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CHAPTER I

INTRODUCTION

1.1 Definitions and Notations

Recall some known definitions and notations here. For other terminologies, we

follow West’s book [22]. Unless we say otherwise, G denotes a simple, undirected,

finite, connected graph; V (G) and E(G) are the vertex set and the edge set of

G , respectively. A clique is a set of pairwise adjacent vertices in a graph; a clique

of size k is called a k -clique. A cycle is a graph with an equal number of vertices

and edges whose vertices can be placed around a circle so that two vertices are

adjacent if and only if they appear consecutively along the circle; the cycle with

n vertices is denoted by Cn . A complete graph is a graph whose vertices are

pairwise adjacent; the complete graph with n vertices is denoted by Kn . A graph

G is bipartite if V (G) is the union of two disjoint independent sets called partite

sets. A complete bipartite graph is a bipartite graph such that two vertices are

adjacent if and only if they are in different partite sets; the complete bipartite

graph with partite sets of size a and b is denoted by Ka,b . Given a graph G and

S ⊆ V (G), G− S is the graph obtained from G by deleting all vertices of S . In

case S = {v} , we write G − v instead of G − {v} . The subgraph induced by S ,

denoted by G[S] is the graph obtained from G by deleting all vertices of V (G)

outside S . Given a graph H , a graph is said to be H -free if H is not its induced

subgraph. A graph is said to be a triangle-free if it does not contain a 3-clique. A

complement of a graph G , denoted by G , is the graph with the vertex set V (G)
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defined by uv ∈ E(G) if and only if uv 6∈ E(G). The join of graphs G and H ,

written G∨H , is the graph obtained from G and H by adding the edges between

all vertices of G and all vertices of H .

A coloring of a graph G is a mapping from V (G) to a set of colors S such that

adjacent vertices receive distinct colors. If |S| = t , then such coloring is called a

t-coloring. A graph is t-colorable if it has a t-coloring. The chromatic number of

G , denoted by χ(G) is the smallest positive integer t such that G is t-colorable.

A list assignment of a graph G is a mapping which assigns a set of colors, called

a list to each vertex v ∈ V (G). A list assignment L of a graph G is said to be

a k -list assignment if |L(v)| = k for all v ∈ V (G). A k -list assignment L of a

graph G is said to be a (k, t)-list assignment if |
⋃

v∈V (G) L(v)| = t . Given a list

assignment L of a graph G , a coloring f of G is an L-coloring of G if f(v) is

chosen from L(v) for each vertex v ∈ V (G). A graph is L-colorable if it has an

L-coloring. Particularly, if L is a (k, k)-list assignment of a graph G , then any

L-coloring of G is a k -coloring of G . A graph G is (k, t)-choosable if G is L-

colorable for every (k, t)-list assignment L of G . If a graph G is (k, t)-choosable

for each positive integer t then G is called k -choosable, and the smallest positive

integer k satisfying this property is called the list chromatic number of G denoted

by χl(G).

Example 1.1.1. Let L be the 2-list assignment of C5 as shown in Figure 1.1.1.

That is, L(v1) = {1, 2} , L(v2) = {1, 3} , L(v3) = {1, 2} , L(v4) = {2, 3} and

L(v5) = {1, 3} . Because of |
⋃

v∈V (C5) L(v)| = 3, L is called a (2, 3)-list assign-

ment of C5 .

Let f be a coloring of C5 as shown in Figure 1.1.1. That is, f(v1) = 2,

f(v2) = 3, f(v3) = 1, f(v4) = 3 and f(v5) = 1. Because of f(v) ∈ L(v) for all

v ∈ V (C5), f is an L-coloring of C5 .
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Figure 1.1.1: A (2, 3)-list assignment of C5 .

If there is no ambiguous, each list is written without commas and braces;

moreover, each box containing a color from each list represent its coloring in

order to simplify our figure. Figure 1.1.2 is the simplify figure of Figure 1.1.1.

Figure 1.1.2: A (2, 3)-list assignment of C5 .

Now, we consider (2, 3)-choosability of C5 . The set of all (2, 3)-list assign-

ments of C5 is divided into eight cases. L1, L2, . . . , L8 in Figure 1.1.3 represent a

(2, 3)-list assignments of C5 in each case

The (2, 3)-list assignment L1 contains four vertices with the same list while

L2, L3, L4 and L5 contain three vertices with the same list. The list assignments

L6, L7 and L8 contain only two vertices with the same list. It is shown in Fig-

ure 1.1.3 that C5 is Li -colorable for each i = 1, 2, . . . , 8.

�

Example 1.1.2. Let G be the graph with eight vertices in Figure 1.1.4. The

minimum number of colors in a 3-list assignment of G occurs when all vertices
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Figure 1.1.3: C5 is (2, 3)-choosable.

are assigned by the same list of size 3 while the maximum number of colors in a

3-list assignment of G occurs when all vertices are assigned by mutually disjoint

lists as shown in Figure 1.1.4.

Figure 1.1.4: A (3, 3)-list assignment and a (3, 24) list assignment

�

Unless we say otherwise, our parameters k , n and t in this dissertation are

always positive integers such that t ≥ k and t ≤ kn because when t < k or

t > kn , there is no (k, t)-list assignment of a graph with n vertices, so it is

automatically (k, t)-choosable. If k ≥ n then all graphs with n vertices are

(k, t)-choosable. Besides, when k ≥ χl(G), a graph G is always (k, t)-choosable;

therefore, we focus on a positive integer k such that k < χl(G).

Let S ⊆ V (G). If L is a list assignment of G , we let L|S denote L restricted
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to S and L(S) denote
⋃

v∈S L(v). For a color set A , let L − A be the new

list assignment obtained from L by deleting all colors in A from L(v) for each

v ∈ V (G). When A has only one color a , we write L − a instead of L − {a} .

Examples are illustrated in Figures 1.1.5.

Figure 1.1.5: the list assignment L|S of K5[S] where S = {v1, v2, v3, v4} and the

list assignment L− {1, 7} of K5

1.2 History and Outline

The problem of list assignments was first studied in 1976 by Vizing [21] and by

Erdős, Rubin and Taylor [4]. The authors gave a characterization of 2-choosable

graphs. However, for a positive integer k ≥ 3, there has been no literature

giving a complete solution of k -choosable graphs, yet only some specific classes

of graphs are investigated. For example, all planar graphs are 5-choosable, while

some planar graphs are 3-choosable. (See [11],[20],[19],[23],[24],[25], [26] for more

details.)

Finding the list chromatic number of a graph is considered to be a complicated

problem. Even in the case of bipartite graphs, a characterization of complete

bipartite graphs which are k -choosable is revealed only when k ≤ 3. Let a and
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b be positive integers such that a ≤ b . Then the complete bipartite graph Ka,b is

2-choosable if and only if a = 1 or (a, b) ∈ {(2, b)|b ≤ 3} and Ka,b is 3-choosable

if and only if a ≤ 2 or (a, b) ∈ {(3, b)|b ≤ 26} ∪ {(4, b)|b ≤ 20} ∪ {(5, b)|b ≤

12} ∪ {(6, b)|b ≤ 10} . (See [4],[12],[17],[15].) Moreover, for 7 ≤ a ≤ b , Erdős et

al. showed in [4] that Ka,b is not 3-choosable because K7,7 is not 3-choosable.

They defined a list assignment from the set of the seven lines in the Fano plane.

Given F = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}} , let

LF be the 3-list assignment of K7,7 such that all seven vertices in each partite

set are assigned by distinct lists from F . Erdős et al. proved that K7,7 is not

LF -colorable. Later, in 1996, Hanson, MacGillivray, and Toft [8] proved that

every complete bipartite graph with at most 13 vertices is 3-choosable. Hence,

the smallest complete bipartite graph which is not 3-choosable has 14 vertices.

Fitzpatrick and MacGillivray [5] added that every complete bipartite graph with

14 vertices except K7,7 is 3-choosable. Moreover, LF is the unique list assignment

up to renaming the colors which prevents K7,7 from being 3-choosable. This

result inspires us to study more on 3-choosability of complete bipartite graphs

with fifteen vertices and sixteen vertices in Chapter III and Chapter IV.

Since k -choosability implies k -colorability, we have χ(G) ≤ χl(G) for every

graph G . Note that for a tree T , χ(T ) = χl(T ) = 2; however, there exists

a graph of which such two parameters are significantly different. These graphs

was found in [21] and [4], for all positive integer k , the authors gave a non k -

choosable complete bipartite graph Km,m where m =
(
2k−1

k

)
with a list assignment

L containing 2k − 1 colors such that Km,m is not L-colorable. In other words,

Km,m is not (k, 2k−1)-choosable. We then are interested in exploring more results

when the total number of colors is not 2k − 1. We investigate (k, t)-choosability

of Km,m when t 6= 2k − 1 in Chapter V.
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Ganjari et al. [6] first defined (k, t)-choosability in order to generalize a

characterization of uniquely 2-list colorable graphs. Besides, Fitzpatrick and

MacGillivray [5] proved 3-choosability of complete bipartite graphs with 14 ver-

tices by showing the graphs is (3, t)-choosable for each positive integer t .

The dissertation has six chapters, including this introduction in Chapter I.

Next, we start studying a (k, t)-list assignment of any graph in Chapter II. We

obtain a sufficient condition of a (k, t)-choosable graph with n vertices; if t ≥ kn−

k2 + 1 then every graph with n vertices is always (k, t)-choosable. Moreover, we

prove that this bound is best possible because a graph with n vertices containing

k + 1-clique is not (k, kn− k2)-choosable. However, we also improve this bound

for a Kk+1 -free graph; if k ≥ kn−k2−2k+1, then every Kk+1 -free graph with n

vertices is (k, t)-choosable and this bound is best possible for a Kk+1 -free graph

with n vertices.

Chapter III and Chapter IV are devoted to solve the problem of the 3-

choosability of complete bipartite graphs with at most 16 vertices. In 2005, Fitz-

patrick and MacGillivray [5] extend the result in [4] and [8] to obtain a stronger

result that every complete bipartite graph with 14 vertices except K7,7 is 3-

choosable. Moreover, LF is the unique list assignment up to renaming the colors

which prevents K7,7 from being 3-choosable. In order to keep extending this re-

sult to 16 vertices, we establish new strategies in Chapter III, which also lead to

an alternative proof of [5].

Chapter V focuses on (k, t)-choosability of Km,m where m =
(
2k−1

k

)
. We

give results of (k, t)-choosability of Km,m when t 6= 2k − 1; if t ≤ 2k − 2 or

t ≥ 2km−2k2+2k , then Km,m is L-colorable, while if 2k−1 ≤ t ≤ 17·2k−2−4k−4

then Km,m is not (k, t)-choosable. In particularly, when k = 3, we integrate the

results in Chapters II, III and IV to conclude our results in Theorems 5.3.1 and
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5.3.3. Finally, we summarize results from all chapters and introduce some future

work in Chapter VI.



CHAPTER II

ON (k, t)-CHOOSABILITY OF GRAPHS

2.1 Basic Properties and Examples

In Example 2.1.1, we show that C2n is (2, t)-choosable for every positive in-

teger t and C2n+1 is (2, t)-choosable for every positive integer t ≥ 3. Moreover,

we show that K2,3 is (2, t)-choosable for every positive integer t .

Example 2.1.1.

(i) Choosability of cycles. The cycle Cn is (2, t)-choosable unless n is odd and

t = 2.

Note that a graph G is (2, 2)-choosable if and only if G is 2-colorable. Hence,

Cn is (2, 2)-choosable if and only if n is even. It remains to show that all of the

cycles are (2, t)-choosable for t ≥ 3.

Let t ≥ 3 and L be a (2, t)-list assignment of Cn . Thus there are two adjacent

vertices v1, vn ∈ V (G) such that L(v1) 6= L(vn). Let v2, v3 . . . , vn−1 be remaining

vertices along the cycle Cn where vi is adjacent to vi+1 for i = 1, 2, . . . , n − 1.

First, we label v1 by a color c in L(v1) which is not in L(vn) and then we label

vertex v2 by a color in L(v2) different from c and so on. This algorithm guarantees

that each pair of adjacent vertices receives distinct colors.

(ii) Choosability of K2,3 . The complete bipartite graph K2,3 is (2, t)-choosable for

every positive integer t.

Let {u1, u2} and {v1, v2, v3} be the partite sets of K2,3 and L be a (2, t)-list

assignment of K2,3 . If L(u1) ∩ L(u2) 6= ∅ , then u1 and u2 can be colored by
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the same color; hence, the remaining vertices in another partite set can be easily

colored. Otherwise, L(u1)∩L(u2) = ∅ . There are 4 possible ways to pick a color

from each of L(u1) and L(u2). Thus, we can choose c1 ∈ L(u1) and c2 ∈ L(u2)

such that {c1, c2} is distinct from L(vi) for i = 1, 2, 3. Then, we can color vi by

a color which is neither c1 nor c2 in L(vi) for i = 1, 2, 3. �

When we try to color all vertices of a graph with some conditions, it tends

to success and be easier if we have more colors. However, this is not true for a

(k, t)-list assignment. It may not be true that (k, t)-choosability implies (k, t+1)-

choosability. Example 2.1.2 illustrates this fact.

Example 2.1.2. Let X, Y be the bipartite sets of K10,10 . To show that K10,10

is (3, 4)-choosable, let L be a (3, 4)-list assignment of K10,10 . For any u ∈ X , at

least one of the numbers 1, 2 is in L(u). Hence, each vertex in X can be colored

by only color 1 or 2. For all v ∈ Y , at least one of the numbers 3, 4 is in L(v).

Hence, we can color each vertex in Y by only color 3 or 4.

Figure 2.1.1: A (3, 5)-list assignment of K10,10

To show that K10,10 is not (3, 5)-choosable, let L be the (3, 5)-list assignment

as shown in Figure 2.1.1. At least three colors must be used to color all vertices

in each partite set of K10,10 . However, only five colors are available; hence, there

are u ∈ X and v ∈ Y receiving the same color. It is a contradiction.

�
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Although (k, t)-choosability does not imply (k, t+1)-choosability, if the num-

ber t is large enough, we can prove that (k, t)-choosability implies (k, t + 1)-

choosability. In Theorem 2.1.3, Hanson et.al. gives the number of colors we need

to guarantee this statement.

Theorem 2.1.3. [8] Let G be an n-vertex graph. If G is L1 -colorable for every

k -list assignment L1 such that |
⋃

v∈V (G) L1(v)| = t and n
(

k
2

)
<
(

t+1
2

)
, then G is

L2 -colorable for every k -list assignment L2 such that |
⋃

v∈V (G) L2(v)| ≥ t.

Proof. Since n
(

k
2

)
<
(

t+1
2

)
, there exists a pair of colors which does not appear

together in a list, say 1, 2. Then we construct a k -list assignment L1 defined by

L1(v) =


L2(v) if 1 ∈ L2(v),

L2(v) ∪ {1} − {2} if 2 ∈ L2(v).

Since G is not L2 -colorable, G is not L1 -colorable.

Definition 2.1.4. [22] Given a collection of sets, A = {A1, A2, . . . , An} , a System

of Distinct Representatives (SDR) of A is a set of distinct elements a1, a2, . . . an

such that ai ∈ Ai for all i .

The following theorem shows the well-known necessary and sufficient condition

for the existence of an SDR. Indeed, Hall’s Theorem [7] is originally proved in the

language of an SDR and is equivalent to Manger’s Theorem [13].

Theorem 2.1.5. [22] Given a collection of sets, A = {A1, A2, . . . , An}, an SDR

of A exists if and only if |
⋃

i∈J Ai| ≥ |J | for all J ⊂ {1, 2, . . . , n}.

Corollary 2.1.6. Let L be a list assignment of a graph G. If |L(S)| ≥ |S| for

all S ⊂ V (G), then G is L-colorable. Moreover, there exists an L-coloring such

that each vertex of G assigned by distinct colors.
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Proof. Let V (G) = {v1, v2, . . . , vn} . From Theorem 2.1.5, there exist c1 ∈ L(v1), c2 ∈

L(v2), . . . , cn ∈ L(vn) such that c1, c2, . . . , cn are distinct. Thus we define f :

V (G)→ {1, 2, . . . , n} by f(vi) = ci ; hence, f is an L-coloring.

Theorem 2.1.7 studies a more profound condition than one in Corollary 2.1.6

to conclude an L-colorable graph. Kierstead [10] and He et al. [9] used it to

investigate the list chromatic number on some complete multipartite graphs.

Theorem 2.1.7. [10] Let L be a list assignment of a graph G and let S ⊂ V (G)

be a maximal non-empty subset such that |L(S)| < |S|. If G[S] is L|S -colorable

then G is L-colorable.

To utilize Theorem 2.1.7 as well as simplify our proof, throughout the rest of

the dissertation, we will prove a stronger assumption by considering all nonempty

subsets S ⊂ V (G) such that |L(S)| < |S| . We apply this theorem to obtain the

expected results.

2.2 On (k, t)-choosability of Kk+1-free Graphs

In this section, we first find the parameters k and t such that an n-vertex

graph is (k, t)-choosable. Theorem 2.2.2 states that if t ≥ kn−k2 +1, then every

n-vertex graph is always (k, t)-choosable and this bound is best possible because

an n-vertex graph containing a k -clique is not (k, kn−k2)-choosable. Fortunately,

this bound can be improved for Kk+1 -free graphs. Theorem 2.2.11 states that if

k ≥ 3 and t ≥ kn− k2− 2k+ 1, then every n-vertex graph which is Kk+1 -free is

always (k, t)-choosable and Theorem 2.2.12 states that if t ≥ 2n− 6, then every

n-vertex graph which is triangle-free is always (2, t)-choosable. Moreover, these

bounds are best possible, as well.
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The next lemma has a simple proof but quite powerful when we combine with

Theorem 2.1.7 in order to obtain Theorem 2.2.2.

Lemma 2.2.1. Let A1, A2, . . . , An be k -sets and J ⊂ {1, 2, . . . , n}. If |
⋃n

i=1Ai| ≥

p, then |
⋃

i∈J Ai| ≥ p− (n− |J |)k .

Proof. Suppose that |
⋃

i∈J Ai| < p − (n − |J |)k . Thus |
⋃n

i=1Ai| ≤ |
⋃

i∈J Ai| +

|
⋃

i6∈J Ai| < p− nk + |J |k + k(n− |J |) = p . It is a contradiction.

Theorem 2.2.2. For an n-vertex graph G, if t ≥ kn− k2 + 1 then G is (k, t)-

choosable.

Proof. Let L be a (k, t)-list assignment of G such that t ≥ kn− k2 + 1; that is,

we obtain |L(V (G))| = t ≥ kn−k2 +1. Let S ⊂ V (G). If |S| ≤ k , then, together

with |L(S)| ≥ k always, |L(S)| ≥ |S| . Otherwise, |S| ≥ k + 1. By Lemma 2.2.1,

|L(S)| ≥ kn− k2 + 1− (n− |S|)k = k|S| − k2 + 1 = |S| + (k − 1)|S| − k2 + 1 ≥

|S|+(k−1)(k+1)−k2 +1 = |S| . Hence |L(S)| ≥ |S| for all S ⊂ V (G); therefore,

by Corollary 2.1.6, G is L-colorable.

In particular, Theorem 2.2.2 can be rephrased in terms of a sufficient condition

of the existence of an SDR on k -sets, concluded in Corollary 2.2.3.

Corollary 2.2.3. Let A1, A2, . . . , An be k -sets. If |
⋃n

i=1Ai| ≥ kn− k2 + 1, then

A1, A2, . . . , An have an SDR.

Next, we will prove the bound in Theorem 2.2.2 is best possible by giving an

n-vertex graph which is not (k, kn− k2)-choosable.

Theorem 2.2.4. An n-vertex graph containing a (k + 1)-clique is not (k, t)-

choosable where k ≤ t ≤ kn− k2 .

Proof. Let G be an n-vertex graph containing (k + 1)-clique K and k ≤ t ≤

kn− k2 . Consider a (k, t)-list assignment L of G such that L(v) = {1, 2, . . . , k}
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for each vertex v in K . Because t−k ≤ k(n−k−1), it is possible to construct a

(k, t)-list assignment L in which the union of lists for the rest n− k − 1 vertices

outside K is {k + 1, k + 2, . . . , t} . However, since every vertex in K receives the

same list of size k , we cannot color all vertices in this (k + 1)-clique. Therefore,

G is not L-colorable.

Theorem 2.2.4 shows the necessity of the first part in Theorem 2.2.14. The

sufficiency will be held by Theorem 2.2.11. Besides, Theorems 2.2.12 and 2.2.13

are provided to claim the statement for the case k = 2. To simplify the proofs of

our desired theorems, we prove a number of lemmas along the way.

Lemma 2.2.5. Let G be an n-vertex graph. If k ≥ n − 2 and G is Kk+1 -free,

then G is (k, t)-choosable for every positive integer t.

Proof. Let L be a (k, t)-list assignment of G where t ≥ k . By Theorem 2.1.7, it

suffices to show that ∀S ⊂ V (G), if |L(S)| < |S| , then G[S] is L|S -colorable.

Let S ⊂ V (G) such that |L(S)| < |S| . Recall that |L(S)| ≥ k and |S| ≤ n ≤

k + 2; hence, |S| = k + 1 or |S| = k + 2.

Case 1. |S| = k + 1. We obtain |L(S)| = k . Since G is Kk+1 -free, G[S] is

k -colorable. Therefore, G[S] is L|S -colorable.

Case 2. |S| = k + 2. Then S = V (G), so |L(S)| = k or k + 1. Let u, v be

nonadjacent vertices of G . If L(u)∩L(v) = ∅ , then 2k = |L(u)∪L(v)| ≤ t ≤ k+1.

Hence k ≤ 1, which is a trivial case. Suppose that c ∈ L(u) ∩ L(v).

Case 2.1 G−{u, v} is not a complete graph. It is easy to check that a k -vertex

graph which is not complete graph is always L′ -colorable for every (k − 1)-list

assignment L′ . Therefore, G−{u, v} is (L− c)-colorable. Together with coloring

u and v by c , we have that G is L-colorable.

Case 2.2. G − {u, v} is a complete graph. Since G − {u, v} has k vertices,
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G − {u, v} is L|V (G−{u,v}) -colorable. Since G does not contain Kk+1 , each of

vertices u, v is adjacent to at most k − 1 vertices in G − {u, v} . Therefore, u, v

can be colored.

Corollary 2.2.6 is obtained from Lemma 2.2.5. This gives a characterization of

an upper bound of some graphs. It then suggests a simple proof to conclude that

χl(Kn − e1 − e2) =


n− 1 if e1, e2 ∈ E(Kn) are incident;

n− 2 otherwise.

Corollary 2.2.6. Let G be an n-vertex graph. Then χl(G) ≤ n− 2 if and only

if G contains two pairs of nonadjacent vertices or an independent set of size 3.

Proof. Let k = |V (G)| − 2. Assume that G contains two pairs of nonadjacent

vertices or an independent set of size 3. Since G has k + 2 vertices, it is Kk+1 -

free. By Lemma 2.2.5, G is (k, t)-choosable for every positive integer t ≥ k , i.e.

χl(G) ≤ k = n− 2.

Conversely, assume that χl(G) ≤ k . Then G is k -colorable. Since k = n− 2,

there exist three vertices assigned the same color or two pairs of vertices such that

each pair assigned the same color.

The join of graphs G and H , written G ∨H , is the graph obtained from G

and H by adding the edges between all vertices of G and all vertices of H .

Lemma 2.2.7. Let G be a Kk+1 -free graph with k + 3 vertices. Then G is

isomorphic to either Kk−1 ∨K4 or Kk−2 ∨ C5 if and only if G− {u, v} contains

a k -clique for every pair of nonadjacent vertices u, v .

Proof. It is easy to check that the necessity is true. For sufficiency, assume that

G− {u, v} contains a k -clique for every pair of nonadjacent vertices u, v .
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K5 ∨K4 K4 ∨ C5

Figure 2.2.1: Examples of Kk−1 ∨K4 or Kk−2 ∨ C5

Since G has k+3 vertices and does not contain any (k+1)-clique, G contains

four distinct vertices u1, u2, v1, v2 such that ui is not adjacent to vi for i = 1, 2.

Let X = {u1, u2, v1, v2} and H = G − X . By the assumption, G − {u1, v1}

contains a k -clique. Since G − {u1, v1} has k + 1 vertices, exactly one vertex

among nonadjacent vertices u2, v2 must be in such k -clique, say v2 . That is,

V (H) ∪ {v2} is a k -clique. Similarly, we may assume that V (H) ∪ {v1} is a k -

clique by considering G − {u2, v2} . As a consequence, v1 is not adjacent to v2 ;

otherwise, G contains a (k + 1)-clique. (See Figure 2.2.2.)

Figure 2.2.2: V (H)∪{v1} and V (H)∪{v2} are k -cliques while v1 6↔ u1 , v2 6↔ u2

and v1 6↔ v2 .

Suppose both u1 and u2 are adjacent to every vertex in H . If X is not an

independent set, then G contains a (k + 1)-clique which is a contradiction. If X

is an independent set, then G is isomorphic to Kk−1 ∨K4 . Now, we can suppose

that there is w ∈ V (H) such that w is not adjacent to u1 .

We know that G−{u1, w} has k+1 vertices and contains a k -clique. Since v2

is not adjacent to v1 and u2 , the vertex v2 cannot be in the k -clique. Therefore,

V (H−w)∪{v1, u2} forms a k -clique. Besides, u2 is not adjacent to w ; otherwise,
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V (H) ∪ {v1, u2} forms a (k + 1)-clique. (See Figure 2.2.3.)

Figure 2.2.3: G− {w, u1, v2} is a complete graph with k vertices.

Similarly, considering G−{w, u2} , we obtain that V (H −w)∪{v2, u1} forms

a k -clique.

Finally, we consider G− {v1, v2} . Then w cannot be in any k -clique of G−

{v1, v2} because w is not adjacent to both u1 and u2 . Then V (H −w)∪{u1, u2}

forms a k -clique. That is, u1 is adjacent to u2 . (See Figure 2.2.4.) Therefore,

{w, v1, u2, u1, v2} forms a cycle of length 5 and H − w is a complete graph with

k− 2 vertices; moreover, all vertices of C5 are adjacent to all vertices of H −w .

Figure 2.2.4: {w, v1, u2, u1, v2} forms a cycle of length 5

Lemma 2.2.8. If a (k + 3)-vertex graph is Kk+1 -free, then it is (k, t)-choosable

for t ≥ k + 1.

Proof. Let G be a graph with k + 3 vertices and L be a (k, t)-list assignment

of G . Assume that G does not contain Kk+1 as a subgraph and t ≥ k + 1. Let

S ⊂ V (G) such that |L(S)| < |S| . It suffices to show by Theorem 2.1.7 that

G[S] is L|S -colorable. If k = 1 then G has no edges. Therefore, it is (1, t)-

choosable for every positive integer t . If k = 2, then G is triangle-free and has
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5 vertices which could be only C5 or a subgraph of K2,3 . By Example 2.1.1, G

is (2, t)-choosable for t ≥ 3. If |S| = k + 1, k + 2, then the statement holds by

Lemma 2.2.5.

Now, assume that k ≥ 3 and |S| = k + 3; that is, S = V (G).

Case 1. There exists a pair of nonadjacent vertices u, v ∈ V (G) such that

G − {u, v} does not contain a k -clique. Since t = |L(V (G))| < |V (G)| = k + 3,

we obtain t ≤ k+2. Moreover, L(u)∩L(v) 6= ∅ since k ≥ 3. Let c ∈ L(u)∩L(v).

By Lemma 2.2.5, G − {u, v} is (L − c)|V (G−{u,v}) -colorable. Extend this to an

L-coloring of G by coloring vertices u, v with color c .

Case 2. G − {u, v} contains a k -clique for every pair of nonadjacent vertices

u, v . Apply Lemma 2.2.7; G can be only two possible graphs. If G ∼= Kk−1 ∨K4 ,

then first color all vertices in Kk−1 and then choose a remaining color in L(v) to

color v for each v ∈ K4 . Otherwise, G ∼= Kk−2 ∨ C5 . Begin with coloring all

vertices of Kk−2 ; each vertex of C5 has at least two remaining colors. The total

number of remaining colors is at least t − (k − 2) ≥ 3. So, by Example 2.1.1,

every vertex of C5 can be colored. Therefore, G is L-colorable.

In the next two following lemmas, we focus on 2-list assignments. Both two

lemmas are prepared for Theorem 2.2.12.

Lemma 2.2.9. Graphs G1 and G2 in Figure 2.2.5 are (2, 5)-choosable.

G1 G2

Figure 2.2.5: (2, 5)-choosable graphs
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Proof. Let L be a (2, 5)-list assignment of G1 . Since |L(V (G− v6))| ≥ 3, G− v6

has an L|V (G−v6) -coloring, say φ1 . Now, φ1 can be extend to be an L-coloring

unless, without loss of generality, L(v6) = {1, 2} and φ1(v2) = 1, φ1(v5) = 2.

In such case, let φ2 be a new L|V (G−v6) -coloring such that φ2(v2) = A ∈

L(v2)− {φ1(v2)} and φ2(v) = φ1(v) for the remaining vertices v . Notice that A

can be any color from {2, 3, 4, 5} . If φ2 is a proper coloring then it can be extend

to be an L-coloring. In the remaining case, suppose φ2 is not a proper coloring.

