o w Y d 1 A Y A o
ﬂ']iﬂ1ﬂ‘]J3J“Vif’T%iiEJEJEJNENEI’JW]JHLﬁuL"]fmJ"U’ENblE’ILWfJiﬂi'W\I!ﬂ-LE]ﬂE‘iJUNE‘]J

UYOTIY UTALING

a o'y

a < 1 . @ a o =
Inoniwusiiduaunilivesmsanmavangaslsyaninnmansunniuda
AUNTIAAANTNT MAIFIAAAFTAT LA INGNTAOUNUNDS
AN INNMAAT NAINTAINMIING1AY

Umsdnun 2557

Aa A Q‘{ 4 a [
uwﬁmﬂ'@LL@:LMN%H@@%Lﬁum@qﬁ%’%ugg‘jﬁ%ﬂ%ﬂ%Qﬂg%g@%ﬂ%gﬂ%uﬂﬁqﬂm 1994 (CUIR)

T 9

Huuilsdiayarestdndnaednednusndeiumisingsmingas
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



SUPER EDGE-MAGIC LABELING OF k-UNIFORM HYPERGRAPHS

Mr. Authawich Narissayaporn

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2014

Copyright of Chulalongkorn University



Thesis Title SUPER EDGE-MAGIC LABELING OF SOME

k-UNIFORM HYPERGRAPHS

By Mr. Authawich Nairssayaporn
Field of Study Mathematics

Thesis Advisor Ratinan Boonklurb, Ph.D.
Thesis Co-advisor Sirirat Singhun, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in

Partial Fulfillment of the Requirements for the Master’s Degree.

.................................... Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)
THESIS COMMITTEE

.................................... Chairman

(Assistant Professor Tuangrat Chaichana, Ph.D.)

.................................... Thesis Advisor

.................................... Thesis Co-advisor

.................................... Examiner

(Teeraphong Phongpattanacharoen, Ph.D.)

.................................... External Examiner

(Assistant Professor Pattira Ruengsinsub, Ph.D.)



v

v A a o w o S 1A 4 14
IV UIAYING : ﬂTiﬂ1ﬂ‘1J3Jﬁﬁﬂi‘§EJ?JEJNENEJ'JWUL!&%ul%ﬂusllﬂ\ﬂa!ﬂﬂiﬂﬁ']w

Lﬂ-LfJﬂg‘ﬂ‘UN 3 1l. (SUPER EDGE-MAGIC LABELING OF SOME k-UNIFORM

o 14 A

A a a J W a A
HYPERGRAPHS) 9. ﬂﬂ?ﬂ‘]&l'l’)“lflmuwu‘ﬁﬁﬁﬂ: AT IAUUN YYLNaol, o. ﬂﬂ?ﬂ‘]&ﬂ

v J Y

a a o anw JdAa
AINYPIUNUDTIIN: AT.ATIAU TIVUA, 79 U.

a a 4 Y dy k4 v 3 v d o w @ g 1 A
INITUNUIRVUUY llﬂ'J”NIJEWI'Jll']JGUE’N?JIu‘]flﬂu"l]ﬂﬂﬂ”liﬂ”lﬂ?Jll‘Vi?ﬁ]iifJ@fJNfNEJ'J@]']J‘L!

) A [ o w o d 1 A 9 A 4 4
L'ﬁul‘]ﬁ)llGIJ@Qﬂi”IV\H']JQﬂ”Iiﬂ”Iﬂ‘U?JWﬁﬁ]iﬁ8681\3ﬂﬂﬂ?ﬂﬂu!ﬁuﬁf@ll"l]@ﬂllalW@iﬂi”W\l "lamm

'
Y =2

< s ) s 1 A 4 ' 1
ﬂﬁ”lw H=(V,E) Lﬂullam’f)iﬂi”lwuﬂﬁﬂiiﬂﬂEJNENEJ’N]‘]J“L!LEQTIML%@N t’fﬁﬁm%uﬁuuwuma

[ [ 1 4
Wi £V OE —{1,2,3,.... V| +|E|} fiwoandesduleonludelli () fdndd A Faild

3 f0)+fl@)=A dmiunn ec £ uaz (i) £()=1{123,...[r]} Qeulvsududmsu

Tamesnslazifulamesnsuriassfediedoravmduson 18 un1sfigo
wenvinit lame3nslu3ysaiin-engyl (k) dlulamednsluinessdedubeenuudu
iWoudneiile ke{01} uie ne{kk+1} lameimmn-engy ("2©) fulamesns
wimssdotndwauuduiomane nazlameslnfan-engl ("c®) fu lamesns

o d 1 A 9 A =l A I o A A
UUAITTYDYWYIYIAVULTUIBDUNADIND n wWudmaua viso k#2m

Mman AdlaMARIAY AVITOFOTTR oo
a a I'4 A d’ d' [
_____________ AMINTAONNAADS aeiiode o.MUSn¥MAN.
a a 4 A d’ d‘ 1
GEEREEA AUANAITANT AYUDYD @.Vl“l_ﬁﬂ‘]eﬂﬁ'lu .......................................



# # 5672146823 : MAJOR MATHEMATICS
KEYWORDS : HYPERGRAPHS/ COMPLETE k-UNIFORM HYPERGRAPHS/

HYPERPATHS/ HYPERCYCLES/ SUPER EDGE-MAGIC LABELING

AUTHAWICH NARISSAYAPORN : SUPER EDGE-MAGIC LABELING
OF k-UNIFORM HYPERGRAPHS. ADVISOR : RATINAN BOONKLURB,

Ph.D., CO-ADVISOR : SIRIRAT SINGHUN, Ph.D., 79 pp.

In this thesis, we generalize the concept of super edge-magic labeling in
graph to the super edge-magic labeling in hypergraph. A hypergraph H = (V, E)
is super edge-magic if there is a bijection f : VUE — {1,2,3,...,|V|+|E|} satisfy-
ing (i) there exists a constant A such that forall e € £, > __ f(v)+ f(e) = A and
(i) f(V)=4{1,2,3,...,|V|}. A necessary condition for a hypergraph being super
edge-magic is proved. In particular, the complete k-uniform hypergraph (Kﬁk)) is
super edge-magic if and only if & € {0,1} or n € {k,k+ 1}, the k-uniform hyper-
path (™ ék)) is always super edge-magic, and the k-uniform hypercycle (mC,(lk))

is super edge-magic if and only if n is odd or k # 2m.

Department : ..Mathematics and ..  Student’s Signature : ...............cc...
...Computer Science...  Advisor’s Signature : .......ccccceoeveeriennne.
Field of Study : ....Mathematics ....

Academic Year : .......... 2014 ... Co-advisor’s Signature : ......c..cccceceveennee.



vi

ACKNOWLEDGEMENTS

In the achievement of my Master Thesis, I absolutely thank my thesis advisor
and thesis co-advisor, Dr. Ratinan Boonklurb and Dr. Sirirat Singhun, respec-
tively. They not only give some advices but also take care all of my academic life.
Moreover, I am indebted to my thesis committee: Assistant Professor Dr. Tuan-
grat Chaichana, Dr. Teeraphong Phongpattanacharoen and Assistant Professor
Dr. Pattira Ruengsinsub. I am sincere to their advices and comments.

Furthermore, I would like to express my special thanks to all of my teachers
who have coached me for my knowledge, skills and abilities. Also, I wish to express
my best regrad to my family and my friends who encourage throughout my study.

Finally, I would like to thank Chulalongkorn University where gives me all of

invaluable experiences.



CONTENTS

page

ABSTRACT IN THATL ..o iv

ABSTRACT IN ENGLISH . ... v

ACKNOWLEDGEMENTS ... e vi

CONTEN TS vii

LIST OF FIGURES ... viii
CHAPTER

I INTRODUCTION ... e 1

II PRELIMINARIES .. e 3

2.1 Hypergraphs ... 3

2.2 The Super Edge-Magic Labeling .............................. 8

2.3 The Necessary Condition ........... ... ... ... 12

I[IT COMPLETE UNIFORM HYPERGRAPHS ........................ 14

IV m-NODE k-UNIFORM HYPERPATHS ........................... 19

V m-NODE k-UNIFORM HYPERCYCLES ..................... ... 41

VI CONCLUSION AND DISCUSSION ... ... 76

REFERENCES .. 78



LIST OF FIGURES

Figure
2.1 A hypergraph H . . . . . . .. ...
2.2 3-uniform hypergraphs . . . . ... ...
2.3 A complete 3-uniform hypergraph, K f’) ...............
2.4 A 1-node 4-uniform hyperpath . . . . ... ... ... ... ....
2.5 A 1-node 3-uniform hypercycle . . . . ... .. .. ... ... ..
2.6 The super edge-magic labeling of 1P4(2) ................
3.1  The vertex-labeling of a complete 1-uniform hypergraph, K il) S
3.2 The vertex-labeling of a complete 3-uniform hypergraph, K f’) S
41 The vertex-labeling of P . .
4.2 The vertex-labeling of 1P4(2) ......................
4.3 The vertex-labeling of 1P4(3) ......................
44 The vertex-labeling of 2P .
4.5  The vertex-labeling of 2P4(4) ......................
4.6 The vertex-labeling of 2P4(5) ......................
4.7  The vertex-labeling of 1P4(4) obtained by applying Lemma 4.5 to
the vertex-labeling of 1P4(2) ......................
4.8 The vertex-labeling of 3P4(6) obtained by applying Lemma 4.6 to
the vertex-labeling of 'P\¥ . . . . ... .. ...
4.9 The super edge-magic labeling of 1P4(3) ................

4.10 The super edge-magic labeling of 3P\ . . . .. ... ... ... ..

4.11 The super edge-magic labeling of 5P4(11) ...............

)

4.12 The super edge-magic labeling of 5P4(13 ...............



4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

4.22

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

5.9

5.10
5.11
5.12

5.13

1X

The super edge-magic labeling of 2PY . . . .. ... ... ... 38
The super edge-magic labeling of 4P4(8) ................ 38
The super edge-magic labeling of +P™” . . . ... ... 39
The super edge-magic labeling of *P® . . . ... ... ... ... 39
The super edge-magic labeling of 3P4(6) ................ 39
The super edge-magic labeling of °PM” . . . ... 39
The super edge-magic labeling of 5P . . . . ... .. 40
The super edge-magic labeling of 2P4(5) ................ 40
The super edge-magic labeling of 4P4(9) ................ 40
The super edge-magic labeling of 4P . . . ... 40
The vertex-labeling of ICE(,S) ...................... 46
The vertex-labeling of 'C . . . . ... 47
The vertex-labeling of QCéE’) ...................... 50
The vertex-labeling of 10é4) ...................... 54
The vertex-labeling of 2CY . . . . .. ... 61
The vertex-labeling of 20§4) ...................... 62

The vertex-labeling of 2C§6) obtained by applying Lemma 5.6 to
the vertex-labeling of 2CY . .. . 64

The vertex-labeling of 309 obtained by applying Lemma 5.7 to

the vertex-labeling of 'C\¥ . . . . ... ... 66
The super edge-magic labeling of 16'3(,3) ................ 68
The super edge-magic labeling of 30§7) ................ 69
The super edge-magic labeling of 5C§11) ............... 69
The super edge-magic labeling of 5C’§13) ............... 69

The super edge-magic labeling of 20§4) ................ 70



5.14 The super edge-magic labeling of 403(,8) ................ 70
5.15 The super edge-magic labeling of 46’3(,10) ............... 71
5.16 The super edge-magic labeling of IC§2) ................ 71
5.17 The super edge-magic labeling of 303(,6) ................ 72
5.18 The super edge-magic labeling of 56’3(,10) ............... 72
5.19 The super edge-magic labeling of 5C§12) ............... 72
5.20 The super edge-magic labeling of 1C£4) ................ 73
5.21 The super edge-magic labeling of 3C’£8) ................ 73
5.22 The super edge-magic labeling of 3Ci10) ............... 74
5.23 The super edge-magic labeling of 2C§5) ................ 74
5.24 The super edge-magic labeling of 403(,9) ................ 75

5.25 The super edge-magic labeling of 4(]:511) ............... 75



CHAPTER I

INTRODUCTION

Graph labeling is an assignment of integers to the vertices or edges or both of
the graph which satisfies certain conditions. There are some varieties of labeling
such as graceful labeling and magic labeling. In this thesis, we investigate the
labeling called super edge-magic labeling which is a combination between the edge-
magic labeling and one extra property, i.e., for a graph G, the bijective function
[ V(@)U EG) — {1,2,3,...,|[V(G)| + |E(G)|} is called super edge-magic
labeling if it satisfies (1) there is a constant A such that for every edge zy € E(G),
fx)+ f(y) + flzy) = A, and (2) f(V(G)) = {1,2,3,...,|V(G)|}. Note that, a
graph admitting this labeling is said to be super edge-magic.

