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CHAPTER |

Introduction

The aromatic prenytransferases (PTases) are a group of enzymes involved in
the catalysis of prenylation reaction by transferring an isoprenoid unit to an aromatic
molecule. In plants, aromatic PTases are involved in the biosynthesis of prenylated
flavonoids and lipoquinones, including ubiquinones, menaquinones, and
plastoquinones. Tocopherol, well known as vitamin E, is a branch of lipoquinone
biosynthesis. It has been found in photosynthetic organisms such as plants and algae.
Vitamin E is a highly potent antioxidant that protects and stabilize plant membrane
against photo-oxidative damage or lipid peroxidation (Falk and Munne-Bosch, 2010).
Moreover, it is important to plant by controlling lipid oxidation during the stages of
seed germination, early seedling, and stress condition (biotic and abiotic stress)
(Abbasi et al. 2007; Sattler et al. 2006). It has been shown that tocopherol disturbs
lipid peroxidation chain reaction by donation proton from hydroxyl group of
tocochromanol ring to polyunsaturated fatty acid (PUFA) peroxy radical (Asensi-

Fabado and Munné-Bosch, 2010).

Vitamin E has been divided into two groups, tocopherols and tocotrienols
which differ from each other in the degree of saturation of their hydrophobic phytyl
side chain. Each group has four derivatives, including o-, ﬁ—, Y- and O- forms by
which they differ in methyl group number and position on the hydrophilic chromanol
head group (DellaPenna and Méne-Saffrané, 2011). Tocopherol biosynthesis starts
with the condensation of the aromatic head group precursor, homogentisate (HGA),
and the phytyl tail precursor, phytyl diphosphate (PDP). HGA is derived from p-
hydroxyphenylpyruvate (HPP) by the action of 4-hydroxyphenylpyruvate dioxygenase

(HPPPD) whereas PDP is derived from the reduction of geranylgeranyl diphosphate



(GGDP) from the isoprenoid pathway (Vranova, et al.,, 2013). The condensation
reaction of HGA and PDP is catalyzed by homogentisate phytyltransferase (HPT or
VTE2), the key enzyme in the first step of tocopherol biosynthesis, to produce 2-
methyl-6-phythylbenzoquinol (MPBQ). MPBQ is then methylated to yield 2,3-
dimethyl-5-phythylbenzoquinol (DMPBQ) by the enzyme MPBQ methyltransferase
(VET3). Subsequently, the second ring of y-tocopherol is formed by tocopherol
cyclase (TC or VTE1), and finally, a-tocopherol is formed by <y-tocopherol

methyltransferase (YTMT or VTE4) (DellaPenna and Pogson, 2006).

So far, overexpression of HPT has been reported in Arabidropsis (Collakova
and DellaPenna, 2003a), Synechocystis sp. PCC 6803 (Savidge, et al., 2002), apple
(Seo, et al,, 2011), and lettuce (Ren, et al., 2011), which usually cause the increase of
o-tocopherol accumulation. HPT has therefore been considered as the enzyme
catalizing the rate-limiting step of the pathway.

In this study, Artocarpus lakoocha Rox and Clitoria ternatea L. known respectively as
Mahaad and Un-Chann in Thai name were used as potential sources for isolating
aromatic PTase genes and enzymes. Both plants are abundant of the secondary
metabolites such as flavonoids, stilbenes, and their derivative compounds which
have high potential of biological activities, such as antimicrobial, anticancer,
antioxidant and anti-tyrosinase activities (Likhitwitayawuid, et al., 2005; Mukherjee, et
al., 2008; Sritularak, et al., 2010; Swain, et al., 2012a; Swain, et al,, 2012b). The main
objective of this study is to discover novel aromatic PTase genes from these plants.
Methods of molecular biology were used to obtain full-length aromatic PTase genes,
followed by expressing the genes in a suitable system. The expressed enzymes were

then determined for their activities.



CHAPTER Il

Literature review

2.1 Plant prenylated aromatic compounds

Prenylated aromatic compounds are a group of secondary metabolites that
have been found ubiquitously in plant kingdom, particularly the family of
Leguminosae, Moraceae, Umbelliferae, and Rutaceae (Botta, et al., 2009; Botta, et al,,
2005; Epifano, et al.,, 2007). Diversity of compound structures is due to various
precursors and prenyl side chain in prenylated aromatic biosynthesis. . According to
the structure, these compounds can be classified into three types which are

prenylated flavonoids, prenylated xanthone, and prenylated quinone.

2.1.1 Prenylated flavonoids

Prenylated flavonoids (Figure 1) are a group of secondary metabolites found
in plants and bacteria and their structures contain prenyl moieties on the flavonoid
nucleus. Generally, these compounds have been found in many prenylated
derivative forms after binding to flavonoids such as flavones, flavonols, flavanones,
flavanonols, isoflavones, isoflavanones, isoflavans, and chalcones. An example of
prenylated flavanone, Sophoraflavanone G (1), was isolated from root of Sophora
flavescen and showed antibacterial activity and inhibitory activity against
cycloxigenase 1 (COX1), 5-lipoxigenase (5-LOX), and tyrosinase (Cha, et al., 2007; Kim,
et al,, 2002; Son, et al, 2003; Tashiro, et al., 2001). Papyriflavonol A (2) is a
prenylated flavonol isolated from 6 Broussonetia papyrifera root that exhibited anti-
tyrosinase and anti-5-lipoxigenase (5-LOX) activities (Lee, et al., 2004; Son, et al,
2001; Zheng, et al., 2008). Artelastin (3) was extracted from wood bark of Artocarpus

elasticus and showed broad range inhibitory activities of reactive oxygen species



(ROS) and nitric oxide (NO) production, lymphocyte proliferation, and DNA replication
in MCF-7 human breast cancer cell line (Cerqueira, et al,, 2008; Cerqueira, et al,,
2003; Pedro, et al., 2005). Kuwanon G (4) is a prenylated derivative of isoflavone has
been isolated from root bark of Morus alba. This compound has biological activities
as antibacterial agent against oral pathogens and nitric oxide production inhibitor
(Cheon, et al,, 2000; Park, et al., 2003). Ganconin Q (5), 6-prenylapigenin (6), and 8-
prenylapigenin (7) are prenylated flavones have been extracted from genus
Dorstenia and it has been reported that they showed cytotoxic activity and inhibited

cancer cell proliferations (Kuete, et al., 2011; Wang, et al., 2006).

(6) R1= W , R2=H
(7) R1=H, R2= \/\(

Figure 1 The example of plant prenylated flavonoids.



2.1.2 Prenylated xanthones

Prenylated xanthones are a group of xanthones that having prenyl moieties
attached to different positions of xanthone structure. The prenylated xanthones
were found in ethanol extract from leaves of Garcinia griffithii pericarb consisting of
garcinones C (8), garcinones D (9), garcinones E (10), gartanin (11), xanthone | (12),
and Y- mangostin (13), and also Rubraxanthone (14) (Figure 2). They showed
cytotoxicity 8 against human cancer cells (Chen, 2002; Xu, et al,, 2014) and inhibitory
effects on platelet-activating factor (PAF) (Alkadi K. A. A, et al,, 2013; Jantan, et al,

2002).
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Figure 2 The example of plant prenylated xanthones.

2.1.3 Prenylated quinones

In higher plants, prenylated quinones (Figure 3) are a group of aromatic
compounds consisting of prenyl moieties attached to an aromatic ring e.g. 4-
hydroxybenzoate (4-HB) and homogentisate (HGA). The phylloguinone (vitamin K1)
(14), plastoquinone (15), ubiquinone (16) and tocochromanol (tocopherol (17) and
tocotrienol (18)) belong to lipoquinones that are important for electron transport

system in photosynthetic organelle (Biggins and Mathis, 1988; Nowicka and Kruk,



2010; Pshybytko, et al., 2008). The tocopherols (a-, Y-, S and O- form) have
inhibitory activity against cancer cells by upregulating the mRNA and protein
expressions of cleaved-caspase 3, peroxisome proliferator activated receptor Yy
(PPAR-y), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and also decreasing the
gene expression of interleukin 8 (IL-8) (Smolarek, et al., 2013; Soo, et al., 2004; Stone,

et al,, 2004; Zingg, et al., 2013).

o
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Figure 3 The example of plant prenylated quinones.

2.2 Plant aromatic prenyltransferase

The aromatic prenytransferases (PTases) are groups of catalytic enzymes
involved in prenylation reaction by transferring an isoprenoid molecule in form of
allylic isoprenyl diphosphate such as dimethylallyl pyrophosphate (DMAPP),
isopentyl pyrophosphate (IPP), geranylgeranyl pyrophosphate (GGPP) or phytyl
pyrophosphate (PDP) to an aromatic molecule that contributed significantly to
structure diversity of prenylated aromatic compounds. In plant kingdom, the
aromatic PTase usually belongs to UbiA superfamily of membrane bound enzymes

that accept various aromatic compounds as a substrate leading to two groups of



compounds including prenylated flavonoids and prenylated quinones. Recently,
several studies of aromatic PTase in terms of molecular biology and enzyme activity

were successfully investigated.
2.2.1 Aromatic prenyltransferase in prenylated flavonoid biosynthesis

In prenylated flavonoid biosynthesis, flavonoid and prenyl groups are
precursors of flavonoid PTases. The flavonoid core structure arises mainly from
shikimate pathway via cinnamoyl-CoA and chain extension using three molecules of
malonyl-CoA to produce initially polyketide and change to chalcone scaffold forming
a flavonoid core structure, naringenin, by chalcone synthase. The prenyl units can
come from two pathways: mevalonate (MVA) and methylerythritol phosphate (MEP)
pathway. These pathways occur in different organelles in plant. The MVA pathway
has been found in cytolsol or mitochondria while the MEP pathway occurs in
chloroplast. All identified flavonoid PTases from plants utilized DMAPP rather than
IPP to connect with flavonoid core structure and !\/lgz+ or other cation are required in
catalytic reaction. Despite numerous prenylated flavonoids were found in plant, six
flavonoid PTases of UbIA superfamily have currently been identified and
characterized. The naringenin 8-dimethylallyltransferase (SfN8DT) has been isolated
from Sophora flavescen suspension cells and it transferred DMAPP to C-8 position of
narigenin to produce 8-dimethylallyl naringenin (Sasaki, et al., 2009). Hence,
isoflavone PTase (SfG6DT) and chalcone PTase (SfiLDT) have been isolated from S.
flavescen which corresponding to prenylation of the genistein at 6 position and
isoliquiritigenin to produce dimethylalyl genistein and dimethylalyl isoliquiritigenin,
respectively (Sasaki, et al., 2011). LaPT1 was identified from white lupin (Lupinus
albus). This enzyme prenylated the genistin and 2'-hydroxygenistin with DMAPP at C-
3' position to produce isowighteone and licoisoflavone, respectively (Shen, et al,,

2012). The biosynthetic pathway of these prenylated flavonoids was shown in figure



4. The glycinol-d-dimethylallytransferase (G4DT) has been isolated from soybean
(Glycine max) and its function was to produce 4-dimethylallyglycinol which is an
intermediate in glyciolin | biosynthesis (Akashi, et al., 2009a). MalDT and CtDT are
flavonoid PTase identified from Morus alba and Cudrania tricuspidata (Wang, et al.,
2014). These enzymes can accommodate a broad range of substrates, for example,
isoliquiritigenin, dihydroxychalcone, butein, genistein, and hydroxygenistein for
prenylation reaction to produce 3'-dimethylalylisoliquiritigenin, 3'-dimethylalyl-2,4-
dihydroxychalcone, 3'-dimethylalyl-2,4,2',4'-tetrahydroxychalcone, 3'-
dimethylalylbutein,  6'-dimethylalylgenistein,  6'-dimethylalyl-2'-hydroxygenistein,
respectively. The Figure 4 showed the plant flavonoid PTases activity. Recently, PT1
which is an enzyme involved in bitter acid biosynthetic pathway was characterized in
hop (Humulus lupulus). This enzyme catalyzed prenylation by transferring DMAPP to

naringenin chalcone to obtain desmethylxanthohumol (Li, et al., 2015).
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4-hydroxycinnamoyl-CoA + 3 x malonyl-CoA

Chalcone synthase

CHI
OH O O

Naringenin chalcone Isoliquiritgenin

Naringenin
SfiDT

Dimethylallyl

OH isoliquiritgenin

8-dimethylalyl naringenin

SfG6DT

Genistein 6-dimethylallyl genistein

LaPT

R=H: Isowighteone
R=0OH: Licoisoflavone A

Figure 4 The example of plant flavonoid prenylated prenyltransferases activity. CHI:
chalcone isomerase; IFS:  2-hydroxyisoflavanone  synthase and HID: 2-
hydroxyisoflavanone dehydratase. SfN8DT: naringenin 8-dimethylallyltransferase,
SfG6DT: genistein 6-dimethylallyltransferase, SfiLDT: isoliquiritigenin

dimethylalyltransferase.
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2.2.2 Aromatic prenyltransferase in prenylated quinone biosynthesis

In plants, the prenyl, quinone, or lipoquinone serve as electron transporters
in photosystem | and Il (PSI and PSIl) and protect against lipid oxidation. The
biosynthesis of these compounds is started from hybridization of aromatic head
group and prenyl side chain by aromatic PTase. The aromatic head group and prenyl
side chain are derived from shikimate pathway and MVA or MEP pathway,
respectively. The p-hydroxybenzoate polyprenyltransferase (PPT) catalyzes
prenylation reaction in critical step of ubiquinone biosynthesis by connecting p-
hydroxybenzoate (PHB) with polyprenyl side chain to form C-C bond to generate
polyprenyl PHB (Ohara, et al, 2006). In addition, the PPT is involved in
napthoquinone and shikonin biosynthesis. The p-hydroxybenzoate geranyltransferase
(PGT) showed substrate specificity with geranyl diphosphate (GPP) to produce geranyl
PHB as an intermediate in the pathway as shown in Figure 5 (Ohara, et al,, 2009;

Yazaki, et al., 2002).

