การเลือกบุตรเพศชาย: การทำแท้งเพื่อเลือกเพศบุตรและปัจจัยกำหนดเพศ ของบุตรคนสุดท้องในเวียดนาม

นางสาวทิ ทานห์ ตรุก เหงวียน

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาศิลปศาสตรมหาบัณฑิต สาขาวิชาประชากรศาสตร์ วิทยาลัยประชากรศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

SON PREFERENCE: SEX-SELECTIVE ABORTION AND DETERMINANTS OF SEX OF THE LAST BIRTH IN VIETNAM

Miss Thi Thanh Truc Nguyen

$$
\begin{aligned}
& \text { A Thesis Submitted in Partial Fulfillment of the Requirements } \\
& \text { for the Degree of Master of Arts Program in Demography } \\
& \text { College of Population Studies } \\
& \text { Chulalongkorn University } \\
& \text { Academic Year } 2014 \\
& \text { Copyright of Chulalongkorn University }
\end{aligned}
$$

Thesis Title	SON PREFERENCE: SEX-SELECTIVE
	ABORTION AND DETERMINANTS OF SEX
OF THE LAST BIRTH IN VIETNAM	
By	Miss Thi Thanh Truc Nguyen
Field of Study	Demography
Thesis Advisor	Assistant Professor Wiraporn Pothisiri, Ph.D.

Accepted by the Faculty of College of Population Studies, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree
(Associate Professor Worawet Suwanrada, Ph.....................................

THESIS COMMITTEE

(Assistant Profes.. Whesis Advisor

External Examiner
(Associate Professor Wattana Suwansang Janjaroen, Ph.D.)

ทิ ทานห์ ตรุก เหงวียน : การเลือกบุตรเพศชาย: การทำแท้งเพื่อเลือกเพศบุตรและปัจจัยกำหนด เพศของบุตรคนสุดท้องในเวียดนาม (SON PREFERENCE: SEX-SELECTIVE ABORTION AND DETERMINANTS OF SEX OF THE LAST BIRTH IN VIETNAM) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. วิราภรณ์ โพธิศิริ, 108 หน้า.

ความชื่นชอบบุตรชายเป็นค่านิยมที่มีมานานแล้วในประเทศเวียดนาม ซึ่งได้รับอิทธิผลมาจาก แนวคิดขงจื้อที่ให้คุณค่าแก่ความเป็นผู้ชาย ทั้งนี้เพราะผู้ชายสามารถการสืบทอดนามสกุล กราบไหว้บรรพ บุรุษ และให้การดูแลพ่อแม่ยามแก่เฒ่า ในสถานการณ์ที่ภาวะเจริญพันธุ์ลดลง ประกอบกับมีเทคโนโลยี สำหรับการเลือกเพศบุตรเกิดขึ้น อัตราส่วนเพศแรกเกิดของประเทศเวียดนามที่ได้เพิ่มสูงขึ้นมากตั้งแต่ปี 1999 ซึ่งได้ปลุกให้คนในประเทศตื่นตัวกับจำนวนเด็กผู้หญิงที่หายไปก่อนเกิด โดยมีสาเหตุมาจากการทำ แท้งแบบเลือกเพศ การศึกษาชิ้นนี้มีวัตถุประสงค์ที่จะให้ข้อมูลตัวเลขคาดประมาณการทำแท้งแบบเลือก เพศในช่วงปี 1999-2099 และอธิบายปัจจัยที่มีความสัมพันธ์กับการมีบุตรคนสุดท้ายเป็นเพศชายใน ประเทศเวียดนาม

สำหรับการคาดประมาณตัวเลขการทำแท้งแบบเลือกเพศ ผู้วัอไย้ใช้วิธี Reverse Survival และใช้ข้อมูลจากการสำมะโนประชากรของประเทศเวียดนามในปี 2009 และตารางชีพปี 1999 ของ องค์การอนามัยโลก ผลการศึกษาพบว่า มีการทำแท้งแบบเลือกเพศเกิดในช่วงเวลาที่ศึกษาจำนวนทั้งหมด 217,902 ราย เมื่อแบ่งช่วงเวลาดังกล่าวออกเป็น 2 ช่วง พบว่าจำนวนการทำแท้งแบบเลือกเพศนั้นเพิ่มขึ้น เป็นเท่าตัวจาก 74,179 รายในระหว่างปี 1999-2004 เป็น 143,723 รายในช่วงปี 2004-2009 แม้ว่าในปี 2003 รัฐบาลเวียดนามจะบังคับใช้กฎหมายห้ามไม่ให้มีการทำแท้งแบบเลือกเพศแล้วก็ตาม สำหรับ การศึกษาปัจจัยที่มีความสัมพันธ์กับการมีบุตรคนสุดท้ายเป็นเพศชาย ผู้วิจัยใช้ข้อมูลจากการสำรวจ Multiple Indicator Cluster Survey (MICS) ปี 2011 ผลการศึกษาพบว่าการมีบุตรคนสุดท้ายเป็นเพศ ชายมีความสัมพันธ์กับศาสนา จำนวนบุตรที่มีอยู่แล้ว การมีบุตรเพศชายแล้วหรือไม่ และฐานะทาง เศรษฐกิจของครอบครัว โดยในปัจจัยที่กล่าวมาทั้งหมด พบว่าการมีบุตรเพศชายแล้วหรือไม่เป็นปัจจัยที่มี ความสำคัญที่สุด ผลจากการศึกษาครั้งนี้ได้นำไปสู่ข้อเสนอแนะเชิงนโยบาย 3 ประเด็นด้วยกัน ได้แก่ การ เสริมสร้างความเข้มแข็งของระบบควบคุมการการทำแท้งแบบเลือกเพศ จัดตั้งโปรแกรมแทรกแซงใน ระดับชุมชนเพื่อเปลี่ยนทัศนคติและวิธีปฏิบัติต่อสตรี และการกระตุ้นบทบาทของสตรีและความเท่าเทียม กันระหว่างเพศในทุกมิติของชีวิต

สาขาวิชา ประชากรศาสตร์
ปีการศึกษา 2557

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก
\qquad
\# \# 5686855451 : MAJOR DEMOGRAPHY
KEYWORDS: SON PREFERENCE / SEX-SELECTIVE ABORTION / MISSING GIRLS / REVERSE SURVIVAL / DETERMINANTS / SEX OF THE LAST BIRTH / LOGISTIS REGRESSION

THI THANH TRUC NGUYEN: SON PREFERENCE: SEX-SELECTIVE ABORTION AND DETERMINANTS OF SEX OF THE LAST BIRTH IN VIETNAM. ADVISOR: ASST. PROF. WIRAPORN POTHISIRI, Ph.D., 108 pp.

Son preference is a long-standing culture in Vietnam, which is related to patriarchal values derived from traditional Confucian system where sons are perceived as important status symbols, indispensible elements of the perpetuation of the family name and guarantors of the continuing worship of ancestors, as well as family and old age major supports. In tandem with the low fertility and the availability of sex selection technologies, the sex ratio at birth in Vietnam has dramatically increased since 1999, thus alarming a sharp increase in the number of missing girls before birth due to sexselective abortions. This study aimed to provide numerical evidence of abortions due to sex selection and explanatory factors associated with having sons in Vietnam. The objective of this study is twofold. The first fold is to estimate the number of sex-selective abortions during 1999-2009. The second fold is to examine the determinants of the sex of the last birth.

With respect to the first fold, the study adopted the Reverse Survival method and used the data from the 2009 Vietnam Census and the 1999 WHO's Life table. It was found that there were 217,902 abortion cases due to sex selection between 1999 and 2009 in Vietnam. Moreover, this figure nearly doubled from 74,179 to 143,723 for 1999-2004 and for 2005-2009 respectively, even though the national regulation on sex-selective abortion was initiated in 2003. Regarding to the second fold, the secondary data from Vietnam Multiple Indicator Cluster Survey (MICS) in 2011 was employed to examine the determinants of the sex of the last birth. It was found that there were significant associations between the sex of the last birth and religion, parity excluding the last birth, having a son before the last birth, and family wealth. Among others, having no son before the last birth was the strongest factor. Based on the study results, three policy recommendations were proposed. These included strengthening the monitoring system for sex-selective abortion, establishing community-based intervention programs to females to change the attitude and the practice of the society toward partial role and son preference, and encouraging women's empowerment and gender equality in all spheres of life.

Field of Study: Demography
Academic Year: 2014

Student's Signature
Advisor's Signature \qquad

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincerest gratitude to my academic advisor, Dr. Wiraporn Pothisiri, for her continuous support for my Master study and research. She has guided me to write up the thesis in a systematic way, engaged me in many new ideas, encouraged me to make presentations at international conferences, and demanded a high quality of work. All of these consequently encouraged me to improve myself every day. Her immense knowledge, enthusiasm and patience have enabled me to build up my thesis successfully in my own way. I could not have imagined having a better advisor and mentor.

I would also like to thank to our Dean, Dr. Worawet Suwanrada, former Dean Dr. Vipan Prachuabmoh, Deputy Deans Dr. Pungpond Rukumnuakit and Ms. Siriwan Siriboon for making CPS a more comfortable place to study and always willing to respond to all students' needs.

My sincere thanks also go to all other lecturers who had taught me during my Master's course for their excellent lessons, which has built up a strong foundation for developing my thesis and expanded my knowledge on demography and population studies.

I would like to extend my warmest acknowledgement to the rest of the CPS staff, Thai students, classmates, roommates and peers for assisting me in studying as well as daily living in Bangkok at all times.

Furthermore, I would like to give special grateful to my family. They have been my moral support during my time here, especially, my dear husband who has always encouraged, and shared my happiness and sadness. Without their assistance, I could not have enough motivation to attend and finish this course on time.

Finally, I would like to thank the Scholarship program for ASEAN countries provided by Chulalongkorn University for giving me an opportunity and supporting me during the course.