There are many researches about the super edge-magic labeling. According to
[3], several classes of graphs were studied whether they are super edge-magic or
not. For example in [1], they showed that all odd cycles C,, are super edge-magic,
and all wheel graphs W, are not super edge-magic. Moreover, they also showed
the important necessary condition for a graph being super edge-magic, i.e., if a
graph G is super edge-magic, then |E(G)| < 2|V (G)| — 3.

However, there are few articles about hypergraph labeling. Therefore, we de-
cided to investigate this type of labeling on hypergraphs, especially the k-uniform
hypergraphs. In Chapter 2, we give a definition of hypergraphs and introduce some
classes of hypergraphs, namely complete k-uniform hypergraph, m-node k-uniform

hyperpaths, and m-node k-uniform hypercycles. Then, by extending the one de-



fined in graph, we state the generalized version of the super edge-magic labeling for
a hypergraph. Similarly, we can establish the necessary condition for hypergraph
being super edge-magic. By using this necessary condition, we can show in Chap-
ter 3 that a complete k-uniform hypergraph with n vertices is super edge-magic
if and only if k € {0,1} or n € {k,k+ 1}.

Furthermore, by assign a super edge-magic labeling to the small hypergraph
directly, and extend them to the larger one. We explore that some classes of
hypergraphs which we defined in Chapter 2 are super edge-magic. Our result are
shown in Chapter 4 to Chapter 5.

In Chapter 4 and Chapter 5, we show our results on m-node k-uniform hyper-
paths and m-node k-uniform hypercycles according to the small-to-large idea. We
find that all k-uniform hyperpaths are super edge-magic. However, some classes
of k-uniform hypercycles are super edge-magic and some are not. This agrees with
the known result on super edge-magic of cycle in graph theory. Finally, conclusion

and some discussion are given in Chapter 6.



CHAPTER 11

PRELIMINARIES

In this chapter, we list some notions that are used throughout this thesis.
First, Section 2.1 consists of several definitions, properties and classes of hyper-
graphs. Then, the basic concepts of the super edge-magic labeling and its proper-
ties are listed in Section 2.2 and Section 2.3. The last section shows the important

condition of a hypergraph admitting this type of labeling.

2.1 Hypergraphs

A hypergraph is the generalization of graphs, since every edge of a hypergraph
may be incident to no or many vertices. We give the definition of a hypergraph as

follows.

Definition 2.1. [6] A hypergraph H is the pair (V(H), E(H)) where V(H) is a
finite set and E(H) C P(V(H)). The sets V(H) and E(H) are called vertex set

and hyperedge set, respectively.

If there is no ambiguity, we may denote V(H) as V and E(H) as E. For more
convenient, we let |V| = p and |E| = ¢. Notice that, by definition, the vertex set
of a hypergraph can be empty. However, in this thesis, our hypergraphs consist at

least one vertex.

Example 2.1. A hypergraph H, shown in Figure 2.1, has the vertex set V(H) =

{v1,v9,v3,v4, 05,06} and the hyperedge set E(H) = {ey, ea, €3, €4,€5}.



€1

€2

Figure 2.1: A hypergraph H

Notice that, |V(H)| = p = 6 and |E(H)| = ¢ = 5. Moreover, we may
write all hyperedges as e; = @,es = {v1},e5 = {v1,v5},e4 = {v2,v3,v4} and

€5 = {713,714,715,116}-

In graph, we have the concept of a degree of each vertex. This concept can be
generalized in hypergraph. Moreover, in hypergraph, we can have both degrees for

each vertex and each hyperedge.

Definition 2.2. [6] Let v be a vertex of a hypergraph H. The degree of v is the
cardinality of {e € E| v € e}. A vertex v is said to be pendant, if its degree is

one.

Example 2.2. According to the hypergraph H in Example 2.1, only vy and wvg

are pendant. The other vertices have degree 2.

Definition 2.3. [6] Assume that e is a hyperedge of a hypergraph H. The degree
of e is the cardinality of {v € V| v € e}. Moreover, H is called k-uniform, if

every hyperedge e € E has degree k.

Note that, we use the notation H*) to denote a k-uniform hypergraph H.



Example 2.3. According to the hypergraph H in Example 2.1, the degree of
hyperedge ¢; is ¢ — 1 for ¢ € {1,2,3,4,5}. Thus, H is not a uniform hypergraph.

However, we show some examples of 3-uniform hypergraphs in Figure 2.2.

o

H1 H2

Figure 2.2: 3-uniform hypergraphs

Notice that, a 2-uniform hypergraph is also a graph and vice versa. In the
usual graph theory, we used to have the definitions for a complete graph, K, ; a
path graph, P,; and a cycle, C,,. Now, we can define a complete hypergraph,
a hyperpath, and a hypercycle in hypergraph in a similar manner. However, for
simplicity, here we define only a uniform type of complete hypergraphs, hyperpaths

and hypercycles.

Definition 2.4. [6] Let n and k be integers such that 0 < k <n. A complete k-
uniform hypergraph, K,sk), is a hypergraph that consists of V' = {vy,ve,v3,...,v,}

and FE is the family of all k-subset of V.
Notice that, K% has n vertices and (Z) hyperedges.

Example 2.4. Consider a complete 3-uniform hypergraph K f’) with 4 vertices
and (g) = 4 hyperedges. If the vertex set V(K.¥) is {vi,vs,vs,v4}, then the
hyperedge set E(Kf’)) of Kf) is the set that contains all 3-subset of V(Kf))), ie.,
E(Kf;)) = {617 €2, €3, 64} where €1 = {/U17 V2, U3}7 €2 = {/Uh V2, U4}7 €3 = {/U17 V3, U4}7

and ey = {vq, v3,04}.



o
<

>

€4

Figure 2.3: A complete 3-uniform hypergraph, K f’)

Definition 2.5. Let m, n, and k be integers such that m > 1,n > 2, and

)

kE > 2m. An m-node k-uniform hyperpath, m pfk , is a hypergraph consists of

hyperedge set E = {ey,eq,€3,...,¢e,} and vertex set V = J;_, e; where

m
U {wij, wit1;} if k= 2m,
_ )=l
€; = .
U {wij, it} U{vig, vig, vig, .. Vig—am} if & >2m,
j=1

for i € {1,2,3,...,n}.

Notice that, mp®) has n hyperedges, (n — 1)m vertices of degree 2 and
(n — 1)(k — 2m) + k pendant vertices. Therefore, ™P® has (n — 1)(k — m) + k

vertices.

Example 2.5. Consider a 1-node 4-uniform hyperpath, lel). According to

Definition 2.5, all hyperedge of *P\* are

€1 = {wl,h W1, U1,17U1,2}, €y = {w2,17w3,1,U2,1, U2,2}>

€3 = {w3,1, W4q,1, U3,1,U3,2}7 €4 = {w4,1,w5,1>v4,1, U4,2}.

We can draw 1P4(4) as in Figure 2.4.



0100

Figure 2.4: A 1-node 4-uniform hyperpath

Definition 2.6. Let m, n, and k be integers such that m > 1,n > 3, and

k > 2m. An m-node k-uniform hypercycle, ™ ,(Lk), is a hypergraph consists of

hyperedge set E = {e1,eq,€3,...,¢e,} and vertex set V = J;_, e; where

m
U {wijs wit1;} if k= 2m,
_ ) =1
€; = .
U {wij, wig1;} U{vin, vig, vig, ... Vig—om} if k> 2m,
j=1

for i € {1,2,3,...,n} and w,41,;, = wy; for j € {1,2,3,...,m}.

Notice that, melk) has n hyperedges, nm vertices of degree 2 and n(k — 2m)

pendant vertices. Therefore, "C{* has n(k —m) vertices.

Example 2.6. Consider a 1-node 3-uniform hypercycle, IC’E’). According to

Definition 2.6, all hyperedges of 1C’£3) are

€1 = {w1,1,w2,1,1)1,1},€2 = {w2,1>w3,1,v2,1}7

€3 = {w3,1,w4,1,1}3,1}, €4 = {w4,17w1,1>1}4,1}-

We can draw 'C\?) as in Figure 2.5.



€1 €2

0
B

€4 €3

Figure 2.5: A 1-node 3-uniform hypercycle

Note that, hypergraphs Kff), 1P7§2), and 107(12) are the complete graph K, the

path graph P, , and the cycle graph C,, in ordinary graph, respectively.

2.2 The Super Edge-Magic Labeling

According to [1], the super edge-magic labeling was first defined for a graph
G. Tt is a bijective function f : V(G)U E(G) — {1,2,3,...,|V(G)| + |E(G)|}
satisfying (i) there exists a constant A such that for all zy € E(G), f(z) + f(y) +
flzy) = X and (ii) f(V(G)) ={1,2,3,...,|V(G)|}. Note that, a graph G admits
a super edge-magic labeling is said to be super edge-magic. In [2], there is an
equivalent form of super edge-magic labeling, i.e., a bijective function f: V(G) —
{1,2,3,...,|V(G)|} such that the set {f(z)+f(y) | zy € E(G)} consists of |E(G)|
consecutive integers.
In this thesis, we extend the notion of super edge-magic labeling for a hy-
pergraph and its equivalent form, stated as the Definition 2.7 and Theorem 2.8,

respectively.



Definition 2.7. For a hypergraph H, the super edge-magic labeling is a bijective
function f: VUE — {1,2,3,...,p+ q} satisfying (i) there exists a constant A

such that for all e € E, %" . f(v) + f(e) = A and (ii) f(V)={1,2,3,...,p}.

Notice that, in the case of an empty edge, e = @&, we let Y _  f(v) = 0.
Moreover, a hypergraph admits a super edge-magic labeling is called super edge-
magic and A is called the magic constant. Remark that if H is a 2-uniform
hypergraph, then Definition 2.7 agrees with the definition of super edge-magic

labeling in graph.

Example 2.7. Consider a hyperpath 1P4(2) that has p = 5 vertices and ¢ = 4

hyperedges. We can give a bijection function f: VUFE — {1,2,3,...,9} by

(shown in Figure 2.6).

BRONG

Figure 2.6: The super edge-magic labeling of 1P4(2)

Then, there exists a constant A = 14 such that

Zf )+ fler) = flwig) + flwen) + fler) =14+44+9=14=A,

veeg

ST FW) + flea) = Flwan) + flwsy) + flez) =4+2+8=14= A,

vee

> f(v) + fles) = flwsy) + f(wsy) + fles) =2+5+7=14= A,

vees
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> )+ fles) = flwag) + f(wsy) + fles) =5+3+6=14=A.

veey
Since f(V) = f({w11,we, w31, war,ws1}) = {1,2,3,4,5}, f is a super edge-

magic labeling. Hence, 1P4(2) is super edge-magic.

Observe that the labels on each hyperedge of super edge-magic hypergraphs are
always consecutive integers. Since the labels on each hyperedge and its vertices add
up to constant, the sums of labels of vertices in each hyperedge are also consecutive.
Therefore, by this observation, we have the equivalent form of super edge-magic

labeling such as Theorem 2.8.

Theorem 2.8. Let H be a hypergraph. Then, H is super edge-magic if and only
if there exists a bijection f 'V — {1,2,3,...,p} such that {)_ .. f(v)| e € E}

is a set of q consecutive integers. Moreover, the magic constant A is p + q +

min{Y, ., f(v)] e € E}.

Proof. If £ = @, then H is trivially super edge-magic and {} .. f(v)| e € E}
is an empty set which in this context it can be regarded as a set of 0 consecutive
integer. Hence, without loss of generality, we may suppose that F # &.

Assume that H is super edge-magic. Then, there exists a super edge-magic
labeling f: VUE — {1,2,3,...,p+q} and a constant A. Thus, A =3 __ f(v)+
f(e) for all e € E, which implies > _ f(v) = A — f(e) for all e € E. Since f
is a super edge-magic labeling, we have f(V) = {1,2,3,...,p}. Hence, f(E) =
{p+Lp+2,p+3,...,p+ q}. Therefore,

{Zf(v)

vee

eEE}:{A—f(e)\GEE}
={A-—(p+1),A=(p+2),A—={p+3),....,.A—(p+q)}

is a set of ¢ consecutive integers.
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On the other hand, assume that the necessary condition holds. Let o be an
integer such that {}° .. f(v)|e € E} ={a+1,a+2,a+3,...,a+q}. Then, we
define g : F — {p+1,p+2,p+3,...,p+q} by

gle) =p+q+(a+1)=) f(v)

vee

for e € E. Thus, g is bijective. Hence, fUg: VUE — {1,2,3,...,p+q} defined
by

flz) ifzeV,
(fUg)(z) =
g(x) ifzxek,

is a bijection.