COCH COOH

OH o} OH

GPP

& » — > — ——

PGT AN O P

2
OH OH OH o)
p-hydroxybenzoate T
Geranyl PHB Shikonin
(PHB)

Figure 5 The activity of p-hydroxybenzoate geranyltransferase (PGT) in shikonin

biosynthesis.

Homogentisate phytyltransferase (HPT/VTE2) is another group of aromatic

quinone PTase involved in the rate limiting step of tocopherol biosynthesis in plant.
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Biosynthesis of tocopherol, tocotrienol and plastoquinone in plants was illustrated in
Figure 7. It is first started from homogentisic acid (HGA) that is synthesized from p-
hydroxyprenyl pyruvate by 4-hydroxyphenylpyruvate diogenase (HPPD), followed by
the addition of phytyl pyrophosphate (PDP) or geranylgeranyl pyrophosphate (GGPP)
or solanezyl pyrophosphate to HGA by HPT/VTE2 or homogentisate
geranylgeranyltransferase (HGGT) or homogentisate solanesyl transferase (HST) for the
production of key intermediates in the biosynthesis of tocopherol, tocotrienol and
plastoquinone, respectively. To produce a-tocopherol, HPT/VTE2 prenylates HGA
with PDP to produce the first intermediate of 2-methyl-6-phytyl-1,4-benzoquinone
(MPBQ), then methylation reaction of MPBQ catalyzes by MPBQ methyltransferase
(MPBQ MT/VTE3) to vyield 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ). The
DMPBQ is cyclized by tocopherol cyclase (TC/VTEL) to produce Yy-tocopherol and
subsequently y-tocopherol is methylated by y-tocopherol methyltransferase (Y-
TMT/VTE4) to yield a-tocopherol.. For the production of tocotrienol, HGGT utilizes
HGA as prenyl acceptor and transfers prenyl group from GGPP to HGA resulting in
formation of the first intermediate which is 2-methyl-6-geranylgeranyl-1,4-
benzoquinone (MGGBQ). Hence, methylation of MGGBQ by VTE3 yields 2,3-dimethyl-
5-phytyl-1,4-geranylgeranyl benzoquinone (DMGGBQ) and VTE1 cyclizes DMGGBQ to
form 7y-tocotrienol and then methylation of y-tocotrienol finally yield o-tocotrienol.
In plastoquinone biosynthesis pathway, HST catalyzes prenylation reaction by
transferring solanesyl diphosphate (a prenyl group) to HGA to form 2-methyl-6-
solanesyl-1,4-benzoquinol (MSBQ) intermediate. The biosynthesis of tocopherol,
tocotrienol and platoquinone occur in chloroplast and HPT, HGGT and HST are
embedded in chloroplast membrane. Under oxidative stress conditions induced by
high light, drought or infection, these compounds are increasely produced to protect
cell membrane from free radical or reactive oxygen species (ROS) (Sharma, et al,

2012).
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Figure 6 Biosynthesis of tocopherol, tocotrienol and platoquinone in plants.
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2.3 Characterize and function of aromatic PTases

The HPT, HGGT and HST are a group of enzymes that transfer different forms
of prenyl group to HGA. Although these enzymes catalyze prenylation reaction and
their structures are very similar (transmembrane o-helix), their amino sequences are
not quite different. The phylogenetic analysis showed the amino acid sequences of
flavonoid PTases shared sequence similarity with HPT. It is implied that the flavonoid

PTases may evolve from HPT (Figure 7).

Prenylated flavonoid
biosynthesis

SfN8DT-2
SfN8DT-1

Figure 7 Phylogenetic relationship of aromatic prenyltransferases. A rooted phylogram
was generated using a ClustalW alignment. Ap, Allium porrum; At, Arabidopsis
thaliana; Cp, Cuphea pulcherrima; Gm, Glycine max; Hv, Hordeum wvulgare; Os,

Oryza sativa; Ta, Triticum aestivum.
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Aromatic PTases in plant are membrane-bound proteins of UbiA superfamily
localized in plastid membrane. They contains two aspartate-rich regions for binding
of the prenyl diphosphate substrate via chelating I\/\g2+ ion required for enzyme
activity (Table 1) (Huang, et al., 2014). In E. coli, the UbiA protein catalyzes cleavage
of pyrophosphate from polyprenyl diphosphate and transfer prenyl chain to PHB
(Ashby, et al., 1992). Generally, identified aromatic PTases have 7 — 9 transmembrane
o-helixes and N-signaling transit peptide to localize at chloroplast membrane.

Expression of flavonoid PTase proteins was successfully done in yeasts such as strain

W303—1A—Acoq2 (Sasaki, et al,, 2009) and strain YPH499 (Wang, et al., 2014). It has
been found that PTases activity from Leguminosae expressed in yeast microsomal
fractions prefered DMAPP as prenyl substrate while PTase activity from Moraceae can
use DMAPP and GPP in prenylation The enzyme assay required I\/\g2+ for catalyzing
reaction with the optimal pH of 7 -10. Functional study of aromatic PTase can be
tested in plant system. The overexpression of aromatic PTases has been reported in
several plant systems such as Arabidopsis (Mene-Saffrane, et al.,, 2010), tobacco
(Harish, et al,, 2013a), tomato and lettuce (Lee, et al., 2007). Overexpression of
SfNSDT gene encoding naringenin 8-dimethylallyltransferase in Arabidopsis showed
the accumulation of 8-prenylated kaempferol which was not detected in in vitro
enzyme assay (Sasaki, et al., 2008).

The PPT enzyme involve in ubiquinone biosynthesis are located in the inner
membrane of mitochondria but LePGl that member of PPT involved in
naphthoquinone biosynthesis is localized to the endoplasmic reticulum (Ohara, et
al., 2010; Ohara, et al,, 2006; Okada, et al., 2004). In addition, the HPT and HST
catalyzing the prenylation in tocopherol biosynthesis and plastoquinone, respectively
are located at the plasmid (Block, et al., 2013; Hunter and Cahoon, 2007). Same as

flavonoid PTases, the study of PPT protein expression was done in yeast stain W303-
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1A-Acoq2 and tobacco and the protein activity was detected from microsomal
fraction (Ashby, et al,, 1992; Ohara, et al,, 2006; Okada, et al.,, 2004) while LePG1

expression was performed in insect cell (sf9 cell) system.

I
W NOXXDXOXD ™ KDXXD(E/DIXGD
Table 1 Aspartate rich regions of plant aromatic PTases.

Protein Motif | Motif Il Protein Motif | Motif ||
ApVTE2-1 NQLFDIEID KDIPDIDGD | OsHGGT NQLYDIQID  KDIPDIDGD
AtVTE2-1 NQLSDVEID KDIPDIEGD | TaHGGT NQLYDIQID  KDIPDVDGD
CpVTE2-1 NQLSDIDID KDIPDIEGD | SfN8DT-1 NQLCDIEID  KDIPDMEGD
GmVTE2-1 NQLSDVEID KDIPDIEGD | SfN8DT-2 NQLCDIEID  KDIPDMEGD
TaVTE2-1 NQLFDIEID KDIPDIEGD | G4DT NQLYDLEID KDIPDVEGD
MdVTE2-1 NQLSDIDID KDIPDIDGD | SfiLDT NELCDVELD KDIPDIEGD
GmVTE2-2 NQIYDISID  KDLPDVEGD | SfG6DT NQLCDIEID  DIPDTEGD
AtVTE2-2 NQIYDIGID  KDLPDVEGD | G3DT NQLCDLEID KDIPDMEGD
LaPT1 NQIFDMDID KDLSDINGD | MalDT NQIYDADID KDLTDMEGD
HVHGGT NQLYDIQID KDIPDVDGD | LePGT1 NDYFDRNFD YAHQDKVDD
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2.4  Artocarpus lakoocha Rox

2.4.1 Plant description

Artocarpus lakoocha Rox or known in Thai as Mahaad (Figure 8) is a
deciduous plant belonging to Moraceae family. It is widely distributed in South and
South-east Asia such as India, Nepal, Malaysia, and Thailand. A. lakoocha is a tree
that can reach to 15 - 18 m in height and its elliptical pointed leave is 10 — 25 cm
long. Its fruits are yellow at maturity and changed to reddish brown later and its

seeds have thin white seed coat and sticky latex.

Figure 8 Leaves of Artocarpus lakoocha Rox
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2.4.2 Chemical constituents and biological activities of A. lakoocha

A. lakoocha is a plentiful source of secondary metabolites, especially
a group of flavonoids, stilbenes, and their derivative compounds. In phytochemical
studies, artocarpin (19), norartocarpin (20), cycloartocarpin (21), resorcinol (22), and
oxyresveratrol (23) has been found in the heartwood of A. lakoocha (Tunsaringkarn,
et al, 2007) and prenylated 2-arybenzofurans consist of artolakoochol (24), 4-
hydroxyartolakoochol (25) and cyclo-artolakoochol (26) (Sritularak, et al., 2010) as
well as prenylated stilbene (lakoochin A (27) and lakoochin B (28)) were found in
the root (Puntumchai, et al, 2004). Moreover, the A. lakoocha callus culture
produces prenylated flavones and stilbenes (Maneechai, et al., 2012) (Figure 9).
Several biological activities have been reported from the extracts of A.
lakoocha. The crude extracted from heartwood showed antityrosinase activity by
inhibiting melanin production, antimicrobial, antibiofilm activity from oral pathogen
and Candida. The leave extracted has been found activity against inflammatory,
analgesic and CNS depressant (Nesa, et al, 2015). The root extract showed
antiherpetic and anticancer activities (Arung, et al., 2006; Dej-adisai, et al., 2014,

Shimizu, et al., 2002).
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(23) R=H (24)
OH R=OH (25)

(26)

Figure 9 The secondary metabolites from A. lakoocha.

2.5 Clitoria ternatea L.

2.5.1 Plant description

Clitoria ternatea L. or Un-chann in Thai name is climbing plant belonging to

Fabaceae family. It is distributed in India, Philippines, and other tropical Asian



20

countries. The plant leave is imparipinnate with five to seven leaflets, 6 - 13 cm long
and ovate. The seeds are yellowish-brown or blackish in color and oval in shape. Its

flower color is blue or white (Figure 10).

Figure 10 Plant and flower of Clitoria ternatea L.

2.5.2 Chemical constituents and biological activities in C. ternatea

C. ternatea is a medicinal plant which has many biologically active
compounds. The taraxerol and taraxerone were isolated from root. A number of
anthocyanins and flavonoids were separated from flower. Leaves contain essential
oils and flavone glycosides. C. ternatea has been screened for biological activities. It
has an effect on learning and memory enhancing by which it increased acetylcholine
content (Rai, et al, 2002). It also showed antidepressant, anti-inflammatory,
anticancer, and anti-platelet aggregation (Devi, et al,, 2003; Jacob and Latha, 2012,

Jain, et al., 2003; Kelemu, et al., 2004; Nithianantham, et al., 2011).
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CHAPTER Il
Material and Methods

3.1 Plant materials

The calli of Artocarpus lakoocha Rox. were induced on WPM medium
containing 1 mg L-1 of 24d-dichorophenoxyacetic acid (2,4-D) and 1 mglL-1
benzyladenine (BA) with 2% sucrose. According to Maneechai, all cultures were
grown at 25 °C in the dark (17 days) to induce the production of secondary

metabolites (Maneechai, et al., 2012).

