,
the statement is correct if the bound is slightly improved. This is illustrated in
Theorem 2.2.12. Furthermore, Theorem 2.2.13 reveals all graphs forbidding the

case for which Theorem 2.2.11 fails when k = 2.

Theorem 2.2.12. A triangle-free graph with n vertices is (2,t)-choosable where

t>2n—06.

Proof. Assume that G is a triangle-free graph with n vertices. Let S C V(G)
such that |L(S)| < |S|. Again, we will show that G|[S] is L|g-colorable in order
to utilize Theorem 2.1.7. By Lemma 2.2.1, 2|S| — 6 < |L(S)| < |S|. Hence

|S| < 6. If |S| <4 then G[S] is L|s-colorable by Lemma 2.2.5. Now assume that



22

|S| = 5. By Lemma 2.2.1, |L(S)| > 2n — 6 — 2(n — |S|) = 4; therefore, G[9] is

L|g-colorable by Lemma 2.2.8. O

Theorem 2.2.13. A triangle-free graph with n vertices is (2,2n — 7)-choosable

if and only if it does not contain Ks3 —e as a subgraph.

Proof. Let G be a triangle-free graph with n vertices.

Necessity. Assume that G contains K33 — e as a subgraph. We will find a
(2,2n —7)-list assignment of G such that G is not L-colorable. First, assign lists
of colors for vertices in K33 — e shown in Figure 2.2.8. Assign disjoint sets of
colors to each remaining n — 6 vertices; this uses 2n — 12 colors. Thus we obtain
(2,2n — 7)-list assignment L of G. Since K33 —e is not L|y(x,,—e)-colorable, G
is not L-colorable.

Sufficiency. Assume that G' does not contain K33 — e as a subgraph. Let L be
a (2,2n — 7)-list assignment of G. Let S C V(G) such that |L(S)| < [S|. By
Theorem 2.1.7, it suffices to show that G[S] is L|g-colorable.

By Lemma 2.2.1, 2|S| — 7 < |L(S)| < |S]; therefore, |S| < 6. If |S| =6, then
|L(S)| > 2-6—7 = 5; hence, the proof is done by Lemma 2.2.10. If |[S| = 5, then
|L(S)| > 2-5—7=3, so the proof is done by Lemma 2.2.8. Otherwise, |S| < 4.
Since G[S] is triangle-free, it is a subgraph of K, 3; hence, it is L-colorable by
Example 2.1.1. Therefore, G[S] is L|s-colorable. O
Theorem 2.2.14. Let n,k,t be positive integers such that nk — k?> — 2k + 1 <
t <nk—k*and 3 <k <n-—3. An n-vertex graph is (k,t)-choosable if and only
if it is Kyyq-free. Moreover, for k = 2 and 2n — 6 <t < 2n — 4, an n-vertex
graph is (2,t)-choosable if and only if G is triangle-free.

Proof. Theorem 2.2.4 and Theorem 2.2.11 are necessity and sufficiency for the

case k > 3 this theorem. Furthermore, Theorems 2.2.4, 2.2.12 and 2.2.13 prove

the remaining case of the theorem. O]
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We next step further to the case k <t < nk—k?—2k. Some K, ,,-free graphs

with n vertices are (k,t)-choosable. Theorem 2.2.15 gives us forbidden graphs.

Theorem 2.2.15. Let G be an n-vertex graph and k <t < nk — k* — 2k where

k>2. If G contains CsV Ky_o then G is not (k,t)-choosable.

Proof. Consider a (k,t)-list assignment L of G such that L(v) ={1,2,...,k} for
every vertex v in Cs5V Kj_5. It is possible to construct such (k,t)-list assignment
L because t —k < k(n—k—3). Notice that the union of lists for the rest n—k—3
vertices outside C5 V Ko is {k+ 1,k +2,...,t}. However, since every vertex in
C5V K},_o receives the same list of size k, we cannot color all vertices in C5V Kj_s.

Therefore, GG is not L-colorable. O



CHAPTER III
ON 3-CHOOSABILITY OF COMPLETE BIPARTITE

GRAPHS

3.1 Background

In [4], the authors illustrated the list assignment L such that K7, is not L-
colorable. Such list assignment originated from the Fano plane which is defined

in Notation 3.1.1.

Notation 3.1.1. Let F = {{1,2,3}, {1,4,5}, {1,6,7}, {2,4,6}, {2,5,7},
{3,4,7}, {3,5,6}} and Lz be the 3-list assignment of K77 such that all seven

vertices in each partite set are assigned by distinct lists from F.

Later, in 1996, Hanson, MacGillivray, and Toft [8] proved that every complete
bipartite graph with at most 13 vertices is 3-choosable. Hence, the smallest
complete bipartite graph which is not 3-choosable has 14 vertices. Fitzpatrick
and MacGillivray [5] added that every complete bipartite graph with 14 vertices
except K77 is 3-choosable. Moreover, Ly is the unique list assignment up to
renaming the colors which prevents K;; from being 3-choosable. We will give
another proof of this statement in Theorem 3.3.6.

It is noticeable that renaming the colors in a list assignment does not affect its
colorability. Thus, all results throughout the rest of dissertation does not depend
on renaming the colors.

In Section 3.2, we first establish new strategies which can be utilized to verify
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3-choosability of complete bipartite graphs. In Section 3.3, we use our strategies
to obtain another proof of [5] and in Section 3.4, we also extend this result to a
complete bipartite graph with 15 vertices. We prove that every complete bipartite
graph with 15 vertices is 3-choosable except K7g. Besides, for a 3-list assignment
L, K7g is not L-colorable if and only if L|V(K777) = Lz. New notations and
definitions used in Chapter 3 and chapter 4 are defined in Notations 3.1.2, 3.1.3

and Definition 3.1.4. Example 3.1.5 illustrate these notations and definitions.

Notation 3.1.2. Let L be a list assignment of the complete bipartite graph K, .
The notation L, and L; denote the collections of lists assigned to the vertices in
the partite sets with a and b vertices, respectively. If a = b, we use the notation

La(i) and La(z‘i)'

Notation 3.1.3. For convenience, we write lists without commas and braces.
For example, we write {123,145,167,246,257,347,356} in stead of {{1,2,3},
{1,4,5}, {1,6,7}, {2,4,6}, {2,5,7}, {3,4,7}, {3,5,6}}. For alist A, the nota-
tion A —1 represents the list which is obtained from A by removing color 1 from
A. Similarly, the notation A — 12 represents the list which is obtained from A

by removing color 1 and color 2 from A.

Definition 3.1.4. Given a collection of lists X = {X;, X5, ..., X,,}, a coloring of
Xisaset CC XjUXoU...UX, such that CNX,; # @ forall i =1,2,....,n.

A coloring C' of X is called a t-coloring if |C|=t.

Notice that a coloring of a collection of lists X is not necessary a coloring of a
graph G; for example, if a graph G has |X]| vertices and has no edge, and L is a
list assignment of GG such that all vertices of G are assigned by distinct lists from
X, then a coloring of X and an L-coloring of G are the same. We are interested

in a collection of lists X when it is a collection of lists which are assigned to all
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vertices in a partite set of complete bipartite graphs. Example 3.1.5 illustrates

these notations.

Example 3.1.5. Let L be the list assignment of K33 as shown in Figure 3.1.1.
Then Ls;y = {12,13,45} and Lgq;) = {14,15,23}. Since 1 € 12,13 and 4 € 45,
we conclude that {1,4} is a 2-coloring of L. Similarly, {1,5} is a 2-coloring

of Ly while {2,3,4} and {2,3,5} are 3-colorings of Ls;.

Figure 3.1.1: The list assignment L of K33

3.2 Strategies

In order to prove our desire results, we may prove many similar cases. We group
similar cases together and construct tools for each group. First, we introduce a
lemma by Hanson, MacGillivray and Toft [8] which will be used throughout this

section.

Lemma 3.2.1. [8] Let L be a list assignment of the complete bipartite graph
Kop. Then K,y is not L-colorable if and only if every coloring of L, (or Ly ) has

a subset that is a list in Ly (or L, ).

Proof. Necessity. Assume that there is a coloring C' of L, which does not contain
any lists in L;. Then after we color L, by C, each list in L, still has an available
color. Hence K, is L-colorable.

Sufficiency. Assume that every coloring of L, has a subset that is a list in L.
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Let C' be any coloring of L,. So, there exists B; in L; such that B; C C'. Then
we cannot use C' to color vertices in L, because there is no color left to color

B;. [l

We introduce six theorems, called strategies, which can be applied to prove
3-choosability complete of bipartite graphs. To begin with, we find a sufficient

condition of K,; to be L-colorable when all lists in L, are mutually disjoint.

Theorem 3.2.2. (Strategy A) Let L be a list assignment of K., with L, =
{A1, Ay, ... ALY, Ly = {By,Bs,..., By} and all lists have size at most 3. If all
lists in L, are mutually disjoint and TT7_, |Ai] > 3 tny + |32 ng + 373 ng

where n; = |{B € Ly, |B| =i}| fori=1,2,3, then K, is L-colorable.

Proof. Since there are |A;| possible ways to color the list A; for each ¢ and all
A;’s are mutually disjoint, the number of a-colorings of L, is [[;_, |4i|. Now we
count the number of those a-colorings containing each B; of L, for i =1,2,...,b.
Consider B; € L.

Case 1. |B)| =1,say B, =r. lf r ¢ A; for all j = 1,2,...,7, then all
a-colorings of L, do not contain B;. Without loss of generality, suppose that
r € A;. To complete an a-coloring of L,, we choose the other a — 1 colors each
from the remaining A; where j = 2,3,...,a. Thus the number of the a-colorings
of L, containing r is H?:g |A;|. That is, the number of the a-colorings of L,
which contain B; as a subset is at most 3¢~ 1.

Case 2. |B;| = 2, say B; = rs. Consider an a-coloring of L, containing
both r and s. Without loss of generality, suppose that » € A; and s € Ay. To
complete an a-coloring of L,, we choose the other a — 2 colors each from the
remaining A; where j = 3,4,...,a. Thus the number of the a-colorings of L,

which contain B; as a subset is H?:3 |A;|. That is, the number of the a-colorings
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of L, which contain B; as a subset is at most 3% 2. Note that in case a = 1,
all a-colorings are 1-colorings; hence, the number of a-colorings contains B; as a
subset is [3%7%] = 0.

Case 3. |B;| =3, say B; = rst. Consider an a-coloring of L, containing r, s
and t. Without loss of generality, suppose that r € A;,s € Ay, t € A3. Again,
we choose the other a — 3 colors from each A; where j = 4,5,...,a. Thus the
number of the a-colorings of L, which contain B; as a subset is [[;_,|A;|. That
is, the number of the a-colorings of L, which contain B; as a subset is at most
3%73. Note that in case a < 2, all a-colorings are 1-colorings or 2-colorings;
hence, the number of a-colorings contains B; as a subset is 37| = 0.

Hence L, has at most 3“7 'n; + [3%7%|ny + [3%%|n3 a-colorings containing
some B;. Since the number of a-colorings of L, is [];_, [4;] and [Tj_, [4;] >
397 Iny + 13972 |ny + | 3973 ng, there exists a coloring of L, which does not contain

any list in L;. Therefore, K,; is L-colorable. O

Notation 3.2.3. We can conclude the same result if we consider the other way
around, that is, the assumption in Strategy A for a list assignment L of K,
becomes all lists in Ly, are mutually disjoint and Hle |B;| <3 tny + 372 ny +
134=3|n3, where n; = |{A € L,, |A| = i}| fori=1,2,3. Then we call it Strategy A

for L, and we call the original version Strategy A for L, .

A remark from Strategy A, if []7_, |Ai| > 3* 'ny + [3°7?|ng + [3°7|ns where
n; = [{A € Lg,|A| = i}| for i« = 1,2,3 , then K,; may not L-colorable. For
example, let L be a 3-list assignment of K397 such that Lz = {123,456, 789} and
Loy = {abcla € 123,b € 456, ¢ € 789} .

The next five strategies, B,C, D, E and I, can be used to color K,; with
respect to a list assignment L in the case that a color appears in at least a —

1,a—2,a—3 and a—4 in L,, respectively. The next strategy is called Strategy B
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for L, and we can define Strategy B for L;, similarly.

Theorem 3.2.4. (Strategy B) Let L be a 3-list assignment of K,y. If a color

appears in a — 1 lists in Lo, then K, is L-colorable.

Proof. Notice that L, can be labeled by at most two colors. Since every list in

L, has size 3, all list in L; still have available colors. O

Remark 3.2.5. Let L be a list assignment of K,; and C' be a 2-coloring of L,.
Then,

(i) if L is a 3-list assignment then K,; is L-colorable;

(ii) if all lists of size at most 2 in L; have a color which is not in C', then K, is

L-colorable.

Theorem 3.2.6. (Strategy C) Let L be a 3-list assignment of K., such that
each color appears in at most eight lists in Ly,. If a color appears in a — 2 lists in

L, then K,y is L-colorable.

Proof. Strategy B takes care the case that a color appears in more than a — 2
lists in L,. Assume that a color appears in exactly a — 2 lists in L,. If the two
remaining lists in L, have a common color, then there exists a 2-coloring of L,.
Since all lists in L are of size 3, K, is L-colorable by Remark 3.2.5. Suppose
that the two remaining lists in L, have no common color. Hence, L, has at least
nine 3-colorings containing color 1. However, by the assumption, color 1 appears
in at most eight lists in L;,. Thus, at least one of such nine 3-colorings is not a

list in L;. Therefore, by Lemma 3.2.1 K, is L-colorable. O

Theorem 3.2.7. (Strategy D) Let L be a 3-list assignment of K, such that
each color appears in at most r lists in Ly. If a color appears in a — 3 lists in L,
and (r,b) € {(r,b)|r < 2,0 <22}U{(3,b)|b < 14}U{(4,b)|b < 12}U{(5,b)|b < 9},

then K, ts L-colorable.
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Proof. Let L, = {A, As, ..., Ay} and Ly = {By, By, ..., By} .If a color appears in
more than a—3 lists, we apply Strategy C. Assume that color 1 appears in exactly
a— 3 lists in L,, and (r,b) € {(r,b)|r < 2,0 <22} U{(3,b)[b < 14} U{(4,b)|b <
12}U{(5,0)|b < 9}. Without loss of generality, let 1 € Ay, As, ..., Ay_3. First, we
label Ay, Ay, ..., A,_3 by color 1. Now, we consider the remaining vertices which
form Kjj;. For the worst case, we may suppose that 1 € By, B,,...,B,. Let
L’ be the list assignment of K3, which is obtained from L by removing color 1.
Notice that Ly = {A,—2, Ae—1,As} and L) ={B;—1,...,B,—1,B,1...,By}. If
A,_oNA,_1NA, # & then there is a 2-coloring of L, ;hence, K, is L-colorable
by Remark 3.2.5. Suppose that A, o NA, 1NA, =J.

Case 1. |A,2NA, 1] =2.
Let 2,3 € A, 5, Aq_1 and A, = 456. Then L, has at least six 3-colorings, called
{1,2,4},{1,2,5},{1,2,6},{1,3,4},{1,3,5},{1,3,6}. Since r < 5, at least one of
the six 3-colorings is not a list in L;. By Lemma 3.2.1, K,; is L-colorable.

Case 2. |[A, oNA, 1| =1.
Let Aq_o =234, A, 1 =256 and A, = pgr where p,q,r ¢ {1,2}. Then we divide
this case into several subcases.

Case 2.1 {p,q,r} N{3,4,5,6} # @.
Without loss of generality, we let p = 3. Then L, has at least five 3-colorings,
called {1,2,3},{1,2,¢},{1,2,7},{1,3,5},{1,3,6}. If one of such 3-colorings is
not a list in L, then K, is L-colorable by Lemma 3.2.1. Suppose that such
3-colorings are lists in L. Thus r =5 and b < 9. Let By = 123, By = 12q, B3 =
12r, By = 135 and B; = 136. We label By, By, B3, By and Bs by color 2 and
color 3. Now, the remaining vertices form Ks;_5 where b < 9. For the worst
case, we suppose b = 9. Let L” be the list assignment of K3, which is obtained

from L’ by removing color 2. Then L} = {4,56,qr} and L} = {Bg, B7,...,By}.
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If L5 has a 2-coloring, then K34 is L”-colorable by Remark 3.2.5. Hence, sup-
pose that L% has no 2-coloring. That is, ¢,7 ¢ {4,5,6}. We let ¢ = 7 and
r = 8. Then L% has four 3-colorings, namely {4,5,7},{4,5,8},{4,6,7},{4,6,8}.
Again, we suppose that such 3-colorings are lists in Lj. Now, L, = Ly =
{123,127,128,135,136,457,458,478,468}. Hence, color 1 and color 4 form a
2-coloring of L;. By Remark 3.2.5, K, is L-colorable.

Case 2.2 p,q,r ¢ {3,4,5,6}.

Let p=7,g=8 and r =9. Then {1,2,7},{1,2,8} and {1,2,9} are 3-colorings
of L,. Again, by Lemma 3.2.1, K, is L-colorable unless the case that L; contains
127,128 and 129. Let By = 127, By = 128, B3 = 129. Thus r > 3. Next, we
label By, By, B3 by color 2. Let L” be the list assignment of K3, 3 which is
obtained from L' by removing color 2. Then L§ = {A,2 —2,A,—1 — 2, A} and
Ly o ={{Bys—1,....B, —1,B,41,B,42,...,By}. Now, we apply Strategy A for
Ly.

Case 2.2.1 r = 3. Then all lists in Lj 5 are of size 3. We apply Strategy A
for LY because 12 > 3373(b — 3).

Case 2.2.2 r =4. For the worst case, we suppose that 1 € By. That is L ,
has exactly one lists of size 2 and the remaining lists are of size 3. Again, we
apply Strategy A for L because 12 > 3372.1+ 3373(b — 4).

Case 2.2.3 r = 5. For the worst case, we suppose that 1 € By, B5. That is
Ly 5 has exactly two lists of size 2 and the remaining lists are of size 3. Again,
we apply Strategy A for L} because 12 > 3372 .2 + 3373(h — 5).

Case 3. A, 2, A,_1, Ay are mutually disjoint.

Then |A, o] - |[Aa_1| - |A| = 3 Now, we use Strategy A for L. Note that there
are r lists in L, containing color 1. So the number of lists of size 2 and size 3 in

L} are ny = and ng = b—r, respectively. Thus 3.7+ (b—r) < 3°. Hence K3
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is L'-colorable by Strategy A for L}. Therefore, K,; is L-colorable. O
The next lemma is used only in Strategy E.

Lemma 3.2.8. Let L be a 3-list assignment of K, and each color appears in at
most three lists in Ly. If color 1 appears in exactly a — 4 lists in L,, and color

1 and color 2 appear together in three lists in Ly, then K, ts L-colorable.

Proof. Let L, = {A1,As,..., As}, Ly = {B1,Bs,...,By}. Assume that 1 €
A1, Ay, Ag g and 1,2 € By, By, Bs. If A, 3N A, oNA,_1NA, is not empty,
then L, has a 2-coloring; hence, K,; is L-colorable by Remark 3.2.5. Suppose
that A, 3NA, oNA,_1NA, = 2. Then we label Ay, Ay,..., A,_4 by color 1 and
label By, Bs, B3 by color 2. Next, we consider the remaining vertices which form
Kyp—5. Let L' be the list assignment of K, ;3 which is obtain from L by removing
color 1 and color 2. For the worst case, we suppose that 2 € A,_3, Aq_a, Aq_1.
That is, L), = {As—3—2,Aa2—2,A0-1 —2,A,} and L) s ={By,Bs,...,By}. If
any two lists in L/, have a common color, it can be verified that L/ has at least
four 3-colorings of L. Since every color appears in at most three lists in L; 5,
at least one of these 3-colorings is not a list in L; ;. Then we suppose that all
lists in L} have no common color. Let L) = {34,56,78,9AB}. Since all lists in
L/, are subsets of {3,4,5,6,7,8,9, A, B}, we may suppose that all lists in L}
are subsets of {3,4,5,6,7,8,9, A, B}. Since every color appears in at most three
lists in Lj, we obtain b —3 < 9.

Case 1. b—3< 7.
Then Ky,-3 is L'-colorable by Strategy A for L.

Case 2. b—3 = 8. We consider the possibility of Lg such that Kyg is not
L'-colorable. Then Lj must be {357,358, 367,368,457,458,467,468}. However,

this case cannot occur because every color appears in at most three lists in L.
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Case 3. b—3=9. Then every color from 3,4,5,6,7,8,9, A, B must appear
in three lists in Ly. Then we label 34 in L) by color 3 and label three lists
containing color 4 in Ly by color 4. The remaining vertices form Ksg. Let L”
be the lists assignment of K3 which is obtained from L’ by removing color 3 and
color 4. Then L4 = {56,78,9AB}. For the worst case, we suppose that Lg has
three lists of size 2 and three lists of size 3. Again, we consider the possibilities
of Lg such that K,¢ is not L”-colorable. Without loss of generality, Lg must be
{57,58,67,689,68A,68B}. However, this case cannot occur because every color

appears in at most three lists in L. O]

Theorem 3.2.9. (Strategy E) Let L be a 3-list assignment of K, such that
each color appears in at most r lists in Ly. If color 1 appears in a — 4 lists in
L., and (r,b) € {(r,b)|r < 2,0 <22} U{(3,b)|b < 14}, then K, is L-colorable
unless F C Ly and the four remaining lists in L, are 246,257,347,356 up to

rename the colors.

Proof. Let L, = {A1,As,..., Ay} and L, = {By, Ba, ..., By}. If a color appears
in more than a — 4 lists in L,, then we apply Strategy D. Assume that color 1
appears in exactly a —4 lists in L, and (r,b) € {(r,b)|r < 2,0 <22} U{(3,b)[b <
14}. Without loss of generality, we suppose that 1 € Ay, Ay, ..., A,_4. Moreover,
we suppose that the four remaining lists in L, are not 246, 257,347,356 or F ¢
Ly.

We first label Aq, Ay, ..., Aq,_4 by color 1. Then the remaining vertices form
K,4,. For the worst case, we may suppose that 1 € By, Bs,...,B,. Let L' be
the list assignment of K4, which is obtained from L by removing color 1. Then
Ly ={As3,A02,Au1,A} and L, ={B, —1,...,B, — 1, B,41,..., Bp}.

Case 1. A color appears in all lists in L.

Thus we use such color to label all lists in L} . It is easy to see that every list in
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L; still has an available color. Then K, is L-colorable.