CONTENTS

Page
THAI ABSTRACT iv
ENGLISH ABSTRACT v
ACKNOWLEDGEMENTS vi
CONTENTS vii
List of Tables ix
List of Figures x
Chapter 1: Introduction 1
1.1.Background of the study 1
1.2.Objectives of the study 4
1.3.Benefits of the study 5
1.4.Thesis structure 5
Chapter 2: Literature Review 7
2.1. Introduction 7
2.2.The reflection from the literature review 7
2.3.Three preconditions for prenatal sex selection 8
2.4. Measures and sources of variation of sex composition 11
2.5.Consequences of prenatal sex selection 16
2.6.Prior work on the numbers of sex-selective abortions 18
2.7.Prior work on the determinants of the sex of the last birth 24
2.8. Vietnam - the study context. 29
2.9.Conceptual framework for determinants of the sex of the last birth 36
Chapter 3: Research Methods 38
3.1. Introduction 38
3.2.Estimation of sex-selective abortions during 1999-2009 38
3.2.1. Data Sources 38
3.2.2. Methodology 39
3.3.Determinants of the sex of the last birth 40
3.3.1. Data Source 40
Page
3.3.2. MICS4's sample design and the current study sample size 41
3.3.3. Variables definition and measures 42
3.3.4. Method of analysis 46
3.4.Limitation of the study 47
Chapter 4: Research Findings 48
4.1.Introduction 48
4.2.Estimation of the number of sex-selective abortions during 1999-2009 48
4.3. Determinants of the sex of the last birth 51
4.3.1. Sample characteristics 51
4.3.2. Determinants of the sex of the last birth 55
4.3.2.1. Bivariate analysis 56
4.3.2.2. Logistic Regression Analysis 58
Chapter 5: Discussion and Conclusions 62
5.1.Introduction 62
5.2. A brief review of the thesis 62
5.2.1. The validity of the SSA estimation method 63
5.2.2. The key determinants of the sex of the last birth 66
5.2.3. Policy gaps 68
5.3.Policy implications of this study 69
5.4.Contributions to son preference research 72
5.5.Directions for future studies 72
REFERENCES 74
APPENDIX 79
Appendix A: Vietnam Life table in 1999 for male and female 80
Appendix B: Viet Nam 2011 MICS questionnaires 82
VITA 108

List of Tables

Table 2-1: Sex ratio at births in some countries for 2007-2011 13
Table 2-2: Sources of variation in sex ratio at birth. 15
Table 2-3: Number of abortions in Vietnam for 1999-2012 34
Table 2-4: The numbers of missing girls in Vietnam 36
Table 3-5: Summarize of variables description, measurement scale and sources of information 45
Table 4-6: Survival ratios of females aged 0-4 and 5-9 49
Table 4-7: Survival ratios of males aged 0-4 and 5-9 50
Table 4-8: Numbers of male and female births during 1999-2009 50
Table 4- 9: The number and percentage of sex-selective abortions during 1999- 2009 51
Table 4-10: Description of household-related factors 52
Table 4-11: Description of maternal-related factors 53
Table 4-12: Description of women's birth histories 54
Table 4-13: Description of the last births aged less than 5 years old 55
Table 4-14: The sex of the last birth by household-related factors 56
Table 4-15: The sex of the last birth by maternal-related factors 57
Table 4-16: The sex of the last birth by the mother's motivation to have a son 58
Table 4-17: Tolerance and VIF for independent variables 59
Table 4-18: Logistic regression analysis of likelihood of factors affecting the sex of the last birth 60

List of Figures

Figure 2-1: Sex ratios by regions from 1990 to 2030 13
Figure 2-2: Factors affecting sex ratios at different ages 15
Figure 2-3: The trend of SRB and TFR in Vietnam from 1999 to 2012 29
Figure 2-4: Factors affecting sex ratio at different ages 32
Figure 2-5: Conceptual framework for the determinants of the sex of the last birth. 37

List of Abbreviations

ADB	Asian Development Bank
AIDS	Acquired Immunodeficiency Syndrome
CBR	Crude Birth Rate
CCT	Conditional cash transfer
CMC	Century Month Code
DHS	Demographic and Health Survey
GDP	Gross Domestic Product National Product
GNP	General Statistic Office
GSO	Human Immunodeficiency Virus Infection
HIV	Infant Mortality Rate
IMR	International Union for the Scientific Study of Population
IUSSP	Multiple Cluster Sampling Survey
MICS	Non-governmental Organizations
NGOs	Normal sex ratio at birth
NSRB	Sex Ratio
SR	Sex Ratio at Birth
SRB	Sex Ratio of the Last Birth
SRLB	Sample Registration System
SRS	Sex-selective abortion
SSA	Total Fertility Rate
TFR	Under-five Mortality Rate
U5MR	United Nations
UN	United Nations International Emergency Children's Fund
UNICEF	United Nations Population Fund
UNFPA	World Health Organization
WHO	

Chapter 1: Introduction

1.1. Background of the study

The term "missing women" was first mentioned in 1990 by the Nobel Laureate Amartya Sen who observed the geographical differences in gender imbalance across the world. The gender imbalance, measured by the ratio of women to men, was seen to be around 1.05 to 1.06 in Europe and North America, and distinctively low at about 0.94 in South and West Asia. By using the so called "normal range" of sex ratios in the estimation of expected numbers of women in countries with low sex ratios, the author claimed that more than 100 million women were missing, and more than 50 per cent of which were in China and India (Sen, A., 1990). Global statistics from recent studies have insisted that this phenomenon remains pronounced. In 2010, approximately 117 million women were estimated to be missing, and most missing women were from China and India (UNFPA, 2012).

Women can be missing before birth or after birth due to some sex-selective mechanisms. Nowadays, missing women before birth in the early period of life have received more research attention. This is mainly due to the persistent rise in male-bias sex ratios at birth in many countries, especially the world-populated countries like China and India. Gender balance/imbalance at birth is often estimated by the ratio of male babies born per 100 female babies born (Guilmoto, C.Z., 2010, UNFPA, 2012). This ratio is called by demographer sex ratio at birth (SRB) and has been widely used. Based on the long observation since 1660s, boys at birth are always more numerous than girls at birth, and the range of SRB is between 104 and 107 boys for every 100 girls under normal circumstances, that is, no deliberate intervention during the process of reproduction (Nixon, N.N., 2013).

According to the report of UNFPA (2012), China ranked first with the highest SRB in the world with 117.8 baby boys per 100 baby girls. It is evident that most countries with high SRBs were in Asia, for example, China, Azerbaijan (116.5), Vietnam (111.2), and India (110.5), only few countries in Europe, for instance, Albania (111.7), and Montenegro (109.8). These figures suggest that baby girls are missing at
birth in these countries. Another report of World Bank on Gender Equality and Development (2011) revealed the alarming number of 1.5 million girls who were missing at birth around the world, mostly in China and India.

Literature postulated that the main direct cause of the imbalance sex ratio at birth is prenatal sex selection, which derived from three major factors including son preference, low fertility, and availability of sex selection technologies (GSO, 2009, Guilmoto, C.Z., 2009, Guilmoto, C.Z., 2012, Gilles, K. and Jacobs, C.F., 2012, UNFPA, 2012). Among them, son preference is the root factor since the prenatal sex selection has not existed in the regions where there is no preference for sons, even though two remaining factors are met, such as Western Europe. Son preference relates to patriarchal values derived from traditional Confucian system, in which the family requires a son to perpetuate the family name. Sons have been viewed more favorable as they are physically stronger than daughters, then more capable of doing farm and taking care of the whole family, especially when the parents get older. In addition, low fertility had negatively exacerbated the situation (UNFPA, 2012). Presently, a couple's perception on childbearing has been focused on the quality of children, rather than the quantity of children (Bongaarts, J., 2002). In tandem with antinatalist policy, most women have only one or two children (Institute for Social Development Studies, 2007). Thus, the chance of having a son obviously declines, which strengthens the need for prenatal sex selection for both limiting the number of children and attaining the desired number of sons (Bongaarts, J., 2002, UNFPA, 2012). It is fact that, ultrasound scans have improved the quality of prenatal care for millions pregnant women. However, now this scan has become the most common mean to know the sex of the fetus and indirectly increases the number of sex-selective abortions.

The imbalanced sex ratio at birth has undoubtedly posed a number of challenges to the society. First, the disproportionate sex ratio at birth affects the population structure by changing the number of boys and girls aged less than one year old, which subsequently results in the shortage of female adults and the marriage squeeze in the future. The problem can be worse for men who are economically and socially disadvantaged because they cannot compete with other unmarried men to fulfill the
family wish to find a bride and carry on the family name. The marriage squeeze is not only a problem for men but also for women as well as for the society. As pregnancy with undesired female fetus is often ended in abortion, it is likely for women who underwent sex-selective abortion to have greater risks to their physical and psychological health. Health risk could be higher if abortion is not carried out by health professionals. It is also apparent that the exploitation of women, female trafficking, and gender-based violence have increased over time in the countries with the reported high SRBs, and this inevitably undermines the country's development and stability (Guilmoto, C.Z., 2012).

In Vietnam, son preference has been a long-standing culture (Gilles, K. and Jacobs, C.F., 2012). Sons have a higher "value" than daughters because they take care of their older parents, perpetuate the family name and worship the ancestors (Lee, S.Y. and Marwell, G., 2013). The demand for a son was aggravated by low fertility, TFR continuously declined from 2.25 in 2001 to 2.03 in 2009, reducing the chance of having a son (GSO, 2009). Moreover, abortions have been legal in Vietnam. It is like the open door for sex-selective abortions. Vietnamese women can undergo abortions on request with any reason. The situation has become worse since 2000, when ultrasound scans have been extremely common nationwide (Asian safe abortion partnership, 2013). Along with the health of the fetus, woman and their family knew the sex of the fetus. With existing preference for a son, woman could have abortion if the fetus was a girl. As the result, SRB significantly increased from 104 in 2003 to 110.5 in 2009 in Vietnam (GSO, 2012).

However, it is fortunate that the Vietnamese government was aware of negative impacts of imbalanced sex ratio at birth and has undertaken several measures in response to this phenomenon. These included the ban of sex selection by any methods (National Committee, 2003, Vietnam Congress, 2006), and the revision of antenatal care protocol, in which health providers have been not allowed to inform pregnant women with the sex of their babies (Vietnam Goverment, 2006). Moreover, in the National Strategy on Population and Reproductive Health for 2011-2020, the government has expressed their determination by setting a target to bring down the sex ratio at birth to lower than 113 in 2015, and 115 in 2025 (Vietnam Goverment,
2011). In addition, the government is considering to initiate the conditional cash transfer (CCT) scheme to support the family having only female children (Nguyen, K., 2013). Despite the government's huge efforts, the percentages of women knowing the sex of their fetus before birth still continuously increased from 63.8% in 2006 to 81.3% in 2012 (GSO, 2012).

Overall, son preference and sex-selective abortion have been hot issues in Asia countries, especially in China, India and Vietnam and clearly warrant more studies. To my best knowledge, however, very few studies have estimated the number of missing baby girls because of sex-selective abortions. Among these existing studies, none has employed the information from Census. Regarding the existing studies in Vietnam, the qualitative research identified apparently the cultural driving force of son preference, and the annual Demographic Survey pointed out the trend of the fertility decline and the increase of women using ultrasonic scans to know the sex of their fetus before birth. Thus, the hidden aspect was the number of women having abortions because of sex selection. This study, therefore, estimated the number of sexselective abortions using the data from the 2009 Vietnam Census and provided a better understanding of son preference via the determinants of the sex of the last birth using the most update 2011 Vietnam MICS, which helped to guide the priority of intervention activities for the government.

1.2. Objectives of the study

The objective of this study was two-fold. The first fold was to estimate the number of sex-selective abortions from 1999 to 2009. The second fold was to identify the determinants of the sex of the last birth.

1.3. Benefits of the study

The study has provided the numerical evidence of abortions because of sex selection as well as reflected the methodology of SSA estimation. In addition, the results have drawn the whole recent picture of the determinants of the sex of the last birth. Based on the study results, the effective of the related laws were partly evaluated, and then policy implications and directions of future studies were suggested.

1.4. Thesis structure

The layouts for this thesis are as following:

Chapter 1: Introduction

This chapter has four sections. The introduction aims to provide the background information about the thesis and answers the question of why we choose this topic by showing the gaps of previous studies, the alarming problems, and the benefits of this study. In addition, the thesis objectives and the thesis structure are presented so that readers can have an overview of the study and follow the next chapters easily.