The Clitoria ternatea L. leaves were collected from planting area of
department of biochemistry and microbiology, faculty of pharmaceutical sciences,

Chulalongkorn University.

3.2 Bacterial Strains

Escherichia coli

Stains Genotype

F-, Lambda-, recAl, endA1-, hsdR17 (K-, mK+), (lacZYA-argF),
DH5 (Invitrogen)
supEdd, U169, D80odlaczAM15, thi-1, ¢yrA96, relAl

One shot TOP10  Fj, mcrA A(mrr-hsdRMS-mcrBC) D80laczZM15 AlacX74 deoR

(Invitrogen) recAl araD 139 A(ara leu)7697 galU galK rpsL (StrR) endAl nupG

Agrobacterium R
Strain GV3101 (Kan ) carrying the helper plasmid pj19
tumefaciens
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3.3 Plasmids

pGEM®-T Easy Vector R
Cloning vector, Amp
(Promega)

™
PENTR /D-TOPO® .
Entry vector, Kan

(Invitrogen)

pGWB6 Binary vector, KanR, GFP

3.4 Total RNA extraction

Total RNAs were purified from plants using the RNeasy Plant Mini Kit (Qiagen),
according to the supplier’s recommendations. One hundred milligram of plant
samples were ground in liquid N, with mortar and pestle then homogenized with 450
ul RLT buffer and incubated at 56 °C for 2 — 3 min. The homogenized lysate was
transferred into QlAshredder spin column and centrifuged at 13,000 rpm for 2 min.
The flow-through was transferred to new tube. After the flow-through was mixed by
pipetted with 250 pl of ethanol, that transferred to RNeasy spin column and
centrifuged at 12,000 rpm for 15 sec. The RNA was washed with 700 pul RW1 buffer in
column and centrifuged in the same condition. The RNA was cleaned again with 500
ul RPE buffer and centrifuged in the same condition for twice times. The RNA was
dried by centrifuged at 12,000 rpm for 2 min prior to elute with 50 ul of RNase-free
water. Total RNA was treated with DNase |, RNase-free DNase (Fermentas). The
following components were added to reaction, 1 ug of total RNA, 1X reaction buffer

with CaCl,, 1 U of DNase |, RNase-free DNase and DEPC water up to 10 pl. After the
reaction was incubated at 37 °C for 30 min, the 1 pl of 50 mM EDTA was added for

inactivation reaction and incubated at 65 °C for 10 min. RNA concentration was
calculated following the formula C (ug/pl) = ODygonm x 40 x dilution factor. The ratio

of the readings at 260 nm and 280 nm (A260 /A280) ranged from 1.8 to 2.1, indicates
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that the purity of RNA. The concentration of RNA was checked by using

spectrophotometer.
3.5 Synthesis cDNA

The cDNAs were then prepared using the RevertAid™ H Minus Reverse

™
Transcriptase (Thermo scientific ) in the presence of RiboLock™ RNase Inhibitor

(Thermo scientific). The reaction mixture containing 1 ug of total RNA, 5 ug of oligo
(dM18 and DEPC water up to 12.5 ul, was incubated at 65 °C for 5 min. Then the
reaction was mixed with 1X reaction buffer, 0.5 ul RiboLock™ RNase Inhibitor, 1 mM

dNTP mix (10 mM for each) and 200 U RevertAid™ H Minus Reverse Transcriptase,

and incubated at 42 °C for 60 min. The reaction was terminated by heating at 70 °C

for 10 min.
3.6 Determination of core sequences encoding PTases

The primers used in this study (Table 2) were designed based on the
conserved regions of the aromatic PTases genes by multiple alignments using
ClustalW (Chenna, et al., 2003; Larkin, et al., 2007). These primers were designed as
degenerated primers using IUPAC codes to establish the ambiguous nucleotide (Wei,
et al.,, 2003). The position and size of primers were shown in Table 3. The PCR of
partial gene was performed with 1 pl cDNA in 50 pl reaction mixture consist of 1X
High Fidelity PCR buffer, 2 mM MgSOq4, 0.2 mM dNTP each, 0.2 uM of forward and
reverse degenerate primers (Table 2) and 1U Platinum® Taqg DNA polymerase High
Fidelity. The reaction was subjected to thermal cycling according to the following

PCR program in Table 4.
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Table 2 Specific primers the determination of PTase core sequence.

primer name Sequence (5'-> 3")
Prenyl-F1 AATCARHTRTNYGAYVTHGAAATAGACAA
Prenyl-F2 GDTTGTHGGTTCDTGGCCRTTRYTKT
Prenyl-F3 TYRATDTRCCNYTDTTGAGATGGAA
Prenyl-F4 GGHDTGAATCARYTRTNTGA
Prenyl-F5 TTGAAATWGACAAGRTHAARAARCC
Prenyl-F6 CTTCCAHTDGCATCTGGRRAAT
Prenyl-R1 AGCTTCCADATAAACATRTARAANG
Prenyl-R2 ATTTCAAAWAGNGHWAYACAARTCCA
Prenyl-R3 CCTTCNAYRTCDGGDATATCCTT

Table 3 The expected size PCR products of each pair of primers.

F4 F5 F6
—) -
— ——— —— 4ommm ummm e—
F1 F2 F3 R3 R2 R1
Primer FIR1 | F1IR2 | FIR3 | F2R1 | F2R2 | F2R3 | F3R1 | F3R2 | F3R3

Expected Size PCR
674 | 502 | 418 | 544 | 372 | 283 | 479 | 309 | 224
product (bp)

Primer FAR1 | FAR2 | FAR3 | F5R1 | F5R2 | F5R3 | F6R1 | F6R2 | F6R3

Expected Size PCR
692 | 520 | 437 | 669 | 497 | 414 | 640 | 468 | 414
product (bp)
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Table 4 PCR thermal cycling condition for amplification of the core sequence.

Number
Step Temperature Time of

cycles
Initial denaturation 95 °C 3 min 1
Denaturation 95 °C 30 sec
Annealing 48 °C 40 sec 35

o .

Extension r2-C 1 min
Finale extension YA 5 min 1
Cold N infinity

3.7 Determination of full length gene by rapid amplification of cDNA ends

(RACE)

The 5' and 3' end were done by using a 5'-RACE and 3'-RACE system for rapid
amplification of cDNA ends, (Invitrogen, USA) according to the manufacturer’s
instructions (Figure 11). In 5'-RACE end, five microgram of total RNA was removed
contaminate by treated with calf intestinal phosphatase (CIP) in the reaction mixture
(10 pl) containing 1X CIP buffer, 40 U RneaseOutTM, 10 U CIP. After incubated at 50 °C
for 1 hour, the mRNA was extracted with 100 pl phenol:chloroform and centrifuged
at 13,000 rpm for 5 min. The supernatant was transferred into new tube, and then
mixed with 2 ul mussel glycogen, 10 pl 3 M sodium acetate, pH 5.2. The mixture was

added 220 pl of 95% ethanol and mixed by vortex and then incubated at -20 °C for

10 minutes. The RNA was precipitated by centrifugation at 13,000 rpm at 4 °C for 20
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min. The supernatant was discarded and RNA pellet was washed with 500 pl of 70%
ethanol. After centrifuged, the supernatant was removed and the pellet was dry for 2
min prior resuspended in 7 pl DEPC water.

The dephosphorylated RNA was removed 5' cap by tobacco acid

pyrophosphatase (TAP) in the reaction mixture containing 1X TAP buffer, 40 U
RneaseOutTM and 0.5 U TAP followed by incubated at 37 °C for 1 hour. The recapped
RNA was extracted and precipitated same as previous condition. The
dephosphorylated and recapped RNA was ligated with the GeneRacerTM RNA oligo to

5-end using T4 RNA ligase. The ligation reaction started by incubation RNA with 0.25

T

M
g GeneRacer RNA oligo at 65 °C for 5 min and 1X ligase buffer, 1 ul of 10 mM ATP,
™
40 U RneaseOut and 5 U T4 RNA ligase were added into the mixture. After

incubated at 37 °C for 1 hour, RNA was extracted and precipitated again.

The first stand of cDNA was amplified using ligated RNA as a template and the
GeneRacer™ Oligo dT as primer. The reaction mixture (20 ul) containing 1.25 mM
dNTP, 1X RT buffer, 15 U Cloned AMV RT and 40 U RneaseOutTM followed by
incubated at 45 °C for 1 hour. The reaction was inactivated by heat at 85 °C for 15
min. For investigation full length at 5' and 3' end, the PCR was performed using
primers were provided with the kit and gene specific primers (GSP) were designed
using the partial gene sequence (Table 5). The RACE PCR reaction was performed
follow in Table 6 and thermal cycling according to the following PCR program in

Table 7.



5' Cap structure 3'PolyA tail
mRNA m7G-p-p-p AAAAAAA
/‘C")
Turncated mRNA PO AAAAAAA
/CIP
non-mRNA PO‘ZyP
AR l 3'PolyA tail
mRNA mYG-p-;‘SI'@PO4 AAAAAAA
5' Cap structure
Turncated mRNA AAAAAAA
non-mRNA

RNA Oligo 5! 3'PolyA tail
——(OH PO; AAAAAAA
5 N

RNA ligase l
RNA Oligo 3'PolyA tail
5 — AAAAAAA
e TTTTTTT-(N),,

GeneRacer™Oligo dT primer

<—— Reverse Transcriptase

!

s 'I_I_[—ITI_I'-(N)36
First stand cDNA

5' End 1

GeneRacer™>5' primer

GeneRacer™5' nested primer
— —
i e TTTTTT1T-
(N) 5

First stand cDNA Reverse GSP primer
Reverse GSP nested primer

!

1
3 End Forward GSP nested primer
Forward GSP primer
O R TTTTTTT-(NNNNNNNN)
First stand cDNA — -—

GeneRacer™3' primer
GeneRacer™3' nested primer

Figure 11 The strategies for RACE PCR.
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Table 5 The specific primers for RACE PCR technique.

Primer name

Sequence (5'-> 3")

5' RACE
CTinR
CTout-R
ALRINR
ALRout-R
3' RACE
RACEIn-F
RACEout-F

TGTACACATGGGTCTGCATGTGCAGGAAA

GAGAAGAAGCTCATAAATGCAGTAGCAAAA
GACACCCGCTCGAATCGGAGCCTGGA
TAAAGAGGGCAGCAACCACAGCCTCCAG

TTTCCTGCACATGCAGACCCATGTGTACAA
AG GTACTAGGAACTGCTTATTCAAT

’ Primer for first RACE PCR and A Primer for second RACE PCR

Table 6 The components of RACE PCR reaction.

First PCR

Second PCR

28

Reagents

Reagents

10 uM GeneRacer™ 5' or 3'
primer

10 uM Reverse or Forward GSP
primer

cDNA

10X High Fidelity PCR buffer
dNTP Solution (10 mM each)
Platinum® Taq DNA polymerase
High Fidelity (5U/pl)

50 mM MgSQO,

water

4.5 pl

1.5 ul

1l
5l
1.5 ul

0.5 ul

35 pl

10 UM GeneRacer™ 5' or 3' Nested
primer
10 pM Reverse or Forward Nested

GSP primer
First PCR (dil 10X)
10X High Fidelity PCR buffer

dNTP Solution (10 mM each)
Platinum® Tag DNA polymerase
High Fidelity (5U/ul)

50 mM MgSQO,

water

1l

1l

1l
5l
1l

0.5 pl

1l
39.5 pl
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Table 7 RACE PCR thermal cycling condition.