To show that f U g is a super edge-magic labeling. Let e € E. Then,

S (FUg@) + (Fug)e) = fv)

vee vee
:Zf(v)+<p+q+ (a+1)=> f(v )
vee vee
=p+tqg+ta+l

Therefore, fUg: VUE — {1,2,3,...,p+q} is a super edge-magic labeling of H

with A=p+qg+a+1=p+qg+min{d ., f(v)| e € E} as desired. O
Corollary 2.9. A hypergraph H having at most one hyperedge is super edge-magic.

Proof. Since |V| = p, there exists a bijection f:V — {1,2,3,...,p}.

In the case of ¢ = 0, then {} .. f(v)| e € E} = @ and H is trivially super
edge-magic.

In the case of ¢ = 1, let £ = {e1}, then {}_ . f(v)]e€ E} ={> . f(v)}
is a singleton which in this context it can be regarded as a set of one consecutive

integer. Thus, by Theorem 2.8, H is super edge-magic. [
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2.3 The Necessary Condition

The important necessary condition for a graph G being super edge-magic
was showed in [1], i.e., if G is super edge-magic such that |E(G)| > 1, then
by investigating the extremal value of A, the inequality |E(G)| < 2|V(G)| — 3
is obtained. In Theorem 2.10, we show the necessary condition for a k-uniform

hypergraph H being super edge-magic in a similar way.

Theorem 2.10. Let H® be a k-uniform hypergraph such that ¢ > 1. If H® 4s

super edge-magic, then q < kp — k?> + 1.

Proof. Assume that H® is super edge-magic. Then, there is a super edge-magic
labeling f of H®. Note that, f:V UE — {1,2,3,...,p+q} is a bijection such
that >° . f(v)+ f(e) = A forall e € E and f(V)=1{1,2,3,...,p}.

In case of k& = 0, the hypergraph H®) has ¢ = 1 which satisfies the above
inequality. Hence, we assume that k£ > 0.

Since ¢ > 1, let ej,e; € E be such that f(e;) = p+¢q and f(e2) = p+ 1.
Then, we obtain inequalities,

A= "f)+ flen) >14+2+3+-+k+(p+q)

veeg

and

A=) f@) +fle) <pt+ -+ -2+ +@—k+1)+{m+1)

veEe2
Hence,

142434+ +k+(p+q <p+@-1D+@—-2)+--+@—-k+1)+(p+1)

which implies ¢ < kp — k? + 1. O
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Note that the condition ¢ > 1 as shown in Theorem 2.10 cannot be omitted.
For example, let H be a hypergraph such that ¢ = 0. Then, by Corollary 2.9, H
is super edge-magic. Since H can be regarded as a (p + 1)-uniform hypergraph,
we have kp—k?*+1= (p+1)p—(p+1)*+1 = —p < 0 = ¢ which contradicts the

necessary condition.



CHAPTER II1

COMPLETE UNIFORM HYPERGRAPHS

First, we recall that a complete k-uniform hypergraph, K,(lk), has (Z) hyper-

edges. Then, by using Corollary 2.9, we obtain the following theorem.
Theorem 3.1. K and K are super edge-magic.

Proof. Since K ) and K ) have (8) =1 and (Z) = 1 hyperedge, respectively.

Thus, K and K are super edge-magic by Corollary 2.9. [

To give a super edge-magic labeling on a hypergraph H, we then construct
only a bijective function between V and {1,2,3,...,p} satisfying condition in
Theorem 2.8. The following theorem is an observation concerning a complete 1-

uniform hypergraph and a complete (n — 1)-uniform hypergraph of n vertices.
Theorem 3.2. K ) and K 1 are super edge-magic.

Proof. In the case of n = 1, the complete hypergraphs Kfl) and Kfo) are super
edge-magic by Theorem 3.1. Hence, we assume that n > 1.

Let V = V(K = V(K™ = {v1,v0,v3,...,0,}. Note that E(KV) =
{({vi}l i€ {1,2,3,...,n}} and B(KYV) = {V — {v;}] i € {1,2,3,...,n}} have
cardinality n. Then, we define the bijection f:V — {1,2,3,...,n} by f(v;) =i
Hence,

o

vee

eEEK(l)}:{ﬂi€{1,2,3,...,n}}
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and

{zm

vee

eeE(K,g”—l))}:{(1+2+3+---+n)—z‘|ie{1,2,3,...,n}}

i€ {1,2,3,...,n}}

which are the sets of n consecutive integers. By Theorem 2.8, K" and K"V

n(n+3)

are super edge-magic with A =2n +1 and A = =

, respectively. O

Example 3.1. Consider a complete 1-uniform hypergraph, K il), of which V' =
{v1,v9,v3,v4} and E = {{v1}, {va}, {vs}, {va}}. We define a bijection f from V
to {1,2,3,4} by f(v;) =1, then {>_ .. f(v)| e € E} ={1,2,3,4} is the set of four

consecutive integers. Therefore, by Theorem 2.8, f is a super edge-magic labeling

ONOBONO

Figure 3.1: The vertex-labeling of a complete 1-uniform hypergraph, K f)

of Kf).

Example 3.2. By using the same bijection as in Example 3.1, we then obtain
Do fU)] e € E(Kf))} = {6,7,8,9} which is the set of four consecutive integers.

Hence, by Theorem 2.8, f is a super edge-magic labeling of K 4(3).
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=

(> )

B

Figure 3.2: The vertex-labeling of a complete 3-uniform hypergraph, K f’)

If we consider Theorem 3.1 and Theorem 3.2, one may ask a natural ques-
tion. Are there any other super edge-magic complete uniform hypergraphs? The

following lemma will give the answer.

Lemma 3.3. Let n and k be integers such that 0 < k < n. Then, (Z) < kn—k%*+1

if and only if k € {0,1} or n € {k, k+ 1}.

Proof. Tt is easy to see that k € {0,1} or n € {k,k + 1} satisfies the inequality.
Assume that £ > 1. We will show that if n > k + 2, then (Z) > kn — k®> +1, by
using the mathematical induction on n.

First, let n = k + 2, thus,

k42 k% + 3k k+ 3k
<Z>:( _]: ): —;3 +1> J;?) +1=2k+1=kn—k +1,

since k? >k > 1.
Next, assume n > k + 2 be such that (Z) >kn—k>+1.Sincen—k>2>0

and k > 1, we obtain

kE(n—k)>n—k
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kn—kK+1>n+1—k
kn—k*+1
n+1-—k

n—+1 B n-+1 n
k Cn+1—k k
k
1+ — — k2 +1
><+n—|—1—k)<lm kE*+1)

kn —k*+1
n+1-—k

> 1.

Observe that,

:lm—k2+1+k(

>kn—k+1+k

=k(n+1) -k +1.

Therefore, (Z) > kn — k% +1 for every n > k+ 2. Consequently, since 0 < k < n,

(7) <kn—k*+1if and only if k € {0,1} or n € {k,k+1}. O

Note that n and (Z) in Lemma 3.3 are the number of vertices and hyperedges
of K,(lk), respectively. By applying Theorem 2.10, we obtain the main result as

Theorem 3.4.

Theorem 3.4. A complete k-uniform hypergraph, Kﬁk), s super edge-magic if

and only if k € {0,1} or n € {k,k+1}.

Proof. Assume that K& s super edge-magic. By Theorem 2.10, (Z) < kn—k?+1.
Then, by Lemma 3.3, k € {0,1} or n € {k,k+ 1}.
On the other hand, assume that k£ € {0,1} or n € {k,k+ 1}.
If £ =0, then by Theorem 3.1, K& s super edge-magic.
If k=1, then by Theorem 3.2, K® is super edge-magic.
If n =k, then by Theorem 3.1, Kflk) is super edge-magic.

If n=Fk+ 1, then by Theorem 3.2, K& is super edge-magic. O]
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In ordinary graph, according to [1], the super edge-magic complete graphs are
only Ky, Ky and Kj3. If we set k = 2 in Theorem 3.4, then the only 2-uniform
super edge-magic hypergraphs are K§2) and Kéz). Thus, our main result agrees
with that in graph. Notice that, by Defintion 2.4, K; is not a 2-uniform complete
hypergraph. However, K is super edge-magic by Corollary 2.9 since it has no

hyperedge.



CHAPTER IV

m-NODE k-UNIFORM HYPERPATHS

In this chapter, we will show that every m-node k-uniform hyperpath mP,Sk),
defined in Chapter 2, is super edge-magic. For simplicity, throughout this chapter,

) instead of an m-node k-uniform hyperpath. First, we

we use a hyperpath m plk
begin with the known result in graph, i.e., 1P | For ease of reference, let we give

a proof of this result here.
Theorem 4.1. A hyperpath Lp® s super edge-magic.

Proof. Note that, 1P7(L2) has p=n+1 and ¢ =n.

Case (i): n is odd. Define f:V — {1,2,3,...,n+ 1} by

L
;Z itie{1,3,5,...,n},
floa)=9 704
— if i € {2,4,6,...,n+1}.

To show that f is bijective, since |V| = [{1,2,3,...,n+1}|, it suffices to show
that f is surjective. Let a € {1,2,3,...,n+ 1}.

If a € {1,2,3,..., 2}, then 2a — 1 € {1,3,5,...,n}. Thus, f(ws-11) =

1+(2a—1) _

3 a.

If a € {23, 25 240 n+ 1}, then 2a —n—1€ {2,4,6,...,n+1}. Thus,

n+1+(2a—n—1)
f(w2a—n—1,1) =5 = a.
Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =
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{w;1,wis11} € E. Since for i € {1,3,5,...,n},

fwin) + f(wi11) = (132) + (n+ 1Z(i+ 1))

n—+3

— + 1,

and for i € {2,4,6,...,n — 1},

flwin) + f(wizi) = (%) + (#)

n+3 .
= + 1.

2

Hence, for i € {1,2,3,...,n},

n+3

5 + 1.

Z f() = flwix) + fwig11) =

vee;
Thus, {} . f(0)]i€{1,2,3,...,n}} ={22 + 1,28 42, 88 43 285 4p}
consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic
labeling with A = 5”—;7

Case (ii): n is even. Define f:V — {1,2,3,...,n+ 1} by

.
;” itie{1,3,5...,n+1},
flwin) = n+24+i1
P i {2,460, n).

To show that f is bijective, since |V| = |{1,2,3,...,n+ 1}|, it suffices to show
that f is surjective. Let a € {1,2,3,...,n+ 1}.

If a € {1,2,3,...,2}, then 2a — 1 € {1,3,5,...,n+ 1}. Thus, f(wse11) =

1+(2a—1)
= =

If a € "T“,"T%,”T%,...,n+1}, then 2a —n — 2 € {2,4,6,...,n}. Thus,

a.

FWag—n_21) = w —a.

Therefore, f is surjective.
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To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{wi1,wis11} € E. Since for i € {1,3,5,...,n— 1},

Fwin) + Fwisns) = (1 “) . (n+2+2<z'+ 1))

2

and for i € {2,4,6,...,n},

flwin) + f(wita) = (#) + (#)

n+4
= + 1.

2

Hence, for i € {1,2,3,...,n},

n+4
2

+ 1.

Z f() = flwix) + fwig11) =

vee;
Thus, {3 ,c. f(0)]i€{1,2,3,... n}} ={22+ 1,22 +2, 24 +3 .. %M 4+n}
consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic
labeling with A = 5"—;8. Consequently, the hyperpath IP,SQ) is super edge-magic.

O
Example 4.1. For the hypergraph 1P5(2) with vertices
Wi,1, W21, W31, We,1, W51, We, 1,
and hyperedges

€1 = {w1,17w2,1}, €2 = {w2,17 w3,1}, €3 = {w3,1,w4,1},

€4 = {w4’1,w571}, €5 = {w5,1, w6,1}7

by Theorem 4.1, we label each vertex as follows:

f(wm) =1, f(w2,1) =4, f(w3,1) = 2,



f(w4,1> =5, f(w5,1> =3, f(w6,1) = 6.

9000

Figure 4.1: The vertex-labeling of IPQZ)

The vertex-labeling of 1P5(2) is shown in Figure 4.1 and we see that

Zf(v):f(w1,1)+f(w2,1)=1+4=5,

Then, {> ... f(v)|i€{1,2,3,4,5}} = {5,6,7,8,9} is a set of five

consecutive integers. Hence, by Theorem 2.8, 1P5(2) is super edge-magic.