Case 2. A color appears in three lists in L.
If a color appears in four lists, then it is done by case 1. Suppose that no color
appears in four lists in L}. Let 2 € A, 3N A, 2N A,; and A, = 345.
Now, we consider L of K,;. Then L, has at least three 3-colorings, that
is, {1,2,3},{1,2,4},{1,2,5}. If L, does not contain all of these 3-colorings,
K, is immediately L-colorable by Lemma 3.2.1. Otherwise, we suppose that
By, =123, By = 124, By = 125. By Lemma 3.2.8, K,; is L-colorable.

Case 3. A color appears in two lists in Ll and the remaining two lists have
no common color.
If a color appears in more than two lists, then the proof is done by Case 1 and
Case 2. Suppose that each color appears in at most two lists in L. Let 2 €
Ag_3,As_2 and A, 1NA, = . We next label A, 3 and A, 5 by color 2. Then,
we focus on the remaining vertices which form K, ;. Let L” be the list assignment
of Ky which is obtained from L' by removing color 2. Since we use color 1 and
color 2 to label lists in L,, we may suppose that both 1 and color 2 appear in
three lists in Lj for the worse case. Thus, there are four possibilities of Lj .

Case 3.1 Lj has six lists of size 2 and b — 6 lists of size 3. We see that
|Aa1] - |Aa] = 3% > 3"-6. By Strategy A for L, Ky, is L"-colorable. Then K,
is L-colorable.

Case 3.2 L} has one list of size 1, four lists of size 2 and b — 5 lists of size
3. We see that |A, 1] - |As| = 32 > 3.1+ 4. By Strategy A for L), Ky, is
L"-colorable. Then K, is L-colorable.

Case 3.3 Lj has two lists of size 1, two lists of size 2 and b — 4 lists of size
3. We see that |A, 1] |A.] = 3% > 3-2+2. By Strategy A, Ky is L”-colorable.

Then K, is L-colorable.
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Case 3.4 Lj has three lists of size 1, no list of size 2 and b — 3 lists of size
3. That is, color 1 and color 2 appear together in exactly three lists of L;. Then
K, is L-colorable by Lemma 3.2.8.

Case 4. A color appears in two lists in Ly and the remaining two lists have
a common color.
Similar to case 3, we suppose that no color appears in three lists in L. Let
2 € Ay 3,A, 2 and 3 € A,y N A,. Hence, {1,2,3} is a 3-coloring of L,. If
123 is not a list in Ly, then K,; is L-colorable by Lemma 3.2.1. Otherwise, we
suppose that By = 123.

Case 4.1 |[A, 3N A, 2| >2 and |A,_1 N Al > 2.
Let 4 € A, 35N A, 2 and 5 € A, 1 N A,. We obtain at least four 3-colorings
of L., that is, {1,2,3},{1,2,5},{1,4,3},{1,4,5}. Since each color appears in at
most three lists in L, at least one of such 3-colorings is not a list in L,. Then
K, is L-colorable by Lemma 3.2.1.

Case 4.2 |[A,3NA, 2| >2 and |As-1 N A =1.
We may suppose that |A, 3NA, o =2. Let A,_3 =24z, A, o = 24y, A, = 356
and A, = 378 where z # y and x,y & {1,2,3,4}. Then {1,4, 3} is a 3-coloring of
L,. If 143 isnot alist in L, then K, is L-colorable by Lemma 3.2.1. Otherwise,
suppose that B, = 143. Recall that we have already labeled Ay, As, ..., A, 4
by color 1. Now, we label By, By by color 3. Consider the uncolor vertices
which form Ky, 5. Let L” be a list assignment of K4, 5 which is obtained
from L by removing color 3. Then L] = {24x,24y,56,78} and L} , = {Bs —
1,By, Bs, ..., By}. By the fact that L, has at least eight 3-colorings and every
color appears in at most three colors in L, it can be verified that Ky, o is
L"-colorable.

Case 4.3 |Aa_3 N Aa_2| =1 and |Aa_1 N Aa| Z 2.
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It is similar to Case 4.2.

Case 44 |A, 3sNA, o|=1 and |[A,_1 N A =1.

Let A,_1 = 345, A, = 367 and A, 3 = 2¢ef, A._o = 2gh where e, f,g, h are
distinct. Note that {1,2,4,6},{1,2,4,7},{1,2,5,6},{1,2,5,7} are 4-colorings of
L,. By Lemma 3.2.1, if one of these 4-colorings has no subset that is a list in
Ly, then K, is L-colorable. Again, suppose that these 4-colorings have a subset
that is a list in L,. Without loss of generality, L, can be verified that there are
two possibilities of Lj.

Case 4.4.1 By =124 and Bs = 125.

Then K, is L-colorable by Lemma 3.2.8.

Case 4.4.2 By, = 146, B3 = 147, By = 256, B = 257.

Recall that we have already labeled A;, As, ..., A,_4 by color 1. Now, we label
Aq_1, Ay by color 3 and label By, By, By by color 2. Next, we consider the remain-
ing vertices which forms Ky, 5. Let L” be the list assignment of K5;_5 which is
obtained from L’ by removing color 2 and color 3. That is, L) = {ef, gh} and
Ly . = {46,47, B¢, Br,...,By}. Then L} has exactly four 2-colorings, namely
{e,q},{e,h},{f,9} and {f, h}. If one of such 2-colorings is not a list in Lj ,,
then Ky 3 is L”-colorable by Lemma 3.2.1. Suppose that such four 2-colorings
are lists in Ly 4. Then Lj , has at least four lists of size 2. Recall that 3 € B;.
Then color 3 appears in two lists in Bg, Br, ..., B,. Hence, we suppose that
3 € Bg, B7. Then Ly , = {56,57,Bs —3,B7 —3,Bs, By, ..., By_3}.

Let L* be a 2-list assignment of Ky, such that Lj = {ef,gh} and L} =
{56, 57, B¢—3, B;—3}. By Remark 3.2.5, Ky;_3 is L”-colorable if and only if K54
is L*-colorable. Moreover, K54 is not L*-colorable if and only if Lj = {45,67}
and L} = {46,47,56,57}. Therefore, K54 is not L*-colorable if and only if

{Aa_3, Aa_g, Aa—l; Aa} 7é {246, 257, 347, 356} or F Z Lb.
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Case 5. All lists in L) are mutually disjoint.
Note that L; has b — r lists of size 3, r lists of size 2 and no list of size 1. We
have that [[;_, 5|A;| =3*>3*-r+3-(b—r). By Strategy A for L}, Ky is

L'-colorable. O
The next lemma is used only in Strategy F.

Lemma 3.2.10. Let L be a 3-list assignment of K, and each color appears in
at most two lists in Ly. If a color appears in exactly a —5 lists in L, and a color

appears in exactly three of the five remaining lists, then K,y is L-colorable.

Proof. Let L, = {Ay,As,..., Ay} and Ly, = {B1, Ba, ..., By}. Suppose that 1 €
A1, Ay, Ag s and 2 € A,_4, Au_3, Aq_o. Then we first label Ay, As, ..., Ay_5
by color 1 and label A, _4, A,_3, Aq_2 by color 2. Consider the remaining vertices
which form Ks;,. Let L' be the list assignment of K5, which is obtained from L
by removing color 1 and color 2. Note that L) = {4, 1, A,}. Next, we divide
the proof into four cases.
Case 1. A,_1NA,=3.
To apply Strategy A for Li, we count the number of lists of size 1, size 2 and

size 3 in Lj. We have three possibilities. Denote that n; is the number of lists of

size i in Ly for i =1,2,3.
1. ny=2,no=0 and n3=5b— 2.
2. np=1,ny=2 and ng =0— 3.
3. n=0,ny=4and n3=0b—4.

All possibilities satisfy conditions in Strategies A of L. Therefore, Ky is L'-

colorable.
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Case 2. |[A,.1NA|=1.
Let A,—1 = 345 and A, = 367. If 123 is not a list in L;, then K,; is L-
colorable. Without loss of generality, suppose that B; = 123. Then we label all
lists containing color 3 in L by color 3. Now, we consider all uncolored vertices.
For the worst case, we suppose that no other list except B; containing color 3.
Thus the remaining vertices form Ky; 1. Let L” be the list assignment of Kyj 4
which is obtained from L’ by removing color 3. Then we can apply Strategy A
for L.

Case 3. |[A,_1NA]=2.
Let A,y = 345 and A, = 346. If 123 and 124 are not lists in L;, then K,
is immediately L-colorable. Without loss of generality, suppose that B; = 123
and By = 124. Then we label Bi, By, A,_1 and A, by color 3, color 4, color 5
and color 6, respectively. Notice that every uncolored vertex in Lj still has an

available color. Therefore, Ky is L'-colorable. O

Theorem 3.2.11. (Strategy F) Let L be a 3-list assignment of K, and each
color appears in at most two lists in Ly. If a color appears in a — 5 lists in L,

and a+b < 18, then K,y s L-colorable.

Proof. Let L, = {A1, Ay, ..., A} and L, = {By, Bs,..., By}. Since a+ b < 18
and a > 5, we obtain b < 13. Since each color appears in at most two lists in
Ly, we have F ¢ L,. Then we can apply Strategy E if a color appears in more
than a — 5 lists. Suppose that a color appears in exactly a — 5 lists. Without
loss of generality, we assume 1 € Ay, As, ..., A,_5. Then we label the a — 5 lists
by color 1. For the worst case, we assume that color 1 is in two list in L, say
By, By. Next, consider the remaining vertices which form K;,. Let L’ be the

list assignment of Kj5; which is obtained from L by removing color 1. Then

L’5 = {Aa747Aa737Aa727Aa717Aa} and LZ = {Bl —1,By—1,Bs,..., Bb}-
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Case 1. A color appears in all lists in LY.
Then L, has a 2-coloring; hence, K, is L-colorable by Remark 3.2.5.

Case 2. A color appears in four lists in L.
By case 1, we may suppose that color 2 appears in exactly four lists in L.. Let
2 € Ay4,Au_3, A4 9,A,1 and A, = 345. We obtain three 3-colorings of L,,
that is, {1,2,3},{1,2,4},{1,2,5}. Since every color appears in at most two lists
in Ly, at least one of the 3-colorings is not a list in L;. Therefore, K,; is
L-colorable by Lemma 3.2.1.

Case 3. A color appears in three lists in LY.
By Lemma 3.2.10, K,; is L-colorable.

Case 4. A color appears in two lists in LY.
From Case 3, we may suppose that each color appears in at most two lists in L.
Since color 1 appears in at most two lists in L;, at most four colors appears in the
same lists with color 1 in L;,. We apply Theorem 2.1.3. Since 18- (g) < (10“) , We

2
may suppose that |Ui_,_, Ail <|U,ev(x,,) L(v)] < 10. Since |As_a] + [Aa-3| +
|Au—a| + |Aa—1]| + |As| = 15 and the number of colors is at most ten, at least five
colors must appear in exactly two lists in L;. Recall that only Bj, By contain
color 1. Hence, at most four colors from the five colors appear in the same lists
with color 1 in L;. Hence, we can choose the remaining color such that no list in
Ly contain both color 1 and this color, namely color 2. Let 2 € A, 4, A,_3 and
then we label A,_4, A,—3 by color 2. Let L” be the list assignment of K3, which is
obtained from L’ by removing color 2. For the worst case, we suppose 2 € B3, By.
Hence, L) = {B1—1,By—1,B3—2,B,—2,B5...,By and Lj = {442, Au_1, As}.

If color 3 appears in exactly two lists in A,_2, A,_1, Ay, then LY has at least

three 2-colorings containing color 3. Since every color appears in at most two

lists in Ly, at least one 2-coloring is not a list in Lj. Otherwise, we suppose
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that A, o, As_1, A, are mutually disjoint. To apply Strategy A, we count the
number of lists of size 1, size 2 and size 3 in L;. We obtain that L; has no list
of size 1, four lists of size 2 and b — 4 lists of size 3 where b — 4 < 6. Then
|Aua] - |[Aa_1] - |[Aa| =33 >3-4+ (b—4).

Case 5. A, 4, Ay 3, A4 2, Au_1,A, are mutually disjoint.
Then Lj has at most three lists of size b — 2 and two lists of size 2. Since
[T, Al =3°>3%2+43% (b—2), K, is L-colorable by Strategy A for L.

]

Notation 3.2.12. Strategies A,B,C,D,E and F show that there exists a coloring
of L, such that every list in L; still has available colors. It is called Strat-
eqy A(B,C,D,E,F) for L,. However, we can exchange the role between L, and

L, for a list assignment L of K,; and we call Strategy A(B,C,D,E,F) for Ly.

Strategy A can be applied for a list assignment whose all lists have size at
most 3. However, we can imitate Strategy A to build a new strategy which can

be applied when all lists have size at most 2.

Theorem 3.2.13. (Strategy A') Let L be a list assignment of K., with L, =
{A1,As, ..., A}, Ly = {B1,Bs, ..., By} and all lists have size at most 2. If all
lists in L, are mutually disjoint and 2* > T{_,[2°7 |n1 + |2°7%|ny where n; =

{B € Ly, |B| =i}| for i =1,2, then K,y is L-colorable.
Proof. Similar to Strategy A. m

According to the proof of Strategies B, C, D, E and F, if color 1 appears in
a—1l,a—2a—3,a—4 and a — 5 lists, respectively, then we label such lists
by color 1. The size of lists containing color 1 is insignificant. Then we can
prove Strategies B’, C’, D’, E’ and F’ similar to Strategies B, C, D, E and F,

respectively.
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Theorem 3.2.14. (Strategy B’) Let L be a list assignment of K,y. If a color
appears in a — 1 lists in L, and the remaining lists in L, and Ly are of size 3,

then K,y is L-colorable.
Proof. Similar to Strategy B. O

Theorem 3.2.15. (Strategy C') Let L be a list assignment of K, where every
color appears in at most eight lists in Ly. If a color appears in a — 2 lists in L,

and the remaining lists in L, and Ly, are of size 3, then K, is L-colorable.
Proof. Similar to Strategy C. [

Theorem 3.2.16. (Strategy D’) Let L be a list assignment of K, where every
color appears in at most r lists in Ly. If a color appears in a — 3 lists in L,
the remaining lists in L, and Ly are of size 3 and (r,b) € {(r,b)|r < 2,b <

22} UA{(3,0)[b <14} U{(4,b)[b <12} U{(5,b)|b < 9}, then K,y is L-colorable.
Proof. Similar to Strategy D. O

Theorem 3.2.17. (Strategy E’) Let L be a list assignment of K, where every
color appears in at most r lists in Ly. If color 1 appears in a — 4 lists in L,,
the remaining lists in L, and Ly are of size 3 and and (r,b) € {(r,b)|r < 2,b <
22} UA{(3,b)|b < 14}, then K,p is L-colorable unless the four remaining lists in

L, are 246,257,347,356 and F C L.
Proof. Similar to Strategy E. m

Theorem 3.2.18. (Strategy F') Let L be a list assignment of K, where every
color appears in at most two lists in Ly. If a color appears in a — 5 lists in L,,
the remaining lists in L, and Ly are of size 3, and a +b < 18, then K, is

L -colorable.

Proof. Similar to Strategy F. O]
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3.3 Complete Bipartite Graphs with Fourteen Vertices: a

New Proof

This section gives another proof of the result by Fitzpatrick and MacGillivray [5]
which was stated that every complete bipartite graph with 14 vertices except K7
is 3-choosable and Lz (see Notation 3.1.1) is the unique 3-list assignment such
that K, isnot Lyr-colorable. Their proof is a detailed case analysis which cannot
be extended to verify 3-choosability of complete bipartite graphs with 15 vertices
while our proof is obtained from Strategies A, B, C, D, E and F, and our proof
can be applied to give results of 3-choosability of complete bipartite graphs with
15 vertices. Moreover, our strategies can be applied to verify complete bipartite

graphs to be L-colorable for some 3-list assignments L.

Lemma 3.3.1. The complete bipartite graph Ksp is 3-choosable if and only if

b<26.

Proof. Let L be the 3-list assignment of K37 defined by Ly = {123,456,789}
and Loy = {{a,b,c}a € {1,2,3},b € {4,5,6},c € {7,8,9}}. Notice that every
coloring of L3 is a list in Ly7. By Lemma 3.2.1, K37 is not L-colorable.

Next, we will prove K396 is 3-choosable. Let L be a 3-list assignment of
K3 6. If some lists in Lg have a common color, K396 is immediately L-colorable
by Strategy B for L3. Suppose that all lists in L3 have no common color. To
apply Strategy A for L3, we count the number of 3-coloring of L3 and count the
number of lists of size 1, size 2 and size 3 in Log. We see that the number of
3-coloring of Lz is 27. Since Log has only 26 lists of size 3, at least one of those
3-colorings is not a list in Log. Hence, we can use such 3-coloring to color L;

while every list in Log still has an available color. O

Lemma 3.3.2. The complete bipartite graph Ky 10 is 3-choosable.



43

Proof. Let L be a 3-list assignment of Kj419. Let 74 (and r19) be the maximum
number of lists in Ly (and Ljp) containing a common color. Note that r, < 4
and 719 < 10.

Case 1. ry = 3,4 or rg =9,10; apply Strategy B for L, or Strategy B for L,
respectively.

Case 2. ry =2 and ryg < 8; apply Strategy C for L.

Case 3. 1y, =1 and ryy < 8; apply Strategy A for L,. Notice that H?Zl |A;| =

3*>3.10 = 3*3ns. m
Lemma 3.3.3. The complete bipartite graph Ksgo is 3-choosable.

Proof. Let L be a 3-list assignment of K59. Let r5 (and 79) be the maximum
number of lists in Ly (and Lg) containing a common color. Then r; < 5 and
rg < 9.

Case 1. r5 = 4,5 or rg = 8,9; apply Strategy B for Ls or Strategy B for Ly,
respectively.

Case 2. r5 =3 and r9 < 7; apply Strategy C for Ls.

Case 3. r5 <2 and r9 = 7; apply Strategy C for Lg.

Case 4. r5; <2 and r9 = 6; apply Strategy D for Lg.

Case 5. r; < 2 and rg = 5; apply Strategy E for Lg. Notice that F ¢ Ls
because Lj contains only five lists.

Case 6. 15 =2 and r9 < 4; apply Strategy D for Lj.

Case 7. r5 =1 and rq < 4; apply Strategy A for Ls. Notice that Hle |A;| =

3% >32.9=23"3n;. m
Lemma 3.3.4. The complete bipartite graph Kgg is 3-choosable.

Proof. Let L be a 3-list assignment of Kgg. Let rg (and 73) be the maximum

number of lists in Lg (and Lg) containing a common color. Then rg < 6 and
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rg < 8.

Case 1. 74 = 5,6 or rg = 7,8; apply Strategy B for Lg or Strategy B for Lg,
respectively.

Case 2. r¢ =4 and rg < 6; apply Strategy C for Lg.

Case 3. ¢ <3 and rg = 6; apply Strategy C for Lg.

Case 4. rg¢ < 3 and rg = 5; apply Strategy D for Lg.

Case 5. 1 < 3 and rg = 4; apply Strategy E for Lg. Notice that F ¢ Lg
because Lg contains only six lists.

Case 6. 14 =3 and rg < 3; apply Strategy D for Lg.

Case 7. 16 = 2 and rg < 3; apply Strategy E for Lg unless 1 € A, A,
As = 246, A, = 257, A5 = 347,A¢ = 356 and F C Lg. In such case, color
1,2,3,4,5,6,7 have already appeared in two lists in Lg, we have two new color
8,9 € Ay because 16 = 2. Hence 3 € A, 1, A, and the four remaining lists cannot
rename the colors to 246,257,347,356 because the union of the four remaining
lists contains eight colors. Therefore, we can apply Strategy E for Lg.

Case 8. rg =1 and rg < 3; apply Strategy A for Lg. Notice that H?Zl |A;| =

30> 3%.8. O

Lemma 3.3.5. Let L be a 3-list assignment of K77. The complete bipartite

graph Kz 7 is L-colorable unless Ly = Ly = F .

Proof. Let L be a 3-list assignment such that F & L7;) or F & Lyg;). Let 174
(and r7(;;7) be the maximum number of lists in Lz (and Lzq;)) containing a
common color. Then 77, r7s) < 7.

Let ¢ = [U,ev(xr,) L(v)|. By Theorem 2.1.3, we may suppose that ¢ < 10
because 14 -3 < ('%f!). Since ZveLm) |L(v)| = 21, we obtain r7;) > 3 by the

pigeonhole principle. Similarly, 774 > 3.

Case 1. ry; = 6,7 or 175 = 6,7; apply Strategy B for Ly or Strategy B for
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L4y, respectively.

Case 2. 17y =5 and 773 < 5; apply Strategy C for L.

Case 3. 773y <4 and r7(;) = 5; apply Strategy C for Ly .

Case 4. 77 = 4 and 773, < 4; apply Strategy D for Ly .

Case 5. r7¢;) = 3 and 773 = 4; apply Strategy D for Ly .

Case 6. r7¢;) = 3 and 7173 = 3; apply Strategy E for L) unless 1 € A, Ay, A3,
Ay = 246, A5 = 257, A¢ = 347, A; = 356 and L7y = F. In such case,
{1,2,3},{1,4,5},{1,6,7} are 3-colorings of Lz(;;. One of such 3-colorings is not

a list in L) because Ly # F. Then K77 is L-colorable by Lemma 3.2.1.  [J

Theorem 3.3.6. The complete bipartite graph with 14 wvertices is 3-choosable if
and only if it is not K77. For a 3-list assignment L, K7 is L-colorable unless

L=Lg.
Proof. Tt follows from Lemmas 3.3.1, 3.3.2 3.3.3, 3.3.4 and 3.3.5. m

By Lemmas 3.3.1, 3.3.2, 3.3.3 and 3.3.4, we can easily verify that every com-

plete bipartite graph is 3-choosable.

Theorem 3.3.7. The complete bipartite graph with at most 13 vertices is 3-

choosable.

Proof. If a4+ b < 13, then K, is a subgraph of one of K396, K410, K59, Kos
which are 3-choosable by Lemmas 3.3.1, 3.3.2, 3.3.3 and 3.3.4. Therefore, a

complete bipartite graph with at most 13 vertices is 3-choosable. O]

Since K77 is not Lg-colorable and Ly is a (3,7)-list assignment, K77 is
not (3,7)-choosable. However, K77 is (3,t¢)-choosable if and only if ¢t # 7.
Theorem 3.3.8 gives all positive numbers ¢ such that all complete bipartite graphs

with 14 vertices are (3,t)-choosable.
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Theorem 3.3.8. A complete bipartite graph with 14 vertices is (3,t)-choosable

unless t = 7.