Step Temperature Time Number of cycles
First PCR
Initial denaturation 94 °C 2 min 1
Denaturation 94 °C 30 sec
Annealing 72 °C 30 sec °
Denaturation 94 °C 30 sec
Annealing 70 °C 30 sec ’
Denaturation 94 °C 30 sec
Annealing 60 °C 30 sec 25
Extension 68 °C 1 min
Finale extension 68 °C 10 min 1

Step Temperature Time Number of cycles
Second PCR
Initial denaturation 94 °C 2 min 1
Denaturation 94 °C 30 sec
Annealing 60 °C 30 sec 25
Extension 68 °C 1 min
Finale extension 68 °C 10 min 1

3.8 Determination of full length gene for prenyltransferases genes

In order to confirmed the sequence of genes that obtained from RACE PCR.
The sequence of contigs at 5' and 3' ends were aligned with partial gene and
observed start codon at 5'-end and stop codon at 3'-end. Then the primers were

designed from sequence of start codon and stop codon as showed in Table 8 and
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also PCR reactions were performed in reaction mixture containing 1 pl cDNA, 1X High
Fidelity PCR buffer, 2 mM MgSQ,4, 0.2 mM dNTP, 0.4 uM of forward and reverse primer
and 1 U Platinum® Tag DNA polymerase High Fidelity. The reaction was subjected to

thermal cycling according to the following PCR program in Table 9.

Table 8 The specific primers of full length gene.

Primer name Sequence (5'--> 3")
CTFull-Fw ATGGATTCGGTGCTCTATGGATCTT
CTFull-Rv TCATCTAACATAAGGGAGGAGCAGGT
ALRFull-Fw ATGGATTC CTTCTGGGTTCATTGAA
ALRFull-Rv TCACCTAACGAACGGTATAAGTAGATACT

Table 9 PCR thermal cycling condition of full length gene.

Step Temperature  Time  Number of cycles
Initial denaturation 94 °C 2 min 1
Denaturation 94 °C 30 sec
Annealing 60 °C 30 sec 30
Extension 68 °C 1.30 min
Finale extension 68 °C 10 min 1

3.9 Cloning of gene in pGEM®-T Easy Vector for sequencing

The PCR products from every process were ligated into pGEM®—T easy vector

for checked the sequence. The cloning was carried out by set up a ligation reaction

following in Table 10 and incubation overnight at 4 °C. The ligation product was
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transformed into £. coli DH50¢ competent cell and screening by blue-white colonies
selection on LB agar containing 50 pg ml" ampicillin, 40 pg ml” x-gal and 0.1 mM
IPTG. A group of white colonies were picked and grown overnight in 5 ml LB broth
containing 50 pg ml’ ampicillin. The mixture was incubated overnight at 37 °C with
shaking at 250 rpm. These white colonies were confirmed the insert gene by

extraction plasmid using alkaline lysis method and restriction digestion analysis. In

™
addition to sequencing, the plasmid was extracted with Presto  Mini Plasmid Kit
(GeneAid) and sequencing by universal primer in pGEM®—T easy vector (M13 Forward:

5' GTAAAACGACGGCCAGT 3' and M13 reverse: 5' GCGGATAACAATTTCACACAGG 3").

Table 10 The components of ligation reaction for pGEM®-T Easy Vector.

Reaction Component Standard reaction
PGEM®-T Easy Vector (50ng) 1t

PCR product* x pl

2X Rapid Ligation Buffer 5ul

T4 DNA Ligase 1t
Nuclease-free water up to 10 pl

' Insert:Vector Molar Ratios = 1:1 - 3:1

3.10 Bioinformatics analysis

The sequences were compared with nucleotide and protein sequence in NCBI
(http://www.ncbi.nlm.nih.gov) database using tblastx tool. Molecular mass and pl
value was calculated by EXPASy Proteomic tools
(http://web.expasy.org/compute_pi/). Protein localization and signal peptide were
predicted by TargetP v1.1 (http://www.cbs.dtu.dk/services/TargetP/), SignalP v4.1

(http://www.cbs.dtu.dk/services/SignalP/), WolF PSORT
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(http://www.genscript.com/psort/wolf psort.html) and Protcomp 9.0
(http://www.softberry.com/berry.phtml?topic=protcomppl). The phylogenic tree was
carried out with MEGA6 program (Tamura, et al, 2013) base on the distance
algorithmic neighbor-joining method. The transmembrane (TM) domains were

predicted by TMHMM program (http://www.cbs.dtu.dk).
3.11  Alkaline lysis method for plasmid extraction (Sambrook, et al., 1989)

The overnight grown E. coli culture was collected by centrifugation at 12,000
rom for 1 min. The obtained pellet was resuspended with 200 ul of the alkaline lysis
solution I (25 mM Tris-HCl pH 8, 10 mM EDTA pH 7 and 50 mM glucose). Adding 200
ul of alkaline lysis solution Il (0.2 N NaOH, 1 % SDS) for lysis cells and mixed by
inversion and incubation for 2 min at room temperature. The mixture was renatured

by adding 300 ml solution Il (3 M potassium acetate, 11.5 % glacial acetic acid) and
remove a contaminate by centrifugation at 13,000 rpm for 5 min at 4 °C. The
supernatant was obtained and mixed with isopropanol. After incubation for 30 min at
-20 °C, the pellet was obtained by centrifugation at 13,000 rpm for 10 min at 4 °C

and wash pellet with 70% ethanol (twice). After remove alcohol, the pellet was

resuspended with 50 ul nuclease-free water and keep at -20 °C.

™

3.12 Presto Mini Plasmid Kit for plasmid extraction

™
The extraction plasmid for sequencing was done by Presto  Mini Plasmid Kit

(GeneAid). After harvested the overight grown E. coli cells, the pellet cells were
resuspended with 200 pl PD1 buffer. The cell mixture was lysis with 200 ul PD2
buffer and neutralized in 300 pl PD3 buffer. The cell lysated was transferred to PD
column and centrifuged at 13,000 rpm for 30 sec. The plasmid was washed two

times with 400 ul W1 buffer and 600 pl washing buffer, respectively. After dry by
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centrifugation at 13,000 rpm for 2 min, plasmid was eluted with 30 — 45 ul nuclease-

free water.
3.13 Preparation of competent E. coli cells

Bacterial strain E. coli DH5t was used as a host cells for all intermediate
cloning constructs. Competent cells of E. coli were prepared modified from Nakata’s

protocol (Nakata, et al., 1997). E. coli from glycerol stock was streaked on LB agar

plate and incubated at 37 °C for overnight. Single colony from the plate was
transferred to 5 ml LB broth for overnight. The culture was subculture to grown at 37
°C with vigorous shaking (250 rpm) until ODgqo = 0.3 - 0.5. The culture was transferred

to centrifuge tubes under sterile condition and incubated on ice for 30 min. The

culture was centrifuged at 3,500 rpm at 4 °C for 10 min. The pellet was gently
washed twice time with 20 ml and 10 ml of pre-chilled 100 mM CaCl, followed by
centrifugation using same conditions. The new pellet was dissolved with 2 ml pre-
chilled 100 mM CaCl, and 15 % glycerol with gentle swirling on ice for 30 min.

Dissolved competent cells were aliquoted (100 pl) into eppendorf tubes and

incubated in ice for 5 min and then frozen in liquid nitrogen before storing at -80 °C.
3.14 Transformation by heat-shock

Transformation into E. coli were performed according to previous protocol
(Sambrook, et al., 1989). The 100 pl competent cells were thawed on ice and 2-5 pl
plasmid DNA (up to 100 ng) or 3 — 5 pl ligation products was mixed gently and
incubated on ice for 30 minutes. The cells were then incubated at 42 °C for 30 - 45
sec and placed on ice for 2 min. 500 pl of LB broth were added and gently mixed by
inverting the tube. The transformation was achieved by shaking (200 rpm) for 1 hour

at 37 °C. Selection to appropriate antibiotic was conducted by spreading 100 pl of
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the transformed competent cells onto LB plate containing antibiotic. After overnight

incubation at 37 °C, resistant colonies were observed on next day.

3.15 Construction of expression vector

™ ®
3.15.1 pENTR /D-TOPO ~ vector

The full-length genes from A. lakoocha and C. ternatea were amplified by
alrc2-pENTR ~ Fw:  5'-CACCATGGATTCTTTTCTTCTG-3',  alrc2-pENTR ~ Rv: 5™
TCACCTAACGAACGGTATAAG-3', clt-pENTR Fw: 5-
CACCATGGATTCGGTGCTCTATGGATCT-3' and clt-pENTR Rv: 5-

TCATCTAACATAAGGGAGGAGCAG-3' (Figl2: | and II). The full-length gene was clone
into pENTRTM/D—TOPO® vector (Invitrogen, USA) by following the manufacturer’s
protocol (Figure 12: Il and IV). The components of cloning reaction consist of 5 pg
fresh PCR product, 1 pl salt solution, 1 ul pENTR/D-TOPO vector and water to final
volume 6 ul. The reaction was incubated at room temperature for 5 minutes. The
PENTR-alrc2 and pENTR-clt plasmid (Entry clone) constructs were individually
transformed into Oneshot® TOP10 competent cells. Successful cloning of genes was

confirmed by PCR, restriction digestion and sequencing.
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Figure 12 The strategies for construction of expression vector.
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3.15.2 Binary vector

®
In order to construction of plant expression vector was be done by Gateway
Technology (Invitrogen, USA) following the manufacturer’s protocol. The entry vector

allowed recombining the desired sequences into the destination vector (pGWB6) by

LR recombination events using Gateway® LR CLonase enzyme kit (Invitrogen, USA).
The LR reactions were carried out by added 100 — 300 ng pl  entry clone with the
gene of interest, 150 ng pl_1 destination vector, 2 yl 5X LR Clonase reaction buffer
and TE buffer, pH8 to make volume to 8 ul. Start reaction by added 2 ul LR Clonase

enzyme mix and mixed reaction mixture by vortex for 2 sec (two times). After
incubated the reaction mixture at room temperature for 1 hour, one microliter of
protease K was added into reaction and incubated at 37 °C for 10 min for stop
enzyme activity. The ligation reaction was transformed into E. coli and checked

correction by PCR.
3.16 Preparation of competent Agrobacterium cells

The preparation of competent cells were performed according to previous
protocol (Lin, 1995). A. tumifaciens GV3101 cells were streaked on YEB agar plates
containing antibiotics (25 g ml Rifampicin) and incubated at 28 °C for 2 days. A
single colony was inoculated in 10 ml of LB medium containing antibiotic and
incubated at 28 °C for overnight with shaking (200 rpm). A fresh overnight culture
was inoculated in 50 ml of LB medium containing antibiotic until ODgy is 0.6 was
reached. The cells were chilled on ice for 15 min and spin down by centrifugation at
5,000 xg for 10 min at 4 °C. The culture medium was discarded and pellet was
washed in 25 ml and 10 ml of cold water and followed by centrifugation in the same

condition. The pellet was resuspended in 2 -5 ml of cold water containing 10 % (v/v)
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glycerol. 50 pl aliquots of the suspension were dispensed into prechilled eppendorf

tubes, frozen immediately in liquid nitrogen and stored at -80 °C.
3.17 Transformation of A. tumefaciens by electroporation

The transformation of A. tumefaciens by electroporation was performed
according to previous protocol (Lin, 1995). The 50 ul competent cells A. tumifaciens
GV3101 were thawed on ice and mixed with 1-2 ul of DNA sample (10 — 50 ng). The

mixture was transferred into pre-chilled electroporation cuvette and then placed the

cuvette in the holder. The electroporation was performed at 2.5 kV, 200 €2 and 25

uF. Immediately 500 pl of SOC medium was added and whole mixture was

transferred into new sterile eppendorf and incubated at 28 °C for 2 hours. One

hundred microliters of culture was spread on YEB agar containing 25 pg ml”

rifampicin and 50 pg ml’ kanamycin and incubated at 28 °C for 2 days. Then

successful cloning was check by colony PCR.
3.18 Agrobacterium infiltration into tomato leaves

The transient expression was performed modified previous descripted
protocol (Mangano, et al.,, 2014). Overnight-grown Agrobacterium cultures in YEB
medium (50 pg mL" kanamycin and 25 pg ML rifampicin) carrying expression vector
an optical density (ODgqy) of 1 were pelleted by centrifugation at 3000 xg for 5 min.
The pellets were resuspended in induction solution (10 mM 2-N-morpholino-
ethanesulfonic acid (MES) pH 5.5, 10 mM MgCl,, and 200 pM acetosyringone). After 2
h incubations at room temperature with shaking at 50 rpm, Agrobacterium cultures
carrying each expression vector were collected by centrifugation in the same
condition. The pellets were washed with infiltration buffer (10 mM 2-N-morpholino-

ethanesulfonic acid (MES) pH 5.5 and 10 mM MgCl,) two times and resuspened in
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infiltration buffer until ODgyo is 0.5. The mature leaves of 5-8 weeks old tomato
plants (Lycopersicon esculentum Mill.) were co-infiltrated using a 5 mL syringe
without a needle from underneath of the leaves. Harvested leaf materials at 1, 3, 6

and 9 day post agroinfiltration (dpa) and stored at -20 °C until further use.
3.19 Gene expression analysis
3.19.1 RT-PCR

RNA was extracted from the infiltration tomato leaves (100 mg) at different
dpi using RNeasy Plant Mini Kit (Qiagen). The first stand cDNA was synthesized by
RevertAid™ H Minus Reverse Transcriptase (Thermo scientific) with 1 pg total RNA and

5 pg oligo dT. PCR was performed using specific primers ALRL Fw: 5'-

ATGGATTC CTTCTGGGTTCATTGAAAGG-3', ALR250 Rv: 5-
GTC G GTCCATGGTAAAATGTAG-3', CT34 Fw: 5
GCCTCTTCACTAACCACTGGTGCC-3' and CT494 Rv: 5

TAAATATTCATAAACAGGGCAGCAACC-3' also using ﬁ—tubulin as a house keeping gene
(TUB_Fw: 5" TGAGCACCAAGGAAGTTGATGA-3' and TUB_Rv: 5"
CCATTCCTTCACCTGTGTACCA-3'). The PCR reactions were conducted in final volume
in 25 pl using 0.6 pl first stand cDNA, 1X One Tag standard reaction buffer, 0.2 mM
dNTP mix, 0.2 uM each specific primers, 0.625 U One Taq® DNA polymerase (NEB)

and water. Cycling conditions were following in Table 11.