That is, φ2(v1) = A or φ2(v3) = A . Both two cases have similar proof; hence, we

suppose that φ2(v3) = A .

Again, we let φ3 be a new L|V (G−v6) -coloring such that φ3(v3) = B ∈ L(v3)−

{φ2(v3)} and φ3(v) = φ2(v) for the remaining vertices v . If φ3 is a proper coloring

then it can be extend to be an L-coloring. Otherwise, we define a new L|V (G−v6) -

coloring and so on. Finally, if all new L|V (G−v6) -colorings are not proper then

we know the list assignment L of G1 shown in Figure 2.2.6. Since L have 5

colors, we know that {A,B,C} = {3, 4, 5} . Therefore, we easily investigate an

L-coloring of G1 .

Figure 2.2.6: The list assignment L of G1

Let L be a (2, 5)-list assignment of G2 . Since |L(V (G2)| = 5, we obtain an

L-coloring of G − v3v6 , say φ1 . The L-coloring φ1 is also an L-coloring of G2

unless φ1(v3) = φ1(v6). In such case, let φ2 be a new L-coloring of G− v3v6 such

that φ2(v3) = A ∈ L(v3)−{φ2(v3)} and φ2(v) = φ1(v) for the remaining vertices
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v . If φ2 is proper, then it is an L-coloring of G2 . In case φ2 is not proper, we

define a new L-coloring of G − v3v6 , We continue to define a new L-coloring of

G−v2v6 similar to the proof of G1 . Finally, if all new L-colorings of G−v3v6 are

not proper, we obtain the list assignment L of G2 shown in Figure 2.2.7. Since

L have 5 colors, we know that {A,B,C,D} = {2, 3, 4, 5} . Therefore, we easily

investigate an L-coloring of G2 .

Figure 2.2.7: The list assignment L of G2

Lemma 2.2.10. A triangle-free graph with six vertices is (2, 5)-choosable if and

only if it is neither K3,3 nor K3,3 − e.

Proof. The (2, 5)-list assignment L of K3,3 or K3,3− e shown in Figure 2.2.8 has

no proper coloring.

Figure 2.2.8: A (2, 5)-list assignment of K3,3 and K3,3 − e

Let G be a triangle-free graph with six vertices and L be a (2, 5)-list assign-

ment of G . Assume that G is neither K3,3 nor K3,3 − e . If G has no cycle, G

can be easily colored. If G contains only one cycle, then we can color the cycle,
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and the remaining vertices outside the cycle can be easily colored. Assume G

contains at least 2 cycles. Since G is a triangle-free graph, G is one of the graphs

in Lemma 2.2.9. Therefore, G is L-colorable.

Now, we are ready to prove our theorems. Start with Theorem 2.2.11.

Theorem 2.2.11. Let k ≥ 3. A Kk+1 -free graph with n vertices is (k, t)-

choosable for t ≥ kn− k2 − 2k + 1.

Proof. Let k ≥ 3, t ≥ kn−k2−2k+1 and G be a Kk+1 -free graph with n vertices.

Let S ⊂ V (G) be such that |L(S)| < |S| . We will prove that G[S] is L|S -colorable

in order to utilize Theorem 2.1.7. By Lemma 2.2.1, |S|k− k2− 2k+ 1 ≤ |L(S)| <

|S| . Hence |S| < k + 3 + 2
k−1

; i.e. |S| ≤ k + 3.

If |S| ≤ k + 2, then G[S] is L|S -colorable by Lemma 2.2.5. If |S| = k + 3

and |L(S)| = k then by Lemma 2.2.1 we obtain t = |L(V (G))| ≤ kn − k2 − 2k ,

a contradiction. Otherwise, |S| = k + 3 and |L(S)| ≥ k + 1; hence G[S] is also

L|S -colorable by Lemma 2.2.8.

It is worth mentioning that Theorem 2.2.11 is not true when k = 2. However,

the statement is correct if the bound is slightly improved. This is illustrated in

Theorem 2.2.12. Furthermore, Theorem 2.2.13 reveals all graphs forbidding the

case for which Theorem 2.2.11 fails when k = 2.

Theorem 2.2.12. A triangle-free graph with n vertices is (2, t)-choosable where

t ≥ 2n− 6.

Proof. Assume that G is a triangle-free graph with n vertices. Let S ⊂ V (G)

such that |L(S)| < |S| . Again, we will show that G[S] is L|S -colorable in order

to utilize Theorem 2.1.7. By Lemma 2.2.1, 2|S| − 6 ≤ |L(S)| < |S| . Hence

|S| < 6. If |S| ≤ 4 then G[S] is L|S -colorable by Lemma 2.2.5. Now assume that
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|S| = 5. By Lemma 2.2.1, |L(S)| ≥ 2n − 6 − 2(n − |S|) = 4; therefore, G[S] is

L|S -colorable by Lemma 2.2.8.

Theorem 2.2.13. A triangle-free graph with n vertices is (2, 2n − 7)-choosable

if and only if it does not contain K3,3 − e as a subgraph.

Proof. Let G be a triangle-free graph with n vertices.

Necessity. Assume that G contains K3,3 − e as a subgraph. We will find a

(2, 2n−7)-list assignment of G such that G is not L-colorable. First, assign lists

of colors for vertices in K3,3 − e shown in Figure 2.2.8. Assign disjoint sets of

colors to each remaining n− 6 vertices; this uses 2n− 12 colors. Thus we obtain

(2, 2n− 7)-list assignment L of G . Since K3,3− e is not L|V (K3,3−e) -colorable, G

is not L-colorable.

Sufficiency. Assume that G does not contain K3,3 − e as a subgraph. Let L be

a (2, 2n − 7)-list assignment of G . Let S ⊂ V (G) such that |L(S)| < |S| . By

Theorem 2.1.7, it suffices to show that G[S] is L|S -colorable.

By Lemma 2.2.1, 2|S| − 7 ≤ |L(S)| < |S| ; therefore, |S| ≤ 6. If |S| = 6, then

|L(S)| ≥ 2 · 6− 7 = 5; hence, the proof is done by Lemma 2.2.10. If |S| = 5, then

|L(S)| ≥ 2 · 5− 7 = 3, so the proof is done by Lemma 2.2.8. Otherwise, |S| ≤ 4.

Since G[S] is triangle-free, it is a subgraph of K2,3 ; hence, it is L-colorable by

Example 2.1.1. Therefore, G[S] is L|S -colorable.

Theorem 2.2.14. Let n, k, t be positive integers such that nk − k2 − 2k + 1 ≤

t ≤ nk− k2 and 3 ≤ k ≤ n− 3. An n-vertex graph is (k, t)-choosable if and only

if it is Kk+1 -free. Moreover, for k = 2 and 2n − 6 ≤ t ≤ 2n − 4, an n-vertex

graph is (2, t)-choosable if and only if G is triangle-free.

Proof. Theorem 2.2.4 and Theorem 2.2.11 are necessity and sufficiency for the

case k ≥ 3 this theorem. Furthermore, Theorems 2.2.4, 2.2.12 and 2.2.13 prove

the remaining case of the theorem.
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We next step further to the case k ≤ t ≤ nk−k2−2k . Some Kk+1 -free graphs

with n vertices are (k, t)-choosable. Theorem 2.2.15 gives us forbidden graphs.

Theorem 2.2.15. Let G be an n-vertex graph and k ≤ t ≤ nk − k2 − 2k where

k ≥ 2. If G contains C5 ∨Kk−2 then G is not (k, t)-choosable.

Proof. Consider a (k, t)-list assignment L of G such that L(v) = {1, 2, . . . , k} for

every vertex v in C5∨Kk−2 . It is possible to construct such (k, t)-list assignment

L because t−k ≤ k(n−k−3). Notice that the union of lists for the rest n−k−3

vertices outside C5 ∨Kk−2 is {k+ 1, k+ 2, . . . , t} . However, since every vertex in

C5∨Kk−2 receives the same list of size k , we cannot color all vertices in C5∨Kk−2 .

Therefore, G is not L-colorable.



CHAPTER III

ON 3-CHOOSABILITY OF COMPLETE BIPARTITE

GRAPHS

3.1 Background

In [4], the authors illustrated the list assignment L such that K7,7 is not L-

colorable. Such list assignment originated from the Fano plane which is defined

in Notation 3.1.1.

Notation 3.1.1. Let F = {{1, 2, 3} , {1, 4, 5} , {1, 6, 7} , {2, 4, 6} , {2, 5, 7} ,

{3, 4, 7} , {3, 5, 6}} and LF be the 3-list assignment of K7,7 such that all seven

vertices in each partite set are assigned by distinct lists from F .

Later, in 1996, Hanson, MacGillivray, and Toft [8] proved that every complete

bipartite graph with at most 13 vertices is 3-choosable. Hence, the smallest

complete bipartite graph which is not 3-choosable has 14 vertices. Fitzpatrick

and MacGillivray [5] added that every complete bipartite graph with 14 vertices

except K7,7 is 3-choosable. Moreover, LF is the unique list assignment up to

renaming the colors which prevents K7,7 from being 3-choosable. We will give

another proof of this statement in Theorem 3.3.6.

It is noticeable that renaming the colors in a list assignment does not affect its

colorability. Thus, all results throughout the rest of dissertation does not depend

on renaming the colors.

In Section 3.2, we first establish new strategies which can be utilized to verify
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3-choosability of complete bipartite graphs. In Section 3.3, we use our strategies

to obtain another proof of [5] and in Section 3.4, we also extend this result to a

complete bipartite graph with 15 vertices. We prove that every complete bipartite

graph with 15 vertices is 3-choosable except K7,8 . Besides, for a 3-list assignment

L , K7,8 is not L-colorable if and only if L|V (K7,7) = LF . New notations and

definitions used in Chapter 3 and chapter 4 are defined in Notations 3.1.2, 3.1.3

and Definition 3.1.4. Example 3.1.5 illustrate these notations and definitions.

Notation 3.1.2. Let L be a list assignment of the complete bipartite graph Ka,b .

The notation La and Lb denote the collections of lists assigned to the vertices in

the partite sets with a and b vertices, respectively. If a = b , we use the notation

La(i) and La(ii) .

Notation 3.1.3. For convenience, we write lists without commas and braces.

For example, we write {123, 145, 167, 246, 257, 347, 356} in stead of {{1, 2, 3} ,

{1, 4, 5} , {1, 6, 7} , {2, 4, 6} , {2, 5, 7} , {3, 4, 7} , {3, 5, 6}} . For a list A , the nota-

tion A− 1 represents the list which is obtained from A by removing color 1 from

A . Similarly, the notation A − 12 represents the list which is obtained from A

by removing color 1 and color 2 from A .

Definition 3.1.4. Given a collection of lists X = {X1, X2, . . . , Xn} , a coloring of

X is a set C ⊆ X1 ∪X2 ∪ . . . ∪Xn such that C ∩Xi 6= ∅ for all i = 1, 2, . . . , n .

A coloring C of X is called a t-coloring if |C| = t .

Notice that a coloring of a collection of lists X is not necessary a coloring of a

graph G ; for example, if a graph G has |X| vertices and has no edge, and L is a

list assignment of G such that all vertices of G are assigned by distinct lists from

X , then a coloring of X and an L-coloring of G are the same. We are interested

in a collection of lists X when it is a collection of lists which are assigned to all
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vertices in a partite set of complete bipartite graphs. Example 3.1.5 illustrates

these notations.

Example 3.1.5. Let L be the list assignment of K3,3 as shown in Figure 3.1.1.

Then L3(i) = {12, 13, 45} and L3(ii) = {14, 15, 23} . Since 1 ∈ 12, 13 and 4 ∈ 45,

we conclude that {1, 4} is a 2-coloring of L3(i) . Similarly, {1, 5} is a 2-coloring

of L3(i) while {2, 3, 4} and {2, 3, 5} are 3-colorings of L3(i) .

Figure 3.1.1: The list assignment L of K3,3

�

3.2 Strategies

In order to prove our desire results, we may prove many similar cases. We group

similar cases together and construct tools for each group. First, we introduce a

lemma by Hanson, MacGillivray and Toft [8] which will be used throughout this

section.

Lemma 3.2.1. [8] Let L be a list assignment of the complete bipartite graph

Ka,b . Then Ka,b is not L-colorable if and only if every coloring of La (or Lb ) has

a subset that is a list in Lb (or La ).

Proof. Necessity. Assume that there is a coloring C of La which does not contain

any lists in Lb . Then after we color La by C , each list in Lb still has an available

color. Hence Ka,b is L-colorable.

Sufficiency. Assume that every coloring of La has a subset that is a list in Lb .
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Let C be any coloring of La . So, there exists Bi in Lb such that Bi ⊆ C . Then

we cannot use C to color vertices in La because there is no color left to color

Bi .

We introduce six theorems, called strategies, which can be applied to prove

3-choosability complete of bipartite graphs. To begin with, we find a sufficient

condition of Ka,b to be L-colorable when all lists in La are mutually disjoint.

Theorem 3.2.2. (Strategy A) Let L be a list assignment of Ka,b with La =

{A1, A2, . . . , Aa}, Lb = {B1, B2, . . . , Bb} and all lists have size at most 3. If all

lists in La are mutually disjoint and
∏a

i=1 |Ai| > 3a−1n1 + b3a−2cn2 + b3a−3cn3

where ni = |{B ∈ Lb, |B| = i}| for i = 1, 2, 3, then Ka,b is L-colorable.

Proof. Since there are |Ai| possible ways to color the list Ai for each i and all

Ai ’s are mutually disjoint, the number of a-colorings of La is
∏a

i=1 |Ai| . Now we

count the number of those a-colorings containing each Bi of Lb for i = 1, 2, . . . , b .

Consider Bi ∈ Lb .

Case 1. |Bi| = 1, say Bi = r . If r 6∈ Aj for all j = 1, 2, . . . , j , then all

a-colorings of La do not contain Bi . Without loss of generality, suppose that

r ∈ A1 . To complete an a-coloring of La , we choose the other a− 1 colors each

from the remaining Aj where j = 2, 3, . . . , a . Thus the number of the a-colorings

of La containing r is
∏a

j=2 |Aj| . That is, the number of the a-colorings of La

which contain Bi as a subset is at most 3a−1 .

Case 2. |Bi| = 2, say Bi = rs . Consider an a-coloring of La containing

both r and s . Without loss of generality, suppose that r ∈ A1 and s ∈ A2 . To

complete an a-coloring of La , we choose the other a − 2 colors each from the

remaining Aj where j = 3, 4, . . . , a . Thus the number of the a-colorings of La

which contain Bi as a subset is
∏a

j=3 |Aj| . That is, the number of the a-colorings
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of La which contain Bi as a subset is at most 3a−2 . Note that in case a = 1,

all a-colorings are 1-colorings; hence, the number of a-colorings contains Bi as a

subset is b3a−2c = 0.

Case 3. |Bi| = 3, say Bi = rst . Consider an a-coloring of La containing r, s

and t . Without loss of generality, suppose that r ∈ A1, s ∈ A2, t ∈ A3 . Again,

we choose the other a − 3 colors from each Aj where j = 4, 5, . . . , a . Thus the

number of the a-colorings of La which contain Bi as a subset is
∏a

j=4 |Aj| . That

is, the number of the a-colorings of La which contain Bi as a subset is at most

3a−3 . Note that in case a ≤ 2, all a-colorings are 1-colorings or 2-colorings;

hence, the number of a-colorings contains Bi as a subset is b3a−3c = 0.

Hence La has at most 3a−1n1 + b3a−2cn2 + b3a−3cn3 a-colorings containing

some Bi . Since the number of a-colorings of La is
∏a

j=1 |Aj| and
∏a

j=1 |Aj| >

3a−1n1 +b3a−2cn2 +b3a−3cn3 , there exists a coloring of La which does not contain

any list in Lb . Therefore, Ka,b is L-colorable.

Notation 3.2.3. We can conclude the same result if we consider the other way

around, that is, the assumption in Strategy A for a list assignment L of Ka,b

becomes all lists in Lb are mutually disjoint and
∏b

i=1 |Bi| ≤ 3b−1n1 + b3b−2cn2 +

b3b−3cn3 , where ni = |{A ∈ La, |A| = i}| for i = 1, 2, 3. Then we call it Strategy A

for Lb and we call the original version Strategy A for La .

A remark from Strategy A, if
∏a

i=1 |Ai| > 3a−1n1 + b3a−2cn2 + b3a−3cn3 where

ni = |{A ∈ La, |A| = i}| for i = 1, 2, 3 , then Ka,b may not L-colorable. For

example, let L be a 3-list assignment of K3,27 such that L3 = {123, 456, 789} and

L27 = {abc|a ∈ 123, b ∈ 456, c ∈ 789} .

The next five strategies, B,C,D,E and F , can be used to color Ka,b with

respect to a list assignment L in the case that a color appears in at least a −

1, a−2, a−3 and a−4 in La , respectively. The next strategy is called Strategy B
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for La and we can define Strategy B for Lb , similarly.

Theorem 3.2.4. (Strategy B) Let L be a 3-list assignment of Ka,b . If a color

appears in a− 1 lists in La , then Ka,b is L-colorable.

Proof. Notice that La can be labeled by at most two colors. Since every list in

Lb has size 3, all list in Lb still have available colors.

Remark 3.2.5. Let L be a list assignment of Ka,b and C be a 2-coloring of La .

Then,

(i) if L is a 3-list assignment then Ka,b is L-colorable;

(ii) if all lists of size at most 2 in Lb have a color which is not in C , then Ka,b is

L-colorable.

Theorem 3.2.6. (Strategy C) Let L be a 3-list assignment of Ka,b such that

each color appears in at most eight lists in Lb . If a color appears in a− 2 lists in

La then Ka,b is L-colorable.

Proof. Strategy B takes care the case that a color appears in more than a − 2

lists in La . Assume that a color appears in exactly a − 2 lists in La . If the two

remaining lists in La have a common color, then there exists a 2-coloring of La .

Since all lists in Lb are of size 3, Ka,b is L-colorable by Remark 3.2.5. Suppose

that the two remaining lists in La have no common color. Hence, La has at least

nine 3-colorings containing color 1. However, by the assumption, color 1 appears

in at most eight lists in Lb . Thus, at least one of such nine 3-colorings is not a

list in Lb . Therefore, by Lemma 3.2.1 Ka,b is L-colorable.

Theorem 3.2.7. (Strategy D) Let L be a 3-list assignment of Ka,b such that

each color appears in at most r lists in Lb . If a color appears in a− 3 lists in La

and (r, b) ∈ {(r, b)|r ≤ 2, b ≤ 22}∪{(3, b)|b ≤ 14}∪{(4, b)|b ≤ 12}∪{(5, b)|b ≤ 9},

then Ka,b is L-colorable.
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Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb} .If a color appears in

more than a−3 lists, we apply Strategy C. Assume that color 1 appears in exactly

a− 3 lists in La , and (r, b) ∈ {(r, b)|r ≤ 2, b ≤ 22} ∪ {(3, b)|b ≤ 14} ∪ {(4, b)|b ≤

12}∪{(5, b)|b ≤ 9} . Without loss of generality, let 1 ∈ A1, A2, . . . , Aa−3 . First, we

label A1, A2, . . . , Aa−3 by color 1. Now, we consider the remaining vertices which

form K3,b . For the worst case, we may suppose that 1 ∈ B1, B2, . . . , Br . Let

L′ be the list assignment of K3,b which is obtained from L by removing color 1.

Notice that L′3 = {Aa−2, Aa−1, Aa} and L′b = {B1−1, . . . , Br−1, Br+1 . . . , Bb} . If

Aa−2∩Aa−1∩Aa 6= ∅ then there is a 2-coloring of La ;hence, Ka,b is L-colorable

by Remark 3.2.5. Suppose that Aa−2 ∩ Aa−1 ∩ Aa = ∅ .

Case 1. |Aa−2 ∩ Aa−1| = 2.

Let 2, 3 ∈ Aa−2, Aa−1 and Aa = 456. Then La has at least six 3-colorings, called

{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6} . Since r ≤ 5, at least one of

the six 3-colorings is not a list in Lb . By Lemma 3.2.1, Ka,b is L-colorable.

Case 2. |Aa−2 ∩ Aa−1| = 1.

Let Aa−2 = 234, Aa−1 = 256 and Aa = pqr where p, q, r 6∈ {1, 2} . Then we divide

this case into several subcases.

Case 2.1 {p, q, r} ∩ {3, 4, 5, 6} 6= ∅ .

Without loss of generality, we let p = 3. Then La has at least five 3-colorings,

called {1, 2, 3}, {1, 2, q}, {1, 2, r}, {1, 3, 5}, {1, 3, 6} . If one of such 3-colorings is

not a list in Lb , then Ka,b is L-colorable by Lemma 3.2.1. Suppose that such

3-colorings are lists in Lb . Thus r = 5 and b ≤ 9. Let B1 = 123, B2 = 12q, B3 =

12r, B4 = 135 and B5 = 136. We label B1, B2, B3, B4 and B5 by color 2 and

color 3. Now, the remaining vertices form K3,b−5 where b ≤ 9. For the worst

case, we suppose b = 9. Let L′′ be the list assignment of K3,4 which is obtained

from L′ by removing color 2. Then L′′3 = {4, 56, qr} and L′′4 = {B6, B7, . . . , B9} .
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If L′′3 has a 2-coloring, then K3,4 is L′′ -colorable by Remark 3.2.5. Hence, sup-

pose that L′′3 has no 2-coloring. That is, q, r 6∈ {4, 5, 6} . We let q = 7 and

r = 8. Then L′′3 has four 3-colorings, namely {4, 5, 7}, {4, 5, 8}, {4, 6, 7}, {4, 6, 8} .

Again, we suppose that such 3-colorings are lists in L′′4 . Now, Lb = L9 =

{123, 127, 128, 135, 136, 457, 458, 478, 468} . Hence, color 1 and color 4 form a

2-coloring of Lb . By Remark 3.2.5, Ka,b is L-colorable.

Case 2.2 p, q, r 6∈ {3, 4, 5, 6} .

Let p = 7, q = 8 and r = 9. Then {1, 2, 7}, {1, 2, 8} and {1, 2, 9} are 3-colorings

of La . Again, by Lemma 3.2.1, Ka,b is L-colorable unless the case that Lb contains

127, 128 and 129. Let B1 = 127, B2 = 128, B3 = 129. Thus r ≥ 3. Next, we

label B1, B2, B3 by color 2. Let L′′ be the list assignment of K3,b−3 which is

obtained from L′ by removing color 2. Then L′′3 = {Aa−2 − 2, Aa−1 − 2, Aa} and

L′′b−3 = {B4 − 1, . . . , Br − 1, Br+1, Br+2, . . . , Bb} . Now, we apply Strategy A for

L′′3 .

Case 2.2.1 r = 3. Then all lists in L′′b−3 are of size 3. We apply Strategy A

for L′′3 because 12 > 33−3(b− 3).

Case 2.2.2 r = 4. For the worst case, we suppose that 1 ∈ B4 . That is L′′b−3

has exactly one lists of size 2 and the remaining lists are of size 3. Again, we

apply Strategy A for L′′3 because 12 > 33−2 · 1 + 33−3(b− 4).

Case 2.2.3 r = 5. For the worst case, we suppose that 1 ∈ B4, B5 . That is

L′′b−3 has exactly two lists of size 2 and the remaining lists are of size 3. Again,

we apply Strategy A for L′′3 because 12 > 33−2 · 2 + 33−3(b− 5).

Case 3. Aa−2, Aa−1, Aa are mutually disjoint.

Then |Aa−2| · |Aa−1| · |A| = 33 Now, we use Strategy A for L′3 . Note that there

are r lists in Lb containing color 1. So the number of lists of size 2 and size 3 in

L′b are n2 = r and n3 = b− r , respectively. Thus 3 · r+ (b− r) < 33 . Hence K3,b
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is L′ -colorable by Strategy A for L′3 . Therefore, Ka,b is L-colorable.

The next lemma is used only in Strategy E.

Lemma 3.2.8. Let L be a 3-list assignment of Ka,b and each color appears in at

most three lists in Lb . If color 1 appears in exactly a − 4 lists in La , and color

1 and color 2 appear together in three lists in Lb , then Ka,b is L-colorable.

Proof. Let La = {A1, A2, . . . , Aa} , Lb = {B1, B2, . . . , Bb} . Assume that 1 ∈

A1, A2, . . . , Aa−4 and 1, 2 ∈ B1, B2, B3 . If Aa−3 ∩Aa−2 ∩Aa−1 ∩Aa is not empty,

then La has a 2-coloring; hence, Ka,b is L-colorable by Remark 3.2.5. Suppose

that Aa−3∩Aa−2∩Aa−1∩Aa = ∅ . Then we label A1, A2, . . . , Aa−4 by color 1 and

label B1, B2, B3 by color 2. Next, we consider the remaining vertices which form

K4,b−3 . Let L′ be the list assignment of K4,b−3 which is obtain from L by removing

color 1 and color 2. For the worst case, we suppose that 2 ∈ Aa−3, Aa−2, Aa−1 .

That is, L′4 = {Aa−3− 2, Aa−2− 2, Aa−1− 2, Aa} and L′b−3 = {B4, B5, . . . , Bb} . If

any two lists in L′4 have a common color, it can be verified that L′4 has at least

four 3-colorings of L′4 . Since every color appears in at most three lists in L′b−3 ,

at least one of these 3-colorings is not a list in L′b−3 . Then we suppose that all

lists in L′4 have no common color. Let L′4 = {34, 56, 78, 9AB} . Since all lists in

L′4 are subsets of {3, 4, 5, 6, 7, 8, 9, A,B} , we may suppose that all lists in L′b−3

are subsets of {3, 4, 5, 6, 7, 8, 9, A,B} . Since every color appears in at most three

lists in L′b , we obtain b− 3 ≤ 9.

Case 1. b− 3 ≤ 7.

Then K4,b−3 is L′ -colorable by Strategy A for L′4 .

Case 2. b − 3 = 8. We consider the possibility of L′8 such that K4,8 is not

L′ -colorable. Then L′8 must be {357, 358, 367, 368, 457, 458, 467, 468} . However,

this case cannot occur because every color appears in at most three lists in L′8 .
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Case 3. b− 3 = 9. Then every color from 3, 4, 5, 6, 7, 8, 9, A,B must appear

in three lists in L′9 . Then we label 34 in L′4 by color 3 and label three lists

containing color 4 in L′9 by color 4. The remaining vertices form K3,6 . Let L′′

be the lists assignment of K3,6 which is obtained from L′ by removing color 3 and

color 4. Then L′′3 = {56, 78, 9AB} . For the worst case, we suppose that L′′6 has

three lists of size 2 and three lists of size 3. Again, we consider the possibilities

of L′′6 such that K4,6 is not L′′ -colorable. Without loss of generality, L′′6 must be

{57, 58, 67, 689, 68A, 68B} . However, this case cannot occur because every color

appears in at most three lists in L′′6 .

Theorem 3.2.9. (Strategy E) Let L be a 3-list assignment of Ka,b such that

each color appears in at most r lists in Lb . If color 1 appears in a − 4 lists in

La , and (r, b) ∈ {(r, b)|r ≤ 2, b ≤ 22} ∪ {(3, b)|b ≤ 14}, then Ka,b is L-colorable

unless F ⊆ Lb and the four remaining lists in La are 246, 257, 347, 356 up to

rename the colors.

Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb} . If a color appears

in more than a − 4 lists in La , then we apply Strategy D. Assume that color 1

appears in exactly a− 4 lists in La and (r, b) ∈ {(r, b)|r ≤ 2, b ≤ 22}∪ {(3, b)|b ≤

14} . Without loss of generality, we suppose that 1 ∈ A1, A2, . . . , Aa−4 . Moreover,

we suppose that the four remaining lists in La are not 246, 257, 347, 356 or F 6⊆

Lb .

We first label A1, A2, . . . , Aa−4 by color 1. Then the remaining vertices form

K4,b . For the worst case, we may suppose that 1 ∈ B1, B2, . . . , Br . Let L′ be

the list assignment of K4,b which is obtained from L by removing color 1. Then

L′4 = {Aa−3, Aa−2, Aa−1, Aa} and L′b = {B1 − 1, . . . , Br − 1, Br+1, . . . , Bb} .

Case 1. A color appears in all lists in L′4 .

Thus we use such color to label all lists in L′4 . It is easy to see that every list in
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L′b still has an available color. Then Ka,b is L-colorable.

Case 2. A color appears in three lists in L′4 .

If a color appears in four lists, then it is done by case 1. Suppose that no color

appears in four lists in L′4 . Let 2 ∈ Aa−3 ∩ Aa−2 ∩ Aa−1 and Aa = 345.

Now, we consider L of Ka,b . Then La has at least three 3-colorings, that

is, {1, 2, 3}, {1, 2, 4}, {1, 2, 5} . If Lb does not contain all of these 3-colorings,

Ka,b is immediately L-colorable by Lemma 3.2.1. Otherwise, we suppose that

B1 = 123, B2 = 124, B3 = 125. By Lemma 3.2.8, Ka,b is L-colorable.

Case 3. A color appears in two lists in L′4 and the remaining two lists have

no common color.