Proof. Let a,b be positive integers such that a < b and a+b=14. Then a < 7.
Case 1. a < 3.
Then K, is a subgraph of K396 which is 3-choosable by Lemma 3.3.1.
Case 2. a =4,5,6.
Then K, is one of Ky 19, K59, K¢ g which is 3-choosable by Lemma 3.3.2, Lemma 3.3.3
and Lemma 3.3.4.
Case 3. a = 7 Since Lz is the unique 3-list assignment such that K;; is

not Lz-colorable, K77 is (3,t)-choosable for all ¢t # 7. O

3.4 Complete Bipartite Graphs with Fifteen Vertices

In this section, we keep utilizing our strategies to extend the result in the pre-
vious section to 15 vertices. We first show that K411, K510, Ks9 are 3-choosable

and then we prove that for a 3-list assignment L, Krg is L-colorable unless

Ly, = Lr.
Lemma 3.4.1. The complete bipartite graph Ky 11 s 3-choosable.

Proof. Let L be a 3-list assignment of K4, and r4 (and 1) be the maximum
number of lists in L, (and Lq;) containing a common color. Then r, < 4 and
ryp < 11.

Case 1. r4 = 3,4 or ri; = 10,11; apply Strategy B for L, or Strategy B for
Ly, respectively.

Case 2. ry <2 and ry; = 9; apply Strategy C for L.

Case 3. ry =2 and ry; < 8; apply Strategy C for Ly.
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Case 4. ry =1 and ry; < 8; apply Strategy A for L,. Notice that H?Zl |A;| =

3*>3.11=33ns. m
Lemma 3.4.2. The complete bipartite graph Ks 19 is 3-choosable.

Proof. Let L be a 3-list assignment of K59 and r5 (and r19) be the maximum
number of lists in Ls (and Ljg) containing a common color. Then 75 < 5 and
r10 < 10.

Case 1. r5 =4,5 or rg =9,10; apply Strategy B for Ls; or Strategy B for L,
respectively.

Case 2. r5 =3 and ryy < 8; apply Strategy C for Ls.

Case 3. r5 <2 and ryp = 8; apply Strategy C for L.

Case 4. r; <2 and r = 7; apply Strategy D for L.

Case 5. r5 < 2 and 119 = 6; apply Strategy E for Liq. Notice that F ¢ Ls
because L; contains only five lists.

Case 6. r5 <2 and rp = 5; apply Strategy F for Lyq.

Case 7. r5 =2 and ryy < 4; apply Strategy D for Ls.

Case 8. r5 =1 and riy < 4; apply Strategy A for Ls. Notice that H?Zl |A;| =

3% >3%.10 = 3" 3n;. m
Lemma 3.4.3. The complete bipartite graph Kgg is 3-choosable.

Proof. Let L be a 3-list assignment of Kgo and rg (and r9) be the maximum
number of lists in Lg (and Lg) containing a common color. Then rg < 6 and
rg < 9.

Case 1. 14 = 5,6 or g = 8,9; apply Strategy B for Lg or Strategy B for Ly,
respectively.

Case 2. 14 =4 and r9 < 7; apply Strategy C for Lg.

Case 3. 14 < 3 and r9 = 7; apply Strategy C for Lg.
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Case 4. 14 < 3 and r9 = 6; apply Strategy D for Lg.

Case 5. 13 < 3 and r9 = 5; apply Strategy E for Lg. Notice that F ¢ Lg
because Lg contains only six lists.

Case 6. 14 =3 and r9 < 4; apply Strategy D for Lg.

Case 7. r¢ <2 and r9 = 4; apply Strategy F for Lg.

Case 8. 1 = 2 and r9 < 3; apply Strategy E for Lg unless 1 € A, A
and Az = 246, A, = 257, A5 = 347, Ag¢ = 356. In such case, we obtain that
4,5,6,7 & Ay, Ay because 1 = 2. Let A; = 178. Then 3 € Aj;, Ag and the four
remaining lists cannot rename the colors to be 246,257, 347,356. Hence, we still
apply Strategy D for Lg.

Case 9. rg =1 and r9 < 3; apply Strategy A for Lg. Notice that H?:1 |A;| =

30 >3%.9=23"3n;. [l

Lemma 3.4.4. Let L be a 3-list assignment of Kr;g. The complete bipartite

graph Krg is L-colorable unless F C Ly, Lg.

Proof. Let L be a 3-list assignment of K7 g such that 7 ¢ L; or F ¢ Lg. Let r;
(and 7g) be the maximum number of lists in L; (and Lg) containing a common
color. Then r; <7 and rg < 8.

Case 1. r; = 6,7 or rg = 7,8; apply Strategy B for L; or Strategy B for Lg,
respectively.

Case 2. r7 =5 and rg < 6; apply Strategy C for L.

Case 3. r7 <4 and rg = 6; apply Strategy C for Lg.

Case 4. r; <4 and rg = 5; apply Strategy D for Lg.

Case 5. r; =4 and rg < 4; apply Strategy D for L.

Case 6. r; < 3 and rg = 4; apply Strategy E for Lg unless 1 € By, By, B3, By,
B; = 246,Bs = 257,B; = 347,Bs = 356 and L; = F. Since L; = F,

{1,2,3},{1,4,5} and {1,6,7} are 3-colorings of L;. Since F ¢ Lg, one of
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such 3-colorings is not a list in Lg. Hence K;g is L-colorable by Lemma 3.2.1,
Case 7. r; = 3 and rg < 3; apply Strategy E for L; unless 1 € Ay, Ay, As,
Ay = 246, A5 = 257, A¢ = 347, A; = 356 and F C Lg. In such case, let
By =123, By = 145, B3 = 146, B, = 246, B5 = 257, Bg = 347, B; = 356. Suppose
that By = 89A because rg < 3 and color 1 to color 7 are appears in three lists
in By, By,...,B;. Since L; # F, we obtain that 123,145 or 167 are not a list
in L7. Suppose that 123 ¢ L;. Notice that {1,2,3,8},{1,2,3,9} and {1,2,3, A}
are 4-colorings of Lg. Since color 2 appears in at most two lists in Ay, As, Az,
128,129 or 12A is not a list in L7. Suppose that 128 ¢ L;. Then {1,2,3,8} is a
4-coloring of Lg which has no subset that is a list in L7. Then K7g is L-colorable
by Lemma 3.2.1.

Case 8. r; <2 and rg = 3; apply Strategy F for Lg.

Case 9. r; =2 and rg < 2; apply Strategy F for L;.

Case 10. r; =1 and rg < 2; apply Strategy A for L;. Notice that HZZI |A;| =

37> 3.8 =3"3n;. [l

Theorem 3.4.5. The complete bipartite graph with 15 wvertices is 3-choosable if

and only if it is not Krg. For a 3-list assignment L, Krg is L-colorable unless

L|V(K7’7) - L]:
Proof. Tt follows from Lemmas 3.3.1, 3.4.1, 3.4.2, 3.4.3 and 3.4.4. m

Since K7g is not L-colorable when L|y (k. ,), K7g is not (3,t)-choosable for
t = 7,8,9,10. However, K75 is (3,t)-choosable if and only if ¢ # 7,8,9,10.
Theorem 3.4.6 gives all positive numbers ¢ such that all complete bipartite graphs

with 15 vertices are (3,t)-choosable.

Theorem 3.4.6. A complete bipartite graph with 15 wvertices is (3,t)-choosable

unless t =17,8,9,10.
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Proof. Let a,b be positive integers such that a < b and a+b=15. Then a < 7.
Case 1. a < 3.
Then K, is a subgraph of K396 which is 3-choosable by Lemma 3.3.1.
Case 2. a=4,5,6.
Then K, is one of K411, K510 or Kgg which is 3-choosable by Lemma 3.4.1,
Lemma 3.4.2 and Lemma 3.4.3, respectively.
Case 3. a=7 When t <6 or t > 11, we obtain that F ¢ L; or F ¢ Lg.

Then K7g is L-colorable by Lemma 3.4.4. ]



CHAPTER IV
ON 3-CHOOSABILITY OF COMPLETE BIPARTITE

GRAPHS WITH 16 VERTICES

In this chapter, we keep studying about 3-choosability of complete bipartite
graphs. The main result of this chapter is Theorem 4.3.10 which is stated that
every complete bipartite graph with 16 vertices is (3,t)-choosable for t < 6 or
t > 14. We will apply this result to prove Theorem 5.3.1 in Chapter 5.

In Section 4.1, we study 3-choosability of complete bipartite graphs by using
strategies from Section 3.1. Unlikely, some cases of Kg 19, K79 and Kgg cannot
be proved by our strategies. For Kg 0, we claim that Kg o is 3-choosable by
referring to [15]. For Kyg and its 3-list assignment L, we prove that Kgg is
L-colorable unless L|y(x,.) = Lz (See Notation 3.1.1) in Section 4.2. For Krg
which is more difficult than Kgg, we prove that K;g is (3,¢)-choosable if and

only if t <6 or t > 14 in Section 4.3.

4.1 Consequence of the Strategies

We apply our strategies to study 3-choosability of complete bipartite graphs

with 16 vertices.
Lemma 4.1.1. The complete bipartite graph Ky 12 s 3-choosable.

Proof. Let L be a 3-list assignment of Ky415. Let 74 (and 1) be the maximum
number of lists in L, (and Lj3) containing a common color. Then r, < 4 and

T12 < 12.
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Case 1. ry = 3,4 or rio = 11,12; apply Strategy B for L, or Strategy B for
L5, respectively.

Case 2. ry <2 and r5 = 10; apply Strategy C for L.

Case 3. r4 <2 and 15 = 9; apply Strategy D for L.

Case 4. ry =2 and ryp < 8; apply Strategy C for Ly.

Case 5. ry = 1; apply Strategy A for L,. ]
Lemma 4.1.2. The complete bipartite graph Ks11 s 3-choosable.

Proof. Let L be a 3-list assignment of Kj51;. Let 75 (and ;) be the maximum
number of lists in Ls (and L;;) containing a common color. Then 75 < 5 and
ryp < 11.

Case 1. r5 = 4,5 or ri; = 10,11; apply Strategy B for L5 or Strategy B for
Ly, respectively.

Case 2. r5 <3 and ry; = 9; apply Strategy C for Lq;.

Case 3. r5 =3 and rq; < 8; apply Strategy C for Ls.

Case 4. r5 < 2 and r; = 8,7,6; apply Strategies D,E and F for L, respectively.
Case 5. r5 =2 and ry; < 5; apply Strategy D for Ls.

Case 6. r5 = 1; apply Strategy A for Ls. n

To study 3-choosability of K1, we divide the proof into several cases. How-
ever, our strategies cannot be applied for a case as shown in Lemma 4.1.3. We do

not prove the missing case here because O’Donnell[15] has done it.

Lemma 4.1.3. Let L be a 3-list assignment of Kgio. Let 16 (and 119) be
the mazximum number of lists in Lg (and Liy) containing a common color. If

(r6,m10) 7# (2,4), then K19 is L-colorable.

Proof. Case 1. rg = 5,6 or r;9p = 9,10; apply Strategy B for Lg or Strategy B

for Lo, respectively.
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2. r¢ =4 and 119 < 8; apply Strategy C for Lg.

3. 1 <3 and rp = 8,7,6; apply Strategy C,D,E for Ly, respectively.
4. r¢ =3 and rp < 5; apply Strategy D for Lg.

5. r¢ < 2 and ri9 = 5; apply Strategy F for L.

6 r¢ =2 and 9 < 3; apply Strategy E for Lg.

7. r¢ = 1; apply Strategy A for Lg. O

Lemma 4.1.4. [15] The complete bipartite graph Kg is 3-choosable if and only

if b < 16.

To study 3-choosability of K79, we cannot use our strategies to prove all

cases of the proof as shown in Lemma 4.1.5. However, we prove that Krg is

(3,t)-choosable if and only if ¢ < 6 or ¢ > 14 in Section 4.3.

Lemma 4.1.5. Let L be a 3-list assignment of K7q9. Let 7 (and ry) be the maz-

imum number of lists in Ly (and Lg) containing a common color. If (r7,19) #

(3,4),(2,3) and L|y(k,.) # Lr, then Ky is L-colorable.

Proof. Case 1. r; =6,7 or rg = 8,9; apply Strategy B for L; or Strategy B for

Lg, respectively.

Case
Case
Case

Case

2. r7 =5 and r9 < 7; apply Strategy C for L.
3. r7 <4 and rg = 6; apply Strategy D for Lg.
4. r; =4 and r9 < 5; apply Strategy D for L.

5. r7 < 3 and r9 = 5; apply Strategy E for Lg. In this case, Krg is

L-colorable unless F C L7, Lg.

Case

Case

6. r7 <2 and rg = 4; apply Strategy F for Lg.

7. r7 = 3 and ry < 3; apply Strategy E for L;. In this case, K7g is

L-colorable unless F C L7, Lg.

Case

Case

8. r7 =2 and r9 < 2; apply Strategy F for L.

9. r; = 1; apply Strategy A for L;. m
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Again, to study 3-choosability of Kgg, we cannot use our strategies to prove all

cases as shown in Lemma 4.1.6. However, we have a complete proof in Section 4.3;

for a 3-list assignment L of Kgg, it is L-colorable if and only if L|y(x,.) # L.

Lemma 4.1.6. Let L be a 3-list assignment of Kgg. Let rsq) (and rsu ) be

the maximum number of lists in Lg (and Lg(ii)) containing a common color. If

(Ts(i)s Tsiy) 7 (4,4),(4,3),(3,4),(3,3),(2,2), then Kgg is L-colorable.

Proof. Case 1. rg;) = 7,8 or 153 = 7,8; apply Strategy B for Lg(;) or Strat-

egy B for Lg(, respectively.

Case
Case
Case
Case
Case
Case
Case
Case
Case

Case

2.

3.
4.

8.

9.

rg;) = 6 and rg) < 6;
rgi) < 5 and rgy;y = 6;
rgy = 5 and rg() < 5;
Ty < 4 and 7y = 9;
re) = 4 and rg() < 2;
rey < 2 and rgi) = 4;
Ty = 3 and 1y < 2;

rey) < 2 and rgi) = 3;

apply Strategy C for Lg.
apply Strategy C for Lg() .
apply Strategy D for Lg.
apply Strategy D for Lg)-
apply Strategy E for Lg).
apply Strategy E for Lg.
apply Strategy I for Lg.

apply Strategy I for Lg).

10. 74y = 1; apply Strategy A for Lg).

11. rgui) = 1; apply Strategy A for Lg( . O

Theorem 4.1.7. A complete graph with 16 vertices is 3-choosable unless it is

K779 or K&g .

Proof. Tt follows from Lemma 3.3.1, Lemma 4.1.1, Lemma 4.1.2 and Lemma 4.1.4.

]
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4.2 On 3-choosability of Kgg

Recall that rg;) (and 734 ) be the maximum number of lists in Lgy) (and
Lg(iiy) containing a common color and Lemma 4.1.6 has results of 3-choosability
of Kgg except when (rsq),7s@i)) = (4,4),(4,3),(3,4),(3,3),(2,2). Then lem-
mas and theorems can be classified into three groups. The first group, which is
from Lemma 4.2.1 to Theorem 4.2.18, deals with (754, 7sq)) = (4,4), (4,3),(3,4).
The second group, which is from Theorem 4.2.19 to Theorem 4.2.34, deals with
(7s(i), Ts(is)) = (3,3) The last group, which is only Theorem 4.2.35, deals with
(7s(:), Ts(is)) = (2,2). The conclusion is in Theorem 4.2.36 which is stated that,
for a 3-list assignment L of Kyg, it is L-colorable if and only if {123, 145, 167,

246, 257, 347, 356} C Lg(i),Lg(ii).

Lemma 4.2.1. Let L be a list assignment of Ky 5 such that Ly = {Ay, As, A3, Ay}
and Ly = {By, Ba,...,Bs}. If |Ai| = |As| = |As] = |B1| =2 and |A4| = |Bs| =
|Bs| = |By| = |Bs| = 3, then K45 is L-colorable unless Ly = {1p,1q, 23,245}
and Ls = {12,134,135,267,367} where p # q and p,q # 1,2,3 up to renaming

the colors.

Proof. Case 1. Ay, Ay, Az, Ay are mutually disjoint.
Hence, we apply Strategy A for L.

Case 2. Ay, Ag, A3, Ay are not mutually disjoint but Ay, As, As are mutually
disjoint.
Suppose A; =12, Ay = 34, A3 = 56 and 1 € Ay. It is easy to verify that if a color
appears in four lists of Ls then K, 5 is L-colorable. Hence, we suppose that each
color appears in at most three lists of Ls.

Then L4 has at least four 3-colorings, namely, {1,3,5},{1,3,6},{1,4,5} and

{1,4,6}. If one of such 3-colorings has no subset that is a list in Lj, then K5
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is L-colorable by Lemma 3.2.1. Hence, we suppose that such 3-colorings have
a subset that is a list in Ls. Without loss of generality, let B; = 13, By = 145
and Bs = 146 because each color appears in at most three lists of L;. Hence, we
label By, Bs, B3 by color 1 and label A; by color 2. Now, the remaining vertices
form Ks3o. Let L’ be the list assignment of K3, which is obtained from L by
removing color 1 and color 2. For the worst case, we suppose that 2 € By, Bs.
Then L} = {34,56, A, —1} and L}, = {B,—2, B; —2}. Since K3, is 2-choosable,
Ks4 is L'-colorable. Hence, Kgg is L-colorable.

Case 3. Ai, Ay, A3 are not mutually disjoint and A3 N Ay = .
Let 1 € Ay, Ay and A3z = 23, Ay = 456. Thus, Lg;) has at least six 3-colorings
containing color 1. Again, we suppose that such 3-colorings has subset that is a
list in Lg;) by Lemma 3.2.1. Without loss of generality, we let By = 12, By =
134, B3 = 135, B4 = 136. Hence, we label By, By, B3, B4 by color 1 and the
remaining vertices are easily labeled.

Case 4. Ay, Ag, Az are not mutually disjoint and Az N Ay # &.
If L, has a coloring which is has no subset that is a list in Lj, then K45 is L-
colorable by Lemma 3.2.1. Suppose that each coloring of L, has a subset that is
a list in Ls. Since L5 has only one list of size 2, L, has at most one 2-coloring.
That is, |[A1NAs| = |A3NAy| = 1. Let Ay = 1p, Ay = 1q, A3 = 23, Ay = 245 where
p,q # 1. We consider possibility of p,q. Since L, has at most one 2-coloring, we
have p,q # 2, p# q and if p =3, then ¢ # 4,5.

Case 4.1 p=3 or q=3.
Suppose that p = 3 and ¢ = 6. Thus we swap A, and Az. That is, A; =
13, Ay =23, A3 =16 and A; = 245. The case |[A1N Ay =1 and AN Ay =0 is
Case 3 that we have already done.

Case 4.2 p,q # 3.
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Since {1,3,4},{1,3,5} and {2, p, q} are 3-colorings of L,, we let By = 134, By =
135 and By = 2pq. Since {p, q,3,4} and {p,q,3,5} are 4-colorings of L, and we
have only one list of size 3 left, we let Bs = 3pq.

It can be directly verified that if Ly = {1p, 1¢,23,245} and Ls ={12, 134,

135, 267 ,367}, then K45 is not L-colorable. O

Lemma 4.2.2. Let L be a list assignment of Ky 5 such that Ly = {A;, As, As, Ay}
and L5 = {Bl,BQ,...,B5}. If ’A1| = |A2| = |A3| =2 and ’A4| = ’Bl| = |B2| =

|Bs| = |Bs| = |Bs| = 3, then K45 is L-colorable.

Proof. If Ly has a 2-coloring then K, 5 is L-colorable by Lemma 3.2.1. Suppose
that L, has no 2-coloring. Let p € By and L* be the list assignment of K, 5 such
that L; = Ly and L} = {By — p, By, B3, B4}. Since L} = L4 has no 2-coloring,
we have L} # {lp,1q,23,245}. Hence, K45 is L*-colorable by Lemma 4.2.1.

Therefore, K5 is L-colorable. O

Theorem 4.2.3. Let L be a 3-list assignment of Ksg such that every color
appears in at most four lists of each partite set where Lgiy = { Ay, Ag, ..., Ag}. If

1e Ay, Ag, As, Ay and 2 € A5, Ag, A7 then Kgg is L-colorable.

Proof. 1If 2 € Ag then we label Ay, Ay, A3, A4 by color 1 and label A, Ag, A7, Ag
by color 2 and every remaining list still has an available color. Suppose that Ag =
345. Then Lg; has at least three 3-colorings of , namely {1,2,3},{1,2,4},{1,2,5}.
If one of such 3-colorings is not a list in Lgy;), then Kgg is L-colorable by
Lemma 3.2.1. Suppose that B; = 123, By = 124, B3 = 125.

We first label A;, As, Az, A4 by color 1 and label By, By, B3 by color 2. The
remaining vertices form K,5. Let L’ be the list assignment which is obtained
from L by removing color 1 and color 2.

Case 1. 1 ¢ B,.

Then K5 is L'-colorable by Lemma 4.2.2.
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Case 2. 1€ By and Bs, Bg, By, Bs have at least five 2-colorings.
Then Lg;) has at least five 3-colorings. Since color 1 appears in at most four
lists in Lg(;), at least one of such 3-colorings is not a list in Lg(;. Hence, Kgg is
L-colorable by Lemma 3.2.1.

Case 3. 1 € By and Bs, Bg, B7, Bs have at most four 2-colorings.
That is, L), = {45 — 2, A6 — 2, A7 — 2, As} and L, = {By — 1, Bs, Bs, By, Bs}.
Since Bs, Bg, B7, Bs have at most four 2-colorings, lists in Lf cannot be renamed
to lists in {12,134, 135,267,367}. By Lemma 4.2.1, K5 is L’'-colorable; hence,

Kgg is L-colorable. L]

Lemma 4.2.4. Let L be a list assignment of Ky 5 such that Ly = {Ay, A, A3, Ay}
and L5 = {Bl,BQ,...,Bg,}. [f ’A1’ = ’AQ’ = |Bl‘ = 2, |A3’ = ‘A4| = ‘BQ’ =

|Bs| = |Bs| = |Bs| = 3, then Ky5 is L-colorable.

Proof. Let r € Az and L* be the list assignment of K45 such that L =
{A1, Ag, Ay — 1, Ay} and LE = Ls.

By Lemma 4.2.1, K, 5 is L*-colorable unless Lj = {1p, 1¢,23,245} and L} =
{12,134,135,267,367} where p # ¢ and p,q # 1,2,3. Suppose that L; =
{1p, 1q,23r,245} and L5 = {12,134,135,267,367} where p # q and p,q # 1,2, 3.
Then we label Aq, Ay by color 1, label A3 by color r and label A4 by color 4.