Table 11 PCR thermal cycling condition of gene expression analysis.

Step Temperature Time Number of cycles
Initial denaturation 94 °C 2 min 1
Denaturation 94 °C 30 sec
Annealing 50 °C 40 sec 30
Extension 68 °C 40 sec
Finale extention 68 °C 1 min 1

3.20 Extraction of recombinant protein from tomato leaves

39

The total proteins were obtained from modified previous descripted protocol

(Liu, et al,, 2007). Total proteins were prepared from 1 ¢ of infiltration leaves. It was

ground into powder with liquid nitrogen and resuspended in extraction buffer, pH 7.8

(50 mM Tris-HCl, pH 7.8,150 mM NaCl, 1mM PMSF, 0.5 mM DTT, 0.5% TritonX-100

and 10% glycerol). After stirred at 4 °C for 30 min, the homogenize was centrifuged at

12,000 xg for 15 min (4 °0). The supernatant was collected and measured protein

concentration using Bradford method.
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3.21 Protein analysis

3.21.1 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-

PAGE)

One hundred microgram of total proteins from infiltration leaves were mixed
with 2X loading dye and boiled in boiling water for 5 min to denatured protein then

cooled down protein on ices for 2 min. Twenty microliters of denatured protein were

loaded into 10% polyacrylamide gel against PageRuler  plus pre-stained protein

™

marker (Thermo Scientific ). The SDS-PAGE was running at 110 V for 1.20 hour.
3.21.2 Western blot

After separated protein on SDS-PAGE, proteins were transferred to PVDF
membrane. The PVDF was soaked in methanol for 1 minute and equilibrated in
transfer buffer, pH 8.3 (25 mM Tris-HCl, 190 mM Glycine and 20% methanol) for 10
min before transfer protein also gel was equilibrated in transfer buffer, pH 8.3 for 10
min. The proteins were transfer to PVDF membrane by electroblotting apparatus

(BioRad) was assembled followed as Figure 13 and transferred at constant current of

100 V for 1.30 hour (4 °C). After transferred, the blot was rinsed in water and blocked
with blocking buffer (5% skim milk in TBST buffer, pH 7.5) at room temperature for 1
hour with gentle agitates. Then blotted membrane was washed with TBST buffer, pH
7.5 (20 mM Tris-HCL, 150 mM NaCl and 0.1% Tween 20) for 5 min for tree times and

incubated with 1:2000 in dilution buffer (1% skim milk in TBST buffer, pH 7.5) of anti-

™
GFP antibody conjugated HRP (Thermo Scientific ) for 2 hours with gentle agitate.

After washed with TBST buffer, pH 7.5 for 5 min for tree times, the blot was treated

™
with chemiluminescent HRP substrate (Luminata  Crescendo, Merck) and captured

™
the chemiluminescent signal by CCD camera (Gel Doc  XR, Bio-Rad)
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Figure 13 The alignment of western blot setup.
3.22 Tocopherol extraction

o-Tocopherol was extracted from agroinfitration tomato leaves according to
the protocol described previously (Wilmoth, 2002). One gram of leaves was grounded
in liquid N,. Leaves powder was resuspened with 0.5 mM EDTA containing 20 mg
ascorbic acid (pH 3.1) and mixed with vortex. After added 2 ml 100 mM SDS, the
extract was incubated on ices for 6 min. And then 5 ml cooled-ethanol and 3 ml of

hexane containing 0.2 % BHT (w/w) were added to an extracted. The extracted was

mixed with vortex for 6 min and centrifuged for 3 min at 1,200 xg at 18 °C. The
upper organic phase was kept. After evaporated to dryness under N, gas, an

extracted was redissolved in 300 pl hexane containing 0.2 % BHT (w/w).
3.23  Chlorophyll analysis

Chlorophylls content from transient tomato leaves were determined

according to method validated previously (Lima, et al,, 2014), based on the molar
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coefficient of chlorophyll in acetone:hexane (4:6 v/v). The samples were measured
total chlorophyll at 663 and 645 nm and conversed to chlorophyll (mg/100 ml)

following equations:

Total chlorophylls = Chlorophyll a + Chlorophyll b
Chlorophyll a = 0.999(As63nm) — 0.0989(Agasnm) (1)
Chlorophyll b = -0.328(Asg3nm) + 1.77(Asasnm) 2)

3.24 Tocopherol analysis
3.24.1 Thin Layer Chromatography (TLC)

The tocopherols were analyzed by TLC technique. Five microliters of each
extracted and o-tocopherol standard was loaded on TLC plate using Limonat IV
(CAMAG). After TLC plate was developed with chloroform/cyclohexane (11:9) (Pyka,
et al,, 2011), the tocopherol was detected by scanned at 292 nm with TLC scanner 3
(CAMAG). Visualization and documentation of TLC was done under 254 nm after
derivatized by iodine vapor. For quantitative analysis o-tocopherol, the various
concentration of ®-tocopherol standard was prepared by dissolved in 95% ethanol
and spotted on TLC in range 0.05 — 1 pg. The calibration curve was calculated using

relationship between peak area (AU) and concentration of a-tocopherol standard.

3.24.2 Gas Chromatography-Mass Spectrophotometer (GC-MS)

Eighty microliters of leaves extracted were evaporated in nitrogen gas stream
and resuspended with 40 pl pyridine. Then the extracted was derivatized by
silylation (Kobayashi and DellaPenna, 2008), added 100 ul BSTFA + 1% TMCS (Fluka)
and incubated at 50 °C for 45 min. GC-MS was performed on an Agilent 7890B GC

system with Agilent 7000C GC/MS Triple Quad mass detector using an HP5 column
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(30 m x 0.25 mm, 0.25 pm) and the oven temperature was programed from initial
150 °C for 1 min to 260 °C at a rate of 25 °C min " and up to 300 °C (20 min hold)
at a rate of 5 °C min . Flow rate was 1.2 ml min". The injection volume was 0.5 ul,

split ratio 10:1 with MS detection in electron ionization mode at 70 eV. Full-scan

spectra were recorded over a mass range of 33-650.
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CHAPTER IV

Results

4.1 Total RNA extraction

Young leaves of C. ternatea L. and calli of A. lakoocha Rox. were used for
RNA sources. Tjotal RNAs were extracted by RNeasy Plant Mini Kit (Qiagen). The
quality and concentration of all total RNA samples were determined on agarose gel
as shown in Figure 14, and UV absorption at wavelength of 260 nm, respectively. The
concentration of the total RNA was 320 and 225 ug ml" from C. tematea L. and A.

lakoocha Rox., respectively.

Figure 14 Agarose gel of the total RNA isolated from C. ternatea L. (A) and A

lakoocha Rox (B).

4.2 Isolation of core sequences from degenerate primers

Partial gene sequences were performed by PCR technique using the cDNA
synthesized from RT-PCR as a template with multiple pairs of the degenerate
primers. The results are showed in Figure 15. The pairs of degenerate primers F2R1,

F2R3, F6R1 and F6R3 were able to amplify partial gene sequences from cDNA of C.
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ternatea while the partial gene sequences from A. lakoocha were amplified by F2R1,

F3R1 and F6R1.

1000 bp 1000 bp

500 bp

(8]

500 bp

'

it E
B ERIRY ]

500 bp 500 bp

-

Figure 15 Agarose gel of the partial gene sequences from C. ternatea L. (A) and A.
lakoocha Rox (B) amplified by multiple pairs of the degenerate primers. M: 1 kb DNA
marker, Band number 1, 2, 3, 4, and 5 represented the partial gene sequences from
sets of primers including F2R1 (544 bp), F2R3 (283 bp), F3R1 (479 bp), F6R1 (640 bp),

and F6R3 (414 bp), respectively.
4.3 Full length genes from RACE PCR

Based on partial gene sequences of C. ternatea obtained from F6R1 primer
pair, the new set of primers were designed overlapping the region between upstream
and downstream of 5'-end (CTin R, CTout R, ALRin R and ALRout R) and 3'-end
(RACEIn_F and RACEout_F). The contig of 5'-RACE PCR was obtained from C. ternatea

(1000 bp) and A. lakoocha (500 bp). In 3'-RACE PCR, the contig was obtained from C.
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ternatea (700 bp) and A. lakoocha (900 bp) as showed in Figure 16. Then all contigs
from both ends were aligned with the isolated partial gene sequence and the
putative full-length cDNAs were recovered. The open reading frame (ORF) was
determined from the start codon of ATG to the stop codon of TAA by ClonManager
9.0. To retrieve the full coding sequence cDNAs, the primers covering the whole

coding sequence were designed from start and stop codons and amplified by PCR.

'

The full length cDNA of ctl gene, 1,495 bp, contained 122 bp at 5
untranslated region and 149 bp of 3' untranslated region with a poly (A) tail. The ctl
showed open reading frame (ORF) of 1,224 bp (Figure 17A) encoding a putative
polypeptide of 407 amino acids residues (Figure 18). For alrc2 gene sequence
retrieved by RACE, the 1,625 bp full length cDNA of alrcZ gene was obtained and it
contained 134 bp and 210 bp of 5' untranslated region and 3' untranslated region
with a poly A tail, respectively. The alrc2 showed open reading frame of 1,233 bp

(Figure 17B) encoding a putative polypeptide of 410 amino acids residues (Figure 19).
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Figure 16 Isolation of full length cDNA of ctl and alrc2 by RACE PCR. The nested
RACE-PCR products (5' and 3' fragments) from C. ternatea (A) and A. lakoocha (B)
are shown on 1% agarose gel, M: 1 kb DNA marker. The contigs from RACE-PCR
products and core sequences were aligned to obtain the full-length sequence of ctl

and alrc2 (Q).
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Figure 17 Agarose gels of ctl and alrc2 coding sequence. The bands are shown on 1%
agarose gel, M: 100 kb DNA marker and ctl and alrc2 coding sequences amplified

from C. ternatea (A) and A. lakoocha (B), respectively.
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1 GACAGTGIGG TICTCRAATA TCIGIGITIC AGIGRATCGG CGGCGGAGGC GAGGGCGRAG GITTAGGGAR AGRARGAGIG

81 ATTGIGGTTIG TGAGCITITG AGTAGCAGTT TACAGTAGTC ACATGGATITC GGIGCTICTAT GGATCITIGC CTAARGGCCIC

161 TTCACTRLCC ACTGGTGCCR ATTTCTGGAC TACTRRAATGT CGTGCCCACL ATTACCATGC RAGCTCTTAT GCACCRRLAG

13

241

40

321

&7

401

93

481 CACARCRCAGT TATTGGCACR GCATTARGCR TRATTTICTGT ATCICICCTIT GCATTGGAGA AATTATCTIGA TATATCTICCR

561 ATGTTTTITA CIGGIGIGIT GGA TGIG GITGCTGCCC TGITTATGAR TATTTATATT GITGGITIGR ATCAATTATC

CTL........
147 n L F M
641 ATATCTTCCR CIGGCATCCG
......................................... L
173 5 b v E I D K I N P Y L P L B 5 G EY 5 F GG T G VvV T

