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CHAPTER I

INTRODUCTION

Graph labeling is an assignment of integers to the vertices or edges or both of

the graph which satisfies certain conditions. There are some varieties of labeling

such as graceful labeling and magic labeling. In this thesis, we investigate the

labeling called super edge-magic labeling which is a combination between the edge-

magic labeling and one extra property, i.e., for a graph G , the bijective function

f : V (G) ∪ E(G) → {1, 2, 3, . . . , |V (G)| + |E(G)|} is called super edge-magic

labeling if it satisfies (1) there is a constant λ such that for every edge xy ∈ E(G),

f(x) + f(y) + f(xy) = λ , and (2) f(V (G)) = {1, 2, 3, . . . , |V (G)|} . Note that, a

graph admitting this labeling is said to be super edge-magic.

There are many researches about the super edge-magic labeling. According to

[3], several classes of graphs were studied whether they are super edge-magic or

not. For example in [1], they showed that all odd cycles Cn are super edge-magic,

and all wheel graphs Wn are not super edge-magic. Moreover, they also showed

the important necessary condition for a graph being super edge-magic, i.e., if a

graph G is super edge-magic, then |E(G)| ≤ 2|V (G)| − 3.

However, there are few articles about hypergraph labeling. Therefore, we de-

cided to investigate this type of labeling on hypergraphs, especially the k -uniform

hypergraphs. In Chapter 2, we give a definition of hypergraphs and introduce some

classes of hypergraphs, namely complete k -uniform hypergraph, m-node k -uniform

hyperpaths, and m-node k -uniform hypercycles. Then, by extending the one de-
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fined in graph, we state the generalized version of the super edge-magic labeling for

a hypergraph. Similarly, we can establish the necessary condition for hypergraph

being super edge-magic. By using this necessary condition, we can show in Chap-

ter 3 that a complete k -uniform hypergraph with n vertices is super edge-magic

if and only if k ∈ {0, 1} or n ∈ {k, k + 1} .

Furthermore, by assign a super edge-magic labeling to the small hypergraph

directly, and extend them to the larger one. We explore that some classes of

hypergraphs which we defined in Chapter 2 are super edge-magic. Our result are

shown in Chapter 4 to Chapter 5.

In Chapter 4 and Chapter 5, we show our results on m-node k -uniform hyper-

paths and m-node k -uniform hypercycles according to the small-to-large idea. We

find that all k -uniform hyperpaths are super edge-magic. However, some classes

of k -uniform hypercycles are super edge-magic and some are not. This agrees with

the known result on super edge-magic of cycle in graph theory. Finally, conclusion

and some discussion are given in Chapter 6.



CHAPTER II

PRELIMINARIES

In this chapter, we list some notions that are used throughout this thesis.

First, Section 2.1 consists of several definitions, properties and classes of hyper-

graphs. Then, the basic concepts of the super edge-magic labeling and its proper-

ties are listed in Section 2.2 and Section 2.3. The last section shows the important

condition of a hypergraph admitting this type of labeling.

2.1 Hypergraphs

A hypergraph is the generalization of graphs, since every edge of a hypergraph

may be incident to no or many vertices. We give the definition of a hypergraph as

follows.

Definition 2.1. [6] A hypergraph H is the pair (V (H), E(H)) where V (H) is a

finite set and E(H) ⊆ P (V (H)). The sets V (H) and E(H) are called vertex set

and hyperedge set, respectively.

If there is no ambiguity, we may denote V (H) as V and E(H) as E . For more

convenient, we let |V | = p and |E| = q . Notice that, by definition, the vertex set

of a hypergraph can be empty. However, in this thesis, our hypergraphs consist at

least one vertex.

Example 2.1. A hypergraph H , shown in Figure 2.1, has the vertex set V (H) =

{v1, v2, v3, v4, v5, v6} and the hyperedge set E(H) = {e1, e2, e3, e4, e5} .
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e1

e2

e3

e4

e5

v1

v2 v3 v4

v5 v6

Figure 2.1: A hypergraph H

Notice that, |V (H)| = p = 6 and |E(H)| = q = 5. Moreover, we may

write all hyperedges as e1 = ∅, e2 = {v1}, e3 = {v1, v5}, e4 = {v2, v3, v4} and

e5 = {v3, v4, v5, v6} .

In graph, we have the concept of a degree of each vertex. This concept can be

generalized in hypergraph. Moreover, in hypergraph, we can have both degrees for

each vertex and each hyperedge.

Definition 2.2. [6] Let v be a vertex of a hypergraph H . The degree of v is the

cardinality of {e ∈ E| v ∈ e} . A vertex v is said to be pendant, if its degree is

one.

Example 2.2. According to the hypergraph H in Example 2.1, only v2 and v6

are pendant. The other vertices have degree 2.

Definition 2.3. [6] Assume that e is a hyperedge of a hypergraph H . The degree

of e is the cardinality of {v ∈ V | v ∈ e} . Moreover, H is called k -uniform, if

every hyperedge e ∈ E has degree k .

Note that, we use the notation H(k) to denote a k -uniform hypergraph H .



5

Example 2.3. According to the hypergraph H in Example 2.1, the degree of

hyperedge ei is i− 1 for i ∈ {1, 2, 3, 4, 5} . Thus, H is not a uniform hypergraph.

However, we show some examples of 3-uniform hypergraphs in Figure 2.2.

H1 H2

Figure 2.2: 3-uniform hypergraphs

Notice that, a 2-uniform hypergraph is also a graph and vice versa. In the

usual graph theory, we used to have the definitions for a complete graph, Kn ; a

path graph, Pn ; and a cycle, Cn . Now, we can define a complete hypergraph,

a hyperpath, and a hypercycle in hypergraph in a similar manner. However, for

simplicity, here we define only a uniform type of complete hypergraphs, hyperpaths

and hypercycles.

Definition 2.4. [6] Let n and k be integers such that 0 ≤ k ≤ n . A complete k -

uniform hypergraph, K
(k)
n , is a hypergraph that consists of V = {v1, v2, v3, . . . , vn}

and E is the family of all k -subset of V .

Notice that, K
(k)
n has n vertices and

(
n
k

)
hyperedges.

Example 2.4. Consider a complete 3-uniform hypergraph K
(3)
4 with 4 vertices

and
(
4
3

)
= 4 hyperedges. If the vertex set V (K

(3)
4 ) is {v1, v2, v3, v4} , then the

hyperedge set E(K
(3)
4 ) of K

(3)
4 is the set that contains all 3-subset of V (K

(3)
4 ), i.e.,

E(K
(3)
4 ) = {e1, e2, e3, e4} where e1 = {v1, v2, v3}, e2 = {v1, v2, v4}, e3 = {v1, v3, v4},

and e4 = {v2, v3, v4} .
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e2

e4

e3

e1

v3

v1

v2

v4

Figure 2.3: A complete 3-uniform hypergraph, K
(3)
4

Definition 2.5. Let m , n , and k be integers such that m ≥ 1, n ≥ 2, and

k ≥ 2m . An m-node k -uniform hyperpath, mP
(k)
n , is a hypergraph consists of

hyperedge set E = {e1, e2, e3, . . . , en} and vertex set V =
⋃n

i=1 ei where

ei =


m⋃
j=1

{wi,j, wi+1,j} if k = 2m,

m⋃
j=1

{wi,j, wi+1,j} ∪ {vi,1, vi,2, vi,3, . . . , vi,k−2m} if k > 2m,

for i ∈ {1, 2, 3, . . . , n} .

Notice that, mP
(k)
n has n hyperedges, (n− 1)m vertices of degree 2 and

(n − 1)(k − 2m) + k pendant vertices. Therefore, mP
(k)
n has (n − 1)(k −m) + k

vertices.

Example 2.5. Consider a 1-node 4-uniform hyperpath, 1P
(4)
4 . According to

Definition 2.5, all hyperedge of 1P
(4)
4 are

e1 = {w1,1, w2,1, v1,1, v1,2}, e2 = {w2,1, w3,1, v2,1, v2,2},

e3 = {w3,1, w4,1, v3,1, v3,2}, e4 = {w4,1, w5,1, v4,1, v4,2}.

We can draw 1P
(4)
4 as in Figure 2.4.
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e1 e2 e3 e4

w1,1 w2,1 w3,1 w4,1 w5,1

v1,1 v2,1 v3,1 v4,1

v1,2 v2,2 v3,2 v4,2

Figure 2.4: A 1-node 4-uniform hyperpath

Definition 2.6. Let m , n , and k be integers such that m ≥ 1, n ≥ 3, and

k ≥ 2m . An m-node k -uniform hypercycle, mC
(k)
n , is a hypergraph consists of

hyperedge set E = {e1, e2, e3, . . . , en} and vertex set V =
⋃n

i=1 ei where

ei =


m⋃
j=1

{wi,j, wi+1,j} if k = 2m,

m⋃
j=1

{wi,j, wi+1,j} ∪ {vi,1, vi,2, vi,3, . . . , vi,k−2m} if k > 2m,

for i ∈ {1, 2, 3, . . . , n} and wn+1,j = w1,j for j ∈ {1, 2, 3, . . . ,m} .

Notice that, mC
(k)
n has n hyperedges, nm vertices of degree 2 and n(k − 2m)

pendant vertices. Therefore, mC
(k)
n has n(k −m) vertices.

Example 2.6. Consider a 1-node 3-uniform hypercycle, 1C
(3)
4 . According to

Definition 2.6, all hyperedges of 1C
(3)
4 are

e1 = {w1,1, w2,1, v1,1}, e2 = {w2,1, w3,1, v2,1},

e3 = {w3,1, w4,1, v3,1}, e4 = {w4,1, w1,1, v4,1}.

We can draw 1C
(3)
4 as in Figure 2.5.
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e1 e2

e3e4

w1,1 w3,1

w2,1

w4,1

v1,1 v2,1

v3,1v4,1

Figure 2.5: A 1-node 3-uniform hypercycle

Note that, hypergraphs K
(2)
n , 1P

(2)
n , and 1C

(2)
n are the complete graph Kn , the

path graph Pn , and the cycle graph Cn in ordinary graph, respectively.

2.2 The Super Edge-Magic Labeling

According to [1], the super edge-magic labeling was first defined for a graph

G . It is a bijective function f : V (G) ∪ E(G) → {1, 2, 3, . . . , |V (G)| + |E(G)|}

satisfying (i) there exists a constant λ such that for all xy ∈ E(G), f(x) + f(y) +

f(xy) = λ and (ii) f(V (G)) = {1, 2, 3, . . . , |V (G)|} . Note that, a graph G admits

a super edge-magic labeling is said to be super edge-magic. In [2], there is an

equivalent form of super edge-magic labeling, i.e., a bijective function f : V (G)→

{1, 2, 3, . . . , |V (G)|} such that the set {f(x)+f(y) | xy ∈ E(G)} consists of |E(G)|

consecutive integers.

In this thesis, we extend the notion of super edge-magic labeling for a hy-

pergraph and its equivalent form, stated as the Definition 2.7 and Theorem 2.8,

respectively.
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Definition 2.7. For a hypergraph H , the super edge-magic labeling is a bijective

function f : V ∪ E → {1, 2, 3, . . . , p + q} satisfying (i) there exists a constant Λ

such that for all e ∈ E,
∑

v∈e f(v) + f(e) = Λ and (ii) f(V ) = {1, 2, 3, . . . , p} .

Notice that, in the case of an empty edge, e = ∅ , we let
∑

v∈∅ f(v) = 0.

Moreover, a hypergraph admits a super edge-magic labeling is called super edge-

magic and Λ is called the magic constant. Remark that if H is a 2-uniform

hypergraph, then Definition 2.7 agrees with the definition of super edge-magic

labeling in graph.

Example 2.7. Consider a hyperpath 1P
(2)
4 that has p = 5 vertices and q = 4

hyperedges. We can give a bijection function f : V ∪ E → {1, 2, 3, . . . , 9} by

f(w1,1) = 1, f(w2,1) = 4, f(w3,1) = 2, f(w4,1) = 5, f(w5,1) = 3,

f(e1) = 9, f(e2) = 8, f(e3) = 7, f(e4) = 6

(shown in Figure 2.6).

e1 e2 e3 e4

9 8 7 6

1 4 2 5 3

Figure 2.6: The super edge-magic labeling of 1P
(2)
4

Then, there exists a constant Λ = 14 such that

∑
v∈e1

f(v) + f(e1) = f(w1,1) + f(w2,1) + f(e1) = 1 + 4 + 9 = 14 = Λ,

∑
v∈e2

f(v) + f(e2) = f(w2,1) + f(w3,1) + f(e2) = 4 + 2 + 8 = 14 = Λ,

∑
v∈e3

f(v) + f(e3) = f(w3,1) + f(w4,1) + f(e3) = 2 + 5 + 7 = 14 = Λ,
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∑
v∈e4

f(v) + f(e4) = f(w4,1) + f(w5,1) + f(e4) = 5 + 3 + 6 = 14 = Λ.

Since f(V ) = f({w1,1, w2,1, w3,1, w4,1, w5,1}) = {1, 2, 3, 4, 5} , f is a super edge-

magic labeling. Hence, 1P
(2)
4 is super edge-magic.

Observe that the labels on each hyperedge of super edge-magic hypergraphs are

always consecutive integers. Since the labels on each hyperedge and its vertices add

up to constant, the sums of labels of vertices in each hyperedge are also consecutive.

Therefore, by this observation, we have the equivalent form of super edge-magic

labeling such as Theorem 2.8.

Theorem 2.8. Let H be a hypergraph. Then, H is super edge-magic if and only

if there exists a bijection f : V → {1, 2, 3, . . . , p} such that {
∑

v∈e f(v)| e ∈ E}

is a set of q consecutive integers. Moreover, the magic constant Λ is p + q +

min{
∑

v∈e f(v)| e ∈ E}.