All remaining vertices still have available colors; hence, Ky 5 is L-colorable. [

Theorem 4.2.5. Let L be a 3-list assignment of Ksg such that every color
appears in at most four lists of each partite set where Lgy = {A1, Ag, ..., As}
and Lg(“) = {Bl,BQ,...,Bg}. ]f 1e Al,AQ,A3,A4 and 1,2 S Bl,BQ,Bg then

Kgg is L-colorable.

Proof. We first label A;, Ay, A3, A4 by color 1 and label Bj, B, Bs by color 2.

The remaining vertices form Ky 5. Let L' be the list assignment of K45 which is
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obtained from L by removing color 1 and color 2. If color 2 appears in three lists
of L, then Kyg is L-colorable by Theorem 4.2.3. Hence, suppose that color 2
appears in at most two lists of L). Moreover, for the worst case, we let 2 € Aj, Ag.
That is, L), = {45 — 2, A¢ — 2, A7, As} and L = {By — 1, Bs, Bs, By, Bs}. By

Lemma 4.2.4, K, 5 is L'-colorable. Therefore, Ksg is L-colorable. O

Lemma 4.2.6. Let L be a list assignment of Ky such that Ly = {Ay, A2} and
L4 = {Bl7B2,B3,B4}. [f |A1| == |A2| = 3 and |B1|,|Bg|,|B3|,|B4| S 3 and

|Bi1| + | Ba| + |Bs| + |Bs| > 8, then Ky is L-colorable.

Proof. For the worst case, we suppose that |B;|+ |Ba|+|Bs|+ |Bs| = 8. Without
loss of generality, let |B;| < |Bsy| < |Bs| < |Byl.

Case 1. |By| = |By| = |Bs3| = |B4| = 2.

If A; and A, have a common color, we use this color to color A; and A, ; hence, all
lists in L4 still have an available color. Otherwise, we suppose that A;NA; = .
Thus we apply Strategy A for L.

Case 2. |By|=1,|Bs| = |Bs| =2 and |By| = 3.

Let B; = 1. Since B; has only one color, we must use color 1 to color lists in
Ly. For the worst case, we suppose 1 € A, Ay but 1 € Bs, B3, By. After we
color By, the remaining vertices form Ky 3. Let L’ be the list assignment of K3
which is obtained from L by removing color 1. Thus L, = {A4; — 1, Ay — 1} and
Ly = {Bs, Bs, B,}.

If A;—1 and Ay —1 have a common color, we can use the color to color A; —1
and Ay — 1 and all lists in L} still have an available color. Otherwise, we suppose
that A; — 1, Ay — 1 are disjoint. Hence, Lf has four 2-colorings. Since L has
two lists of size 2, at least one of such 2-colorings of L} is not a list in L;. By
Lemma 3.2.1, Ky 3 is L'-colorable. Therefore, Ky 4 is L-colorable.

Case 3. |By| = |B2| =1 and |Bs| = |By| = 3.
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Let By = 1 and B, = 2. Since each of By and B, has only one color, we
must use color 1 and color 2 to label lists in L,. For the worst case, we suppose
1,2 € A, Ay but 1,2 € By, B3, By. Let A; = 123 and A, = 124 After we color By
and Bs, the remaining vertices form Kjyo. Let L' be the list assignment of K
which is obtained from L by removing color 1 and color 2. Thus Lj; = {3,4}
and Ly, = {Bs, Bs}. We have to label lists Ly, by color 3 and color 4. Since
each list in L/Q(ii) still have an available color, Ko is L’-colorable. Therefore,

Ky 4 is L-colorable. O

Lemma 4.2.7. Let L be a list assignment of Ks4 such that Ly = {A;, Aa, A3}
and Ly = {By, By, B3, By} . If |A1] = |As| = |B1| = |Ba| = 2 and |As| = |Bs| =

|By| =3, then Ks4 is L-colorable.

Proof. Case 1. Ay and Ay have a common color.

Thus L3 has at least three 2-colorings. Since L, has only two lists of size 2,
at least one of such 2-colorings is not a list in Ly. By Lemma 3.2.1, Kj, is
L-colorable.

Case 2. Ay and Ay are disjoint.

Let Ay = 12 and Ay = 34. If Ay, Ay, A3 are mutually disjoint, then we apply
Strategy A for Lj. Otherwise, we suppose that 1 € As. Thus, {1,3} and {1,4}
are 2-colorings of Ls. If 13 and 14 are not lists in L4, then K34 is L-colorable
by Lemma 3.2.1. Otherwise, we let By = 13 and By = 14.

Now, we label A; by color 2 and label B;, B, by color 1. The remaining
vertices form Kso. Let L' be the list assignment of K5 which is obtained
from L by removing color 1 and color 2. For the worst case, we suppose that
2 € B3, B,. Then L’2(i) = {Ay, A3 — 1} and Lé(ii) = {B3 —2,B, —2}. We can

directly verify that Ky o is L’-colorable. Hence, K34 is L-colorable. O
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Theorem 4.2.8. Let L be a 3-list assignment of Ksg such that every color
appears in at most four lists of each partite set where Lgiy = { A1, Ag, ..., Ag} and
Lg(u) = {Bl, BQ, RN Bg} ]f 1e Al,Ag,Ag,A4, 1, 2 e Bl,BQ and 1,3 € Bg, B4,

then Kgg is L-colorable.

Proof. We first label A;, Ay, A3, Ay by color 1, label B;, By by color 2 and label
Bs, B, by color 3. Then the remaining vertices form Ky,. Let L' be the list
assignment of K,, which is obtained from L by removing color 1, color 2 and
color 3.

If a color appears in three lists in As, Ag, A7, Ag or three lists in Bs, Bg, Br, By,
then Kgg is L-colorable by Theorem 4.2.3. Suppose that each color appears in
at most two lists in As, Ag, A7, Ag and at most two lists in By, Bg, B7, Bs.

For the worst case, we suppose that both color 2 and color 3 appear in two
lists in As, Ag, A7, Ag.

Case 1. 2 € A5, Ag and 3 € Ay, Ag.

Then Lg;) has a 3-coloring, namely {1,2,3}. If 123 is not a list in Lg(;), then
Kgg is L-colorable by Lemma 3.2.1. Without loss of generality, we suppose
By = 123. Hence, Kgg is L-colorable by Theorem 4.2.5.

Case 2. 2 € A5, Ag and 3 € As, Ay.

Let A5 = 234. Then As—23 which is a list in Lil(i) has only one color left. Hence,

we label A by color 4. The remaining vertices forms Ks3,4. Let L” be the list

assignment of K3, which is obtained form L’ by removing color 4. Since each

color appears in at most two lists of Bs, Bg, B7, Bg, we let 4 € Bj, Bg for the

worst case. Then L = {A¢ — 2, A7 — 3, As} and L] = {Bs — 4, Bs — 4, B7, Bs}.

Thus, K34 is L”-colorable by Lemma 4.2.7. Therefore, Kgg is L-colorable.
Case 3. 2 € A5, Ag and 3 € As, Ag.

Let As = 234 and Ag = 235. Then As — 23 and Ag — 23 which are lists in LZ(@)
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have only one color left. Hence, we label A5 and Ag by color 4 and color 5,
respectively. The remaining vertices form Ky 4. Let L” be the list assignment of
K, 4 which is obtained form L' by removing color 4 and color 5.

Since each color appears in at most two lists of By, Bg, By, By, we obtain that
|Bs — 23| + |Bs — 23| + [ By — 23| + |Bs — 23| > |Bs| + |Be| + | B7| + |Bs| —2-2 =
4.3 —-2-2=8. Thus, Ky4 is L"-colorable by Lemma 4.2.6. Therefore, Kgg is

L-colorable. O

Lemma 4.2.9. Let L be a list assignment of Ky 4 such that Lyg) = { A1, Ay, As, Ay}
and L4(ii) = {31732733734}- [f |A1‘ = |A2| = |Bl| = ’Bz\ =2, ’A3| = \A4| =

|Bs| = |Bs| =3 and Ay N Ay = AsN Ay = &, then Ky4 is L-colorable.

Proof. 1f Ay, Ay, A3, A4 are mutually disjoint, then we apply Strategy A for Ly .
Suppose that A, Ay, A3, A4 are not mutually disjoint. Without loss of generality,
suppose that p = 1.

If Ly has a coloring which has no subset that is a list in Ly, then Kyy
is L-colorable by Lemma 3.2.1. Suppose that every coloring of Ly; has a subset
that is a list in Ly . Then r,s # 1. In the next three cases, we will prove that
1€ By, B,.

Case 1. r,s € {4,5,6}.

Then {1,r} and {1,s} are 2-colorings of L,y . Hence, we suppose that B; =
1r, By = 1s.

Case 2. r € {4,5,6} but s & {4,5,6}.

Since {1,r} is a 2-coloring of Ly, let By = 1r. Since {1,s,4},{1,s,5} and
{1, 5,6} are 3-colorings of L4y but we have only one list of size 2 and two lists
of size 3, let By = 1s.

Case 3. r,s ¢ {4,5,6}.

Then Ly has at least six 3-colorings, namely {1,r,4}, {1,7,5}, {1,r,6}, {1,s,4},
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{1,s,5} and {1,s,6}. If all six 3-colorings have a subset that is a list in Ly,
then By =1r,By = 1,s.
We label Bj, B, by color 1 and the remaining vertices can be colored by

Lemma 4.2.6; hence, K, 4 is L-colorable. O]

Theorem 4.2.10. Let L be a 3-list assignment of Kgg such that every color
appears in at most four lists of each partite set where Lgiy = {A1, Ag, ..., Ag}. If

1le Ay, Ay, As, Ay, 2 € Ay, Ag and A; N Ag = O, then Kgg is L-colorable.

Proof. If 2 € A; or 2 € Ag, then Kgg is L-colorable by Theorem 4.2.3. Let
A; =345 and Ag = 678.

Case 1. No list in Lgg; contains both color 1 and color 2.
Then we label Aq, Ay, A3, A4 by color 1 and label As, Ag by color 2. The remain-
ing vertices form Kyg. Let L' be the list assignment of K3g which is obtained
from L by removing color 1 and color 2. Then we apply Strategy A for L.

Case 2. Only one list in Lg;y contains both color 1 and color 2.
Let 1,2 € By. Then Lg; has at least nine 4-colorings, namely {1,2,3,6},
{1,2,3,7}, {1,2,3,8}, {1,2,4,6}, {1,2,4,7}, {1,2,4,8}, {1,2,5,6}, {1,2,5,7}
and {1,2,5,8}. If one of such 4-colorings has no list that is a subset in Ls,
then Kgg is L-colorable. Suppose that such 4-colorings has subset that is a list
in Lg) -

Case 2.1 B1N{3,4,5,6,7,8} = .
Then we label Aq, Ay, A3, Ay by color 1, label As, Ag by color 2 and label By by
the remaining color. Then we apply Strategy A similar to case 1. Thus, the proof
is done.

Case 2.2 B1N{3,4,5,6,7,8} # &.
Then we suppose that 3 € By. That is, B; = {1,2,3}. Consider such 4-colorings,

Lg(;) has six 4-colorings not containing 3. Since the remaining seven lists do not
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contain both color 1 and color 2, we need six lists to be a subset of six 4-colorings.
That is, we may suppose that 1 € By, B3, By and 2 € Bs, Bg, B7. Hence, Kgg is
L-colorable by Theorem 4.2.3.

Case 3. Ezactly two lists in Lgg;) contain both color 1 and color 2.
Let 1,2 € By, By. Similar to Case 2, we suppose that nine 4-colorings of Lg;
have a subset that is a list in Lg).

Case 3.1 BINA;, =@ and BiNAg=2.
Then we label Aq, Ay, A3, Ay by color 1, label As, Ag by color 2 and label By by
the remaining color. Similar to Case 2, we can prove that the remaining vertices
can be colored.

Case 32 BbNA; =@ and BoNAg = 9.
Similar to Case 3.1.

Case 3.3 BiNA; # @ and BoNA; # 9.
Suppose By = {1,2,3} and B, = {1,2,4}. Then {1,2,5,6},{1,2,5,7} and
{1,2,5,8} do no contain B; or By as a subset. Hence, we need three more lists
to be a subset of such three 4-colorings. If B3 = 156, By = 157 or B3 = 157, By =
158 or B3 = 157, By = 158, then the proof is done by Theorem4.2.8. Hence, we
suppose that By = 156 and By = 257, B; = 258. Then we label A;, Ay, Az, Ay
by color 1 and label By, By, By, Bs by color 2. Lemma 4.2.9 guarantee that the
remaining vertices can be colored.

Case 34 Bi1NA;# @ and Bo N Ag # 9.
Suppose By = {1,2,3} and By = {1,2,6}. Then {1,2,4,7}, {1,2,4,8}, {1,2,5,7}
and {1,2,5,8} do no contain B; or Bj as a subset. Hence, we need four more lists
to be a subset of such three 4-colorings. That is, we may suppose that 1 € Bs, By
and 2 € Bs, Bg. Then we label Ay, A, A3, A4 by color 1 and label By, Bs, By, Bs

by color 2. Lemma 4.2.9 guarantee that the remaining vertices can be colored.
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Case 3.5 BiNAg# @ and Bo N Ag # .
Similar to Case 3.3.
Case 3.6 BiNAgs# @ and BoNA; # @.
Similar to Case 3.4.
Case 4. Ezactly three lists in Lgg;) contain both color 1 and color 2.

Then Kgg is L-colorable by Theorem 4.2.5. O

Theorem 4.2.11. Let L be a 3-list assignment of Kgg such that every color
appears in at most four lists of each partite set where Lgiy = {A1, Aa, ..., Ag}. If

le Ay, Ay, As, Ay, 2,3 € A5, Ag and 4,5 € A7, Ag, then Kgg is L-colorable.

Proof. Notice that Lg(;) has at least four 3-colorings, namely {1,2,4}, {1,2,4},
{1,3,4}, {1,3,5}. If one of such 4-colorings is not a list in Lgg;) then Kgg is
L-colorable by Lemma 3.2.1. Hence, we suppose that B; = 124, By = 125, By =

134, By = 135. Therefore Kgg is L-colorable by Theorem 4.2.8. m

Lemma 4.2.12. Let L be a list assignment of Ksg such that Ly = {A;, As, A3}
and L = {B1, By, By, By, Bs, Bg}. If Ay = {1,2}, Ay = {3,4}, Ay = {5,6} and
|B1| = |Bs| = 2, |Bs| = |Bs| = |Bs| = |Bs|] = 3, then Ksg is L-colorable
or Lg = {13, 14,235,236, 245,246} or Lg = {13,24,145, 146,235,236} or Ls =

{13,45, 146, 235,236,246} up to renaming the colors.

Proof. Suppose that Kgg is not L-colorable.

Notice that L3 has at least eight 3-colorings, namely {1,3,5}, {1,3,6},
{1,4,5}, {1,4,6}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}. Since K34 is not L-
colorable, all 3-coloring of L3 have a subset that is a list in Lg by Lemma 3.2.1.

If a list in Lg contains a color which is not in any A; for ¢ = 1,2, 3, then at
most seven 3-colorings of L3 have a subset that is a list in Lg. Hence, we suppose

that every list in Lg is a subset of {1,2,3,4,5,6}.
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If Ay = By then B is not a subset of any 3-coloring of L3; hence, at most
six 3-colorings of L3 has a subset that is a list in Lg. Hence, we suppose that
A # A fori=1,2,3 and j =1,2.

Since By must be a subset of a 3-coloring of L3, we may suppose that B; = 13.
That is, two 3-colorings of L3, namely {1,3,5} and {1,3,6}, contain B; as a
subset. Without loss of generality, we divide the possibility of B, into four cases.

Case 1. By, = 14.

That is, two 3-colorings of Lz, namely {1,4,5} and {1,4,6}, contain B, as
a subset. Hence, the remaining four 3-colorings of L3 must be Bs, By, Bs, Bg.
Therefore, Lg = {13, 14, 235, 236, 245, 246} .

Case 2. B, =15.

That is, two 3-colorings of Lj, namely {1,3,5} and {1,4,5}, contain B, as a
subset. Now, the remaining five 3-colorings do not contain By or B, as a subset
but we have only four lists of size 3 left in Lg. It is a contradiction to the
assumption that Kjsg is not L-colorable.

Case 3. By, =24.

That is, two 3-colorings of Lz, namely {2,4,5} and {2,4,6}, contain B, as
a subset. Hence, the remaining four 3-colorings of L3 must be Bs, By, Bs, Bg.
Therefore, Lg = {13,24,145, 146,235,236} .

Case 4. B, = 25.

That is, two 3-colorings of Lz, namely {2,3,5} and {2,4,5}, contain B, as
a subset. Hence, the remaining four 3-colorings of L3 must be Bs, By, Bs, Bg.

Therefore, Lg = {13,45,146, 235,236,246} . ]

Theorem 4.2.13. Let L be a 3-list assignment of Kgg such that every color
appears in at most four lists of each partite set where Lgiy = {A1, Aa, ..., Ag}. If

1€ Ay, Ay As, Ay and 2,3 € As N Ag, then Kgg is L-colorable.
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Proof. If A; N Ag is an empty set, the proof is done by Theorem 4.2.10 and if
|A7 N Ag| > 2, the proof is done by Theorem 4.2.11. Hence, we suppose that
|A; N Ag| = 1. Let A; = {6,p,q} and Ag = {6,r,s}. If a color appears in three
lists of As, Ag, A7, Ag, then the proof is done by Theorem 4.2.3. We suppose each
color appears in at most two lists of As, Ag, A7, As. Hence, 2,3 & A7, Ag.

If there exists a coloring in Lg(;) such that has no subset that is a list in Lg;;),
then Kgg is L-colorable by Lemma 3.2.1. Suppose that every coloring in Lg;
has a subset that is a list in Lgg;). Since {1,2,6} and {1,3,6} are 3-colorings
of Lgu;), we may suppose that B; = 126 and B, = 136. Since {1,4,5,6} is a
4-coloring of Lg(;y, we may suppose that 145 or 146 or 156 is a list in Lg(;. If
146 or 156 is a list in Lg;), then Kygg is L-colorable by Theorem 4.2.5. Hence,
we suppose that Bs = 145. We first label Aq, As, A3, A4 by color 1 and label B
and B, by color 6. Then the remaining vertices form K,s. Let L’ be the list
assignment of K, which is obtained from L by removing color 1 and color 6.
Then we define the new list assignment L* of K¢ such that Lj = {23, pg,rs} and
L{ = Lg. It is easy to see that if K34 is L*-colorable, then K, ¢ is L’-colorable.

Case 1. Color 1 appears only in By, By, Bs.

Then L, = {234,235,pq,rs} and Ly = {45, By, Bs, B, B7, Bs}. Then we apply
Strategy A for Lj to prove that K3 is L*-colorable; hence, K, is L’-colorable.
Case 2. Color 1 appears in one of By, By, Bg, B7, Bg.
Suppose that 1 € By. Then L, = {234,235,pq,rs} and Ly = {45, B, — 1, Bs,
Bg, By, Bg}. If a color appears in three lists in Bs, Bg, B7, B then the proof is
done by Theorem 4.2.3. If |Bs N Bg| > 2 and |B; N Bg| > 2 then the proof is
done by Theorem 4.2.11. Hence, we suppose that each color appears in at most
two lists in Bs, Bg, By, Bs and (|Bs N Bg| < 1 or |B; N Bg| < 1). Then L§ can-

not rename color to be {13, 14,235,236, 245,246} or {13,24, 145,146, 235,236} or
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{13, 45,146, 235,236,246} . By Lemma 4.2.12, K34 is L*-colorable; hence, Kgg

is L-colorable. O

For the next lemma, the alphabet A represents 10 and the alphabet B rep-

resents 11.

Lemma 4.2.14. Let L be a 3-list assignment of Kgg such that every color ap-
pears in at most four lists of each partite set where Lgiy = {A1, Ag, ..., As}. If
1e Al,AQ,Ag,A4 and A5 = 245,A6 = 267, A7 = 389,148 = 3AB, then K&g 18

L -colorable.

Proof. Notice that {1,2,3} is a 3-coloring of Lggy. If 123 is not a list in Lg,
then Kjgg is L-colorable by Lemma 3.2.1. Suppose that B; = 123.

Case 1. At least two lists in Lg; contain both color 1 and color 2.
If three lists in Lg;;) contains both color 1 and color 2, then the proof is done by
Theorem 4.2.5. Suppose that 1,2 € By and no list from Bj, By, ..., Bg contains
both color 1 and color 2. We label Ay, Ay, A3, A; by color 1. Let L’ be the
list assignment of K,g which is obtained from L by removing color 1. For the
worst case, suppose that 1 € By, By, By, By. Then L) = {Aj, Ag, A7, Ag} and
Ly={By—1,Bo—1,B3—1,By;—1,B;s, Bs, By, Bs}.

Case 1.1 3 € B3U By.
Suppose that 3 € Bs. Then we label B;, B, by color 2 and label B3 by color
3. Let L” be the list assignment of K5 which is obtained from L by removing
color 2 and color 3. Then we apply Strategy A’ for L.

Case 1.2 3€ B;UBgUB;U Bg.
Suppose that 3 € Bs. Then we label B;, B, by color 2 and label Bs by color
3. Let L” be the list assignment of K, 5 which is obtained from L by removing

color 2 and color 3. Then we apply Strategy A’ for L.
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Case 1.33¢ B3UB4sU...U Bg.
Then we label Ay, Ay, A3, A4 by color 1, label By, By by color 2 and label A;, Ag
by color 3. The remaining vertices can be easily labeled.

Case 2. At least two lists in Lgq; contain both color 1 and color 3.
Similar to Case 1.

Case 3. No list from Bs, Bs ..., Bg contains both color 1 and color i where
1=1,2.

Case 3.1 Color 1 appears in four lists in Lg.
Suppose that 1 € By, By, B3, By. If Lg;) has a coloring which has no subset
that is a list in Lg(;), then Kgg is L-colorable by Lemma 3.2.1. Suppose that
every coloring of Lg(;) has a subset that is a list in Lg(;;). Notice that {1,2,8, A},
{1,2,8,B}, {1,2,9,A} and {1,2,9, B} are 4-colorings of Lgg;. If two lists of
Bs, Bg, B7, Bg have two common colors, then the proof is done by Theorem 4.2.13.
Without loss of generality, suppose that 28A4,298,18B8,19A € Lgy). Notice
that {1,3,4,6}, {1,3,4,7}, {1,3,5,6} and {1,3,5,7} are 4-colorings of Lg.
Similarly, 346,357,147,156 € Lg(;). It is a contradiction to the fact that Lgg)
contains exactly eight lists.