721 TIGITGCATC ATTTTCAGIT CTGAGITTIIT GGCITIGCTIG GATTGTAGGT TCATGGCCAT TGITITGGGC TCTITITIGIC

253 Vv R R

961 TCITCTICARAG ACCTCTGATT TTTGCTACTG CATTCATGAG CITCTICICT GTAGITATAG CATTGITCAR GGATATACCT

280 W F 5 R P L I F A T A FM 5 F F 5 Vv VvV I &AL F EKEUDTIFEF

1041 GRCATTGRAG GGGATAALAT ATTTIGGCATC CAATCCTTITT CAGTACGTIT AGGTCAGRAG CGGGTATTCT GGATCIGIGT

307 p I E 6 pDK I FGI §© s F 5 VR L G QEKE RV F W IC

1121 TTCCCTICIT GARRATAGCTT ATGGAGTCGC CCTICATGGTG GGAGCAGCAT CTCCCIGICT CTIGGAGTAAR GCTATCACGG

333 0V L E I » ¥ G VWV L MV G AR 5 PF C L W S5 K & IT

1201 GIGCGGGACR TGCIGITICTG GCTICACTITC TCIGGTATCA GGCCARATCT GTAGATTTGAR ATACCARAGC TTCGATARCH

60 G A G H A V L A 5 L L W Y §©Q A K 5 ¥V D L N T XK A 5 I T

1281 TCGITCTACR TGITTATCTIG GRAGCTATTT TACGCAGAAT ACCTGCTICCT CCCTTATGIT AGATGAGGAT GCAGGGGCTT

1361 TGITGACTIT AGATATACTT GIGITCCARL GGATGCTGCC TGICACAGGC CGGGCCTIGGT GICTGCACAR GITTITAAGTT

1441 TTTCRCAGCR ATTGTAAATG AAGAATTACT TTTGGGATTA RAARARALAR RALAADR

Figure 18 The full length cDNA of ctl gene and its translated protein. The translated
amino acids were decoded from ORF of ctl and indicated below their corresponding

nucleotide codon.
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Figure 19 The full length cDNA of alrc2 gene and its translated protein. The

translated amino acids were decoded from ORF of alrc2 and indicated below their

corresponding nucleotide codon.
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4.4 Cloning of full length genes

The full length genes obtained from RACE-PCR were cloned into pGem-T easy
vector and subjected to sequence verification. To confirm the insertion to the vector,
the pGem-T vectors carrying the genes were cut by EcoRI restriction enzyme. After
enzyme digestion, the band of full length ctl and alrc2 genes along with the bands
of pGemT easy backbone at 3 kb were clearly seen on the agarose gel (Figure 20).

The full length gene sequences were confirmed by sequencing.

pGemT easy
3000 bp pGemT easy
1500 bp alre2
1000 bp

Figure 20 Verification of gene insertion to pGemT vector by restriction enzyme
digestion are shown on 1% agarose gel against 1 kb DNA marker (M). The EcoRI
restriction enzyme was used to digest recombinant pGem-T easy vector of ctl (A) and

alrc2 (B).

4.5 In silico protein identification and characterization

All deduced proteins from ORF of ctl and alrc2 were predicted for their
functional domain group by PSl-blast search

(http://www.ebi.ac.uk/Tools/sss/psiblast/) against the UniProtkB/Swiss-Prot database.
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The deduced proteins showed their significant E-value with UbiA prenyltransferase
family of homogentisate prenyltransferase (Figure 21). Then the sequences were
predicted for their molecular weights and theoretical pl values by the Compute
pl/Mw Tool from EXPASy (http://web.expasy.org/compute pi/). The predicted sizes
were 45.58 and 45.59 kDa and pl values were 9.53 and 9.87 of CTL and ALRC2,
respectively (Table 12). The results indicated that ctl and alrc2 are in the group of
UbiA prenyltransferase gene family and possibly encoded putative proteins

functioning as homogentisate prenyltransferase.

1 75 1se

225 300 375 410
putative active site G4 Y
PT_UbiA_HPT1

PT_UbifA superfamily

1 5 150

225 F00 S 06
putative active site §) 1Y
PT_UbiA_HPT1

PT_UbiA superfamily

CTL ALRC2 CTL ALRC2
Name Accession Description Interval E-value

PT_UbiA | cd13960 Tocopherol 114-403 117-407 | 9.64E-153 | 2.08E-148
_HPT1 phytyltransferase
PLNO287 | PLN02878 homogentisate 128-406 131-410 | 0.00E+00 | 0.00E+00
8 phytyltransferase
UbiA PRK12887 tocopherol 111-403 102-407 | 2.89E-96 2.97E-99

phytyltransferase

Figure 21 PSI-blast search of the putative proteins CTL and ALRC2.
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Table 12 Summary of computed pl and MW of the deduced proteins.

ORF (bp)  Amino acid (residues) pl MW (kDa)
alrc2 1233 410 9.87 45.59
ctl 1224 a07 9.53 45.58

The transmembrane (TM) domains of CTL and ALRC2 were predicted by
TMHMM program (http://www.cbs.dtu.dk). These genes contained nine putative TM
domains (Table 13 and Figure 22) and possessed a conserved prenyltransferase motif
(NQXXDXXXD) and an aspartate rich motif (KD(I/L)XDX(E/D)GD) between TM domain 2
and 3 and TM domain 6 and 7, respectively (Figure 23). Subcellular localization of all
amino acid sequences were predicted on their N-terminal peptide by TargetP 1.1.
The result showed that this program was failed to assign the organelle localization
with low reliable prediction (RC=5) as showed in Table 14. Therefore, the proteins
were predicted localization and signal peptide position by other programs e.g.
SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/), WoLF PSORT
(http://www.genscript.com/psort/wolf psort.html) and Protcomp 9.0
(http://www.softberry.com/berry.phtml?topic=protcomppl). Using the SignalP, it was
found that the amino acid sequences showed low signal peptide (S- score < 0.2) as
shown in Figure 24 while CTL and ALR were chloroplast protein containing transit
peptide 15 and 17 amino acid residues when prediction by WolLF PSORT and

Protcomp (Table 15).
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Table 13 List of transmembrane domains of ALRC2 and CTL.

ALRCZ

CTL

Transmembrane alpha helix regions

TM1
TM2
T™3
TM4
TM5
TM6
TM7
T™M8
TM9

VIGTALSIVSVSLLAVQRL
FFTGVLEAVVAALFMNIYIVG
GEYSVSTGTLIVTSFAVLSFCLS
SWPLFWALFISFVLGTAYSINMP
VAAMCILAVRAVIVQLAFFLHMQ
RPAIFSRPLIFATAFMSFFSVVIALF
ICISLLEMAYSVALLVGASS
KVATVLGHTILASLLWGRAKSV
SFYMFIWKLFYAEYLLIPFVR

VIGTALSIISVSLLALEKL
FFTGVLEAVVAALFMNIYIVG
GEYSFGTGVTIVASFSVLSFWLC
SWPLFWALFVSFVLGTAYSINV
LAAMCILAVRAVIVQLAFFLHMQ
RPLIFATAFMSFFSVVIALF
ICVSLLEIAYGVALMVGAAS
KAITGAGHAVLASLLWYQAKSV
SFYMFIWKLFYAEYLLLPYVR
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Figure 22 TMHMM analysis of ALRC2 and CTL protein sequences. The colors showed

the probabilities for transmembrane regions (red), inside region of an organelle (blue)

and outside of an organelle (pink).

Table 14 Sequence data analysis by TargetP.

Name

Len TP mTP SP other Loc RC

ALRCZ2

CTL

410 0.422 0.073 0.030 0460 * 5
407 0.074 0.444 0.023 0.626 * 5




Table 15 Sequence data analysis by WolLF PSORT and Protcomp.
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chloroplast
Amino acid Similarity in  Extracellula Intigral
transit
sequence location DB r score score
peptide
CTL ao7 chloroplast 0.9 9.3 15
ALRC2 410 chloroplast 0.9 9.5 17
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Figure 23 Multiple alignment of prenyltransferases family in plants. Motif
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indicated with black arrows are
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conserved amino acid sequences among prenyltransferases and transmembrane

domain (TM) are indicated with black lines.
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Figure 24 The graphical image of transmembrane prediction by SignalP, C-, S-, and Y-
score cleavage site were predicted to be at position of maximal Y score (A) CTL and
(B) ALRC2. C-score: raw signal peptide cleavage sites, S-score: positions within signal
peptides from positions in the mature part of the proteins and Y-score: combined

cleavage site score (C and S).
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4.6 Phylogenetic analysis

Amino acid sequences of CTL and ALRC2 from candidate genes were
compared to their homologs by using BLASTX algorithm in the NCBI database. The
CTL and ALRC2 showed high sequence homology to homogentisate phytyltransferase
of Glycine max and Morus notabilis with 84% and 88%, respectively. The
phylogenetic tree of prenytransferase families was constructed including
homogentisate phytyltransferase (HPT), flavonoid prenytransferase (flavonoid PTase),
homogentisate geranylgeranyltransferase (HGGT), and homogentisate solanesyl
transferase (HST) and shown in Figure 25. The analysis revealed that the proteins CTL
and ALRC2 are closely related to the group of HPTs. The CTL and ALRC2 were highly
similar to VTE2-1 involved in vitamin E biosynthesis in plants. Further sequence
examination, the conserved aspartate rich regions (motif | and motif Il) of various
prenyltransferases were compared (Figure 26). In motif I, the CTL showed high
similarity with the HPT of G. max (GmVTE2-1) and Arabidopsis thaliana (AtVTE2-1)
while the ALRCZ2 were closest to the HPT of Cuphea avigera var. pulcherrima
(CpVTE2-1) and M. notabilis (MnVTE2-1). In motif Il, the CTL showed similarity with a
group of HPTs of AtVTE2-1, GmVTE2-1, CpVTE2-1, Triticum aestivum (TaVTE2-1), and
flavonoid prenyltransferase of Sophora flavescens (SfiLDT). The ALRC2 showed
similarity with a group of HPTs of Allium ampeloprasum (ApVTE2-1), MdVTE2-1 and
homogentisate geranylgeranyltransferase of Oryza sativa Japonica (OsHGGT). These

results suggested that CTL and ALRC2 were likely to be HPT/VTE2 enzymes.
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100 —— Morus notabilis MnVTE2-1 (EXB55382)

37 L @ Artocarpus lakoocha ALRC2 (KT 188930)
27 Cuphea avigera var. pulcherrima CpVTE2-1 (DQ231058)
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Figure 25 The phylogenetic tree of putative protein sequences of CTL and ALRC2 and
related prenyltransferase proteins in plants. Protein sequences from various plant
species were retrieved from NCBI database and their accession numbers were shown
in parenthesis. The neighbor-joining was drawn using MEGA4. The optimal tree with
the sum of branch length = 575502538 was shown. Bootstrap values 1000 replicate
are shown, and the branch lengths represented relative genetic distances. The
evolutionary distances were measured by JTT matrix-base method. The abbreviations
were  following:  FPT, Flavonoid prenytransferase; HPT, homogentisate
phytyltransferase; prenyltransferase and HGGT, homogentisate

geranylgeranyltransferase.
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Figure 26 Phylogenetic trees for conserved amino acid sequences (the aspartate rich
regions) of prenyltransferase family. The alignment of motif | (A) and motif Il (B) from
prenyltransferase family. Trees were generated by MEGA6 with neighbor-joining
method. The available protein sequences from VTE, GDT, HGGT, and PT groups were
retrieved from various species including Arabidopsis thaliana (At), Allium
ampeloprasum (Ap), Cuphea avigera var. pulcherrima (Cp), Glycine max (Gm),
Hordeum wvulgare (Hv), Humulus lupulus (La), Morus notabilis (Mn), Oryza sativa

Japonica (Os), Triticum aestivum (Ta) and Sophora flavescens (Sf).
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4.7 Construction of plant expression vectors

The ORF genes were amplified with sets of primers in 3.15.1. The PCR

products were overhanging at start codon and blunt end at stop codon. Then the

gel-purified PCR products were cloned into pENTRTM/D—TOPO® vector by
Topoisomerase | to produce the entry clone and transformed into E. coli. The
obtained recombinants were checked for their insertional direction by Notl restriction
digestion, PCR, and sequencing. The correct orientation pattern of recombinants
showed 3.8 kb but empty vector showed 2.5 kb when cut with Notl restriction
enzyme (Figure 27A and 27B). Amplification of ctl and alrc2 from the recombinant
vectors by PCR showed the expected bands at about 1.2 kb (Figure 27C and 27D).
The gene sequences were confirmed again by sequencing. Hence, the correct entry
vectors were subcloned separately into a destination clone (pGWB6) by Gateway® LR
clonase® I to produce the plant expression clones. The pGWB6:ctl, and
pGWB6::alrc2 were finally obtained and confirmed the recombinant vectors by PCR
showed the expected bands at about 1.2 kb (Figure 28A and 28B), respectively. Each
construct was subsequently transformed into E. coli. and Agrobacterium tumefaciens

for further used in plant transformation.
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Figure 27 The construction of the entry vector (pENTR /D-TOPO ~ harboring the ctl

and alrc2 genes were analyzed on 1% agarose gel against 1 kb DNA marker (M). The
recombinant pENTRTM/D—TOPO®:Cﬂ digested with Notl restriction enzyme (A) and the
recombinant pENTRTM/D—TOPO®:aer2 digested with Notl restriction enzyme and the
empty pENTRTM/D—TOPO® vector (B). PCR products from recombinant ctl and alrc2 in

™ ®
pENTR /D-TOPO — vector (C and D).
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ctl 1500 bp

1500 b
1000 bp alrc2 P

1000 bp

Figure 28 The construction of the destination vector. The PCR products amplified
from recombinant ctl (A) and alrc2 (B).in pGWB6 vector and shown on 1% agarose

gel against 1 kb DNA marker (M).