Proof. If E = ∅ , then H is trivially super edge-magic and {
∑

v∈e f(v)| e ∈ E}

is an empty set which in this context it can be regarded as a set of 0 consecutive

integer. Hence, without loss of generality, we may suppose that E 6= ∅ .

Assume that H is super edge-magic. Then, there exists a super edge-magic

labeling f : V ∪E → {1, 2, 3, . . . , p+q} and a constant Λ. Thus, Λ =
∑

v∈e f(v)+

f(e) for all e ∈ E , which implies
∑

v∈e f(v) = Λ − f(e) for all e ∈ E . Since f

is a super edge-magic labeling, we have f(V ) = {1, 2, 3, . . . , p} . Hence, f(E) =

{p+ 1, p+ 2, p+ 3, . . . , p+ q} . Therefore,{∑
v∈e

f(v)

∣∣∣∣∣ e ∈ E
}

= {Λ− f(e)| e ∈ E}

= {Λ− (p+ 1),Λ− (p+ 2),Λ− (p+ 3), . . . ,Λ− (p+ q)}

is a set of q consecutive integers.
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On the other hand, assume that the necessary condition holds. Let α be an

integer such that {
∑

v∈e f(v)| e ∈ E} = {α+ 1, α+ 2, α+ 3, . . . , α+ q} . Then, we

define g : E → {p+ 1, p+ 2, p+ 3, . . . , p+ q} by

g(e) = p+ q + (α + 1)−
∑
v∈e

f(v)

for e ∈ E . Thus, g is bijective. Hence, f ∪ g : V ∪E → {1, 2, 3, . . . , p+ q} defined

by

(f ∪ g)(x) =


f(x) if x ∈ V ,

g(x) if x ∈ E,

is a bijection.

To show that f ∪ g is a super edge-magic labeling. Let e ∈ E . Then,

∑
v∈e

(f ∪ g)(v) + (f ∪ g)(e) =
∑
v∈e

f(v) + g(e)

=
∑
v∈e

f(v) +

(
p+ q + (α + 1)−

∑
v∈e

f(v)

)

= p+ q + α + 1.

Therefore, f ∪ g : V ∪E → {1, 2, 3, . . . , p+ q} is a super edge-magic labeling of H

with Λ = p+ q + α + 1 = p+ q + min{
∑

v∈e f(v)| e ∈ E} as desired.

Corollary 2.9. A hypergraph H having at most one hyperedge is super edge-magic.

Proof. Since |V | = p , there exists a bijection f : V → {1, 2, 3, . . . , p} .

In the case of q = 0, then {
∑

v∈e f(v)| e ∈ E} = ∅ and H is trivially super

edge-magic.

In the case of q = 1, let E = {e1} , then {
∑

v∈e f(v)| e ∈ E} = {
∑

v∈e1 f(v)}

is a singleton which in this context it can be regarded as a set of one consecutive

integer. Thus, by Theorem 2.8, H is super edge-magic.
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2.3 The Necessary Condition

The important necessary condition for a graph G being super edge-magic

was showed in [1], i.e., if G is super edge-magic such that |E(G)| ≥ 1, then

by investigating the extremal value of λ , the inequality |E(G)| ≤ 2|V (G)| − 3

is obtained. In Theorem 2.10, we show the necessary condition for a k -uniform

hypergraph H being super edge-magic in a similar way.

Theorem 2.10. Let H(k) be a k -uniform hypergraph such that q ≥ 1. If H(k) is

super edge-magic, then q ≤ kp− k2 + 1.

Proof. Assume that H(k) is super edge-magic. Then, there is a super edge-magic

labeling f of H(k) . Note that, f : V ∪ E → {1, 2, 3, . . . , p+ q} is a bijection such

that
∑

v∈e f(v) + f(e) = Λ for all e ∈ E and f(V ) = {1, 2, 3, . . . , p} .

In case of k = 0, the hypergraph H(k) has q = 1 which satisfies the above

inequality. Hence, we assume that k > 0.

Since q ≥ 1, let e1, e2 ∈ E be such that f(e1) = p + q and f(e2) = p + 1.

Then, we obtain inequalities,

Λ =
∑
v∈e1

f(v) + f(e1) ≥ 1 + 2 + 3 + · · ·+ k + (p+ q)

and

Λ =
∑
v∈e2

f(v) + f(e2) ≤ p+ (p− 1) + (p− 2) + · · ·+ (p− k + 1) + (p+ 1).

Hence,

1 + 2 + 3 + · · ·+ k + (p+ q) ≤ p+ (p− 1) + (p− 2) + · · ·+ (p− k + 1) + (p+ 1)

which implies q ≤ kp− k2 + 1.
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Note that the condition q ≥ 1 as shown in Theorem 2.10 cannot be omitted.

For example, let H be a hypergraph such that q = 0. Then, by Corollary 2.9, H

is super edge-magic. Since H can be regarded as a (p + 1)-uniform hypergraph,

we have kp− k2 + 1 = (p+ 1)p− (p+ 1)2 + 1 = −p < 0 = q which contradicts the

necessary condition.



CHAPTER III

COMPLETE UNIFORM HYPERGRAPHS

First, we recall that a complete k -uniform hypergraph, K
(k)
n , has

(
n
k

)
hyper-

edges. Then, by using Corollary 2.9, we obtain the following theorem.

Theorem 3.1. K
(0)
n and K

(n)
n are super edge-magic.

Proof. Since K
(0)
n and K

(n)
n have

(
n
0

)
= 1 and

(
n
n

)
= 1 hyperedge, respectively.

Thus, K
(0)
n and K

(n)
n are super edge-magic by Corollary 2.9.

To give a super edge-magic labeling on a hypergraph H , we then construct

only a bijective function between V and {1, 2, 3, . . . , p} satisfying condition in

Theorem 2.8. The following theorem is an observation concerning a complete 1-

uniform hypergraph and a complete (n− 1)-uniform hypergraph of n vertices.

Theorem 3.2. K
(1)
n and K

(n−1)
n are super edge-magic.

Proof. In the case of n = 1, the complete hypergraphs K
(1)
1 and K

(0)
1 are super

edge-magic by Theorem 3.1. Hence, we assume that n > 1.

Let V = V (K
(1)
n ) = V (K

(n−1)
n ) = {v1, v2, v3, . . . , vn} . Note that E(K

(1)
n ) =

{{vi}| i ∈ {1, 2, 3, . . . , n}} and E(K
(n−1)
n ) = {V − {vi}| i ∈ {1, 2, 3, . . . , n}} have

cardinality n . Then, we define the bijection f : V → {1, 2, 3, . . . , n} by f(vi) = i .

Hence, {∑
v∈e

f(v)

∣∣∣∣∣ e ∈ E(K(1)
n )

}
= {i| i ∈ {1, 2, 3, . . . , n}}
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and{∑
v∈e

f(v)

∣∣∣∣∣ e ∈ E(K(n−1)
n )

}
= {(1 + 2 + 3 + · · ·+ n)− i| i ∈ {1, 2, 3, . . . , n}}

=

{
n(n+ 1)

2
− i

∣∣∣∣ i ∈ {1, 2, 3, . . . , n}}
which are the sets of n consecutive integers. By Theorem 2.8, K

(1)
n and K

(n−1)
n

are super edge-magic with Λ = 2n+ 1 and Λ = n(n+3)
2

, respectively.

Example 3.1. Consider a complete 1-uniform hypergraph, K
(1)
4 , of which V =

{v1, v2, v3, v4} and E = {{v1}, {v2}, {v3}, {v4}} . We define a bijection f from V

to {1, 2, 3, 4} by f(vi) = i , then {
∑

v∈e f(v)| e ∈ E} = {1, 2, 3, 4} is the set of four

consecutive integers. Therefore, by Theorem 2.8, f is a super edge-magic labeling

of K
(1)
4 .

1 2 3 4

Figure 3.1: The vertex-labeling of a complete 1-uniform hypergraph, K
(1)
4

Example 3.2. By using the same bijection as in Example 3.1, we then obtain

{
∑

v∈e f(v)| e ∈ E(K
(3)
4 )} = {6, 7, 8, 9} which is the set of four consecutive integers.

Hence, by Theorem 2.8, f is a super edge-magic labeling of K
(3)
4 .
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e2

e4

e3

e1

3

1

2

4

Figure 3.2: The vertex-labeling of a complete 3-uniform hypergraph, K
(3)
4

If we consider Theorem 3.1 and Theorem 3.2, one may ask a natural ques-

tion. Are there any other super edge-magic complete uniform hypergraphs? The

following lemma will give the answer.

Lemma 3.3. Let n and k be integers such that 0 ≤ k ≤ n. Then,
(
n
k

)
≤ kn−k2+1

if and only if k ∈ {0, 1} or n ∈ {k, k + 1}.

Proof. It is easy to see that k ∈ {0, 1} or n ∈ {k, k + 1} satisfies the inequality.

Assume that k > 1. We will show that if n ≥ k + 2, then
(
n
k

)
> kn− k2 + 1, by

using the mathematical induction on n .

First, let n = k + 2, thus,(
n

k

)
=

(
k + 2

k

)
=
k2 + 3k

2
+ 1 >

k + 3k

2
+ 1 = 2k + 1 = kn− k2 + 1,

since k2 > k > 1.

Next, assume n ≥ k + 2 be such that
(
n
k

)
> kn− k2 + 1. Since n− k ≥ 2 > 0

and k > 1, we obtain

k(n− k) > n− k
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kn− k2 + 1 > n+ 1− k
kn− k2 + 1

n+ 1− k
> 1.

Observe that, (
n+ 1

k

)
=

n+ 1

n+ 1− k
·
(
n

k

)
>

(
1 +

k

n+ 1− k

)
(kn− k2 + 1)

= kn− k2 + 1 + k

(
kn− k2 + 1

n+ 1− k

)
> kn− k2 + 1 + k

= k(n+ 1)− k2 + 1.

Therefore,
(
n
k

)
> kn− k2 + 1 for every n ≥ k+ 2. Consequently, since 0 ≤ k ≤ n ,(

n
k

)
≤ kn− k2 + 1 if and only if k ∈ {0, 1} or n ∈ {k, k + 1} .

Note that n and
(
n
k

)
in Lemma 3.3 are the number of vertices and hyperedges

of K
(k)
n , respectively. By applying Theorem 2.10, we obtain the main result as

Theorem 3.4.

Theorem 3.4. A complete k -uniform hypergraph, K
(k)
n , is super edge-magic if

and only if k ∈ {0, 1} or n ∈ {k, k + 1}.

Proof. Assume that K
(k)
n is super edge-magic. By Theorem 2.10,

(
n
k

)
≤ kn−k2+1.

Then, by Lemma 3.3, k ∈ {0, 1} or n ∈ {k, k + 1} .

On the other hand, assume that k ∈ {0, 1} or n ∈ {k, k + 1} .

If k = 0, then by Theorem 3.1, K
(k)
n is super edge-magic.

If k = 1, then by Theorem 3.2, K
(k)
n is super edge-magic.

If n = k , then by Theorem 3.1, K
(k)
n is super edge-magic.

If n = k + 1, then by Theorem 3.2, K
(k)
n is super edge-magic.
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In ordinary graph, according to [1], the super edge-magic complete graphs are

only K1, K2 and K3 . If we set k = 2 in Theorem 3.4, then the only 2-uniform

super edge-magic hypergraphs are K
(2)
2 and K

(2)
3 . Thus, our main result agrees

with that in graph. Notice that, by Defintion 2.4, K1 is not a 2-uniform complete

hypergraph. However, K1 is super edge-magic by Corollary 2.9 since it has no

hyperedge.



CHAPTER IV

m-NODE k-UNIFORM HYPERPATHS

In this chapter, we will show that every m-node k -uniform hyperpath mP
(k)
n ,

defined in Chapter 2, is super edge-magic. For simplicity, throughout this chapter,

we use a hyperpath mP
(k)
n instead of an m-node k -uniform hyperpath. First, we

begin with the known result in graph, i.e., 1P
(2)
n . For ease of reference, let we give

a proof of this result here.

Theorem 4.1. A hyperpath 1P
(2)
n is super edge-magic.

Proof. Note that, 1P
(2)
n has p = n+ 1 and q = n .

Case (i): n is odd. Define f : V → {1, 2, 3, . . . , n+ 1} by

f(wi,1) =


1 + i

2
if i ∈ {1, 3, 5, . . . , n},

n+ 1 + i

2
if i ∈ {2, 4, 6, . . . , n+ 1}.

To show that f is bijective, since |V | = |{1, 2, 3, . . . , n+ 1}| , it suffices to show

that f is surjective. Let a ∈ {1, 2, 3, . . . , n+ 1} .

If a ∈ {1, 2, 3, . . . , n+1
2
} , then 2a − 1 ∈ {1, 3, 5, . . . , n} . Thus, f(w2a−1,1) =

1+(2a−1)
2

= a .

If a ∈ {n+3
2
, n+5

2
, n+7

2
, . . . , n+ 1} , then 2a− n− 1 ∈ {2, 4, 6, . . . , n+ 1} . Thus,

f(w2a−n−1,1) = n+1+(2a−n−1)
2

= a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =
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{wi,1, wi+1,1} ∈ E . Since for i ∈ {1, 3, 5, . . . , n} ,

f(wi,1) + f(wi+1,1) =

(
1 + i

2

)
+

(
n+ 1 + (i+ 1)

2

)
=
n+ 3

2
+ i,

and for i ∈ {2, 4, 6, . . . , n− 1} ,

f(wi,1) + f(wi+1,1) =

(
n+ 1 + i

2

)
+

(
1 + (i+ 1)

2

)
=
n+ 3

2
+ i.