Example 4.2. For the hypergraph 1P4(2) with vertices
Wy,1, W21, W31, Wq,1, W51,
and hyperedges
€1 = {w1,1,w2,1}, €2 = {w2,1, w3,1}7 €3 = {’w3,1,w4,1}, €4 = {w471, 'UJ5,1},
by Theorem 4.1, we label each vertex as follows:

f(wl,l) =1, f(w2,1) =4, f(wz,l) =2, f(w4,1) =5, f(w5,1) = 3.

22
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Figure 4.2: The vertex-labeling of 1P4(2)

The vertex-labeling of 1P4(2) is shown in Figure 4.2 and we see that

Zf(“):f(w1,1)+f(w2,1)=1+4=5,

Then, {>_,c.. f(v)] i€ {1,2,3,4}} = {5,6,7,8} is a set of four consecutive inte-

gers. Hence, by Theorem 2.8, 1Pf) is super edge-magic.

Next, we construct super edge-magic labelings for small hyperpaths 1p® (in

Theorem 4.2), 2p® (in Theorem 4.3), and 2p® (in Theorem 4.4).
Theorem 4.2. A hyperpath 1P s super edge-magic.

Proof. Note that, 'P®) has p=2n+1 and ¢ = n.

Define f:V — {1,2,3,...,2n+ 1} by

flwig) =i ifiec{1,2,3,...,n+1},

foil) =2n+2—i ifi € {1,2,3,...,n}.

To show that f is bijective, since |V| = |{1,2,3,...,2n + 1}|, it suffices to

show that f is surjective. Let a € {1,2,3,...,2n+ 1}.
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If a€{1,2,3,...,n+ 1}, then f(wy1) = a;
Ifae{n+2,n+3,n+4,...,2n+1}, then 2n+2—a € {1,2,3,...,n}. Thus,
f(vant2-a1) =2n+2—(2n+2 —a) = a.
Therefore, f is surjective.
To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{wi 1, wit11,vi1} € E. We observe that, for i € {1,2,3,...,n},

flwir) + flwiz11) =i+ (1 +1)

=14 2.
Hence, for i € {1,2,3,...,n},

Z f() = flwir) + fwiza1) + fvin)

vee;
=142+ 2n+2—1)

=2n+ 3 +1.

Thus, {>_,c., f(v)]i€{1,2,3,...,n}} = {2n+4,2n+5,2n+6, ..., 3n+3} consists
of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

A =5n+5. U

Example 4.3. For the hypergraph 1P4(3) with vertices

W1,1, W21, W31, W41, W5 1,

V1,1,V2,1, V3,1, V4,1,

and hyperedges

€1 = {w1,1,w2,1,U1,1},€2 = {w2,1>w3,1,?12,1}7

€3 = {w371,w471,v371}, €4 = {w4,1>w5,1,1}4,1}7
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by Theorem 4.2, we label each vertex as follows:

flwi) =1, f(wa1) =2, f(ws) =3, f(wan) =4, f(wsy) =5,
foi1) =9, f(ve1) =8, f(vsa) =7, f(va1) = 6.

9: 00

Figure 4.3: The vertex-labeling of 1P4(3)

The vertex-labeling of 1P4(3) is shown in Figure 4.3 and we see that

Zf(”) = flwiy) + flwr) + f(v12) =142+ 9 =12,

> () = flwar) + fwsy) + fvag) =4+5+6=15.

Then, {> .., f(v)]i€{1,2,3,4}} ={12,13,14,15} is a set of four

consecutive integers. Hence, by Theorem 2.8, 1P4(3) is super edge-magic.
Theorem 4.3. A hyperpath 2Pn(4) 1S super edge-magic.

Proof. Note that, 2p{Y has p=2n+2 and ¢ =n.

Case (i): n is odd. Define f:V — {1,2,3,...,2n + 2} by

(

1 ifie{1,2,3,...,n+ 1} and j =1,
4 5—1

flwiz) = % itic{1,3,5,. ..,n}and j =2,
3n+95—1

\ 5 ifi €{2,4,6,...,n+1} and j = 2.
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To show that f is bijective, since |V| = |{1,2,3,...,2n + 2}, it suffices to
show that f is surjective. Let a € {1,2,3,...,2n + 2}.
If a € {1,2,3,...,n+ 1}, then f(w,1) =a.
Ifac{n+2,n+3n+4,. .., %3} then 3n+5—2a € {2,4,6,...,n+1}.
3n+5—(3n+5—2a)

Thus, f(wsnt5-24,2) = — s =a.

If a € {32 3ndT 309 9n+2}, then 4n+5—2a € {1,3,5,...,n}. Thus,

An+5—(4n+5-2
F(Wini5-201) = W —a.

Therefore, f is surjective.
To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{wi 1, Wit11, Wiz, w12} € E. Since for i € {1,2,3,...,n},

fwin) + flwigiq) =i+ (1 +1)

=1+ 2i,

for i € {1,3,5,...,n},
dn+5—1 3n+5—(1+1
flwig) + f(wiz12) = 7 + 7 ( )

™m—+9 .
= — 1
2 b

for i € {2,4,6,...,n— 1},
n+5—17 4dn+5—(i+1
flwig) + f(wig12) = 7 + 5 ( )

m—+9 .
= — 9.
2

Hence, for i € {1,2,3,...,n},
Z f() = fwin) + f(wirr1) + f(wiz) + f(wisi2)

vee;
Tn+9
::u+20+(72% —0

B ™+ 11
2

1.
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Thus, {>_,c., f(v)]i€{1,2,3,...,n}} = {7”;114—1, 7";114_27 7”;114_3’ . %4_
n} consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic

labeling with A = 12T

Case (ii): n is even. Define f:V — {1,2,3,...,2n+ 2} by
(

i ific{1,2,3,...,n+1}and j =1,

30 +5—i
Flwig) =320 F 270 G e 185, n+ 1y and j =2,

dn+6 —1i
\ 2
To show that f is bijective, since |V| = [{1,2,3,...,2n + 2}|, it suffices to

ifi € {2,4,6,...,n} and j = 2.

show that f is surjective. Let a € {1,2,3,...,2n + 2}.

If a € {1,2,3,...,n+ 1}, then f(w,1) =a.

Ifae{n+2,n+3n+4,.. ., %} then 3n+5—2a € {1,3,5,...,n+ 1},

3n+5—(3n+5—2a
Thusa f(w3n+572a,2) = % =a.

If q € {30, 3nt8 3ntl0 - 2n+2}, then 4n+6—2a € {2,4,6,...,n}. Thus,

_ 4An4+6—(4n+6—2a) __
f(w4n+6—2a,2) =5 — _=a.
Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{wi 1, Wit11,Wi2, w12} € E. Since for i € {1,2,3,...,n},

fwir) + flwiz11) =i+ (1 + 1)
— 142,
for i € {1,3,5,...,n— 1},
Fwss) + Fwiers) = 3n —|-25 —1 L 4n + 6 ; (1+1)

_ 10
-2 ,

for i € {2,4,6,...,n},

n+6—i  3n+5—(i+1)

flwi2) + f(wiz12) = 7 5
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™m+10 .
= — 1.

Hence, for i € {1,2,3,...,n},

Z f() = flwin) + f(wirr1) + f(wig) + f(wis2)

vee;
7 10
:(1+2¢)+( n; —i>
7n+12+.
= 7.
2

Thus, {>,c., f(0)li€{1,2,3,... ,n}} = {T2+1, T2 4p Tnil2 i3 Tndl2y
n} consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic
labeling with A = %. Consequently, the hyperpath 2P,§4) is super edge-magic.

O

Example 4.4. For the hypergraph QPES4) with vertices

wWy,1, W21, W31, W41, W51, We 1,

W1,2, W22, W3 2, W42, W5 2, We 2,
and hyperedges

€1 = {w1,17w2,1, W1,2, U)Q,z}, €2 = {w2,1,w3,1,w2,27w3,2}7
€3 = {w3,17w4,1, w3 2, UJ4,2}, €4 = {’w4,17w5,1,w4,2,w5,2},

€5 = {w571, We,1, W5,2, UJG,Q},
by Theorem 4.3, we label each vertex as follows:

f(w1,1) =1, f(w2,1) =2, f(w3,1) =3, f(w4,1) =4, f(w5,1) =5, f(w6,1) =6,

flwi2) =12, f(waz) =9, f(wsa) = 11, f(waz) =8, f(wsz) = 10, f(we2) = 7.
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Figure 4.4: The vertex-labeling of 2P

The vertex-labeling of 2P5(4) is shown in Figure 4.4 and we see that

Z f) = f(wiy) + f(we) + flwia) + flwes) =1+2+12+9 = 24,

Then, {> ., f(v)] i €{1,2,3,4,5}} = {24,25,26,27,28} is a set of five consecu-

tive integers. Hence, by Theorem 2.8, QPEE4) is super edge-magic.
Example 4.5. For the hypergraph 2]34(4) with vertices

Wi,1, W21, W31, W41, W51,

W1,2, W2, W3,2, W42, W52
and hyperedges

€1 = {w1,1,w2,1, wy,2, w2,2}7 €r = {w271,w371,w272,w372},

€3 = {w3,17w4,1, W32, w472}, €4 = {w4,17w5,1)w4,27w5,2}7

by Theorem 4.3, we label each vertex as follows:

f(wl,l) =1, f(w2,1) =2, f(w3,1) =3, f(w4,1) =4, f(’w5,1) =5,
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flwig) =8, f(waz) =10, f(ws2) =7, f(waz) =9, f(ws2) = 6.

908

Figure 4.5: The vertex-labeling of 2P4(4)

The vertex-labeling of 2P4(4) is shown in Figure 4.5 and we see that

D ) = flwia) + fwa) + f(wiz) + flwy) =1+2+8+10 =21,

Then, {3 .. f(v)] i €{1,2,3,4}} = {21,22,23,24} is a set of four
consecutive integers. Hence, by Theorem 2.8, 2P4(4) is super edge-magic.
Theorem 4.4. A hyperpath 2P7§5) 1S super edge-magic.
Proof. Note that, 2P has p=3n+2 and g =n.
Define f:V — {1,2,3,...,3n+ 2} by
7 ifie{1,2,3,...,n+ 1} and j =1,
flwig) =
2n+3—1i ifie{l1,2,3,...,n+ 1} and j = 2,
fvi1)= 2n+2+4¢ ifie{l,2,3,...,n}.
To show that f is bijective, since |V| = [{1,2,3,...,3n + 2}|, it suffices to

show that f is surjective. Let a € {1,2,3,...,3n + 2}.
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If a€{1,2,3,...,n+ 1}, then f(w,1) = a.
lfae{n+2,n+3,n+4,...,2n+2}, then 2n+3 —a € {1,2,3,...,n+ 1}.
Thus, f(wanis—a2) =2n+3—(2n+3 —a) = a.
Ifae{2n+3,2n+4,2n+5,...,3n+ 2}, then a —2n — 2 € {1,2,3,...,n}.
Thus, f(Va—2n-21) =2n+2+ (a —2n —2) =a.
Therefore, f is surjective.
To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{wi 1, wit11, Wiz, Wit12,vi1} € E. We observe that, for i € {1,2,3,...,n+ 1},

f(win) + f(wig) =i+ (2n+3 —1)

=2n+ 3.
Hence, for i € {1,2,3,...,n},

Z f() = f(wir) + flwir1) + flwi2) + f(wigr2) + fvin)

vee;

= (f(wi1) + flwiz)) + (f(wirr1) + f(wig12)) + f(vi)
=(2n+3)+ (2n+3)+ (2n+2+1)
=6n+8+1.

Thus, {) .., f(v)] i€ {1,2,3,...,n}} = {6n +9,6n + 10,6n + 11,...,7n + 8}

consists of n consecutive integers. By Theorem 2.8, f is a super edge-magic

labeling with A = 10n + 11. O]

Example 4.6. For the hypergraph 2]34(5) with vertices

W1,1, W21, W31, W41, W5 1,
W1,2, W22, W32, W42, Ws5,2,

V1,1, V2,1,V31, V41



and hyperedges

€1 = {wl,h w2,17w1,2,w2,2,1}1,1}, €2 = {w2,17w3,1,w2,2,w3,2, U2,1}7

€3 = {w3,1,w4,17w3,2,’w4,2,U3,1}7 €4 = {w4,17w5,1,w4,27w5,2, U4,1}7

by Theorem 4.4, we label each vertex as follows:

f(w1,1) =1, f(w2,1) =2, f(w371) =3, f(w4,1) =4, f(’w5,1) =5,
flwig) =10, f(wa2) =9, f(ws2) =8, f(waz) =7, f(wsz2) =6,

f(vl,l) = ]_1, f(’UQJ) = 12, f(?]371) = 13,f(1}471) = ]_4

0208

Figure 4.6: The vertex-labeling of 2P4(5)

The vertex-labeling of 2P4(5) is shown in Figure 4.6 and we see that

> F) = flwi) + fwa) + f(wio) + flwas) + forn)

veeg

=14+24+10+9+11
= 33,

Z f(v) = flwz) + f(wsa) + flwaz) + f(wsz) + f(va)

vee

=24+3+94+8+12
= 34,

Z f) = f(ws) + flwan) + fwse) + flwaz) + f(vsn)

vees

=3+4+8+7+13

32
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= 35,

Z f(w) = flwar) + f(wsa) + flwaz) + f(wsz) + f(var)

veEey

=4+5+7+6+14

= 36.