4.8 Gene expression of ctl and alrc2 overexpressed in tomato leaves

The ctl and alrc2 genes were transiently expressed in tomato leaves via
Agrobacterium-mediated transformation. After infiltration of the recombinant
expression vectors, leaves were harvested at 1, 3, 6 and 9 day post agroinfiltration;
dpa and their total RNA were extracted for cDNA synthesis. During 1 — 6 dpa the
visible phenotypes of infiltrated tomato leaf of empty vector and pGWB6::ctl not
different when compare with control but these transient expressions were slightly
induce cell death at 9 dpa that found light yellow around of brown spot. In transient
of pGWB6:alrc2 leaf showed visible phenotype same as control during 1 — 3 dpa but
the leaf was induced cell death at 6 dpa that seem little yellow and increasing at 9

dpa. (Figure 29)

Expressions of ctl and alrc2 were under the control of CaMV 35 promoter and

the gene expression profile was performed by RT-PCR was performed on tomato
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leaves overexpressed the genes as showed in Figure 30. The recombinant pGWB6::ct!
showed highest expression at 1 dpa and sharply decreasing after 3 dpa according to
RT-PCR (Figure 30A). The RT-PCR results showed that the recombinant pGWB6:alrc2

showed expression between 1 and 6 dpa and very low at 9 dpa (Figure 30B).
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Figure 29 Tomato leaves after infiltration of the recombinant expression vectors via
A. tumefaciens-mediated transformation. Leaves were harvested at 1, 3, 6 and and 9
day post agroinfiltration (dpa). Leaves were harvested at 1, 3, 6 and and 9 day post

agroinfiltration (dpa).



67

pGWB6::ctl pGWB6
1 3 6 9 M 1 3 6 9 dpa

ctl (500 bp)

ﬁ-Tubulin

pGWBé6::alrc2 pGWB6
1 3 6 9 M 1 3 6 9 dpa

alrc2 (250 bp)

ﬁ-Tubulin

Figure 30 RT-PCR expression analysis of ctl and alrc2 in the agroinfitrated tomato
leaves at 1 - 9 dpa. ﬁ—TubuLin was served as an internal reference gene and the
empty vectors were served as negative control. Gene Ruler 1 kb DNA ladder (M) was
used to indicate the product size. The gene expression of the recombinant

pGWBE6::ctl (A) and pGWB6::alrc2 (B) were detected on the 1 % agarose gel.
4.9 Recombinant protein expression in tomato leaves

All proteins (CTL and ALRC2) in the pGWB6 vector expressed in transformed
tomato leaves were fused with GFP protein (26.8 kDa) at the N-terminal of the
proteins. Total proteins were extracted from the leaves and determined the protein
concentration by Bradford’s method. One hundred micrograms of total protein were
loaded and separated on 10% SDS-PAGE gel. The proteins were detected by blotting
with anti-GFP antibody conjugated with HRP on PVDF membrane and visualized using
chemiluminescent HRP substrate (Figure 31). The CTL was slightly expressed at 1 dpa
and gradually increased at 3 dpa. In contrary, the ALRC2 could not be detected at 1

dpa. However, it was gradually expressed at 3 and 6 dpa.
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pGWB6 pGWBé:: alrc2 pGWB&6::ctl
1 1 3 6 9 1 3 6 9 dpa

ALRC2 & CTL
(73.7 kDa)

Figure 31 Detection of the recombinant proteins by western blots analysis. Expression
of ALRC2 and CTL proteins from agroinfiltration tomato leaves using antibody against

GFP protein in different dpa compared with the empty vector (pGWB6).

4.10 Determination of tocopherol content in agroinfiltrated tomato leaves

Transformed tomato leaves at 1, 3, 6 and 9 days were extracted and
analyzed for the accumulation of a-tocopherol against control by TLC technique.
The amount of a-tocopherol was determined against the o-tocopherol standard
curve as shown in Figure 32. The recombinant protein from pGWB6:ctl showed high
effectiveness in enhancing the production of a-tocopherol content at 3 dpa. The
results showed 2.4 + 0.38 fold increment of a-tocopherol content compared with
the control (Figure 33) and the intensity of a-tocopherol band on TLC clearly
showed the difference after 3 dpa (Figure 34A). Moreover, the transformation of
pGWB6::alrc2 could induce the accumulation of a-tocopherol in infiltrated tomato
leaves at 3 dpa (Figure 34B). The a-tocopherol content was increased 1.4 + 0.05 fold

higher than the control (empty vector; pGWB6) (Figure 33).

4.11 Determination of total chlorophyll content in agroinfiltrated tomato

leaves

When ctl and alrc2 were introduced to tomato leaves mediate
agrobacterium, the resulting transient plants showed the decreased total chlorophyll

when compare with the control. The total chlorophyll of transient plants ctl and
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alrc2 dropped from 31.2 + 0.34 to 28.2 + 0.09 ug ml and 32.1 + 0.07 to 30.8 + 0.06

ne mlfl, respectively in order of day after agroinfiltration (1 — 9 dpa) that correlated

with o-tocopherol accumulation (Figure 33).

Substance: Substance 1 @ 292 nm  Regression mode Linear
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Figure 32 The standard curve of &-tocopherol. The amount of a-tocopherol was
plotted against absorption unit (AU) measured on TLC plate developed with

chloroform:cyclohexane (11:9 v/v) and scanned under 292 nm (n=3).
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Figure 33 The o-tocopherol and total chlorophyll contents in pGWB6::alrc2 and
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pGWBE6::ctl agroinfiltrated leaves. Determination of a-tocopherol content (bar graph)
was from the band intensity on TLC plate. The o-tocopherol content from
agroinfiltrated leaves overexpressing ctl and alrc2 genes were compared with empty
vector (pGWB6) in 1 — 9 dpa. Data represent the mean and SD (n=3). The different
between samples measurement by two way ANOVA test (*: p < 0.05, **: p < 0.01 and

: p < 0.001). The total chlorophyll content (line graph) was measured by

absorption at 663 and 645 nm.
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Figure 34 TLC patterns of tomato leaves expressing alrc2 and ctl extracts. The
agroinfitrated leaves at 1, 3, 6 and 9 dpa expressing ctl (A) and alrc2 (B) were
extracted and separated on the TLC plate. Standard o-tocopherol was used to
compare with a-tocopherol from the samples. Each samples was spotted in
duplicate. Lane 1 — 2: empty vector (pGWB6) at 1 dpa, Lane 3 - 4: recombinant at 1
dpa, Lane 5 - 6: empty vector (pGWB6) at 3 dpa, Lane 7 — 8: recombinant at 3 dpa,
Lane 9: a-Tocopherol standard, Lane 10 — 11: empty vector (pGWB6) at 6 dpa, Lane
12 — 13: recombinant at 6 dpa, Lane 14 - 15: empty vector (pGWB6) at 9 dpa and

Lane 16 — 17: recombinant at 9 dpa.
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In order to confirm the a-tocopherol synthesis as a result of the
overexpression of the recombinant protein, the o-tocopherol extracted from the
infiltrated leaves was detected by GC-MS method. The GC-MS chromatogram showed
the increase of a-tocopherol, fatty acids, and lipids from the transformed leaves
when compared with the control (Figure 35). In addition, during transient
overexpression of both genes showed high level of phytol (6.074 min), a precursor of
phytyldiphosphate (PDP) which is the substrate of enzyme HPT and also palmitic acid
(5.534 min), linoleic acid (6.248 min), &- linoleic acid (6.281 min) and stearic acid
(6.359 min) (Figure 36A and 36B), was detected at 3 and 6 dpa corresponding to the
increase of o-tocopherol content at retention time of 12.953 min and its
intermediate accumulation MPBQ and DMPBQ have retention time of 7.923 and
8.023 min, respectively (Figure 36C and 36D) From GC-MS spectra, it is possible to
identify ot-tocopherol, MPBQ and DMPBQ, intermediates which are not commercially
available, as shown in Figure 37A, B and C, respectively. The MS spectrum of MPBQ
revealed quinol head group fragment at m/z 281 and 321 combined with phytyl
group fragment at m/z 265 while, the DMPBQ MS spectrum showed quinol head
group fragment at m/z 281 and 335 combined with phytyl group fragment at m/z

265 and 155.
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Figure 35 GC-MS chromatogram of infiltrated leaves in 3 dpa of pGWB6::ctl showed
the increase of metabolites. The numbers on the GC-MS chromatograms are the
compounds: 1: palmitic acid (5.534 min), 2: phytol (6.074 min), 3: linoleic acid (6.248
min), 4: o- linoleic acid (6.281 min), 5: stearic acid (6.359 min), 6: MPBQ (7.923 min), 7:
DMPBQ (8.203 min), 8: pentacosane (12.321 min), 9: ®-tocopherol (12.953 min), 10:
nanocosane (14.279 min), 11: o-stigmasterol (14.511 min) 12: B—Sitosterol (15.171

min), 13: Monolinoelaidin (15.258) and 14 :S—Amyrin (15.387 min).
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Figure 36 GC-MS analysis of the chemical profiles of phytol and fatty acids comparing
between the transient expression of ctl (A) and alrc2 (B) and ®-tocopherol together
with intermediates (MPBQ, DMPBQ) involved in the biosynthetic pathway of ctl (C)
and alrc2 (D) in tomato leaves at 1, 3, 6 and 9 dpa compare with control (empty
vector: pGWB6). The labeled numbers: 1: palmitic acid (5.534 min), 2: phytol (6.074
min), 3: linoleic acid (6.248 min), 4: o- linoleic acid (6.281 min), 5: stearic acid (6.359
min), 6:MPBQ (7.923 min), 7: DMPBQ (8.203 min), 8: pentacosane (12.321 min), 9: «-

tocopherol (12.953 min).
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Figure 37 Mass spectra of silylated (A) o-tocopherol (12.955 min), (B) MPBQ (7.923

min) and (C) DMPBQ (8.203 min) from infiltrated leaves.
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CHAPTER V

Discussion

Plant aromatic PTases are divided into three groups based on their aromatic
substrates: (I) the enzymes involved in shikonin and ubiquinone biosynthesisin which
their substrate is p-hydroxybenzoate (PHB) (Ohara, et al,, 2009; Ohara, et al., 2006;
Yazaki, et al., 2002) (Il) the enzymes in the plastoquinone, tocopherol and tocotrienol
biosynthesis with the substrate homogentisate (HGA) (Matsuzuka, et al., 2013; Sadre,
et al,, 2010; Schledz, et al,, 2001), and (lll) the enzymes in the prenylated flavonoid
biosyhthesis with flavonoids as the substrates (Akashi, et al., 2009b). Mostly, plant
aromatic PTases are membrane bound proteins consisting of 6 — 9 transmembrane
o-helixes. The homogentisate phytyltransferase (HPT or VTE2) is thought to be the
rate-limiting step enzyme that catalyzes the prenylation reaction in the initial step of
tocopherol biosynthetic pathway. HPT catalyzes the reaction by condensation of the
aromatic head group precursor, homogetisate (HGA) and the phytyl tail precursor,
phytyl diphosphate (PDP) to produce the first intermediate, 2-methyl-6-
phythylbenzoquinol (MPBQ) for the production of tocopherol. According to the
phylogenetic tree analysis, the flavonoid PTases showed similarity with HPT indicating

that the flavonoid PTases are evolved from HPT in tocopherol biosynthesis.