Hence, for i ∈ {1, 2, 3, . . . , n} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) =
n+ 3

2
+ i.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {n+3
2

+ 1, n+3
2

+ 2, n+3
2

+ 3, . . . , n+3
2

+ n}

consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic

labeling with Λ = 5n+7
2

.

Case (ii): n is even. Define f : V → {1, 2, 3, . . . , n+ 1} by

f(wi,1) =


1 + i

2
if i ∈ {1, 3, 5, . . . , n+ 1},

n+ 2 + i

2
if i ∈ {2, 4, 6, . . . , n}.

To show that f is bijective, since |V | = |{1, 2, 3, . . . , n+ 1}| , it suffices to show

that f is surjective. Let a ∈ {1, 2, 3, . . . , n+ 1} .

If a ∈ {1, 2, 3, . . . , 2
2
} , then 2a − 1 ∈ {1, 3, 5, . . . , n + 1} . Thus, f(w2a−1,1) =

1+(2a−1)
2

= a .

If a ∈ {n+4
2
, n+6

2
, n+8

2
, . . . , n + 1} , then 2a − n − 2 ∈ {2, 4, 6, . . . , n} . Thus,

f(w2a−n−2,1) = n+2+(2a−n−2)
2

= a .

Therefore, f is surjective.
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To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1} ∈ E . Since for i ∈ {1, 3, 5, . . . , n− 1} ,

f(wi,1) + f(wi+1,1) =

(
1 + i

2

)
+

(
n+ 2 + (i+ 1)

2

)
=
n+ 4

2
+ i,

and for i ∈ {2, 4, 6, . . . , n} ,

f(wi,1) + f(wi+1,1) =

(
n+ 2 + i

2

)
+

(
1 + (i+ 1)

2

)
=
n+ 4

2
+ i.

Hence, for i ∈ {1, 2, 3, . . . , n} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) =
n+ 4

2
+ i.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {n+4
2

+ 1, n+4
2

+ 2, n+4
2

+ 3, . . . , n+4
2

+ n}

consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic

labeling with Λ = 5n+8
2

. Consequently, the hyperpath 1P
(2)
n is super edge-magic.

Example 4.1. For the hypergraph 1P
(2)
5 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1, w6,1,

and hyperedges

e1 = {w1,1, w2,1}, e2 = {w2,1, w3,1}, e3 = {w3,1, w4,1},

e4 = {w4,1, w5,1}, e5 = {w5,1, w6,1},

by Theorem 4.1, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 4, f(w3,1) = 2,
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f(w4,1) = 5, f(w5,1) = 3, f(w6,1) = 6.

e1 e2 e3 e4 e5

1 4 2 5 3 6

Figure 4.1: The vertex-labeling of 1P
(2)
5

The vertex-labeling of 1P
(2)
5 is shown in Figure 4.1 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) = 1 + 4 = 5,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) = 4 + 2 = 6,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) = 2 + 5 = 7,

∑
v∈e4

f(v) = f(w4,1) + f(w5,1) = 5 + 3 = 8,

∑
v∈e5

f(v) = f(w5,1) + f(w6,1) = 3 + 6 = 9.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4, 5}} = {5, 6, 7, 8, 9} is a set of five

consecutive integers. Hence, by Theorem 2.8, 1P
(2)
5 is super edge-magic.

Example 4.2. For the hypergraph 1P
(2)
4 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1,

and hyperedges

e1 = {w1,1, w2,1}, e2 = {w2,1, w3,1}, e3 = {w3,1, w4,1}, e4 = {w4,1, w5,1},

by Theorem 4.1, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 4, f(w3,1) = 2, f(w4,1) = 5, f(w5,1) = 3.
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e1 e2 e3 e4

1 4 2 5 3

Figure 4.2: The vertex-labeling of 1P
(2)
4

The vertex-labeling of 1P
(2)
4 is shown in Figure 4.2 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) = 1 + 4 = 5,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) = 4 + 2 = 6,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) = 2 + 5 = 7,

∑
v∈e4

f(v) = f(w4,1) + f(w5,1) = 5 + 3 = 8.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4}} = {5, 6, 7, 8} is a set of four consecutive inte-

gers. Hence, by Theorem 2.8, 1P
(2)
4 is super edge-magic.

Next, we construct super edge-magic labelings for small hyperpaths 1P
(3)
n (in

Theorem 4.2), 2P
(4)
n (in Theorem 4.3), and 2P

(5)
n (in Theorem 4.4).

Theorem 4.2. A hyperpath 1P
(3)
n is super edge-magic.

Proof. Note that, 1P
(3)
n has p = 2n+ 1 and q = n .

Define f : V → {1, 2, 3, . . . , 2n+ 1} by

f(wi,1) = i if i ∈ {1, 2, 3, . . . , n+ 1},

f(vi,1) = 2n+ 2− i if i ∈ {1, 2, 3, . . . , n}.

To show that f is bijective, since |V | = |{1, 2, 3, . . . , 2n + 1}| , it suffices to

show that f is surjective. Let a ∈ {1, 2, 3, . . . , 2n+ 1} .
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If a ∈ {1, 2, 3, . . . , n+ 1} , then f(wa,1) = a ;

If a ∈ {n+ 2, n+ 3, n+ 4, . . . , 2n+ 1} , then 2n+ 2−a ∈ {1, 2, 3, . . . , n} . Thus,

f(v2n+2−a,1) = 2n+ 2− (2n+ 2− a) = a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, vi,1} ∈ E . We observe that, for i ∈ {1, 2, 3, . . . , n} ,

f(wi,1) + f(wi+1,1) = i+ (i+ 1)

= 1 + 2i.

Hence, for i ∈ {1, 2, 3, . . . , n} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(vi,1)

= (1 + 2i) + (2n+ 2− i)

= 2n+ 3 + i.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {2n+4, 2n+5, 2n+6, . . . , 3n+3} consists

of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

Λ = 5n+ 5.

Example 4.3. For the hypergraph 1P
(3)
4 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1,

v1,1, v2,1, v3,1, v4,1,

and hyperedges

e1 = {w1,1, w2,1, v1,1}, e2 = {w2,1, w3,1, v2,1},

e3 = {w3,1, w4,1, v3,1}, e4 = {w4,1, w5,1, v4,1},
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by Theorem 4.2, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 2, f(w3,1) = 3, f(w4,1) = 4, f(w5,1) = 5,

f(v1,1) = 9, f(v2,1) = 8, f(v3,1) = 7, f(v4,1) = 6.

e1 e2 e3 e4

1 2 3 4 59 8 7 6

Figure 4.3: The vertex-labeling of 1P
(3)
4

The vertex-labeling of 1P
(3)
4 is shown in Figure 4.3 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(v1,1) = 1 + 2 + 9 = 12,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(v2,1) = 2 + 3 + 8 = 13,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(v3,1) = 3 + 4 + 7 = 14,

∑
v∈e4

f(v) = f(w4,1) + f(w5,1) + f(v4,1) = 4 + 5 + 6 = 15.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4}} = {12, 13, 14, 15} is a set of four

consecutive integers. Hence, by Theorem 2.8, 1P
(3)
4 is super edge-magic.

Theorem 4.3. A hyperpath 2P
(4)
n is super edge-magic.

Proof. Note that, 2P
(4)
n has p = 2n+ 2 and q = n .

Case (i): n is odd. Define f : V → {1, 2, 3, . . . , 2n+ 2} by

f(wi,j) =



i if i ∈ {1, 2, 3, . . . , n+ 1} and j = 1,

4n+ 5− i
2

if i ∈ {1, 3, 5, . . . , n} and j = 2,

3n+ 5− i
2

if i ∈ {2, 4, 6, . . . , n+ 1} and j = 2.



26

To show that f is bijective, since |V | = |{1, 2, 3, . . . , 2n + 2}| , it suffices to

show that f is surjective. Let a ∈ {1, 2, 3, . . . , 2n+ 2} .

If a ∈ {1, 2, 3, . . . , n+ 1} , then f(wa,1) = a .

If a ∈ {n + 2, n + 3, n + 4, . . . , 3n+3
2
} , then 3n + 5 − 2a ∈ {2, 4, 6, . . . , n + 1} .

Thus, f(w3n+5−2a,2) = 3n+5−(3n+5−2a)
2

= a .

If a ∈ {3n+5
2
, 3n+7

2
, 3n+9

2
, . . . , 2n+ 2} , then 4n+ 5− 2a ∈ {1, 3, 5, . . . , n} . Thus,

f(w4n+5−2a,1) = 4n+5−(4n+5−2a)
2

= a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, wi,2, wi+1,2} ∈ E . Since for i ∈ {1, 2, 3, . . . , n} ,

f(wi,1) + f(wi+1,1) = i+ (i+ 1)

= 1 + 2i,

for i ∈ {1, 3, 5, . . . , n} ,

f(wi,2) + f(wi+1,2) =
4n+ 5− i

2
+

3n+ 5− (i+ 1)

2

=
7n+ 9

2
− i,

for i ∈ {2, 4, 6, . . . , n− 1} ,

f(wi,2) + f(wi+1,2) =
3n+ 5− i

2
+

4n+ 5− (i+ 1)

2

=
7n+ 9

2
− i.

Hence, for i ∈ {1, 2, 3, . . . , n} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (1 + 2i) +

(
7n+ 9

2
− i
)

=
7n+ 11

2
+ i.
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Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {7n+11
2

+1, 7n+11
2

+2, 7n+11
2

+3, . . . , 7n+11
2

+

n} consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic

labeling with Λ = 13n+17
2

.

Case (ii): n is even. Define f : V → {1, 2, 3, . . . , 2n+ 2} by

f(wi,j) =



i if i ∈ {1, 2, 3, . . . , n+ 1} and j = 1,

3n+ 5− i
2

if i ∈ {1, 3, 5, . . . , n+ 1} and j = 2,

4n+ 6− i
2

if i ∈ {2, 4, 6, . . . , n} and j = 2.

To show that f is bijective, since |V | = |{1, 2, 3, . . . , 2n + 2}| , it suffices to

show that f is surjective. Let a ∈ {1, 2, 3, . . . , 2n+ 2} .

If a ∈ {1, 2, 3, . . . , n+ 1} , then f(wa,1) = a .

If a ∈ {n + 2, n + 3, n + 4, . . . , 3n+4
2
} , then 3n + 5 − 2a ∈ {1, 3, 5, . . . , n + 1} .

Thus, f(w3n+5−2a,2) = 3n+5−(3n+5−2a)
2

= a .

If a ∈ {3n+6
2
, 3n+8

2
, 3n+10

2
, . . . , 2n+2} , then 4n+6−2a ∈ {2, 4, 6, . . . , n} . Thus,

f(w4n+6−2a,2) = 4n+6−(4n+6−2a)
2

= a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, wi,2, wi+1,2} ∈ E . Since for i ∈ {1, 2, 3, . . . , n} ,

f(wi,1) + f(wi+1,1) = i+ (i+ 1)

= 1 + 2i,

for i ∈ {1, 3, 5, . . . , n− 1} ,

f(wi,2) + f(wi+1,2) =
3n+ 5− i

2
+

4n+ 6− (i+ 1)

2

=
7n+ 10

2
− i,

for i ∈ {2, 4, 6, . . . , n} ,

f(wi,2) + f(wi+1,2) =
4n+ 6− i

2
+

3n+ 5− (i+ 1)

2
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=
7n+ 10

2
− i.

Hence, for i ∈ {1, 2, 3, . . . , n} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (1 + 2i) +

(
7n+ 10

2
− i
)

=
7n+ 12

2
+ i.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {7n+12
2

+1, 7n+12
2

+2, 7n+12
2

+3, . . . , 7n+12
2

+

n} consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic

labeling with Λ = 13n+18
2

. Consequently, the hyperpath 2P
(4)
n is super edge-magic.

Example 4.4. For the hypergraph 2P
(4)
5 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1, w6,1,

w1,2, w2,2, w3,2, w4,2, w5,2, w6,2,

and hyperedges

e1 = {w1,1, w2,1, w1,2, w2,2}, e2 = {w2,1, w3,1, w2,2, w3,2},

e3 = {w3,1, w4,1, w3,2, w4,2}, e4 = {w4,1, w5,1, w4,2, w5,2},

e5 = {w5,1, w6,1, w5,2, w6,2},

by Theorem 4.3, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 2, f(w3,1) = 3, f(w4,1) = 4, f(w5,1) = 5, f(w6,1) = 6,

f(w1,2) = 12, f(w2,2) = 9, f(w3,2) = 11, f(w4,2) = 8, f(w5,2) = 10, f(w6,2) = 7.
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e1 e2 e3 e4 e5

1 2 3 4 5 612 9 11 8 10 7

Figure 4.4: The vertex-labeling of 2P
(4)
5

The vertex-labeling of 2P
(4)
5 is shown in Figure 4.4 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(w1,2) + f(w2,2) = 1 + 2 + 12 + 9 = 24,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(w2,2) + f(w3,2) = 2 + 3 + 9 + 11 = 25,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(w3,2) + f(w4,2) = 3 + 4 + 11 + 8 = 26,

∑
v∈e4

f(v) = f(w4,1) + f(w5,1) + f(w4,2) + f(w5,2) = 4 + 5 + 8 + 10 = 27,

∑
v∈e5

f(v) = f(w5,1) + f(w6,1) + f(w5,2) + f(w6,2) = 5 + 6 + 10 + 7 = 28.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4, 5}} = {24, 25, 26, 27, 28} is a set of five consecu-

tive integers. Hence, by Theorem 2.8, 2P
(4)
5 is super edge-magic.