If a color appears in more than two lists, then the proof is done by Case 1 and

Case 2. Suppose that each color appears in at most two lists in L′4 . Let 2 ∈

Aa−3, Aa−2 and Aa−1 ∩Aa = ∅ . We next label Aa−3 and Aa−2 by color 2. Then,

we focus on the remaining vertices which form K2,b . Let L′′ be the list assignment

of K2,b which is obtained from L′ by removing color 2. Since we use color 1 and

color 2 to label lists in La , we may suppose that both 1 and color 2 appear in

three lists in L′′b for the worse case. Thus, there are four possibilities of L′′b .

Case 3.1 L′′b has six lists of size 2 and b − 6 lists of size 3. We see that

|Aa−1| · |Aa| = 32 > 30 · 6. By Strategy A for L′′2 , K2,b is L′′ -colorable. Then Ka,b

is L-colorable.

Case 3.2 L′′b has one list of size 1, four lists of size 2 and b − 5 lists of size

3. We see that |Aa−1| · |Aa| = 32 > 3 · 1 + 4. By Strategy A for L′′2 , K2,b is

L′′ -colorable. Then Ka,b is L-colorable.

Case 3.3 L′′b has two lists of size 1, two lists of size 2 and b− 4 lists of size

3. We see that |Aa−1| · |Aa| = 32 > 3 · 2 + 2. By Strategy A, K2,b is L′′ -colorable.

Then Ka,b is L-colorable.
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Case 3.4 L′′b has three lists of size 1, no list of size 2 and b − 3 lists of size

3. That is, color 1 and color 2 appear together in exactly three lists of Lb . Then

Ka,b is L-colorable by Lemma 3.2.8.

Case 4. A color appears in two lists in L′4 and the remaining two lists have

a common color.

Similar to case 3, we suppose that no color appears in three lists in L′4 . Let

2 ∈ Aa−3, Aa−2 and 3 ∈ Aa−1 ∩ Aa . Hence, {1, 2, 3} is a 3-coloring of La . If

123 is not a list in Lb , then Ka,b is L-colorable by Lemma 3.2.1. Otherwise, we

suppose that B1 = 123.

Case 4.1 |Aa−3 ∩ Aa−2| ≥ 2 and |Aa−1 ∩ Aa| ≥ 2.

Let 4 ∈ Aa−3 ∩ Aa−2 and 5 ∈ Aa−1 ∩ Aa . We obtain at least four 3-colorings

of La , that is, {1, 2, 3}, {1, 2, 5}, {1, 4, 3}, {1, 4, 5} . Since each color appears in at

most three lists in Lb , at least one of such 3-colorings is not a list in Lb . Then

Ka,b is L-colorable by Lemma 3.2.1.

Case 4.2 |Aa−3 ∩ Aa−2| ≥ 2 and |Aa−1 ∩ Aa| = 1.

We may suppose that |Aa−3∩Aa−2| = 2. Let Aa−3 = 24x,Aa−2 = 24y, Aa−1 = 356

and Aa = 378 where x 6= y and x, y 6∈ {1, 2, 3, 4} . Then {1, 4, 3} is a 3-coloring of

La . If 143 is not a list in Lb , then Ka,b is L-colorable by Lemma 3.2.1. Otherwise,

suppose that B2 = 143. Recall that we have already labeled A1, A2, . . . , Aa−4

by color 1. Now, we label B1, B2 by color 3. Consider the uncolor vertices

which form K4,b−2 . Let L′′ be a list assignment of K4,b−2 which is obtained

from L by removing color 3. Then L′′4 = {24x, 24y, 56, 78} and L′′b−2 = {B3 −

1, B4, B5, . . . , Bb} . By the fact that L′4 has at least eight 3-colorings and every

color appears in at most three colors in Lb , it can be verified that K4,b−2 is

L′′ -colorable.

Case 4.3 |Aa−3 ∩ Aa−2| = 1 and |Aa−1 ∩ Aa| ≥ 2.
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It is similar to Case 4.2.

Case 4.4 |Aa−3 ∩ Aa−2| = 1 and |Aa−1 ∩ Aa| = 1.

Let Aa−1 = 345, Aa = 367 and Aa−3 = 2ef, Aa−2 = 2gh where e, f, g, h are

distinct. Note that {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 5, 6}, {1, 2, 5, 7} are 4-colorings of

La . By Lemma 3.2.1, if one of these 4-colorings has no subset that is a list in

Lb , then Ka,b is L-colorable. Again, suppose that these 4-colorings have a subset

that is a list in Lb . Without loss of generality, Lb can be verified that there are

two possibilities of Lb .

Case 4.4.1 B2 = 124 and B3 = 125.

Then Ka,b is L-colorable by Lemma 3.2.8.

Case 4.4.2 B2 = 146, B3 = 147, B4 = 256, B5 = 257.

Recall that we have already labeled A1, A2, . . . , Aa−4 by color 1. Now, we label

Aa−1, Aa by color 3 and label B1, B4, B5 by color 2. Next, we consider the remain-

ing vertices which forms K2,b−3 . Let L′′ be the list assignment of K2,b−3 which is

obtained from L′ by removing color 2 and color 3. That is, L′′2 = {ef, gh} and

L′′b−3 = {46, 47, B6, B7, . . . , Bb} . Then L′′2 has exactly four 2-colorings, namely

{e, g}, {e, h}, {f, g} and {f, h} . If one of such 2-colorings is not a list in L′′b−3 ,

then K2,b−3 is L′′ -colorable by Lemma 3.2.1. Suppose that such four 2-colorings

are lists in L′′b−3 . Then L′′b−3 has at least four lists of size 2. Recall that 3 ∈ B1 .

Then color 3 appears in two lists in B6, B7, . . . , Bb . Hence, we suppose that

3 ∈ B6, B7 . Then L′′b−3 = {56, 57, B6 − 3, B7 − 3, B8, B9, . . . , Bb−3} .

Let L∗ be a 2-list assignment of K2,4 such that L∗2 = {ef, gh} and L∗4 =

{56, 57, B6−3, B7−3} . By Remark 3.2.5, K2,b−3 is L′′ -colorable if and only if K2,4

is L∗ -colorable. Moreover, K2,4 is not L∗ -colorable if and only if L∗2 = {45, 67}

and L∗4 = {46, 47, 56, 57} . Therefore, K2,4 is not L∗ -colorable if and only if

{Aa−3, Aa−2, Aa−1, Aa} 6= {246, 257, 347, 356} or F 6⊆ Lb .
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Case 5. All lists in L′4 are mutually disjoint.

Note that L′b has b − r lists of size 3, r lists of size 2 and no list of size 1. We

have that
∏a

i=a−3 |Ai| = 34 > 32 · r + 3 · (b − r). By Strategy A for L′4 , K4,b is

L′ -colorable.

The next lemma is used only in Strategy F.

Lemma 3.2.10. Let L be a 3-list assignment of Ka,b and each color appears in

at most two lists in Lb . If a color appears in exactly a− 5 lists in La and a color

appears in exactly three of the five remaining lists, then Ka,b is L-colorable.

Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb} . Suppose that 1 ∈

A1, A2, . . . , Aa−5 and 2 ∈ Aa−4, Aa−3, Aa−2 . Then we first label A1, A2, . . . , Aa−5

by color 1 and label Aa−4, Aa−3, Aa−2 by color 2. Consider the remaining vertices

which form K2,b . Let L′ be the list assignment of K2,b which is obtained from L

by removing color 1 and color 2. Note that L′2 = {Aa−1, Aa} . Next, we divide

the proof into four cases.

Case 1. Aa−1 ∩ Aa = ∅ .

To apply Strategy A for L′2 , we count the number of lists of size 1, size 2 and

size 3 in L′b . We have three possibilities. Denote that ni is the number of lists of

size i in L′b for i = 1, 2, 3.

1. n1 = 2, n2 = 0 and n3 = b− 2.

2. n1 = 1, n2 = 2 and n3 = b− 3.

3. n1 = 0, n2 = 4 and n3 = b− 4.

All possibilities satisfy conditions in Strategies A of L′2 . Therefore, K2,b is L′ -

colorable.
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Case 2. |Aa−1 ∩ Aa| = 1.

Let Aa−1 = 345 and Aa = 367. If 123 is not a list in Lb , then Ka,b is L-

colorable. Without loss of generality, suppose that B1 = 123. Then we label all

lists containing color 3 in L′b by color 3. Now, we consider all uncolored vertices.

For the worst case, we suppose that no other list except B1 containing color 3.

Thus the remaining vertices form K2,b−1 . Let L′′ be the list assignment of K2,b−1

which is obtained from L′ by removing color 3. Then we can apply Strategy A

for L′2 .

Case 3. |Aa−1 ∩ Aa| = ∅ .

Let Aa−1 = 345 and Aa = 346. If 123 and 124 are not lists in Lb , then Ka,b

is immediately L-colorable. Without loss of generality, suppose that B1 = 123

and B2 = 124. Then we label B1, B2, Aa−1 and Aa by color 3, color 4, color 5

and color 6, respectively. Notice that every uncolored vertex in L′b still has an

available color. Therefore, K2,b is L′ -colorable.

Theorem 3.2.11. (Strategy F) Let L be a 3-list assignment of Ka,b and each

color appears in at most two lists in Lb . If a color appears in a − 5 lists in La

and a+ b ≤ 18, then Ka,b is L-colorable.

Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb} . Since a + b ≤ 18

and a ≥ 5, we obtain b ≤ 13. Since each color appears in at most two lists in

Lb , we have F 6⊂ Lb . Then we can apply Strategy E if a color appears in more

than a − 5 lists. Suppose that a color appears in exactly a − 5 lists. Without

loss of generality, we assume 1 ∈ A1, A2, . . . , Aa−5 . Then we label the a− 5 lists

by color 1. For the worst case, we assume that color 1 is in two list in Lb , say

B1, B2 . Next, consider the remaining vertices which form K5,b . Let L′ be the

list assignment of K5,b which is obtained from L by removing color 1. Then

L′5 = {Aa−4, Aa−3, Aa−2, Aa−1, Aa} and L′b = {B1 − 1, B2 − 1, B3, . . . , Bb} .
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Case 1. A color appears in all lists in L′5 .

Then La has a 2-coloring; hence, Ka,b is L-colorable by Remark 3.2.5.

Case 2. A color appears in four lists in L′5 .

By case 1, we may suppose that color 2 appears in exactly four lists in L′5 . Let

2 ∈ Aa−4, Aa−3, Aa−2, Aa−1 and Aa = 345. We obtain three 3-colorings of La ,

that is, {1, 2, 3}, {1, 2, 4}, {1, 2, 5} . Since every color appears in at most two lists

in Lb , at least one of the 3-colorings is not a list in Lb . Therefore, Ka,b is

L-colorable by Lemma 3.2.1.

Case 3. A color appears in three lists in L′5 .

By Lemma 3.2.10, Ka,b is L-colorable.

Case 4. A color appears in two lists in L′5 .

From Case 3, we may suppose that each color appears in at most two lists in L′5 .

Since color 1 appears in at most two lists in Lb , at most four colors appears in the

same lists with color 1 in Lb . We apply Theorem 2.1.3. Since 18 ·
(
3
2

)
≤
(
10+1

2

)
, we

may suppose that |
⋃a

i=a−4Ai| ≤ |
⋃

v∈V (Ka,b)
L(v)| ≤ 10. Since |Aa−4| + |Aa−3| +

|Aa−2|+ |Aa−1|+ |Aa| = 15 and the number of colors is at most ten, at least five

colors must appear in exactly two lists in L′5 . Recall that only B1, B2 contain

color 1. Hence, at most four colors from the five colors appear in the same lists

with color 1 in Lb . Hence, we can choose the remaining color such that no list in

Lb contain both color 1 and this color, namely color 2. Let 2 ∈ Aa−4, Aa−3 and

then we label Aa−4, Aa−3 by color 2. Let L′′ be the list assignment of K3,b which is

obtained from L′ by removing color 2. For the worst case, we suppose 2 ∈ B3, B4 .

Hence, L′′b = {B1−1, B2−1, B3−2, B4−2, B5 . . . , Bb and L′′2 = {Aa−2, Aa−1, Aa} .

If color 3 appears in exactly two lists in Aa−2, Aa−1, Aa , then L′′3 has at least

three 2-colorings containing color 3. Since every color appears in at most two

lists in L′′b , at least one 2-coloring is not a list in L′′b . Otherwise, we suppose
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that Aa−2, Aa−1, Aa are mutually disjoint. To apply Strategy A, we count the

number of lists of size 1, size 2 and size 3 in L′′b . We obtain that L′′b has no list

of size 1, four lists of size 2 and b − 4 lists of size 3 where b − 4 ≤ 6. Then

|Aa−2| · |Aa−1| · |Aa| = 33 > 3 · 4 + (b− 4).

Case 5. Aa−4, Aa−3, Aa−2, Aa−1, Aa are mutually disjoint.

Then L′b has at most three lists of size b − 2 and two lists of size 2. Since∏a
i=a−4 |Ai| = 35 > 33 · 2 + 32 · (b− 2), Ka,b is L-colorable by Strategy A for L′5 .

Notation 3.2.12. Strategies A,B,C,D,E and F show that there exists a coloring

of La such that every list in Lb still has available colors. It is called Strat-

egy A(B,C,D,E,F) for La . However, we can exchange the role between La and

Lb for a list assignment L of Ka,b and we call Strategy A(B,C,D,E,F) for Lb .

Strategy A can be applied for a list assignment whose all lists have size at

most 3. However, we can imitate Strategy A to build a new strategy which can

be applied when all lists have size at most 2.

Theorem 3.2.13. (Strategy A ′) Let L be a list assignment of Ka,b with La =

{A1, A2, . . . , Aa}, Lb = {B1, B2, . . . , Bb} and all lists have size at most 2. If all

lists in La are mutually disjoint and 2a >
∏a

i=1b2a−1cn1 + b2a−2cn2 where ni =

|{B ∈ Lb, |B| = i}| for i = 1, 2, then Ka,b is L-colorable.

Proof. Similar to Strategy A.

According to the proof of Strategies B, C, D, E and F, if color 1 appears in

a − 1, a − 2, a − 3, a − 4 and a − 5 lists, respectively, then we label such lists

by color 1. The size of lists containing color 1 is insignificant. Then we can

prove Strategies B ′ , C ′ , D ′ , E ′ and F ′ similar to Strategies B, C, D, E and F,

respectively.
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Theorem 3.2.14. (Strategy B ′) Let L be a list assignment of Ka,b . If a color

appears in a− 1 lists in La and the remaining lists in La and Lb are of size 3,

then Ka,b is L-colorable.

Proof. Similar to Strategy B.

Theorem 3.2.15. (Strategy C ′) Let L be a list assignment of Ka,b where every

color appears in at most eight lists in Lb . If a color appears in a− 2 lists in La

and the remaining lists in La and Lb are of size 3, then Ka,b is L-colorable.

Proof. Similar to Strategy C.

Theorem 3.2.16. (Strategy D ′) Let L be a list assignment of Ka,b where every

color appears in at most r lists in Lb . If a color appears in a − 3 lists in La ,

the remaining lists in La and Lb are of size 3 and (r, b) ∈ {(r, b)|r ≤ 2, b ≤

22} ∪ {(3, b)|b ≤ 14} ∪ {(4, b)|b ≤ 12} ∪ {(5, b)|b ≤ 9}, then Ka,b is L-colorable.

Proof. Similar to Strategy D.

Theorem 3.2.17. (Strategy E ′) Let L be a list assignment of Ka,b where every

color appears in at most r lists in Lb . If color 1 appears in a − 4 lists in La ,

the remaining lists in La and Lb are of size 3 and and (r, b) ∈ {(r, b)|r ≤ 2, b ≤

22} ∪ {(3, b)|b ≤ 14}, then Ka,b is L-colorable unless the four remaining lists in

La are 246, 257, 347, 356 and F ⊆ Lb .

Proof. Similar to Strategy E.

Theorem 3.2.18. (Strategy F ′) Let L be a list assignment of Ka,b where every

color appears in at most two lists in Lb . If a color appears in a − 5 lists in La ,

the remaining lists in La and Lb are of size 3, and a + b ≤ 18, then Ka,b is

L-colorable.

Proof. Similar to Strategy F.
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3.3 Complete Bipartite Graphs with Fourteen Vertices: a

New Proof

This section gives another proof of the result by Fitzpatrick and MacGillivray [5]

which was stated that every complete bipartite graph with 14 vertices except K7,7

is 3-choosable and LF (see Notation 3.1.1) is the unique 3-list assignment such

that Ka,b is not LF -colorable. Their proof is a detailed case analysis which cannot

be extended to verify 3-choosability of complete bipartite graphs with 15 vertices

while our proof is obtained from Strategies A, B, C, D, E and F, and our proof

can be applied to give results of 3-choosability of complete bipartite graphs with

15 vertices. Moreover, our strategies can be applied to verify complete bipartite

graphs to be L-colorable for some 3-list assignments L .

Lemma 3.3.1. The complete bipartite graph K3,b is 3-choosable if and only if

b ≤ 26.

Proof. Let L be the 3-list assignment of K3,27 defined by L3 = {123, 456, 789}

and L27 = {{a, b, c}|a ∈ {1, 2, 3}, b ∈ {4, 5, 6}, c ∈ {7, 8, 9}} . Notice that every

coloring of L3 is a list in L27 . By Lemma 3.2.1, K3,27 is not L-colorable.

Next, we will prove K3,26 is 3-choosable. Let L be a 3-list assignment of

K3,26 . If some lists in L3 have a common color, K3,26 is immediately L-colorable

by Strategy B for L3 . Suppose that all lists in L3 have no common color. To

apply Strategy A for L3 , we count the number of 3-coloring of L3 and count the

number of lists of size 1, size 2 and size 3 in L26 . We see that the number of

3-coloring of L3 is 27. Since L26 has only 26 lists of size 3, at least one of those

3-colorings is not a list in L26 . Hence, we can use such 3-coloring to color L3

while every list in L26 still has an available color.

Lemma 3.3.2. The complete bipartite graph K4,10 is 3-choosable.
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Proof. Let L be a 3-list assignment of K4,10 . Let r4 (and r10 ) be the maximum

number of lists in L4 (and L10 ) containing a common color. Note that r4 ≤ 4

and r10 ≤ 10.

Case 1. r4 = 3, 4 or r10 = 9, 10; apply Strategy B for L4 or Strategy B for L10 ,

respectively.

Case 2. r4 = 2 and r10 ≤ 8; apply Strategy C for L4 .

Case 3. r4 = 1 and r10 ≤ 8; apply Strategy A for L4 . Notice that
∏4

i=1 |Ai| =

34 > 3 · 10 = 34−3n3 .

Lemma 3.3.3. The complete bipartite graph K5,9 is 3-choosable.

Proof. Let L be a 3-list assignment of K5,9 . Let r5 (and r9 ) be the maximum

number of lists in L5 (and L9 ) containing a common color. Then r5 ≤ 5 and

r9 ≤ 9.

Case 1. r5 = 4, 5 or r9 = 8, 9; apply Strategy B for L5 or Strategy B for L9 ,

respectively.

Case 2. r5 = 3 and r9 ≤ 7; apply Strategy C for L5 .

Case 3. r5 ≤ 2 and r9 = 7; apply Strategy C for L9 .

Case 4. r5 ≤ 2 and r9 = 6; apply Strategy D for L9 .

Case 5. r5 ≤ 2 and r9 = 5; apply Strategy E for L9 . Notice that F 6⊂ L5

because L5 contains only five lists.

Case 6. r5 = 2 and r9 ≤ 4; apply Strategy D for L5 .

Case 7. r5 = 1 and r9 ≤ 4; apply Strategy A for L5 . Notice that
∏5

i=1 |Ai| =

35 > 32 · 9 = 35−3n3 .

Lemma 3.3.4. The complete bipartite graph K6,8 is 3-choosable.

Proof. Let L be a 3-list assignment of K6,8 . Let r6 (and r8 ) be the maximum

number of lists in L6 (and L8 ) containing a common color. Then r6 ≤ 6 and
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r8 ≤ 8.

Case 1. r6 = 5, 6 or r8 = 7, 8; apply Strategy B for L6 or Strategy B for L8 ,

respectively.

Case 2. r6 = 4 and r8 ≤ 6; apply Strategy C for L6 .

Case 3. r6 ≤ 3 and r8 = 6; apply Strategy C for L8 .

Case 4. r6 ≤ 3 and r8 = 5; apply Strategy D for L8 .

Case 5. r6 ≤ 3 and r8 = 4; apply Strategy E for L8 . Notice that F 6⊂ L6

because L6 contains only six lists.

Case 6. r6 = 3 and r8 ≤ 3; apply Strategy D for L6 .

Case 7. r6 = 2 and r8 ≤ 3; apply Strategy E for L6 unless 1 ∈ A1, A2 ,

A3 = 246, A4 = 257, A5 = 347, A6 = 356 and F ⊂ L8 . In such case, color

1, 2, 3, 4, 5, 6, 7 have already appeared in two lists in L6 , we have two new color

8, 9 ∈ A1 because r6 = 2. Hence 3 ∈ Aa−1, Aa and the four remaining lists cannot

rename the colors to 246, 257, 347, 356 because the union of the four remaining

lists contains eight colors. Therefore, we can apply Strategy E for L6 .

Case 8. r6 = 1 and r8 ≤ 3; apply Strategy A for L6 . Notice that
∏6

i=1 |Ai| =

36 > 33 · 8.

Lemma 3.3.5. Let L be a 3-list assignment of K7,7 . The complete bipartite

graph K7,7 is L-colorable unless L7(i) = L7(ii) = F .

Proof. Let L be a 3-list assignment such that F 6⊂ L7(i) or F 6⊂ L7(ii) . Let r7(i)

(and r7(ii) ) be the maximum number of lists in L7(i) (and L7(ii) ) containing a

common color. Then r7(i), r7(ii) ≤ 7.

Let t = |
⋃

v∈V (K7,7) L(v)| . By Theorem 2.1.3, we may suppose that t ≤ 10

because 14 · 3 <
(
10+1

2

)
. Since

∑
v∈L7(i)

|L(v)| = 21, we obtain r7(i) ≥ 3 by the

pigeonhole principle. Similarly, r7(ii) ≥ 3.

Case 1. r7(i) = 6, 7 or r7(ii) = 6, 7; apply Strategy B for L7(i) or Strategy B for
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L7(ii) , respectively.

Case 2. r7(i) = 5 and r7(ii) ≤ 5; apply Strategy C for L7(i) .

Case 3. r7(i) ≤ 4 and r7(ii) = 5; apply Strategy C for L7(ii) .

Case 4. r7(i) = 4 and r7(ii) ≤ 4; apply Strategy D for L7(i) .

Case 5. r7(i) = 3 and r7(ii) = 4; apply Strategy D for L7(ii) .

Case 6. r7(i) = 3 and r7(ii) = 3; apply Strategy E for L7(i) unless 1 ∈ A1, A2, A3 ,

A4 = 246, A5 = 257, A6 = 347, A7 = 356 and L7(ii) = F . In such case,

{1, 2, 3}, {1, 4, 5}, {1, 6, 7} are 3-colorings of L7(ii) . One of such 3-colorings is not

a list in L7(i) because L7(i) 6= F . Then K7,7 is L-colorable by Lemma 3.2.1.

Theorem 3.3.6. The complete bipartite graph with 14 vertices is 3-choosable if

and only if it is not K7,7 . For a 3-list assignment L, K7,7 is L-colorable unless

L = LF .

Proof. It follows from Lemmas 3.3.1, 3.3.2 3.3.3, 3.3.4 and 3.3.5.

By Lemmas 3.3.1, 3.3.2, 3.3.3 and 3.3.4, we can easily verify that every com-

plete bipartite graph is 3-choosable.

Theorem 3.3.7. The complete bipartite graph with at most 13 vertices is 3-

choosable.

Proof. If a + b ≤ 13, then Ka,b is a subgraph of one of K3,26 , K4,10 , K5,9 , K6,8

which are 3-choosable by Lemmas 3.3.1, 3.3.2, 3.3.3 and 3.3.4. Therefore, a

complete bipartite graph with at most 13 vertices is 3-choosable.

Since K7,7 is not LF -colorable and LF is a (3, 7)-list assignment, K7,7 is

not (3, 7)-choosable. However, K7,7 is (3, t)-choosable if and only if t 6= 7.

Theorem 3.3.8 gives all positive numbers t such that all complete bipartite graphs

with 14 vertices are (3, t)-choosable.
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Theorem 3.3.8. A complete bipartite graph with 14 vertices is (3, t)-choosable

unless t = 7.

Proof. Let a, b be positive integers such that a ≤ b and a+ b = 14. Then a ≤ 7.

Case 1. a ≤ 3.

Then Ka,b is a subgraph of K3,26 which is 3-choosable by Lemma 3.3.1.

Case 2. a = 4, 5, 6.

Then Ka,b is one of K4,10, K5,9, K6,8 which is 3-choosable by Lemma 3.3.2, Lemma 3.3.3

and Lemma 3.3.4.

Case 3. a = 7 Since LF is the unique 3-list assignment such that K7,7 is

not LF -colorable, K7,7 is (3, t)-choosable for all t 6= 7.

3.4 Complete Bipartite Graphs with Fifteen Vertices

In this section, we keep utilizing our strategies to extend the result in the pre-

vious section to 15 vertices. We first show that K4,11, K5,10, K6,9 are 3-choosable

and then we prove that for a 3-list assignment L , K7,8 is L-colorable unless

L|V (K7,7) = LF .

Lemma 3.4.1. The complete bipartite graph K4,11 is 3-choosable.

Proof. Let L be a 3-list assignment of K4,11 and r4 (and r11 ) be the maximum

number of lists in L4 (and L11 ) containing a common color. Then r4 ≤ 4 and

r11 ≤ 11.

Case 1. r4 = 3, 4 or r11 = 10, 11; apply Strategy B for L4 or Strategy B for

L11 , respectively.

Case 2. r4 ≤ 2 and r11 = 9; apply Strategy C for L11 .

Case 3. r4 = 2 and r11 ≤ 8; apply Strategy C for L4 .
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Case 4. r4 = 1 and r11 ≤ 8; apply Strategy A for L4 . Notice that
∏4

i=1 |Ai| =

34 > 3 · 11 = 34−3n3 .

Lemma 3.4.2. The complete bipartite graph K5,10 is 3-choosable.

Proof. Let L be a 3-list assignment of K5,10 and r5 (and r10 ) be the maximum

number of lists in L5 (and L10 ) containing a common color. Then r5 ≤ 5 and

r10 ≤ 10.

Case 1. r5 = 4, 5 or r10 = 9, 10; apply Strategy B for L5 or Strategy B for L10 ,

respectively.

Case 2. r5 = 3 and r10 ≤ 8; apply Strategy C for L5 .

Case 3. r5 ≤ 2 and r10 = 8; apply Strategy C for L10 .

Case 4. r5 ≤ 2 and r10 = 7; apply Strategy D for L10 .

Case 5. r5 ≤ 2 and r10 = 6; apply Strategy E for L10 . Notice that F 6⊂ L5

because L5 contains only five lists.

Case 6. r5 ≤ 2 and r10 = 5; apply Strategy F for L10 .

Case 7. r5 = 2 and r10 ≤ 4; apply Strategy D for L5 .

Case 8. r5 = 1 and r10 ≤ 4; apply Strategy A for L5 . Notice that
∏5

i=1 |Ai| =

35 > 32 · 10 = 35−3n3 .

Lemma 3.4.3. The complete bipartite graph K6,9 is 3-choosable.

Proof. Let L be a 3-list assignment of K6,9 and r6 (and r9 ) be the maximum

number of lists in L6 (and L9 ) containing a common color. Then r6 ≤ 6 and

r9 ≤ 9.

Case 1. r6 = 5, 6 or r9 = 8, 9; apply Strategy B for L6 or Strategy B for L9 ,

respectively.

Case 2. r6 = 4 and r9 ≤ 7; apply Strategy C for L6 .

Case 3. r6 ≤ 3 and r9 = 7; apply Strategy C for L9 .
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Case 4. r6 ≤ 3 and r9 = 6; apply Strategy D for L9 .

Case 5. r6 ≤ 3 and r9 = 5; apply Strategy E for L9 . Notice that F 6⊂ L6

because L6 contains only six lists.

Case 6. r6 = 3 and r9 ≤ 4; apply Strategy D for L6 .

Case 7. r6 ≤ 2 and r9 = 4; apply Strategy F for L9 .

Case 8. r6 = 2 and r9 ≤ 3; apply Strategy E for L6 unless 1 ∈ A1, A2

and A3 = 246, A4 = 257, A5 = 347, A6 = 356. In such case, we obtain that

4, 5, 6, 7 6∈ A1, A2 because r6 = 2. Let A1 = 178. Then 3 ∈ A5, A6 and the four

remaining lists cannot rename the colors to be 246, 257, 347, 356. Hence, we still

apply Strategy D for L6 .

Case 9. r6 = 1 and r9 ≤ 3; apply Strategy A for L6 . Notice that
∏6

i=1 |Ai| =

36 > 33 · 9 = 36−3n3 .

Lemma 3.4.4. Let L be a 3-list assignment of K7,8 . The complete bipartite

graph K7,8 is L-colorable unless F ⊂ L7, L8 .

Proof. Let L be a 3-list assignment of K7,8 such that F 6⊂ L7 or F 6⊂ L8 . Let r7

(and r8 ) be the maximum number of lists in L7 (and L8 ) containing a common

color. Then r7 ≤ 7 and r8 ≤ 8.