Then, {}_,c.. f(v)] i €{1,2,3,4}} = {33,34,35,36} is a set of four

consecutive integers. Hence, by Theorem 2.8, 2P4(5) is super edge-magic.

Now, we are ready to enlarge the small super edge-magic hyperpaths, 1PTS,2),
1P 2p® and 2P to bigger super edge-magic hyperpaths by either adding
more vertices into the uniform hyperedges or adding more vertices into each node

of a super edge-magic hyperpath.

k+2)

Lemma 4.5. If mp) s super edge-magic, then m pf 15 also super edge-magic.

Proof. Let mpk) — (V, E). By Definition 2.5, we can construct m pk+2) by con-
sidering each e; € E, define €; = €; U{v; x—am+1, Vik—2m+o} for i € {1,2,3,... ,n}.
Then, P = (V| E) where E = {é,,65,63,...,6,} and V = -61 é;. Note that,
Vi=(m-1)(k—m)+k |V]|=(n—-1)(k—m)+k+2n, and \lj—]_|:n: |E|.
Assume that mPF) is super edge-magic. By Theorem 2.8, there is a bijection
[V ={1,2,3,...,(n—1)(k—m) + k} such that {>° . f(v)| e € E} is a set of
n consecutive integers. We define a function f by
(n—1)(k—m)+k+i if j=k—2m+1,

flvig) =
m—1k—-—m)+k+2n+1—17 ifj=k—2m+2,

for each i € {1,2,3,...,n}. Next, we define f:V — {1,2,3,...,(n—1)(k—m)+
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k+2n} by

B flv) fveV,
flv) =
f(v) ifoeV -V,

for v € V. Since f(V) = {1,2,3,...,(n — 1)(k —m) + k} and f(V —V) =
{n—1)k-—m)+k+1,(n—-1)(k—m)+k+2,(n—-1)(k—m)+k+3,...,(n—
1)(k—m)+k+2n}, f is a bijection from V to {1,2,3,...,(n—1)(k—m)+k+2n}.

To see that f is a super edge-magic labeling, let é; € E. Then, for i €

{1,2,3,...,n},

D J@) =" F@) + foig-2mn) + f(vip-2me2)

vEE; vEe;

=> f)+((n=1)(k=m)+k+i)+(n—1)(k—m)+k+2n+1-1)

=> f()+2(n—1)(k—m)+ 2k +2n+1.

vee;

Since {> .. f(v)] e € E} is a set of n consecutive integers, similar goes for
_f(v)| € € E}. Consequently, by Theorem 2.8, m P2 s super edge-magic.
vee q Y, By P g g

]

Example 4.7. By applying Lemma 4.5 with the vertex-labeling of 1P4(2) (shown in
Figure 4.2), we obtain the vertex-labeling for 1P4(4) which is also super edge-magic

labeling as shown in Figure 4.7.

0,00,

Figure 4.7: The vertex-labeling of 1P4(4) obtained by applying Lemma 4.5 to the

vertex-labeling of 1P*
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k+4)

Lemma 4.6. If mp®) g super edge-magic, then m+2 pf s also super edge-

magic.

Proof. Let mpkF) — (V,E). By Definition 2.5, we can construct m-+2 pk+4) by
considering each e; € E, define é; = €; U {w; m+1, Wim+2, Wit1,m+1, Wit1m+2) for
i€{1,2,3,...,n}. Then, ™2P¥™ — (V E) where E = {é1,6,63,...,6,} and
¥ = U é. Note that, [V] = (n—1)(k—m)+k, V| = (n—1)(k—m) + k+2n +2,
and |ZE1| =n=|E|.

Assume that mPék) is super edge-magic. By Theorem 2.8, there is a bijection
f:V—={1,2,3,...,(n—1)(k—m) +k} such that {>° . f(v)| e € E} is a set of
n consecutive integers. We define a function f by
(n—1)k—m)+k+i if j=m+1,

fwiz) =
m—1k—-—m)+k+2n+3—1i ifj=m+2,

foreach i € {1,2,3,...,n+1}. Next, wedefine f : V — {1,2,3,...,1,2,3,..., (n—
)(k—m)+k+2n+ 2} by

_ flv) fveV,

f=4" ~

flv) fveV -V,

for v € V. Since f(V) = {1,2,3,....,(n — 1)(k —m) + k} and f(V —V) =
{(n=1)(k—=m)+k+1,(n—1)(k—m)+k+2,(n—1)(k—m)+k+3,...,(n—1)(k—
m)+k+2n+2}, f is a bijection from V to {1,2,3,..., (n—1)(k—m)+k-+2n+2}.

To see that f is a super edge-magic labeling, let é; € E. Observe that, for

ie{1,2,3,...,n}.

~ ~

fimir) + f(Wimy2) = ((n = 1)(k —m) + k +1)

+((n=1)(k—m)+k+2n+3—1)



36

=2(n—1)(k —m) + 2k + 2n + 3.
Then, for 7 € {1,2,3,...,n}.

Z flo) = Z F@) + f(wimi1) + F(Wimy2) + F(Wis1mi1) + F(wir1me2)

= Z f(v) + f(wi,m-i-l) + f(wi,m-‘rQ) + f(wi+1,m+1) + f(vi—i-l,m-i-Q)
= f()+ 2(n — 1)(k —m) + 2k + 2n + 3)

+(2(n—1)(k—m)+2k+2n+3)

= f(v)+4(n—1)(k—m) + 4k + 4n + 6.

vee;

Since {> ... f(v)] e € E} is a set of n consecutive integers, similar goes for
D ee f(v)] € € E} Consequently, by Theorem 2.8, m+2 pkt) i super edge-

magic. [

Example 4.8. By applying Lemma 4.6 with the vertex-labeling of 1P4(2) (shown in
Figure 4.2), we obtain the vertex-labeling for 3P4(6) which is also super edge-magic

labeling as shown in Figure 4.8.

Figure 4.8: The vertex-labeling of 3P4(6) obtained by applying Lemma 4.6 to the

vertex-labeling of 1P{®)

To sum up this chapter, by using both Lemma 4.5 and Lemma 4.6, we will
show that all hyperpaths mp® are super edge-magic. In general, to construct a
super edge-magic hyperpath mPr(lk), we first find the starting small hyperpath of

which super edge-magic as follow:
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e if m and k are odd, then the starting hyperpath is 1P,(L3),
e if m and k are even, then the starting hyperpath is 2P,§4),

e if m is odd and k is even, then the starting hyperpath is 1P,§2),

e if m is even and k is odd, then the starting hyperpath is 2pi®.

Then, we apply Lemma 4.6 for (mT_ﬂ times and Lemma 4.5 for (

%W in any
order to the starting hyperpath. We then obtain the super edge-magic labeling for

m pk). Therefore, we have the main theorem.
Theorem 4.7. All hyperpaths mP,&’“) are super edge-magic.

Example 4.9. To obtain the super edge-magic labeling of 5P4(13) with m =5
which is odd and k = 13 which is odd, we start with the super edge-magic la-
beling of 1P4(3). Then, we apply Lemma 4.6 for (%W = 2 times and Lemma 4.5
for {%@_ﬂ = 1 time, respectively. Therefore, we have the super edge-magic

labeling of 3P{" 5 P and 5P{* | respectively.

000

Figure 4.9: The super edge-magic labeling of 1P4(3)

006

Figure 4.10: The super edge-magic labeling of 3P4(7)
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Figure 4.12: The super edge-magic labeling of 5P4(13)

Example 4.10. To obtain the super edge-magic labeling of 4P4(10) with m = 4
which is even and & = 10 which is even, we start with the super edge-magic
4-2

labeling of 21’?’4(4). Then, we apply Lemma 4.6 for {TW =1 time and Lemma 4.5

for {%—‘ = 1 time, respectively. Therefore, we have the super edge-magic

labeling of 4P® and 4P{"”, respectively.

000

Figure 4.13: The super edge-magic labeling of 2]34(4)

TTTT

Figure 4.14: The super edge-magic labeling of 4P4(8)



39

Figure 4.15: The super edge-magic labeling of 4P4(10)

Example 4.11. To obtain the super edge-magic labeling of 5P4(12) with m =5
which is odd and k& = 12 which is even, we start with the super edge-magic
5-2

labeling of 1PAEQ). Then, we apply Lemma 4.6 for {T] = 2 times and Lemma 4.5

for {%-‘ = 1 time, respectively. Therefore, we have the super edge-magic

labeling of 3P4(6),5 P4(10) and 5P4(12), respectively.

65008

Figure 4.16: The super edge-magic labeling of 1P4(2)

“
€1 €2 €3 €4

Figure 4.17: The super edge-magic labeling of 3P4(6)

ZTTTT

Figure 4.18: The super edge-magic labeling of 5P4(10)
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Figure 4.19: The super edge-magic labeling of 5P4(12)

Example 4.12. To obtain the super edge-magic labeling of 4P4(11) with m = 4

which is even and £ = 11 which is odd, we start with the super edge-magic

labeling of 21[’4(5). Then, we apply Lemma 4.6 for (%w =1 time and Lemma 4.5

for {%(4)_1} = 1 time, respectively. Therefore, we have the super edge-magic

labeling of 4P4(9) and 4P4(11), respectively.

0:0:0.

Figure 4.20: The super edge-magic labeling of 2P4(5>

Figure 4.22: The super edge-magic labeling of 4P4(11)



CHAPTER V

m-NODE k-UNIFORM HYPERCYCLES

In this chapter, we will show that under some conditions on m,n and k, an
m-node k-uniform hypercycle melk), defined in Chapter 2, is super edge-magic.
Note again that, m,n and k are always positive integers such that n > 3 and
k > 2m > 2. For simplicity, throughout this chapter, we use a hypercycle mC’,(zk)
instead of an m-node k-uniform hypercycle. According to [1], a hypercycle Lo®,
an ordinary cycle C,, in graph theory, is super edge-magic if and only if n is odd.

Hence, we state this fact in the first theorem and omit the proof.
Theorem 5.1. [1] A hypercycle Lo s super edge-magic if and only if n is odd.

Remark that, when n is odd, Lo s super edge-magic by a bijection f:V —

{1,2,3,...,n} defined by

.
;” if i €{1,3,5,...,n},
flwin) = n+1+1
o e {246, ,n—1}

Next, we construct super edge-magic labelings for small hypercycles; 1o (in
Theorem 5.2) and 207 for all n (in Theorem 5.3), 1CSY for all even integers n

(in Theorem 5.4), and 2C" for all odd integers n (in Theorem 5.5) .
Theorem 5.2. A hypercycle Lo s super edge-magic.

Proof. Note that, 1O has p=2n and ¢ =n.
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Case (i): n is odd. Define f:V — {1,2,3,...,2n} by

)
.
;” if i €{1,3,5,...,n},

fwin) = 1
ST ifie{2,4,6,...,n—1},
\ 2
)
1 1
sntl, ifie{l,2,3,...,n }
f(vin) = 2 2
n+1+, e n+1 n+3 n+5H
7 1I 7 .ooan .
L 2 2 ) 2 ) 2 ) b

To show that f is bijective, since |V| = [{1,2,3,...,2n}|, it suffices to show
that f is surjective. Let a € {1,2,3,...,2n}.

If a € {1,2,3,..., 2}, then 2a — 1 € {1,3,5,...,n}. Thus, f(wyg_1,1) =

1+(2a—1) _

3 a.

If @ € {3 ntd il n}, then 2a —n —1 € {2,4,6,...,n — 1}. Thus,

2 0 2 0 2
n+1+(2a—n—1
f(Wag—n-1,1) = % =a.
Ifac{n+1ln+2,n+3 Sntly then a — L ¢ {nfl nt3 ndd n}
) b AR ) 2 ) 2 2 ) 27 2 LA *

Thus, f(UainTJrlJ) = ”TH + (a — ”T“) —=a.

If @ € {33 3ntd Sntl  '2n}, then a — 2% € {1,2,3,..., 2}, Thus,
_ 3n+l 3n4ly _

fWa_ang y) = =55 + (a— 255) = a.

Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{wi,l,wHLl,wJ} € F. Since for i € {1,3,5, RN 2},

Flwin) + fwipnn) = (LZH) N (n+ 1+2(z'+ 1))

_n+3
2

+1,
and for i € {2,4,6,...,n — 1},

o) + fuenn) = (555 ) 4 ()

n+3 .
= =+ 1.

2
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Hence, for 7 € {172737 ) nTA}?

Z f() = flwir) + f(wigr1) + f(vin)

vee;
n+3+, n 3n+1+,
g VA 1
2 2
=2n+ 2+ 2.
For i e {#44, 288 o485  n —1},

Z f() = flwir) + flwiz1) + fvin)

vee;
B n+3+. . n—|—1+.
T ! 5 !

=n+ 2+ 2i.

For i =n,

Z f) = f(wp) + flwin) + f(vnn)

() () (5

=2n+ 2.

Thus, {3 ., f(v)]i€{1,2,3,...,n}} = {2n+2,2n+3,2n+4, ..., 3n+1} consists
of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

A=5n+2.

Case (ii): n is even. Define f:V — {1,2,3,...,2n} by

;

L
% if i € {1,3,5,...,n — 1},
flwin) = n-+i
— if i € {2,4,6,...,n},
(3
7n+z 1fz€{123 },
2 2 4
flvia) = n—2|— ] {n+ nt n;6,...,n—1},
n+1 if 1 =n.

\
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To show that f is bijective, since |V| = [{1,2,3,...,2n}|, it suffices to show
that f is surjective. Let a € {1,2,3,...,2n}.

If a € {1,2,3,...,5}, then 2a — 1 € {1,3,5,...,n — 1}. Thus, f(wsa-11) =
14+(2a-1) _

3 =a.

Ifa e {”T*z, %", "TJ“G, ...,n},then 2a—n € {2,4,6,...,n}. Thus, f(wy_—n1) =

n+(2a—n)
2

=a.
If a=n+1, then f(v,1) =n+1=a.
Ifae{n+2,n+3,n+4,...,37"},then a—”THE{"T”,"TM,”T%,...,n—l}.

Thus, f(v, ws,) = 52 + (a — "52) = a.

If @ € {3tz Sntd Sntl  9n}, then a—32 € {1,2,3,...,%}. Thus, f(Ua_%n,l)
=34 (a— ) =aq.
Therefore, f is surjective.

To see that f is a super edge-magic labeling, let e; = {w;1, w;y11,vi1} € E.

Since for ¢ € {1,3,5,...,n — 1},

fwin) + f(wigi1) = (1 —; Z) + <w)

n—|—2+,
= 1
2 )

and for i € {2,4,6,...,n — 2},

flwin) + f(wiz1) = (n;z) + (#)

n+2
= + 2.

Hence, for i € {1,2,3,..., %},

Z f() = flwir) + f(wit11) + f(vin)

vee;
B n+2+, n 3n+,
T2 T g T

=2n+ 1+ 2.
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For i € {®t2 ntd nt6 n—1},

20 20 20

Z f) = flwir) + flwizr1) + fvin)

vee;
B n+2+, n n—|—2+.
T ! 5 !

=n+ 2+ 2i.

For : =n,

Z fv) = flwna) + flwia) + fvna)

= ) (n;n) N (#) +(n+1)

=2n + 2.

Thus, {>_,c., f(v)]i€{1,2,3,...,n}} = {2n+2,2n+3,2n+4,...,3n+1} consists
of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

A = 5n + 2. Consequently, the hypercycle Lo®) s super edge-magic. O]
Example 5.1. For the hypergraph 1Cé3) with vertices

Wy,1, W21, W3,1, W4,1, Ws,1,

V1,1, V2,1, V3,1, V4,1, Us 1,

and hyperedges

€ = {’w1,1,w2,177}1,1}, €2 = {w2,17’w3,177}2,1}, €3 = {w3,17w4,17?}3,1}>

€4 = {w4,1,w571,v471}, €5 = {w5,1,w1,1,v571},

by Theorem 5.2, we label each vertex as follows:

flwin) =1, flwe) =4, f(ws1) =2, fwar) =5, f(ws1) =3,
f(Ul,l) =9, f(Uz,l) = 10, f(U3,1) = 0, f(U4,1) =17, f(Us,l) = 8.
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Figure 5.1: The vertex-labeling of 1C’é3)

The vertex-labeling of 1C’é3) is shown in Figure 5.1 and we see that

Zf(v) = flwin) + flwz) + flvin) =14+4+9 =14,

Then, {3 ., f(v)]i€{1,2,3,4,5}} = {12,13,14,15,16} is a set of five

consecutive integers. Hence, by Theorem 2.8, 1C§3) is super edge-magic.

Example 5.2. For the hypergraph 1Cf’) with vertices

Wy,1, W21, W3,1, W41,

V1,1, V2,1,V3/1, V4.1,



A7
and hyperedges

€1 = {w1,17w2,1,1)1,1}, €2 = {w2,1>w3,17"0271}7

€3 = {w371,w471,v371}, €4 = {w4,1,w1,1,1}4,1},
by Theorem 5.2, we label each vertex as follows:

flwir) =1, f(war) =3, f(ws1) = 2, flwy) =4,
floi1) =7, f(v1) =8, f(vs1) =6, f(va1) = 5.

e] €2

2
:

eq €3

Figure 5.2: The vertex-labeling of 1C ¥

The vertex-labeling of IC’f’) is shown in Figure 5.2 and we see that

Zf(“) = flwia) + flwr) + f(v11) =143+ 7=11,

> f(0) = fway) + fwss) + f(v21) =3+2+8 =13,
Z f(v) = flwsy) + flwar) + f(vs) =2 +4+6 =12,
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Then, {3 . f(v)] i € {1,2,3,4}} = {10,11,12,13} is a set of four consecutive

integers. Hence, by Theorem 2.8, 1C’f’) is super edge-magic.
Theorem 5.3. A hypercycle 20 4s super edge-magic.

Proof. Note that, 20 has p=3n and ¢ =n.
Define f:V — {1,2,3,...,3n} by
7 if =1,

flwi ;) =
Mm41—i ifj=2

f(vil) = 2n —|—Z,

for every i € {1,2,3,...,n}.

To show that f is bijective, since |V| = [{1,2,3,...,3n}|, it suffices to show
that f is surjective. Let a € {1,2,3,...,3n}.

If a € {1,2,3,...,n}, then f(w,1) =a.

lfae{n+1,n+2,n+3,...,2n}, then 2n+1—a € {1,2,3,...,n}. Thus,
fwant1-a2) =2n+1—(2n+1—a) = a.

Ifae{2n+1,2n4+2,2n+3,...,3n}, then a —2n € {1,2,3,...,n}. Thus,
f(Va—2n1) =2n+ (a — 2n) = a.
Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{wi 1, Wit11, Wiz, Wit12,v;1} € E. Since for ¢ € {1,2,3,...,n}, we observe that

fwir) + fwig) =i+ (2n+1—1)

=2n+1.
Hence, for i € {1,2,3,...,n — 1},

Z f) = f(wir) + flwiz1) + flwig) + f(wigr2) + fvin)

vee;
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= (f(wi1) + flwiz)) + (f(wirr1) + f(wizr2)) + f(vin)
=2n+1)+2n+1)+ (2n+19)

=6n+2+1.
For i =n,

Z f() = flwn) + flwin) + f(wne) + f(wi2) + f(vin)

vee;

= (f(wn1) + flwnz)) + (f(wi1) + flwi2)) + f(vn1)
=2n+1)+2n+1)+ (2n+n)

=Tn+ 2.

Thus, {>_,c., f(v)]i€{1,2,3,...,n}} = {6n+3,6n+4,6n+5,...,7n+2} consists
of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

A =10n+ 3. O
Example 5.3. For the hypergraph 20555) with vertices
Wi,1, Wa,1, W31, Wy,1, W5 1,

W1,2, W22, W32, W42, W52,

U1,1,V2,1,V3,1, V4,1, Us 1,
and hyperedges

€1 = {wl,law2,17w1,2:w2,277}1,1}7 €2 = {w2,17w3,1,w2,27w3,2, U2,1}7
€3 = {w3,lvw4,17w3,27w4,27US,l}a €4 = {w4,1,w5,1,w472,w572, U4,1}>

€5 = {w5,17w1,1>w5,27w1,2»v5,l};

by Theorem 5.3, we label each vertex as follows:

flwin) =1, f(war) =2, flws) =3, f(war) =4, f(ws1) =5,
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f(w1,2) = 10, f(w2,2) =9, f(w3,2) =3, f(w4,2) =1, f(w5,2) =0,

f(vl,l) = 11,f(U2’1> = 12, f(Ug’l) = 13, f(?)471) = 14, f(’U571) = 15.

Figure 5.3: The vertex-labeling of 2C{”

The vertex-labeling of 205(5) is shown in Figure 5.3 and we see that

Zf fwip) + flwan) + flwiz) + fwa2) + f(vi1)

veey

=14+24+10+9+11
= 33,

Z f(v) = flwzn) + fwsn) + fwae) + flws2) + flv2)

veEeg

=24+3+9+8+12
=34,

Z f() = f(ws1) + f(wa) + flwsz) + flwaz) + f(vs1)

vees

=3+4+8+7+13

= 39,
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Z f) = flwar) + f(wsa) + flwaz) + f(wsz) + f(var)

veey

=4+5+7+6+14

36,

Z f(w) = flws) + f(wia) + flws2) + f(wiz) + f(vsa)

vees

=5+1+6+10+15

= 37.

Then, {> ., f(v)] i €{1,2,3,4,5}} = {33,34,35,36,37} is a set of five consecu-

tive integers. Hence, by Theorem 2.8, QC’éE’) is super edge-magic.

Theorem 5.4. Let n be an even integer. A hypercycle Lo s super edge-magic.

Proof. Note that, 'C{Y has p = 3n and q = n.

Define f:V — {1,2,3,...,3n} by

f(wi,l) =

f(uin) =

f(Um) =

\

(

\

1+¢ ifie{1,3,5,...,n—1},
n+i ifi € {2,4,6,...,n},

\

4

2n—1—-2i ifie{1,2,3,...,n—1},
2n —1 if i =n.

\

4

2n+1+4 ifie{1,2,3,...,n—1},
2n +1 if i =n.

To show that f is bijective, since |V| = [{1,2,3,...,3n}|, it suffices to show

that f is surjective. Let a € {1,2,3,...,3n}.

Ifa€{1,3,5,...,2n—3}, then

2n — 1 — 2(2n-t=e

) =a.

2n—1—a

5 €{1,2,3,...,n—1}. Thus, f(van-ize ;) =
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If a=2n—1, then f(v,1) =2n—1=a.

If a € {2,4,6,...,n}, then a — 1 € {1,3,5,...,n — 1}. Thus, f(we—11) =
I+(a—1)=

If a € {n+2,n+4n+6,...,2n}, then a —n € {2,4,6,...,n}. Thus,
f(Wo—n1) =n+(a—n)=a.

If a=2n+1, then f(v,2) =2n+1=a.

Ifae{2n+2,2n+3,2n+4,...,3n}, then a —2n—1€ {1,2,3,...,n — 1}.
Thus, f(va—2n-12) =2n+1—(a—2n—1) =
Therefore, f is surjective.

To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{wi 1, wit11,vi1,vi2} € E. Since for i € {1,3,5,...,n — 1},

flwin) + f(wizrn) = (1 +14) + (n+ (0 + 1))

—n+2+%
and for i € {2,4,6,...,n — 2},

flwin) + fwipn) = (n+1) + (1 + (i + 1))
=n-+2+ 2.
Hence, for i € {1,2,3,...,n— 1},
> ) = flwin) + fwisra) + foin) + f(vi2)

vee;

=mn+24+20)+2n—1—-2i)+ (2n+ 1 +1)

=5+ 2+1i.
For i =n,

Z f() = f(wn1) + flwin) + f(vna) + fvn2)
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=n+n)+1+1)+2n—-1)+(2n+1)

=6n+ 2.