Example 4.5. For the hypergraph 2P
(4)
4 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1,

w1,2, w2,2, w3,2, w4,2, w5,2

and hyperedges

e1 = {w1,1, w2,1, w1,2, w2,2}, e2 = {w2,1, w3,1, w2,2, w3,2},

e3 = {w3,1, w4,1, w3,2, w4,2}, e4 = {w4,1, w5,1, w4,2, w5,2},

by Theorem 4.3, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 2, f(w3,1) = 3, f(w4,1) = 4, f(w5,1) = 5,
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f(w1,2) = 8, f(w2,2) = 10, f(w3,2) = 7, f(w4,2) = 9, f(w5,2) = 6.

e1 e2 e3 e4

1 2 3 4 58 7 610 9

Figure 4.5: The vertex-labeling of 2P
(4)
4

The vertex-labeling of 2P
(4)
4 is shown in Figure 4.5 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(w1,2) + f(w2,2) = 1 + 2 + 8 + 10 = 21,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(w2,2) + f(w3,2) = 2 + 3 + 10 + 7 = 22,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(w3,2) + f(w4,2) = 3 + 4 + 7 + 9 = 23,

∑
v∈e4

f(v) = f(w4,1) + f(w5,1) + f(w4,2) + f(w5,2) = 4 + 5 + 9 + 6 = 24.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4}} = {21, 22, 23, 24} is a set of four

consecutive integers. Hence, by Theorem 2.8, 2P
(4)
4 is super edge-magic.

Theorem 4.4. A hyperpath 2P
(5)
n is super edge-magic.

Proof. Note that, 2P
(5)
n has p = 3n+ 2 and q = n .

Define f : V → {1, 2, 3, . . . , 3n+ 2} by

f(wi,j) =


i if i ∈ {1, 2, 3, . . . , n+ 1} and j = 1,

2n+ 3− i if i ∈ {1, 2, 3, . . . , n+ 1} and j = 2,

f(vi,1) = 2n+ 2 + i if i ∈ {1, 2, 3, . . . , n}.

To show that f is bijective, since |V | = |{1, 2, 3, . . . , 3n + 2}| , it suffices to

show that f is surjective. Let a ∈ {1, 2, 3, . . . , 3n+ 2} .
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If a ∈ {1, 2, 3, . . . , n+ 1} , then f(wa,1) = a .

If a ∈ {n+ 2, n+ 3, n+ 4, . . . , 2n+ 2} , then 2n+ 3− a ∈ {1, 2, 3, . . . , n+ 1} .

Thus, f(w2n+3−a,2) = 2n+ 3− (2n+ 3− a) = a .

If a ∈ {2n + 3, 2n + 4, 2n + 5, . . . , 3n + 2} , then a− 2n− 2 ∈ {1, 2, 3, . . . , n} .

Thus, f(va−2n−2,1) = 2n+ 2 + (a− 2n− 2) = a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, wi,2, wi+1,2, vi,1} ∈ E . We observe that, for i ∈ {1, 2, 3, . . . , n+ 1} ,

f(wi,1) + f(wi,2) = i+ (2n+ 3− i)

= 2n+ 3.

Hence, for i ∈ {1, 2, 3, . . . , n} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2) + f(vi,1)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2)) + f(vi,1)

= (2n+ 3) + (2n+ 3) + (2n+ 2 + i)

= 6n+ 8 + i.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {6n + 9, 6n + 10, 6n + 11, . . . , 7n + 8}

consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic

labeling with Λ = 10n+ 11.

Example 4.6. For the hypergraph 2P
(5)
4 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1,

w1,2, w2,2, w3,2, w4,2, w5,2,

v1,1, v2,1, v3,1, v4,1
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and hyperedges

e1 = {w1,1, w2,1, w1,2, w2,2, v1,1}, e2 = {w2,1, w3,1, w2,2, w3,2, v2,1},

e3 = {w3,1, w4,1, w3,2, w4,2, v3,1}, e4 = {w4,1, w5,1, w4,2, w5,2, v4,1},

by Theorem 4.4, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 2, f(w3,1) = 3, f(w4,1) = 4, f(w5,1) = 5,

f(w1,2) = 10, f(w2,2) = 9, f(w3,2) = 8, f(w4,2) = 7, f(w5,2) = 6,

f(v1,1) = 11, f(v2,1) = 12, f(v3,1) = 13, f(v4,1) = 14.

e1 e2 e3 e4

1 2 3 4 510 9 8 7 611 12 13 14

Figure 4.6: The vertex-labeling of 2P
(5)
4

The vertex-labeling of 2P
(5)
4 is shown in Figure 4.6 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(w1,2) + f(w2,2) + f(v1,1)

= 1 + 2 + 10 + 9 + 11

= 33,∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(w2,2) + f(w3,2) + f(v2,1)

= 2 + 3 + 9 + 8 + 12

= 34,∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(w3,2) + f(w4,2) + f(v3,1)

= 3 + 4 + 8 + 7 + 13
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= 35,∑
v∈e4

f(v) = f(w4,1) + f(w5,1) + f(w4,2) + f(w5,2) + f(v4,1)

= 4 + 5 + 7 + 6 + 14

= 36.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4}} = {33, 34, 35, 36} is a set of four

consecutive integers. Hence, by Theorem 2.8, 2P
(5)
4 is super edge-magic.

Now, we are ready to enlarge the small super edge-magic hyperpaths, 1P
(2)
n ,

1P
(3)
n , 2P

(4)
n , and 2P

(5)
n to bigger super edge-magic hyperpaths by either adding

more vertices into the uniform hyperedges or adding more vertices into each node

of a super edge-magic hyperpath.

Lemma 4.5. If mP
(k)
n is super edge-magic, then mP

(k+2)
n is also super edge-magic.

Proof. Let mP
(k)
n = (V,E). By Definition 2.5, we can construct mP

(k+2)
n by con-

sidering each ei ∈ E , define ẽi = ei ∪{vi,k−2m+1, vi,k−2m+2} for i ∈ {1, 2, 3, . . . , n} .

Then, mP
(k+2)
n = (Ṽ , Ẽ) where Ẽ = {ẽ1, ẽ2, ẽ3, . . . , ẽn} and Ṽ =

n⋃
i=1

ẽi . Note that,

|V | = (n− 1)(k −m) + k, |Ṽ | = (n− 1)(k −m) + k + 2n, and |E| = n = |Ẽ| .

Assume that mP
(k)
n is super edge-magic. By Theorem 2.8, there is a bijection

f : V → {1, 2, 3, . . . , (n− 1)(k−m) + k} such that {
∑

v∈e f(v)| e ∈ E} is a set of

n consecutive integers. We define a function f̂ by

f̂(vi,j) =


(n− 1)(k −m) + k + i if j = k − 2m+ 1,

(n− 1)(k −m) + k + 2n+ 1− i if j = k − 2m+ 2,

for each i ∈ {1, 2, 3, . . . , n} . Next, we define f̃ : Ṽ → {1, 2, 3, . . . , (n−1)(k−m) +
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k + 2n} by

f̃(v) =


f(v) if v ∈ V ,

f̂(v) if v ∈ Ṽ − V ,

for v ∈ Ṽ . Since f(V ) = {1, 2, 3, . . . , (n − 1)(k − m) + k} and f̂(Ṽ − V ) =

{(n− 1)(k −m) + k + 1, (n− 1)(k −m) + k + 2, (n− 1)(k −m) + k + 3, . . . , (n−

1)(k−m)+k+2n} , f̃ is a bijection from Ṽ to {1, 2, 3, . . . , (n−1)(k−m)+k+2n} .

To see that f̃ is a super edge-magic labeling, let ẽi ∈ Ẽ . Then, for i ∈

{1, 2, 3, . . . , n} ,∑
v∈ẽi

f̃(v) =
∑
v∈ei

f̃(v) + f̃(vi,k−2m+1) + f̃(vi,k−2m+2)

=
∑
v∈ei

f(v) + f̂(vi,k−2m+1) + f̂(vi,k−2m+2)

=
∑
v∈ei

f(v) + ((n− 1)(k −m) + k + i) + ((n− 1)(k −m) + k + 2n+ 1− i)

=
∑
v∈ei

f(v) + 2(n− 1)(k −m) + 2k + 2n+ 1.

Since {
∑

v∈e f(v)| e ∈ E} is a set of n consecutive integers, similar goes for

{
∑

v∈ẽ f̃(v)| ẽ ∈ Ẽ} . Consequently, by Theorem 2.8, mP
(k+2)
n is super edge-magic.

Example 4.7. By applying Lemma 4.5 with the vertex-labeling of 1P
(2)
4 (shown in

Figure 4.2), we obtain the vertex-labeling for 1P
(4)
4 which is also super edge-magic

labeling as shown in Figure 4.7.

e1 e2 e3 e4

1 4 2 5 3

6 7 8 9

13 12 11 10

Figure 4.7: The vertex-labeling of 1P
(4)
4 obtained by applying Lemma 4.5 to the

vertex-labeling of 1P
(2)
4
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Lemma 4.6. If mP
(k)
n is super edge-magic, then m+2P

(k+4)
n is also super edge-

magic.

Proof. Let mP
(k)
n = (V,E). By Definition 2.5, we can construct m+2P

(k+4)
n by

considering each ei ∈ E , define ẽi = ei ∪ {wi,m+1, wi,m+2, wi+1,m+1, wi+1,m+2} for

i ∈ {1, 2, 3, . . . , n} . Then, m+2P
(k+4)
n = (Ṽ , Ẽ) where Ẽ = {ẽ1, ẽ2, ẽ3, . . . , ẽn} and

Ṽ =
n⋃

i=1

ẽi . Note that, |V | = (n− 1)(k−m) +k, |Ṽ | = (n− 1)(k−m) +k+ 2n+ 2,

and |E| = n = |Ẽ| .

Assume that mP
(k)
n is super edge-magic. By Theorem 2.8, there is a bijection

f : V → {1, 2, 3, . . . , (n− 1)(k−m) + k} such that {
∑

v∈e f(v)| e ∈ E} is a set of

n consecutive integers. We define a function f̂ by

f̂(wi,j) =


(n− 1)(k −m) + k + i if j = m+ 1,

(n− 1)(k −m) + k + 2n+ 3− i if j = m+ 2,

for each i ∈ {1, 2, 3, . . . , n+1} . Next, we define f̃ : Ṽ → {1, 2, 3, . . . , 1, 2, 3, . . . , (n−

1)(k −m) + k + 2n+ 2} by

f̃(v) =


f(v) if v ∈ V ,

f̂(v) if v ∈ Ṽ − V ,

for v ∈ Ṽ . Since f(V ) = {1, 2, 3, . . . , (n − 1)(k − m) + k} and f̂(Ṽ − V ) =

{(n−1)(k−m)+k+1, (n−1)(k−m)+k+2, (n−1)(k−m)+k+3, . . . , (n−1)(k−

m)+k+2n+2} , f̃ is a bijection from Ṽ to {1, 2, 3, . . . , (n−1)(k−m)+k+2n+2} .

To see that f̃ is a super edge-magic labeling, let ẽi ∈ Ẽ . Observe that, for

i ∈ {1, 2, 3, . . . , n} .

f̂(wi,m+1) + f̂(wi,m+2) = ((n− 1)(k −m) + k + i)

+ ((n− 1)(k −m) + k + 2n+ 3− i)
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= 2(n− 1)(k −m) + 2k + 2n+ 3.

Then, for i ∈ {1, 2, 3, . . . , n} .∑
v∈ẽi

f̃(v) =
∑
v∈ei

f̃(v) + f̃(wi,m+1) + f̃(wi,m+2) + f̃(wi+1,m+1) + f̃(wi+1,m+2)

=
∑
v∈ei

f(v) + f̂(wi,m+1) + f̂(wi,m+2) + f̂(wi+1,m+1) + f̂(vi+1,m+2)

=
∑
v∈ei

f(v) + (2(n− 1)(k −m) + 2k + 2n+ 3)

+ (2(n− 1)(k −m) + 2k + 2n+ 3)

=
∑
v∈ei

f(v) + 4(n− 1)(k −m) + 4k + 4n+ 6.

Since {
∑

v∈e f(v)| e ∈ E} is a set of n consecutive integers, similar goes for

{
∑

v∈ẽ f̃(v)| ẽ ∈ Ẽ} . Consequently, by Theorem 2.8, m+2P
(k+4)
n is super edge-

magic.

Example 4.8. By applying Lemma 4.6 with the vertex-labeling of 1P
(2)
4 (shown in

Figure 4.2), we obtain the vertex-labeling for 3P
(6)
4 which is also super edge-magic

labeling as shown in Figure 4.8.

e1 e2 e3 e4

1 4 2 5 3

6 7 8 9 10

1112131415

Figure 4.8: The vertex-labeling of 3P
(6)
4 obtained by applying Lemma 4.6 to the

vertex-labeling of 1P
(2)
4

To sum up this chapter, by using both Lemma 4.5 and Lemma 4.6, we will

show that all hyperpaths mP
(k)
n are super edge-magic. In general, to construct a

super edge-magic hyperpath mP
(k)
n , we first find the starting small hyperpath of

which super edge-magic as follow:
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• if m and k are odd, then the starting hyperpath is 1P
(3)
n ,

• if m and k are even, then the starting hyperpath is 2P
(4)
n ,

• if m is odd and k is even, then the starting hyperpath is 1P
(2)
n ,

• if m is even and k is odd, then the starting hyperpath is 2P
(5)
n .

Then, we apply Lemma 4.6 for
⌈
m−2
2

⌉
times and Lemma 4.5 for

⌈
k−2m−1

2

⌉
in any

order to the starting hyperpath. We then obtain the super edge-magic labeling for

mP
(k)
n . Therefore, we have the main theorem.