Case 1. r7 = 6, 7 or r8 = 7, 8; apply Strategy B for L7 or Strategy B for L8 ,

respectively.

Case 2. r7 = 5 and r8 ≤ 6; apply Strategy C for L7 .

Case 3. r7 ≤ 4 and r8 = 6; apply Strategy C for L8 .

Case 4. r7 ≤ 4 and r8 = 5; apply Strategy D for L8 .

Case 5. r7 = 4 and r8 ≤ 4; apply Strategy D for L7 .

Case 6. r7 ≤ 3 and r8 = 4; apply Strategy E for L8 unless 1 ∈ B1, B2, B3, B4 ,

B5 = 246, B6 = 257, B7 = 347, B8 = 356 and L7 = F . Since L7 = F ,

{1, 2, 3}, {1, 4, 5} and {1, 6, 7} are 3-colorings of L7 . Since F 6⊂ L8 , one of
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such 3-colorings is not a list in L8 . Hence K7,8 is L-colorable by Lemma 3.2.1,

Case 7. r7 = 3 and r8 ≤ 3; apply Strategy E for L7 unless 1 ∈ A1, A2, A3 ,

A4 = 246, A5 = 257, A6 = 347, A7 = 356 and F ⊂ L8 . In such case, let

B1 = 123, B2 = 145, B3 = 146, B4 = 246, B5 = 257, B6 = 347, B7 = 356. Suppose

that B8 = 89A because r8 ≤ 3 and color 1 to color 7 are appears in three lists

in B1, B2, . . . , B7 . Since L7 6= F , we obtain that 123, 145 or 167 are not a list

in L7 . Suppose that 123 6∈ L7 . Notice that {1, 2, 3, 8}, {1, 2, 3, 9} and {1, 2, 3, A}

are 4-colorings of L8 . Since color 2 appears in at most two lists in A1, A2, A3 ,

128, 129 or 12A is not a list in L7 . Suppose that 128 6∈ L7 . Then {1, 2, 3, 8} is a

4-coloring of L8 which has no subset that is a list in L7 . Then K7,8 is L-colorable

by Lemma 3.2.1.

Case 8. r7 ≤ 2 and r8 = 3; apply Strategy F for L8 .

Case 9. r7 = 2 and r8 ≤ 2; apply Strategy F for L7 .

Case 10. r7 = 1 and r8 ≤ 2; apply Strategy A for L7 . Notice that
∏7

i=1 |Ai| =

37 ≥ 34 · 8 = 37−3n3 .

Theorem 3.4.5. The complete bipartite graph with 15 vertices is 3-choosable if

and only if it is not K7,8 . For a 3-list assignment L, K7,8 is L-colorable unless

L|V (K7,7) = LF .

Proof. It follows from Lemmas 3.3.1, 3.4.1, 3.4.2, 3.4.3 and 3.4.4.

Since K7,8 is not L-colorable when L|V (K7,7) , K7,8 is not (3, t)-choosable for

t = 7, 8, 9, 10. However, K7,8 is (3, t)-choosable if and only if t 6= 7, 8, 9, 10.

Theorem 3.4.6 gives all positive numbers t such that all complete bipartite graphs

with 15 vertices are (3, t)-choosable.

Theorem 3.4.6. A complete bipartite graph with 15 vertices is (3, t)-choosable

unless t = 7, 8, 9, 10.
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Proof. Let a, b be positive integers such that a ≤ b and a+ b = 15. Then a ≤ 7.

Case 1. a ≤ 3.

Then Ka,b is a subgraph of K3,26 which is 3-choosable by Lemma 3.3.1.

Case 2. a = 4, 5, 6.

Then Ka,b is one of K4,11, K510 or K6,9 which is 3-choosable by Lemma 3.4.1,

Lemma 3.4.2 and Lemma 3.4.3, respectively.

Case 3. a = 7 When t ≤ 6 or t ≥ 11, we obtain that F 6⊂ L7 or F 6⊂ L8 .

Then K7,8 is L-colorable by Lemma 3.4.4.



CHAPTER IV

ON 3-CHOOSABILITY OF COMPLETE BIPARTITE

GRAPHS WITH 16 VERTICES

In this chapter, we keep studying about 3-choosability of complete bipartite

graphs. The main result of this chapter is Theorem 4.3.10 which is stated that

every complete bipartite graph with 16 vertices is (3, t)-choosable for t ≤ 6 or

t ≥ 14. We will apply this result to prove Theorem 5.3.1 in Chapter 5.

In Section 4.1, we study 3-choosability of complete bipartite graphs by using

strategies from Section 3.1. Unlikely, some cases of K6,10 , K7,9 and K8,8 cannot

be proved by our strategies. For K6,10 , we claim that K6,10 is 3-choosable by

referring to [15]. For K8,8 and its 3-list assignment L , we prove that K8,8 is

L-colorable unless L|V (K7,7) = LF (See Notation 3.1.1) in Section 4.2. For K7,9

which is more difficult than K8,8 , we prove that K7,9 is (3, t)-choosable if and

only if t ≤ 6 or t ≥ 14 in Section 4.3.

4.1 Consequence of the Strategies

We apply our strategies to study 3-choosability of complete bipartite graphs

with 16 vertices.

Lemma 4.1.1. The complete bipartite graph K4,12 is 3-choosable.

Proof. Let L be a 3-list assignment of K4,12 . Let r4 (and r12 ) be the maximum

number of lists in L4 (and L12 ) containing a common color. Then r4 ≤ 4 and

r12 ≤ 12.
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Case 1. r4 = 3, 4 or r12 = 11, 12; apply Strategy B for L4 or Strategy B for

L12 , respectively.

Case 2. r4 ≤ 2 and r12 = 10; apply Strategy C for L12 .

Case 3. r4 ≤ 2 and r12 = 9; apply Strategy D for L12 .

Case 4. r4 = 2 and r12 ≤ 8; apply Strategy C for L4 .

Case 5. r4 = 1; apply Strategy A for L4 .

Lemma 4.1.2. The complete bipartite graph K5,11 is 3-choosable.

Proof. Let L be a 3-list assignment of K5,11 . Let r5 (and r11 ) be the maximum

number of lists in L5 (and L11 ) containing a common color. Then r5 ≤ 5 and

r11 ≤ 11.

Case 1. r5 = 4, 5 or r11 = 10, 11; apply Strategy B for L5 or Strategy B for

L11 , respectively.

Case 2. r5 ≤ 3 and r11 = 9; apply Strategy C for L11 .

Case 3. r5 = 3 and r11 ≤ 8; apply Strategy C for L5 .

Case 4. r5 ≤ 2 and r11 = 8, 7, 6; apply Strategies D,E and F for L11 , respectively.

Case 5. r5 = 2 and r11 ≤ 5; apply Strategy D for L5 .

Case 6. r5 = 1; apply Strategy A for L5 .

To study 3-choosability of K6,10 , we divide the proof into several cases. How-

ever, our strategies cannot be applied for a case as shown in Lemma 4.1.3. We do

not prove the missing case here because O’Donnell[15] has done it.

Lemma 4.1.3. Let L be a 3-list assignment of K6,10 . Let r6 (and r10 ) be

the maximum number of lists in L6 (and L10 ) containing a common color. If

(r6, r10) 6= (2, 4), then K6,10 is L-colorable.

Proof. Case 1. r6 = 5, 6 or r10 = 9, 10; apply Strategy B for L6 or Strategy B

for L10 , respectively.
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Case 2. r6 = 4 and r10 ≤ 8; apply Strategy C for L6 .

Case 3. r6 ≤ 3 and r10 = 8, 7, 6; apply Strategy C,D,E for L10 , respectively.

Case 4. r6 = 3 and r10 ≤ 5; apply Strategy D for L6 .

Case 5. r6 ≤ 2 and r10 = 5; apply Strategy F for L10 .

Case 6 r6 = 2 and r10 ≤ 3; apply Strategy E for L6 .

Case 7. r6 = 1; apply Strategy A for L6 .

Lemma 4.1.4. [15] The complete bipartite graph K6,b is 3-choosable if and only

if b ≤ 16.

To study 3-choosability of K7,9 , we cannot use our strategies to prove all

cases of the proof as shown in Lemma 4.1.5. However, we prove that K7,9 is

(3, t)-choosable if and only if t ≤ 6 or t ≥ 14 in Section 4.3.

Lemma 4.1.5. Let L be a 3-list assignment of K7,9 . Let r7 (and r9 ) be the max-

imum number of lists in L7 (and L9 ) containing a common color. If (r7, r9) 6=

(3, 4), (2, 3) and L|V (K7,7) 6= LF , then K7,9 is L-colorable.

Proof. Case 1. r7 = 6, 7 or r9 = 8, 9; apply Strategy B for L7 or Strategy B for

L9 , respectively.

Case 2. r7 = 5 and r9 ≤ 7; apply Strategy C for L7 .

Case 3. r7 ≤ 4 and r9 = 6; apply Strategy D for L9 .

Case 4. r7 = 4 and r9 ≤ 5; apply Strategy D for L7 .

Case 5. r7 ≤ 3 and r9 = 5; apply Strategy E for L9 . In this case, K7,9 is

L-colorable unless F ⊂ L7, L9 .

Case 6. r7 ≤ 2 and r9 = 4; apply Strategy F for L9 .

Case 7. r7 = 3 and r9 ≤ 3; apply Strategy E for L7 . In this case, K7,9 is

L-colorable unless F ⊂ L7, L9 .

Case 8. r7 = 2 and r9 ≤ 2; apply Strategy F for L7 .

Case 9. r7 = 1; apply Strategy A for L7 .
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Again, to study 3-choosability of K8,8 , we cannot use our strategies to prove all

cases as shown in Lemma 4.1.6. However, we have a complete proof in Section 4.3;

for a 3-list assignment L of K8,8 , it is L-colorable if and only if L|V (K7,7) 6= LF .

Lemma 4.1.6. Let L be a 3-list assignment of K8,8 . Let r8(i) (and r8(ii) ) be

the maximum number of lists in L8(i) (and L8(ii) ) containing a common color. If

(r8(i), r8(ii)) 6= (4, 4), (4, 3), (3, 4), (3, 3), (2, 2), then K8,8 is L-colorable.

Proof. Case 1. r8(i) = 7, 8 or r8(ii) = 7, 8; apply Strategy B for L8(i) or Strat-

egy B for L8(ii) , respectively.

Case 2. r8(i) = 6 and r8(ii) ≤ 6; apply Strategy C for L8(i) .

Case 3. r8(i) ≤ 5 and r8(ii) = 6; apply Strategy C for L8(ii) .

Case 4. r8(i) = 5 and r8(ii) ≤ 5; apply Strategy D for L8(i) .

Case 5. r8(i) ≤ 4 and r8(ii) = 5; apply Strategy D for L8(ii) .

Case 6. r8(i) = 4 and r8(ii) ≤ 2; apply Strategy E for L8(i) .

Case 7. r8(i) ≤ 2 and r8(ii) = 4; apply Strategy E for L8(ii) .

Case 8. r8(i) = 3 and r8(ii) ≤ 2; apply Strategy F for L8(i) .

Case 9. r8(i) ≤ 2 and r8(ii) = 3; apply Strategy F for L8(ii) .

Case 10. r8(i) = 1; apply Strategy A for L8(i) .

Case 11. r8(ii) = 1; apply Strategy A for L8(ii) .

Theorem 4.1.7. A complete graph with 16 vertices is 3-choosable unless it is

K7,9 or K8,8 .

Proof. It follows from Lemma 3.3.1, Lemma 4.1.1, Lemma 4.1.2 and Lemma 4.1.4.



55

4.2 On 3-choosability of K8,8

Recall that r8(i) (and r8(ii) ) be the maximum number of lists in L8(i) (and

L8(ii) ) containing a common color and Lemma 4.1.6 has results of 3-choosability

of K8,8 except when (r8(i), r8(ii)) = (4, 4), (4, 3), (3, 4), (3, 3), (2, 2). Then lem-

mas and theorems can be classified into three groups. The first group, which is

from Lemma 4.2.1 to Theorem 4.2.18, deals with (r8(i), r8(ii)) = (4, 4), (4, 3), (3, 4).

The second group, which is from Theorem 4.2.19 to Theorem 4.2.34, deals with

(r8(i), r8(ii)) = (3, 3) The last group, which is only Theorem 4.2.35, deals with

(r8(i), r8(ii)) = (2, 2). The conclusion is in Theorem 4.2.36 which is stated that,

for a 3-list assignment L of K8,8 , it is L-colorable if and only if {123, 145, 167,

246, 257, 347, 356} ⊂ L8(i) ,L8(ii) .

Lemma 4.2.1. Let L be a list assignment of K4,5 such that L4 = {A1, A2, A3, A4}

and L5 = {B1, B2, . . . , B5}. If |A1| = |A2| = |A3| = |B1| = 2 and |A4| = |B2| =

|B3| = |B4| = |B5| = 3, then K4,5 is L-colorable unless L4 = {1p, 1q, 23, 245}

and L5 = {12, 134, 135, 267, 367} where p 6= q and p, q 6= 1, 2, 3 up to renaming

the colors.

Proof. Case 1. A1, A2, A3, A4 are mutually disjoint.

Hence, we apply Strategy A for L4 .

Case 2. A1, A2, A3, A4 are not mutually disjoint but A1, A2, A3 are mutually

disjoint.

Suppose A1 = 12, A2 = 34, A3 = 56 and 1 ∈ A4 . It is easy to verify that if a color

appears in four lists of L5 then K4,5 is L-colorable. Hence, we suppose that each

color appears in at most three lists of L5 .

Then L4 has at least four 3-colorings, namely, {1, 3, 5}, {1, 3, 6}, {1, 4, 5} and

{1, 4, 6} . If one of such 3-colorings has no subset that is a list in L5 , then K4,5
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is L-colorable by Lemma 3.2.1. Hence, we suppose that such 3-colorings have

a subset that is a list in L5 . Without loss of generality, let B1 = 13, B2 = 145

and B3 = 146 because each color appears in at most three lists of L5 . Hence, we

label B1, B2, B3 by color 1 and label A1 by color 2. Now, the remaining vertices

form K3,2 . Let L′ be the list assignment of K3,2 which is obtained from L by

removing color 1 and color 2. For the worst case, we suppose that 2 ∈ B4, B5 .

Then L′3 = {34, 56, A4−1} and L′2 = {B4−2, B5−2} . Since K3,2 is 2-choosable,

K3,2 is L′ -colorable. Hence, K8,8 is L-colorable.

Case 3. A1, A2, A3 are not mutually disjoint and A3 ∩ A4 = ∅ .

Let 1 ∈ A1, A2 and A3 = 23, A4 = 456. Thus, L8(i) has at least six 3-colorings

containing color 1. Again, we suppose that such 3-colorings has subset that is a

list in L8(ii) by Lemma 3.2.1. Without loss of generality, we let B1 = 12, B2 =

134, B3 = 135, B4 = 136. Hence, we label B1, B2, B3, B4 by color 1 and the

remaining vertices are easily labeled.

Case 4. A1, A2, A3 are not mutually disjoint and A3 ∩ A4 6= ∅ .

If L4 has a coloring which is has no subset that is a list in L5 , then K4,5 is L-

colorable by Lemma 3.2.1. Suppose that each coloring of L4 has a subset that is

a list in L5 . Since L5 has only one list of size 2, L4 has at most one 2-coloring.

That is, |A1∩A2| = |A3∩A4| = 1. Let A1 = 1p,A2 = 1q, A3 = 23, A4 = 245 where

p, q 6= 1. We consider possibility of p, q . Since L4 has at most one 2-coloring, we

have p, q 6= 2, p 6= q and if p = 3, then q 6= 4, 5.

Case 4.1 p = 3 or q = 3.

Suppose that p = 3 and q = 6. Thus we swap A2 and A3 . That is, A1 =

13, A2 = 23, A3 = 16 and A4 = 245. The case |A1 ∩A2| = 1 and A3 ∩A4 = ∅ is

Case 3 that we have already done.

Case 4.2 p, q 6= 3.
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Since {1, 3, 4}, {1, 3, 5} and {2, p, q} are 3-colorings of L4 , we let B2 = 134, B3 =

135 and B4 = 2pq . Since {p, q, 3, 4} and {p, q, 3, 5} are 4-colorings of L4 and we

have only one list of size 3 left, we let B5 = 3pq .

It can be directly verified that if L4 = {1p, 1q, 23, 245} and L5 = {12, 134,

135, 267 ,367} , then K4,5 is not L-colorable.

Lemma 4.2.2. Let L be a list assignment of K4,5 such that L4 = {A1, A2, A3, A4}

and L5 = {B1, B2, . . . , B5}. If |A1| = |A2| = |A3| = 2 and |A4| = |B1| = |B2| =

|B3| = |B4| = |B5| = 3, then K4,5 is L-colorable.

Proof. If L4 has a 2-coloring then K4,5 is L-colorable by Lemma 3.2.1. Suppose

that L4 has no 2-coloring. Let p ∈ B1 and L∗ be the list assignment of K4,5 such

that L∗4 = L4 and L∗5 = {B1 − p,B2, B3, B4} . Since L∗4 = L4 has no 2-coloring,

we have L∗4 6= {1p, 1q, 23, 245} . Hence, K4,5 is L∗ -colorable by Lemma 4.2.1.

Therefore, K4,5 is L-colorable.

Theorem 4.2.3. Let L be a 3-list assignment of K8,8 such that every color

appears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If

1 ∈ A1, A2, A3, A4 and 2 ∈ A5, A6, A7 then K8,8 is L-colorable.

Proof. If 2 ∈ A8 then we label A1, A2, A3, A4 by color 1 and label A5, A6, A7, A8

by color 2 and every remaining list still has an available color. Suppose that A8 =

345. Then L8(i) has at least three 3-colorings of , namely {1, 2, 3}, {1, 2, 4}, {1, 2, 5} .

If one of such 3-colorings is not a list in L8(ii) , then K8,8 is L-colorable by

Lemma 3.2.1. Suppose that B1 = 123, B2 = 124, B3 = 125.

We first label A1, A2, A3, A4 by color 1 and label B1, B2, B3 by color 2. The

remaining vertices form K4,5 . Let L′ be the list assignment which is obtained

from L by removing color 1 and color 2.

Case 1. 1 6∈ B4 .

Then K4,5 is L′ -colorable by Lemma 4.2.2.
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Case 2. 1 ∈ B4 and B5, B6, B7, B8 have at least five 2-colorings.

Then L8(ii) has at least five 3-colorings. Since color 1 appears in at most four

lists in L8(i) , at least one of such 3-colorings is not a list in L8(i) . Hence, K8,8 is

L-colorable by Lemma 3.2.1.

Case 3. 1 ∈ B4 and B5, B6, B7, B8 have at most four 2-colorings.

That is, L′4 = {A5 − 2, A6 − 2, A7 − 2, A8} and L′5 = {B4 − 1, B5, B6, B7, B8} .

Since B5, B6, B7, B8 have at most four 2-colorings, lists in L′5 cannot be renamed

to lists in {12, 134, 135, 267, 367} . By Lemma 4.2.1, K4,5 is L′ -colorable; hence,

K8,8 is L-colorable.

Lemma 4.2.4. Let L be a list assignment of K4,5 such that L4 = {A1, A2, A3, A4}

and L5 = {B1, B2, . . . , B5}. If |A1| = |A2| = |B1| = 2, |A3| = |A4| = |B2| =

|B3| = |B4| = |B5| = 3, then K4,5 is L-colorable.

Proof. Let r ∈ A3 and L∗ be the list assignment of K4,5 such that L∗4 =

{A1, A2, A3 − r, A4} and L∗5 = L5 .

By Lemma 4.2.1, K4,5 is L∗ -colorable unless L∗4 = {1p, 1q, 23, 245} and L∗5 =

{12, 134, 135, 267, 367} where p 6= q and p, q 6= 1, 2, 3. Suppose that L4 =

{1p, 1q, 23r, 245} and L5 = {12, 134, 135, 267, 367} where p 6= q and p, q 6= 1, 2, 3.

Then we label A1, A2 by color 1, label A3 by color r and label A4 by color 4.

All remaining vertices still have available colors; hence, K4,5 is L-colorable.

Theorem 4.2.5. Let L be a 3-list assignment of K8,8 such that every color

appears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}

and L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, A4 and 1, 2 ∈ B1, B2, B3 then

K8,8 is L-colorable.

Proof. We first label A1, A2, A3, A4 by color 1 and label B1, B2, B3 by color 2.

The remaining vertices form K4,5 . Let L′ be the list assignment of K4,5 which is
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obtained from L by removing color 1 and color 2. If color 2 appears in three lists

of L′4 , then K8,8 is L-colorable by Theorem 4.2.3. Hence, suppose that color 2

appears in at most two lists of L′4 . Moreover, for the worst case, we let 2 ∈ A5, A6 .

That is, L′4 = {A5 − 2, A6 − 2, A7, A8} and L′5 = {B4 − 1, B5, B6, B7, B8} . By

Lemma 4.2.4, K4,5 is L′ -colorable. Therefore, K8,8 is L-colorable.

Lemma 4.2.6. Let L be a list assignment of K2,4 such that L2 = {A1, A2} and

L4 = {B1, B2, B3, B4}. If |A1| = |A2| = 3 and |B1|, |B2|, |B3|, |B4| ≤ 3 and

|B1|+ |B2|+ |B3|+ |B4| ≥ 8, then K2,4 is L-colorable.

Proof. For the worst case, we suppose that |B1|+ |B2|+ |B3|+ |B4| = 8. Without

loss of generality, let |B1| ≤ |B2| ≤ |B3| ≤ |B4| .

Case 1. |B1| = |B2| = |B3| = |B4| = 2.

If A1 and A2 have a common color, we use this color to color A1 and A2 ; hence, all

lists in L4 still have an available color. Otherwise, we suppose that A1∩A2 = ∅ .

Thus we apply Strategy A for L2 .

Case 2. |B1| = 1, |B2| = |B3| = 2 and |B4| = 3.

Let B1 = 1. Since B1 has only one color, we must use color 1 to color lists in

L4 . For the worst case, we suppose 1 ∈ A1, A2 but 1 6∈ B2, B3, B4 . After we

color B1 , the remaining vertices form K2,3 . Let L′ be the list assignment of K2,3

which is obtained from L by removing color 1. Thus L′2 = {A1 − 1, A2 − 1} and

L′3 = {B2, B3, B4} .

If A1−1 and A2−1 have a common color, we can use the color to color A1−1

and A2− 1 and all lists in L′3 still have an available color. Otherwise, we suppose

that A1 − 1, A2 − 1 are disjoint. Hence, L′2 has four 2-colorings. Since L′3 has

two lists of size 2, at least one of such 2-colorings of L′2 is not a list in L′3 . By

Lemma 3.2.1, K2,3 is L′ -colorable. Therefore, K2,4 is L-colorable.

Case 3. |B1| = |B2| = 1 and |B3| = |B4| = 3.
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Let B1 = 1 and B2 = 2. Since each of B1 and B2 has only one color, we

must use color 1 and color 2 to label lists in L4 . For the worst case, we suppose

1, 2 ∈ A1, A2 but 1, 2 6∈ B2, B3, B4 . Let A1 = 123 and A2 = 124 After we color B1

and B2 , the remaining vertices form K2,2 . Let L′ be the list assignment of K2,2

which is obtained from L by removing color 1 and color 2. Thus L′2(i) = {3, 4}

and L′2(ii) = {B3, B4} . We have to label lists L′2(i) by color 3 and color 4. Since

each list in L′2(ii) still have an available color, K2,2 is L′ -colorable. Therefore,

K2,4 is L-colorable.

Lemma 4.2.7. Let L be a list assignment of K3,4 such that L3 = {A1, A2, A3}

and L4 = {B1, B2, B3, B4}. If |A1| = |A2| = |B1| = |B2| = 2 and |A3| = |B3| =

|B4| = 3 , then K3,4 is L-colorable.

Proof. Case 1. A1 and A2 have a common color.

Thus L3 has at least three 2-colorings. Since L4 has only two lists of size 2,

at least one of such 2-colorings is not a list in L4 . By Lemma 3.2.1, K3,4 is

L-colorable.

Case 2. A1 and A2 are disjoint.

Let A1 = 12 and A2 = 34. If A1, A2, A3 are mutually disjoint, then we apply

Strategy A for L3 . Otherwise, we suppose that 1 ∈ A3 . Thus, {1, 3} and {1, 4}

are 2-colorings of L3 . If 13 and 14 are not lists in L4 , then K3,4 is L-colorable

by Lemma 3.2.1. Otherwise, we let B1 = 13 and B2 = 14.

Now, we label A2 by color 2 and label B1, B2 by color 1. The remaining

vertices form K2,2 . Let L′ be the list assignment of K2,2 which is obtained

from L by removing color 1 and color 2. For the worst case, we suppose that

2 ∈ B3, B4 . Then L′2(i) = {A2, A3 − 1} and L′2(ii) = {B3 − 2, B4 − 2} . We can

directly verify that K2,2 is L′ -colorable. Hence, K3,4 is L-colorable.
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Theorem 4.2.8. Let L be a 3-list assignment of K8,8 such that every color

appears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8} and

L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, A4 , 1, 2 ∈ B1, B2 and 1, 3 ∈ B3, B4 ,

then K8,8 is L-colorable.

Proof. We first label A1, A2, A3, A4 by color 1, label B1, B2 by color 2 and label

B3, B4 by color 3. Then the remaining vertices form K4,4 . Let L′ be the list

assignment of K4,4 which is obtained from L by removing color 1, color 2 and

color 3.

If a color appears in three lists in A5, A6, A7, A8 or three lists in B5, B6, B7, B8 ,

then K8,8 is L-colorable by Theorem 4.2.3. Suppose that each color appears in

at most two lists in A5, A6, A7, A8 and at most two lists in B5, B6, B7, B8 .

For the worst case, we suppose that both color 2 and color 3 appear in two

lists in A5, A6, A7, A8 .

Case 1. 2 ∈ A5, A6 and 3 ∈ A7, A8 .

Then L8(i) has a 3-coloring, namely {1, 2, 3} . If 123 is not a list in L8(ii) , then

K8,8 is L-colorable by Lemma 3.2.1. Without loss of generality, we suppose

B1 = 123. Hence, K8,8 is L-colorable by Theorem 4.2.5.

Case 2. 2 ∈ A5, A6 and 3 ∈ A5, A7 .

Let A5 = 234. Then A5−23 which is a list in L′4(i) has only one color left. Hence,

we label A5 by color 4. The remaining vertices forms K3,4 . Let L′′ be the list

assignment of K3,4 which is obtained form L′ by removing color 4. Since each

color appears in at most two lists of B5, B6, B7, B8 , we let 4 ∈ B5, B6 for the

worst case. Then L′′3 = {A6 − 2, A7 − 3, A8} and L′′4 = {B5 − 4, B6 − 4, B7, B8} .

Thus, K3,4 is L′′ -colorable by Lemma 4.2.7. Therefore, K8,8 is L-colorable.

Case 3. 2 ∈ A5, A6 and 3 ∈ A5, A6 .

Let A5 = 234 and A6 = 235. Then A5 − 23 and A6 − 23 which are lists in L′4(i)
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have only one color left. Hence, we label A5 and A6 by color 4 and color 5,

respectively. The remaining vertices form K2,4 . Let L′′ be the list assignment of

K2,4 which is obtained form L′ by removing color 4 and color 5.

Since each color appears in at most two lists of B5, B6, B7, B8 , we obtain that

|B5 − 23|+ |B6 − 23|+ |B7 − 23|+ |B8 − 23| ≥ |B5|+ |B6|+ |B7|+ |B8| − 2 · 2 =

4 · 3 − 2 · 2 = 8. Thus, K2,4 is L′′ -colorable by Lemma 4.2.6. Therefore, K8,8 is

L-colorable.

Lemma 4.2.9. Let L be a list assignment of K4,4 such that L4(i) = {A1, A2, A3, A4}

and L4(ii) = {B1, B2, B3, B4}. If |A1| = |A2| = |B1| = |B2| = 2, |A3| = |A4| =

|B3| = |B4| = 3 and A1 ∩ A2 = A3 ∩ A4 = ∅, then K4,4 is L-colorable.

Proof. If A1, A2, A3, A4 are mutually disjoint, then we apply Strategy A for L4(i) .

Suppose that A1, A2, A3, A4 are not mutually disjoint. Without loss of generality,

suppose that p = 1.

If L4(i) has a coloring which has no subset that is a list in L4(ii) , then K4,4

is L-colorable by Lemma 3.2.1. Suppose that every coloring of L4(i) has a subset

that is a list in L4(i) . Then r, s 6= 1. In the next three cases, we will prove that

1 ∈ B1, B2 .

Case 1. r, s ∈ {4, 5, 6} .

Then {1, r} and {1, s} are 2-colorings of L4(i) . Hence, we suppose that B1 =

1r, B2 = 1s .

Case 2. r ∈ {4, 5, 6} but s 6∈ {4, 5, 6} .

Since {1, r} is a 2-coloring of L4(i) , let B1 = 1r . Since {1, s, 4}, {1, s, 5} and

{1, s, 6} are 3-colorings of L4(i) but we have only one list of size 2 and two lists

of size 3, let B2 = 1s .

Case 3. r, s 6∈ {4, 5, 6} .