Thus, {>_,c., f(v)]i€{1,2,3,...,n}} = {5n+3,5n+4,5n+5, . ..,6n+2} consists
of n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

A=9n+3. O
Example 5.4. For the hypergraph 10é4) with vertices
Wi,1, W21, W31, W41, Ws,1, We,1,

V1,1, V2,1, V3,1, V4,1, Us51, Vg 1,

V1,2,V2,2, V3,2, V4,2, U52, Ug,2,
and hyperedges

€1 = {wl,la w2,1,711,17U1,2}, €2 = {w2,1>w3,177}2,1, U2,2}>
€3 = {w3,17 w4,1,U3,1703,2}, €4 = {w4,1,w5,1,v4,1, U4,2},

€5 = {w571, We, 1, U5,17U5,2}, €6 = {w6,17w1,1,v6,17 U6,2}7
by Theorem 5.4, we label each vertex as follows:

f(wl,l) =2, f(wz,l) =38, f(w3,1) =4, f(w4,1) = 10, f(w5,1) =0, f(wfs,l) =12,
foin) =9, f(ve1) =7, f(vs1) =5, f(van) = 3, f(vs1) = 1, fve1) = 11,

f(ULQ) == 14, f(/UQ’Q) = 15,f<1}3’2> = ]_6, f(U4’2) == 17, f(U572) = ].8,f(U6’2) =13.
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€5

Figure 5.4: The vertex-labeling of 1C’é4)

The vertex-labeling of IC’é4) is shown in Figure 5.4 and we see that

> f) = flwin) + f(waa) + fo11) + f(v12) =2+ 8+ 9+ 14 = 33,

D () = flwe) + fwsy) + fvan) + f(v22) =8+ 447+ 15 = 34,

D f(v) = flwsa) + fwar) + fvsa) + flvs2) =4+ 1045+ 16 = 35,
D () = flwar) + fwsa) + f(oag) + flvaz) = 1046+ 3+ 17 = 36,
> ) = flwsa) + fwer) + f(vs1) + f(vs2) =6+ 12+ 1+ 18 = 37,
D ) = flwsa) + fwia) + f(ve) + f(v2) = 1242+ 11+ 13 = 38,

Then, {3, f(v)] i € {1,2,3,4,5,6}} = {33,34,35,36,37,38} is a set of six

consecutive integers. Hence, by Theorem 2.8, 1Cé4) is super edge-magic.
Theorem 5.5. Let n be an odd integer. A hypercycle 2089 s super edge-magic.

Proof. Note that, 20" has p=2n and ¢ =n.
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Case (i): n=1 (mod 4). Define f:V — {1,2,3,...,2n} by

4
-
‘2” if i€ {1,3,5,...,n},
flwia) = n+1+1
o e {246, -1},
\

(
Tn+3+2i ~3
% ifi€{1,3,5,...,n2 }

2i 1
flwyy) = 3nr3+2 ifie{n+ nto ”+9,...,n},

4 2 T2 9
51+ 3+ 2i
% ifi€{2,4,6,...,n—1}.
\

To show that f is bijective, since |V| = [{1,2,3,...,2n}|, it suffices to show
that f is surjective. Let a € {1,2,3,...,2n}.

If a € {1,2,3,..., 2}, then 2a — 1 € {1,3,5,...,n}. Thus, f(wsa-11) =

1+(2a—1)
s =

If a € {282,282 20 n}, then 2a —n —1 € {2,4,6,...,n — 1}. Thus,

a.

fWsa—n_11) = % —a.

If a € {n+1,n+2,n+3,...,5”:3},then &2”_3 € {ntl ndd ndd o pY

_ 3n342(fe=in=3)

Thus,f(w4a_gn_372) =g a.

If q € {5t ondll Sntls - Twebl} Cthen 40=3n=3 € {2 4.6,...,n —1}. Thus,
f(Wanmsnms ) = % —a:

If @ € {TB Tt Inild  92n}, then ¢=12=2 € {1,3,5,...,%52}. Thus,
f(w4a7’;n7372) = % =a.

Therefore, f is surjective.
To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{’U)i’l, Wi41,1, Wi2, U)H_LQ} cF. Observe that, for 1 & {1, 3, 5, ce nT—Z%}’

flwin) + f(wiz) = (1 _2'_ Z) + (W)

_7n+5
4

L,



for ¢ € {"EL ndB n9 0 n},
142 3n+3+ 20
flwin) + flwz) = +———
2 4
_3n+5 ;
== 7

for i € {2,4,6,...,n— 1},

fwiq) + flwig) = (n+21 +i) i (W)

_7n+5
4

+ 1.
Hence, for i € {1,3,5,..., %4}’

Zf flwin) + f(wig11) + f(wi2) + f(wig12)

UEe
= (f(win) + flwiz2)) + (f (Wir11) + fwig12))
m+5 . ™m—+5 )
= +i)+ +(+1)
4 4
_ AT g
For i € {#ft, nbs o9 p — 2},

Zf f(win) + f(wivin) + f(wiz) + f(wis2)

vee;

= (f(win) + flwiz)) + (f(wiy11) + f(wir12))

- <3nj5+z') + <7nj5+(z'+1))

_5n—|—7

+ 21.

For i € {2,4,6,...,%°},
Z f() = fwin) + f(wizr1) + f(wia) + f(wigi2)

= (f(win) + flwiz)) + (f(wigy11) + f(wir12))

26
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:(MZ5+0+<MI5+@+D>

_7n—|—7

+ 21.
; n=1 n+3 n+7
For i € {T,T,T,...,n—l},

f() = fwin) + f(wis11) + fwiz) + f(wiy12)

(]

vee;

= (f(win) + flwiz)) + (f(wiy11) + f(wig1,2))

—(MZ5+Q+<%:5+@+n)

_5n—|—7

+ 24.
For : =n,

Z f) = f(wna) + f(win) + f(wn2) + fwi2)

vee;

= (f(wn1) + flwn2)) + (f(wia) + fwi2))

3n+5+ n 7n~|—5+1
= n
4 4

m+7
5

Thusa {ZUEQ f(U)| (S {172737 cee 7n}} - {771;5, 777,2—&-7, 7n2+9, ey 977,24-3} consists of
n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

A= 13n+45
= =5

Case (ii): n =3 (mod 4). Define f:V — {1,2,3,...,2n} by

(
.
_2H ifie{1,3,5,...,n},
flwi) = n+1+1
o i€ {246, ,n—1}
(5n 4+ 3+ 2i
% if i € {1,3,5,...,n},
T+ 3+ 2i ~3
flwia) = % ifie{2,4,6,...,n2 1,
n+3+2 . . n+1 n+5 n+9
— 7 ifi € { 5 g 5 yooo,m— 1}
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To show that f is bijective, since |V| = [{1,2,3,...,2n}|, it suffices to show
that f is surjective. Let a € {1,2,3,...,2n}.

If a € {1,2,3,..., 2}, then 2a — 1 € {1,3,5,...,n}. Thus, f(wsa-11) =
14(2a-1) _

3 =a.

If @ € {7d3, 245 nd0 " 'n}, then 2a —n —1 € {2,4,6,...,n — 1}. Thus,

f(w2a7n71,1> = w =a.

Ifae{n+l,n+2,n+3,... 2} then da=8n=38 ¢ {ntl ndd ndd -y 1},
Thus,f(w4afgn73’2) = % =a.

If @ € {22 ontd ntld I3y - then 20=3n=3 ¢ {1,3,5,...,n}. Thus,
fwiamsna ,) = AR g

If @ € {Tuff, bl Tntls ' 2n}, then 2¢=10=3 ¢ {2.4.6,...,%2}. Thus,
f(w4a—;n—372) = % =a.

Therefore, f is surjective.
To see that f is a super edge-magic labeling, for i € {1,2,3,...,n}, let ¢; =

{w; 1, Wip11, Wiz, wiy12} € E. Observe that, for i € {1,3,5,...,n},

fwin) + fwiz) = (1 i Z) + (M)

2 4
5n+5+.
= 7
4 b
for i € {2,4,6,...,%5°},
n+1+1 ™m+3+2
f(wz 1) + f(wz,2) —
2 4
9n—|—5+.
= 1
4 )
for i € {2t m5 89 n — 1},
n+1+1 3n+ 3+ 2
flwin) + fwig) = | —— |+ | ——
2 4
_dn+5

7.

4
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Hence, for 7 € {173757 ) nT_5}’

Zf f(win) + f(wivin) + f(wiz) + f(wis2)

vee;
= (flwip) + flwi2)) + (f(wir11) + fwig12))
n+5 . In—+5 .
= +i )+ +(i+1)
4 4
7 7
_Mmrr g
For i € {25t n3 ndl  n — 2},

Z f() = fwin) + f(wirr1) + f(wiz) + f(wisi2)

= (f(wi1) + flwi2)) + (f(wiz11) + f(wit12))

= (5714—1—5_1_2,) + (5714—’_5-1—(2'-1—1))

_5n+7

+ 24.

For i € {2,4,6,...,%53},

Z f() = fwin) + f(wizr1) + f(wia) + f(wiri2)

vEe
= (flwip) + flwi2)) + (f (wir11) + flwig12))
In+5 . 5n + 5 .
= +i )+ +(i+1)
4 4
_ m+7 49
For i € {”;1,";5, ";9,...,71— 1},

Zf Jwin) + f(wigr1) + f(wi2) + f(wig12)

vee;

= (f(wi1) + f(wiz)) + (f(wiy11) + f(wir12))
5”4+5 +i) + <5n4+5 +(i+1))
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5n -+ 7
_ Ot g

For i =n,

Z f() = flwn1) + flwin) + flwne) + flwi )

vee;

= (f(wn1) + flwnz2)) + (f(win) + flwiz))

B 5n+5+n n 5n+5+1
n 4 4

m+7
5

Thus, {>,c., f(0)] i € {1,2,3,... ,n}} = {T8 Il Tntd 90834 consists of

n consecutive integers. By Theorem 2.8, f is a super edge-magic labeling with

A= 13’;—+5 Consequently, the hypercycle 20 is super edge-magic. O

Example 5.5. For the hypergraph QC§4) with vertices

Wiy,1, W21, W31, W4,1, Ws,1,

W1,2, W22, W32, W4 2, W52,

and hyperedges

€1 = {wl,hwz,h W1,2, w2,2}7 €2 = {w2,1>w3,1,w2,2,w3,2},
€3 = {w371,w4’1, W3 2, w472}, €4 = {w471,w571,w472,w5’2},

€5 = {w5,17w1,1, W52, wl,z};

by Theorem 5.5, we label each vertex as follows:

flwig) =1, f(wan) =4, f(ws) =2, f(war) =5, f(ws:) = 3,

flwig) =10, f(wa2) =8, f(ws2) =6, f(waz) =9, f(ws2) =1T7.
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Figure 5.5: The vertex-labeling of 2C{*"

The vertex-labeling of QC’§4) is shown in Figure 5.5 and we see that

D ) = flwia) + fwa) + f(wiz) + flwn) =1+4+10+8 =23,

Then, {3, ., f(v)] i €{1,2,3,4,5}} = {20,21,22,23,24} is a set of five

consecutive integers. Hence, by Theorem 2.8, 20é4) is super edge-magic.

Example 5.6. For the hypergraph QC§4) with vertices

Wi,1, W21, W31,

W12, W22, W32,
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and hyperedges

€1 = {w1,17w2,1, W1 ,2, w2,2}, €2 = {wz,l,ws,l,w2,2,w3,2}a

€3 = {w3,1,w171, w3 2, w1,2}7

by Theorem 5.5, we label each vertex as follows:

f(w1,1) =1, f(w2,1) =3, f(w3,1) = 2,

flwiz) =5, f(wyz) =4, f(ws2) = 6.
>
€3
Figure 5.6: The vertex-labeling of 20:,(,4)

The vertex-labeling of QC§4) is shown in Figure 5.6 and we see that

37 ) = flwia) + flwer) + flwig) + flwss) =1+3+5+4=13,

D ) = flwe) + fwsy) + fwaz) + fwsn) =3+2+4+6=15,
Z fv) = flwsq) + flwan) + flwsa) + fwae) =24+1+6+5=14.

Then, {}_ ., f(v)] i € {1,2,3}} = {13,14,15} is a set of three consecutive

integers. Hence, by Theorem 2.8, 203()4) is super edge-magic.
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Now, if we have a small super edge-magic hypercycle m o) , We can use its super

edge-magic labeling to construct new super-edge labelings for larger hypercycles

Lemma 5.6. If mOo®) super edge-magic, then mCoW¥ ) s also super edge-magic.

Proof. Let motk) = (V, E). By Definition 2.6, we can construct m o k+2) by con-
sidering each e; € E, define €; = €; U{V; y—am+1, Vik—2m+2} for i € {1,2,3,... ,n}.
Then, mok2) (V,E) where E = {é,6,,63,...,6,} and V = '01 ¢;. Note that,
V| =n(k—m),|V|=n(k —m)+2n, and |E| =n = |E|. -

Assume that mC) is super edge-magic. By Theorem 2.8, there is a bijection
[V = {1,2,3,...,n(k —m)} such that {> . f(v)| e € E} is a set of n
consecutive integers. We define a function f by

X n(k —m)+1i ifj=k—-2m+1,
fvig) =
n(k—m)+2n+1—i if j=k—2m+2,
for each i € {1,2,3,...,n}. Next, we define f:V — {1,2,3,...,n(k —m) + 2n}
by

B flv) fveV,
flv) =

~

fv) ifveV -V,
for v e V. Since f(V) ={1,2,3,...,n(k —m)} and f(V —=V) = {n(k —m) +
Ln(k—m)+2,n(k —m)+3,....,n(k —m) + 2n}, f is a bijection from V to
{1,2,3,...,n(k —m) + 2n}.
To see that f is a super edge-magic labeling, let ¢€; € E. Then, for i €
(1,2,3,....n}.
D FW) =" F0) + fvik-zmer) + f(Vik-2mi2)

Ueéi vee;
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= Z f(U) + f(vz’,k—2m+1) + f(vi,k—2m+2>

=Y f)+ (n(k —m) +14) + (n(k —m) + 2n + 1 — i)
:Zf(v)+2n(k—m)+2n+1-

Since {) .. f(v)] e € E} is a set of n consecutive integers, similar goes for
D ee f(v)] ¢ € E}. Consequently, by Theorem 2.8, mOok2) g super edge-magic.