Chapter 2: Literature Review

This chapter is the platform for developing the remaining chapters. It has nine sections which present all literatures related to the study objectives, obtained from the prior research, journal papers, government's documents, and reports of international organizations. The reviews include global patterns and consequences, previous estimation methods, relevant theories, and the detail description of Vietnamese context. Based on the reviews, the conceptual framework of this study is built up.

Chapter 3: Research Methods

This chapter has four sections, and each section presents data sources and methodologies regarding the study objectives. Finally, limitations of this study are highlighted.

Chapter 4: Research Findings

This chapter displays the study results and analyses, following the methodology chapter and the study objectives. With respect to the estimation of SSA, the study findings are presented according to the steps of calculation. Regarding the determinants of the sex of the last birth, the study results are outlined corresponding with the flow of analysis methods and indicate the statistical significance of the data.

Chapter 5: Discussion and Conclusions

This chapter has five sections which present the discussion on the validity of the estimation of SSA and key findings. Based on the results of the study, policy implications are suggested. In addition, conceptual contributions of this study to son preference research and directions for future studies are also discussed.

Chapter 2: Literature Review

2.1. Introduction

This chapter reviews the literature regarding to the two objectives of the study. It begins with the strategy employed to locate the literature and the researcher's reflection on the literature review (Section 2.2), followed by the review of the three preconditions of prenatal sex selection (Section 2.3). Then, the measurement, the recent increasing trend of SRBs and social consequences are showed (Section 2.4 and Section 2.5). Next, the methods have been used to estimate the numbers of sex selective abortions and the determinants of the sex of the last birth in previous studies are presented (Section 2.6 and Section 2.7). After that, the study context- Vietnam is described (Section 2.8). Based on the literature review, the conceptual framework is showed (Section 2.9).

2.2. The reflection from the literature review

In this current study, the literature review was drawn on a wide range of interdisciplinary perspectives, including demography, social medicine, public health, and cultural studies. The literature review included academic papers published and unpublished theses, and reports from government agencies and international organizations, such as UNFPA and UNICEF. Most academic papers were accessed through the electronic journal databases, including JSTOR, MEDLINE, and ISI's Web of Knowledge, whereas the governmental documents were obtained from the government's official webpages and the search engine.

It is found that the literature review on this issue was not completely new but relatively scarce. Most existing research concentrated on the pattern of SRBs, direct and indirect causes of preference for sons and the variations of SRBs according to demographic and socioeconomic characteristics such as birth order, residence, region, ethnicity, religion, and family wealth. It is undoubted that the idea of missing girls started early by Sen (1990), and several studies did on missing girls using Sen or
newer methods. However, the literate review on techniques to calculate the number of sex-selective abortions has been very rare. Only two papers were found, even though SSAs has received a lot attention from international organizations such as UNFPA and UN. In addition, most the existing work was written by Guilmoto. It is not surprising most literature was based in the Chinese and Indian contexts. Turning to the literature review on SSA in Vietnam, the studies on the number of missing girls or sex-selective abortions have received relatively little attention, even though a lot of qualitative research was conducted to explore reasons of having abortions.

2.3. Three preconditions for prenatal sex selection

Existing research has suggested that there are three main preconditions for prenatal sex selection, namely son preference, fertility decline, and sex-selective technology. These factors have worked as "intermediate variables", which any social factors influencing prenatal sex selection must operate. Among them, preference for sons has been considered as the most important motivation of sex selection (Guilmoto, C.Z., 2010, Gilles, K. and Jacobs, C.F., 2012, UNFPA, 2012).

2.3.1. Son preference

According to the theory on the value of the child, parents tend to have a child of particular gender who has higher value. The value of the child comes from three functions, including child capital, parent capital, and power of parent. First, child capital consists of three dimensions, namely comfort, social esteem and affection. Comfort is related to the economic aspect, whereas social esteem concerns the sociocultural aspect, and affection is related to the psychological aspect. Specifically, children are expected to provide support to parents, for instance, child labor, old-age security, and maintenance of the family name. Second, parent capital consists of resources that children are interested in but within parents control such as the property of parents. Third, parental power gives them the right to get involve in their children's
behaviors, for example, educating their children, being supported by their child when they are old, or selling the child in some countries. This theory suggests that the stronger interrelation of three functions of the value of the child, the higher value of the child will be (Lee, S.Y. and Marwell, G., 2013). This theory seems appropriate to explain the phenomenon of son preference in Asian countries, especially in India, where parents of the brides spend a large amount of expenses, while parents of the grooms are benefited from these dowries. None of these requirements are seen in Western countries, where marriage payments appear more balanced. In addition, married daughters are not supposed to contribute to their parents' expenses after marriage in Asia.

Asian countries have also experienced a sharply decline in the adult mortality and an increase in the life expectancy. As the result, parents have been living longer, but pension benefits and social security were only restricted to a small percentage of the population. Local authorities normally consider that children would be responsible for the care of their parents. Thus, having a son makes parents safe in their old age because married daughters usually live far away from their parents and their natal family. In addition, in several countries, the apparent economic role of sons in patriarchal systems has coalesced into strictly defined religious duties. For example, Hindu and Buddhist societies, only male descendants can perform rituals during the funerals of their parents or ceremonies for the ancestors. Hence when asked why couples preferred sons to daughters, some of them mentioned social pressure as their main motivation, rather than economic benefits (UNFPA, 2012).

It is fact that prenatal sex selection has been not existed in countries with no preference for sons, even though two remaining preconditions are met. Taking Western Europe as an example, this region has the low TFR and the high medical technology, but there is no evidence of imbalance sex ratio at birth. Grooms and brides are both expected to bring resources to marriage. Little discrimination between men and women are reported at work. The family solidarity in Western countries is obviously weaken than in Asia countries, so parents and their children are independent in all spheres in life, which results in no sex preference of children among parents (Lynch, K.A., 2011).

2.3.2. Low fertility

The decline of fertility has been the global trend in several decades, and the low fertility strengthens the need for prenatal sex selection for both limiting the number of children and attaining the desired number of sons. As the common trend, fertility level has fallen below the replacement level in many Asian countries, where women presently have two or fewer children. Since reducing the number of children means declining the probability of having a son. A decrease by one child in fertility rate translates exactly into a doubling of the proportion of couples with no son in the absence of prenatal selection (Bongaarts, J., 2002, UNFPA, 2012).

2.3.3. Accessibility and acceptability of sex-selective technologies

Accessibility and acceptability of sex-selective technologies makes sex selection feasible directly. Parents can access to acceptable and efficient methods to get their desire sex of the child. Ultrasound scan is the most common mean to determine the sex of the fetus and initiated in 1880 (Man, A. and Karmakar, M.K.). Then the use of ultrasound scan has increased rapidly in many countries because of a low cost and a simple of implication in health centers. By the 1980s, thousands of clinics were already in operation and offered sex diagnosis services. In tandem with the establishment of private health centers and the diffusion of the new technology, ultrasound scans have been adopted widely by women in both urban and rural areas (Science-Based Medicine, 2013).

Besides ultrasound scan, there are other means such as blood test and amniocentesis, which require more high-tech laboratories. These tests have been proved by manufacturers to be more precise and quicker than ultrasound scan. Amniocentesis is conducted by using the needle inserted into amniotic fluid. Most often, it is used to spot common genetic defects (such as Down syndrome) and neural tube defects (such as spine bifida and hydrocephalus). However, amniocentesis can cause miscarriage and uterine infection, especially for women with under $15^{\text {th }}$ weeks of pregnancy (University of Maryland Medical Center, 2012). Blood test can be done as early as the
$9^{\text {th }}$ weeks of pregnancy by analyzing cell-free fetal DNA circulating in the mother's blood (Science-Based Medicine, 2013).

It is important to note that using medical technologies to determine the sex of the fetus might be impossible in some countries, for example, in China, India, Nepal, South Korea, and Vietnam, where prenatal sex determinant was prohibited since 1989, 1994, 2002, 1987, and 2003 respectively (Ganatra, B., 2008). Thus, the sex determinant technologies need to be acceptable by law to be possible in practice. In addition, traditional sex selection methods have also existed such as prayers, a specific diet, timing and types of intercourse. Few scientific evidences can support for the effectiveness of these methods but the attitude toward sex preference of parents is reflected. Overall, there are many ways to determine the sex of the baby, and parents can get this information easily if they want to. (UNFPA, 2012).

2.4. Measures and sources of variation of sex composition

According to Hobbs (2004), there are three commonly used measures of sex composition, namely masculinity proportion, the excess/ deficit of males, and sex ratio/ masculinity ratio.

2.4.1. Measures of sex composition

The first measure is masculinity proportion. It represents the percentage of males in total population. Fifty per cent is the balancing point between two sexes. The figure above 50 percent means an excess of males, in other words, there is an excess of females. The masculinity proportions of national population are usually below 50% and vary over a narrow range.

The second measure is a ratio of excess or deficit of males to the total population. Zero is the point of balance between male and female. The positive value shows an excess of males, and the negative point denotes an excess of females.

The last measure is sex ratio, widely used. It is defined as the number of males per 100 females and can be calculated for single age or age groups. Except for India, where the number of females per 1000 males are used (Kulkarni, P.M., 2007). One hundred is the balance point between two sexes. The value above 100 reflects the excess of males, and vice versa denoted the deficit of males. It is evident that SRs of national population usually range from 95 to 102 . The estimation of SR is extremely sensitive to the sample size. A sex ratio of 100 computed over a sample of 5000 observations ranges from 94.6 to 105.7 (95 per cent confidence interval), thus large samples are always more preferable (UNFPA, 2012).

Nowadays, SR at the early age of life, such as at birth, has received a lot of attention from NGOs and researcher. The normal level of SRB varies from 104 to 107 male births per 100 female births (Nixon, N.N., 2013). In addition, the best source for SRB estimation is the birth registration data when vital statistics are available and exhaustive. This data source provides annual and regional series data to identify differentials and trends of SRB. In Vietnam, SRs and SRBs are provided by the annual Population change and Family planning surveys and the Censuses (GSO, 2009, GSO, 2010). Overall, there are three numerical measures of sex composition, and the most popular one is sex ratio. Therefore, this current study used SRB to measure sex composition at birth.

2.4.2. Current pattern of SRs and SRBs in some countries

In this subsection, we discuss on patterns of SRs of three regions including Africa, Asia, and Europe, which can be representative for less developed, developing, and developed countries respectively. As shown in Figure 2-1, the sex ratio of Asia is about 104, which is higher than the normal range of SR (from 95 to 102) and the two remaining regions for 1990-2010. The SR of Africa fluctuate around 100 whereas Europe has the lowest SR with 92.

Figure 2-1: Sex ratios by regions from 1990 to 2030

Source: World Population Prospects: The 2012 Revision, http://esa.un.org/unpd/wpp/index.htm

In addition, there were many countries having the SRBs higher than the normal level of SRB (from 104 to 107) (Ganatra, B., 2008) by 1.6-12.2 per cent as shown in Table 2-1. More interestingly, most countries with high SRBs locate in Asia.

Table 2-1: Sex ratio at births in some countries for 2007-2011

Country/Region	SRB	Period	Data source
Asia	117.8	2011	Annual estimate
China	107.5	2009	Birth registration
Singapore	106.7	2010	Birth registration
South Korea	111.2	2010	Annual demographic survey
Vietnam	110.5	$2008-10$	Sample registration
India	109.9	2007	Population and demographic survey
Pakistan	116.5	2011	Birth registration
Azerbaijan	114.9	2010	Birth registration
Armenia	113.6	$2009-11$	Birth registration
Georgia			
Southeast Europe			
Albania	111.7	$2008-10$	Birth registration
Montenegro	109.8	$2009-11$	Birth registration

Source: UNFPA Asia/The Pacific Regional Office (2012), Sex Imbalances at Birth: Current trends, consequences and policy implications.