Then L4(i) has at least six 3-colorings, namely {1, r, 4} , {1, r, 5} , {1, r, 6} , {1, s, 4} ,
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{1, s, 5} and {1, s, 6} . If all six 3-colorings have a subset that is a list in L4(ii) ,

then B1 = 1r, B2 = 1, s .

We label B1, B2 by color 1 and the remaining vertices can be colored by

Lemma 4.2.6; hence, K4,4 is L-colorable.

Theorem 4.2.10. Let L be a 3-list assignment of K8,8 such that every color

appears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If

1 ∈ A1, A2, A3, A4 , 2 ∈ A5, A6 and A7 ∩ A8 = ∅, then K8,8 is L-colorable.

Proof. If 2 ∈ A7 or 2 ∈ A8 , then K8,8 is L-colorable by Theorem 4.2.3. Let

A7 = 345 and A8 = 678.

Case 1. No list in L8(ii) contains both color 1 and color 2.

Then we label A1, A2, A3, A4 by color 1 and label A5, A6 by color 2. The remain-

ing vertices form K2,8 . Let L′ be the list assignment of K2,8 which is obtained

from L by removing color 1 and color 2. Then we apply Strategy A for L′2 .

Case 2. Only one list in L8(ii) contains both color 1 and color 2.

Let 1, 2 ∈ B1 . Then L8(i) has at least nine 4-colorings, namely {1, 2, 3, 6} ,

{1, 2, 3, 7} , {1, 2, 3, 8} , {1, 2, 4, 6} , {1, 2, 4, 7} , {1, 2, 4, 8} , {1, 2, 5, 6} , {1, 2, 5, 7}

and {1, 2, 5, 8} . If one of such 4-colorings has no list that is a subset in L8(ii) ,

then K8,8 is L-colorable. Suppose that such 4-colorings has subset that is a list

in L8(ii) .

Case 2.1 B1 ∩ {3, 4, 5, 6, 7, 8} = ∅ .

Then we label A1, A2, A3, A4 by color 1, label A5, A6 by color 2 and label B1 by

the remaining color. Then we apply Strategy A similar to case 1. Thus, the proof

is done.

Case 2.2 B1 ∩ {3, 4, 5, 6, 7, 8} 6= ∅ .

Then we suppose that 3 ∈ B1 . That is, B1 = {1, 2, 3} . Consider such 4-colorings,

L8(i) has six 4-colorings not containing 3. Since the remaining seven lists do not
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contain both color 1 and color 2, we need six lists to be a subset of six 4-colorings.

That is, we may suppose that 1 ∈ B2, B3, B4 and 2 ∈ B5, B6, B7 . Hence, K8,8 is

L-colorable by Theorem 4.2.3.

Case 3. Exactly two lists in L8(ii) contain both color 1 and color 2.

Let 1, 2 ∈ B1, B2 . Similar to Case 2, we suppose that nine 4-colorings of L8(i)

have a subset that is a list in L8(ii) .

Case 3.1 B1 ∩ A7 = ∅ and B1 ∩ A8 = ∅ .

Then we label A1, A2, A3, A4 by color 1, label A5, A6 by color 2 and label B1 by

the remaining color. Similar to Case 2, we can prove that the remaining vertices

can be colored.

Case 3.2 B2 ∩ A7 = ∅ and B2 ∩ A8 = ∅ .

Similar to Case 3.1.

Case 3.3 B1 ∩ A7 6= ∅ and B2 ∩ A7 6= ∅ .

Suppose B1 = {1, 2, 3} and B2 = {1, 2, 4} . Then {1, 2, 5, 6}, {1, 2, 5, 7} and

{1, 2, 5, 8} do no contain B1 or B2 as a subset. Hence, we need three more lists

to be a subset of such three 4-colorings. If B3 = 156, B4 = 157 or B3 = 157, B4 =

158 or B3 = 157, B4 = 158, then the proof is done by Theorem4.2.8. Hence, we

suppose that B3 = 156 and B4 = 257, B5 = 258. Then we label A1, A2, A3, A4

by color 1 and label B1, B2, B4, B5 by color 2. Lemma 4.2.9 guarantee that the

remaining vertices can be colored.

Case 3.4 B1 ∩ A7 6= ∅ and B2 ∩ A8 6= ∅ .

Suppose B1 = {1, 2, 3} and B2 = {1, 2, 6} . Then {1, 2, 4, 7} , {1, 2, 4, 8} , {1, 2, 5, 7}

and {1, 2, 5, 8} do no contain B1 or B2 as a subset. Hence, we need four more lists

to be a subset of such three 4-colorings. That is, we may suppose that 1 ∈ B3, B4

and 2 ∈ B5, B6 . Then we label A1, A2, A3, A4 by color 1 and label B1, B2, B4, B5

by color 2. Lemma 4.2.9 guarantee that the remaining vertices can be colored.
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Case 3.5 B1 ∩ A8 6= ∅ and B2 ∩ A8 6= ∅ .

Similar to Case 3.3.

Case 3.6 B1 ∩ A8 6= ∅ and B2 ∩ A7 6= ∅ .

Similar to Case 3.4.

Case 4. Exactly three lists in L8(ii) contain both color 1 and color 2.

Then K8,8 is L-colorable by Theorem 4.2.5.

Theorem 4.2.11. Let L be a 3-list assignment of K8,8 such that every color

appears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If

1 ∈ A1, A2, A3, A4 , 2, 3 ∈ A5, A6 and 4, 5 ∈ A7, A8 , then K8,8 is L-colorable.

Proof. Notice that L8(i) has at least four 3-colorings, namely {1, 2, 4} , {1, 2, 4} ,

{1, 3, 4} , {1, 3, 5} . If one of such 4-colorings is not a list in L8(ii) then K8,8 is

L-colorable by Lemma 3.2.1. Hence, we suppose that B1 = 124, B2 = 125, B3 =

134, B4 = 135. Therefore K8,8 is L-colorable by Theorem 4.2.8.

Lemma 4.2.12. Let L be a list assignment of K3,6 such that L3 = {A1, A2, A3}

and L6 = {B1, B2, B3, B4, B5, B6}. If A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6} and

|B1| = |B2| = 2, |B3| = |B4| = |B5| = |B6| = 3, then K3,6 is L-colorable

or L6 = {13, 14, 235, 236, 245, 246} or L6 = {13, 24, 145, 146, 235, 236} or L6 =

{13, 45, 146, 235, 236, 246} up to renaming the colors.

Proof. Suppose that K8,8 is not L-colorable.

Notice that L3 has at least eight 3-colorings, namely {1, 3, 5} , {1, 3, 6} ,

{1, 4, 5} , {1, 4, 6} , {2, 3, 5} , {2, 3, 6} , {2, 4, 5} , {2, 4, 6} . Since K3,6 is not L-

colorable, all 3-coloring of L3 have a subset that is a list in L6 by Lemma 3.2.1.

If a list in L6 contains a color which is not in any Ai for i = 1, 2, 3, then at

most seven 3-colorings of L3 have a subset that is a list in L6 . Hence, we suppose

that every list in L6 is a subset of {1, 2, 3, 4, 5, 6} .
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If A1 = B1 then B1 is not a subset of any 3-coloring of L3 ; hence, at most

six 3-colorings of L3 has a subset that is a list in L6 . Hence, we suppose that

Ai 6= Aj for i = 1, 2, 3 and j = 1, 2.

Since B1 must be a subset of a 3-coloring of L3 , we may suppose that B1 = 13.

That is, two 3-colorings of L3 , namely {1, 3, 5} and {1, 3, 6} , contain B1 as a

subset. Without loss of generality, we divide the possibility of B2 into four cases.

Case 1. B2 = 14.

That is, two 3-colorings of L3 , namely {1, 4, 5} and {1, 4, 6} , contain B2 as

a subset. Hence, the remaining four 3-colorings of L3 must be B3, B4, B5, B6 .

Therefore, L6 = {13, 14, 235, 236, 245, 246} .

Case 2. B2 = 15.

That is, two 3-colorings of L3 , namely {1, 3, 5} and {1, 4, 5} , contain B2 as a

subset. Now, the remaining five 3-colorings do not contain B1 or B2 as a subset

but we have only four lists of size 3 left in L6 . It is a contradiction to the

assumption that K3,6 is not L-colorable.

Case 3. B2 = 24.

That is, two 3-colorings of L3 , namely {2, 4, 5} and {2, 4, 6} , contain B2 as

a subset. Hence, the remaining four 3-colorings of L3 must be B3, B4, B5, B6 .

Therefore, L6 = {13, 24, 145, 146, 235, 236} .

Case 4. B2 = 25.

That is, two 3-colorings of L3 , namely {2, 3, 5} and {2, 4, 5} , contain B2 as

a subset. Hence, the remaining four 3-colorings of L3 must be B3, B4, B5, B6 .

Therefore, L6 = {13, 45, 146, 235, 236, 246} .

Theorem 4.2.13. Let L be a 3-list assignment of K8,8 such that every color

appears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If

1 ∈ A1, A2, A3, A4 and 2, 3 ∈ A5 ∩ A6 , then K8,8 is L-colorable.



67

Proof. If A7 ∩ A8 is an empty set, the proof is done by Theorem 4.2.10 and if

|A7 ∩ A8| ≥ 2, the proof is done by Theorem 4.2.11. Hence, we suppose that

|A7 ∩ A8| = 1. Let A7 = {6, p, q} and A8 = {6, r, s} . If a color appears in three

lists of A5, A6, A7, A8 , then the proof is done by Theorem 4.2.3. We suppose each

color appears in at most two lists of A5, A6, A7, A8 . Hence, 2, 3 6∈ A7, A8 .

If there exists a coloring in L8(i) such that has no subset that is a list in L8(ii) ,

then K8,8 is L-colorable by Lemma 3.2.1. Suppose that every coloring in L8(i)

has a subset that is a list in L8(ii) . Since {1, 2, 6} and {1, 3, 6} are 3-colorings

of L8(i) , we may suppose that B1 = 126 and B2 = 136. Since {1, 4, 5, 6} is a

4-coloring of L8(i) , we may suppose that 145 or 146 or 156 is a list in L8(ii) . If

146 or 156 is a list in L8(ii) , then K8,8 is L-colorable by Theorem 4.2.5. Hence,

we suppose that B3 = 145. We first label A1, A2, A3, A4 by color 1 and label B1

and B2 by color 6. Then the remaining vertices form K4,6 . Let L′ be the list

assignment of K4,6 which is obtained from L by removing color 1 and color 6.

Then we define the new list assignment L∗ of K3,6 such that L∗3 = {23, pq, rs} and

L∗6 = L′6 . It is easy to see that if K3,6 is L∗ -colorable, then K4,6 is L′ -colorable.

Case 1. Color 1 appears only in B1, B2, B3 .

Then L′4 = {234, 235, pq, rs} and L′6 = {45, B4, B5, B6, B7, B8} . Then we apply

Strategy A for L∗3 to prove that K3,6 is L∗ -colorable; hence, K4,6 is L′ -colorable.

Case 2. Color 1 appears in one of B4, B5, B6, B7, B8 .

Suppose that 1 ∈ B4 . Then L′4 = {234, 235, pq, rs} and L′6 = {45, B4 − 1, B5 ,

B6 , B7 , B8} . If a color appears in three lists in B5, B6, B7, B8 then the proof is

done by Theorem 4.2.3. If |B5 ∩ B6| ≥ 2 and |B7 ∩ B8| ≥ 2 then the proof is

done by Theorem 4.2.11. Hence, we suppose that each color appears in at most

two lists in B5, B6, B7, B8 and (|B5 ∩ B6| ≤ 1 or |B7 ∩ B8| ≤ 1). Then L∗6 can-

not rename color to be {13, 14, 235, 236, 245, 246} or {13, 24, 145, 146, 235, 236} or
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{13, 45, 146, 235, 236, 246} . By Lemma 4.2.12, K3,6 is L∗ -colorable; hence, K8,8

is L-colorable.

For the next lemma, the alphabet A represents 10 and the alphabet B rep-

resents 11.

Lemma 4.2.14. Let L be a 3-list assignment of K8,8 such that every color ap-

pears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If

1 ∈ A1, A2, A3, A4 and A5 = 245, A6 = 267, A7 = 389, A8 = 3AB , then K8,8 is

L-colorable.

Proof. Notice that {1, 2, 3} is a 3-coloring of L8(i) . If 123 is not a list in L8(i) ,

then K8,8 is L-colorable by Lemma 3.2.1. Suppose that B1 = 123.

Case 1. At least two lists in L8(ii) contain both color 1 and color 2.

If three lists in L8(ii) contains both color 1 and color 2, then the proof is done by

Theorem 4.2.5. Suppose that 1, 2 ∈ B2 and no list from B3, B4, . . . , B8 contains

both color 1 and color 2. We label A1, A2, A3, A4 by color 1. Let L′ be the

list assignment of K4,8 which is obtained from L by removing color 1. For the

worst case, suppose that 1 ∈ B1, B2, B3, B4 . Then L′4 = {A5, A6, A7, A8} and

L′8 = {B1 − 1, B2 − 1, B3 − 1, B4 − 1, B5, B6, B7, B8} .

Case 1.1 3 ∈ B3 ∪B4 .

Suppose that 3 ∈ B3 . Then we label B1, B2 by color 2 and label B3 by color

3. Let L′′ be the list assignment of K4,5 which is obtained from L by removing

color 2 and color 3. Then we apply Strategy A ′ for L′4 .

Case 1.2 3 ∈ B5 ∪B6 ∪B7 ∪B8 .

Suppose that 3 ∈ B5 . Then we label B1, B2 by color 2 and label B5 by color

3. Let L′′ be the list assignment of K4,5 which is obtained from L by removing

color 2 and color 3. Then we apply Strategy A ′ for L′4 .
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Case 1.3 3 6∈ B3 ∪B4 ∪ . . . ∪B8 .

Then we label A1, A2, A3, A4 by color 1, label B1, B2 by color 2 and label A7, A8

by color 3. The remaining vertices can be easily labeled.

Case 2. At least two lists in L8(ii) contain both color 1 and color 3.

Similar to Case 1.

Case 3. No list from B2, B3 . . . , B8 contains both color 1 and color i where

i = 1, 2.

Case 3.1 Color 1 appears in four lists in L8(ii) .

Suppose that 1 ∈ B1, B2, B3, B4 . If L8(i) has a coloring which has no subset

that is a list in L8(ii) , then K8,8 is L-colorable by Lemma 3.2.1. Suppose that

every coloring of L8(i) has a subset that is a list in L8(ii) . Notice that {1, 2, 8, A} ,

{1, 2, 8, B} , {1, 2, 9, A} and {1, 2, 9, B} are 4-colorings of L8(i) . If two lists of

B5, B6, B7, B8 have two common colors, then the proof is done by Theorem 4.2.13.

Without loss of generality, suppose that 28A, 29B, 18B, 19A ∈ L8(ii) . Notice

that {1, 3, 4, 6} , {1, 3, 4, 7} , {1, 3, 5, 6} and {1, 3, 5, 7} are 4-colorings of L8(i) .

Similarly, 346, 357, 147, 156 ∈ L8(ii) . It is a contradiction to the fact that L8(ii)

contains exactly eight lists.

Case 3.2 Color 1 appears in at most three lists in L8(ii) and color 2 appears

in at most two lists in L8(ii) .

We first label A1, A2, A3, A4 by color 1. For the worst case, suppose that 1 ∈

B1, B2, B3 and 2 ∈ B1, B4 . Then we label A5, A6 by color 2 and label B1 by

color 3. The remaining vertices are easily labeled.

Case 3.3 Color 1 appears in at most three lists in L8(ii) and color 2 appears

in at least three lists in L8(ii) .

We first label A1, A2, A3, A4 by color 1. For the worst case, suppose that 1 ∈

B1, B2, B3 and 2 ∈ B1, B4, B5 . Then we label B1 by color 3 and label B4, B5
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by color 2. The remaining vertices form K4,5 . Let L′ be the list assignment of

K4,5 which is obtained from L by removing color 2 and color 3. Then we apply

Strategy A ′ for L′4 .

Lemma 4.2.15. Let L be a 3-list assignment of K8,8 such that every color ap-

pears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If

1 ∈ A1, A2, A3, A4 and A5 = 246, A6 = 247, A7 = 358, A8 = 359, then K8,8 is

L-colorable.

Proof. If L8(i) has a coloring which has no subset that is a list in L8(ii) , then K8,8

is L-colorable by Lemma 3.2.1. Suppose that every coloring of L8(i) has a subset

that is a list in L8(ii) . Since {1, 2, 3} and {1, 4, 5} are 3-colorings of L8(i) , we

suppose that B1 = 123 and B2 = 145.

Case 1. A list from B3, B4, . . . , B8 contains both color 1 and color x for

some x ∈ {2, 3, 4, 5}.

Suppose that 1, 2 ∈ B3 .

Case 1.1 1 6∈ B4 ∪B5 ∪ . . . ∪B8 .

Notice that {1, 3, 4, 7} , {1, 3, 5, 6} , {1, 3, 6, 7} , {1, 4, 7, 8} and {1, 5, 6, 9} are 4-

colorings of L8(i) . Then we suppose that B4 = 347, B5 = 356, B6 = 367,

B7 = 478, B8 = 569. Then we label B1, B4, B5, B6 by color 3, label B2, B7 by

color 4, label B3 by color 2 and label B8 by color 5. Since no list in L8(i) is a

subset of {2, 3, 4, 5} , K8,8 is L-colorable.

Case 1.2 1 ∈ B4 ∪B5 ∪ . . . ∪B8 .

Suppose that 1 ∈ B4 . Notice that {1, 3, 4, 7} , {1, 3, 5, 6} and {1, 3, 6, 7} are

4-colorings of L8(i) . If 347, 356, 367 ∈ B8 , then we apply Theorem 4.2.3. If

4 ∈ B4 or 5 ∈ B4 , then we apply Theorem 4.2.8. Otherwise, we suppose that

347, 356 and 167 are lists in L8(ii) . Again, since {1, 4, 7, 8} and {1, 5, 6, 9} are

4-colorings of L8(i) , we suppose that 478, 659 ∈ B8 . Since 347, 478 ∈ L8(ii) , we
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apply Theorem 4.2.13.

Case 2. No list B3, B4, . . . , B8 contains both color 1 and color x for all

x ∈ {2, 3, 4, 5}.

Notice that {1, 2, 4, 8}, {1, 2, 5, 9}, {1, 3, 4, 7}, {1, 3, 5, 6} are 4-colorings of L8(i) .

Then each of such 4-coloring has a subset that is a list in L8(ii) . Suppose that

B5 = 348, B6 = 259, B7 = 347, B8 = 356. Again, {1, 2, 8, 9} and {1, 3, 6, 7} are

4-colorings of L8(i) ; hence, we suppose that B3 = 189 and B4 = 167. Finally, we

label all lists in L8(i) by color 1, color 4, color 7 and color 8 and all lists in L8(ii)

still have available colors.

Theorem 4.2.16. Let L be a 3-list assignment of K8,8 such that every color

appears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If

1 ∈ A1, A2, A3, A4 and A5 ∩ A7 = ∅, then K8,8 is L-colorable.

Proof. If A5, A6, A7 and A8 are mutually disjoint, we apply Strategy A for L′4 to

guarantee that K4,8 is L′ -colorable. Suppose that color 2 appears at least two

lists in A5, A6, A7, A8 . If 2 ∈ A6, A8 , then K8,8 is L-colorable by Theorem 4.2.10.

Without loss of generality, let 2 ∈ A5, A6 . Again, if A7 ∩ A8 = ∅ then K8,8 is

L-colorable by Theorem 4.2.10. Hence, we suppose that 3 ∈ A7, A8 , as well.

If |A5 ∩A6| ≥ 2 or |A7 ∩A8| ≥ 2 then K8,8 is L-colorable by Theorem 4.2.13.

Suppose that |A5∩A6| = 1 and |A7∩A8| = 1. Let A5 = 246, A6 = 2pr , A7 = 357

and A8 = 3qs where p, q, r, s are distinct colors.

If q = 2, s = 2, p = 3 or r = 3, then K8,8 is L-colorable by Theorem 4.2.3.

Suppose that q, s 6= 2 and p, r 6= 3.

Case 1. {p, r} ∩ {4, 6, } 6= ∅ or {q, s} ∩ {5, 7} 6= ∅ .

Then K8,8 is L-colorable by Theorem 4.2.13.

Case 2. {p, r}∩{4, 6, } = {q, s}∩{5, 7} = ∅ but {p, q, r, s}∩{4, 5, 6, 7} 6= ∅ .

Suppose that p = 5.
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Case 2.1 q 6∈ {4, 6} .

Then K8,8 is L-colorable by Theorem 4.2.10.

Case 2.2 q ∈ {4, 6} .

Let q = 4. If r = 7, or s = 6 then K8,8 is L-colorable by Theorem 4.2.13.

Suppose that r 6= 7 and s 6= 6. Then r, s must be new colors. Let r = 8 and

s = 9. Hence, the proof is done by Lemma 4.2.15.

Case 3. {p, q, r, s} ∩ {4, 5, 6, 7} = ∅ .

The proof is done by Lemma 4.2.14.

Case 4. p ∈ {5, 7} but r 6∈ {1, 2, 3, 4, 5, 6, 7} .

Suppose that p = 5 and r = 8. Then 5 ∈ A6, A7 . If A5 ∩ A8 = ∅ , then K8,8 is

L-colorable by Theorem 4.2.10. Suppose that A5 ∩ A8 6= ∅ . Let q = 4

Corollary 4.2.17. Let L be a 3-list assignment of K8,8 such that every color

appears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If

1 ∈ A1, A2, A3, A4 and there are Ai, Aj ∈ {A5, A6, A7, A8} such that |Ai∩Aj| 6= 1,

then K8,8 is L-colorable.

Proof. It follows from Theorem 4.2.13 and Theorem 4.2.16.

Theorem 4.2.18. Let L be a 3-list assignment of K8,8 such that every color ap-

pears in at most four lists of each partite set where L8(i) = {A1, A2, . . . , A8}. If 1 ∈

A1, A2, A3, A4 then K8,8 is L-colorable unless {123, 145, 167, 246, 257, 347, 356} ⊂

L8(i), L8(ii) up to renaming colors.

Proof. If |Ai ∩ Aj| 6= 1 for some i, j ∈ {5, 6, 7, 8} then K8,8 is L-colorable by

Corollary 4.2.17. If a color appears in at least three lists in A5, A6, A7, A8 then

K8,8 is L-colorable by Theorem 4.2.3. Hence, we suppose that A5 = 246, A6 =

257, A7 = 347, A8 = 356.

If L8(i) has a coloring which has no subset that is a list in L8(ii) , then K8,8

is L-colorable by Lemma 3.2.1. Suppose that each coloring in L8(i) has a subset
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that is a list in L8(ii) . Since {1, 2, 3}, {1, 4, 5}, {1, 6, 7} are 3-colorings of L8(i) ,

we suppose that B1 = 123, B2 = 145, B3 = 167.

Case 1. Color 1 appears in at most three lists in L8(ii) .

Consider 4-colorings of L8(i) , {1, 2, 4, 6}, {1, 2, 7, 5}, {1, 3, 4, 7} and {1, 3, 6, 5} .

Note that they do not contain B1, B2 or B3 as a subset. Hence, 246, 257, 347, 356

must be lists in L8(ii) , say B5 = 246, B6 = 257, B7 = 347, B8 = 356.

If 123, 145, 167 ∈ L8(i) , then the proof is done because we have F ⊂ L8(i), L8(ii) .

Suppose that 123 is not a list in L8(i) .

Case 1.1 2 ∈ B4 or 3 ∈ B4 .

Then {1, 2, 3} is a 3-coloring of L8(ii) . Since 123 is not a list in L8(i) , K8,8 is

L-colorable by Lemma 3.2.1.

Case 1.2 2, 3 6∈ B3, B4 .

Then we label B1, B2, B3 by color 1, label B5, B6 by color 2 and label B7, B8 by

color 3; hence, the remaining vertices can be easily labeled.

Case 2. Color 1 appears in exactly four lists in L8(ii) .

Let 1 ∈ B4 . Similar to Case 1, {1, 2, 4, 6} , {1, 2, 7, 5} , {1, 3, 4, 7} , {1, 3, 6, 5} are

4-colorings of L8(i) which do not contain B1 or B2 or B3 as a subset. The list

B4 is a subset of at most one of such 4-colorings. Hence, at least three of such

4-colorings do not contain B1, B2, B3, B4 as a subset. Without loss of generality,

suppose that {1, 2, 4, 6} , {1, 2, 7, 5} , {1, 3, 4, 7} do not contain B1, B2, B3, B4 as

a subset. Then we suppose that B5 = 246, B6 = 257, B7 = 347.

Again, if |Bi ∩ Bj| 6= 1 for some i, j ∈ {5, 6, 7, 8} then K8,8 is L-colorable by

Corollary 4.2.17. If a color appears in at least three lists in B5, B6, B7, B8 then

K8,8 is L-colorable by Theorem 4.2.3. Hence, we suppose that |Bi ∩ Bj| = 1 for

all i, j ∈ {5, 6, 7, 8} and each color appears in at most two lists in B5, B6, B7, B8 .

Hence, B8 = 356. Therefore, F ⊂ L8(i), L8(ii) .
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Next, we focus on a list assignment L of K8,8 such that each color appears in

at most three lists in each partite set.

Theorem 4.2.19. Let L be a 3-list assignment of K8,8 such that every color

appears in at most three lists of each partite set where L8(i) = {A1, A2, . . . , A8}

and L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, B1 but 1 6∈ B2, B3 . . . , B8 , then

K8,8 is L-colorable.

Proof. We first label A1, A2, A3 by color 1. Then the remaining vertices form

K5,8 . Let L′ be the list assignment of K5,8 which is obtained from L by removing

color 1. Then L′5 = {A4, A5, A6, A7, A8} and L′8 = {23, B2, B3, . . . , B8} .

Let L∗ be the list assignment of K6,10 such that L∗6 = L′5 ∪ {xyz} where

x, y, z are new colors and L∗10 = {x23, y23, z23, B2, B3, . . . , B10} . It is easy to see

that if K6,10 is L∗ -colorable, then K5,8 is L′ -colorable By Lemma 3.3.4, K6,10 is

L∗ -colorable; hence, K5,8 is L′ -colorable. Therefore, K8,8 is L-colorable.

Lemma 4.2.20. Let L be a list assignment of K4,5 where L4 = {A1, A2, A3, A4}

and L5 = {B1, B2, B3, B4, B5}. If |Ai| = 2 for i = 1, 2, 3, 4 and |Bj| = 3 for

j = 1, 2, 3, 4, 5, then K4,5 is L-colorable.

Proof. If all lists in L4 are mutually disjoint, then we apply Strategy A ′ for L4 .

Hence, we suppose that 1 ∈ A1, A2 . If L4 has a coloring which has no subset

that is list in L5 , then the proof is finished by Lemma 3.2.1. Suppose that every

coloring of L4 has a subset that is a list in L5 . Since L5 has no list of size 2,

we suppose L4 has no 2-coloring. Then we suppose that A3 = 23, A4 = 45.

Moreover, we may suppose that B1 = 124, B2 = 125, B3 = 134, B4 = 135. Then

we label B1, B2, B3, B4 by color 1 and the remaining vertices are easily colored.

Therefore, K4,5 is L-colorable.
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Lemma 4.2.21. Let L be a 3-list assignment of K8,8 such that every color ap-

pears in at most three lists of each partite set where L8(i) = {A1, A2, . . . , A8}

and L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, B1, B2 and 2 ∈ A4, A5, A6 but

1 6∈ B3, B4, . . . , B8 , then K8,8 is L-colorable.

Proof. Case 1. A7 ∩ A8 = ∅ .

Then we label A1, A2, A3 by color 1 and label A4, A5, A6 by color 2. The remain-

ing vertices form K2,8 . Let L′ be the list assignment of K2,8 which is obtained

from L by removing color 1 and color 2. Since A7∩A8 = ∅ , we apply Strategy A

for L′2 .

Case 2. |A7 ∩ A8| = 1.

Let 3 ∈ A7 ∩ A8 . Then {1, 2, 3} is a 3-coloring of L8(i) . If 123 is not a list in

L8(ii) , then K8,8 is L-colorable by Lemma 3.2.1. Suppose that B1 = 123. Then

we label A1, A2, A3 by color 1, label A4, A5, A6 by color 2 and label B1 by color

3. If color 3 is in other lists in L8(ii) , then we label the lists by color 3. For the

worst case, we suppose that 3 6∈ B2, B3, . . . , B8 . Let L′ be the list assignment of

K2,7 which is obtained from L by removing color 1, color 2 and color 3. Now,

we apply Strategy A for L′2 .

Case 3. |A7 ∩ A8| = 2.

Let A7 = 345 and A8 = 346. Then {1, 2, 3} and {1, 2, 4} are 3-colorings of L8(i) .

If 123 or 124 is not a list in L8(ii) then K8,8 is L-colorable by Lemma 3.2.1.

Suppose that B1 = 123 and B2 = 124. Again, since {1, 2, 5, 6} is a 4-coloring of

L8(i) , we suppose that {1, 2, 5, 6} has a list that is a subset in L8(ii) . Since color

1 appears in exactly two lists of L8(ii) , we suppose that B3 = 256.