Case 3.2 Color 1 appears in at most three lists in Lg;y and color 2 appears
in at most two lists in Lg() .
We first label Aq, Ay, A3, A4 by color 1. For the worst case, suppose that 1 €
Bi1,Bs, B3 and 2 € By, B;. Then we label As, Ag by color 2 and label B; by
color 3. The remaining vertices are easily labeled.

Case 3.3 Color 1 appears in at most three lists in Lg;y and color 2 appears
in at least three lists in Lg) .
We first label Aq, Ay, A3, A4 by color 1. For the worst case, suppose that 1 €

By, By, By and 2 € By, By, Bs. Then we label B; by color 3 and label By, Bs
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by color 2. The remaining vertices form K, 5. Let L’ be the list assignment of
K, 5 which is obtained from L by removing color 2 and color 3. Then we apply

Strategy A’ for L. O]

Lemma 4.2.15. Let L be a 3-list assignment of Kgg such that every color ap-
pears in at most four lists of each partite set where Lsuy = {A1, Ag, ..., As}. If
1 e A17A2,A3,A4 and A5 = 2467A6 = 247, A7 = 358,148 = 359, then Kg’g 18

L -colorable.

Proof. If Lg(;) has a coloring which has no subset that is a list in Lg(;), then Kgg
is L-colorable by Lemma 3.2.1. Suppose that every coloring of Lg(; has a subset
that is a list in Lg;). Since {1,2,3} and {1,4,5} are 3-colorings of Lg(;, we
suppose that By = 123 and By = 145.

Case 1. A list from Bs, By,...,Bg contains both color 1 and color z for
some x € {2,3,4,5}.
Suppose that 1,2 € Bs.

Case 1.1 1¢ ByUB5U...U Bg.
Notice that {1,3,4,7}, {1,3,5,6}, {1,3,6,7}, {1,4,7,8} and {1,5,6,9} are 4-
colorings of Lg;y. Then we suppose that By = 347, Bs = 356, Bg = 367,
B; = 478, By = 569. Then we label B, By, Bs, Bg by color 3, label By, B; by
color 4, label B3 by color 2 and label Bg by color 5. Since no list in Lg(;) is a
subset of {2,3,4,5}, Kgg is L-colorable.

Case 1.21€ B,UB5U...UBg.
Suppose that 1 € By. Notice that {1,3,4,7}, {1,3,5,6} and {1,3,6,7} are
4-colorings of Lggy. If 347,356,367 € Bg, then we apply Theorem 4.2.3. If
4 € By or 5 € By, then we apply Theorem 4.2.8. Otherwise, we suppose that
347,356 and 167 are lists in Lg(;). Again, since {1,4,7,8} and {1,5,6,9} are

4-colorings of Lg(;y, we suppose that 478,659 € Bg. Since 347,478 € Lgg;), we
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apply Theorem 4.2.13.

Case 2. No list Bs, By,...,Bg contains both color 1 and color x for all
x€{2,3,4,5}.
Notice that {1,2,4,8},{1,2,5,9},{1,3,4,7},{1,3,5,6} are 4-colorings of Lg.
Then each of such 4-coloring has a subset that is a list in Lg(;). Suppose that
Bs = 348, Bg =259, B; = 347, By = 356. Again, {1,2,8,9} and {1,3,6,7} are
4-colorings of Lg(;); hence, we suppose that Bz = 189 and B, = 167. Finally, we
label all lists in Lg(;) by color 1, color 4, color 7 and color 8 and all lists in Lg

still have available colors. O

Theorem 4.2.16. Let L be a 3-list assignment of Kgg such that every color
appears in at most four lists of each partite set where Lsiy = {A1, Aa, ..., Ag}. If

1€ Ay, Ay, As, Ay and As N A7 = &, then Kgg is L-colorable.

Proof. If As, Ag, A7 and Ag are mutually disjoint, we apply Strategy A for L) to
guarantee that K,g is L’'-colorable. Suppose that color 2 appears at least two
lists in Ajs, Ag, A7, Ag. If 2 € Ag, Ag, then Kygg is L-colorable by Theorem 4.2.10.
Without loss of generality, let 2 € A5, Ag. Again, if A7 N Ag = & then Kgg is
L-colorable by Theorem 4.2.10. Hence, we suppose that 3 € A;, Ag, as well.

If |AsNAg| > 2 or |[A;N As| > 2 then Kgg is L-colorable by Theorem 4.2.13.
Suppose that |[A5NAg| =1 and |A;NAg| = 1. Let A5 = 246, Ag = 2pr, A; = 357
and Ag = 3¢s where p, q,r, s are distinct colors.

Ifg=2,5s=2,p=3orr=3, then Kgg is L-colorable by Theorem 4.2.3.
Suppose that ¢,s # 2 and p,r # 3.

Case 1. {p,r} N{4,6,} # @ or {¢,s} N{5,7} # @.

Then Kgg is L-colorable by Theorem 4.2.13.
Case 2. {p,r}N{4,6,} ={q,s}N{5,7} = @ but {p,q,r,s}N{4,5,6,7} # @.

Suppose that p = 5.
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Case 2.1 ¢ ¢ {4,6}.
Then Kgg is L-colorable by Theorem 4.2.10.

Case 2.2 ¢ € {4,6}.
Let g =4. If r =7, or s = 6 then Kgg is L-colorable by Theorem 4.2.13.
Suppose that r # 7 and s # 6. Then r,s must be new colors. Let r = 8 and
s = 9. Hence, the proof is done by Lemma 4.2.15.

Case 3. {p,q,r,s} N{4,5,6,7} = &.
The proof is done by Lemma 4.2.14.

Case 4. pe {5,7} but r ¢{1,2,3,4,5,6,7}.
Suppose that p =5 and 7 = 8. Then 5 € Ag, A7. If A; N Ag = &, then Ksg is

L-colorable by Theorem 4.2.10. Suppose that A5 N Ag # @. Let ¢ =4 O]

Corollary 4.2.17. Let L be a 3-list assignment of Kgg such that every color
appears in at most four lists of each partite set where Lgiy = { Ay, Ag, ..., Ag}. If
1e Al, AQ, Ag,A4 and there are Ai, Aj S {A5, AG, A7, AS} such that |AZﬂA]| 7& 1,

then Kgg is L-colorable.
Proof. 1t follows from Theorem 4.2.13 and Theorem 4.2.16. [

Theorem 4.2.18. Let L be a 3-list assignment of Kgg such that every color ap-
pears in at most four lists of each partite set where Lguy = { Ay, Ag, ..., Ag}. If 1 €
Ay, Ay, As, Ay then Kgg is L-colorable unless {123,145,167, 246, 257,347,356} C
L), Lggiiy up to renaming colors.
Proof. 1If |A; N A;| # 1 for some ¢,5 € {5,6,7,8} then Kgg is L-colorable by
Corollary 4.2.17. If a color appears in at least three lists in As, Ag, A7, Ag then
Kgg is L-colorable by Theorem 4.2.3. Hence, we suppose that A; = 246, A =
257, A7 = 347, As = 356.

If Lg@y has a coloring which has no subset that is a list in Lg;;), then Kgg

is L-colorable by Lemma 3.2.1. Suppose that each coloring in Lg(;) has a subset
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that is a list in Lg(;). Since {1,2,3},{1,4,5},{1,6,7} are 3-colorings of Lg,
we suppose that By = 123, B, = 145, B3 = 167.

Case 1. Color 1 appears in at most three lists in Ly .

Consider 4-colorings of Lguy, {1,2,4,6},{1,2,7,5},{1,3,4,7} and {1,3,6,5}.
Note that they do not contain B;, By or Bs as a subset. Hence, 246,257, 347, 356
must be lists in Lg(;), say Bs = 246, Bg = 257, By = 347, Bg = 356.

If 123,145,167 € Lg(;), then the proof is done because we have F C Lg;, Lgi) -
Suppose that 123 is not a list in Lg.

Case 1.1 2€ B, or 3 € By.

Then {1,2,3} is a 3-coloring of Lg;y. Since 123 is not a list in Lgy), Ksg is
L-colorable by Lemma 3.2.1.

Case 1.2 2,3 ¢ Bs, By.

Then we label By, By, B by color 1, label Bs, Bg by color 2 and label B7, Bg by
color 3; hence, the remaining vertices can be easily labeled.

Case 2. Color 1 appears in exactly four lists in Lg) .

Let 1 € By. Similar to Case 1, {1,2,4,6}, {1,2,7,5}, {1,3,4,7}, {1,3,6,5} are
4-colorings of Lg(;y which do not contain By or B, or Bz as a subset. The list
By is a subset of at most one of such 4-colorings. Hence, at least three of such
4-colorings do not contain By, Bs, B3, By as a subset. Without loss of generality,
suppose that {1,2,4,6}, {1,2,7,5}, {1,3,4,7} do not contain By, By, Bs, By as
a subset. Then we suppose that By = 246, Bg = 257, B; = 347.

Again, if |B; N B;| # 1 for some i,j € {5,6,7,8} then Kgg is L-colorable by
Corollary 4.2.17. If a color appears in at least three lists in By, Bg, By, Bg then
Ky g is L-colorable by Theorem 4.2.3. Hence, we suppose that |B; N B;| = 1 for
all 4,j € {5,6,7,8} and each color appears in at most two lists in Bj, Bg, By, Bs.

Hence, By = 356. Therefore, F C Ly, Lsis) - O
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Next, we focus on a list assignment L of Kgg such that each color appears in

at most three lists in each partite set.

Theorem 4.2.19. Let L be a 3-list assignment of Kgg such that every color
appears in at most three lists of each partite set where Lgiy = {Aq, As, ..., As}
and Lg(“) = {Bl, BQ, .. ,Bg}. [f 1e Al,Ag, Ag, B but 1 Q Bg, Bs. .. ,Bg, then

Kgg is L-colorable.

Proof. We first label Ay, A5, A3 by color 1. Then the remaining vertices form
Ksg. Let L' be the list assignment of K5g which is obtained from L by removing
color 1. Then L = {Ay, A5, Ag, A7, As} and Ly = {23, By, Bs, ..., Bs}.

Let L* be the list assignment of Kg10 such that L§ = Li U {zyz} where
x,y,z are new colors and Lj, = {223,423, 223, By, Bs, ..., Bip}. It is easy to see
that if Kgq0 is L*-colorable, then Kjg is L'-colorable By Lemma 3.3.4, K10 is

L*-colorable; hence, K5g is L'-colorable. Therefore, Kgg is L-colorable. O

Lemma 4.2.20. Let L be a list assignment of K5 where Ly = {A;, A, As, Ay}
and L5 = {B17Bg,Bg,B4,B5}. ]f |Az| =2 fO’f’ 1= 1,2,3,4 and |BJ| =3 fO’I’

Jj=1,2,3,4,5, then K45 1s L-colorable.

Proof. 1f all lists in L, are mutually disjoint, then we apply Strategy A’ for Lj.
Hence, we suppose that 1 € Ay, A;. If L, has a coloring which has no subset
that is list in L5, then the proof is finished by Lemma 3.2.1. Suppose that every
coloring of L4 has a subset that is a list in Ls. Since L has no list of size 2,
we suppose L, has no 2-coloring. Then we suppose that A3 = 23, Ay = 45.
Moreover, we may suppose that By = 124, By = 125, B3 = 134, By = 135. Then
we label By, By, B3, By by color 1 and the remaining vertices are easily colored.

Therefore, K, 5 is L-colorable. O
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Lemma 4.2.21. Let L be a 3-list assignment of Kgg such that every color ap-
pears in at most three lists of each partite set where Lgy = {A1, As, ..., Ag}
and Lg(“) = {Bl, BQ, R ,BS}- ]f 1e Al, AQ, Ag, Bi,By and 2 € A4, A5, AG but

1 & B3, By,...,Bs, then Kgg is L-colorable.

Proof. Case 1. A;NAs=@.
Then we label Aq, Ay, A3 by color 1 and label Ay, A5, Ag by color 2. The remain-
ing vertices form Kyg. Let L' be the list assignment of K3g which is obtained
from L by removing color 1 and color 2. Since A;NAg = &, we apply Strategy A
for L.

Case 2. |A;NAg|=1.
Let 3 € A7 N Ag. Then {1,2,3} is a 3-coloring of Lg;y. If 123 is not a list in
Lgiiy, then Kgg is L-colorable by Lemma 3.2.1. Suppose that B; = 123. Then
we label A, Ay, A3 by color 1, label Ay, As, Ag by color 2 and label B; by color
3. If color 3 is in other lists in Lg(;;), then we label the lists by color 3. For the
worst case, we suppose that 3 & By, Bs, ..., Bg. Let L' be the list assignment of
K, 7 which is obtained from L by removing color 1, color 2 and color 3. Now,
we apply Strategy A for Lj.

Case 3. |A7 N Ag| =2.
Let A7 = 345 and Ag = 346. Then {1,2,3} and {1,2,4} are 3-colorings of Lg.
If 123 or 124 is not a list in Lgy;) then Kgg is L-colorable by Lemma 3.2.1.
Suppose that B; = 123 and By = 124. Again, since {1,2,5,6} is a 4-coloring of
Lg(;y, we suppose that {1,2,5,6} has a list that is a subset in Lg(;. Since color
1 appears in exactly two lists of Lg(;), we suppose that Bz = 256.

Then we label A;, As, A5 by color 1 and label Bp, By, By by color 2. The
remaining vertices form Kss. Let L’ be the list assignment of K55 which is

obtained from L by removing color 1 and color 2. Then Lg(i) ={A; -2, A5 —
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2, Aﬁ - 27 345, 346} and L%(ZZ) = {B47 B5, B67 B77 Bg}
Let L* be the list assignment of K45 such that L = {A;—2, A5—2, Ag—2,34}

and L} = L It is easy to see that if K,5 is L*-colorable, then K;5 is L’-

(i) -
colorable. By Lemma 4.2.20, K,5 is L*-colorable; hence, K55 is L’-colorable.

That is, Kgg is L-colorable. O

Theorem 4.2.22. Let L be a 3-list assignment of Kgg such that every color
appears in at most three lists of each partite set where Lgiyy = {A1, Ag, ..., As}
and Lg(“) = {Bb BQ, . ,Bg}. ]f 1e Al, Ag, Ag, Bl, BQ but 1 ¢ Bg, B4 ey Bg,

then Kgg is L-colorable.

Proof. Case 1. A color appears in three lists in Ay, As, Ag, A7, Ag.
Then Kgg is L-colorable by Lemma 4.2.21.
Case 2. A color appears in two lists in Ay, As, Ag, A7, Ag but it is not in
B1UB,.
Let L* be the new list assignment of Kgg which is obtained from L by changing
color 2 to color 1. It is easy to see that if Kgg is L*-colorable, then Kgg is
L-colorable. By Strategy D, Kgg is L*-colorable; hence, Kgg is L-colorable.
Case 3. FEvery color which appears in two lists in Ay, As, Ag, A7, As must be
in B1 U By and no color appears in three lists in Ay, As, Ag, A7, Ag.
Notice that B;UB;—{1} has at most four colors. Thus, at most four colors appear
in two lists of Ay, As, Ag, A7, Ag. Since |Ay4] + |As] + |Ag| + |A7] + |As] = 15, we
have at least 11 colors in Ay, As, Ag, A7, Ag. Since AjUAyUA3UB1UBy—{1} is
a set of size 10, there exists a color which is not a color in A; UA;UAsU By UDB,.
Let 2 € Ay but 2 ¢ Ay U Ay U A3 U By U By. Similar to Case 2, we define the
new list assignment L* of Kgg which is obtained from L by changing color 2 to
color 1. Then color 1 appears in four lists in Lg(i). By Theorem 4.2.16, Kgg is

L*-colorable. That is, Kgg is L-colorable. O
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Lemma 4.2.23. Let L be a 3-list assignment of Kgg such that every color ap-
pears in at most three lists of each partite set where Lgiy = {A1, As, ..., Ag} and
Lgiy = {B1,Ba, ..., Bs}. If 1 € Ay, A, A3, By, By, B3 and 2 € Ay, As, Ag, By,

Bs, Bg then Kgg is L-colorable.

Proof. We define the new list assignment L* of Kgg which is obtained from L
by changing color 2 to color 1. It is easy to see that if Kgg is L*-colorable, then
Kgg is L-colorable. By Strategy C for Lgg;), Kgg is L*-colorable. That is, Kgg

is L-colorable. O

Lemma 4.2.24. Let L be a 3-list assignment of Kgg such that every color ap-
pears in at most three lists of each partite set where Lsiy = {A1, Ag, ..., Ag} and
Lgiiy = {B1,Bs, ..., Bs}. If 1 € Ay, A, A3, By, By, B3 and 2 € Ay, As, Ag, By,

By, Bs then Kgg is L-colorable.

Proof. If a coloring of Lg;) (or Lsg;)) has no subset that is a list in Lgg;) (or
Ls(iy), then Kgg is L-colorable by Lemma 3.2.1. Hence, we suppose that every
coloring of Lg;) (or Lg(i)) has a subset that is a list in Lg(;) (or Lgg)-

Case 1. |A; N Ag| > 2.
Let 3,4 € A7, Ag. Since {1,2,3} and {1,2,4} are 3-colorings of Lgg, we have
123,124 € Lg( . It is contradiction to the fact that only one list in Lg(;;) contains
both color 1 and color 2.

Case 2. |A;NAg|=1.
Let A7 = 345 and Ag = 367. Since {1,2,3} is a 3-coloring of Lg(;), we suppose
that By = 123. Since {1,2,4,6},{1,2,4,7},{1,2,5,6} and {1,2,5,7} are 4-
colorings of Lg;), we obtain that {B,—1, B3—1, B4—2, B5—2} = {46,47,56,57}.

Case 2.1. Bg, By, Bs are not mutually disjoint.

We suppose that w € B, By. If w € Bg then we label all lists in Lg(;) by color
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1, color 2 and color w; hence, the proof is done. Suppose that By = xyz where
w, x,y, z are distinct colors. Then {1,2,w,z},{1,2,w,y} and {1,2,w, 2} are 4-
colorings of Lg(;). Since no list in Lgg;) contains both color 1 and color 2, we
have {wz, wy,wz} C {A; — 1,43 — 1, A3 — 1, Ay — 2, A5 — 2, Ag — 2}. That is,
color w appears in at least three lists in Lg(;). Since each color appears in at
most three lists in Lg(;), w is not color 3. Since each color appears in at most
three lists in Lg(;), w is not an element in {1,2,4,5,6,7}. Hence, w appears in
exactly two lists in Lg(;) and in exactly three lists in Lg(). By Theorem 4.2.22,
Kgg is L-colorable.

Case 2.2. Bg, By, Bs are mutually disjoint.
We label By, By, B3 by color 1 and label By, B5 by color 2. The remaining
vertices form Kgs. Let L' be the list assignment of Kg3 which is obtained from
L by removing color 1 and color 2. Since Bg, By, Bg are mutually disjoint, we
apply Strategy A for L.

Case 3. A;NAg=0.
We label A, Ay, A3 by color 1 and label Ay, A5, Ag by color 2. The remaining
vertices form Ksg. Let L” be the list assignment of Kyg which is obtained from
L by removing color 1 and color 2. Since A; and Ag are disjoint, we apply

Strategy A for L. m

Lemma 4.2.25. Let L be a 3-list assignment of Kgg such that every color ap-
pears in at most three lists of each partite set where Lgiy = {A1, Ag, ..., Ag} and
Lgiy = {B1,Bs, ..., Bs}. If 1 € Ay, A, A3, By, By, B3 and 2 € Ay, As, Ag, By,

By, By, then Kgg is L-colorable.

Proof. If a coloring of Lgy) (or L)) has no subset that is a list in Lgg;) (or
Ls(iy), then Kgg is L-colorable by Lemma 3.2.1. Hence, we suppose that every

coloring of Lg;) (or Lgi)) has a subset that is a list in Lgg;) (or Lgg)). Notice
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that if color 3 appears in three lists in Lg(;) and color 3 appears in two lists in
Lg;), then the proof is finished by Theorem 4.2.22 and if color 3 appears in three
lists in Lg(;;) and color 3 appears in three lists in Lg;, then the proof is finished
by Lemma 4.2.24. Suppose that color 3 appears in two lists in Lg) .

Case 1. A;NAg=0.

We label A;, Ay, A3 by color 1 and label A4, A5, Ag by color 2. The remaining
vertices form Ksyg. Let L’ be the list assignment of Kss which is obtained from
L by removing color 1 and color 2. Since A; and Ag are disjoint, we apply
Strategy A for L.

Case 2. |[A7NAg|=1.

Let A7 = 345 and Ag = 367. Since {1,2,3} is a 3-coloring of Lg(;), we suppose
that B; = 123. Since {1,2,4,6},{1,2,4,7},{1,2,5,6} and {1,2,5,7} are 4-
colorings of Lg(;), we suppose that By = 124, B3 = 156 and B, = 257.

We label A;, Ay, A3 by color 1 and label By, By, By by color 2. The remaining
vertices form K5 5. Let L' be the list assignment of K55 which is obtained from L
by removing color 1 and color 2. That is, L’5(Z.) ={A4—2,A5—-2, Ag— 2,345,367}
and Lg(u‘) = {56, Bs, Bs, By, Bs} .

Case 2.1 Ay —2,A5 —2,Ag — 2 have a common color, say p.

Then we label Ay — 2, A5 — 2, A¢ — 2 by color p and label A7, Ag by color 3.
Since the remaining vertices in another partite set still have available colors, K 5
is L'-colorable. Therefore, Kgg is L-colorable.

Case 2.2 Ay —2,A5 — 2, Ag — 2 have no common color and not mutually
disjoint.

Let pe Ay —2,A5 — 2 and A; = 2¢qr.

Case 2.2.1 p=25 and 6 € {q,r}.

Suppose that ¢ = 6. Notice that {3,5,7} and {7,5,r} are 3-colorings of Ls).
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However, at most one of such 3-colorings is a list of Ls(;) because each color ap-
pears in at most three lists in Lg(;). Hence, K55 is L'-colorable by Lemma 3.2.1.
Therefore, Kgg is L-colorable.

Case 222 p#5or 6¢{qr}.
Then {3,p,q} and {3,q,r} are 3-colorings of Lg(i). Since color 3 appears in at
most two lists in Lg;) and 3 € By, at least one of such 3-colorings is not a list in
Ls(is) . Again, by Lemma 3.2.1, K55 is L'-colorable by Lemma 3.2.1. Therefore,
Kgg is L-colorable.