2.4.3. Sources of variation in SRs and SRBs

Sex ratio and sex ratio at birth of the population vary due to death and migration. The mortality rate of women is lower than men so the sex ratio decline with age. In addition, the social events, for instance, wars, SR of adults declined due huge loss of men. In rural areas, SRs of working population decrease because men are more likely to migrate to urban to work than women (Siegel, J.S. and Swanson, D.A., 2004). Besides mortality and migration, SR also increases because of sex-selective abortions.

As shown in Figure 2-2, there are two main factors affecting on the sex ratio from the conception to the adulthood. The left panel shows biological and environmental factors that increase the gender bias in mortality via discrimination against females, while the right panel displays social decisions and gender preferences. The probability of conceiving a male embryo is slightly higher than a female embryo in the human species. Thus, sex ratio at birth in the absence of social manipulations is usually close to 105 male births per 100 female births. In addition, it is showed the SRB is changed because of spontaneous abortions and abortions after prenatal sex determination (UNFPA, 2012). Moreover, Table 2-2 shows the variations of SRB by demographic and social characteristics such as birth order, residence, region, ethnicity, religion, and social economic status.

Figure 2-2: Factors affecting sex ratios at different ages

Source: Christophe Z.Guilmoto (2010) "Sex imbalances at birth in 2010: Some theory and a few recent estimates". UNFPA Asia/The Pacific Regional Office (2012), Sex Imbalances at Birth: Current trends, consequences and policy implications.

Table 2-2: Sources of variation in sex ratio at birth

Factor	Impact on sex ratio at birth	Country
Birth order	Increases with higher birth order Highest among final births Highest in families without a son	All countries
Rural/urban	Moderate variation	All countries
Region	Geography usually a strongest source of variation of a sex ratio within a country	All countries
Ethnicity	Ethnic groups exhibited very distinct SRB. Most minority groups had low SRB	Vietnam, China, India, Singapore
Religion	Hindus, Sikhs, Buddhists, and Janis had higher SRBs than Muslims or Christians	India, South Korea
Socioeconomic status	Low SRB among poorest households Highest SRB among the richer households and the better educated people	China, India Vietnam

Factor	Impact on sex ratio at birth	Country
	Low SRB among the most affluent in China Low SRB among women with social insurance in China	

Source: Christophe Z.Guilmoto (2010) "Sex imbalances at birth in 2010: Some theory and a few recent estimates."

2.5. Consequences of prenatal sex selection

In recent years, imbalanced SRB has received enormous attention of policy makers. Many countries have collected the SRB annually, and initiated regulations and measures to control the rapid increase of SRB. Experts have expressed their serious concern about the negative consequences of imbalanced SRB on males, females and the society.

2.5.1. Consequences on males

Guilmoto (2012) examined the potential impacts of the marriage squeeze in China and India during the twenty-first century. The grooms in both countries were estimated to outweigh the prospective brides by more than 50% for three decades in the most favorable scenario. In addition, the proportion of unmarried men at age 50 was expected to rise to 15% in China in 2055 and to 10% in India in 2065. UNFPA (2012) indicated that the impacts would be stronger among the vulnerable men who were poorer, less educated, and from remote areas. Thus, single males have to self-prepare for their old age without children because of incomplete social insurance system in two countries.

2.5.2. Consequences on females

With regard to the direct impact, imbalance SRB reduces the well-being of girls. The research (Hu, L. and Schlosser, A., 2011) found that girls were breastfeed for a shorter period than boys, even though the benefits of breastfeeding on children's health is apparent. In addition, the female mortality was excess the male mortality since the age of one month. No larger reduction in the female child mortality in states with a high incidence of prenatal sex selection in India. While, there was no discrimination in the allocation of food and calories in China but the supply of healthy goods were not equal between young girls and young boys (aged 0 to 4 years old), especially who lived in the poorer provinces (Burgess, R. and Zhuang, J., 2002). In summarize, prenatal sex selection does not only cause the imbalance sex ratio at birth, but also reduces the well-being of girls due to neglect after birth.

For further optimistic expectation, of course, women would be great demand and easy to get married at their expected age, while men would have to compete with others to have a wife. However, a renewed stress on the women's reproductive responsibility to marry and perform wife's traditional role, whereas modern women tend to delay marriage to devote to their higher education and better employment positions. More seriously, the need for women could result in the higher risk of gender-based violence, increasing forced fraternal polyandry, rising demand for sex workers, and thriving trafficking networks. Moreover, reducing women's share of the population in several countries would lead to a weaker political voice in public decision-making. Men would strengthen their control on public and political institutions and then have a greater influences on family and gender legislations (UNFPA, 2012). In general, the negative impacts of skewed sex ratio at birth on females outweigh on males.

2.5.3. Consequences on the society

The intensity and the duration of the current imbalanced sex ratio at birth will shape the population structure and the size of the masculinization. In addition, reducing the number of girls means that mothers will be deficit, which results in declining the number of births in the future. These demographic changes have posed numbers of
challenges to society. For example, the rise in male bachelorhood alarms that the government will take the responsibility to support for single men when they get older which can be the enormous burden on the government's budget. Besides, international marriage migration would be more and more popular within Asia. For example, in China and India, males tended to get married with females migrating from Nepal, Bangladesh, Lao, Mongolia, and Vietnam. However, the problem is that migrant brides have not been well prepared to adapt to the new living environment in foreign countries so they are often the victims of violence, neglect, and discrimination (UNFPA, 2012).

2.6. Prior work on the numbers of sex-selective abortions

Data quality seems to be the most important factor in studying the effect of abortions and sex-selective abortions (Jonhston, H.B. and Hill, K.H., 1996). In general, the methods to measure abortions have been distinguished into (1) direct method and (2) indirect method. Direct method has been used when abortions were accurately reported. The abortion data typically has come from health facility's records and individual surveys.

In the countries where abortions have been legal, the prevalence of abortions is obtained directly from medical reports, but it excludes considerable number of abortions in private and undocumented health centers. In the countries where abortions have been illegal, a community-based survey is the only method. In theory, community-based surveys offer an advantage over indirect method. For example, the number of abortions can be found among all subgroups of women, which provides geographic, demographic and socioeconomic characteristics of women. However, in practice, community surveys are susceptible to a range of problems, including underreporting, misreporting, social courtesy bias, and recall bias. As abortions reporting in community surveys are influenced by the wording of the questionnaire, the legal environment of a country, and the public attitude toward abortions (Singh, S., Remez, L. et al., 2010). Thus, in many contexts, abortions are illegal and involve
with the stigma so it is highly likely that the number of abortions are underreported, hence reasons for abortions are hidden as well. As the result, the number of abortions due to sex selection has been poorly estimated by the direct method, especially in countries where sex-selective abortions are illegal. According to UNFPA (2009), no survey has ever found accurate SSA estimates. Therefore, it is justified to use the indirect estimation of sex-selective abortions in this study as shown in Section 2.6.1 and Section 2.6.2.

According to Cai and Lavely (2003), girls can be missing before birth due to excess female mortality in uterus, presumably the result of sex-selective abortions; and after birth because of two causes including (1) excess female mortality in infancy, probability because of discriminatory behaviors of parents, and (2) net out-migration of girls, presumably due to international adoption. It is noted that undercount of girls in Censuses also makes the number of missing girls overestimated. The total number of girls who were removed from the population, before and after birth, by some sexselective mechanisms is called "truly missing girls". Combining this with girls who were undercounted in the Census was termed as "nominally missing girls". The majority of missing girls was truly missing (66.1 per cent).

In addition, according to Guilmoto (2010) and UNFPA (2012), besides sex-selective abortions, girls can be missing before birth due to miscarriages as shown in Figure 22. However, miscarriages have been less likely to be mentioned in the previous studies which estimated the number of missing girls before birth, as most of studies focused on sex-selective abortions only (Cai, Y. and Lavely, W., 2003, Kulkarni, P.M., 2007, Yadav, P., 2011). Miscarriage, as defined by WHO is a premature loss of fetus up to 23 gestational weeks and weighing up to 500 grams (Mehta, M. and Pattanayak, R., 2013). Most miscarriages occurred during the first 7 weeks of pregnancy (MedlinePlus, 2012) when the sex of fetus is not known. Hence miscarriages may be less likely to associate to sex selection. Furthermore, the national report on miscarriages is unavailable. There is no mechanism to monitor the prevalence of miscarriages in Vietnam. The information about miscarriage can be only found in hospitals but is highly likely to be underreported. Therefore, in this
current study, we focused on the females removed from the population before birth due to sex-selective abortions only.

The following subsections detail two estimation methods, namely the reverse survival method and the Kulkarni's method.

2.6.1. Reverse survival method

Meaning of the reverse survival is that in a closed population, children currently aged x are the survivors of the births that occurred x years ago. From this fact it is easily inferred that the number of births occurring x years ago can be estimated by using life-table survivorship probabilities to "resurrect' numerically those no longer present among the population aged x . This method of estimation is known as "reverse survival" or "reverse projection" because the population now aged x is "survived" or "reverse-projected" to age x-t by moving it with a suitable life table, t years into the past. It is immediately evident that if the single-year age distribution of a population enumerated at t_{0} is available, the number of births which occur during each of the 15 or 20 years preceding t_{0} could be estimated. For example, population aged 0-9 in 2009 is reversed survival to estimate the total number of births during 1999-2009. The reverse survival method has been widely known in the estimation of TFR and migration (United Nations, 1983). However, it is worth noting that the reverse survival method is heavily dependent on the accuracy of the reported age distribution of the population. Errors in age-reporting, especially of the younger ones, are certain to bias the estimates obtained.

Step 1: Calculate the life table survivorship of children

In order to reverse the survived population in the two age groups $0-4$ and $5-9$, we needs the values of ${ }_{5} \mathrm{~L}_{0}$ and ${ }_{5} \mathrm{~L}_{5}$, which are the person-years lived between birth and age 5 , and between age 5 and 10 , respectively. The ${ }_{5} \mathrm{~L}_{0}$ and ${ }_{5} \mathrm{~L}_{5}$ could be obtained from an empirically-based life table of the population or a model life table which are
appropriate to the study context, for example, the regional model life tables or the WHO's life table.