Then we label A1, A2, A3 by color 1 and label B1, B2, B3 by color 2. The

remaining vertices form K5,5 . Let L′ be the list assignment of K5,5 which is

obtained from L by removing color 1 and color 2. Then L′5(i) = {A4 − 2, A5 −
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2, A6 − 2, 345, 346} and L′5(ii) = {B4, B5, B6, B7, B8} .

Let L∗ be the list assignment of K4,5 such that L∗4 = {A4−2, A5−2, A6−2, 34}

and L∗5 = L′5(ii) . It is easy to see that if K4,5 is L∗ -colorable, then K5,5 is L′ -

colorable. By Lemma 4.2.20, K4,5 is L∗ -colorable; hence, K5,5 is L′ -colorable.

That is, K8,8 is L-colorable.

Theorem 4.2.22. Let L be a 3-list assignment of K8,8 such that every color

appears in at most three lists of each partite set where L8(i) = {A1, A2, . . . , A8}

and L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, B1, B2 but 1 6∈ B3, B4 . . . , B8 ,

then K8,8 is L-colorable.

Proof. Case 1. A color appears in three lists in A4, A5, A6, A7, A8 .

Then K8,8 is L-colorable by Lemma 4.2.21.

Case 2. A color appears in two lists in A4, A5, A6, A7, A8 but it is not in

B1 ∪B2 .

Let L∗ be the new list assignment of K8,8 which is obtained from L by changing

color 2 to color 1. It is easy to see that if K8,8 is L∗ -colorable, then K8,8 is

L-colorable. By Strategy D, K8,8 is L∗ -colorable; hence, K8,8 is L-colorable.

Case 3. Every color which appears in two lists in A4, A5, A6, A7, A8 must be

in B1 ∪B2 and no color appears in three lists in A4, A5, A6, A7, A8 .

Notice that B1∪B2−{1} has at most four colors. Thus, at most four colors appear

in two lists of A4, A5, A6, A7, A8 . Since |A4| + |A5| + |A6| + |A7| + |A8| = 15, we

have at least 11 colors in A4, A5, A6, A7, A8 . Since A1∪A2∪A3∪B1∪B2−{1} is

a set of size 10, there exists a color which is not a color in A1∪A2∪A3∪B1∪B2 .

Let 2 ∈ A4 but 2 6∈ A1 ∪ A2 ∪ A3 ∪ B1 ∪ B2 . Similar to Case 2, we define the

new list assignment L∗ of K8,8 which is obtained from L by changing color 2 to

color 1. Then color 1 appears in four lists in L∗8(i) . By Theorem 4.2.16, K8,8 is

L∗ -colorable. That is, K8,8 is L-colorable.
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Lemma 4.2.23. Let L be a 3-list assignment of K8,8 such that every color ap-

pears in at most three lists of each partite set where L8(i) = {A1, A2, . . . , A8} and

L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, B1, B2, B3 and 2 ∈ A4 , A5 , A6 , B4 ,

B5 , B6 then K8,8 is L-colorable.

Proof. We define the new list assignment L∗ of K8,8 which is obtained from L

by changing color 2 to color 1. It is easy to see that if K8,8 is L∗ -colorable, then

K8,8 is L-colorable. By Strategy C for L8(i) , K8,8 is L∗ -colorable. That is, K8,8

is L-colorable.

Lemma 4.2.24. Let L be a 3-list assignment of K8,8 such that every color ap-

pears in at most three lists of each partite set where L8(i) = {A1, A2, . . . , A8} and

L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, B1, B2, B3 and 2 ∈ A4 , A5 , A6 , B1 ,

B4 , B5 then K8,8 is L-colorable.

Proof. If a coloring of L8(i) (or L8(ii) ) has no subset that is a list in L8(ii) (or

L8(i) ), then K8,8 is L-colorable by Lemma 3.2.1. Hence, we suppose that every

coloring of L8(i) (or L8(ii) ) has a subset that is a list in L8(ii) (or L8(i) ).

Case 1. |A7 ∩ A8| ≥ 2.

Let 3, 4 ∈ A7, A8 . Since {1, 2, 3} and {1, 2, 4} are 3-colorings of L8(i) , we have

123, 124 ∈ L8(ii) . It is contradiction to the fact that only one list in L8(ii) contains

both color 1 and color 2.

Case 2. |A7 ∩ A8| = 1.

Let A7 = 345 and A8 = 367. Since {1, 2, 3} is a 3-coloring of L8(i) , we suppose

that B1 = 123. Since {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 5, 6} and {1, 2, 5, 7} are 4-

colorings of L8(i) , we obtain that {B2−1, B3−1, B4−2, B5−2} = {46, 47, 56, 57} .

Case 2.1. B6, B7, B8 are not mutually disjoint.

We suppose that w ∈ B6, B7 . If w ∈ B8 then we label all lists in L8(ii) by color
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1, color 2 and color w ; hence, the proof is done. Suppose that B8 = xyz where

w, x, y, z are distinct colors. Then {1, 2, w, x}, {1, 2, w, y} and {1, 2, w, z} are 4-

colorings of L8(ii) . Since no list in L8(i) contains both color 1 and color 2, we

have {wx,wy, wz} ⊂ {A1 − 1, A2 − 1, A3 − 1, A4 − 2, A5 − 2, A6 − 2} . That is,

color w appears in at least three lists in L8(i) . Since each color appears in at

most three lists in L8(i) , w is not color 3. Since each color appears in at most

three lists in L8(ii) , w is not an element in {1, 2, 4, 5, 6, 7} . Hence, w appears in

exactly two lists in L8(ii) and in exactly three lists in L8(i) . By Theorem 4.2.22,

K8,8 is L-colorable.

Case 2.2. B6, B7, B8 are mutually disjoint.

We label B1, B2, B3 by color 1 and label B4, B5 by color 2. The remaining

vertices form K8,3 . Let L′ be the list assignment of K8,3 which is obtained from

L by removing color 1 and color 2. Since B6, B7, B8 are mutually disjoint, we

apply Strategy A for L′3 .

Case 3. A7 ∩ A8 = ∅ .

We label A1, A2, A3 by color 1 and label A4, A5, A6 by color 2. The remaining

vertices form K2,8 . Let L′′ be the list assignment of K2,8 which is obtained from

L by removing color 1 and color 2. Since A7 and A8 are disjoint, we apply

Strategy A for L′′2 .

Lemma 4.2.25. Let L be a 3-list assignment of K8,8 such that every color ap-

pears in at most three lists of each partite set where L8(i) = {A1, A2, . . . , A8} and

L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, B1, B2, B3 and 2 ∈ A4 , A5 , A6 , B1 ,

B2 , B4 , then K8,8 is L-colorable.

Proof. If a coloring of L8(i) (or L(ii) ) has no subset that is a list in L8(ii) (or

L8(i) ), then K8,8 is L-colorable by Lemma 3.2.1. Hence, we suppose that every

coloring of L8(i) (or L8(ii) ) has a subset that is a list in L8(ii) (or L8(i) ). Notice
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that if color 3 appears in three lists in L8(ii) and color 3 appears in two lists in

L8(i) , then the proof is finished by Theorem 4.2.22 and if color 3 appears in three

lists in L8(ii) and color 3 appears in three lists in L8(i) , then the proof is finished

by Lemma 4.2.24. Suppose that color 3 appears in two lists in L8(ii) .

Case 1. A7 ∩ A8 = ∅ .

We label A1, A2, A3 by color 1 and label A4, A5, A6 by color 2. The remaining

vertices form K2,8 . Let L′ be the list assignment of K2,8 which is obtained from

L by removing color 1 and color 2. Since A7 and A8 are disjoint, we apply

Strategy A for L′2 .

Case 2. |A7 ∩ A8| = 1.

Let A7 = 345 and A8 = 367. Since {1, 2, 3} is a 3-coloring of L8(i) , we suppose

that B1 = 123. Since {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 5, 6} and {1, 2, 5, 7} are 4-

colorings of L8(i) , we suppose that B2 = 124, B3 = 156 and B4 = 257.

We label A1, A2, A3 by color 1 and label B1, B2, B4 by color 2. The remaining

vertices form K5,5 . Let L′ be the list assignment of K5,5 which is obtained from L

by removing color 1 and color 2. That is, L′5(i) = {A4−2, A5−2, A6−2, 345, 367}

and L′5(ii) = {56, B5, B6, B7, B8} .

Case 2.1 A4 − 2, A5 − 2, A6 − 2 have a common color, say p .

Then we label A4 − 2, A5 − 2, A6 − 2 by color p and label A7, A8 by color 3.

Since the remaining vertices in another partite set still have available colors, K5,5

is L′ -colorable. Therefore, K8,8 is L-colorable.

Case 2.2 A4 − 2, A5 − 2, A6 − 2 have no common color and not mutually

disjoint.

Let p ∈ A4 − 2, A5 − 2 and A7 = 2qr .

Case 2.2.1 p = 5 and 6 ∈ {q, r} .

Suppose that q = 6. Notice that {3, 5, r} and {7, 5, r} are 3-colorings of L5(i) .
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However, at most one of such 3-colorings is a list of L5(ii) because each color ap-

pears in at most three lists in L8(ii) . Hence, K5,5 is L′ -colorable by Lemma 3.2.1.

Therefore, K8,8 is L-colorable.

Case 2.2.2 p 6= 5 or 6 6∈ {q, r} .

Then {3, p, q} and {3, q, r} are 3-colorings of L′5(i) . Since color 3 appears in at

most two lists in L8(ii) and 3 ∈ B1 , at least one of such 3-colorings is not a list in

L5(ii) . Again, by Lemma 3.2.1, K5,5 is L′ -colorable by Lemma 3.2.1. Therefore,

K8,8 is L-colorable.

Case 2.3 A4 − 2, A5 − 2, A6 − 2 are mutually disjoint.

We label A7, A8 by color 3. Then the remaining vertices form K3,5 . Recall that

color 3 appears in at most two lists in L8(ii) ; suppose that 3 ∈ B5 . Let L′′ be

the list assignment of K3,5 which is obtained from L′ by removing color 3. Then

L′′3 = {A4 − 2, A5 − 2, A6 − 2} and L′′5 = {56, B5 − 3, B6, B7, B8} . Then we apply

Strategy A for L′′3 .

Case 3. |A7 ∩ A8| = 2.

Let A7 = 345 and A8 = 346. We label A1, A2, A3 by color 1 and label B1, B2, B4

by color 2. Then the remaining vertices form K5,5 . Let L′ be the list assignment

of K5,5 which is obtained from L by removing color 1 and color 2. Then L′5(i) =

{A4 − 2, A5 − 2, A6 − 2, 345, 346} and L′5(ii) = {B3 − 1, B5, B6, B7, B8} .

We define the new list assignment L∗ of K4,5 such that L∗4 = {A4 − 2, A5 −

2, A6 − 2, 34} and L∗5 = L′5(ii) . It is easy to see that if K4,5 is L∗ -colorable,

then K5,5 is L′ -colorable. By Lemma 4.2.20, K4,5 is L∗ -colorable; hence, K5,5 is

L′ -colorable. Therefore, K8,8 is L-colorable.

Lemma 4.2.26. Let L be a 3-list assignment of K8,8 such that every color ap-

pears in at most three lists of each partite set where L8(i) = {A1, A2, . . . , A8} and

L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3, B1, B2, B3 and 2 ∈ A4 , A5 , A6 , B1 ,
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B2 , B3 , then K8,8 is L-colorable.

Proof. We label A1, A2, A3 by color 1 and label B1, B2, B3 by color 2. The

remaining vertices form K5,5 . Let L′ be the list assignment of K5,5 which is

obtained from L by removing color 1 and color 2. That is, L′5(i) = {A4− 2, A5−

2, A6 − 2, A7, A8} and L′5(ii) = {B4, B5 . . . , B8} .

Case 1. A color appears in exactly three lists in L′5(ii) , say color 3.

If color 3 appears in at most two lists in L8(i) , then K8,8 is L-colorable by

Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 3 appears in exactly

three lists in L8(i) .

Then at most two lists in L8(i) contains both color 1 and color 3, or at most

two lists in L8(i) contains both color 2 and color 3. Hence, K8,8 is L-colorable

by Lemma 4.2.23 and Lemma 4.2.24.

Case 2. Every color appears in at most two lists in L′5(ii) .

Let xiyizi be a list in L′5(ii) such that xiyizi ∩ (Ai+3 − 2) = ∅ for i = 1, 2, 3. Let

L∗ be the 3-list assignment of K11,5 such that L∗11 = {{xi}∪Ai+3− 2|i = 1, 2, 3}

∪{{yi}∪Ai+3−2|i = 1, 2, 3} ∪{{zi}∪Ai+3−2|i = 1, 2, 3} ∪{A4, A5} and L∗5 = L′5 .

Notice that if K11,5 is L∗ -colorable, then K5,5 is L′ -colorable. According to

[17], K11,5 is 3-choosable. Hence, K5,5 is L′ -colorable. Therefore, K8,8 is L-

colorable.

Theorem 4.2.27. Let L be a 3-list assignment of K8,8 such that every color

appears in at most three lists of each partite set where L8(i) = {A1, A2, . . . , A8}

and L8(ii) = {B1, B2, . . . , B8}. If 1 ∈ A1, A2, A3 and 2 ∈ A4, A5, A6 then K8,8 is

L-colorable.

Proof. If color 1 or color 2 appear in at most two lists in L8(ii) , then K8,8 is L-

colorable by Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 1 and color
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2 appear in exactly three lists of L8(ii) . Hence, the proof is done by Lemma 4.2.23,

Lemma 4.2.24, Lemma 4.2.25 and Lemma 4.2.26.

Lemma 4.2.28. Let L be a 3-list assignment of K5,6 such that L5 = {A1 , A2 ,

. . ., A5} and L6 = {B1, B2, . . . , B6}. If |B1| = 2 and |A1| = . . . = |A5| = |B2| =

. . . = |B6| = 3, then K5,6 is L-colorable.

Proof. Let A6 = xyz where x, y, z 6∈
⋃

v∈K5,6
L(v). Let L∗ be a 3-list assignment

of K6,8 such that L∗6 = {A1, A2, . . . , A6} and L∗8 = {12x, 12y, 12z,B2, B3, . . . , B6} .

Notice that if K6,8 is L∗ -colorable, then K5,6 is L-colorable. By Lemma 3.3.4,

K6,8 is L∗ -colorable; hence, K5,6 is L-colorable.

Theorem 4.2.29. Let L be a 3-list assignment of K8,8 such that L8(i) = {A1 ,

A2 , . . ., A8} and L8(ii) = {B1, B2, . . . , B8} where each color appears in at most

three lists in each partite set. If 1 ∈ A1, A2, A3 and 2 ∈ A1, A2 then K8,8 is

L-colorable.

Proof. If color 1 appears at most two lists in L8(ii) , then the proof is done by

Theorem 4.2.19 and Theorem 4.2.22. Suppose that 1 ∈ B1, B2, B3 .

We label B1, B2, B3 by color 1 and label A1, A2 by color 2. The remaining

vertices form K6,5 . Let L′ be the list assignment of K6,5 which is obtained from

L by removing color 1 and color 2. By Lemma 4.2.28, K6,5 is L′ -colorable.

Therefore, K8,8 is L-colorable.

Theorem 4.2.30. Let L be a 3-list assignment of K8,8 such that L8(i) = {A1 ,

A2 , . . ., A8} and L8(ii) = {B1, B2, . . . , B8} where each color appears in at most

three lists in each partite set. If color 1 and color 2 appear in exactly two lists in

each partite set such that 1 ∈ A1, A2, B1, B2, and 2 ∈ A3, A4, B3, B4 , then K8,8 is

L-colorable.
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Proof. We define the new list assignment L∗ of K8,8 which is obtained from L by

changing color 8 to color 1. If K8,8 is L∗ -colorable, then K8,8 is also L-colorable

and the proof is done. Hence, we suppose that K8,8 is not L∗ -colorable. By

Corollary 4.2.18, the remaining four lists are 246, 257, 347, 356. That is, A5 =

B5 = 246, A6 = B6 = 257, A7 = B7 = 347, A8 = B8 = 356.

Since {1, 8, 2, 3} is a 4-coloring of L8(i) , we may suppose that it has a subset

that is a list in L8(ii) by Lemma 3.2.1. That is, there is a list from B1, B2, B3, B4

containing both color 2 and color 3. Similarly, a list from B1, B2, B3, B4 contains

both color 4 and color 5 and another list in B1, B2, B3, B4 contains both color 6

and color 7. Since each color appears in at most three lists, the remaining list in

B1, B2, B3, B4 contains two new colors, say color 9 and color A . With out loss

of generality, let B1 = 123, B2 = 145, B3 = 167 and B4 = 19A . Similarly, we can

prove that 23, 45, 67, 9A are a subset of a list in A1, A2, A3, A4 .

Case 1. 9A ⊂ A1 or 9A ⊂ A2 .

Suppose that A1 = 19A . Then we use color 2, color 3, color 8 and color 9

to label lists in L8(i) and use color 1 and color A to label lists in L8(ii) . The

remaining vertices from K1,5 which is easily colored.

Case 2. 9A ⊂ A3 or 9A ⊂ A4 .

Suppose that A3 = 89A . Then we use color 1, color 9, color 6 and color 7 to

label lists in L8(i) and use color 8 to label lists in L8(ii) . Then the remaining

vertices form K1,6 which are easily labeled.

Theorem 4.2.31. Let L be a 3-list assignment of K8,8 such that L8(i) = {A1 ,

A2 , . . ., A8} and L8(ii) = {B1, B2, . . . , B8} where each color appears in at most

three lists in each partite set. If 1 ∈ A1, A2, B1, B2, and 2 ∈ A3, A4, B3 and no

other list contains 1 or 2, then K8,8 is L-colorable.

Proof. The proof is similar to Theorem 4.2.30.
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Lemma 4.2.32. Let L be a 3-list assignment of K8,8 such that L8(i) = {A1 , A2 ,

. . ., A8} and L8(ii) = {B1, B2, . . . , B8} and each color appears in at most three

lists in each partite set . If 1 ∈ A1, A2, B1, B2 but 1 6∈ A3, . . . , A8, B3, . . . , B8

2 ∈ A3, A4, A5, B1, B3, B4 and x ∈ A6 and x 6∈ A7, A8, B1, B2, . . . , B4 , then K8,8

is L-colorable.

Proof. Case 1. Color x appears in exactly three lists in L8(i) .

If color x appears in exactly one list, two lists, three lists, then we apply Theo-

rem 4.2.19, Theorem 4.2.22 and Theorem 4.2.27, respectively.

Case 2. Color x appears in exactly two lists in L8(i) .

If color x appears in three lists in L8(ii) , then the proof is done by Theorem 4.2.27.

Then we suppose that color x appears in at most two lists in L8(ii) . If x ∈ A1

or x ∈ A2 , then we define a new list assignment of K8,8 which is obtained from

L by changing color x to color 2 and then we apply Strategy D. If x ∈ A3, x ∈

A4 or x ∈ A5 , then we define a new list assignment of K8,8 which is obtained

from L by changing color x to color 1 and then we apply Theorem 4.2.30 and

Theorem 4.2.31.

Case 3. Color x appears in exactly one list in L8(i) .

If color x appears in three lists in L8(ii) , then the proof is done by Theorem 4.2.27.

Then we suppose that color x appears in at most two lists in L8(ii) . If x appears

in exactly one list in L8(ii) then we define a new list assignment of K8,8 which is

obtained from L by changing color x to color 1 and then we apply Theorem 4.2.27.

If x appears in exactly two list in L8(ii) then we define a new list assignment of

K8,8 which is obtained from L by changing color x to color 2 and then we apply

Strategy D for L8(ii) .

Theorem 4.2.33. Let L be a 3-list assignment of K8,8 such that L8(i) = {A1 ,

A2 , . . ., A8} and L8(ii) = {B1, B2, . . . , B8} and each color appears in at most
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three lists in each partite set. If 1 ∈ A1, A2 but 1 6∈ A3, . . . , A8 2 ∈ A3, A4, A5 ,

then K8,8 is L-colorable.

Proof. If a color appears in three lists in A1, A2, A6, A7, A8 , then K8,8 is L-

colorable by Theorem 4.2.27. We can suppose that each color appears in at most

two lists in A1, A2, A6, A7, A8 .

If color 2 appears in at most two lists in L8(ii) , then K8,8 is L-colorable by

Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 2 appears in exactly

three lists in L8(ii) .

Case 1. Color 1 is not in any list in L8(ii) .

Hence, we color A1, A2 by color 1. The remaining vertices from K6,8 which is

3-choosable by Lemma 3.3.4.

Case 2. Color 1 appears in exactly one list in L8(ii) .

Let 1 ∈ B1 . If 2 6∈ B1 , then we define a new list assignment L∗ by changing color

2 to color 1 and then we apply Strategy D. Suppose that 2 ∈ B1, B2, B3 . Let 3

be the remaining color in B1 . Notice that color 3 appears in at most two list in

A6, A7, A8 .

We label A1, A2 by color 1, label A3, A4, A5 by color 2 and label B1 by color

3. For the worst case, we suppose that 3 ∈ A7, A8 . The remaining vertices

form K3,7 Let L′ be the list assignment of K3,7 which is obtained from L by

removing color 1, color 2 and color 3. That is, L3 = {A6 − 3, A7 − 3, A8} and

L7 = {B2 − 2, B3 − 2, B4, B5 . . . , B8} .

We may suppose that B2 and B2 have only one common color because if

B2 and B3 have more than one common color then the proof is done by Theo-

rem 4.2.29. Hence, if L3 has two 2-colorings which is not disjoint or has at least

three 2-colorings, then at least one of such 2-colorings is not a list in L7 ; hence,

K8,8 is L-colorable by Lemma 3.2.1.
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Suppose that L3 has at most one 2-coloring or has two 2-coloring which are

disjoint. Hence, A6−2, A7−2, A8 are mutually disjoint. Then we apply Strategy A

for L3 to prove that K3,7 is L′ -colorable. Therefore, K8,8 is L-colorable.

Case 3. Color 1 appears in exactly two lists in L8(ii) .

Let 1 ∈ B1, B2 . Recall that color 2 appears in exactly three lists in L8(ii) . If

2 ∈ B1, B2 , then the proof is done by Theorem 4.2.29. If color 2 6∈ B1, B2 , we

define a new list assignment L∗ of K8,8 by changing color 2 to color 1 and then

we apply Strategy D. Suppose that 2 ∈ B1, B3, B4 .

We label A1, A2 by color 1 and label A3, A4, A5 by color 2. The remaining

vertices form K3,8 . Let L′ be the list assignment of K3,8 which is obtained from

L by removing color 1 and color 2. If L′3 has a coloring that is not a list in L′8 ,

then the proof is done by Lemma 3.2.1. Suppose that every coloring of L′3 has a

subset that is a list in L′8 .

Case 3.1 |A6 ∩ A7| ≥ 2 or |A6 ∩ A8| ≥ 2 or |A7 ∩ A8| ≥ 2.

Without loss of generality, suppose that 3, 4 ∈ A6, A7 and A8 = 567. Hence,

L′3 has at least six 2-colorings, namely {3, 5}, {3, 6}, {3, 7}, {4, 5}, {4, 6}, {4, 7} .

Since every coloring in L′3 must have a subset that is a list in L′8 . We have 3 ∈ B1

or 4 ∈ B1 . Without loss of generality, suppose that 3 ∈ B1 . Moreover, 45, 46, 47

must be a list in L′8 . Hence, we suppose B2 = 245, B3 = 246 and B4 = 247.

Hence, there are two lists containing both color 2 and color 4. Then K8,8 is

L-colorable by Theorem 4.2.29.

Case 3.2 |A6 ∩ A7| = 1 and |A6 ∩ A8| = 1 and |A7 ∩ A8| = 1.

Suppose that A6 = 345, A7 = 367 and A8 = 468. Similar to Case 3.1, we may

suppose that B1 = {123, B2 = 146, B3 = 247 and B4 = 256. Since color 8 appears

in exactly one list in A6, A7, A8 and 8 6∈ B1, B2, B3, B4, B5 , K8,8 is L-colorable

by Lemma 4.2.32.
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Case 3.3 |A6 ∩ A7| = 1 and |A6 ∩ A8| = 1 and |A7 ∩ A8| = 0.

Suppose that A6 = 345, A7 = 367 and A8 = 489. Similar to Case 3.1, we may

suppose that B1 = 123, B2 = 146 and B3 = 247.

If 8 6∈ B4 or 9 6∈ B4 , then the proof is finished by Lemma 4.2.32. Suppose

that B4 = 289.

Since {1, 2, 5, 7, 8} and {1, 2, 5, 7, 9} are 5-colorings of L8(i) , we may suppose

that such 5-colorings has a subset that is a list in L8(ii) by Lemma 3.2.1. We

suppose that B6 = 578 and B7 = 579. Therefore, K8,8 is L-colorable by Theo-

rem 4.2.29.

Case 3.4 |A6 ∩ A7| = 1 and |A6 ∩ A8| = 0 and |A7 ∩ A8| = 0.

Then A6∪A7∪A8 has at least eight colors; hence, there is a color x ∈ A6∪A7∪A8

such that no list in L containing both color 1 and color x because color 1 appears

only in four lists in L and B1 has already contained color 1 and color 2. Thus

we define a new list assignment L∗ of K8,8 by changing color x to color 1. If x

appears in exactly two lists in A6, A7, A8 , then we apply Theorem 4.2.3 for L∗ . If

x appears in exactly one list in A6, A7, A8 , then we apply Theorem 4.2.27 for L∗ .

Case 3.5 |A6 ∩ A7| = 0 and |A6 ∩ A8| = 0 and |A7 ∩ A8| = 0.

The proof is similar to case 3.4.

Case 4. Color 1 appears in exactly three lists in L8(ii) .

Since color 1 only appears in exactly two lists in L8(i) , K8,8 is L-colorable by

Theorem 4.2.22.

Theorem 4.2.34. Let L be a 3-list assignment of K8,8 such that L8(i) = {A1 ,

A2 , . . ., A8} and L8(ii) = {B1, B2, . . . , B8} and each color appears in at most

three lists in each partite set. If 1 ∈ A1, A2, A3 then K8,8 is L-colorable unless

F ⊂ L8(i), L8(ii) .

Proof. By Theorem 4.2.19 and Theorem 4.2.22, we may suppose that 1 ∈ B1, B2, B3 .
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By Theorem 4.2.27, we suppose that each color appears in at most two lists in

A4, A5, A6, A7, A8 . Similarly, we suppose that each color appears in at most two

lists in B4, B5, B6, B7, B8 . We will prove that if L has one of the following three

properties, then K8,8 is L-colorable and finally we prove that L must have one

of these three properties,

Property 1. There is a color x ∈ A4, A5 but x 6∈ A1, A2, A3 or there is a

color x ∈ B4, B5 but x 6∈ B1, B2, B3 .

The proof is done by Theorem 4.2.33.

Property 2. There is a color x ∈ A4, A5 but x 6∈ B1, B2, B3 or there is a

color x ∈ B4, B5 and x 6∈ B1, B2, B3 .

We define the new list assignment of K8,8 which is obtained from L by changing

color x to color 1 and then we apply Strategy D.

Property 3. There is a color x ∈ A4, B4 and the remaining lists do not con-

tain x .

We define the new list assignment L∗ of K8,8 which is obtained from L by chang-

ing color x to color 1. By Theorem 4.2.18, K8,8 is L∗ -colorable unless the re-

maining four lists are 246, 257, 347, 356. Hence, we suppose that A5 = B5 =

246, A6 = B6 = 257, A7 = B7 = 347 and A8 = B8 = 356. If 123 is not a list in

L8(ii) , then we label A1, A2, A3, A5, A6, A7 by color 1, 2, 3. The remaining vertices

form K1,8 which is easily colored. Hence, we suppose that A1 = 123, A2 = 145

and A3 = 167. That is, {123, 145, 167, 246, 257, 247, 256} ⊂ L8(ii) . Similarly,

we can prove that {123, 145, 167, 246, 257, 247, 256} ⊂ L8(i) . It can be directly

verified that if {123, 145, 167, 246, 257, 247, 256} ⊂ L8(i), L8(ii) then K8,8 is not

L-colorable.

Finally, we will prove that L must have a color x with one of the properties.

Suppose that no color x with the properties in Property 1 and Property 2. Let
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x1, x2, . . . , xk be the colors which appears in three lists in A4, A5, A6, A7, A8 . Since

A1 ∪A2 ∪A3−{1} (and B1 ∪B2 ∪B3−{1}) contains at most six colors, we have

k ≤ 6. Thus at least one list from A1, A2, A3 and another list from B1, B2, B3

contains xi for each i . Hence, A1∪A2∪A3∪B1∪B2∪B3−{1, x1, x2, . . . , xk} has

at most 12 − 2k elements. Since 15 − 2k is the number of colors which appears

once in A4, A5, A6, A7, A8 , there is a color x ∈ A5 ∪ A6 ∪ A7 ∪ A8 which is not

in A1, A2, A3, B1, B2, B3 . If color x appears in two lists in B5, B6, B7, B8 , then it

is in Property 1. Hence, color x appears in exactly one list in L8(ii) which is in

Property 3..