In this study, we isolated ctl and alrc2 cDNA from C. ternatea L. and A.
lakoocha Rox. Construction of the phylogenetic tree showed that ctl and alrc2 are
the member of HPT family, in which HGA is their aromatic substrate (prenyl acceptor)
and phytyl diphosphate (PDP) is their prenyl substrate (prenyl donor). both appeared
to be most closely related to HPT of Glycine max and Morus notabilis. Their amino
acid sequences display two aspartate (Asp) rich conserved motifs which are

particularly found in UbiA prenyltransferase family. The motif I: NQXXDXXXD is
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corresponding to prenyl diphosphate binding and catalytic reaction by chelation of
Mg2+ and the motif Il: KDXXDXD helps stabilizing the substrate binding (Huang, et al,,
2014; Melzer and Heide, 1994). The activity of these enzyme required Mgz+ or related
ion. The Asp rich motif is important for substrate binding affinity. It has been reported
that point mutation at Asp rich motif resulted in the declination of substrate binding
affinity (Ohara, et al., 2009). From our results, the motif | of CTL and ALRC2 showed
high similarity with a group of the enzymes in tocopherol and tocotrienol
biosynthesis that can bind to PDP or GGPP, while their motif Il showed high similarity
between flavonoid PTase and HPT or HGGT group. Like the identified aromatic
PTases, CTL and ALRC2 are located in the same clan with HPT group in phylogenetic
analysis and they have an N-terminal signal peptide which destines these translated
proteins to localize in chloroplast membrane, as were the results predicted by WoLF
PSORT and Protcomp. Both proteins were predicted to be transmembrane proteins
with nine transmembrane ®-helices. Altogether, the results suggested that CTL and

ALRC2 are likely to be the group of HPT enzymes.

To characterize the ctl and alrcZ functions, overexpression of these genes in
tomato leaves were conducted by agroinfiltration. In recent years, transient gene
expression mediated by agroinfiltration has been used as a tool to demonstrate
transcription and protein expression analysis. It is rapid, simple, and effective
procedure to generate the recombinant protein within a few days by injection of A.
tumefaciens into leaves or fruits of plants (Leckie and Neal Stewart, 2011; Zottini, et
al., 2008). In this study, agroinfiltration technique was used to follow the expression
of the recombinant genes in tomato leaves. The ctl and alrc2 genes were
constructed into binary vector pGWB6 carrying GFP at the N-terminus and under
control of 355 CaMV promoter. A. tumefaciens stain GV3101 containing pJL3:p19 that

expressing RNA silencing suppressor protein (p19) was used to improve agroinfection



78

efficiency (Kanagarajan, et al., 2012; Wydro, et al., 2006). The mRNA expression of
these genes showed the highest level on the first day postinfiltration (dpa) and
decreased afterward. The recombinant protein expression were detected by western
blot analysis and it has been found that the expression of CTL showed the highest
level at 3 dpa and slightly decrease until 9 dpa while ALRC2 showed little expression
at 3 and 6 dpa. It was common that the genes must be expressed first in order to
encode their proteins later. The results clearly demonstrated that the genes and
their corresponding proteins were expressed oppositely during the days after
infiltration. Similarly the level of protein expression via agrobacterium infiltration
followed by GFP protein or GUS activity showed high expression after 3 dpa and
decrease after that (Kim, et al 2009, Orzaez, et al. 2006, Yasmin and Debener, 2010).
In addition, these results suggested that the CTL had higher expression than ALRC2 in
this system and the protein expression can increase to the maximum level at 3 dpa
as well as slightly CTL expression showed high activity to induced a-tocopherol
accumulation at first day after agroinfiltration. It may be influenced by the presence
of 5-UTRs and 3-UTRs of mRNA that form complexes with protein in post-
transcription process for control transcription mRNA stability and translation in
chloroplast (Choquet. and Wollman, 2002, Cohen and Mayfield, 1997, Del Campo,
2009, Gao, et al. 2012, Monde, 2000 and Robida, 2002.). Furthermore, overexpression
of these genes clearly led to the increase of a-tocopherol accumulation in tomato
leaves. The successful detection of increased o-tocopherol content from
agroinfiltration tomato leaves in this study was analyzed by TLC. The ctl and alrc2
genes isolated from C. ternatea and A. lakoocha. could enhance the a-tocopherol
content up to 2.4 fold and 1.4 fold, respectively within 3 dpa when compared with
the control. The increase of the a-tocopherol content was parallel with the increase
of the protein expression level. Similar results have been reported in overexpression

of HPT (also called VTE2) genes isolated from other species. The overexpression of A.
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thaliana VTE2 (At-VTE2) in Arabidopsis have been reported to increase the total
tocopherol level up to 4.4 fold in leaves and 40% in seeds (Collakova and
DellaPenna, 2003a). Moreover, At-VTE2 has also been found to enhance o-
tocopherol level up to 5.5 and 2 fold in tobacco and lettuce transgenic leaves,
respectively (Harish, et al., 2013a; Harish, et al,, 2013b; Koeun, et al., 2007) and also
106 % increasing of a-tocopherol level in potato tuber (Crowell, et al., 2008). The -
tocopherol levels from transgenic expression of lettuce HPT (LsHPT) and apple HPT
(MdHPT) have been reported to raise to 18 and 3.6 fold in lettuce and tomato
leaves, respectively (Ren, et al,, 2011; Seo, et al, 2011). It was obvious that the
overexpression of HPT led to the high accumulation of a-tocopherol; however, the
levels of increment appear to be varied and seem to be depending on the species

whose HPT genes are isolated from.

Our results also indicated that the accumulation of o-tocopherol was
affected by the activity of the ctl and alrc2 genes. However, the limitation of
transient expression method should be taken into account when monitoring the
phenotype after infiltration. In this case, the genes and their proteins could be
detected up until 6 dpa while it was observed that at 9 dpa the accumulation of o-
tocopherol of control was higher than both recombinant gene infiltration samples
because the infiltrated area may be damaged due to the stress of agroinfiltration.
Therefore, this result suggested that the phenotype of these genes transiently

expressed in tomato leaves should be monitored within a week of post-infiltration.

According to the biosynthetic pathways of tocopherol and chlorophyll,
tocopherol production is somewhat related to chlorophyll degradation. It has been
known that HGA and PDP are the substrates of HPT and HGA is derived from
shikimate pathway but PDP can be derived from de novo synthesis of MVA or MEP

pathway and chlorophyll degradation. During the stress conditions, chlorophyll is
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degraded by chlorophyllase to produce chlorophyllide and free phytol. Phytol is
then stepwise phosphorylated by phytyl kinase (VTE5) and unknown
phytylphosphate kinase to produce PDP as a precursor for chlorophyll, tocopherol,
phylloguinone and fatty acid alcohol ester biosynthesis (Ischebeck, et al., 2006;
Valentin, et al, 2006). The correlation between chlorophyll degradation and
tocopherol accumulation is still not clear although it is possible that phytol involved
in tocopherol biosynthesis may derive from chlorophyll degradation. It has been
reported that phytol is incorporated to tocopherol in seedling Arabidopsis by feeding
experiment and affected increasing of tocopherol in overexpressed HPT and TC
tobacco cell suspensions (Harish, et al., 2013b; Rise, et al., 1989). In addition, it has
been found that chlorophyll content was declined about 20% while the tocopherol
content was increased in overexpressed HPT plant (Lee, et al, 2007). To
demonstrate the effect of the recombinant protein (CTL and ALRC2) on tocopherol
accumulation and chlorophyll degradation in plant, the transformed plant extracts
were analyzed by spectrophotometry method. The result showed that CTL and
ALRC2 transiently expressed leaves were related with the chlorophyll decline. Total
chlorophylls slightly continuous decreased after agroinfiltration when compare with
control at 1 - 6 dpa. At 9 dpa, the a-tocopherol accumulation droped while the
total chlorophyll degradation slightly increased that could be effect of senescence
during stress. GC-MS after silylation. At 3 and 6 dpa, the CTL and ALRC2 transiently
expressed leaves contained pools of phytol, fatty acid e.g. palmitic acid (16:0), stearic
acid (18:0) and linolenic acid (18:3), and together with o-tocopherol accumulation.
These results suggested that overexpression of the recombinant CTL and ALRC2
proteins might induce chlorophyll hydrolysis to release free phytol as a precursor of
tocopherol. However, the expression of genes related in chlorophyll degradation
should be further investigated to reveal the correlation between o-tocopherol and

chlorophyll accumulation. In addition, the pools of those fatty acids highly
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accumulated in the transgenic leaves were likely the result of free phytol increment
since it serves as a precursor of fatty acid biosynthesis (Ischebeck, et al., 2006).
Although fatty acid can be derived from the degradation of the chloroplast envelop
membrane where they are its major components (Poincelot, 1976; Whitaker, 1986) or
from chloroplast lipid in response to pathogen attack (Upchurch, R.G. 2008, Walley,
JW, et al. 2013), these causes were unlikely to affect the increase of fatty acid
accumulation in transgenic CTL and ALRC2 tomato leaves because if these processes
occurred, they would lead to plant cell death but the sign of cell death was not

detected at that moment.

Overexpression of CTL and ALRC2 increased the amounts of MPBQ and
DMPBQ in transgenic tomato leaves. MPBQ, DMPBQ and y-tocopherol are stepwise
intermediates in  a-tocopherol biosynthesis pathway. These compounds are
synthesized by HPT, tocopherol cyclase (TC), and y-tocopherol methyltransferase
(YTMT), respectively. In this study, GC-MS could detect MPBQ and DMPBQ but could
not detect y-tocopherol. It is possible that YTMT activity may rapidly convert vy-
tocopherol to a-tocopherol under stress condition (Collakova and DellaPenna,
2003b). To identify MPBQ and DMPBQ, their fragmentation patterns were compared
with the patterns from previous reports (Kobayashi and DellaPenna, 2008; Porfirova,
et al,, 2002; Sussmann, et al,, 2011) instead of standard compounds because MPBQ
and DMPBQ are not commercially available. The mass spectrum of derivatized o-
tocopherol showed molecular ion signal at m/z 502 and heterocyclic chromanol ring
at m/z 237 (Liebler, et al.,, 1996; Mottier, et al.,, 2002). The suspected peaks of MPBQ
and DMPBQ were at retention time of 7.923 and 8.203 minute and their expected
m/z were 546 and 560, respectively. However, the expected molecular ions of
derivative compounds was only detected for DMPBQ but not detected for MPBQ.

This would be due to its low amount or instability of MPBQ. Considering
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fragmentation patterns of these compounds, MPBQ showed major fragment of quinol
head group at m/z 281 and 321 and DMPBQ showed the major fragment of quinol
head group at m/z 281 and 335. Moreover, the quinol head group of these
compounds showed fragment ion at m/z 207 which was calculated from m/z 281
deleted by m/z 73 of TMS (trimethylsilane) derivative. The phytyl tail fragment of
MPBQ and DMPBQ displayed at m/z 265 and m/z 265 and 155, respectively. These
patterns of MPBQ and DMPBQ were in agreement with previous reports; therefore,
GC-MS is a suitable detection method for MPBQ and DMPBQ and these results
confirmed the presence of MPBQ and DMPBQ in the transgenic tomato leaves
expressing CTL and ALRC2. Overexpression of CTL increased the accumulation of
MPBQ and DMPBQ since 1 dpa while overexpression of ALRC2 increased little
accumulation of intermediates after 3 dpa. This result indicated that CT has higher

potential to catalyze reaction than ALRC2.
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CHAPTER VI

Conclusion

Altogether, this study revealed that ctl and alrc2 genes isolated from Clitoria
ternatea L. and Artocarpus lakoocha Rox., respectively, encoded HPT enzyme which
is an important enzyme in o-tocopherol biosynthesis. Both genes were identified and
characterized based on their protein structure which appeared to consist of 9
transmembrane a-helixes, N-signaling transit peptide at N-terminal and Asp rich
regions as substrate binding site. Both genes were highly expressed at 1 dpa and their
proteins were highly expressed at 3 dpa in transient tomato. These overexpression
genes in tomato leaves resulted in the increase of MPBQ (the product of HPT activity)
and DMPBQ and consequently enhance o-tocopherol accumulation The MPBQ and
DMPBQ that are the intermediates in pathway were also detected to be increased by
GC-MS chromatogram. Furthermore, the overexpression of CTL and ALRC2 induced
chlorophyll degradation and released free phyltol that is the precursor of -

tocopherol.
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