In the life table, the value of ${ }_{5} \mathrm{~L}_{0}$ can be obtained from the summation of ${ }_{1} \mathrm{~L}_{0}$ and ${ }_{5} \mathrm{~L}_{1}$ or the difference between T_{0} and T_{5} (the total person-year lived since age 0 and age 5).

$$
{ }_{5} \mathrm{~L}_{0=1} \mathrm{~L}_{0+5} \mathrm{~L}_{1} \text { or } \mathrm{T}_{0}-\mathrm{T}_{5}
$$

Then the survival ratio for any age group is calculated by the following formula:

$$
{ }_{n} S_{x}={ }_{n} L_{x+n} /{ }_{n} L_{x}
$$

According to (Siegel, J.S. and Swanson, D.A., 2004), the survival ratios for young age groups including age group of 0-5 and 5-9 should be calculated from the following formula:

$$
\begin{aligned}
& \mathrm{S}_{0-4}={ }_{5} \mathrm{~L}_{0} / 5 * \mathrm{l}_{0}=\left({ }_{1} \mathrm{~L}_{0}+{ }_{5} \mathrm{~L}_{1}\right) / 5 * \mathrm{l}_{0} \\
& \mathrm{~S}_{5-9}={ }_{5} \mathrm{~L}_{5} / 5 * \mathrm{l}_{0}
\end{aligned}
$$

Step 2: Estimate the numbers of births in each five-year period preceding the inquiry The numbers of births are born from ($\mathrm{t}-5$) to t and from ($\mathrm{t}-10$) to ($\mathrm{t}-5$) can be derived from the following equations, respectively:

$$
\begin{aligned}
& \mathrm{B}(\mathrm{t}-5, \mathrm{t})={ }_{\mathrm{x}+5} \mathrm{~N}_{\mathrm{x}}(\mathrm{t}) / \mathrm{S}_{(\mathrm{t}-5, \mathrm{t})} \\
& \mathrm{B}(\mathrm{t}-10, \mathrm{t}-5)={ }_{\mathrm{x}+5} \mathrm{~N}_{\mathrm{x}}(\mathrm{t}) / \mathrm{S}_{(\mathrm{t}-10,-\mathrm{t}-5}
\end{aligned}
$$

Where $\mathrm{B}(\mathrm{t}-5, \mathrm{t})$ is the number of births that occurred from year $\mathrm{t}-5$ to year t . While ${ }_{x+5} N_{x}(t)$ is the enumerated population aged between x and $x+5$ in year t.

Following two steps, we can estimate the actual number of male births and female births in each five-year period before the selected year. With the assumptions of fully enumeration of male population, the expected number of female births during each five-year period is equal to the number of male births divided by the normal sex ratio at birth (105). Therefore, the gap between the expected and actual numbers of female births during each five-year period is the number of sex-selective abortions (Kulkarni,
P.M., 2007, Yadav, P., 2011). According to Yadav (2011), who applied the reverse survival method to estimate the number of sex-selective abortions, there were 184,864 sex-selective abortions, accounting for 65.4 per cent of total missing girls aged 0-6 during 2004-2011 in Madhya Pradesh in India.

The reverse survival method has two advantages. First, it requires minimum data which is suitable for countries with incomplete vital registration system, .i.e. Vietnam. Second, the reverse survival method has high validity and reliability in the estimation of the total number of births occurring in specific period. As it has been widely applied in the estimation of TFR (IUSSP, 2012, United Nations, 1983). However, there are some caveats for user. The quality of this method results heavily depends on the selection of data sources, the life table, and the value of normal SRB. Thus, the researcher needs to invest on all these things when discussing on the validity of the estimation results.

2.6.2. Kulkarni's method

The Kulkarni's method provided another means to estimate the number of total missing girls and the number of sex-selective abortions. For sake of brevity, this subsection discusses only the technique to estimate the number of sex-selective abortions. The basic concept of the Kulkarni's method is that the number of sexselective abortions equals to the gap between the expected and actual numbers of female births, given that there are no male sex-selective abortions (Kulkarni, P.M., 2007). The following steps describe this technique in detail.

Step 1: Calculate the total number of births (LB) in each five-year period

The mid-period population and the average crude birth rate (CBR) were needed to calculate LB by using below formula:

$$
\mathrm{LB}=\text { Mid-period population } * \mathrm{CBR} * 5 / 1000
$$

In which, CBRs for each five-year period gave by India General Registration.

Step 2: Estimate of the number of male births (MB) in each five-year period
The average SRBs were estimated from the Sample Registration System (SRS) for three-year segments. However, in this case, Kulkarni was interested in five-year period so the average SRBs for five-year period are assumed to be equal to the SRBs of three-year period. It is important to note that based on the analysis of missing girls, the SRBs from the SRS were probably over-estimates. Thus, instead of using SRB, they used adjusted SRB, which were obtained by applying the correction factor 0.9766. Finally, the numbers of male births in each five-year period was derived from the following equation:

$$
\text { MB }=\mathrm{LB} * \text { SRB (adjusted) } /[100+\text { SRB (adjusted) }]
$$

In which, adjusted SRB was equal to SRB multiply by 0.9766 .
Step 3: Estimate the numbers of sex-selective abortions (SSA) in each five-year period

The expected numbers of female births (EFB) were calculated from the numbers of male births in each five-year period, given that the normal sex ratio at birth (NSRB) was 105 , by using the following formula:

$$
\mathrm{EFB}=\mathrm{MB} * 100 / 105
$$

Then the actual numbers of female births in each five-year period were the gap between the total numbers of births and the numbers of male births.

$$
\mathrm{FB}=\mathrm{LB}-\mathrm{MB}
$$

Then the number of sex-selective abortions was the difference between the expected and actual numbers of female births.

$$
\mathrm{SSA}=\mathrm{EFB}-\mathrm{FB}
$$

According to Kulkarni (2007), the number of sex selective abortions fluctuated from 1981 to 2005 in India. Specifically, it started at 1.1 million sex-selective abortions,
followed by continuously increased to 3.1 million for 1991-1995, then declined a little for 1996-2000, and finally stood at over 3 million for 2001-2005. In conclusion, corresponding with the spread of the sex-selective technologies, about 11 million sexselective abortions were performed in India since 1981.

The Kulkarni's method requires many indicators such as the mid-year population, the crude death rate, and the sex ratio birth in five-year period, which may not be consistently available in some developing countries, i.e. Vietnam. In addition, many steps of calculation are needed to find out the number of sex-selective abortions, thus bias can be cumulated. However, this method can get more accurate result if the interested country has complete vital registration system. Thus, crucial elements are the accessibility, availability, sufficiency and reliability of required data to apply this method.

2.7. Prior work on the determinants of the sex of the last birth

Literature denotes that there were statistical associations between the sex of the last birth and (1) household and maternal-related factors such as residence, religion, family wealth, women education level and women's position in the household; (2) the mother's motivation to have a son including parity, having a son before the last birth, and the Vietnamese zodiac year of the last birth. The following sections discuss these factors in detail.

2.7.1. Household and maternal-related factors

a) Residence

Residence indicates urban and rural areas. Living in urban area increases both the cost of children and the accessibility to prenatal sex determination, which results in the high prevalence of sex-selective abortions (Portner, C.C., 2009). In contrast, the higher fertility rate and less stringent family planning regulations in rural areas offer
more chances to parents who failed to have a son as the first child (Guilmoto, C.Z., 2012). Therefore, rural was supposed to have lower SRB than urban.

b) Religion

Religion is also an important factor. Muslim women were less likely to bear a son as the last birth than Hindu women in Nepal (Leone, T., Matthews, Z. et al., 2003). With respect to Buddhist, they had higher sex ratio at birth than Christians. It is justified that Buddhists needed sons to worship the ancestors while it was not necessary to be sons among Christians (Guilmoto, C.Z., 2010).

c) Region

It is fact that region can reflect the son preference, the women's autonomy, the economic status, and the culture of the household. For instance, son preference increased toward the South of Nepal where the women's autonomy was weak (Leone, T., Matthews, Z. et al., 2003). Whereas high SRB was witnessed in the North of Vietnam and in the South of India, where son preference was strong (Guilmoto, C.Z., 2012, Robitaille, M.C., 2013). Interestingly, provinces with SRBs lower than 105 mostly located in the mountainous and minority-inhabited areas (Guilmoto, C.Z., 2012).

d) Family wealth

The SRB was close to the normal level (105) among the poorest households while the higher SRB was witnessed among the richest household (GSO, 2009). Since more affluent households wanted fewer children, and then could easily access and afforded sex-selective technologies to achieve their desired sex of the child (Retherford, R.D. and Roy, T.K., 2003, UNFPA, 2012). However, the situation was reversed in India where wedding dowries were the duty of brides' families. Thus, women from rich
households had lower son preference compared to those from the poorer households because wedding gifts was a enormous burden for the low economic classes (Robitaille, M.C., 2013).

e) Education level

The mother's education is the important determinant of the opportunity cost of fertility. Hence women with higher education are expected to have lower fertility. This in turn increases the use of sex-selective abortions to obtain a son (Portner, C.C., 2009). According to GSO (2009), the higher SRB was closely associated with the higher education level of women (Retherford, R.D. and Roy, T.K., 2003).

In contrast, Guilmoto (2010) found that women who have completed primary school reduced the probability of having a son as the last birth, probably because these women undergo sex-selection at the first pregnancy. Another study (Robitaille, M.C., 2013) suggested that never-married women who were younger and worked as professional or clerical staff had lower son preference and vice versa among those working in agriculture. It is explained that women who are working in formal sectors are influenced by peers and widely access to media so they follow Western thinking of no gender preference. Thus, the impact of the education level on the sex of the child is not straight forward across previous studies.

f) Women's position in the household

Women who were the heads of the household had significantly fewer boys than those who were spouses or daughter-in-laws of the household heads. Similarly, singlehood mothers tended to decrease the SRB because these women belonged to the less traditional families and in which patriarchal norms were weaker. Thus, women were more independent on fertility choice (GSO, 2009). In addition, when women are the heads or the wife of the heads of the household, the couples stay in their nuclear families, thus the direct pressure to bear a son from the parents-in-law is reduced. For
example, the parents-in-law are powerful in India and have a strong influence on their sons and their daughters-in-law's decisions, such as number of sons, use of contraception, education, vaccination, and breastfeeding of the children (Robitaille, M.-C. and Chatterjee, I., 2013). Similarly, women underwent sex-selective abortions due to the pressure from their husbands and their parents-in-law, who really cared about perpetuating the family name in China (Junhong, C., 2001).

2.7.2. Mother's motivation to have a son

a) Parity

It is witnessed that SRB increased rapidly with the higher birth order, and was highest at the final birth. The parity of three induced a significant increase in SRB (GSO, 2009, Leone, T., Matthews, Z. et al., 2003, Retherford, R.D. and Roy, T.K., 2003, WHO, 2011). However, in Vietnam, SRB was significantly higher among the first child (110.2) than the second child (109), which has not been seen in other countries. Hence, sex selection probably started at the first child in Vietnam (GSO, 2009).

b) Having a son before the last birth

High SRB was observed among the third child of the women who had no living sons while it is reversed with those having two living sons (Retherford, R.D. and Roy, T.K., 2003). Thus, the sex of the previous births were a strong predictor of the sex of the following birth, the practice of sex-selective abortion and the infant survival (Portner, C.C., 2009, UNFPA, 2012).
c) Vietnamese zodiac year of the last birth

The root of Vietnamese superstition is the Chinese "Y King" (4000 years B.C.) whereby the Universe found its origin from a unique entity and from such entity, emerged two states, Yin and Yang. In which Yang is as positive, masculine, left, high,
and tough while Yin is negative, feminine, right, low, and soft. In many Asian countries, people believe that the lunar year of birth is important to determine the fate of a newborn child. Lunar year is formed by twelve zodiacs and five elements. The zodiac is characterized by twelve animals namely Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Chicken, Dog, and Pig. Besides, the characteristics of these zodiacs are modified by the five elements including Wood, Fire, Earth, Metal, and Water. Then matching the two terms above, we get the name of the lunar year, for example, 2008 refers to the "Earth Rat" year (Mau Ty in Vietnamese). The lunar calendar is characterized by 60 -year cycles, and then the horoscope is determined by the compatibility between the gender and the lunar year of birth. Commonly, the Yin years including Ox, Rabbit, Snake, Goat, Rooster, and Pig are more compatible with girls. In contrast, Yang years namely Rat, Tiger, Dragon, Horse, Monkey, and Dog are more compatible with boys (Do, Q.T. and Phung, T.D., 2009). However, there are differences between countries in using the zodiac. For instance, the second animal of the zodiac line is the Water Buffalo instead of the Ox, and the fourth animal is the Cat instead of the Rabbit in Vietnam. It is almost the same between China and Korea.