Theorem 4.2.35. Let L be a 3-list assignment of K8,8 such that each color

appears in at most two lists in each partite set. Then K8,8 is L-colorable

Proof. If all lists in L8(i) are mutually disjoint, then we apply Strategy A. Other-

wise, we suppose that 1 ∈ A1, A2 . For the six remaining lists in L8(i) , we have at

least nine colors because each color appears in at most two lists. However, color

1 appears in at most two lists in each partite set. At most eight colors are in the

lists containing color 1. Without loss of generality, suppose that 2 ∈ B3 and no

list containing both color 1 and color 2. Hence, we define the new list assignment

L∗ of K8,8 which is obtained from L by changing color 2 to color 1. By Theo-

rem 4.2.18 and Theorem 4.2.34, K8,8 is L∗ -colorable unless 246, 257, 347, 356 are

the lists in both partite set. If K8,8 is L∗ -colorable, then K8,8 is L-colorable;

hence, we suppose that A5 = B5 = 246, A6 = B6 = 257, A7 = B7 = 347 and

A8 = B8 = 356.

Since every color appears in at most two lists in each partite set, the remaining

lists do not contain color 2, 3, 4, 5, 6, 7. That is, we can split graph K8,8 is to

two copies of K4,4 . Let L′ be the 3-list assignment of K4,4 such that L′4(i) =

{A1, A2, A3, A4} and L′4(ii) = {B1, B2, B3, B4} . Let L′′ be the 3-list assignment
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of K4,4 such that L′′4(i) = {A5, A6, A7, A8} and L′′4(ii) = {B5, B6, B7, B8} . Since

K4,4 is 3-choosable, K8,8 is L-colorable.

Theorem 4.2.36. Let L be a 3-list assignment of K8,8 . Then K8,8 is L-colorable

if and only if F ⊂ L8(i), L8(ii) .

Proof. Assume that F 6⊂ L8(i) or F 6⊂ L8(ii) .

If r8(i) ≥ 5 or r8(ii) ≥ 5, then we apply Lemma 4.1.6. If r8(i) ≤ 4 and r8(ii) ≤ 4;

apply Theorem 4.2.18, Theorem 4.2.34 and Theorem 4.2.35. In this case, K8,8 is

L-colorable unless F ⊂ L8(i), L8(ii) .

4.3 On (3, t)-choosability of K7,9

Study 3-choosability of K7,9 is difficult than K8,8 because K7,9 is not sym-

metric. That is, K7,9 requires more cases. It is clear that, for a 3-list assignment

L , K7,9 is not L-colorable if L|V (K7,7) = LF . We conjecture that, for a 3-list

assignment L , K7,9 is L-colorable if and only if L|V (K7,7) 6= LF .

Here, we prove that K7,9 is (3, t)-choosable if and only if t ≤ 6 or t ≥ 14.

We still left a characterization of all 3-list assignments of L such that K7,9 is not

L-colorable for future work. (See Chapter 6.) We introduce remarks which are

used several times in this section.

For the following remarks, let L be a (3, t)-list assignment of K7,9 where L7 =

{A1, A2 . . . , A7} and L9 = {B1, B2, . . . , B9} and r7 (and r9 ) be the maximum

number of lists in L7 (and L9 ) containing a common color.

Suppose that (r7, r9) = (3, 4); this is one of two missing cases of Lemma 4.1.5.

Remark 4.3.1. If 1 ∈ A1, A2, A3, B1, B2, B3, B4 and 2 is in some lists in L but no

lists contains both color 1 and color 2, then we can define the new list assignment

L∗ from L by changing color 2 to color 1. It is easy to see that if K7,9 is L∗ -
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colorable then K7,9 is L-colorable. Notice that color 1 appears at least in four

lists in L∗7 or at least five lists in L∗9 . Hence, K7,9 is L∗ -colorable by Lemma 4.1.5.

Therefore, K7,9 is L-colorable.

Remark 4.3.2. Suppose that t ≥ 14 and color 1 appears in at most six lists

in L . Since a list containing color 1 has another two colors, at most 12 colors

appear in the lists which contain color 1. Since we have 14 color, we have one

color left. Then there exists a color, say color 2 such that no list contains both

color 1 and color 2. Then we construct new 3-list assignment l∗ by changing

color 2 to color 1.

Remark 4.3.3. Suppose that t ≥ . If a color appears in lists in only one partite

set, then we can label such vertices by this color and the remaining vertices can

be labeled by Theorem 3.3.7, Theorem 3.3.8 and Theorem 3.4.6. Suppose that

every color appears in lists of both partite sets.

If color 1 appears in three lists in L7 but color 1 appears in at most three

lists in L9 , then we construct a new 3-list assignment l∗ as in Remark 4.3.2.

Hence, color 1 appears in at least four lists in L∗7 , then K7,9 is L∗ -colorable by

Lemma 4.1.5. Therefore, K7,9 is L-colorable.

If color 1 appears in exactly four lists in L9 but color 1 appears in at most

two lists in L7 , then we can conclude that K7,9 is L-colorable, similarly.

Remark 4.3.4. Suppose that t ≥ 14. Let X = {A1, A2, A3, B1, B2, B3, B4} and

color 1 is in all lists in X . If a color not including color 1 appears in at least

three lists in X or at least two colors not including color 1 appear in two lists in

X , then there exists a color x 6∈
⋃

x∈XX because L contains at least 14 colors.

Then K7,9 is L-colorable by Remark 4.3.1.

Lemma 4.3.5. Let L be a (3, t)-list assignment of K7,9 such that L7 = {A1 ,

A2 , . . ., A7} and L9 = {B1, B2, . . . , B9} where t = 14, 15. Let r7 (and r9 )
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be the maximum number of lists in L7 (and L9 ) containing a common color. If

1 ∈ A1, A2, A3 , 2 ∈ A4, A5, A6 and (r7, r9) = (3, 4), then K7,9 is L-colorable.

Proof. Case 1. All of 123, 124, 125 are lists in L9 .

Then K7,9 is L-colorable by Remark 4.3.4.

Case 2. One of 123, 124, 125 is not a list in L9 .

Since {1, 2, 3}, {1, 2, 4} and {1, 2, 5} are 3-colorings of L7 , there exists a 3-

coloring of L7 which has no subset that is a list in L9 . Then K7,9 is L-colorable

by Lemma 3.2.1.

Lemma 4.3.6. Let L be a (3, t)-list assignment of K7,9 such that L7 = {A1 ,

A2 , . . ., A7} and L9 = {B1, B2, . . . , B9} where t = 14, 15. Let r7 (and r9 )

be the maximum number of lists in L7 (and L9 ) containing a common color. If

1 ∈ B1, B2, B3, B4 , 2 ∈ B5, B6, B7 and (r7, r9) = (3, 4), then K7,9 is L-colorable.

Proof. By Remark 4.3.3, we may suppose that 1 ∈ A1, A2, A3 .

Case 1. 2 ∈ A1, A2, A3 .

Notice that A1 − 12, A2 − 12, A2 − 12 contain a color and B1 − 1, B2 − 1, B3 − 1

contain two colors. At most nine colors (including color 2) are in the same lists

with color 1. Since we have at least 14 colors, there exists a color x such that no

list in L contain both color 1 and color x . Then the proof is done by Remark 4.3.1.

Case 2. 2 ∈ A1, A2 but 2 6∈ A3 .

If 2 ∈ A4 , then color 2 appears in three lists in L7 . By Remark 4.3.3, we suppose

that color 2 appears in four lists in L9 . If 2 ∈ B8 or 2 ∈ B9 , then we label

B1, B2, B3, B4 by color 1 and label B5, B6, B7, B8 by color 2 and the remaining

vertices can be easily colored. If 2 ∈ B1 ∪B2 ∪B3 ∪B4 , then there exists a color

x such that no list in L contain both color 1 and color x . Then the proof is done

by Remark 4.3.1.
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Case 3. 2 ∈ A1 but 2 6∈ A2, A3 .

If |B8 ∩ B9| 6= 1, then we label B1, B2 . . . , B7 by color 1 and color 2. The

remaining vertices can be directly labeled. Suppose that B8 = 346 and B9 =

357. If L9 has a coloring which has no subset that is a list in L7 , then K7,9

is L-colorable by Lemma 3.2.1. Suppose that each coloring of L9 has a subset

that is a list in L7 . Since {1, 2, 3} is a 3-coloring of L9 , let A1 = 123. Since

{1, 2, 4, 5}, {1, 2, 4, 7}, {1, 2, 6, 5} and {1, 2, 6, 7} are 4-colorings of L7 , we suppose

that 2 ∈ A4, A5 and {A2 − 1, A3 − 1, A4 − 2, A5 − 2} = {45, 47, 65, 67} . Since

(B2 − 1) ∪ (B3 − 1) ∪ (B4 − 1) is of size 6, one of colors 8, 9, A,B,C,D,E is not

in (B2 − 1) ∪ (B3 − 1) ∪ (B4 − 1). Suppose that 8 6∈ B2, B3, B4 . Then color 8

is not in the same list with lists containing color 1. Then this case is done by

Remark 4.3.1.

Case 4. 2 6∈ A1, A2, A3 .

If 2 6∈ A1, A2, A3 , then we define the new list assignment L∗ by changing color 2

to color 1 and then we apply Strategy C for L∗9 .

Lemma 4.3.7. Let L be a (3, t)-list assignment of K7,9 such that L7 = {A1 ,

A2 , . . ., A7} and L9 = {B1, B2, . . . , B9} where t = 14, 15. Let r7 (and r9 )

be the maximum number of lists in L7 (and L9 ) containing a common color. If

1 ∈ A1, A2, A3 , (r7, r9) = (3, 4) and there exists another color which appears in

three lists in L7 , then K7,9 is L-colorable.

Proof. Let color 2 be another color which appears in three lists in L7 .

Case 1. 2 6∈ A1 ∪ A2 ∪ A3 .

Then color 2 appears in three lists in A4, A5, A6 ; hence, K7,9 is L-colorable by

Lemma 4.3.5.

Case 2. 2 ∈ A1 ∪ A2 ∪ A3 .

By Remark 4.3.3, we suppose that both color 1 and color 2 appear in exactly
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four lists in L9 . If at least two lists in L9 contains both color 1 and color 2, then

K7,9 is L-colorable by Remark 4.3.4. If at most one list in L9 contains both color

1 and color 2, then K7,9 is L-colorable by Lemma 4.3.6.

Lemma 4.3.8. Let L be a (3, t)-list assignment of K7,9 such that L7 = {A1 ,

A2 , . . ., A7} and L9 = {B1, B2, . . . , B9} where t = 14, 15. Let r7 (and r9 )

be the maximum number of lists in L7 (and L9 ) containing a common color. If

1 ∈ B1, B2, B3, B4 and (r7, r9) = (3, 4), then K7,9 is L-colorable.

Proof. By Remark 4.3.3, suppose that 1 ∈ A1, A2, A3 . By Lemma 4.3.7, suppose

that each color appears in at most two lists in L7 .

We first label B1, B2, B3, B4 by color 1; hence, the remaining vertices form

K7,5 . Let L′ be the list assignment of K7,5 which is obtained from L by removing

color 1 and color 2.

Case 1. No color appears in two lists in L′5 .

Then we apply Strategy A for L′5 .

Case 2. Exactly one color appears in two lists in L′5 .

Let 2 ∈ B5, B6 . Then we label B5, B6 by color 2; hence, the remaining vertices

form K7,3 . Let L′′ be the list assignment of K7,3 which is obtained from L′ by

removing color 2. Since color 2 appears in at most two lists in L7 , we can apply

Strategy A for L′′3 .

Case 3. Exactly two colors appear in two lists in L′5 .

Let 2 ∈ B5, B6 . If 3 ∈ B5 or 3 ∈ B6 , then B7, B8, B9 are still mutually disjoint;

hence, the proof is similar to Case 2. Next, suppose that 3 ∈ B7, B8 .

Case 3.1 2 or 3 6∈ A1 ∪ A2 ∪ A3

Define the new list assignment L∗ of K7,9 which is obtained from L by changing

such color to color 1. Then we apply Strategy D ′ .

Case 3.2 2 ∈ A1 ∪ A2 ∪ A3 and color 2 appears in two lists in L7 .
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Recall that we have labeled B1, B2, B3, B4 by color 1. Then we label such two

lists in L7 by color 2 and label B7 and B8 by color 3. The remaining vertices

form K5,3 . Let L′′ be the list assignment of K5,3 which is obtained from L by

removing color 2 and color 3. Then we apply Strategy A for L′′3 .

Case 3.3 3 ∈ A1 ∪ A2 ∪ A3 and color 3 appears in two lists in L7 .

Similar to Case 3.2.

Case 3.4 2, 3 ∈ A1 and no other list in L7 contains color 2 or color 3.

We label B5, B6 by color 2 and label A1 by color 3. For the worst case, we

suppose that 2, 3 6∈ A2, A3 . . . , A7 . Then the remaining vertices form K6,3 . Let

L′′ be the list assignment of K6,3 which is obtained from L′ by removing color

2 and color 3. Notice that L′′3 contains two lists of size 2 and one list of size 3.

Define the new list assignment L∗ of K6,3 by deleting a color from only such list

of size 3. It is obvious that if K6,3 is L∗ -colorable, then K6,3 is L′′ -colorable.

Then we apply Strategy A ′ for L∗3 to guarantee that K6,3 is L∗ -colorable.

Case 3.5 2 ∈ A1, 3 ∈ A2 and no other list in L7 contains color 2 or color 3.

We label B5, B6 by color 2 and label B7, B8 by color 3. The remaining vertices

can be easily labeled.

Case 4. At least three colors appear in exactly two lists in L′5 .

Since |B5|+|B6|+|B7|+|B8|+|B9| = 15, exactly nine colors appear in exactly one

list. Since t ≥ 14, there is a color, say color 2 which is not in B5, B6, B7, B8, B9 .

Case 4.1 2 6∈ B1, B2, B3, B4 .

Then color 2 only appears in L7 ; hence, we label some lists in L7 by color 2.

The remaining vertices form a complete bipartite graph with at most 15 vertices

which can be labeled by Theorem 3.3.7, Theorem 3.3.8 and Theorem 3.4.6.

Case 4.2 2 ∈ B1, B2, B3, B4 .

Suppose that 2 ∈ B1 . Similar to Case 5.1, we suppose that color 2 is in a list of
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L7 . Then we label some lists in L7 by color 2. For the worst case, suppose 2 ∈ A4

and no other list in L7 contains color 2. The remaining vertices form K6,5 . Let L′′

be the list assignment of K6,5 such that L′′6 = {A1− 1, A2− 1, A3− 1, A5, A6, A7}

and L′′5 = {B5, B6, B7, B8, B9} .

Since each color appears in at most two lists in L′′5 , there exists a list x1y1z1 ∈

L′′5 such that x1y1z1∩ (A1− 1) = ∅ . Similarly, there exist lists x2y2z2 and x3y3z3

such that x2y2z2 ∩ (A2 − 1) = x3y3z3 ∩ (A3 − 1) = ∅ . Hence, we define the new

list assignment L∗ of K12,5 such that L∗12 = {A5, A6, a7} ∪ {{xi} ∪ (Ai − 1)|i =

1, 2, 3}∪{{yi}∪ (Ai−1)|i = 1, 2, 3}∪{{zi}∪ (Ai−1)|i = 1, 2, 3} . It is easy to see

that if K12,5 is L∗ -colorable, then K6,5 is L′′ -colorable. According to Shende[17],

K5,12 is 3-choosable. Hence, K7,9 is L-colorable.

Theorem 4.3.9. The complete bipartite graph K7,9 is (3, t)-choosable if and only

if t ≤ 6 or t ≥ 14.

Proof. If L is a 3-list assignment of K7,9 such that L7 = F and L9 = F ∪

{x1x2x3, y1y2y3} where x1, x2, x3, y1, y2, y3 are any colors, then K7,9 is not L-

colorable. Depending on such six colors, t may be 7, 8, 9, . . . , 13. Hence, K7,9 is

not (3, t)-choosable for 7, 8, . . . , 13.

Case 1. t ≤ 6.

Then a color in L9 appears in at least d9·3
6
e = 5 lists. Hence, K7,9 is (3, t)-

choosable for t ≤ 6 by Lemma 4.1.5.

Case 2. t ≥ 16.

Let S ⊂ V (K7,9). If |S| ≤ 13, then K7,9[S] is L|S -colorable by Theorems 3.3.7;

if |S| = 14, then K7,9[S] is L|S -colorable by Theorem 3.3.8 and if |S| = 15

then K7,9[S] is L|S -colorable by Theorem3.4.6. Then K7,9 is L-colorable by

Theorem 2.1.7.

Case 3. t = 14, 15.
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By Lemma 4.1.5, K7,9 is always L-colorable unless (r7, r9) = (2, 3), (3, 4). If

(r7, r9) = (3, 4), then K7,9 is L-colorable by Lemma 4.3.8. Suppose that (r7, r9) =

(2, 3). Let 1 ∈ B1, B2, B3 . Notice that 1 appears in at most two lists in L7 . Since

we have at least 14 colors, there exists a color, say color 2 which is not in the

same list with color 1. Then we define the new 3-list assignment L∗ of K7,9 by

changing color 2 to color 1. Then color 1 appears in at least four lists in L∗7 ;

hence, K7,9 is L∗ -colorable by Lemma 4.3.8 and Lemma 4.1.5.

Theorem 4.3.10. A complete bipartite graph with 16 vertices is (3, t)-choosable

for t ≤ 6 or t ≥ 14.

Proof. It follows from Theorem 4.1.7, Theorem 4.2.36 and Theorem 4.3.9.



CHAPTER V

ON (k, t)-CHOOSABILITY of K(2k−1
k ),(2k−1

k )

5.1 Background

Since k -choosability implies k -colorability, χ(G) ≤ χl(G) for every graph G .

This bound is sharp because χ(G) = χl(G) = 2 when G is a tree. However,

there exists a graph G such that χ(G) and χl(G) is significantly different. In [4],

Erdős , Rubin, and Taylor gave an example of bipartite graphs which is not k -

choosable for each positive integer k . Such graph is the complete bipartite graph

Km,m when m =
(
2k−1

k

)
. They gave a k -list assignment L such that Km,m is not

L-colorable. Example 5.1.1 shows a special case when k = 3.

Example 5.1.1. When k = 3, we have m =
(
5
3

)
= 10. Figure 2.1.1 shows the

(3, 5)-list assignment L such that K10,10 is not L-colorable.

Figure 5.1.1: A (3, 5)-list assignment L of K10,10

The complete bipartite graph K10,10 is not L-choosable because each partite

set requires three colors but there are only five available colors. �

In general, we assign distinct k -subsets of {1, 2, . . . , 2k− 1} to each vertex in
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each partite set of Km,m where m =
(
2k−1

k

)
to form a k -list assignment L . If we

use only k − 1 colors to label lists in a partite set, then the remaining k colors

form a list which we are not labeled. That is, we need at least k colors to color

all vertices in each partite set. However, we have only 2k − 1 colors. Hence, we

cannot label all vertices in both partite sets. Notice that the k -list assignment

contains exactly 2k− 1 colors; in other words, Km,m is not (k, 2k− 1)-choosable.

Particularly, K10,10 is not (3, 5)-choosable. Next, we also show that K10,10 is not

(3, t)-choosable for t = 6, 7, 8.

Example 5.1.2 shows how to obtain a (3, t)-list assignment L of K10,10 for

t = 5, 6, 7 such that K10,10 is not L-colorable.

Example 5.1.2. Let L be the (3, 5)-list assignment L of K10,10 in Figure 5.1.2.

We will construct new list assignments L1, L2, L3 of K10,10 such that K10,10 is not

Li -colorable for i = 1, 2, 3. The list assignments L1, L2 and L3 are obtained from

L by changing colors in boxes as shown in Figures 5.1.2, 5.1.3 and 5.1.4.

Figure 5.1.2: A (3, 6)-list assignment L1 of K10,10

We show that K10,10 is not L1 -colorable. Let A1 = {A1, A2, . . . , A10} and

A2 = {A′1, A′2, . . . , A′10} be the lists of vertices in the left partite set and the right

partite set in Figure 5.1.2, respectively. We show that K10,10 is not L1 -colorable

by dividing the proof into several cases.
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Case 1. If we use both color 1 and color 2 to label some lists in A1 , then

we cannot label all of A10, A
′
1, A

′
2, A

′
3 .

Case 2. Similar to Case 1, if we use both color 1 and color 2 to label some

lists in A2 , then we cannot label all of A1, A2, A3, A
′
10 .

Case 3. If we use color 1 to label some lists in A1 and use color 2 to label

lists in A2 , then we cannot label all of A7, A8, A9, A
′
4, A

′
5, A

′
6 .

Case 4. Similarly to Case 2, if we use color 2 to label some lists in A1 and

use color 1 to label lists in A2 , then we cannot label all of A4, A5, A6, A
′
7, A

′
8, A

′
9 .

Case 5. If we use neither color 1 or color 2, we cannot color all of A4 , A5 ,

A6 , A′7 , A′8 , A′9 . Hence, K10,10 is not L1 -colorable.

Figure 5.1.3: A (3, 7)-list assignment L2 of K10,10

Figure 5.1.4: A (3, 8)-list assignment L3 of K10,10

It can be proved similarly that K10,10 is neither L2 -colorable nor L3 -colorable.
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In this chapter, k, t and m are always positive integers such that m =
(
2k−1

k

)
.

We have seen that Km,m is not (k, t)-choosable for t = 2k − 1. We next are

interested in t < 2k − 1 or t > 2k − 1 which is studied in Section 5.2. Given a

positive integer k , we reveal all (k, t)-choosability of the complete bipartite graph

Km,m except when 17 · 2k−2 − 4k − 4 < t < 2km − k2 + 2k ; in such a case, the

problem still unsolved. In particular, Section 5.3 contains the complete results

when k = 3. We combine the tool in Theorem 2.1.7 with and the main results

from Chapter 3 and Chapter 4 to obtain these complete results when k = 3.

5.2 On (k, t)-choosability of K(2k−1
k ),(2k−1

k ) .

In this section, we focus on general cases. We prove that if t ≤ 2k − 2 or t ≥

2km−2k2+2k , then Km,m is (k, t)-choosable, and if 2k−1 ≤ t ≤ 17·2k−2−4k−4

then Km,m is not (k, t)-choosable.

Theorem 5.2.1. Let k, t,m be positive integers such that k ≥ 3 and m =
(
2k−1

k

)
.

If t ≤ 2k − 2, then Km,m is (k, t)-choosable.

Proof. Let L be a (k, t)-list assignment of Km,m . We can use b t
2
c colors to color

all vertices in each partite set because b t
2
c + k ≥ b t

2
c + t+1

2
≥ t + 1. Hence, we

label vertices in one partite set by color 1, 2, . . . , b t
2
c and label vertices in the

other partite set by color b t
2
c+ 1, b t

2
c+ 2, . . . , t .

In Theorem 5.2.2, we will show that if the number t is large enough, then

Km,m is (k, t)-choosable.

Theorem 5.2.2. Let k, t,m be positive integers such that m =
(
2k−1

k

)
. If t ≥

2km− 2k2 + 2k , then Km,m is (k, t)-choosable.
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Proof. Let L be a (k, t)-list assignment of Km,m . For every S ⊂ V (G), |L(S)| ≥

t− L(V (G)− S) ≥ 2km− 2k2 + 2k − k(2m− |S|) = k|S| − 2k2 + 2k .

To apply Theorem 2.1.7, let S ⊂ V (Km,m) be such that |L(S)| < |S| . Then

|S| > k|S|−2k2+2k . Hence, |S| < 2k . It is easy to see that a bipartite graph with

less than 2k vertices is k -choosable. Therefore, Km,m is (k, t)-choosable.

Before we prove our main result in Theorem 5.2.10, we need Lemma 5.2.4 as

a basis step for mathematical induction.

Definition 5.2.3. Let L be a list assignment of a graph G . Then L is called

a colorable list assignment of G if G is L-colorable; otherwise, L is called a

non-colorable list assignment of G .

Recall Notation 3.1.2 that if L is a list assignment of Ka,a , then La(i) and

La(ii) are collections of lists assigned to the vertices in each partite set.

Lemma 5.2.4. Let t be a positive integer. K3,3 is (2, t)-choosable if and only

if t ≤ 2 or t ≥ 6. Moreover, for a 3-list assignment L of K3,3 , the complete

bipartite graph K3,3 is L-colorable if and only if L 6= L1, L2, L3 where L1
3(i) =

{12, 13, 23}, L1
3(ii) = {12, 13, 23}, L2

3(i) = {12, 13, 24}, L2
3(ii) = {12, 14, 23}, and

L3
3(i) = {12, 13, 45}, L3

3(ii) = {14, 15, 23}.

Proof. Let L be a (2, t)-list assignment of K3,3 .

Case 1. t ≥ 2 or t ≥ 6.

If t = 2, then K3,3 is (2, t)-choosable because K3,3 is 2-colorable. Suppose that

t ≥ 6. To apply Theorem 2.1.7, let S ⊂ V (K3,3) be such that |L(S)| < |S| .

Then |S| = 5. Hence, K3,3[S] is a subgraph of K2,3 which is 2-choosable by

Example 2.1.1(ii). Hence, K3,3 is L|S -colorable. Therefore, K3,3 is L-colorable.

Case 2. t = 3, 4, 5.

Define a (2, 3)-list assignment, a (2, 4)-list assignment, and a (2, 5)-list assign-
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ment L1, L2 and L3 as follows. L1
3(i) = {12, 13, 23}, L1

3(ii) = {12, 13, 23} , L2
3(i) =

{12, 13, 24}, L2
3(ii) = {12, 14, 23} , and L3

3(i) = {12, 13, 45}, L3
3(ii) = {14, 15, 23} .

Since K3,3 is not Li -colorable for i = 1, 2, 3, K3,3 is not (2, t)-choosable for

t = 3, 4, 5.

Next, we characterize all non-colorable 2-list assignments L of K3,3 . If all lists

in L3(i) are mutually disjoint, then K3,3 is L-colorable by Strategy A ′ . Suppose

that L3(i) = {1a, 1b, cd} where a, b, c, d are positive integers. By Lemma 3.2.1, if

L is a non-colorable list assignment, then such colorings has a subset that is a

list in L3(ii) . Since {1, c} , {1, d} , {a, b, c} and {a, b, d} are colorings of L3(i) , we

obtain L3(ii) = {1c, 1d, ab} . Next, we consider possibility of L .

Case 2.1. a, b, c, d are distinct.

Suppose that a = 2, b = 3, c = 4 and d = 5. Hence, t = 5 and L3(i) =

{12, 13, 45}, L3(ii) = {14, 15, 23} .

Case 2.2. a = c but a, b, d are distinct.

Suppose that a = c = 2, b = 3 and d = 4. Hence t = 4 and L3(i) =

{12, 13, 24}, L3(ii) = {12, 14, 23} .

Case 2.3. a = c and b = d .

Suppose that a = c = 2 and b = d = 5. Hence, t = 3 and L3(i) = {12, 13, 23}, L3(ii) =

{12, 13, 23} .

Notation 5.2.5. Let A1 and A2 be collections of lists. The notation [A1,A2]

represents the list assignment, say L , of K|A1|,|A2| such that L|A1| = A1 and

L|A2| = A2 .

Definition 5.2.6. Let S be a set and i a positive integer. Define the collection

of sets
(

S
i

)
= {A ⊂ S|A has size i} . Let X be a collection of sets and c be an

element which is not in any set in X . Define cX = {{c} ∪X|X ∈ X} .
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Example 5.2.7. Let S = {1, 2, 3, 4} and X =
(

S
2

)
. Then X = {{1, 2} , {1, 3} ,

{1, 4} , {2, 3} , {2, 4} , {3, 4}} and 5X = {{1, 2, 5} , {1, 3, 5} , {1, 4, 5} , {2, 3, 5} ,

{2, 4, 5} , {3, 4, 5}} . �

Remark 5.2.8 introduces an idea to construct a non-colorable list assignment

of a complete bipartite graph from an existing non-colorable list assignment of a

smaller complete bipartite graph. Example 5.2.9 illustrates the idea.

Remark 5.2.8. Let [A1,A2] be a non-colorable list assignment of the complete

bipartite graph K|A1|,|A2| .

(i) If [pA1, qA2] is a colorable list assignment of K|A1|,|A2| , then any [pA1, qA2]-

coloring of K|A1|,|A2| must use color p or color q .

(ii) If [pqA1,A2] is a colorable list assignment of K|A1|,|A2| , then any [pqA1,A2]-

coloring of K|A1|,|A2| must use color p or color q .

Example 5.2.9. Let A1 = {34, 35, 45} , A2 = {34, 35, 45} , B1 = {34, 35, 46}

and B2 = {34, 46, 45} . Then [A1,A2] and [B1,B2] are a non-colorable (2, 3)-list

assignment and a non-colorable (2, 4)-list assignment of K3,3 , respectively, by

Lemma 5.2.4.

We will construct a non-colorable (3, 9)-list assignment of K10,10 from A1,A2,B1,B2 .

First, let C = {6, 7, 8} and D = {7, 8, 9} . Define a 3-list assignment L of K10,10

as follows:

L10(i) = 1A1 ∪ 2B1 ∪ 12

(
C

1

)
∪
(
D

3

)
L10(ii) = 1B2 ∪ 2A2 ∪ 12

(
D

1

)
∪
(
C

3

)
That is,

L10(i) = {134, 135, 145} ∪ {234, 235, 246} ∪ {126, 127, 128} ∪ {789}
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L10(ii) = {134, 136, 146} ∪ {234, 235, 245} ∪ {127, 128, 129} ∪ {678}

.