Case 2.3 Ay —2,A5 — 2, Ag — 2 are mutually disjoint.
We label A7, Ag by color 3. Then the remaining vertices form Kjs5. Recall that
color 3 appears in at most two lists in Lg(;); suppose that 3 € B;. Let L” be
the list assignment of K35 which is obtained from L’ by removing color 3. Then
LY ={A;—2, A5 — 2, Ag — 2} and LY = {56, Bs — 3, Bs, B7, Bs}. Then we apply
Strategy A for Lf.

Case 3. |A; N Ag| =2.
Let A7 = 345 and Ag = 346. We label Ay, Ay, A3 by color 1 and label By, By, B,y
by color 2. Then the remaining vertices form K55. Let L’ be the list assignment
of K55 which is obtained from L by removing color 1 and color 2. Then Lg(i) =
{A4 —2, A5 — 2, Ag — 2,345,346} and Liuy = {B3 — 1, Bs, Bg, B7, Bs} .

We define the new list assignment L* of K45 such that L} = {Ay — 2, A5 —
2,A¢ — 2,34} and L} = Lg(ii). It is easy to see that if K,5 is L*-colorable,
then K55 is L'-colorable. By Lemma 4.2.20, K, 5 is L*-colorable; hence, K55 is

L’-colorable. Therefore, Kgg is L-colorable. O

Lemma 4.2.26. Let L be a 3-list assignment of Kgg such that every color ap-
pears in at most three lists of each partite set where Lgiy = { A1, Aa, ..., Ag} and

Lgiy = {B1,Ba, ..., Bs}. If 1 € A, Ay, A3, B, By, By and 2 € Ay, As, Ag, By,
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By, Bs, then Kgg is L-colorable.

Proof. We label A;, Ay, A3 by color 1 and label Bi, By, B3 by color 2. The
remaining vertices form Kjs. Let L’ be the list assignment of K55 which is
obtained from L by removing color 1 and color 2. That is, Lg(i) ={A;—2,A5—
2, Ag — 2, A7, Ag} and L,5(iz') ={B4,Bs...,Bs}.

Case 1. A color appears in exactly three lists in Lg(u‘)f say color 3.

If color 3 appears in at most two lists in Lggy, then Kgg is L-colorable by
Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 3 appears in exactly
three lists in Ly .

Then at most two lists in Lg(;) contains both color 1 and color 3, or at most
two lists in Lg(;) contains both color 2 and color 3. Hence, Kgg is L-colorable
by Lemma 4.2.23 and Lemma 4.2.24.

Case 2. Every color appears in at most two lists in Lé(n')'
Let x;y;2; be a list in L%(ii) such that x;y;2; N (A3 —2) = @ for i = 1,2,3. Let
L* be the 3-list assignment of K, 5 such that Li1 = {{z;} UA;13—2|i =1,2,3}
U{{yiUA;3—2]i = 1,2,3} U{{zi}UA;13—2|i =1,2,3} U{A4, A5} and LE = Li.
Notice that if Kj;5 is L*-colorable, then K55 is L’-colorable. According to

[17], Ki15 is 3-choosable. Hence, Kjj5 is L'-colorable. Therefore, Kgg is L-

colorable. O

Theorem 4.2.27. Let L be a 3-list assignment of Kgg such that every color
appears in at most three lists of each partite set where Lgiy = {Aq, As, ..., As}
CLTld Lg(u) = {Bl,BQ, .. .,Bg}. [f 1 € Al,AQ,Ag CLTld 2 € A4,A5,A6 then K&g 18

L -colorable.

Proof. If color 1 or color 2 appear in at most two lists in Lg(, then Kgg is L-

colorable by Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 1 and color
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2 appear in exactly three lists of Lg(;). Hence, the proof is done by Lemma 4.2.23,

Lemma 4.2.24, Lemma 4.2.25 and Lemma 4.2.26. O

Lemma 4.2.28. Let L be a 3-list assignment of K5 such that Ly = {A;, As,
ey A5} and L6 = {Bl,BQ,...,BG}. ]f |Bll =2 and |A1| =...= |A5| = |BQ| =

...=|Bgs| =3, then Ksg is L-colorable.

Proof. Let Ag = xyz where z,y,z ¢ L(v). Let L* be a 3-list assignment

U€K576
of K6,8 such that Lg = {Al, AQ, c. 7A6} and Lg = {12,’17, 123/, 122, BQ, Bg, c. 7BG}~
Notice that if Kgg is L*-colorable, then K5g¢ is L-colorable. By Lemma 3.3.4,

Kgg is L*-colorable; hence, K5¢ is L-colorable. O

Theorem 4.2.29. Let L be a 3-list assignment of Kgg such that Lggy = {Ai,
Ay, ..., Ag} and Lgiy = {B1, Ba, ..., Bg} where each color appears in at most
three lists in each partite set. If 1 € Ay, As, A3 and 2 € Ay, Ay then Kgg is

L-colorable.

Proof. If color 1 appears at most two lists in Lg(;), then the proof is done by
Theorem 4.2.19 and Theorem 4.2.22. Suppose that 1 € By, By, Bs.

We label By, By, B3 by color 1 and label Ay, A by color 2. The remaining
vertices form Kgps. Let L' be the list assignment of Kg5 which is obtained from
L by removing color 1 and color 2. By Lemma 4.2.28, Kg5 is L'-colorable.

Therefore, Kgg is L-colorable. O

Theorem 4.2.30. Let L be a 3-list assignment of Kgg such that Lg;y = {Ai,
Ay, ..., As} and Ly = {B1, By, ..., Bs} where each color appears in at most
three lists in each partite set. If color 1 and color 2 appear in exactly two lists in
each partite set such that 1 € Ay, Ag, By, By, and 2 € A3, Ay, B3, By, then Kgg is

L -colorable.
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Proof. We define the new list assignment L* of Kgg which is obtained from L by
changing color 8 to color 1. If Kgg is L*-colorable, then Kgg is also L-colorable
and the proof is done. Hence, we suppose that Ksg is not L*-colorable. By
Corollary 4.2.18, the remaining four lists are 246,257,347,356. That is, A5 =
Bs = 246, Ag = Bg = 257, A; = B; = 347, Ag = Bg = 356.

Since {1,8,2,3} is a 4-coloring of Lg(;), we may suppose that it has a subset
that is a list in Lg(;) by Lemma 3.2.1. That is, there is a list from By, By, B3, B,
containing both color 2 and color 3. Similarly, a list from By, B,, B3, B4 contains
both color 4 and color 5 and another list in By, By, B3, B4 contains both color 6
and color 7. Since each color appears in at most three lists, the remaining list in
B1, By, B3, B, contains two new colors, say color 9 and color A. With out loss
of generality, let By = 123, By = 145, B3 = 167 and B4 = 19A. Similarly, we can
prove that 23,45,67,9A are a subset of a list in A;, Ay, A3, Ay.

Case 1. 9A C A, or 9A C A,.

Suppose that A; = 19A. Then we use color 2, color 3, color 8 and color 9
to label lists in Lg(;y and use color 1 and color A to label lists in Lgg;). The
remaining vertices from K 5 which is easily colored.

Case 2. 9A C A3 or 9A C A,.

Suppose that A3 = 89A. Then we use color 1, color 9, color 6 and color 7 to
label lists in Lg(;y and use color 8 to label lists in Lg(;). Then the remaining

vertices form K ¢ which are easily labeled. O

Theorem 4.2.31. Let L be a 3-list assignment of Kgg such that Lg;y = {4y,
Ay, ..., Ag} and Lgiy = {B1, Ba, ..., Bg} where each color appears in at most
three lists in each partite set. If 1 € Ay, Ay, By, Ba, and 2 € As, Ay, By and no

other list contains 1 or 2, then Kgg is L-colorable.

Proof. The proof is similar to Theorem 4.2.30. m
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Lemma 4.2.32. Let L be a 3-list assignment of Kgg such that Lg;) = {A1, As,
.., Ag} and Lguy = {Bi, Ba, ..., Bs} and each color appears in at most three
lists in each partite set . If 1 € Ay, Ay, B;, By but 1 € As,... , Ag, B3, ..., By
2€ A3, Ay, A5, B1,Bs, By and x € Ag and v & A7, A, B1, Bs, ..., By, then Kgg

1s L-colorable.

Proof. Case 1. Color x appears in exactly three lists in Lg .
If color x appears in exactly one list, two lists, three lists, then we apply Theo-
rem 4.2.19, Theorem 4.2.22 and Theorem 4.2.27, respectively.

Case 2. Color x appears in exactly two lists in Lg .
If color z appears in three lists in Lg(;), then the proof is done by Theorem 4.2.27.
Then we suppose that color x appears in at most two lists in Lgg;. If 2 € Ay
or x € Ay, then we define a new list assignment of Kgg which is obtained from
L by changing color x to color 2 and then we apply Strategy D. If x € A3z, x €
Ay or x € Aj, then we define a new list assignment of Kgg which is obtained
from L by changing color x to color 1 and then we apply Theorem 4.2.30 and
Theorem 4.2.31.

Case 3. Color x appears in exactly one list in Lg).
If color x appears in three lists in Lg(;), then the proof is done by Theorem 4.2.27.
Then we suppose that color z appears in at most two lists in Lg(;). If  appears
in exactly one list in Lg(;;) then we define a new list assignment of Kgg which is
obtained from L by changing color x to color 1 and then we apply Theorem 4.2.27.
If x appears in exactly two list in Lg(;) then we define a new list assignment of
Kgg which is obtained from L by changing color = to color 2 and then we apply

Strategy D for Lg . O

Theorem 4.2.33. Let L be a 3-list assignment of Kgg such that Lg;y = {Ai,

Ay, ..., As} and Lguiy = {B1,Bs,...,Bs} and each color appears in at most
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three lists in each partite set. If 1 € Ay, Ay but 1 € As, ..., Ag 2 € Az, Ay, A5,

then Kgsg is L-colorable.

Proof. If a color appears in three lists in A;, Ay, Ag, A7, Ag, then Kgg is L-
colorable by Theorem 4.2.27. We can suppose that each color appears in at most
two lists in Ay, As, Ag, A7, Asg.

If color 2 appears in at most two lists in Lg(;), then Kgg is L-colorable by
Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 2 appears in exactly
three lists in Lg() .

Case 1. Color 1 is not in any list in Lg().

Hence, we color A;, Ay by color 1. The remaining vertices from Kgg which is
3-choosable by Lemma 3.3.4.

Case 2. Color 1 appears in exactly one list in Lg .

Let 1 € By. If 2 ¢ By, then we define a new list assignment L* by changing color
2 to color 1 and then we apply Strategy D. Suppose that 2 € By, By, By. Let 3
be the remaining color in B;. Notice that color 3 appears in at most two list in
Ag, A7, Ag.

We label A;, A; by color 1, label Az, A4, A5 by color 2 and label B; by color
3. For the worst case, we suppose that 3 € A7, Ags. The remaining vertices
form K37 Let L’ be the list assignment of K37 which is obtained from L by
removing color 1, color 2 and color 3. That is, L3 = {A¢ — 3, A; — 3, As} and
L; ={By—2,B3—2,By,Bs5...,Bs}.

We may suppose that B, and B, have only one common color because if
B, and Bjs have more than one common color then the proof is done by Theo-
rem 4.2.29. Hence, if L3 has two 2-colorings which is not disjoint or has at least
three 2-colorings, then at least one of such 2-colorings is not a list in L7; hence,

Kgg is L-colorable by Lemma 3.2.1.
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Suppose that L3 has at most one 2-coloring or has two 2-coloring which are
disjoint. Hence, Ag—2, A;—2, Ag are mutually disjoint. Then we apply Strategy A
for L to prove that K37 is L’'-colorable. Therefore, Kgg is L-colorable.

Case 3. Color 1 appears in exactly two lists in Lg .

Let 1 € By, By. Recall that color 2 appears in exactly three lists in Lg;. If
2 € By, By, then the proof is done by Theorem 4.2.29. If color 2 ¢ B, By, we
define a new list assignment L* of Kgg by changing color 2 to color 1 and then
we apply Strategy D. Suppose that 2 € By, B3, By.

We label Ay, Ay by color 1 and label As, A4, A5 by color 2. The remaining
vertices form Kjg. Let L’ be the list assignment of K35 which is obtained from
L by removing color 1 and color 2. If L} has a coloring that is not a list in Lj,
then the proof is done by Lemma 3.2.1. Suppose that every coloring of L has a
subset that is a list in Lj.

Case 3.1 [AgNA7| >2 or |Ag N Ag| > 2 or |A; N Ag| > 2.

Without loss of generality, suppose that 3,4 € Ag, A; and Ag = 567. Hence,
L% has at least six 2-colorings, namely {3,5},{3,6},{3,7},{4,5},{4,6},{4,7}.
Since every coloring in L% must have a subset that is a list in L;. We have 3 € By
or 4 € B;. Without loss of generality, suppose that 3 € B;. Moreover, 45, 46,47
must be a list in Lj. Hence, we suppose By = 245, By = 246 and B, = 247.
Hence, there are two lists containing both color 2 and color 4. Then Kgg is
L-colorable by Theorem 4.2.29.

Case 3.2 [AgN A7 =1 and |[AgNAg| =1 and |A7 N Ag| = 1.

Suppose that Ag = 345, A; = 367 and Ag = 468. Similar to Case 3.1, we may
suppose that By = {123, By = 146, B3 = 247 and By = 256. Since color 8 appears
in exactly one list in Ag, A7, As and 8 ¢ By, By, Bs, By, Bs, Kgg is L-colorable

by Lemma 4.2.32.
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Case 3.3 |[AgN A7l =1 and |Ag N Ag| =1 and |A7 N Ag| = 0.

Suppose that Ag = 345, A; = 367 and Ag = 489. Similar to Case 3.1, we may
suppose that B; = 123, By = 146 and B3 = 247.

If 8¢ By or 9 ¢ By, then the proof is finished by Lemma 4.2.32. Suppose
that By = 289.

Since {1,2,5,7,8} and {1,2,5,7,9} are 5-colorings of Lg(;, we may suppose
that such 5-colorings has a subset that is a list in Lgy;) by Lemma 3.2.1. We
suppose that Bg = 578 and B; = 579. Therefore, Kgg is L-colorable by Theo-
rem 4.2.29.

Case 34 |AgN A7l =1 and |Ag N As| =0 and |A7 N Ag| = 0.

Then AgUA;UAg has at least eight colors; hence, there is a color z € AgUA;U Ag
such that no list in L containing both color 1 and color x because color 1 appears
only in four lists in L and B; has already contained color 1 and color 2. Thus
we define a new list assignment L* of Kgg by changing color = to color 1. If x
appears in exactly two lists in Ag, A7, Ag, then we apply Theorem 4.2.3 for L*. If
x appears in exactly one list in Ag, A7, Ag, then we apply Theorem 4.2.27 for L*.
Case 3.5 [AgN A7 =0 and |Ag N Ag| =0 and |A7 N Ag| = 0.
The proof is similar to case 3.4.

Case 4. Color 1 appears in exactly three lists in Lg).

Since color 1 only appears in exactly two lists in Lg(;), Kgg is L-colorable by

Theorem 4.2.22. L]

Theorem 4.2.34. Let L be a 3-list assignment of Kgg such that Lg;y = {4y,
Ay, ..., As} and Lguy = {B1, Bs,...,Bs} and each color appears in at most
three lists in each partite set. If 1 € Ay, Ag, A3 then Kgg is L-colorable unless

F C Ls(), Lsii) -

Proof. By Theorem 4.2.19 and Theorem 4.2.22, we may suppose that 1 € By, By, Bs.
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By Theorem 4.2.27, we suppose that each color appears in at most two lists in
Ay, As, Ag, A7, Ag. Similarly, we suppose that each color appears in at most two
lists in By, Bs, Bg, B7, Bs. We will prove that if L has one of the following three
properties, then Kysg is L-colorable and finally we prove that L must have one
of these three properties,

Property 1. There is a color x € Ay, As but © € Ay, As, A3 or there is a
color x € By, Bs but x € By, By, Bs.
The proof is done by Theorem 4.2.33.

Property 2. There is a color x € Ay, A5 but x & By, By, B3 or there is a
color x € By, Bs and © & By, By, Bs.
We define the new list assignment of Kgg which is obtained from L by changing
color = to color 1 and then we apply Strategy D.

Property 3. There is a color x € Ay, By and the remaining lists do not con-
tain x.
We define the new list assignment L* of Kgg which is obtained from L by chang-
ing color x to color 1. By Theorem 4.2.18, Kgg is L*-colorable unless the re-
maining four lists are 246,257,347,356. Hence, we suppose that A5 = Bs =
246, Ag = Bg = 257, A7 = B; = 347 and Ag = Bg = 356. If 123 is not a list in
Lgiiy, then we label Ay, As, A3, A5, Ag, A7 by color 1,2,3. The remaining vertices
form K;g which is easily colored. Hence, we suppose that A; = 123, A, = 145
and As = 167. That is, {123,145,167,246,257,247,256} C Lg(;). Similarly,
we can prove that {123,145,167,246, 257,247,256} C Lg. It can be directly
verified that if {123,145,167,246,257,247,256} C Lg(;), Ls@iy then Kgg is not
L-colorable.

Finally, we will prove that L must have a color x with one of the properties.

Suppose that no color x with the properties in Property 1 and Property 2. Let
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1, T, ...,T, bethe colors which appears in three lists in Ay, As, Ag, A7, Ag. Since
AjUA;U A3 — {1} (and By UByU By —{1}) contains at most six colors, we have
k < 6. Thus at least one list from A;, Ay, A3 and another list from B, B, Bs
contains z; for each i. Hence, AjUA;UA3UB;UByUBs—{1,21,29,...,2} has
at most 12 — 2k elements. Since 15 — 2k is the number of colors which appears
once in Ay, As, Ag, A7, Ag, there is a color x € A5 U Ag U A; U Ag which is not
in Ay, As, A3, By, By, Bs. If color x appears in two lists in Bs, Bg, B7, Bg, then it
is in Property 1. Hence, color x appears in exactly one list in Lg(;) which is in

Property 3.. 0

Theorem 4.2.35. Let L be a 3-list assignment of Kgg such that each color

appears i at most two lists in each partite set. Then Kgg is L-colorable

Proof. If all lists in Lg(;) are mutually disjoint, then we apply Strategy A. Other-
wise, we suppose that 1 € A;, Ay. For the six remaining lists in Lg(;), we have at
least nine colors because each color appears in at most two lists. However, color
1 appears in at most two lists in each partite set. At most eight colors are in the
lists containing color 1. Without loss of generality, suppose that 2 € Bs and no
list containing both color 1 and color 2. Hence, we define the new list assignment
L* of Kgg which is obtained from L by changing color 2 to color 1. By Theo-
rem 4.2.18 and Theorem 4.2.34, Kgg is L*-colorable unless 246, 257, 347, 356 are
the lists in both partite set. If Kgg is L*-colorable, then Kgg is L-colorable;
hence, we suppose that As = By = 246, Ag = Bg = 257, A; = By = 347 and
Ag = Bg = 356.

Since every color appears in at most two lists in each partite set, the remaining
lists do not contain color 2,3,4,5,6,7. That is, we can split graph Kgg is to
two copies of K,4. Let L' be the 3-list assignment of K44 such that Lg(i) =

{A, Ay, A3, Ay} and Li;(n‘) = {By, By, B3, B4}. Let L” be the 3-list assignment
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i

of K,4 such that LZ() = {As, Ag, A7, Ag} and LZ(m’) = {Bs, Bg, B7, Bs}. Since

K, 4 is 3-choosable, Kgg is L-colorable. O

Theorem 4.2.36. Let L be a 3-list assignment of Ksg. Then Kgg is L-colorable

if and only if F C Lgy, Ls(i) -

Proof. Assume that F ¢ Lg;y or F ¢ Lgi)-
If 78y > 5 or 733 = 5, then we apply Lemma 4.1.6. If rg;) < 4 and 754 < 4;
apply Theorem 4.2.18, Theorem 4.2.34 and Theorem 4.2.35. In this case, Kgg is

L-colorable unless F C Lgiy, Lg(is) - O

4.3 On (3,t)-choosability of K74

Study 3-choosability of K7 is difficult than Kgg because K7g is not sym-
metric. That is, K7 g requires more cases. It is clear that, for a 3-list assignment
L, K79 is not L-colorable if L|V(K77) = Lr. We conjecture that, for a 3-list
assignment L, K7 is L-colorable if and only if L|y(x,.) # Lr.

Here, we prove that K7g is (3,t)-choosable if and only if ¢ < 6 or ¢ > 14.
We still left a characterization of all 3-list assignments of L such that K7g is not
L-colorable for future work. (See Chapter 6.) We introduce remarks which are
used several times in this section.

For the following remarks, let L be a (3,t)-list assignment of K79 where L; =
{A1,Ay... A7} and Lg = {By,By,..., By} and r; (and 79) be the maximum
number of lists in L; (and Lg) containing a common color.

Suppose that (r7,79) = (3,4); this is one of two missing cases of Lemma 4.1.5.

Remark 4.3.1. If 1 € A, Ay, A3, By, Bs, B3, B, and 2 is in some lists in L but no
lists contains both color 1 and color 2, then we can define the new list assignment

L* from L by changing color 2 to color 1. It is easy to see that if K7g is L*-
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colorable then K74 is L-colorable. Notice that color 1 appears at least in four
lists in L7 or at least five lists in Lg. Hence, K79 is L*-colorable by Lemma 4.1.5.

Therefore, K79 is L-colorable.

Remark 4.3.2. Suppose that ¢ > 14 and color 1 appears in at most six lists
in L. Since a list containing color 1 has another two colors, at most 12 colors
appear in the lists which contain color 1. Since we have 14 color, we have one
color left. Then there exists a color, say color 2 such that no list contains both
color 1 and color 2. Then we construct new 3-list assignment [* by changing

color 2 to color 1.

Remark 4.3.3. Suppose that ¢ >. If a color appears in lists in only one partite
set, then we can label such vertices by this color and the remaining vertices can
be labeled by Theorem 3.3.7, Theorem 3.3.8 and Theorem 3.4.6. Suppose that
every color appears in lists of both partite sets.

If color 1 appears in three lists in L; but color 1 appears in at most three
lists in Lg, then we construct a new 3-list assignment [* as in Remark 4.3.2.
Hence, color 1 appears in at least four lists in L%, then K;g is L*-colorable by
Lemma 4.1.5. Therefore, K7 g is L-colorable.

If color 1 appears in exactly four lists in Lg but color 1 appears in at most

two lists in L7, then we can conclude that K7 g is L-colorable, similarly.