Asian countries had a slightly difference in considering which zodiac years are auspicious or inauspicious for girls or boys. For instance, the year of the Fire Horse is considered as the most inauspicious for girls in Japan, while Chinese and Vietnamese avoid bearing daughters in the year of the Tiger. The deficit of female births was witnessed in the years of the Tiger, Dragon, and Horse in Korea (Chun, H. and Gupta, M.D., 2009). The Chinese prefers the Dragon year, which has been a symbol of the divinity and the good fortune (Yipa, P.S.F., Leeb, J. et al., 2002).

As is shown in Figure 2-3, SRB increased suddenly in some zodiac years such as the Horse, Monkey, Rat, and Dragon, which corresponding with the rise of TFR. In Vietnam, the research related to the zodiac year has been rare, only one (Do, Q.T. and Phung, T.D., 2009) was found. According to Do (2009), the zodiac year of birth had a significant impact on the fertility. The cohorts born in auspicious years were 12 percent larger and received more investment from parents such as having two extra months of schooling than their siblings in Vietnam. However, the hypothesis of sex-
selective abortion or gender-biased infant mortality rates being driven by the zodiac year of birth was rejected.

Figure 2-3: The trend of SRB and TFR in Vietnam from 1999 to 2012

Source: GSO (2009). The Vietnam Population and Housing cencus 2009 - Major findings.
GSO (2012). The 1/4/2012 time point population change and family planning survey - Major findings.

2.8. Vietnam - the study context

2.8.1. Three preconditions of sex-selective abortion in Vietnam

Vietnam has enough three preconditions of sex-selective abortion, namely son preference, low fertility, and accessibility of sex-selective technology. Among them, son preference is the crucial driving force for two remaining conditions.

2.8.1.1. Son preference

Son preference has been obviously strong in Vietnam, which related to patriarchal values derived from traditional Confucian system, where sons have been perceived as important status symbols, and indispensible elements of the perpetuation of the family name, guarantors of the continuing worship of the ancestors as well as family and old age major supports. In Vietnam, only sons can carry out the ceremonies to worship
the ancestors and take care of the family's graves. Without a son, a man has to pass on the worship to the closest male relative, such as his younger brother's son. Therefore, married couples, especially the only son, are received regular injunctions to produce at least one son. Many women want to bear a son to please their husbands and their parents-in-law. Sonless women might face continuous difficulties with their parents-in-law and be ignored by their husbands, whereas sonless men were discriminated against by their friends and colleagues and treated differently.

Moreover, parents have been bared in mind that sons are needed to ensure their old age. Popularly, older parents prefer to live with married sons than married daughters. Married daughters tend to live far away from their parent after getting married, which increases the physical distance between them. Unsurprisingly, inheritance is biased toward sons for these reasons, and women often get a reduced share of the family property. Son preference in Vietnam is derived from the culture, economic, and social norm as described in Figure 2-4 so it is hard to change in a short time (UNFPA, 2012).

2.8.1.2. Low fertility

In 1986, the government initiated the Doi Moi, a controlled transition toward a market economy. The ongoing reforms produced a positive impact on the country's development such as increasing GDP, GNP and slowing down the inflation. At the same period as Doi Moi, the government established new family-planning program called one-to-two child policy, which resulted in the later marriage and the smaller family size nowadays. A wide range of family planning services has been available from central to local provinces. Moreover, to control the population growth, in some specific employment sectors, couples who have the third child are punished or limited promotions in their career (Institute for Social Development Studies, 2007).

As the result, TFR continuously declined from 2.25 in 2001 to 2.03 in 2009 and has remained under the replacement level in several decades (GSO, 2009). Thus, couples do not have a lot of chance to have a son. However, in case of Vietnam, couples want
to get the ideal family consisting of one boy and one girl, or if only one child, it should be a boy. It explains why the pressure of having a son declines when couples already had at least one son (Guilmoto, C.Z., 2012).

2.8.1.3. Accessibility of sex-selective technologies

Ultrasound scans have become extremely common after 2000 in Vietnam, and its main purpose is examining women and child health during pregnancy. Thus, there were 74% of pregnant women having at least an ultrasound scan in 2006. On average, a pregnant woman received about 6 ultrasound examinations in urban areas and 3.5 in rural areas. Nowadays, ultrasonic scan has been applied widely in both public and private health centers with the cheaper price (Asian safe abortion partnership, 2013). According to Hoang (2008), ultrasound scan was used both to screen for fetal anomalies and for the sex determination. A lot of pregnant women knew the sex of their child in their $15^{\text {th }}$ weeks of gestation, and abortion has been possible up to the $22^{\text {nd }}$ weeks of pregnancy, thus women can undergo abortions for sex selection.

In tandem with, a lot of materials mention how to get the desire sex of children, for example, "What pregnant women should know", "99 tips for pregnancy and delivery", "Nutrition for mother and babies", etc. These materials guided in detail that women should eat more salt, meat, fish, and potatoes in three months before pregnancy to have a son (Institute for Social Development Studies, 2007). Even though, it is uncertain on the effectiveness of these traditional tips but son preference is reflected among those who seeking for these tips.

Figure 2-4: Factors affecting sex ratio at different ages

Source: Pham, B.N., Hall, W., Hill, P.S. and Rao, C. (2008). "Analysis of socio-political and health practices influencing sex ratio at birth in Vietnam." Reproductive Health Matters 16(32): 176-184.

2.8.2. Pattern of sex ratio at birth in Vietnam

The Vietnam Population and Housing Census in 2009 showed that sex ratio at birth fluctuated between 106 and 107 for 1999-2005, followed by the significant increase to the peak at 112.1 in 2008, and then slightly declined to 110.5 in 2009. According to the Vietnam Population Projection for 2009-2049 (2011), SRB is estimated to increase to 115 in 2020, and then rapidly decline to the normal level (105) in 2030.

2.8.3. Sex-selective prohibited laws and intervention projects in Vietnam

2.8.3.1. Abortion law

Abortion has been legal and available on women's request in Vietnam since the early 1960s, which reflecting the Government's commitment to provide reproductive choice for women (Institute for Social Development Studies, 2007). By 1989, the Law on Protection of People's Health stated: "women have the rights to have abortion; to receive gynecological diagnosis and treatment; and health check-up during
pregnancy; and medical service when giving birth at health facilities" (Vietnam Goverment, 1986). It is important to note that there are two terms regarding abortion in Vietnam, including abortion and menstrual regulation. The term of abortion indicates the pregnancy termination undergoing at the later stage of gestation which is from $7^{\text {th }}$ weeks to $22^{\text {nd }}$ weeks (Sjösten, C., 2014). While menstrual regulation is referred to an early abortion occurring six weeks or less after the beginning of women's last menstrual period (Vach, T.H., Bishop, A. et al., 1998). At this stage, the fetus is not yet formed so it is more tolerant for the women to terminate the pregnancy compared to abortion. Therefore, SSA is more related to the practice of abortion rather than menstrual regulation because, it is impossible to determine the sex of fetus via ultrasound scan during the first six weeks of pregnancy.

In addition, the National Standards and Guidelines for Reproductive Health Services also has indicated a wide range of health professionals who legally perform abortions such as trained obstetricians, assistant doctors with obstetrics - pediatric specialist as well as trained midwives. Abortion has been allowed at three administrative levels of the health system: (1) abortion of $6^{\text {th }}-22^{\text {nd }}$ weeks gestation at central and provincial hospitals; (2) abortion of $6^{\text {th }}-22^{\text {nd }}$ weeks gestation at district health stations; and (3) abortion up to $6^{\text {th }}$ weeks gestation at communal health centers. Private clinics in certain provinces have been allowed to perform abortion up to 6 weeks gestation if they met the required criteria of the provincial health services (Asian safe abortion partnership, 2013).

It is fact that Vietnam is one of the countries having the highest abortion rate in the world. However, as can be seen from Table 2-3, the number of abortions including menstrual regulation was continuously declining since 1999. The explanations of this trend are the increase of the modern contraceptives use, the quality of family planning services, and improvement in women's awareness on the negative impact of abortions on health (Thinh, H.B., 2009). On average, there were about 536,430 abortion cases per year for 1999-2008 (the data of 2007 is excluded due to the unexplained sudden decrease). It is important to note that the number of abortions was probability underestimated because the abortions of cohabitation couples and illegal abortions were underreported.

Table 2-3: Number of abortions in Vietnam for 1999-2012

Year	Menstrual regulation	Abortion	Total	Source
1999	//	//	780,000	Thinh (2009)
2001	421,701	196,627	618,328	
2002	404,340	167,955	572,295	
2003	365,872	174,505	540,377	
2004	346,988	243,643	590,631	
2005	359,956	179,764	539,720	
2006	345,482	143,594	489,076	
2007	//	//	26,932	GSO (2007)
2008	//	//	161,016	GSO (2008)
2010	//	II	127,034 ${ }^{+}$	GSO (2010)
2011	//	//	96,068 ${ }^{+}$	GSO (2011)
2012	//	//	88,783 ${ }^{+}$	GSO (2012)

+ Number of married women who had at least an abortion
//: not available

2.8.3.2. Sex-selective abortion laws

The first law was initiated in 2003 in Vietnam, namely the Ordinance on Population (National Committee, 2003), stating: "banning sex selection in all forms, and the state need to have policies and solutions to prevent the sex selection". After that, the Gender Equality was introduced in 2006 (Vietnam Congress, 2006) and mentioned: "banning sex selection in all forms or inciting or forcing women to have abortions because of sex selection". Next, the Administrative sanction regulations on Population and Children made two general laws above into practice. Health providers are fined from $3,000,000$ VND to $7,000,000 \mathrm{VND}$ or withdrawn their license if they provide ultrasound scans or other medical tests to identify the sex of the fetus. In addition, persons who force a woman to give more births because all of her children are females or males, are also fined from 2,000,000 VND to 5,000,000 VND (Vietnam Goverment, 2006).

In addition, the regulations to promote bilateral kinship model have been initiated, for example, the children can bear the mother's surname and worship ancestors, sons and
daughters are inherited equally, and couples are encouraged to live in the wife's families. There is an advocacy to recognize the value of daughters in taking care of the elderly (UNFPA, 2011). Moreover, a national program has been established in 43 provinces in Vietnam to normalize the SRB for 2013-2020. Main program objective is to encourage and support women, girls and families which had no son (General Office for Population Family Planning, 2013).