Theorem 4.7. All hyperpaths mP
(k)
n are super edge-magic.

Example 4.9. To obtain the super edge-magic labeling of 5P
(13)
4 with m = 5

which is odd and k = 13 which is odd, we start with the super edge-magic la-

beling of 1P
(3)
4 . Then, we apply Lemma 4.6 for

⌈
5−2
2

⌉
= 2 times and Lemma 4.5

for
⌈
13−2(5)−1

2

⌉
= 1 time, respectively. Therefore, we have the super edge-magic

labeling of 3P
(7)
4 ,5 P

(11)
4 and 5P

(13)
4 , respectively.

e1 e2 e3 e4

1 2 3 4 5
9 8 7 6

Figure 4.9: The super edge-magic labeling of 1P
(3)
4

e1 e2 e3 e4

1 2 3 4 5
9 8 7 6

10 11 12 13 14

1516171819

Figure 4.10: The super edge-magic labeling of 3P
(7)
4
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e1 e2 e3 e4

1 2 3 4 5
9 8 7 6

10 11 12 13 14

1516171819

20 29 21 28 22 27 23 24 2526

Figure 4.11: The super edge-magic labeling of 5P
(11)
4

e1 e2 e3 e4

1 2 3 4 5
9 8 7 6

10 11 12 13 14

1516171819

20 29 21 28 22 27 23 24 2526

30 31 32 33

34353637

Figure 4.12: The super edge-magic labeling of 5P
(13)
4

Example 4.10. To obtain the super edge-magic labeling of 4P
(10)
4 with m = 4

which is even and k = 10 which is even, we start with the super edge-magic

labeling of 2P
(4)
4 . Then, we apply Lemma 4.6 for

⌈
4−2
2

⌉
= 1 time and Lemma 4.5

for
⌈
10−2(4)−1

2

⌉
= 1 time, respectively. Therefore, we have the super edge-magic

labeling of 4P
(8)
4 and 4P

(10)
4 , respectively.

e1 e2 e3 e4

1 2 3 4 5

697108

Figure 4.13: The super edge-magic labeling of 2P
(4)
4

e1 e2 e3 e4

1 2 3 4 5

697108

11 20 12 19 13 18 14 15 1617

Figure 4.14: The super edge-magic labeling of 4P
(8)
4
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e1 e2 e3 e4

1 2 3 4 5

697108

11 20 12 19 13 18 14 15 1617

21 22 23 24

25262728

Figure 4.15: The super edge-magic labeling of 4P
(10)
4

Example 4.11. To obtain the super edge-magic labeling of 5P
(12)
4 with m = 5

which is odd and k = 12 which is even, we start with the super edge-magic

labeling of 1P
(2)
4 . Then, we apply Lemma 4.6 for

⌈
5−2
2

⌉
= 2 times and Lemma 4.5

for
⌈
12−2(5)−1

2

⌉
= 1 time, respectively. Therefore, we have the super edge-magic

labeling of 3P
(6)
4 ,5 P

(10)
4 and 5P

(12)
4 , respectively.

e1 e2 e3 e4

1 4 2 5 3

Figure 4.16: The super edge-magic labeling of 1P
(2)
4

e1 e2 e3 e4

1 4 2 5 3

6 7 8 9 10

1112131415

Figure 4.17: The super edge-magic labeling of 3P
(6)
4

e1 e2 e3 e4

1 4 2 5 3

6 7 8 9 10

1112131415

16 25 17 24 18 23 19 20 2122

Figure 4.18: The super edge-magic labeling of 5P
(10)
4
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e1 e2 e3 e4

1 4 2 5 3

6 7 8 9 10

1112131415

16 25 17 24 18 23 19 20 2122

26 27 28 29

30313233

Figure 4.19: The super edge-magic labeling of 5P
(12)
4

Example 4.12. To obtain the super edge-magic labeling of 4P
(11)
4 with m = 4

which is even and k = 11 which is odd, we start with the super edge-magic

labeling of 2P
(5)
4 . Then, we apply Lemma 4.6 for

⌈
4−2
2

⌉
= 1 time and Lemma 4.5

for
⌈
11−2(4)−1

2

⌉
= 1 time, respectively. Therefore, we have the super edge-magic

labeling of 4P
(9)
4 and 4P

(11)
4 , respectively.

e1 e2 e3 e4

11 12 13 14

1 2 3 4 5

678910

Figure 4.20: The super edge-magic labeling of 2P
(5)
4

e1 e2 e3 e4

11 12 13 14

1 2 3 4 5

678910

15 24 16 23 17 22 18 19 2021

Figure 4.21: The super edge-magic labeling of 4P
(9)
4

e1 e2 e3 e4

11 12 13 14

1 2 3 4 5

678910

15 24 16 23 17 22 18 19 2021

25 26 27 28

29303132

Figure 4.22: The super edge-magic labeling of 4P
(11)
4



CHAPTER V

m-NODE k-UNIFORM HYPERCYCLES

In this chapter, we will show that under some conditions on m,n and k , an

m-node k -uniform hypercycle mC
(k)
n , defined in Chapter 2, is super edge-magic.

Note again that, m,n and k are always positive integers such that n ≥ 3 and

k ≥ 2m ≥ 2. For simplicity, throughout this chapter, we use a hypercycle mC
(k)
n

instead of an m-node k -uniform hypercycle. According to [1], a hypercycle 1C
(2)
n ,

an ordinary cycle Cn in graph theory, is super edge-magic if and only if n is odd.

Hence, we state this fact in the first theorem and omit the proof.

Theorem 5.1. [1] A hypercycle 1C
(2)
n is super edge-magic if and only if n is odd.

Remark that, when n is odd, 1C
(2)
n is super edge-magic by a bijection f : V →

{1, 2, 3, . . . , n} defined by

f(wi,1) =


1 + i

2
if i ∈ {1, 3, 5, . . . , n},

n+ 1 + i

2
if i ∈ {2, 4, 6, . . . , n− 1}.

Next, we construct super edge-magic labelings for small hypercycles; 1C
(3)
n (in

Theorem 5.2) and 2C
(5)
n for all n (in Theorem 5.3), 1C

(4)
n for all even integers n

(in Theorem 5.4), and 2C
(4)
n for all odd integers n (in Theorem 5.5) .

Theorem 5.2. A hypercycle 1C
(3)
n is super edge-magic.

Proof. Note that, 1C
(3)
n has p = 2n and q = n .
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Case (i): n is odd. Define f : V → {1, 2, 3, . . . , 2n} by

f(wi,1) =


1 + i

2
if i ∈ {1, 3, 5, . . . , n},

n+ 1 + i

2
if i ∈ {2, 4, 6, . . . , n− 1},

f(vi,1) =


3n+ 1

2
+ i if i ∈

{
1, 2, 3, . . . ,

n− 1

2

}
,

n+ 1

2
+ i if i ∈

{
n+ 1

2
,
n+ 3

2
,
n+ 5

2
, . . . , n

}
.

To show that f is bijective, since |V | = |{1, 2, 3, . . . , 2n}| , it suffices to show

that f is surjective. Let a ∈ {1, 2, 3, . . . , 2n} .

If a ∈ {1, 2, 3, . . . , n+1
2
} , then 2a − 1 ∈ {1, 3, 5, . . . , n} . Thus, f(w2a−1,1) =

1+(2a−1)
2

= a .

If a ∈ {n+3
2
, n+5

2
, n+7

2
, . . . , n} , then 2a − n − 1 ∈ {2, 4, 6, . . . , n − 1} . Thus,

f(w2a−n−1,1) = n+1+(2a−n−1)
2

= a .

If a ∈ {n + 1, n + 2, n + 3, . . . , 3n+1
2
} , then a − n+1

2
∈ {n+1

2
, n+3

2
, n+5

2
, . . . , n} .

Thus, f(va−n+1
2

,1) = n+1
2

+ (a− n+1
2

) = a .

If a ∈ {3n+3
2
, 3n+5

2
, 3n+7

2
, . . . , 2n} , then a − 3n+1

2
∈ {1, 2, 3, . . . , n−1

2
} . Thus,

f(va− 3n+1
2

,1) = 3n+1
2

+ (a− 3n+1
2

) = a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, vi,1} ∈ E . Since for i ∈ {1, 3, 5, . . . , n− 2} ,

f(wi,1) + f(wi+1,1) =

(
1 + i

2

)
+

(
n+ 1 + (i+ 1)

2

)
=
n+ 3

2
+ i,

and for i ∈ {2, 4, 6, . . . , n− 1} ,

f(wi,1) + f(wi+1,1) =

(
n+ 1 + i

2

)
+

(
1 + (i+ 1)

2

)
=
n+ 3

2
+ i.
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Hence, for i ∈ {1, 2, 3, . . . , n−1
2
} ,∑

v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(vi,1)

=

(
n+ 3

2
+ i

)
+

(
3n+ 1

2
+ i

)
= 2n+ 2 + 2i.

For i ∈ {n+1
2
, n+3

2
, n+5

2
, . . . , n− 1} ,∑

v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(vi,1)

=

(
n+ 3

2
+ i

)
+

(
n+ 1

2
+ i

)
= n+ 2 + 2i.

For i = n , ∑
v∈ei

f(v) = f(wn,1) + f(w1,1) + f(vn,1)

=

(
1 + n

2

)
+

(
1 + 1

2

)
+

(
n+ 1

2
+ n

)
= 2n+ 2.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {2n+2, 2n+3, 2n+4, . . . , 3n+1} consists

of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

Λ = 5n+ 2.

Case (ii): n is even. Define f : V → {1, 2, 3, . . . , 2n} by

f(wi,1) =


1 + i

2
if i ∈ {1, 3, 5, . . . , n− 1},

n+ i

2
if i ∈ {2, 4, 6, . . . , n},

f(vi,1) =



3n

2
+ i if i ∈

{
1, 2, 3, . . . ,

n

2

}
,

n+ 2

2
+ i if i ∈

{
n+ 2

2
,
n+ 4

2
,
n+ 6

2
, . . . , n− 1

}
,

n+ 1 if i = n.
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To show that f is bijective, since |V | = |{1, 2, 3, . . . , 2n}| , it suffices to show

that f is surjective. Let a ∈ {1, 2, 3, . . . , 2n} .

If a ∈ {1, 2, 3, . . . , n
2
} , then 2a − 1 ∈ {1, 3, 5, . . . , n − 1} . Thus, f(w2a−1,1) =

1+(2a−1)
2

= a .

If a ∈ {n+2
2
, n+4

2
, n+6

2
, . . . , n} , then 2a−n ∈ {2, 4, 6, . . . , n} . Thus, f(w2a−n,1) =

n+(2a−n)
2

= a .

If a = n+ 1, then f(vn,1) = n+ 1 = a .

If a ∈ {n+ 2, n+ 3, n+ 4, . . . , 3n
2
} , then a− n+2

2
∈ {n+2

2
, n+4

2
, n+6

2
, . . . , n− 1} .

Thus, f(va−n+2
2

,1) = n+2
2

+ (a− n+2
2

) = a .

If a ∈ {3n+2
2
, 3n+4

2
, 3n+6

2
, . . . , 2n} , then a−3n

2
∈ {1, 2, 3, . . . , n

2
} . Thus, f(va− 3n

2
,1)

= 3n
2

+ (a− 3n
2

) = a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, let ei = {wi,1, wi+1,1, vi,1} ∈ E .

Since for i ∈ {1, 3, 5, . . . , n− 1} ,

f(wi,1) + f(wi+1,1) =

(
1 + i

2

)
+

(
n+ (i+ 1)

2

)
=
n+ 2

2
+ i,

and for i ∈ {2, 4, 6, . . . , n− 2} ,

f(wi,1) + f(wi+1,1) =

(
n+ i

2

)
+

(
1 + (i+ 1)

2

)
=
n+ 2

2
+ i.

Hence, for i ∈ {1, 2, 3, . . . , n
2
} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(vi,1)

=

(
n+ 2

2
+ i

)
+

(
3n

2
+ i

)
= 2n+ 1 + 2i.
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For i ∈ {n+2
2
, n+4

2
, n+6

2
, . . . , n− 1} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(vi,1)

=

(
n+ 2

2
+ i

)
+

(
n+ 2

2
+ i

)
= n+ 2 + 2i.

For i = n ,

∑
v∈ei

f(v) = f(wn,1) + f(w1,1) + f(vn,1)

=

(
n+ n

2

)
+

(
1 + 1

2

)
+ (n+ 1)

= 2n+ 2.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {2n+2, 2n+3, 2n+4, . . . , 3n+1} consists

of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

Λ = 5n+ 2. Consequently, the hypercycle 1C
(3)
n is super edge-magic.

Example 5.1. For the hypergraph 1C
(3)
5 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1,

v1,1, v2,1, v3,1, v4,1, v5,1,

and hyperedges

e1 = {w1,1, w2,1, v1,1}, e2 = {w2,1, w3,1, v2,1}, e3 = {w3,1, w4,1, v3,1},

e4 = {w4,1, w5,1, v4,1}, e5 = {w5,1, w1,1, v5,1},

by Theorem 5.2, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 4, f(w3,1) = 2, f(w4,1) = 5, f(w5,1) = 3,

f(v1,1) = 9, f(v2,1) = 10, f(v3,1) = 6, f(v4,1) = 7, f(v5,1) = 8.
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Figure 5.1: The vertex-labeling of 1C
(3)
5

The vertex-labeling of 1C
(3)
5 is shown in Figure 5.1 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(v1,1) = 1 + 4 + 9 = 14,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(v2,1) = 4 + 2 + 10 = 16,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(v3,1) = 2 + 5 + 6 = 13,

∑
v∈e4

f(v) = f(w4,1) + f(w5,1) + f(v4,1) = 5 + 3 + 7 = 15,

∑
v∈e5

f(v) = f(w5,1) + f(w1,1) + f(v5,1) = 3 + 1 + 8 = 12.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4, 5}} = {12, 13, 14, 15, 16} is a set of five

consecutive integers. Hence, by Theorem 2.8, 1C
(3)
5 is super edge-magic.