Remark 4.3.4. Suppose that ¢t > 14. Let X = {44, Ay, A3, By, Bs, B3, B,} and
color 1 is in all lists in X. If a color not including color 1 appears in at least
three lists in X or at least two colors not including color 1 appear in two lists in

X, then there exists a color = & | .« X because L contains at least 14 colors.

zeX

Then K7g is L-colorable by Remark 4.3.1.

Lemma 4.3.5. Let L be a (3,t)-list assignment of Krg such that L; = {A;,

Ay, ..., Az} and Ly = {By,Ba,...,Bo} where t = 14,15. Let r; (and r9)
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be the mazimum number of lists in L; (and Lo ) containing a common color. If

le Ay, Ay As, 2 € Ay, As, Ag and (r7,1m9) = (3,4), then Kqg is L-colorable.

Proof. Case 1. All of 123,124,125 are lists in Lg.
Then K7g is L-colorable by Remark 4.3.4.
Case 2. One of 123,124,125 is not a list in Lg.
Since {1,2,3},{1,2,4} and {1,2,5} are 3-colorings of L7, there exists a 3-
coloring of L7 which has no subset that is a list in Lg. Then K7g is L-colorable

by Lemma 3.2.1. O

Lemma 4.3.6. Let L be a (3,t)-list assignment of Krg such that L; = {A;,
Ay, ..., Az} and Ly = {Bi,Ba,...,Bo} where t = 14,15. Let r; (and r9)
be the mazimum number of lists in L; (and Lo ) containing a common color. If

1 € By,By, B3, By, 2 € Bs, B, By and (r7,719) = (3,4), then Kr7g is L-colorable.

Proof. By Remark 4.3.3, we may suppose that 1 € Ay, As, As.
Case 1. 2 € Ay, Ay, A;z.
Notice that A; — 12, Ay — 12, Ay — 12 contain a color and By — 1, B, — 1, B3 — 1
contain two colors. At most nine colors (including color 2) are in the same lists
with color 1. Since we have at least 14 colors, there exists a color x such that no
list in L contain both color 1 and color x. Then the proof is done by Remark 4.3.1.
Case 2. 2¢€ Ay, Ay but 2 & Ajz.
If 2 € A4, then color 2 appears in three lists in Ly. By Remark 4.3.3, we suppose
that color 2 appears in four lists in Lg. If 2 € By or 2 € By, then we label
By, By, B3, By by color 1 and label Bs, Bg, B7, Bs by color 2 and the remaining
vertices can be easily colored. If 2 € By U By, U B3 U By, then there exists a color
x such that no list in L contain both color 1 and color x. Then the proof is done

by Remark 4.3.1.
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Case 3. 2€ Ay but 2 & Ay, As.
If |[BsN By| # 1, then we label By, Bsy...,B; by color 1 and color 2. The
remaining vertices can be directly labeled. Suppose that Bg = 346 and By =
357. If Ly has a coloring which has no subset that is a list in L7, then K7g
is L-colorable by Lemma 3.2.1. Suppose that each coloring of Lg has a subset
that is a list in L7. Since {1,2,3} is a 3-coloring of Lg, let A; = 123. Since
{1,2,4,5},{1,2,4,7},{1,2,6,5} and {1,2,6,7} are 4-colorings of L7, we suppose
that 2 € Ay, As and {Ay — 1, A3 — 1, A, — 2, A5 — 2} = {45,47,65,67}. Since
(By —1)U (B3 — 1)U (By — 1) is of size 6, one of colors 8,9, A, B,C, D, E is not
in (B, — 1)U (B3 — 1)U (Bs — 1). Suppose that 8 ¢ By, By, By. Then color 8
is not in the same list with lists containing color 1. Then this case is done by
Remark 4.3.1.

Case 4. 2¢ Ay, Ay, As.
If 2¢& Ay, Ay, As, then we define the new list assignment L* by changing color 2

to color 1 and then we apply Strategy C for Lg. ]

Lemma 4.3.7. Let L be a (3,t)-list assignment of Krg such that L; = {Ay,
Ay, ..., Az} and Ly = {By1,Ba,...,Bo} where t = 14,15. Let r; (and 19)
be the mazimum number of lists in L; (and Lg) containing a common color. If
1€ Ay, Ay, Az, (r7,7m9) = (3,4) and there exists another color which appears in

three lists in Ly, then Kryg is L-colorable.

Proof. Let color 2 be another color which appears in three lists in L.

Case 1. 2¢ Aj U Ay U A;.
Then color 2 appears in three lists in Ay, A5, Ag; hence, K79 is L-colorable by
Lemma 4.3.5.

Case 2. 2€ AjUA, U As.

By Remark 4.3.3, we suppose that both color 1 and color 2 appear in exactly
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four lists in Lg. If at least two lists in Lg contains both color 1 and color 2, then
K79 is L-colorable by Remark 4.3.4. If at most one list in Lo contains both color

1 and color 2, then K79 is L-colorable by Lemma 4.3.6. O

Lemma 4.3.8. Let L be a (3,t)-list assignment of Krg such that L; = {Ay,
Ay, ..., Az} and Ly = {By1,Bs,...,Bo} where t = 14,15. Let r; (and 19)
be the mazimum number of lists in L; (and Lo ) containing a common color. If

1 € By, By, B3, By and (r7,19) = (3,4), then Krg9 is L-colorable.

Proof. By Remark 4.3.3, suppose that 1 € Ay, Ay, A3. By Lemma 4.3.7, suppose
that each color appears in at most two lists in L-.

We first label Bj, Bs, Bs, By by color 1; hence, the remaining vertices form
K7 5. Let L' be the list assignment of K75 which is obtained from L by removing
color 1 and color 2.

Case 1. No color appears in two lists in L.
Then we apply Strategy A for LI.

Case 2. Ezactly one color appears in two lists in L.
Let 2 € Bs, Bg. Then we label Bs, Bg by color 2; hence, the remaining vertices
form Kz3. Let L” be the list assignment of K73 which is obtained from L' by
removing color 2. Since color 2 appears in at most two lists in Ly, we can apply
Strategy A for LY.

Case 3. Ezactly two colors appear in two lists in LL.
Let 2 € Bs,Bg. If 3 € B5 or 3 € Bg, then By, Bg, By are still mutually disjoint;
hence, the proof is similar to Case 2. Next, suppose that 3 € By, Bs.

Case 3.1 2 or3¢ A;UAyU A;
Define the new list assignment L* of K79 which is obtained from L by changing
such color to color 1. Then we apply Strategy D’.

Case 3.2 2€ AU Ay U A3z and color 2 appears in two lists in L.
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Recall that we have labeled Bi, By, B3, By by color 1. Then we label such two
lists in L7 by color 2 and label B; and Bg by color 3. The remaining vertices
form K53. Let L” be the list assignment of Kj3 which is obtained from L by
removing color 2 and color 3. Then we apply Strategy A for Lf.

Case 3.3 3€ AU Ay U A3 and color 3 appears in two lists in L.

Similar to Case 3.2.

Case 3.4 2,3 € Ay and no other list in L7 contains color 2 or color 3.

We label Bsj, Bg by color 2 and label A; by color 3. For the worst case, we
suppose that 2,3 & Ay, As..., A7. Then the remaining vertices form Kg3. Let
L" be the list assignment of Kgs which is obtained from L' by removing color
2 and color 3. Notice that Lf contains two lists of size 2 and one list of size 3.
Define the new list assignment L* of Kg3 by deleting a color from only such list
of size 3. It is obvious that if K3 is L*-colorable, then Kg3 is L"-colorable.
Then we apply Strategy A’ for L} to guarantee that Kg3 is L*-colorable.

Case 3.5 2¢€ A(,3 € Ay and no other list in Ly contains color 2 or color 3.
We label Bs, Bg by color 2 and label B;, Bg by color 3. The remaining vertices
can be easily labeled.

Case 4. At least three colors appear in ezactly two lists in L.

Since |Bs|+|Bg|+|Br7|+|Bs|+|By| = 15, exactly nine colors appear in exactly one
list. Since t > 14, there is a color, say color 2 which is not in Bs, Bg, B7, B, By.

Case 4.1 2¢ By, B,, B3, By.

Then color 2 only appears in L7; hence, we label some lists in L; by color 2.
The remaining vertices form a complete bipartite graph with at most 15 vertices
which can be labeled by Theorem 3.3.7, Theorem 3.3.8 and Theorem 3.4.6.

Case 4.2 2 € By, By, B3, By.

Suppose that 2 € By. Similar to Case 5.1, we suppose that color 2 is in a list of
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L7 . Then we label some lists in L7 by color 2. For the worst case, suppose 2 € Ay
and no other list in L7 contains color 2. The remaining vertices form Kg5. Let L”
be the list assignment of Kg5 such that Lg = {A; —1, Ay — 1, A3 — 1, A5, Ag, Az}
and L! = {Bs, Bs, By, Bs, By} .

Since each color appears in at most two lists in LY, there exists a list 19121 €
LY such that z1y121 N (A; — 1) = @. Similarly, there exist lists zoy222 and x3ys2;
such that zoys20 N (Ay — 1) = 23y323 N (A3 — 1) = &. Hence, we define the new
list assignment L* of Kjo5 such that Li2 = {As5, Ag, a7} U {{z;} U(A; —1)|i =
L2, 3} U{{yitU(A;—1)]i =1,2,3}U{{z}U(A;—1)|i = 1,2,3}. It is easy to see
that if K95 is L*-colorable, then K5 is L”-colorable. According to Shende[17],

K12 is 3-choosable. Hence, K7 g is L-colorable. O

Theorem 4.3.9. The complete bipartite graph K7 g is (3,t)-choosable if and only

if t <6 ort>14.

Proof. If L is a 3-list assignment of K79 such that Ly = F and Ly = F U
{z1293, Y192y3} where 1,9, 3,1, y2,ys are any colors, then Krg is not L-
colorable. Depending on such six colors, t may be 7,8,9,...,13. Hence, K79 is
not (3,t)-choosable for 7,8, ...,13.

Case 1. t <6.
Then a color in Ly appears in at least [%2] = 5 lists. Hence, K7y is (3,¢)-
choosable for t < 6 by Lemma 4.1.5.

Case 2. t > 16.
Let S C V(K7g). If |S| < 13, then K74[S] is L|g-colorable by Theorems 3.3.7;
if |S| = 14, then K74[S] is L|g-colorable by Theorem 3.3.8 and if |S| = 15
then K79[S] is L|g-colorable by Theorem3.4.6. Then K7g is L-colorable by
Theorem 2.1.7.

Case 3. t=14,15.
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By Lemma 4.1.5, K79 is always L-colorable unless (r7,rg) = (2,3),(3,4). If
(r7,79) = (3,4), then K7gq is L-colorable by Lemma 4.3.8. Suppose that (r7,79) =
(2,3). Let 1 € By, By, Bs. Notice that 1 appears in at most two lists in L. Since
we have at least 14 colors, there exists a color, say color 2 which is not in the
same list with color 1. Then we define the new 3-list assignment L* of K7g9 by
changing color 2 to color 1. Then color 1 appears in at least four lists in L3;

hence, K79 is L*-colorable by Lemma 4.3.8 and Lemma 4.1.5. O

Theorem 4.3.10. A complete bipartite graph with 16 wvertices is (3,t)-choosable

fort <6 ort>14.

Proof. 1t follows from Theorem 4.1.7, Theorem 4.2.36 and Theorem 4.3.9. O



CHAPTER V

ON (k,t)-CHOOSABILITY of K(Qkk—l) (21%1)

k

5.1 Background

Since k-choosability implies k-colorability, x(G) < x;(G) for every graph G.
This bound is sharp because x(G) = x;(G) = 2 when G is a tree. However,
there exists a graph G such that x(G) and x,;(G) is significantly different. In [4],
Erdés , Rubin, and Taylor gave an example of bipartite graphs which is not k-
choosable for each positive integer k. Such graph is the complete bipartite graph

Qk—l)'

Ky,m when m = ( . They gave a k-list assignment L such that K, ,, is not

L-colorable. Example 5.1.1 shows a special case when k£ = 3.

Example 5.1.1. When k£ = 3, we have m = (g) = 10. Figure 2.1.1 shows the

(3,5)-list assignment L such that Kjg 19 is not L-colorable.

Figure 5.1.1: A (3,5)-list assignment L of K10

The complete bipartite graph K 19 is not L-choosable because each partite

set requires three colors but there are only five available colors. 0

In general, we assign distinct k-subsets of {1,2,...,2k — 1} to each vertex in
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2k—1

each partite set of K, ,, where m = ( .

) to form a k-list assignment L. If we
use only k£ — 1 colors to label lists in a partite set, then the remaining k£ colors
form a list which we are not labeled. That is, we need at least k colors to color
all vertices in each partite set. However, we have only 2k — 1 colors. Hence, we
cannot label all vertices in both partite sets. Notice that the k-list assignment
contains exactly 2k — 1 colors; in other words, K, ,, is not (k,2k — 1)-choosable.
Particularly, K010 is not (3,5)-choosable. Next, we also show that K10 is not
(3,t)-choosable for t =6,7,8.

Example 5.1.2 shows how to obtain a (3,¢)-list assignment L of Kjg i for

t =5,6,7 such that K10 is not L-colorable.

Example 5.1.2. Let L be the (3,5)-list assignment L of K10 in Figure 5.1.2.
We will construct new list assignments L', L%, L3 of K19 such that K19 is not
Li-colorable for i = 1,2,3. The list assignments L', L? and L? are obtained from

L by changing colors in boxes as shown in Figures 5.1.2, 5.1.3 and 5.1.4.

Figure 5.1.2: A (3,6)-list assignment L' of K19

We show that Kjgi9 is not L'-colorable. Let A; = {A;, Ay, ..., Ajp} and
Ay = {A], AL, ..., Ay} be the lists of vertices in the left partite set and the right
partite set in Figure 5.1.2, respectively. We show that Koo is not L'-colorable

by dividing the proof into several cases.
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Case 1. If we use both color 1 and color 2 to label some lists in A;, then
we cannot label all of Ajq, A}, A, AS.

Case 2. Similar to Case 1, if we use both color 1 and color 2 to label some
lists in Ay, then we cannot label all of A, Ag, A3, A,.

Case 3. If we use color 1 to label some lists in .A; and use color 2 to label
lists in Ay, then we cannot label all of A7, Ag, Ag, A}, AL, Aj.

Case 4. Similarly to Case 2, if we use color 2 to label some lists in A; and
use color 1 to label lists in Ay, then we cannot label all of Ay, As, Ag, A%, AL, Ay

Case 5. If we use neither color 1 or color 2, we cannot color all of Ay, As,

Ag, AL AL, Ay. Hence, K19 is not L'-colorable.

Figure 5.1.3: A (3,7)-list assignment L* of K19

Figure 5.1.4: A (3,8)-list assignment L3 of K19

It can be proved similarly that K¢ 10 is neither L?-colorable nor L3-colorable.
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2k—1) )

In this chapter, k,t and m are always positive integers such that m = ( .

We have seen that K,,,, is not (k,t)-choosable for t = 2k — 1. We next are
interested in ¢ < 2k — 1 or t > 2k — 1 which is studied in Section 5.2. Given a
positive integer k, we reveal all (k,t)-choosability of the complete bipartite graph
Kpnm except when 17 - 282 — 4k — 4 < t < 2km — k? + 2k; in such a case, the
problem still unsolved. In particular, Section 5.3 contains the complete results
when k£ = 3. We combine the tool in Theorem 2.1.7 with and the main results

from Chapter 3 and Chapter 4 to obtain these complete results when k£ = 3.

5.2 On (k,t)-choosability of K(qu) (1)

k k

In this section, we focus on general cases. We prove that if t <2k —2 or t >
2km—2k*+ 2k, then K, ,, is (k,t)-choosable, and if 2k—1 <t < 17-2"2—4k—4

then K,,,, is not (k,t)-choosable.

Theorem 5.2.1. Let k,t,m be positive integers such that k > 3 and m = (%k_l) .

If t <2k —2, then K, is (k,t)-choosable.

Proof. Let L be a (k,t)-list assignment of K, ,,. We can use [£] colors to color
all vertices in each partite set because [L]| +k > [1| + 1 > ¢+ 1. Hence, we
label vertices in one partite set by color 1,2,..., L%J and label vertices in the

other partite set by color |£] +1,[£] +2,...,t. O

In Theorem 5.2.2, we will show that if the number ¢ is large enough, then

Kpm is (k,t)-choosable.

Theorem 5.2.2. Let k,t,m be positive integers such that m = (%k_l). Ift >

2km — 2k* + 2k, then K, . is (k,t)-choosable.
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Proof. Let L be a (k,t)-list assignment of K,,,,. For every S C V(G), |L(S)| >
t— L(V(G) — S) > 2km — 2k + 2k — k(2m — |S|) = k| S| — 2k* + 2.

To apply Theorem 2.1.7, let S C V(K,,m) be such that |L(S)| < |S|. Then
|S| > k|S|—2k*+2k. Hence, |S| < 2k. Tt is easy to see that a bipartite graph with

less than 2k vertices is k-choosable. Therefore, K,,,, is (k,t)-choosable. O

Before we prove our main result in Theorem 5.2.10, we need Lemma 5.2.4 as

a basis step for mathematical induction.

Definition 5.2.3. Let L be a list assignment of a graph G'. Then L is called
a colorable list assignment of G if GG is L-colorable; otherwise, L is called a

non-colorable list assignment of G.

Recall Notation 3.1.2 that if L is a list assignment of K,,, then L,; and

Ly i) are collections of lists assigned to the vertices in each partite set.

Lemma 5.2.4. Let t be a positive integer. Kss is (2,t)-choosable if and only
if t <2 ort>6. Moreover, for a 3-list assignment L of Ks3, the complete
bipartite graph Ky is L-colorable if and only if L # L',L* L where Ly, =

{12,13,23}, L} = {12,13,23}, L%, = {12,13,24}, L%, = {12,14,23}, and

i) i)

L}, = {12,13,45}, L}, = {14,15,23}.
Proof. Let L be a (2,t)-list assignment of Kj3.
Case 1. t>2o0rt>6.
If t =2, then K33 is (2,t)-choosable because K33 is 2-colorable. Suppose that
t > 6. To apply Theorem 2.1.7, let S C V(K33) be such that |L(S)| < |S].
Then |S| = 5. Hence, Kj33[S] is a subgraph of K3 which is 2-choosable by
Example 2.1.1(ii). Hence, K33 is L|g-colorable. Therefore, K33 is L-colorable.
Case 2. t=3,4,5.

Define a (2, 3)-list assignment, a (2,4)-list assignment, and a (2,5)-list assign-
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ment L', L? and L3 as follows. Lé(i) = {12, 13723}7[’:13(1‘1‘) = {12, 13,23}, Lg(i) =

{12,13,24}, L2, = {12,14,23}, and L3, = {12,13,45}, L}, = {14,15,23}.

i)
Since K33 is not Lf-colorable for ¢ = 1,2,3, Kj3 is not (2,t)-choosable for
t=3,4,5.

Next, we characterize all non-colorable 2-list assignments L of K33. If all lists
in L3y are mutually disjoint, then K33 is L-colorable by Strategy A’. Suppose
that Lz, = {1a,1b,cd} where a,b, c,d are positive integers. By Lemma 3.2.1, if
L is a non-colorable list assignment, then such colorings has a subset that is a
list in Lg(;. Since {1,c}, {1,d}, {a,b,c} and {a,b,d} are colorings of L, we
obtain Lj;) = {1c,1d,ab}. Next, we consider possibility of L.

Case 2.1. a,b,c,d are distinct.
Suppose that a = 2,b = 3,c = 4 and d = 5. Hence, t = 5 and Lj; =
{12,13,45}, Ly = {14, 15,23}

Case 2.2. a = c but a,b,d are distinct.
Suppose that a = ¢ = 2, b = 3 and d = 4. Hence t = 4 and L3y =
{12,13,24}, Ly = {12, 14,23}

Case 2.3. a=cand b=d.
Suppose that a = c=2and b= d = 5. Hence, t = 3 and Ly = {12, 13,23}, L3 =

{12,13,23}. m

Notation 5.2.5. Let A; and A be collections of lists. The notation [A;,.As]
represents the list assignment, say L, of K4, |4, such that L4, = A; and

L|A2‘ = AQ.

Definition 5.2.6. Let S be a set and ¢ a positive integer. Define the collection
of sets (f) = {A C S|A has size i}. Let X be a collection of sets and ¢ be an

element which is not in any set in X. Define ¢X = {{c} U X|X € X}.
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Example 5.2.7. Let S = {1,2,3,4} and X = (g) Then X = {{1,2}, {1,3},
{1,4}, {2,3}, {2,4}, {3,4}} and 5X = {{1,2,5}, {1,3,5}, {1,4,5}, {2,3,5},

{2,4,5}, {3,4,5}}. U

Remark 5.2.8 introduces an idea to construct a non-colorable list assignment
of a complete bipartite graph from an existing non-colorable list assignment of a

smaller complete bipartite graph. Example 5.2.9 illustrates the idea.

Remark 5.2.8. Let [A;,.As] be a non-colorable list assignment of the complete
bipartite graph K, |4,/

(i) If [pAi, gAs] is a colorable list assignment of K|4,|4,, then any [pA;, ¢As]-
coloring of K 4,4, must use color p or color g.

(ii) If [pgA;, As] is a colorable list assignment of K4, 4,|, then any [pgA;, As]-

coloring of K 4,4, must use color p or color g.

Example 5.2.9. Let A, = {34,35,45}, A, = {34,35,45}, B, = {34,35,46}
and By = {34,46,45}. Then [A;, As] and [By, By are a non-colorable (2,3)-list
assignment and a non-colorable (2,4)-list assignment of K33, respectively, by
Lemma 5.2.4.

We will construct a non-colorable (3, 9)-list assignment of K10 from A, A, By, Bs.

First, let C' = {6,7,8} and D = {7,8,9}. Define a 3-list assignment L of K1

as follows:
C D
Lioey) = 1A, U 2By U 12(1) U (3)
D
That is,

Luosy = {134,135, 145} U {234,235, 246} U {126,127, 128} U {789}
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Loy = {134,136, 146} U {234, 235,245} U {127,128,129} U {678}

Consider the subgraph of K10 induced by vertices labeled by 12(?) C Lo
and (g) C Loy - Since [((.f), (g)] is a non-colorable list assignment of K 3, color
1 or color 2 is used to label lists in 12(?) C Lioiy by Remark 5.2.8. Similarly,
consider the subgraph of K19 induced by vertices labeled by 12(11) ) C Lo
and (? ) C Ligg)- Since [(? ), (? )] is a non-colorable list assignment of K 3, color
1 or color 2 is used to label lists in 12(117) C Liogis), by Remark 5.2.8.