However, the percentage of women knowing the sex of the fetus before birth continuously increased from 63.8 per cent in 2006 to 81.3 per cent in 2012 (GSO, 2012), even though the health providers are not allowed to inform pregnant women about the sex of the fetus. It is possible that health providers used unofficial ways to let women know about the sex of the fetus without recording in medical documents. Hence with preference for sons, woman would undergo an abortion if the fetus was girl.

2.8.4. Possible consequences of imbalanced sex ratio at birth

According to Vietnam Population Projection for 2009-2049 (2011), in both the optimistic and the pessimistic scenarios, the number of males is expected to exceed the number of females in the total population since 2020 onward, leading to the imbalanced marriage system in the future. In addition, the age at first marriage of females is predicted to continuously rise in the next decades, then exacerbating the bachelorhood among males especially those are poor and less-educated. Furthermore, more Vietnamese brides would get married with foreign grooms coming from China, Korea, and Taiwan. With the insufficient self-preparation and the low social protection in destination countries, many brides would be suffered from violence and discrimination (UNFPA, 2012). Besides the long term impact, the direct effects on women health for undergoing abortions were obvious. Women need to wait until $12^{\text {th }}$ weeks of pregnancy to know the sex of their fetus (GSO, 2011), and it takes time to make decision for an abortion. Thus, they normally get risk of a late abortion with more complications on health.

2.8.5. Missing girls in Vietnam of prior studies

To my best knowledge, the literature review on the number of sex selective abortions in Vietnam could not be found. Thus, this subsection only discuss on the total missing girls, which including the number of sex-selective abortions. According to UNFPA (2012), there were 245,000 missing girls aged $0-19$ in 2010 in Vietnam, while Guilmoto (2010) estimated to be 139,000 missing girls as shown in Table 2-4. The results of two studies were significantly different, even though using the same data and estimation technique ${ }^{1}$. The number of excess female aged under five deaths per year was low in Vietnam so most missing girls have occurred before birth due to sexselective abortions.

Table 2-4: The numbers of missing girls in Vietnam

Year	Missing girls aged $\mathbf{0 - 1 9}$	Percentage over corresponding female population	Excess female aged under five deaths per year	Data used for estimation	Source
2010	245,000	1.7	$<1,000$	2010 UN Population Division	UNFPA (2012)
2010	139,000	1.0	Not available	2010 UN Population Division	Guilmoto (2010)

2.9. Conceptual framework for determinants of the sex of the last birth

The literature review has revealed that there are associations between the sex of the last birth and (1) household and maternal-related factors, and (2) mother's motivation to have a son. Therefore, the conceptual framework of this study was constructed as illustrated in Figure 2-5.

[^0]Figure 2-5: Conceptual framework for the determinants of the sex of the last birth

Chapter 3: Research Methods

3.1. Introduction

This chapter aims to present the methods used in this study. It is divided into three main sections corresponding to the research objectives. The first section describes the sources of data and the method used to estimate the number of sex-selective abortions (Section 3.2). The second section addresses the determinants of the sex of the last birth (Section 3.3). It begins with the description of the dataset, followed by the definition, measures of dependent and independent variables, and the analytical method. Finally, limitations of the study are presented (Section 3.4).

3.2. Estimation of sex-selective abortions during 1999-2009

Aforementioned, two means to estimate the number of sex-selective abortions were found, namely the reverse survival method and the Kulkarni's method. Based on the pros, cons, and required data of each method, this current study decided to adopt the reverse survival method.

3.2.1. Data Sources

The reverse survival method needs (1) the numbers of males and females in 2009, and (2) the Vietnam life table in 1999. The numbers of males and females in two age groups , i.e. 0-4 and 5-9 were obtained directly from the 2009 Vietnam Census (GSO, 2009). While the Vietnam life table in 1999 for male and female were taken from the WHO's estimation (see the whole life table in Appendix 1) (Lopez, A.D. and ect, 2000). Then the 1_{0} (the radix population), the ${ }_{1} \mathrm{~L}_{0}$, the ${ }_{5} \mathrm{~L}_{1}$ and the ${ }_{5} \mathrm{~L}_{5}$ (the person years lived of people aged $0-1,1-5$ and $5-10$ respectively) for male and female were collected from the WHO's life table.

3.2.2. Methodology

According to Yadav (2011), the reverse survival method can be applied to estimate the number of SSA. The numbers of males and females aged 0-9 in the 2009 Census were reversed to obtain the numbers of male and female births occurring between 1999 and 2009. Three assumptions used in this method (1) no migration of children aged 0-9 during 1999-2009, (2) full reporting of males aged 0-9 in 2009 Census and (3) selecting 105 as the normal level of SRB.

Step 1: Calculate the survival ratios for males and females

Survival ratios for males and females aged $0-4$ and $5-9$ were calculated by the following equations:

$$
\begin{aligned}
& \mathrm{S}_{0-4}={ }_{5} \mathrm{~L}_{0} / 5 * 1_{0}=\left({ }_{1} \mathrm{~L}_{0}+{ }_{5} \mathrm{~L}_{1}\right) / 5 * 1_{0} \\
& \mathrm{~S}_{5-9}={ }_{5} \mathrm{~L}_{5} / 5 * \mathrm{I}_{0}
\end{aligned}
$$

Step 2: Calculate the numbers of male and female births during 1999-2009

Applying the survival ratios to the male and female children aged 0-9 in 2009, and then the numbers of male and female births during 1999-2009 were obtained from the following calculations:

Births born 1999-2004 $=$ Children aged 5-9 in 2009/ S_{5-9}
Births born 2005-2009 $=$ Children aged 0-4 in 2009/ S_{0-4}

Step 3: Calculate the expected number of female births and the number of sexselective abortions during 1999-2009

The expected number of female births was the number of male births divided by the normal sex ratio at birth (105). Then, the number of sex-selective abortions was the gap between the expected and actual numbers of female births.

Expected female births $=$ male births $* 100 /$ normal SRB

Sex-selective abortions $=$ Expected number of female births - actual number of female births

3.3. Determinants of the sex of the last birth

3.3.1. Data Source

This study employed the secondary data from 2011 Vietnam Multiple Indicator Cluster Survey (MICS) conducted by the General Statistics Office in collaboration with the Ministry of Health (MOH) and the Ministry of labor, Invalids and Social Affairs (MOLISA), with financial and technical support from UNICEF and financial support from UNFPA. The 2011 MICS is the fourth round survey of Multiple Indicator Cluster Surveys in Vietnam, conducted between December 2010 and January 2011.

This survey provides the wide range of information regarding situations of children and women in Vietnam, updating information from the previous 2006 Vietnam MICS. The survey examined on a broad range of issues such as Child Mortality, Nutritional Status and breastfeeding, Immunization, Care of Illness, Malaria Prevention, Water and Sanitation, Reproductive Health, Early Childhood Development, women Education, Child Protection, and HIV-AIDS. These information is essential to monitor the goals and targets of the Millennium Declaration, the World Fit for Children Declaration and Action Plan, as well as the National Program of Action for Children 2011-2020 (GSO, 2011).

Three sets of questionnaires were used in the survey, including (1) a household questionnaire which was collected information on all de jure household members (usual residents), the household, and the dwelling by asking the household head; (2) a woman questionnaire was administered to all women aged 15-49 years in each household at the time of interview; and (3) a children questionnaire was administered to all children aged under 5 years old living in each household by interviewing the mothers or the caregivers. Thus, there are four datasets separately according to the sets of questionnaires. In this current study, we merged the household and children
datasets onto the women dataset before analysis (please see the questionnaires in Appendix B).

To obtain the datasets for this study, a request was sent to childinfo.org to get permission to download this datasets. Datasets were distributed at no cost for legitimate research, with the condition that copies of all reports and publications based on the requested data must be sent to the following persons (1) Mr. Nguyen Dinh Chung - Deputy Director, Social and Environment Statistic Department, General Statistic Office, Ministry of Planning and Investment; (2) Ms. Sigrid Breddy Monitoring and Evaluation Specialist, UNICEF Viet Nam (GSO, 2011).

3.3.2. MICS4's sample design and the current study sample size

The sample size for the Vietnam MICS 2011 was calculated as 12,000 households. It was designed to provide estimates for a large number of indicators at the national level, represent for urban and rural areas, and for six regions namely the Red River Delta, the Northern Midland and the Mountain areas, the North Central area and Central Coastal area, the Central Highlands, the South East and the Mekong River delta. A multi-stage, stratified cluster sampling approach was used for the sample selection. The average number of households selected per cluster was determined as 20 households. They allocated equally the total sample size to the six regions. Hence, 100 clusters were allocated to each region, distributed proportional to the size of urban and rural populations in each region. Therefore, the final sample size of 12,000 households (100 clusters * 6 regions * 20 households per cluster) (GSO, 2011).

Of total 12,000 households, 11,614 household questionnaires were completed. Then, in each visited household, all women aged 15-49 were interviewed, and there were 11,663 cases of success. Among them, only 2,983 ever-married women who had at least one living child in the five preceding the survey (2006-2010) were included in this current study analysis. Results in this study analysis were weighted by women's weight provided by GSO to use the national representative results (GSO, 2011).

3.3.3. Variables definition and measures

In the following subsection, the definition and measures of dependent and independent variables are described in detail and summarized in Table 3-5.

3.3.3.1. Dependent variable

This study is interested in a binary variable indicating the recorded sex of the last birth aged less than five years old. This dummy variable is coded 1 for if the respondent reported male birth and 0 for otherwise.

3.3.3.2. Independent variables

a) Household-related factors

Residence: it is dichotomous variable which represents the current residence of the women's household. This variable is coded 1- urban and 2- otherwise.

Religion of the household head: it is nominal variable which describes the religion of the household head. In the origin survey, this variable includes eight categories, namely Buddhism, Muslim, Cao Dai, Hoa Hao, Christian Catholic, Christian Protestant, no religion, and other religions. However, in this current study, this variable is coded 1-Buddhism, 2- Cao Dai, 3- Hoa Hao, 4- Christian Catholic, 5Other religions, and 6- No religion.

Region: it is nominal variable which illustrates the location of the household. This variable is coded 1- Red River Delta, 2- Northern Midlands and Mountain area, 3North Central and Central Coastal area, 4- Central Highlands, 5- South East, and 6Mekong River Delta.

Family wealth: In the origin survey, this variable includes five categories, namely poorest, second, middle, fourth, and richest. Principal components analysis was performed by using information on the ownership of consumer goods, dwelling characteristics, water and sanitation, and other characteristics that were related to the household's wealth to assign weights to each of the household assets. Each household
was then assigned a wealth score based on these weights and the assets owned by that household. The survey household population was then ranked according to the wealth score of the household, and was finally divided into five equal quintiles. The assets and other characteristics related to wealth used in these calculations were as follows: water sources, toilet facility, housing, fuel types for cooking, electricity, bank account, durable goods (such as radio, TV, refrigerator, fixed telephone, watch, mobile phone, bicycle, motorcycle, boat with motor, car), animals (such as buffalo, cattle, horse, donkey, goat, sheep, chicken, pig). The family wealth index was calculated by GSO and readily in the dataset (GSO, 2011). In this current study, the family wealth is ordinal variable and consists three categories: 1- Poorest, 2- Middle (the combination of the second, middle and fourth quintiles), and 3- Richest.

b) Maternal-related factors

Mother's age at the last birth: it is the completed age of women at the last birth, an ordinal variable. Mother's age at the last birth $=$ integer (CMC of date of birth of the last birth - CMC date of birth of the women). Whereas Century Month Code (CMC) $=($ year of birth -1990$) * 12+$ month of the last birth (UNICEF, 2010). From the numerical variable, the variable is grouped into five categories, including 1 for 14-19, 2 for 20-24, 3 for 25-29, 4 for 30-34, and 5 for 35+.