Example 5.2. For the hypergraph 1C
(3)
4 with vertices

w1,1, w2,1, w3,1, w4,1,

v1,1, v2,1, v3,1, v4,1,
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and hyperedges

e1 = {w1,1, w2,1, v1,1}, e2 = {w2,1, w3,1, v2,1},

e3 = {w3,1, w4,1, v3,1}, e4 = {w4,1, w1,1, v4,1},

by Theorem 5.2, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 3, f(w3,1) = 2, f(w4,1) = 4,

f(v1,1) = 7, f(v2,1) = 8, f(v3,1) = 6, f(v4,1) = 5.

e1 e2

e3e4

1
2

3

4

7 8

65

Figure 5.2: The vertex-labeling of 1C
(3)
4

The vertex-labeling of 1C
(3)
4 is shown in Figure 5.2 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(v1,1) = 1 + 3 + 7 = 11,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(v2,1) = 3 + 2 + 8 = 13,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(v3,1) = 2 + 4 + 6 = 12,

∑
v∈e4

f(v) = f(w4,1) + f(w1,1) + f(v4,1) = 4 + 1 + 5 = 10.
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Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4}} = {10, 11, 12, 13} is a set of four consecutive

integers. Hence, by Theorem 2.8, 1C
(3)
4 is super edge-magic.

Theorem 5.3. A hypercycle 2C
(5)
n is super edge-magic.

Proof. Note that, 2C
(5)
n has p = 3n and q = n .

Define f : V → {1, 2, 3, . . . , 3n} by

f(wi,j) =


i if j = 1,

2n+ 1− i if j = 2,

f(vi1) = 2n+ i,

for every i ∈ {1, 2, 3, . . . , n} .

To show that f is bijective, since |V | = |{1, 2, 3, . . . , 3n}| , it suffices to show

that f is surjective. Let a ∈ {1, 2, 3, . . . , 3n} .

If a ∈ {1, 2, 3, . . . , n} , then f(wa,1) = a .

If a ∈ {n + 1, n + 2, n + 3, . . . , 2n} , then 2n + 1 − a ∈ {1, 2, 3, . . . , n} . Thus,

f(w2n+1−a,2) = 2n+ 1− (2n+ 1− a) = a .

If a ∈ {2n + 1, 2n + 2, 2n + 3, . . . , 3n} , then a − 2n ∈ {1, 2, 3, . . . , n} . Thus,

f(va−2n,1) = 2n+ (a− 2n) = a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, wi,2, wi+1,2, vi,1} ∈ E . Since for i ∈ {1, 2, 3, . . . , n} , we observe that

f(wi,1) + f(wi,2) = i+ (2n+ 1− i)

= 2n+ 1.

Hence, for i ∈ {1, 2, 3, . . . , n− 1} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2) + f(vi,1)
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= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2)) + f(vi,1)

= (2n+ 1) + (2n+ 1) + (2n+ i)

= 6n+ 2 + i.

For i = n ,

∑
v∈ei

f(v) = f(wn,1) + f(w1,1) + f(wn,2) + f(w1,2) + f(vi,1)

= (f(wn,1) + f(wn,2)) + (f(w1,1) + f(w1,2)) + f(vn,1)

= (2n+ 1) + (2n+ 1) + (2n+ n)

= 7n+ 2.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {6n+3, 6n+4, 6n+5, . . . , 7n+2} consists

of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

Λ = 10n+ 3.

Example 5.3. For the hypergraph 2C
(5)
5 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1,

w1,2, w2,2, w3,2, w4,2, w5,2,

v1,1, v2,1, v3,1, v4,1, v5,1,

and hyperedges

e1 = {w1,1, w2,1, w1,2, w2,2, v1,1}, e2 = {w2,1, w3,1, w2,2, w3,2, v2,1},

e3 = {w3,1, w4,1, w3,2, w4,2, v3,1}, e4 = {w4,1, w5,1, w4,2, w5,2, v4,1},

e5 = {w5,1, w1,1, w5,2, w1,2, v5,1},

by Theorem 5.3, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 2, f(w3,1) = 3, f(w4,1) = 4, f(w5,1) = 5,
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f(w1,2) = 10, f(w2,2) = 9, f(w3,2) = 8, f(w4,2) = 7, f(w5,2) = 6,

f(v1,1) = 11, f(v2,1) = 12, f(v3,1) = 13, f(v4,1) = 14, f(v5,1) = 15.

e1

e2

e3

e4

e5

11

12

13

14

15

1

2

3

4

5

10

9

8

7

6

Figure 5.3: The vertex-labeling of 2C
(5)
5

The vertex-labeling of 2C
(5)
5 is shown in Figure 5.3 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(w1,2) + f(w2,2) + f(v1,1)

= 1 + 2 + 10 + 9 + 11

= 33,∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(w2,2) + f(w3,2) + f(v2,1)

= 2 + 3 + 9 + 8 + 12

= 34,∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(w3,2) + f(w4,2) + f(v3,1)

= 3 + 4 + 8 + 7 + 13

= 35,
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∑
v∈e4

f(v) = f(w4,1) + f(w5,1) + f(w4,2) + f(w5,2) + f(v4,1)

= 4 + 5 + 7 + 6 + 14

= 36,∑
v∈e5

f(v) = f(w5,1) + f(w1,1) + f(w5,2) + f(w1,2) + f(v5,1)

= 5 + 1 + 6 + 10 + 15

= 37.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4, 5}} = {33, 34, 35, 36, 37} is a set of five consecu-

tive integers. Hence, by Theorem 2.8, 2C
(5)
5 is super edge-magic.

Theorem 5.4. Let n be an even integer. A hypercycle 1C
(4)
n is super edge-magic.

Proof. Note that, 1C
(4)
n has p = 3n and q = n .

Define f : V → {1, 2, 3, . . . , 3n} by

f(wi,1) =


1 + i if i ∈ {1, 3, 5, . . . , n− 1},

n+ i if i ∈ {2, 4, 6, . . . , n},

f(vi,1) =


2n− 1− 2i if i ∈ {1, 2, 3, . . . , n− 1},

2n− 1 if i = n.

f(vi,2) =


2n+ 1 + i if i ∈ {1, 2, 3, . . . , n− 1},

2n+ 1 if i = n.

To show that f is bijective, since |V | = |{1, 2, 3, . . . , 3n}| , it suffices to show

that f is surjective. Let a ∈ {1, 2, 3, . . . , 3n} .

If a ∈ {1, 3, 5, . . . , 2n−3} , then 2n−1−a
2
∈ {1, 2, 3, . . . , n−1} . Thus, f(v 2n−1−a

2
,1) =

2n− 1− 2(2n−1−a
2

) = a .
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If a = 2n− 1, then f(vn,1) = 2n− 1 = a .

If a ∈ {2, 4, 6, . . . , n} , then a − 1 ∈ {1, 3, 5, . . . , n − 1} . Thus, f(wa−1,1) =

1 + (a− 1) = a .

If a ∈ {n + 2, n + 4, n + 6, . . . , 2n} , then a − n ∈ {2, 4, 6, . . . , n} . Thus,

f(wa−n,1) = n+ (a− n) = a .

If a = 2n+ 1, then f(vn,2) = 2n+ 1 = a .

If a ∈ {2n + 2, 2n + 3, 2n + 4, . . . , 3n} , then a− 2n− 1 ∈ {1, 2, 3, . . . , n− 1} .

Thus, f(va−2n−1,2) = 2n+ 1− (a− 2n− 1) = a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, vi,1, vi,2} ∈ E . Since for i ∈ {1, 3, 5, . . . , n− 1} ,

f(wi,1) + f(wi+1,1) = (1 + i) + (n+ (i+ 1))

= n+ 2 + 2i,

and for i ∈ {2, 4, 6, . . . , n− 2} ,

f(wi,1) + f(wi+1,1) = (n+ i) + (1 + (i+ 1))

= n+ 2 + 2i.

Hence, for i ∈ {1, 2, 3, . . . , n− 1} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(vi,1) + f(vi,2)

= (n+ 2 + 2i) + (2n− 1− 2i) + (2n+ 1 + i)

= 5n+ 2 + i.

For i = n ,

∑
v∈ei

f(v) = f(wn,1) + f(w1,1) + f(vn,1) + f(vn,2)
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= (n+ n) + (1 + 1) + (2n− 1) + (2n+ 1)

= 6n+ 2.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {5n+3, 5n+4, 5n+5, . . . , 6n+2} consists

of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

Λ = 9n+ 3.

Example 5.4. For the hypergraph 1C
(4)
6 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1, w6,1,

v1,1, v2,1, v3,1, v4,1, v5,1, v6,1,

v1,2, v2,2, v3,2, v4,2, v5,2, v6,2,

and hyperedges

e1 = {w1,1, w2,1, v1,1, v1,2}, e2 = {w2,1, w3,1, v2,1, v2,2},

e3 = {w3,1, w4,1, v3,1, v3,2}, e4 = {w4,1, w5,1, v4,1, v4,2},

e5 = {w5,1, w6,1, v5,1, v5,2}, e6 = {w6,1, w1,1, v6,1, v6,2},

by Theorem 5.4, we label each vertex as follows:

f(w1,1) = 2, f(w2,1) = 8, f(w3,1) = 4, f(w4,1) = 10, f(w5,1) = 6, f(w6,1) = 12,

f(v1,1) = 9, f(v2,1) = 7, f(v3,1) = 5, f(v4,1) = 3, f(v5,1) = 1, f(v6,1) = 11,

f(v1,2) = 14, f(v2,2) = 15, f(v3,2) = 16, f(v4,2) = 17, f(v5,2) = 18, f(v6,2) = 13.



54

e1

e2

e3

e4

e5

e6

2

4

6

8

10

12

9

7

5

3

1

11

14

15

16

17

18

13

Figure 5.4: The vertex-labeling of 1C
(4)
6

The vertex-labeling of 1C
(4)
6 is shown in Figure 5.4 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(v1,1) + f(v1,2) = 2 + 8 + 9 + 14 = 33,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(v2,1) + f(v2,2) = 8 + 4 + 7 + 15 = 34,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(v3,1) + f(v3,2) = 4 + 10 + 5 + 16 = 35,

∑
v∈e4

f(v) = f(w4,1) + f(w5,1) + f(v4,1) + f(v4,2) = 10 + 6 + 3 + 17 = 36,

∑
v∈e5

f(v) = f(w5,1) + f(w6,1) + f(v5,1) + f(v5,2) = 6 + 12 + 1 + 18 = 37,

∑
v∈e6

f(v) = f(w6,1) + f(w1,1) + f(v6,1) + f(v6,2) = 12 + 2 + 11 + 13 = 38.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4, 5, 6}} = {33, 34, 35, 36, 37, 38} is a set of six

consecutive integers. Hence, by Theorem 2.8, 1C
(4)
6 is super edge-magic.

Theorem 5.5. Let n be an odd integer. A hypercycle 2C
(4)
n is super edge-magic.

Proof. Note that, 2C
(4)
n has p = 2n and q = n .
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Case (i): n ≡ 1 (mod 4). Define f : V → {1, 2, 3, . . . , 2n} by

f(wi,1) =


1 + i

2
if i ∈ {1, 3, 5, . . . , n},

n+ 1 + i

2
if i ∈ {2, 4, 6, . . . , n− 1},

f(wi,2) =



7n+ 3 + 2i

4
if i ∈

{
1, 3, 5, . . . ,

n− 3

2

}
,

3n+ 3 + 2i

4
if i ∈

{
n+ 1

2
,
n+ 5

2
,
n+ 9

2
, . . . , n

}
,

5n+ 3 + 2i

4
if i ∈ {2, 4, 6, . . . , n− 1}.

To show that f is bijective, since |V | = |{1, 2, 3, . . . , 2n}| , it suffices to show

that f is surjective. Let a ∈ {1, 2, 3, . . . , 2n} .

If a ∈ {1, 2, 3, . . . , n+1
2
} , then 2a − 1 ∈ {1, 3, 5, . . . , n} . Thus, f(w2a−1,1) =

1+(2a−1)
2

= a .

If a ∈ {n+3
2
, n+5

2
, n+7

2
, . . . , n} , then 2a − n − 1 ∈ {2, 4, 6, . . . , n − 1} . Thus,

f(w2a−n−1,1) = n+1+(2a−n−1)
2

= a .

If a ∈ {n + 1, n + 2, n + 3, . . . , 5n+3
4
} , then 4a−3n−3

2
∈ {n+1

2
, n+5

2
, n+9

2
, . . . , n} .

Thus,f(w 4a−3n−3
2

,2) =
3n+3+2( 4a−3n−3

2
)

4
= a .