O
Example 5.7. By applying Lemma 5.6 with the vertex-labeling of 20554) (shown in

Figure 5.5), we obtain the vertex-labeling for 20é6) which is also super edge-magic

labeling as shown in Figure 5.7.

Figure 5.7: The vertex-labeling of 2C’é6) obtained by applying Lemma 5.6 to the

vertex-labeling of 2C{"

Lemma 5.7. If mOo®) s super edge-magic, then m+20 s also super edge-

magic.

Proof. Let mC = (V,E). By Definition 2.6, we can construct mt2 k)

considering each e; € E, define €; = e; U {w;mt1, Wimt2, Wit1mt+1, Wit1,m+2} for
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i€{1,2,3,...,n}. Then, ™20 = (V E) where E = {é1,6,63,...,6,} and
vz:q@.Nmemm,Wp:mk—m%Ww:n@—nw+zmamuEp:n:uw
A:sume that mC is super edge-magic. By Theorem 2.8, there is a bijection
[V = {1,2,3,...,n(k —m)} such that {> . f(v)| e € E} is a set of n
consecutive integers. We define a function f by
R n(k —m) 4+ if j=m+1,
flwig) =
nlk—m)+2n+1—i if j=m+2,
for each i € {1,2,3,...,n}. Next, we define f:vV- {1,2,3,...,n(k —m) + 2n}
by

B fv) ifveV,
flv) =

~

fv) fveV -V,
for v e V. Since f(V) ={1,2,3,...,n(k —m)} and f(V —=V) = {n(k —m) +
Ln(k—m)+2n(k —m)+3,....,n(k —m) + 2n}, f is a bijection from V to
{1,2,3,...,n(k —m) + 2n}.

To see that f is a super edge-magic labeling, let ¢; € E. Observe that, for
ie€{1,2,3,...,n}.

~ ~

FWimi1) + f(Wimy2) = (n(k —m) +17) + (n(k —m) +2n + 1 —1)

=2n(k—m)+2n+ 1.

Then, for i € {1,2,3,...,n—1}.

S F) =" )+ fwima) + FWimi2) + f(Witrmer) + F(wip1,mez)
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=" f() + 4n(k — m) + 4n + 2,

vEe;

and for i = n

S F@) =D F0) + fwamr) + FWnmea) + F@1m1) + Fwimen)

VEE; vee;

= Z f + f W, m—i—l) + f(wn,m—i-Q) + f(wl,m+1) + f(wl,m—i-Q)

vEe;

:Zf +@2n(k —m)+2n+ 1)+ 2n(k —m) +2n + 1)

vEe;

:Zf )+ 4n(k —m) + 4n + 2.

vEe;

Since {> .. f(v)] e € E} is a set of n consecutive integers, similar goes for
_f(v)| € € E}. Consequently, by Theorem 2.8, mF2 ok super edge-
vEE Yy, By g

magic. O

Example 5.8. By applying Lemma 5.7 with the vertex-labeling of 1C£3) (shown in
Figure 5.2), we obtain the vertex-labeling for 3C’f) which is also super edge-magic

labeling as shown in Figure 5.8.

10

€1 €2

€4 €3

Figure 5.8: The vertex-labeling of 3C£7) obtained by applying Lemma 5.7 to the

vertex-labeling of 1C{*
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Althrough, we can construct a lot of larger super edge-magic hypercycles by
using Lemma 5.6 and Lemma 5.7 from some smaller super edge-magic hypercycles.
However, by observing some calculations, there is a family of hypercycles which

always not super edge-magic.
Theorem 5.8. If a hypercycle mo@m super edge-magic, then n is odd.

Proof. Note that, ™C*™ has p = mn and ¢ = n. Suppose that "C*™ is super
edge-magic. Then, there is a bijection f : VUE — {1,2,3,...,mn + n} and

a constant A such that > _ f(v) + f(e;) = A for all ¢ € {1,2,3,...,n} and

vee;

f(V)=1{1,2,3,...,mn}. Since each vertex of mC™ s contained exactly in 2

hyperedges, we obtain

nA = Z(Zf —i—er)

vEe;
nA =23 f(v)+ fe)
veV eck
mn—+n
nA =2 Z] + Z J
Jj=mn+1
n(2mn+n+1)

nA = (mn)(mn+1) +

2

That is A =m(mn + 1) +mn + 1. Since A is an interger, n must be odd. [

To sum up this chapter, by using both Lemma 5.6 and Lemma 5.7, we will
show that all hypercycles mezk) are super edge-magic except the hypercycles of
the form ™CP™ where n is an even integer. In general, to construct a super
edge-magic hypercycle mC’,(lk), we first find the starting small hypercycle of which

super edge-magic as follow:
e if m and k are odd, then the starting hypercycle is 1C’y(f’),

e if m, k are even and n is odd, then the starting hypercycle is 2ol ,
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e if m,n are odd and k£ is even, then the starting hypercycle is 107(12),
e if m is odd and k,n are even, then the starting hypercycle is 16’7(14) ,

e if m is even and k is odd, then the starting hypercycle is 209

m—2
2

k=2m—1

Then, we apply Lemma 5.7 for [ W times and Lemma 5.6 for ( 5 W times, in

any order, to the starting hypercycle. Note that for the hypercycles in the fourth

k—2m—1

5 W — 1 times. We then obtain the super

case, we apply Lemma 5.6 for only {

edge-magic labeling for moW®) Therefore, we have the main theorem.

Theorem 5.9. A hypercycle me®) s super edge-magic if and only if n is odd or
k #2m.

Example 5.9. To obtain the super edge-magic labeling of 5C’§13) with m = 5
which is odd and k£ = 13 which is odd, we start with the super edge-magic labeling
of 16'5(;3) (Figure 5.9). Then, we apply Lemma 5.7 for (ﬂw = 2 times and Lemma

2

5.6 for {%(5)_1—‘ = 1 time, respectively. Therefore, we have the super edge-
magic labeling of 3C§7) (Figure 5.10), 503(,11) (Figure 5.11) and 5C§13) (Figure

5.12), respectively.
€1
==
€3

Figure 5.9: The super edge-magic labeling of 10:,(,3)



o] ]

€3

Figure 5.10: The super edge-magic labeling of 303(,7)

Figure 5.11: The super edge-magic labeling of *C{"”

Figure 5.12: The super edge-magic labeling of *C{*¥
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Example 5.10. To obtain the super edge-magic labeling of 403(,10) with m =4
which is even, k = 10 which is even and n = 3 which is odd, we start with the
super edge-magic labeling of 2C’§4) (Figure 5.13). Then, we apply Lemma 5.7 for
(4%2} = 1 time and Lemma 5.6 for {%—‘ = 1 time, respectively. Therefore,
we have the super edge-magic labeling of *C{® (Figure 5.14) and 40510) (Figure

5.15), respectively.

€1

€2

;

es

Figure 5.13: The super edge-magic labeling of 203(4)

e1

;

< e

o0,]

€3

Figure 5.14: The super edge-magic labeling of 4C’§8)
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€1

:

< e

&z

€3

Figure 5.15: The super edge-magic labeling of 4C§10)

Example 5.11. To obtain the super edge-magic labeling of 503(,12) with m =5
which is odd, k& = 12 which is even and n = 3 which is odd, we start with the
super edge-magic labeling of 1C§2) (Figure 5.16). Then, we apply Lemma 5.7 for
(%W = 2 times and Lemma 5.6 for {%-‘ = 1 time, respectively. Therefore,

we have the super edge-magic labeling of 3(]?56) (Figure 5.17), 5C§10) (Figure 5.18)

and 5C§12) (Figure 5.19), respectively.

€1

y

4 e

€3

Figure 5.16: The super edge-magic labeling of 1C§2)



T

€3

Figure 5.17: The super edge-magic labeling of 303(,6)

Figure 5.18: The super edge-magic labeling of 5C§10)

Figure 5.19: The super edge-magic labeling of 5C§12)
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Example 5.12. To obtain the super edge-magic labeling of 304(}0) with m = 3
which is odd, & = 10 which is even and n = 4 which is even, we start with
the super edge-magic labeling of 1C’£4) (Figure 5.20). Then, we apply Lemma 5.7
for (%W = 1 time and Lemma 5.6 for {%(3)_1} — 1 = 1 time, respectively.

Therefore, we have the super edge-magic labeling of 3C®) (Figure 5.21) and 3C{"

(Figure 5.22), respectively.

Figure 5.21: The super edge-magic labeling of 3C*)
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Figure 5.22: The super edge-magic labeling of 3C{'"

Example 5.13. To obtain the super edge-magic labeling of 40?511) with m = 4

which is even and k£ = 11 which is odd, we start with the super edge-magic labeling

of 2C§5) (Figure 5.23). Then, we apply Lemma 5.7 for ’—%-‘ = 1 time and Lemma

5.6 for [&;4)—1“ = 1 time, respectively. Therefore, we have the super edge-magic

labeling of *C{” (Figure 5.24) and “C{"" (Figure 5.25), respectively.

€1

€2

;

€3

Figure 5.23: The super edge-magic labeling of ZC§5)



Figure 5.24: The super edge-magic labeling of *C”

Figure 5.25: The super edge-magic labeling of 403(,11)
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CHAPTER VI

CONCLUSION AND DISCUSSION

In Chapter 2, we define three new classes of k-uniform hypergraphs includ-
ing complete k-uniform hypergraphs, m-node k-uniform hyperpaths and m-node
k-uniform hypercycles. Notice that there are varieties of definitions of those hy-
pergraphs.

In Chapter 2, Theorem 2.10, we investigate the extremal value of A to obtain
the necessary condition, ¢ < kp — k? + 1 for a k-uniform hypergraph H being
super edge-magic. However, we can also using this idea to establish the necessary
condition for all hypergraphs. Since each hyperedge of a hypergraph contains at
least 0 vertex and at most p vertices, we can mimick the same proof as in Theorem
2.10 to obtain the inequality 0+ (p+¢) < 14+2+3+...+p+ (p+1). Thus,
the condition ¢ < @ + 1 is a necessary condition for a hypergraph being super
edge-magic.

In Chapter 3, we consider only the complete k-uniform hypergraph defined in
Definition 2.4 with the condition n > k and we found that K”, K", K"V and
K™ are super edge-magic. For the case of the complete k-uniform hypergraph
with n < k, we can easily see that those hypergraphs have no hyperedges. Hence,
by Corollary 2.9, the complete k-uniform hypergraph in this case is super edge-
magic.

In Chapter 4 and 5, we finally give algorithm-liked-Theorem for vertex labelings

of all P and some classes of ™C”. These labelings induce super edge-magic



7

labelings for those hypergraphs. By the algorithms, one can actually give an
explicit form of super edge-magic labelings for fixed parameters m,n and k in
mp® and mCF)

Notice that there are some varieties of definitions of hyperpaths and hypercy-
cles. In [4], a k-uniform hypercycle of order n has vertex sequence vy, vg, vs, ..., Uy,
such that every adjacent vertices v;, v;;1 are contained in a hyperedge of degree
k. Moreover, it said to be tight if every k consecutive vertices form a hyperedge
and it said to be loose if every adjacent hyperedges intersect exactly one vertex.
Hyperpaths are defined in a similar way. In [6], they defined hyperpaths and hy-
percycles in a similar way in graph theory, i.e., hyperpath is an alternative finite
sequence of vertices and hyperedges, vy, eq,v9, €, ..., €4, Unt1, such that for every
i€{1,2,3,...,n}, a hyperedge e; contains v; and v;;; and occurs at most one in
sequence. Furthermore, if v,,1 = v, then the alternative sequence becomes hy-
percycle instead of hyperpath. However, our m-node k-uniform hyperpaths and
m-node k-uniform hypercyles, that defined in Defintion 2.5 and Definition 2.6,

agree with those defined in [6].
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