Case 1. Color 1 is used to label lists in Loy and color 2 is used to label

lists in L) -
It follows that lists in Lyq(;;) cannot be labeled by color 1 and lists in Ljq(;) cannot
be labeled by color 2. Then consider the subgraph of K19 induced by vertices
labeled by 1By, C Liguiy and 2By C Lygy. Vertices of this induced subgraph
cannot be labeled because By, Bs] is a non-colorable list assignment of Kj 3.

Case 2. Color 1 is used to label lists in Lygu;) and color 2 is used to label
lists in L) -

Similar to Case 1, consider the subgraph of K10 induced by vertices labeled
by 1A; C Lygu) and 245 C Ly . Vertices of this induced subgraph cannot be
labeled because [A;, As] is a non-colorable list assignment of K 3.

Hence, we conclude that K¢ is not L-colorable.

Note further that the construction starts from two non-colorable list assign-
ments of Kj3, say [Aj, As] and [By, Bs]. By Lemma 5.2.4, the number of colors
in A; UAs (B UBsy) can possibly be three, four or five. Notice that [A;, As] can
be the same as [By, By] while C' and D can be any sets of three colors. The set of

colors in L consists of colors from A; U Ay, By U By, C, D and two new colors.

Then the total number of colors in L is smallest, which is five, when A; U A, and
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B U By contains the same three colors and C, D are the set of such three colors.
The total number of colors in L is largest, which is 18, when A; UA, and B; UB;
contains five different colors and C, D are the disjoint sets of new three colors. It
is easy to see that the total number of colors in L can possibly be any numbers

from 3 to 18. Hence, Koo is not (3,t)-choosable for ¢t = 3,4,...,18. O

Theorem 5.2.10. Let k,t,m be positive integers such that m = (Qkk_l) )

If 2k — 1 < ¢ < 17-2"2 — 4k — 4 then K,,,, is not (k,t)-choosable.

Proof. We will prove by mathematical induction on k. The basis step is shown
in Lemma 5.2.4 for the case £k = 2. We prove the induction step similar to
Example 5.2.9.

Let C' and D be any sets of size 2k—3 and Ay, Ay, By, By be collections of sets

of size k — 1 such that | 4| = |As| = |Bi| = [Bo| = (3*7]). Suppose that [A;, Ay]

and [By, By] are non-colorable list assignments of K (23),(2+-8) and suppose that
k—1 )°\ k-1

C,D and all lists in Ay, As, By, B> do not contain color 1 and color 2.

Define a (k,t)-list assignment L of K,,,, by

C D
L) = LA, U2B, U 12(k_2> U (k)

D

Since 2(2:__13) + (2:__23) + (Qkk_ 3) = (Qkk_ 1) = m, all vertices of K,,,, are assigned.

Consider the subgraph of K,,,, induced by vertices labeled by 12(,52) -

Ly, and (i) C Ly@iy- Since [(152), (i)] is a non-colorable list assignment of
c

K(zk—3>7(2k—3>, color 1 or color 2 is used to label lists in 12(k_2) C Lpu by

k—2 k

Remark 5.2.8. Similarly, consider the subgraph of K,,,, induced by vertices

labeled by 12(kl_)2) C Ly and (l,:) C Ly). Since [(kl_)Q),(f)] is a non-
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colorable list assignment of K (2£9),(5%) color 1 or color 2 is used to label
lists in 12(,”,) C Ly, by Remark 5.2.8.

Case 1. Color 1 is used to label lists in Ly, and color 2 is used to label

lists in Ly, iz -
It follows that lists in L,,) cannot be labeled by color 1 and lists in Ly,
cannot be labeled by color 2. Then consider the subgraph of K,,,, induced
by vertices labeled by 1By C Ly, and 2By C Ly, . Vertices of this induced
subgraph cannot be labeled because [By, Bs] is a non-colorable list assignment of
R 6

Case 2. Color 1 is used to label lists in Ly, and color 2 is used to label
lists in L)

Similar to Case 1, consider the subgraph of K,,,, induced by vertices labeled
by 1A, C Ly and 24 C Ly,qqy. Vertices of this induced subgraph cannot be
labeled because [A;, As] is a non-colorable list assignment of K (25-3),(33)

Hence, we conclude that K, ,,, is not L-colorable.

Note further that the construction starts from two non-colorable list assign-
ments of K (243),(29) » 58 [A1, As] and [By, By]. By the induction hypothesis,
the number of colors in [A;,.As] and [B;, By] can possibly be any number from
2k — 3 to 17-2F3 — 4k. The set of colors in L consists of colors in A; U A,
By UBy, C, D and two new colors. Then the total number of colors in L is
smallest, which is 2k —3 +2 = 2k — 1, when A; U Ay and B; U By contains the
same 2k —3 colors and C, D are the set of such 2k —3 colors. The total number of
colors in L is largest, which is 2(17-2"73 —4k)+2(2k —3)+2=17-2%*"2 4k —4,
when A; U A, and By U By contains 282 — 4k different colors and C, D are the

disjoint sets of new 2k — 3 colors. It is easy to see that the total number of colors

in L can possibly be any numbers from 2k — 1 to 17 -2%~2 — 4k — 4. Hence,
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Kpmm is not (3,t)-choosable for all 2k — 1 < ¢ < 2262 — 4k — 4. m

5.3 On (3,t¢)-choosability of K10

Let k£ and m be positive integers such that m = (2]“,;1). In Section 5.2, we
have proved that K,,,, is (k,t)-choosable for ¢ < 2k —2 and ¢t > 2km — 2k? + 2k,
and K,,,, is not (k,t)-choosable for 2k —1 < ¢t < 17282 — 4k — 4. When
17 - 282 — 4k — 4 < t < 2km — 2k? + 2k, the problem is still unsolved. Now,
we focus on a specific positive integer k. When k£ = 2, we get m = (2'22_1) = 3.
The complete result is proved in Lemma 5.2.4 that K33 is (2,t)-choosable if
and only if ¢t # 3,4,5. Thus, here, we focus on k = 3, and then m = 10.
Hence, we determine each positive integer ¢ such that K10 is (3,¢)-choosable,
in other words, we investigate the 3-choosability of complete bipartite graphs
with 20 vertices. However, only results of complete bipartite graphs with at most
14 vertices are revealed. In 1996, Hanson, MacGillivray, and Toft [8] proved
that all complete bipartite graphs with 13 vertices are 3-choosable, and in 2005
Fitzpatrick and MacGillivray [5] proved that all complete bipartite graphs with
14 vertices except K77 is 3-choosable and Ly is the unique 3-list assignment
such that K77 is not Lz-colorable. To extend their result from 14 vertices to 20
vertices, our work in Chapters II, III and IV are devoted to solve this problem.
Applying Theorem 2.1.7, the problem can be solved for complete bipartite graphs
with 17, 18, 19 and 20 vertices. Results in Chapters III and IV take care the

rest.

The desired main result is concluded in Theorem 5.3.1 and Theorem 5.3.3.

Theorem 5.3.1. Let t be a positive integer. The complete bipartite graph Kig 10

is (3,t)-choosable if and only if t #5,6,...,25.
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Proof. By Theorem 5.2.1, if t < 4, then Kjg10 is (3,t)-choosable. By Theo-
rem 5.2.10, if 5 <t < 18, then K10 is not (3,t)-choosable. From Chapter 3, we
have known that K77 is not (3,7)-choosable and Lz is a non-colorable (3,7)-list
assignment of K77. We define a new assignment L* of K19 which is obtained
from Lz by adding three new lists in each partite set. Then it follows that L* is
a non-colorable list assignment of Ko 19. The number of colors in L* depends on
the lists that we add. The minimum number of colors in L* is 7 and the maximum
number in L* is 25. Hence, Kjg1¢ is not (3,t)-choosable for ¢t =7,8,...,25.

Next, suppose that ¢ > 26 and let L be any (3,t)-list assignment of Ky 10.
We will prove that Kjgj9 is L-colorable by Theorem 2.1.7. Let S C V(K¢ 10)
be such that |S| > |L(S)|. Since |L(S)| >t —3- |V (Ki010) ~ S| > 3|S| — 34, we
have |S| > |L(S)| > 3|S| — 34. That is ,|S| < 17.

If |S| = 16, then |L(S)| > 48 — 34 = 14. Hence, K 10[S] is L|s-colorable
by Theorem 4.3.10. If |S| = 15, then |L(S)| > 45 — 34 = 11. Hence, Kjg10[5]
is L|g-colorable by Theorem 3.4.6. If |S| = 14, then |L(S)| > 42 — 34 = 8.
Hence, K¢ 10[S] is L|s-colorable by Theorem 3.3.8. If |S| < 13, then Kig10[S] is
L)s-colorable because every complete bipartite graph with at most 13 vertices is
3-choosable by Theorem 3.3.7. Therefore, by Theorem 2.1.7, K¢ 10 is L-colorable.

Hence, K10 is (3,t)-choosable for t > 26. O
Lemma 5.3.2. The complete bipartite graph Koy is always (3,5)-choosable.

Proof. Let L be a (3,5)-list assignment of Kg,.

Part 1. All lists in Lg can be color by only two colors.
Because of (g) = 10, there exists a set S C {1,2,3,4,5} such that S & Ly.
Suppose that S = {1,2,3}. Hence, we use color 4,5 label all lists in Lyg.

Part 2. All lists in Ly can be color by the remaining three colors.

Since each list in L has size 3 and is a subset of {1,2,3,4,5}, it contains at least
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one color from {1,2,3}. That is, we all lists in L; can be labeled by color 1, color

2, or color 3. O

Theorem 5.3.3. Let a,b,t be positive integers such that a,b > 7, a+b < 20 and
t #6 and (a,b,t) # (10,10,5). Then K, is (3,t)-choosable if and only if t <5

ort > 3(a+b) —34. Moreover, Kig1o is not (3,5)-choosable.

Proof. Let L be a (3,t)-list assignment of K,;. Then ¢ > 3.

Case 1. t=3,4.
If t =3, then K, is L-colorable because K, is 3-colorable. If ¢ = 4, then we
can use any two color label all vertices in each partite set, then K, ; is L-colorable,
too.

Case 2. t=05.
If (a,b) = (10,10), then Kjg 10 is not (3, 5)-choosable by Example 5.1.1. Suppose
that a < b and (a,b) # (10,10). Since a + b = 20, we have a < 9. Hence, K,
is (3,5)-choosable by Lemma 5.3.2.

Case 3. 7<t<3(a+0b)—35.
Notice that if L|y(x,,) = Lz, then K, is not L-colorable. Hence, we construct
a non-colorable 3-list assignment of K,; by adding new a + b — 14 lists to Lz.
The number of colors in such a + b — 14 lists possibly be any number from 3 to
3(a 4+ b) — 42. Moreover, such a + b — 14 lists may contain the same colors as
colors in Lgz. Hence, L possibly contains 7,8, ...,3(a + b) — 35 colors. That is,
K, is not (3,t)-choosable for 7.8,...,3(a+b) — 35.

Case 4. t > 3(a+b) — 34.
We will prove that K,; is L-colorable by Theorem 2.1.7. Let S C V(K,;) be
such that |S| > |L(S)|. Since |[L(S)] >t —3-(a+b—|S|) > 35 — 34, we have
|S| > |L(S)| > 35S — 34. That is ,|S| < 17.

If |S| = 16, then |L(S)| > 26 — 12 = 14. Hence, K,;[S] is L|s-colorable by
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Theorem 4.3.10. If |S| = 15, then |L(S)| > 26 — 15 = 11. Hence, K,,[5] is
L|g-colorable by Theorem 3.4.6. If |S| = 14, then |L(S)| > 26 — 18 = 8. Hence,
K,]S] is L|g-colorable by Theorem 3.3.8. If |S| < 13, then K,[S] is K,[5] is
L s-colorable because every complete bipartite graph with at most 13 vertices is

3-choosable by Theorem 3.3.7. By Theorem 2.1.7, K,; is L-colorable. [



CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, we have studied three main problems. Firstly, find a
sufficient condition of (k,t)-choosable graphs and a sufficient condition of (k,t)-
choosable graphs not containing Kj,;. Secondly, give a complete result on 3-
choosability of complete bipartite graphs with 15 vertices by establishing new
strategies; moreover, obtain some partial results on 3-choosability of complete
bipartite graphs with 16 vertices. Lastly, study (k, t)-choosability of the complete
bipartite graph K(2kk—1)’(2kk—1) .

All results in this dissertation are listed as follows:

Sufficient conditions of (k,t¢)-choosable graphs

Let k,t and n be positive integers.

Theorem 2.2.2: If t > kn — k? + 1, then every graph with n vertices is (k,t)-
choosable.

Theorem 2.2.4: If k <t < kn—k?, then every graph with n vertices containing
a (k + 1)-clique is not (k,t)-choosable.

Lemma 2.2.5: If £ > n — 2, then a Kj,-free graph with n vertices is (k,t)-
choosable. In other words, the list chromatic number of a K -free graph with
n vertices is at most n — 2.

Lemma 2.2.8: If t > k+ 1, then a Kjq-free graph with k+ 3 vertices is (k,t)-

choosable.
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Theorem 2.2.11: Let k > 3. If t > kn — k* — 2k + 1, then a K}, -free graph
with n vertices is (k,t)-choosable.

Theorem 2.2.12: If t > 2n — 6, then a triangle-free graph with n vertices is
(2,t)-choosable.

Theorem 2.2.13: A triangle-free graph with n vertices is (2,2n — 7)-choosable

if and only if it is (K33 — e)-free.



114

Theorem 2.2.14: Let nk —k* =2k + 1<t <nk—k* and 3 <k <n - 3.

A graph with n vertices is (k,t)-choosable if and only if it is K}, -free. Moreover,
for k=2 and 2n—6 <t < 2n—4. A graph with n vertices is (2,t)-choosable if
and only if it is triangle-free.

Theorem 2.2.15: If k <t < kn — k* — 2k, then every K} -free graph with n

vertices containing Cy V Kj_o is not (k,t)-choosable.

Strategies for 3-list assignments

Let L be a 3-list assignment of K,; with L, = {4, A4s,..., A} and L, =
{By, By, ..., Bp}. Let r be the maximum number of lists in L, containing a com-
mon color.

Strategy A: If all lists in L, are mutually disjoint and [[_, |A;| > 3" 'ny +
13972 |ng + [3%73|ng where n; = [{B € Ly, |B| = i}| for i = 1,2,3, then K, is
L-colorable.

Strategy B: If a color appears in a — 1 lists in L,, then K, is L-colorable.
Strategy C: If a color appears in @ — 2 lists in L, and r < 8, then K,; is
L-colorable.

Strategy D: If a color appears in a — 3 lists in L, and (r,0) € {(r,b)|r <2,b <
22} UA{(3,0)]b <14} U{(4,b)[b <12} U{(5,b)|b < 9}, then K, is L-colorable.
Strategy E: If a color appears in a — 4 lists in L,, say color 1 and (r,b) €
{(r,b)|r <2,b <22} U{(3,b)|b < 14}, then K,; is L-colorable unless the four
remaining lists of L, are 246, 257, 347, 356 and {123, 145, 167, 246, 257, 347,
356} C Ly.

Strategy F': If a color appears in a — 5 lists in L,, » < 2 and a + b < 18, then

K, is L-colorable.
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On 3-choosability of complete bipartite graphs

Recall that F = {123,145, 167,246, 257,347,356} be the collection of all lines in
the Fano plane and Lz be the 3-list assignment of K77 which seven vertices in
each partite set are assigned by distinct elements from F.

Theorem 3.3.6: A complete bipartite graph with 14 vertices except K77 is 3-
choosable. Moreover, for a 3-list assignment L of K77, it is not L-colorable if
and only if L = Lg.

Theorem 3.4.5: A complete bipartite graph with 15 vertices except K7g is 3-
choosable. Moreover, for a 3-list assignment L of K7g, it is not L-colorable if
and only if L|yk,,) = L#.

Theorem 3.4.6: A complete bipartite graph with 15 vertices is (3, t)-choosable
for ¢t <6 and t > 11.

Theorem 4.1.7: A complete bipartite graph with 16 vertices except K79 and
Kgg is 3-choosable.

Theorem 4.2.36: For a 3-list assignment L of Kgg, it is not L-colorable if and
only if Llyk,,) = L#.

Theorem 4.3.10: A complete bipartite graph with 16 vertices is (3, t)-choosable

for t <6 or t > 14.

On (k,t)-choosability of K(2k71) (1Y
)

k

Let k and ¢ be positive integers.

Theorem 5.2.1, Theorem 5.2.2: If t <2k —2 or t > 2k - (%k_l) — 2k? 4 2k,

then K(Qk};l)7(2k—1) is (k,t)-choosable.

k

Theorem 5.2.10: If 2k —1 < ¢ < 1722 — 4k — 4, then K(2k—1) (%) is not

k k

(k,t)-choosable.

Lemma 5.2.4: K33 is (2,¢)-choosable if and only if t <2 or ¢ > 6.
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Theorem 5.3.1: K19 is (3,)-choosable if and only if ¢t <4 or t > 26.
Theorem 5.3.3: Let a,b,t be positive integers such that a,b > 7, a+b < 20
and t # 6 and (a,b,t) # (10,10,5). Then K,; is (3,t)-choosable if and only if

t <5ort>3(a+0b)—34. Moreover, K10 is not (3,5)-choosable.

6.2 Future Work

We propose some ideas for further research as follows:

1. Let G be a graph with n vertices which is K} i-free and Cs V Kj_o-free.
What is the smallest number ¢ in terms of & and n such that G is (k, t)-choosable
for each positive integer t > t,? We conjecture that if t > kn — k? — 4k + 1, then
G is (k,t)-choosable and if G contains C; V Kj_s as a subgraph, then G is not
(k,t)-choosable for k <t < kn — k* — 4k.

2. Establish strategies for 4-choosable graphs. For example, let L be a 4-list
assignment of K,, such that L, = {4;,...,A,} and L, = {B1,...,By}. The

following can be proved similar to Strategies A, B and C, respectively.

e If all lists in L, are mutually disjoint and [[;_; |A;] > 4 'ny + [4°72|ny +
14973+ |n3 + |47+ ]ny where n; = {B € Ly,|B| = i}| for i = 1,2,3,4,

then K, is L-colorable.
o If a color appears in a — 2 lists, then K,; is L-colorable.

e If a color appears in a — 3 lists and each color appears in at most 63 lists

in Ly, then K,; is L-colorable.

3. Find all 3-list assignments L of K79 such that it is not L-colorable. In
chapter IV, we have proved that for a 3-list assignment L of Kgg, it is L-colorable
if and only if L|y(k,,) = L. It leads to a conjecture that for a 3-list assignment

L of Kz, it is L-colorable if and only if L|y (k. .,) = Lz.
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4. Find the positive integer ¢, such that every complete bipartite graph with
17 vertices is (3,t)-choosable for all t > tq.

5. Study 3-list assignments of complete bipartite graphs with more than 16
vertices. Notice that 3-choosability of complete bipartite graphs with 18 vertices
is difficult to study because each of them has many 3-list assignments L such
that it is not L-colorable. For example, we found at least three different 3-
list assignments L such that Kgg is not L-colorable and five different 3-list
assignments L such that K7;; is not L-colorable

The following are non-colorable list assignments L of K,; where L, and L,
are the collection of lists assigned to vertices in the partite set of size a and b,
respectively.

Lg = {158,168, 159, 169, 278, 279, 345, 346 }

Lo = {158,168, 159, 169, 278, 279, 345, 346 }

Loy = {127,128,129, 347, 348, 349, 567, 568, 569 }

Loy = {135,136, 145, 146, 235, 236, 245, 246, 739}

Loy = {124,135,19A4, 236, 237, 238, 456, 457, 458}

Loy = {678,124,125,134, 135,925,934, A25, A34}

Loy = {134,156,157, 189, 234, 256, 257, 289, ABC'}

Lo = {124, 12B,12C, 367, 467, 358, 359, 358, 359}

L; = {678,123,124, 125,134, 135,925,934}

L1 = {124, 135,196, 197, 198, 236, 237, 238, 456, 457, 458}
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Lr = {167,189, 184, 267, 289, 284, 345}

Ly = {123,124,125,69A,79A, 683,684, 685, 783,784, 785}

L; = {198, 1AB, 236, 237, 238, 459, 45.A}

Ly; = {678,294, 394,124, 125,134, 135, B24, B25, B34, B35}

L; = {167,189, 1AB, 267, 289, 2AB, 345}

Ly = {123,124,125,68A, 68B,69A, 698, 78A, 78B, 794, T9B}

L; = {127,128, 347, 348, 567, 568,9AB}

Ly = {135,136, 145, 146, 235, 236, 245, 246, 789, 78 A, 78 B}

Ls = {345,167, 189,267,289}

Ly = {123,124,125,683, 684, 685, 693, 694, 695, 783, 784, 785,793, 794, 795}

Ls = {1DE,1FG, 123,124,125, 29A, 2BC, 678}

Ly, = {345,126,127,128,19B,19C, 1AB, 1AC, 2DF, 2DG, 2EF, 2EG)}

Lo = {125,126, 127, 345, 346, 347, 138, 248, 9AB}

L1, = {567, 138,248,149, 144, 14B, 239, 23A, 23B, 813, 814, 823, 824}

L¢ = {123,124,125,67B, 67C, 89A}

L5 = {345,168,169, 16 A, 178,179, 17A, 1BC, 268,269, 26 A, 278,279,27A,2BC'}

6. Study 4-choosability of complete bipartite graphs. Since it is easy to prove
that K,; is 4-choosable if and only if b < 63, an open problem is to find the

maximum number of b such that K5, (Kep,K7p,...) is 4-choosable.
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7. Find the smallest number n such that there exists a non 4-choosable
complete bipartite graph with n vertices. Recall that the smallest non 3-choosable
complete bipartite graph has 14 vertices; this statement is proved by Hanson,
MacGillivray, and Toft [8]. (See [1] [2] [3] [14] [16] [18] for more information.)

8. Find each positive integer ¢ such that K(2.4471),(2.4471) is (4,t)-choosable.

9. In chapter V, we prove that if 2k —1 < t < 1722 — 4k — 4, then
K (51,5 is not (k,t)-choosable. A possible future work is to improve the
upper bound.

10. Theorem 5.3.3 gives results about (3,t)-choosability of complete bipartite
graphs with at most 20 vertices except the case ¢ = 6. Another future work

is to study the (3,6)-choosability of complete bipartite graphs with at most 20

vertices.
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