If a ∈ {5n+7
4
, 5n+11

4
, 5n+15

4
, . . . , 7n+1

4
} , then 4a−5n−3

2
∈ {2, 4, 6, . . . , n− 1} . Thus,

f(w 4a−5n−3
2

,2) =
5n+3+2( 4a−5n−3

2
)

4
= a ;

If a ∈ {7n+5
4
, 7n+9

4
, 7n+13

4
, . . . , 2n} , then 4a−7n−3

2
∈ {1, 3, 5, . . . , n−3

2
} . Thus,

f(w 4a−7n−3
2

,2) =
7n+3+2( 4a−7n−3

2
)

4
= a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, wi,2, wi+1,2} ∈ E . Observe that, for i ∈ {1, 3, 5, . . . , n−3
2
} ,

f(wi,1) + f(wi,2) =

(
1 + i

2

)
+

(
7n+ 3 + 2i

4

)
=

7n+ 5

4
+ i,
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for i ∈ {n+1
2
, n+5

2
, n+9

2
, . . . , n} ,

f(wi,1) + f(wi,2) =

(
1 + i

2

)
+

(
3n+ 3 + 2i

4

)
=

3n+ 5

4
+ i,

for i ∈ {2, 4, 6, . . . , n− 1} ,

f(wi,1) + f(wi,2) =

(
n+ 1 + i

2

)
+

(
5n+ 3 + 2i

4

)
=

7n+ 5

4
+ i.

Hence, for i ∈ {1, 3, 5, . . . , n−3
2
} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2))

=

(
7n+ 5

4
+ i

)
+

(
7n+ 5

4
+ (i+ 1)

)
=

7n+ 7

2
+ 2i.

For i ∈ {n+1
2
, n+5

2
, n+9

2
, . . . , n− 2} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2))

=

(
3n+ 5

4
+ i

)
+

(
7n+ 5

4
+ (i+ 1)

)
=

5n+ 7

2
+ 2i.

For i ∈ {2, 4, 6, . . . , n−5
2
} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2))
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=

(
7n+ 5

4
+ i

)
+

(
7n+ 5

4
+ (i+ 1)

)
=

7n+ 7

2
+ 2i.

For i ∈ {n−1
2
, n+3

2
, n+7

2
, . . . , n− 1} ,∑

v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2))

=

(
7n+ 5

4
+ i

)
+

(
3n+ 5

4
+ (i+ 1)

)
=

5n+ 7

2
+ 2i.

For i = n , ∑
v∈ei

f(v) = f(wn,1) + f(w1,1) + f(wn,2) + f(w1,2)

= (f(wn,1) + f(wn,2)) + (f(w1,1) + f(w1,2))

=

(
3n+ 5

4
+ n

)
+

(
7n+ 5

4
+ 1

)
=

7n+ 7

2
.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {7n+5
2
, 7n+7

2
, 7n+9

2
, . . . , 9n+3

2
} consists of

n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

Λ = 13n+5
2

.

Case (ii): n ≡ 3 (mod 4). Define f : V → {1, 2, 3, . . . , 2n} by

f(wi,1) =


1 + i

2
if i ∈ {1, 3, 5, . . . , n},

n+ 1 + i

2
if i ∈ {2, 4, 6, . . . , n− 1},

f(wi,2) =



5n+ 3 + 2i

4
if i ∈ {1, 3, 5, . . . , n},

7n+ 3 + 2i

4
if i ∈ {2, 4, 6, . . . , n− 3

2
},

3n+ 3 + 2i

4
if i ∈ {n+ 1

2
,
n+ 5

2
,
n+ 9

2
, . . . , n− 1}.
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To show that f is bijective, since |V | = |{1, 2, 3, . . . , 2n}| , it suffices to show

that f is surjective. Let a ∈ {1, 2, 3, . . . , 2n} .

If a ∈ {1, 2, 3, . . . , n+1
2
} , then 2a − 1 ∈ {1, 3, 5, . . . , n} . Thus, f(w2a−1,1) =

1+(2a−1)
2

= a .

If a ∈ {n+3
2
, n+5

2
, n+7

2
, . . . , n} , then 2a − n − 1 ∈ {2, 4, 6, . . . , n − 1} . Thus,

f(w2a−n−1,1) = n+1+(2a−n−1)
2

= a .

If a ∈ {n+1, n+2, n+3, . . . , 5n+1
4
} , then 4a−3n−3

2
∈ {n+1

2
, n+5

2
, n+9

2
, . . . , n−1} .

Thus,f(w 4a−3n−3
2

,2) =
3n+3+2( 4a−3n−3

2
)

4
= a .

If a ∈ {5n+5
4
, 5n+9

4
, 5n+13

4
, . . . , 7n+3

4
} , then 4a−5n−3

2
∈ {1, 3, 5, . . . , n} . Thus,

f(w 4a−5n−3
2

,2) =
5n+3+2( 4a−5n−3

2
)

4
= a ;

If a ∈ {7n+7
4
, 7n+11

4
, 7n+15

4
, . . . , 2n} , then 4a−7n−3

2
∈ {2, 4, 6, . . . , n−3

2
} . Thus,

f(w 4a−7n−3
2

,2) =
7n+3+2( 4a−7n−3

2
)

4
= a .

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i ∈ {1, 2, 3, . . . , n} , let ei =

{wi,1, wi+1,1, wi,2, wi+1,2} ∈ E . Observe that, for i ∈ {1, 3, 5, . . . , n} ,

f(wi,1) + f(wi,2) =

(
1 + i

2

)
+

(
5n+ 3 + 2i

4

)
=

5n+ 5

4
+ i,

for i ∈ {2, 4, 6, . . . , n−3
2
} ,

f(wi,1) + f(wi,2) =

(
n+ 1 + i

2

)
+

(
7n+ 3 + 2i

4

)
=

9n+ 5

4
+ i,

for i ∈ {n+1
2
, n+5

2
, n+9

2
, . . . , n− 1} ,

f(wi,1) + f(wi,2) =

(
n+ 1 + i

2

)
+

(
3n+ 3 + 2i

4

)
=

5n+ 5

4
+ i.
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Hence, for i ∈ {1, 3, 5, . . . , n−5
2
} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2))

=

(
5n+ 5

4
+ i

)
+

(
9n+ 5

4
+ (i+ 1)

)
=

7n+ 7

2
+ 2i.

For i ∈ {n−1
2
, n+3

2
, n+7

2
, . . . , n− 2} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2))

=

(
5n+ 5

4
+ i

)
+

(
5n+ 5

4
+ (i+ 1)

)
=

5n+ 7

2
+ 2i.

For i ∈ {2, 4, 6, . . . , n−3
2
} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2))

=

(
9n+ 5

4
+ i

)
+

(
5n+ 5

4
+ (i+ 1)

)
=

7n+ 7

2
+ 2i.

For i ∈ {n+1
2
, n+5

2
, n+9

2
, . . . , n− 1} ,

∑
v∈ei

f(v) = f(wi,1) + f(wi+1,1) + f(wi,2) + f(wi+1,2)

= (f(wi,1) + f(wi,2)) + (f(wi+1,1) + f(wi+1,2))

=

(
5n+ 5

4
+ i

)
+

(
5n+ 5

4
+ (i+ 1)

)
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=
5n+ 7

2
+ 2i.

For i = n ,

∑
v∈ei

f(v) = f(wn,1) + f(wi,1) + f(wn,2) + f(w1,2)

= (f(wn,1) + f(wn,2)) + (f(wi,1) + f(wi,2))

=

(
5n+ 5

4
+ n

)
+

(
5n+ 5

4
+ 1

)
=

7n+ 7

2
.

Thus, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, . . . , n}} = {7n+5
2
, 7n+7

2
, 7n+9

2
, . . . , 9n+3

2
} consists of

n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

Λ = 13n+5
2

. Consequently, the hypercycle 2C
(4)
n is super edge-magic.

Example 5.5. For the hypergraph 2C
(4)
5 with vertices

w1,1, w2,1, w3,1, w4,1, w5,1,

w1,2, w2,2, w3,2, w4,2, w5,2,

and hyperedges

e1 = {w1,1, w2,1, w1,2, w2,2}, e2 = {w2,1, w3,1, w2,2, w3,2},

e3 = {w3,1, w4,1, w3,2, w4,2}, e4 = {w4,1, w5,1, w4,2, w5,2},

e5 = {w5,1, w1,1, w5,2, w1,2},

by Theorem 5.5, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 4, f(w3,1) = 2, f(w4,1) = 5, f(w5,1) = 3,

f(w1,2) = 10, f(w2,2) = 8, f(w3,2) = 6, f(w4,2) = 9, f(w5,2) = 7.
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Figure 5.5: The vertex-labeling of 2C
(4)
5

The vertex-labeling of 2C
(4)
5 is shown in Figure 5.5 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(w1,2) + f(w2,2) = 1 + 4 + 10 + 8 = 23,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(w2,2) + f(w3,2) = 4 + 2 + 8 + 6 = 20,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(w3,2) + f(w4,2) = 2 + 5 + 6 + 9 = 22,

∑
v∈e4

f(v) = f(w4,1) + f(w5,1) + f(w4,2) + f(w5,2) = 5 + 3 + 9 + 7 = 24,

∑
v∈e5

f(v) = f(w5,1) + f(w1,1) + f(w5,2) + f(w1,2) = 3 + 1 + 7 + 10 = 21.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3, 4, 5}} = {20, 21, 22, 23, 24} is a set of five

consecutive integers. Hence, by Theorem 2.8, 2C
(4)
5 is super edge-magic.

Example 5.6. For the hypergraph 2C
(4)
3 with vertices

w1,1, w2,1, w3,1,

w1,2, w2,2, w3,2,
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and hyperedges

e1 = {w1,1, w2,1, w1,2, w2,2}, e2 = {w2,1, w3,1, w2,2, w3,2},

e3 = {w3,1, w1,1, w3,2, w1,2},

by Theorem 5.5, we label each vertex as follows:

f(w1,1) = 1, f(w2,1) = 3, f(w3,1) = 2,

f(w1,2) = 5, f(w2,2) = 4, f(w3,2) = 6.

e1
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e3
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5
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4

Figure 5.6: The vertex-labeling of 2C
(4)
3

The vertex-labeling of 2C
(4)
3 is shown in Figure 5.6 and we see that

∑
v∈e1

f(v) = f(w1,1) + f(w2,1) + f(w1,2) + f(w2,2) = 1 + 3 + 5 + 4 = 13,

∑
v∈e2

f(v) = f(w2,1) + f(w3,1) + f(w2,2) + f(w3,2) = 3 + 2 + 4 + 6 = 15,

∑
v∈e3

f(v) = f(w3,1) + f(w4,1) + f(w3,2) + f(w4,2) = 2 + 1 + 6 + 5 = 14.

Then, {
∑

v∈ei f(v)| i ∈ {1, 2, 3}} = {13, 14, 15} is a set of three consecutive

integers. Hence, by Theorem 2.8, 2C
(4)
3 is super edge-magic.
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Now, if we have a small super edge-magic hypercycle mC
(k)
n , we can use its super

edge-magic labeling to construct new super-edge labelings for larger hypercycles

mC
(k+2)
n and m+2C

(k+4)
n .

Lemma 5.6. If mC
(k)
n is super edge-magic, then mC

(k+2)
n is also super edge-magic.

Proof. Let mC
(k)
n = (V,E). By Definition 2.6, we can construct mC

(k+2)
n by con-

sidering each ei ∈ E , define ẽi = ei ∪{vi,k−2m+1, vi,k−2m+2} for i ∈ {1, 2, 3, . . . , n} .

Then, mC
(k+2)
n = (Ṽ , Ẽ) where Ẽ = {ẽ1, ẽ2, ẽ3, . . . , ẽn} and Ṽ =

n⋃
i=1

ẽi . Note that,

|V | = n(k −m), |Ṽ | = n(k −m) + 2n, and |E| = n = |Ẽ| .

Assume that mC
(k)
n is super edge-magic. By Theorem 2.8, there is a bijection

f : V → {1, 2, 3, . . . , n(k − m)} such that {
∑

v∈e f(v)| e ∈ E} is a set of n

consecutive integers. We define a function f̂ by

f̂(vi,j) =


n(k −m) + i if j = k − 2m+ 1,

n(k −m) + 2n+ 1− i if j = k − 2m+ 2,

for each i ∈ {1, 2, 3, . . . , n} . Next, we define f̃ : Ṽ → {1, 2, 3, . . . , n(k −m) + 2n}

by

f̃(v) =


f(v) if v ∈ V ,

f̂(v) if v ∈ Ṽ − V ,

for v ∈ Ṽ . Since f(V ) = {1, 2, 3, . . . , n(k − m)} and f̂(Ṽ − V ) = {n(k − m) +

1, n(k − m) + 2, n(k − m) + 3, . . . , n(k − m) + 2n} , f̃ is a bijection from Ṽ to

{1, 2, 3, . . . , n(k −m) + 2n} .

To see that f̃ is a super edge-magic labeling, let ẽi ∈ Ẽ . Then, for i ∈

{1, 2, 3, . . . , n} .

∑
v∈ẽi

f̃(v) =
∑
v∈ei

f̃(v) + f̃(vi,k−2m+1) + f̃(vi,k−2m+2)
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=
∑
v∈ei

f(v) + f̂(vi,k−2m+1) + f̂(vi,k−2m+2)

=
∑
v∈ei

f(v) + (n(k −m) + i) + (n(k −m) + 2n+ 1− i)

=
∑
v∈ei

f(v) + 2n(k −m) + 2n+ 1.

Since {
∑

v∈e f(v)| e ∈ E} is a set of n consecutive integers, similar goes for

{
∑

v∈ẽ f̃(v)| ẽ ∈ Ẽ} . Consequently, by Theorem 2.8, mC
(k+2)
n is super edge-magic.

Example 5.7. By applying Lemma 5.6 with the vertex-labeling of 2C
(4)
5 (shown in

Figure 5.5), we obtain the vertex-labeling for 2C
(6)
5 which is also super edge-magic

labeling as shown in Figure 5.7.
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Figure 5.7: The vertex-labeling of 2C
(6)
5 obtained by applying Lemma 5.6 to the

vertex-labeling of 2C
(4)
5

Lemma 5.7. If mC
(k)
n is super edge-magic, then m+2C

(k+4)
n is also super edge-

magic.