Consider the subgraph of K10,10 induced by vertices labeled by 12
(

C
1

)
⊂ L10(i)

and
(

C
3

)
⊂ L10(ii) . Since [

(
C
1

)
,
(

C
3

)
] is a non-colorable list assignment of K1,3 , color

1 or color 2 is used to label lists in 12
(

C
1

)
⊂ L10(i) by Remark 5.2.8. Similarly,

consider the subgraph of K10,10 induced by vertices labeled by 12
(

D
1

)
⊂ L10(ii)

and
(

D
3

)
⊂ L10(i) . Since [

(
D
1

)
,
(

D
3

)
] is a non-colorable list assignment of K1,3 , color

1 or color 2 is used to label lists in 12
(

D
1

)
⊂ L10(ii) , by Remark 5.2.8.

Case 1. Color 1 is used to label lists in L10(i) and color 2 is used to label

lists in L10(ii) .

It follows that lists in L10(ii) cannot be labeled by color 1 and lists in L10(i) cannot

be labeled by color 2. Then consider the subgraph of K10,10 induced by vertices

labeled by 1B2 ⊂ L10(ii) and 2B1 ⊂ L10(i) . Vertices of this induced subgraph

cannot be labeled because [B1,B2] is a non-colorable list assignment of K3,3 .

Case 2. Color 1 is used to label lists in L10(ii) and color 2 is used to label

lists in L10(i) .

Similar to Case 1, consider the subgraph of K10,10 induced by vertices labeled

by 1A1 ⊂ L10(i) and 2A2 ⊂ L10(ii) . Vertices of this induced subgraph cannot be

labeled because [A1,A2] is a non-colorable list assignment of K3,3 .

Hence, we conclude that K10,10 is not L-colorable.

Note further that the construction starts from two non-colorable list assign-

ments of K3,3 , say [A1,A2] and [B1,B2] . By Lemma 5.2.4, the number of colors

in A1∪A2 (B1∪B2 ) can possibly be three, four or five. Notice that [A1,A2] can

be the same as [B1,B2] while C and D can be any sets of three colors. The set of

colors in L consists of colors from A1 ∪ A2 , B1 ∪ B2 , C , D and two new colors.

Then the total number of colors in L is smallest, which is five, when A1∪A2 and
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B1 ∪ B2 contains the same three colors and C,D are the set of such three colors.

The total number of colors in L is largest, which is 18, when A1∪A2 and B1∪B2

contains five different colors and C,D are the disjoint sets of new three colors. It

is easy to see that the total number of colors in L can possibly be any numbers

from 3 to 18. Hence, K10,10 is not (3, t)-choosable for t = 3, 4, . . . , 18. �

Theorem 5.2.10. Let k, t,m be positive integers such that m =
(
2k−1

k

)
.

If 2k − 1 ≤ t ≤ 17 · 2k−2 − 4k − 4 then Km,m is not (k, t)-choosable.

Proof. We will prove by mathematical induction on k . The basis step is shown

in Lemma 5.2.4 for the case k = 2. We prove the induction step similar to

Example 5.2.9.

Let C and D be any sets of size 2k−3 and A1,A2,B1,B2 be collections of sets

of size k− 1 such that |A1| = |A2| = |B1| = |B2| =
(
2k−3
k−1

)
. Suppose that [A1,A2]

and [B1,B2] are non-colorable list assignments of K(2k−3
k−1 ),(2k−3

k−1 ) and suppose that

C,D and all lists in A1,A2,B1,B2 do not contain color 1 and color 2.

Define a (k, t)-list assignment L of Km,m by

Lm(i) = 1A1 ∪ 2B1 ∪ 12

(
C

k − 2

)
∪
(
D

k

)

Lm(ii) = 1B2 ∪ 2A2 ∪ 12

(
D

k − 2

)
∪
(
C

k

)
.

Since 2
(
2k−3
k−1

)
+
(
2k−3
k−2

)
+
(
2k−3

k

)
=
(
2k−1

k

)
= m , all vertices of Km,m are assigned.

Consider the subgraph of Km,m induced by vertices labeled by 12
(

C
k−2

)
⊂

Lm(i) and
(

C
k

)
⊂ Lm(ii) . Since [

(
C

k−2

)
,
(

C
k

)
] is a non-colorable list assignment of

K(2k−3
k−2 ),(2k−3

k ) , color 1 or color 2 is used to label lists in 12
(

C
k−2

)
⊂ Lm(i) by

Remark 5.2.8. Similarly, consider the subgraph of Km,m induced by vertices

labeled by 12
(

D
k−2

)
⊂ Lm(ii) and

(
D
k

)
⊂ Lm(i) . Since [

(
D

k−2

)
,
(

D
k

)
] is a non-
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colorable list assignment of K(2k−3
k−2 ),(2k−3

k ) , color 1 or color 2 is used to label

lists in 12
(

D
k−2

)
⊂ Lm(ii) , by Remark 5.2.8.

Case 1. Color 1 is used to label lists in Lm(i) and color 2 is used to label

lists in Lm(ii) .

It follows that lists in Lm(ii) cannot be labeled by color 1 and lists in Lm(i)

cannot be labeled by color 2. Then consider the subgraph of Km,m induced

by vertices labeled by 1B2 ⊂ Lm(ii) and 2B1 ⊂ Lm(i) . Vertices of this induced

subgraph cannot be labeled because [B1,B2] is a non-colorable list assignment of

K(2k−3
k−1 ),(2k−3

k−1 ) .

Case 2. Color 1 is used to label lists in Lm(ii) and color 2 is used to label

lists in Lm(i) .

Similar to Case 1, consider the subgraph of Km,m induced by vertices labeled

by 1A1 ⊂ Lm(i) and 2A2 ⊂ Lm(ii) . Vertices of this induced subgraph cannot be

labeled because [A1,A2] is a non-colorable list assignment of K(2k−3
k−1 ),(2k−3

k−1 ) .

Hence, we conclude that Km,m is not L-colorable.

Note further that the construction starts from two non-colorable list assign-

ments of K(2k−3
k−1 ),(2k−3

k−1 ) , say [A1,A2] and [B1,B2] . By the induction hypothesis,

the number of colors in [A1,A2] and [B1,B2] can possibly be any number from

2k − 3 to 17 · 2k−3 − 4k . The set of colors in L consists of colors in A1 ∪ A2 ,

B1 ∪ B2 , C , D and two new colors. Then the total number of colors in L is

smallest, which is 2k − 3 + 2 = 2k − 1, when A1 ∪ A2 and B1 ∪ B2 contains the

same 2k−3 colors and C,D are the set of such 2k−3 colors. The total number of

colors in L is largest, which is 2(17 ·2k−3−4k)+2(2k−3)+2 = 17 ·22k−2−4k−4,

when A1 ∪ A2 and B1 ∪ B2 contains 2k−3 − 4k different colors and C,D are the

disjoint sets of new 2k− 3 colors. It is easy to see that the total number of colors

in L can possibly be any numbers from 2k − 1 to 17 · 22k−2 − 4k − 4. Hence,
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Km,m is not (3, t)-choosable for all 2k − 1 ≤ t ≤ 22k−2 − 4k − 4.

5.3 On (3, t)-choosability of K10,10

Let k and m be positive integers such that m =
(
2k−1

k

)
. In Section 5.2, we

have proved that Km,m is (k, t)-choosable for t ≤ 2k−2 and t ≥ 2km−2k2 +2k ,

and Km,m is not (k, t)-choosable for 2k − 1 ≤ t ≤ 17 · 2k−2 − 4k − 4. When

17 · 2k−2 − 4k − 4 < t < 2km − 2k2 + 2k , the problem is still unsolved. Now,

we focus on a specific positive integer k . When k = 2, we get m =
(
2·2−1

2

)
= 3.

The complete result is proved in Lemma 5.2.4 that K3,3 is (2, t)-choosable if

and only if t 6= 3, 4, 5. Thus, here, we focus on k = 3, and then m = 10.

Hence, we determine each positive integer t such that K10,10 is (3, t)-choosable,

in other words, we investigate the 3-choosability of complete bipartite graphs

with 20 vertices. However, only results of complete bipartite graphs with at most

14 vertices are revealed. In 1996, Hanson, MacGillivray, and Toft [8] proved

that all complete bipartite graphs with 13 vertices are 3-choosable, and in 2005

Fitzpatrick and MacGillivray [5] proved that all complete bipartite graphs with

14 vertices except K7,7 is 3-choosable and LF is the unique 3-list assignment

such that K7,7 is not LF -colorable. To extend their result from 14 vertices to 20

vertices, our work in Chapters II, III and IV are devoted to solve this problem.

Applying Theorem 2.1.7, the problem can be solved for complete bipartite graphs

with 17, 18, 19 and 20 vertices. Results in Chapters III and IV take care the

rest.

The desired main result is concluded in Theorem 5.3.1 and Theorem 5.3.3.

Theorem 5.3.1. Let t be a positive integer. The complete bipartite graph K10,10

is (3, t)-choosable if and only if t 6= 5, 6, . . . , 25.
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Proof. By Theorem 5.2.1, if t ≤ 4, then K10,10 is (3, t)-choosable. By Theo-

rem 5.2.10, if 5 ≤ t ≤ 18, then K10,10 is not (3, t)-choosable. From Chapter 3, we

have known that K7,7 is not (3, 7)-choosable and LF is a non-colorable (3, 7)-list

assignment of K7,7 . We define a new assignment L∗ of K10,10 which is obtained

from LF by adding three new lists in each partite set. Then it follows that L∗ is

a non-colorable list assignment of K10,10 . The number of colors in L∗ depends on

the lists that we add. The minimum number of colors in L∗ is 7 and the maximum

number in L∗ is 25. Hence, K10,10 is not (3, t)-choosable for t = 7, 8, . . . , 25.

Next, suppose that t ≥ 26 and let L be any (3, t)-list assignment of K10,10 .

We will prove that K10,10 is L-colorable by Theorem 2.1.7. Let S ⊂ V (K10,10)

be such that |S| > |L(S)| . Since |L(S)| ≥ t− 3 · |V (K10,10) r S| ≥ 3|S| − 34, we

have |S| > |L(S)| ≥ 3|S| − 34. That is , |S| < 17.

If |S| = 16, then |L(S)| ≥ 48 − 34 = 14. Hence, K10,10[S] is L|S -colorable

by Theorem 4.3.10. If |S| = 15, then |L(S)| ≥ 45 − 34 = 11. Hence, K10,10[S]

is L|S -colorable by Theorem 3.4.6. If |S| = 14, then |L(S)| ≥ 42 − 34 = 8.

Hence, K10,10[S] is L|S -colorable by Theorem 3.3.8. If |S| ≤ 13, then K10,10[S] is

L|S -colorable because every complete bipartite graph with at most 13 vertices is

3-choosable by Theorem 3.3.7. Therefore, by Theorem 2.1.7, K10,10 is L-colorable.

Hence, K10,10 is (3, t)-choosable for t ≥ 26.

Lemma 5.3.2. The complete bipartite graph K9,b is always (3, 5)-choosable.

Proof. Let L be a (3, 5)-list assignment of K9,b .

Part 1. All lists in L9 can be color by only two colors.

Because of
(
5
3

)
= 10, there exists a set S ⊂ {1, 2, 3, 4, 5} such that S 6∈ L9 .

Suppose that S = {1, 2, 3} . Hence, we use color 4, 5 label all lists in L9 .

Part 2. All lists in Lb can be color by the remaining three colors.

Since each list in Lb has size 3 and is a subset of {1, 2, 3, 4, 5} , it contains at least
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one color from {1, 2, 3} . That is, we all lists in Lb can be labeled by color 1, color

2, or color 3.

Theorem 5.3.3. Let a, b, t be positive integers such that a, b ≥ 7, a+b ≤ 20 and

t 6= 6 and (a, b, t) 6= (10, 10, 5). Then Ka,b is (3, t)-choosable if and only if t ≤ 5

or t ≥ 3(a+ b)− 34. Moreover, K10,10 is not (3, 5)-choosable.

Proof. Let L be a (3, t)-list assignment of Ka,b . Then t ≥ 3.

Case 1. t = 3, 4.

If t = 3, then Ka,b is L-colorable because Ka,b is 3-colorable. If t = 4, then we

can use any two color label all vertices in each partite set, then Ka,b is L-colorable,

too.

Case 2. t = 5.

If (a, b) = (10, 10), then K10,10 is not (3, 5)-choosable by Example 5.1.1. Suppose

that a ≤ b and (a, b) 6= (10, 10). Since a + b = 20, we have a ≤ 9. Hence, Ka,b

is (3, 5)-choosable by Lemma 5.3.2.

Case 3. 7 ≤ t ≤ 3(a+ b)− 35.

Notice that if L|V (K7,7) = LF , then Ka,b is not L-colorable. Hence, we construct

a non-colorable 3-list assignment of Ka,b by adding new a + b − 14 lists to LF .

The number of colors in such a + b− 14 lists possibly be any number from 3 to

3(a + b) − 42. Moreover, such a + b − 14 lists may contain the same colors as

colors in LF . Hence, L possibly contains 7, 8, . . . , 3(a + b) − 35 colors. That is,

Ka,b is not (3, t)-choosable for 7, 8, . . . , 3(a+ b)− 35.

Case 4. t ≥ 3(a+ b)− 34.

We will prove that Ka,b is L-colorable by Theorem 2.1.7. Let S ⊂ V (Ka,b) be

such that |S| > |L(S)| . Since |L(S)| ≥ t − 3 · (a + b − |S|) ≥ 3S − 34, we have

|S| > |L(S)| ≥ 3S − 34. That is , |S| < 17.

If |S| = 16, then |L(S)| ≥ 26 − 12 = 14. Hence, Ka,b[S] is L|S -colorable by
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Theorem 4.3.10. If |S| = 15, then |L(S)| ≥ 26 − 15 = 11. Hence, Ka,b[S] is

L|S -colorable by Theorem 3.4.6. If |S| = 14, then |L(S)| ≥ 26− 18 = 8. Hence,

Ka,b[S] is L|S -colorable by Theorem 3.3.8. If |S| ≤ 13, then Ka,b[S] is Ka,b[S] is

L|S -colorable because every complete bipartite graph with at most 13 vertices is

3-choosable by Theorem 3.3.7. By Theorem 2.1.7, Ka,b is L-colorable.



CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, we have studied three main problems. Firstly, find a

sufficient condition of (k, t)-choosable graphs and a sufficient condition of (k, t)-

choosable graphs not containing Kk+1 . Secondly, give a complete result on 3-

choosability of complete bipartite graphs with 15 vertices by establishing new

strategies; moreover, obtain some partial results on 3-choosability of complete

bipartite graphs with 16 vertices. Lastly, study (k, t)-choosability of the complete

bipartite graph K(2k−1
k ),(2k−1

k ) .

All results in this dissertation are listed as follows:

Sufficient conditions of (k, t)-choosable graphs

Let k, t and n be positive integers.

Theorem 2.2.2: If t ≥ kn − k2 + 1, then every graph with n vertices is (k, t)-

choosable.

Theorem 2.2.4: If k ≤ t ≤ kn−k2 , then every graph with n vertices containing

a (k + 1)-clique is not (k, t)-choosable.

Lemma 2.2.5: If k ≥ n − 2, then a Kk+1 -free graph with n vertices is (k, t)-

choosable. In other words, the list chromatic number of a Kk+1 -free graph with

n vertices is at most n− 2.

Lemma 2.2.8: If t ≥ k+ 1, then a Kk+1 -free graph with k+ 3 vertices is (k, t)-

choosable.



113

Theorem 2.2.11: Let k ≥ 3. If t ≥ kn − k2 − 2k + 1, then a Kk+1 -free graph

with n vertices is (k, t)-choosable.

Theorem 2.2.12: If t ≥ 2n − 6, then a triangle-free graph with n vertices is

(2, t)-choosable.

Theorem 2.2.13: A triangle-free graph with n vertices is (2, 2n− 7)-choosable

if and only if it is (K3,3 − e)-free.
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Theorem 2.2.14: Let nk − k2 − 2k + 1 ≤ t ≤ nk − k2 and 3 ≤ k ≤ n− 3.

A graph with n vertices is (k, t)-choosable if and only if it is Kk+1 -free. Moreover,

for k = 2 and 2n− 6 ≤ t ≤ 2n− 4. A graph with n vertices is (2, t)-choosable if

and only if it is triangle-free.

Theorem 2.2.15: If k ≤ t ≤ kn − k2 − 2k , then every Kk+1 -free graph with n

vertices containing C5 ∨Kk−2 is not (k, t)-choosable.

Strategies for 3-list assignments

Let L be a 3-list assignment of Ka,b with La = {A1, A2, . . . , Aa} and Lb =

{B1, B2, . . . , Bb} . Let r be the maximum number of lists in Lb containing a com-

mon color.

Strategy A: If all lists in La are mutually disjoint and
∏a

i=1 |Ai| > 3a−1n1 +

b3a−2cn2 + b3a−3cn3 where ni = |{B ∈ Lb, |B| = i}| for i = 1, 2, 3, then Ka,b is

L-colorable.

Strategy B: If a color appears in a− 1 lists in La , then Ka,b is L-colorable.

Strategy C: If a color appears in a − 2 lists in La and r ≤ 8, then Ka,b is

L-colorable.

Strategy D: If a color appears in a− 3 lists in La and (r, b) ∈ {(r, b)|r ≤ 2, b ≤

22} ∪ {(3, b)|b ≤ 14} ∪ {(4, b)|b ≤ 12} ∪ {(5, b)|b ≤ 9} , then Ka,b is L-colorable.

Strategy E: If a color appears in a − 4 lists in La , say color 1 and (r, b) ∈

{(r, b)|r ≤ 2, b ≤ 22} ∪ {(3, b)|b ≤ 14} , then Ka,b is L-colorable unless the four

remaining lists of La are 246, 257, 347, 356 and {123, 145, 167, 246, 257, 347,

356} ⊂ Lb .

Strategy F: If a color appears in a− 5 lists in La , r ≤ 2 and a + b ≤ 18, then

Ka,b is L-colorable.
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On 3-choosability of complete bipartite graphs

Recall that F = {123, 145, 167, 246, 257, 347, 356} be the collection of all lines in

the Fano plane and LF be the 3-list assignment of K7,7 which seven vertices in

each partite set are assigned by distinct elements from F .

Theorem 3.3.6: A complete bipartite graph with 14 vertices except K7,7 is 3-

choosable. Moreover, for a 3-list assignment L of K7,7 , it is not L-colorable if

and only if L = LF .

Theorem 3.4.5: A complete bipartite graph with 15 vertices except K7,8 is 3-

choosable. Moreover, for a 3-list assignment L of K7,8 , it is not L-colorable if

and only if L|V (K7,7) = LF .

Theorem 3.4.6: A complete bipartite graph with 15 vertices is (3, t)-choosable

for t ≤ 6 and t ≥ 11.

Theorem 4.1.7: A complete bipartite graph with 16 vertices except K7,9 and

K8,8 is 3-choosable.

Theorem 4.2.36: For a 3-list assignment L of K8,8 , it is not L-colorable if and

only if L|V (K7,7) = LF .

Theorem 4.3.10: A complete bipartite graph with 16 vertices is (3, t)-choosable

for t ≤ 6 or t ≥ 14.

On (k, t)-choosability of K(2k−1
k ),(2k−1

k ) .

Let k and t be positive integers.

Theorem 5.2.1, Theorem 5.2.2: If t ≤ 2k − 2 or t ≥ 2k ·
(
2k−1

k

)
− 2k2 + 2k ,

then K(2k−1
k ),(2k−1

k ) is (k, t)-choosable.

Theorem 5.2.10: If 2k − 1 ≤ t ≤ 17 · 2k−2 − 4k − 4, then K(2k−1
k ),(2k−1

k ) is not

(k, t)-choosable.

Lemma 5.2.4: K3,3 is (2, t)-choosable if and only if t ≤ 2 or t ≥ 6.
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Theorem 5.3.1: K10,10 is (3, t)-choosable if and only if t ≤ 4 or t ≥ 26.

Theorem 5.3.3: Let a, b, t be positive integers such that a, b ≥ 7, a + b ≤ 20

and t 6= 6 and (a, b, t) 6= (10, 10, 5). Then Ka,b is (3, t)-choosable if and only if

t ≤ 5 or t ≥ 3(a+ b)− 34. Moreover, K10,10 is not (3, 5)-choosable.

6.2 Future Work

We propose some ideas for further research as follows:

1. Let G be a graph with n vertices which is Kk+1 -free and C5 ∨Kk−2 -free.

What is the smallest number t0 in terms of k and n such that G is (k, t)-choosable

for each positive integer t ≥ t0? We conjecture that if t ≥ kn− k2− 4k+ 1, then

G is (k, t)-choosable and if G contains C7 ∨Kk−2 as a subgraph, then G is not

(k, t)-choosable for k ≤ t ≤ kn− k2 − 4k .

2. Establish strategies for 4-choosable graphs. For example, let L be a 4-list

assignment of Ka,b such that La = {A1, . . . , Aa} and Lb = {B1, . . . , Bb} . The

following can be proved similar to Strategies A, B and C, respectively.

• If all lists in La are mutually disjoint and
∏a

i=1 |Ai| > 4a−1n1 + b4a−2cn2 +

b4a−3+cn3 + b4a−4+cn4 where ni = |{B ∈ Lb, |B| = i}| for i = 1, 2, 3, 4,

then Ka,b is L-colorable.

• If a color appears in a− 2 lists, then Ka,b is L-colorable.

• If a color appears in a − 3 lists and each color appears in at most 63 lists

in Lb , then Ka,b is L-colorable.

3. Find all 3-list assignments L of K7,9 such that it is not L-colorable. In

chapter IV, we have proved that for a 3-list assignment L of K8,8 , it is L-colorable

if and only if L|V (K7,7) = LF . It leads to a conjecture that for a 3-list assignment

L of K7,9 , it is L-colorable if and only if L|V (K7,7) = LF .
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4. Find the positive integer t0 such that every complete bipartite graph with

17 vertices is (3, t)-choosable for all t ≥ t0 .

5. Study 3-list assignments of complete bipartite graphs with more than 16

vertices. Notice that 3-choosability of complete bipartite graphs with 18 vertices

is difficult to study because each of them has many 3-list assignments L such

that it is not L-colorable. For example, we found at least three different 3-

list assignments L such that K9,9 is not L-colorable and five different 3-list

assignments L such that K7,11 is not L-colorable

The following are non-colorable list assignments L of Ka,b where La and Lb

are the collection of lists assigned to vertices in the partite set of size a and b ,

respectively.

L8 = {158, 168, 159, 169, 278, 279, 345, 346}

L9 = {158, 168, 159, 169, 278, 279, 345, 346}

L9(i) = {127, 128, 129, 347, 348, 349, 567, 568, 569}

L9(ii) = {135, 136, 145, 146, 235, 236, 245, 246, 789}

L9(i) = {124, 135, 19A, 236, 237, 238, 456, 457, 458}

L9(ii) = {678, 124, 125, 134, 135, 925, 934, A25, A34}

L9(i) = {134, 156, 157, 189, 234, 256, 257, 289, ABC}

L9(ii) = {12A, 12B, 12C, 367, 467, 358, 359, 358, 359}

L7 = {678, 123, 124, 125, 134, 135, 925, 934}

L11 = {124, 135, 196, 197, 198, 236, 237, 238, 456, 457, 458}



118

L7 = {167, 189, 18A, 267, 289, 28A, 345}

L11 = {123, 124, 125, 69A, 79A, 683, 684, 685, 783, 784, 785}

L7 = {19B, 1AB, 236, 237, 238, 459, 45A}

L11 = {678, 29A, 39A, 124, 125, 134, 135, B24, B25, B34, B35}

L7 = {167, 189, 1AB, 267, 289, 2AB, 345}

L11 = {123, 124, 125, 68A, 68B, 69A, 69B, 78A, 78B, 79A, 79B}

L7 = {127, 128, 347, 348, 567, 568,9AB}

L11 = {135, 136, 145, 146, 235, 236, 245, 246, 789, 78A, 78B}

L5 = {345, 167, 189, 267, 289}

L15 = {123, 124, 125, 683, 684, 685, 693, 694, 695, 783, 784, 785, 793, 794, 795}

L8 = {1DE, 1FG, 123, 124, 125, 29A, 2BC, 678}

L12 = {345, 126, 127, 128, 19B, 19C, 1AB, 1AC, 2DF, 2DG, 2EF, 2EG}

L9 = {125, 126, 127, 345, 346, 347, 138, 248, 9AB}

L12 = {567, 138, 248, 149, 14A, 14B, 239, 23A, 23B, 813, 814, 823, 824}

L6 = {123, 124, 125, 67B, 67C, 89A}

L15 = {345, 168, 169, 16A, 178, 179, 17A, 1BC, 268, 269, 26A, 278, 279, 27A, 2BC}

6. Study 4-choosability of complete bipartite graphs. Since it is easy to prove

that K4,b is 4-choosable if and only if b ≤ 63, an open problem is to find the

maximum number of b such that K5,b (K6,b ,K7,b, . . .) is 4-choosable.
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7. Find the smallest number n such that there exists a non 4-choosable

complete bipartite graph with n vertices. Recall that the smallest non 3-choosable

complete bipartite graph has 14 vertices; this statement is proved by Hanson,

MacGillivray, and Toft [8]. (See [1] [2] [3] [14] [16] [18] for more information.)

8. Find each positive integer t such that K(2·4−1
4 ),(2·4−1

4 ) is (4, t)-choosable.

9. In chapter V, we prove that if 2k − 1 ≤ t ≤ 17 · 2k−2 − 4k − 4, then

K(2k−1
k ),(2k−1

k ) is not (k, t)-choosable. A possible future work is to improve the

upper bound.

10. Theorem 5.3.3 gives results about (3, t)-choosability of complete bipartite

graphs with at most 20 vertices except the case t = 6. Another future work

is to study the (3, 6)-choosability of complete bipartite graphs with at most 20

vertices.
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[3] Erdős P.: On a combinatorial problem II, Acta Math. Acad. Sci. Hung. 15,
445-447 (1964).
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London Math. Soc. 8(2), 681-682 (1974).

[17] Shende A.M., Tesman B.: 3-choosability of K5,q , Computer Science Techni-
cal Report #94-9, Bucknell University (1994).



121

[18] Toft B. : On Colour-critical hypergraphs, Colloquia Mathematica Societatis
Janos Bolyai 10, 1445-1457 (1973).

[19] Thomassen C. : Every planar graph is 5-choosable, J. Combin. Theory B
62, 180-181 (1994).

[20] Thomassen C. : 3-list-coloring planar graphs of girth 5, J. Combin. Theory
B 64, 101-107 (1995).

[21] Vizing V.G. : Vertex colorings with given colors, Metody Diskret. Analiz. 29,
3-10 (1976). (in Russian)

[22] West D.B. : Introduction to Graph Theory, Prentice Hall, New Jersey, (2001).

[23] Zhang H. : On 3-choosability of plane graphs without 5-, 8- and 9-cycles,
J. Lanzhou Univ. Nat. Sci. 41, 93-97 (2005).

[24] Zhang H., Xu B.: On 3-choosability of plane graphs without 6-, 7- and
9-cycles, Appl. Math., Ser. B 19, 109-115 (2004).

[25] Zhang H., Xu B., Sun Z.: Every plane graph with girth at least 4 without
8- and 9-circuits is 3-choosable, Ars Combin. 80, 247-257 (2006).

[26] Zhu X., Lianying M., Wang C.: On 3-choosability of plane graphs without
3-, 8- and 9-cycles, Australas. J. Comb. 38, 249-254 (2007).



122

VITA

Mr. Wongsakorn Charoenpanitseri was born on May 7, 1984 in Suphanburi,

Thailand. In primary school, he studied in Anubarn Suphanburi School. In

grade 7-9 he had studied in Kannasoot suksalai school. When he was 15 years

old, he went to Bangkok to study grade 10-12 in Triamudomsuksa school. He

got a Bachelor of Science in Mathematics in 2006 and a Master of Science in

Mathematics in 2008 from Chulalongkorn University, and he has furthered his

Ph.D. program in Mathematics at Chulalongkorn University.


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	1.1 Definitions and Notations
	1.2 History and Outline

	CHAPTER II ON (k; t)-CHOOSABILITY OF GRAPHS
	2.1 Basic Properties and Examples
	2.2 On (k; t)-choosability of Kk+1-free Graphs

	CHAPTER III ON 3-CHOOSABILITY OF COMPLETE BIPARTITEGRAPHS
	3.1 Background
	3.2 Strategies
	3.3 Complete Bipartite Graphs with Fourteen Vertices: aNew Proof
	3.4 Complete Bipartite Graphs with Fifteen Vertices

	CHAPTER IV ON 3-CHOOSABILITY OF COMPLETE BIPARTITEGRAPHS WITH 16 VERTICES
	4.1 Consequence of the Strategies
	4.2 On 3-choosability of K8;8
	4.3 On (3; t)-choosability of K7;9

	CHAPTER V ON (k; t)-CHOOSABILITY of K(2k􀀀1k );(2k􀀀1k )
	5.1 Background
	5.2 On (k; t)-choosability of K(2k􀀀1k );(2k􀀀1k ) .
	5.3 On (3; t)-choosability of K10;10

	CHAPTER VI CONCLUSIONS AND FUTURE WORK
	6.1 Conclusions

	REFERENCES
	VITA