Proof. Let mC
(k)
n = (V,E). By Definition 2.6, we can construct m+2C

(k+4)
n by

considering each ei ∈ E , define ẽi = ei ∪ {wi,m+1, wi,m+2, wi+1,m+1, wi+1,m+2} for
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i ∈ {1, 2, 3, . . . , n} . Then, m+2C
(k+4)
n = (Ṽ , Ẽ) where Ẽ = {ẽ1, ẽ2, ẽ3, . . . , ẽn} and

Ṽ =
n⋃

i=1

ẽi . Note that, |V | = n(k −m), |Ṽ | = n(k −m) + 2n, and |E| = n = |Ẽ| .

Assume that mC
(k)
n is super edge-magic. By Theorem 2.8, there is a bijection

f : V → {1, 2, 3, . . . , n(k − m)} such that {
∑

v∈e f(v)| e ∈ E} is a set of n

consecutive integers. We define a function f̂ by

f̂(wij) =


n(k −m) + i if j = m+ 1,

n(k −m) + 2n+ 1− i if j = m+ 2,

for each i ∈ {1, 2, 3, . . . , n} . Next, we define f̃ : Ṽ → {1, 2, 3, . . . , n(k −m) + 2n}

by

f̃(v) =


f(v) if v ∈ V ,

f̂(v) if v ∈ Ṽ − V ,

for v ∈ Ṽ . Since f(V ) = {1, 2, 3, . . . , n(k −m)} and f̂(Ṽ − V ) = {n(k − m) +

1, n(k − m) + 2, n(k − m) + 3, . . . , n(k − m) + 2n} , f̃ is a bijection from Ṽ to

{1, 2, 3, . . . , n(k −m) + 2n} .

To see that f̃ is a super edge-magic labeling, let ẽi ∈ Ẽ . Observe that, for

i ∈ {1, 2, 3, . . . , n} .

f̂(wi,m+1) + f̂(wi,m+2) = (n(k −m) + i) + (n(k −m) + 2n+ 1− i)

= 2n(k −m) + 2n+ 1.

Then, for i ∈ {1, 2, 3, . . . , n− 1} .

∑
v∈ẽi

f̃(v) =
∑

v∈ei
f̃(v) + f̃(wi,m+1) + f̃(wi,m+2) + f̃(wi+1,m+1) + f̃(wi+1,m+2)

=
∑
v∈ei

f(v) + f̂(wi,m+1) + f̂(wi,m+2) + f̂(wi+1,m+1) + f̂(wi+1,m+2)

=
∑
v∈ei

f(v) + (2n(k −m) + 2n+ 1) + (2n(k −m) + 2n+ 1)
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=
∑
v∈ei

f(v) + 4n(k −m) + 4n+ 2,

and for i = n∑
v∈ẽi

f̃(v) =
∑
v∈ei

f̃(v) + f̃(wn,m+1) + f̃(wn,m+2) + f̃(w1,m+1) + f̃(w1,m+2)

=
∑
v∈ei

f(v) + f̂(wn,m+1) + f̂(wn,m+2) + f̂(w1,m+1) + f̂(w1,m+2)

=
∑
v∈ei

f(v) + (2n(k −m) + 2n+ 1) + (2n(k −m) + 2n+ 1)

=
∑
v∈ei

f(v) + 4n(k −m) + 4n+ 2.

Since {
∑

v∈e f(v)| e ∈ E} is a set of n consecutive integers, similar goes for

{
∑

v∈ẽ f̃(v)| ẽ ∈ Ẽ} . Consequently, by Theorem 2.8, m+2C
(k+4)
n is super edge-

magic.

Example 5.8. By applying Lemma 5.7 with the vertex-labeling of 1C
(3)
4 (shown in

Figure 5.2), we obtain the vertex-labeling for 3C
(7)
4 which is also super edge-magic

labeling as shown in Figure 5.8.
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Figure 5.8: The vertex-labeling of 3C
(7)
4 obtained by applying Lemma 5.7 to the

vertex-labeling of 1C
(3)
4
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Althrough, we can construct a lot of larger super edge-magic hypercycles by

using Lemma 5.6 and Lemma 5.7 from some smaller super edge-magic hypercycles.

However, by observing some calculations, there is a family of hypercycles which

always not super edge-magic.

Theorem 5.8. If a hypercycle mC
(2m)
n is super edge-magic, then n is odd.

Proof. Note that, mC
(2m)
n has p = mn and q = n . Suppose that mC

(2m)
n is super

edge-magic. Then, there is a bijection f : V ∪ E → {1, 2, 3, . . . ,mn + n} and

a constant Λ such that
∑

v∈ei f(v) + f(ei) = Λ for all i ∈ {1, 2, 3, . . . , n} and

f(V ) = {1, 2, 3, . . . ,mn} . Since each vertex of mC
(2m)
n is contained exactly in 2

hyperedges, we obtain

nΛ =
n∑

i=1

(∑
v∈ei

f(v) + f(ei)

)

nΛ = 2
∑
v∈V

f(v) +
∑
e∈E

f(e)

nΛ = 2
mn∑
j=1

j +
mn+n∑

j=mn+1

j

nΛ = (mn)(mn+ 1) +
n(2mn+ n+ 1)

2
.

That is Λ = m(mn+ 1) +mn+ n+1
2

. Since Λ is an interger, n must be odd.

To sum up this chapter, by using both Lemma 5.6 and Lemma 5.7, we will

show that all hypercycles mC
(k)
n are super edge-magic except the hypercycles of

the form mC
(2m)
n where n is an even integer. In general, to construct a super

edge-magic hypercycle mC
(k)
n , we first find the starting small hypercycle of which

super edge-magic as follow:

• if m and k are odd, then the starting hypercycle is 1C
(3)
n ,

• if m, k are even and n is odd, then the starting hypercycle is 2C
(4)
n ,
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• if m,n are odd and k is even, then the starting hypercycle is 1C
(2)
n ,

• if m is odd and k, n are even, then the starting hypercycle is 1C
(4)
n ,

• if m is even and k is odd, then the starting hypercycle is 2C
(5)
n .

Then, we apply Lemma 5.7 for
⌈
m−2
2

⌉
times and Lemma 5.6 for

⌈
k−2m−1

2

⌉
times, in

any order, to the starting hypercycle. Note that for the hypercycles in the fourth

case, we apply Lemma 5.6 for only
⌈
k−2m−1

2

⌉
− 1 times. We then obtain the super

edge-magic labeling for mC
(k)
n . Therefore, we have the main theorem.

Theorem 5.9. A hypercycle mC
(k)
n is super edge-magic if and only if n is odd or

k 6= 2m.

Example 5.9. To obtain the super edge-magic labeling of 5C
(13)
3 with m = 5

which is odd and k = 13 which is odd, we start with the super edge-magic labeling

of 1C
(3)
3 (Figure 5.9). Then, we apply Lemma 5.7 for

⌈
5−2
2

⌉
= 2 times and Lemma

5.6 for
⌈
13−2(5)−1

2

⌉
= 1 time, respectively. Therefore, we have the super edge-

magic labeling of 3C
(7)
3 (Figure 5.10), 5C

(11)
3 (Figure 5.11) and 5C

(13)
3 (Figure

5.12), respectively.
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Figure 5.9: The super edge-magic labeling of 1C
(3)
3
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Figure 5.10: The super edge-magic labeling of 3C
(7)
3
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Figure 5.11: The super edge-magic labeling of 5C
(11)
3
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Figure 5.12: The super edge-magic labeling of 5C
(13)
3
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Example 5.10. To obtain the super edge-magic labeling of 4C
(10)
3 with m = 4

which is even, k = 10 which is even and n = 3 which is odd, we start with the

super edge-magic labeling of 2C
(4)
3 (Figure 5.13). Then, we apply Lemma 5.7 for⌈

4−2
2

⌉
= 1 time and Lemma 5.6 for

⌈
10−2(4)−1

2

⌉
= 1 time, respectively. Therefore,

we have the super edge-magic labeling of 4C
(8)
3 (Figure 5.14) and 4C

(10)
3 (Figure

5.15), respectively.
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1

3
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5

6

4

Figure 5.13: The super edge-magic labeling of 2C
(4)
3
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Figure 5.14: The super edge-magic labeling of 4C
(8)
3
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Figure 5.15: The super edge-magic labeling of 4C
(10)
3

Example 5.11. To obtain the super edge-magic labeling of 5C
(12)
3 with m = 5

which is odd, k = 12 which is even and n = 3 which is odd, we start with the

super edge-magic labeling of 1C
(2)
3 (Figure 5.16). Then, we apply Lemma 5.7 for⌈

5−2
2

⌉
= 2 times and Lemma 5.6 for

⌈
12−2(5)−1

2

⌉
= 1 time, respectively. Therefore,

we have the super edge-magic labeling of 3C
(6)
3 (Figure 5.17), 5C

(10)
3 (Figure 5.18)

and 5C
(12)
3 (Figure 5.19), respectively.

e1

e2

e3

1

3

2

Figure 5.16: The super edge-magic labeling of 1C
(2)
3



72

e1

e2

e3

1

3

2

4

5

6

9

7

8

Figure 5.17: The super edge-magic labeling of 3C
(6)
3
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Figure 5.18: The super edge-magic labeling of 5C
(10)
3
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Figure 5.19: The super edge-magic labeling of 5C
(12)
3
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Example 5.12. To obtain the super edge-magic labeling of 3C
(10)
4 with m = 3

which is odd, k = 10 which is even and n = 4 which is even, we start with

the super edge-magic labeling of 1C
(4)
4 (Figure 5.20). Then, we apply Lemma 5.7

for
⌈
3−2
2

⌉
= 1 time and Lemma 5.6 for

⌈
10−2(3)−1

2

⌉
− 1 = 1 time, respectively.

Therefore, we have the super edge-magic labeling of 3C
(8)
4 (Figure 5.21) and 3C

(10)
4

(Figure 5.22), respectively.
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Figure 5.20: The super edge-magic labeling of 1C
(4)
4
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Figure 5.21: The super edge-magic labeling of 3C
(8)
4
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Figure 5.22: The super edge-magic labeling of 3C
(10)
4

Example 5.13. To obtain the super edge-magic labeling of 4C
(11)
3 with m = 4

which is even and k = 11 which is odd, we start with the super edge-magic labeling

of 2C
(5)
3 (Figure 5.23). Then, we apply Lemma 5.7 for

⌈
4−2
2

⌉
= 1 time and Lemma

5.6 for
⌈
11−2(4)−1

2

⌉
= 1 time, respectively. Therefore, we have the super edge-magic

labeling of 4C
(9)
3 (Figure 5.24) and 4C

(11)
3 (Figure 5.25), respectively.
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Figure 5.23: The super edge-magic labeling of 2C
(5)
3
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Figure 5.24: The super edge-magic labeling of 4C
(9)
3
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Figure 5.25: The super edge-magic labeling of 4C
(11)
3



CHAPTER VI

CONCLUSION AND DISCUSSION

In Chapter 2, we define three new classes of k -uniform hypergraphs includ-

ing complete k -uniform hypergraphs, m-node k -uniform hyperpaths and m-node

k -uniform hypercycles. Notice that there are varieties of definitions of those hy-

pergraphs.

In Chapter 2, Theorem 2.10, we investigate the extremal value of Λ to obtain

the necessary condition, q ≤ kp − k2 + 1 for a k -uniform hypergraph H being

super edge-magic. However, we can also using this idea to establish the necessary

condition for all hypergraphs. Since each hyperedge of a hypergraph contains at

least 0 vertex and at most p vertices, we can mimick the same proof as in Theorem

2.10 to obtain the inequality 0 + (p + q) ≤ 1 + 2 + 3 + . . . + p + (p + 1). Thus,

the condition q ≤ p(p+1)
2

+ 1 is a necessary condition for a hypergraph being super

edge-magic.

In Chapter 3, we consider only the complete k -uniform hypergraph defined in

Definition 2.4 with the condition n ≥ k and we found that K
(0)
n , K

(1)
n , K

(n−1)
n , and

K
(n)
n are super edge-magic. For the case of the complete k -uniform hypergraph

with n < k , we can easily see that those hypergraphs have no hyperedges. Hence,

by Corollary 2.9, the complete k -uniform hypergraph in this case is super edge-

magic.

In Chapter 4 and 5, we finally give algorithm-liked-Theorem for vertex labelings

of all mP
(k)
n and some classes of mC

(k)
n . These labelings induce super edge-magic
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labelings for those hypergraphs. By the algorithms, one can actually give an

explicit form of super edge-magic labelings for fixed parameters m,n and k in

mP
(k)
n and mC

(k)
n .

Notice that there are some varieties of definitions of hyperpaths and hypercy-

cles. In [4], a k -uniform hypercycle of order n has vertex sequence v1, v2, v3, . . . , vn

such that every adjacent vertices vi, vi+1 are contained in a hyperedge of degree

k . Moreover, it said to be tight if every k consecutive vertices form a hyperedge

and it said to be loose if every adjacent hyperedges intersect exactly one vertex.

Hyperpaths are defined in a similar way. In [6], they defined hyperpaths and hy-

percycles in a similar way in graph theory, i.e., hyperpath is an alternative finite

sequence of vertices and hyperedges, v1, e1, v2, e2, . . . , en, vn+1 , such that for every

i ∈ {1, 2, 3, . . . , n} , a hyperedge ei contains vi and vi+1 and occurs at most one in

sequence. Furthermore, if vn+1 = v1 , then the alternative sequence becomes hy-

percycle instead of hyperpath. However, our m-node k -uniform hyperpaths and

m-node k -uniform hypercyles, that defined in Defintion 2.5 and Definition 2.6,

agree with those defined in [6].
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