Education level: it is an ordinal variable. This variable is obtained from two questions (1) whether the women ever attended to school or preschool with the "yes" and "no" answers, (2) the highest level of school woman attended with the "preschool", "primary", "lower secondary", "upper secondary", "professional school", and "college/university \& above" answers. In addition, among 2,983 women selected in this study, no one had preschool education so it is grouped into four categories, including 1- no education (never attended to school), 2- primary (grade 1 to 5), 3lower secondary (grade 6 to 9), and 4 - higher secondary (grade 10 to 12) and above (the group of upper secondary, professional school, college/ university and above).

Marital status: it is the current marital status of the women, a nominal variable. This variable is coded 1 - currently married and 2 - windowed/ divorced/ separated.

Women's position in the household: it is a nominal variable including fourteen categories, (1) head, (2) wife / husband, (3) son / daughter, (4) son-in-law / daughter-in-law, (5) grandchild, (6) parent, (7) parent-in-law, (8) brother / sister, (9) brother-inlaw / sister-in-law, (10) uncle / aunt, (11) niece / nephew, (12) other relative, (13) adopted / foster / stepchild, and (14) not related. Based on the objective of this current study, the variable is grouped into four categories, including 1- household head, 2wife of the head, 3- daughter of the head, 4- daughter in law of the head and 5- other relationship.

c) Mother's motivation to have a son

Parity excluding the last birth: it is dummy variable which describes the total number of living children women had before the last birth. The parity excluding the last birth is equal to the total number of living children minus one. The variable is coded $1-$ "more than two" if the women had more than two living children excluding the last birth and $0-$ otherwise.

Having a son before the last birth: it is dummy variable which reconstructed by the information of the total number of living sons that the woman had. However, it needs to put into concern that the total number of living sons includes a son as the last birth. The variable is coded 1- "No" if women had no son before the last birth and 0-"Yes" if women had at least a son before the last birth.

Vietnamese zodiac year of the last birth: it is dummy variable and reflects whether the zodiac years of the last birth are compatible with boys or not. Because of the mismatch between lunar and solar calendars, zodiac years of the last birth are recomputed based on the solar month and year recorded in the survey. For example, the child was born from February $7^{\text {th }}$ in 2008 to January $25^{\text {th }}$ in 2009 in the solar calendar, which corresponds to 2008-the year of the Rat in the lunar calendar. Thus, the zodiac
year of the last birth born on January 2008 was hence be coded 2007-the year of the Pig instead of the year of the Rat (Do, Q.T. and Phung, T.D., 2009). This study is interested in the last births aged less than five years old so they were born in six zodiac years including 2005 (Rooster), 2006 (Dog), 2007 (Pig), 2008 (Rat), 2009 (Water Buffalo), and 2010 (Tiger). As mentioned in Section 2.6.2, the year 2006 (Dog), 2008 (Rat), and 2010 (Tiger) are more compatible with boys. Thus, six zodiac years are grouped into two categories including 1-compatible years with boy and 0otherwise.

Table 3-5: Summarize of variables description, measurement scale and sources of information.

No	Variable	Description	Measurement scale	Source of information
1	The sex of the last birth	The recorded sex of the last birth	$1=$ Male $0=$ Otherwise	Household questionnaire HL4
2	Residence	The current residence of the woman's household	$1=$ Urban $2=$ Otherwise	Household questionnaire HH6
3	Religion of the household head	The religion of the household head	$1=$ Buddhism $2=$ Cao Dai $3=$ Hoa Hao $4=$ Christian Catholic $5=$ Other religions $6=$ No religion.	Household questionnaire HC1 1_{A}
4	Region	The current location of the household	$1=$ Red River Delta $2=$ Northern Midlands and Mountain area $3=$ North Central and Central Coastal area $4=$ Central Highlands $5=$ South East	Household questionnaire HH7
5	$6=$ Mekong River			
Family	The groups of wealth wealth quintiles	$1=$ Poorest $2=$ Middle $3=$ Richest	Reserved in household dataset (windex5)	
	Mother's age at the last birth	The completed mother's age at the last birth	$1=14-19$ $2=20-24$ $3=25-29$ $4=30-34$ $5=35+$	Reserved in women dataset (CDOB, WDOB)

No	Variable	Description	Measurement scale	Source of information
7	Education level	The highest level of school that women attended	$\begin{aligned} & 1=\text { No education } \\ & 2=\text { Primary } \\ & 3=\text { Lower Secondary } \\ & 4=\text { Higher Secondary } \\ & \text { and above } \end{aligned}$	Women questionnaire WB3, WB4
8	Marital status	The current marital status of the women	$\begin{aligned} & 1=\text { Currently married } \\ & 2=\text { Windowed } / \end{aligned}$ Divorced/ Separated.	Women questionnaire MA1, MA5
9	Women's position in the household	The relationship of the women and the household head	$1=$ Head $2=$ Wife of the head $3=$ Daughter of the head 4 = Daughter in law of the head $5=$ Other	Household questionnaire HL3
10	Parity excluding the last birth	The number of living children minus one	1 - More than two 0 - Otherwise	Women questionnaire CM5A, CM5B, CM7A, CM7B
11	Having a son before the last birth	Whether women had a son before the last birth or not	$\begin{aligned} & 1=\mathrm{No} \\ & 0=\mathrm{Yes} \end{aligned}$	+ Women questionnaire CM5A, CM7A and CM9A + Children questionnaire HL4
12	Vietnamese zodiac year of the last birth	Whether the zodiac year of the last births are compatible with boy or not	$\begin{aligned} & 1=\text { Compatible with } \\ & \text { boys } \\ & 0=\text { Otherwise } \end{aligned}$	Women questionnaire CM12M, CM12Y

3.3.4. Method of analysis

The Statistical Package for the Social Sciences (SPSS) version 21 for Windows was used. The analysis included descriptive statistics (e.g. frequency, percentage for binominal and categories variables). Besides, Chi-square test was used to determine the existence of the relationship between two variables. Then binary logistic regression was adopted to point out the strength of the relationship when controlling for other potential confounding factors. Aforementioned, to account for the complex sampling design, all the analyses for this study were conducted with the women's weighted data, provided by the Vietnam General Statistical Office (GSO, 2011)

3.4. Limitation of the study

This study, like previous studies, is not free from limitations. The first two limitations mentioned below refer to the first objective of the study, and the two remaining limitations are posed by the second objective. The first restriction is the 2009 Census reported that there was an undercount of the population aged $0-4$, but the estimated percentage of an undercount by sex was not provided. Since, girls are more likely to be underreported than boys so some girls can be hidden from the Census. Hence, the estimated number of sex-selective abortions could be overestimated. Secondly, the estimation result can be varied by the selected value of the normal SRB, as some studies used 105 while others used 106 (Cai, Y. and Lavely, W., 2003, Kulkarni, P.M., 2007, Yadav, P., 2011).

Thirdly, the definition of the "last birth" in this current study was the youngest birth aged less than five years old of a woman, which does not mean the actual last birth of the woman's reproductive life. In contrast, according to Leone (2003), their target population was the women who decided to stop childbearing so the "last birth" means the final birth of the women's reproductive life. In this case, preference for sons is reflected apparently when examining the sex component and the birth order in the completed family. However, it is impossible to apply Leone's definition of the last birth in this current study, since limited number of women who did not want to have more children after the time of interview, only 80 women (GSO, 2011). Finally, the limitation of using cross-sectional data does not allowed determining a conclusive causal relationship in these models. Two distinct variables are measured at the same point in time. Cross-sectional studies can say that the two variables are related somehow, but they cannot positively determine if one caused the other (Carlson, M.D.A. and Morrison, R.S., 2009).

Chapter 4: Research Findings

4.1. Introduction

This chapter presents detailed findings of this study. The first section describes the calculation on the number of sex-selective abortions in Vietnam during 1999-2009 using the reverse survival method (Section 4.2). Then, the second section displays the statistical analysis on the determinants of the sex of the last birth using the secondary data collected in 2011 by MICS4 project (Section 4.3). The second section is divided into two main subsections. The first subsection shows key characteristics of the studied sample, that is, mothers, followed by the description of characteristics of the last birth (Subsection 4.3.1). The second subsection presents the results from the bivariate and multivariate analysis on the determinants of the sex of the last birth (Subsection 4.3.2).

4.2. Estimation of the number of sex-selective abortions during 1999-2009

For sake of clarity, the step-by step of computations is shown in Table 4-8 and Table 4-9. First of all, the survival ratios for males and females aged 0-4 and 5-9 were calculated from the Vietnam life table in 1999. As can be seen from Table 4-6 and Table 4-7, the probability of survival of females were .974 for aged $0-4$ and .967 for aged $5-9$, which were significantly higher than males (. 968 and .958 respectively). So with the same number of males and females were born during 1999-2009, it is expected to have more females aged 0-9 enumerated in the 2009 Census than males. However, the number of females aged 0-9 in the Census in 2009 was much lower than males at the same ages by 497,215 cases.

According to Yadav (2011), the reverse survival method can draw the historical picture from the current sex composition of children aged 0-9 in the population. We assumed that the children aged 0-9 in 2009 were experienced the survival ratio of children aged 0-9 in 1999. Then, the actual numbers of births born in each five-year
period preceding the year 2009 were calculated by the numbers of children in 2009 divided by the corresponding survival ratios. We found that the number of male births was significantly higher than the number of female births by 570,007 cases, which resulted in the imbalance sex ratio (108.4). In addition, the actual SRB increased according to the birth cohorts, which were 107.3 for the cohort 1999-2004 and 109.4 for the cohort 2004-2009.

Regarding to the final step, if there had been no imbalance SRB in Vietnam during 1999-2009, the normal SRB would have been 105 but this study showed the actual SRB was much higher. Therefore, the expected number of female births was calculated by the number of male births divided by 105. With an assumption that males were fully enumerated in the 2009 Census, then the gap between the actual and expected numbers of female births was the number of sex-selective abortions. Hence, the number of missing girls due to SSA was 217,902 cases, occupied 3.19 percent of the total female births $(6,824,212)$ born during 1999-2009 in Vietnam. Another interpretation is that there were on average 21,790 abortion cases due to SSA per year in Vietnam for 1999-2009.

Table 4-6: Survival ratios of females aged 0-4 and 5-9

Age group	\mathbf{x}	I_{x}	${ }_{\mathrm{n}} \mathrm{L}_{\mathbf{x}}$	T_{x}	$\mathbf{e x}_{\mathrm{x}}$
<1	0	100,000	98,800	6,864,000	68.64
1-4	1	97,862	388,201	6,765,200	69.13
5-9	5	96,856	483,587	6,376,999	65.84
$\mathrm{S}_{0-4}=\underset{5}{\mathrm{~L}} / 5 *{ }_{0}=(\underset{0}{\mathrm{~L}}+\underset{5}{\mathrm{~L}}) / 5 *{ }_{0} \mathrm{~L}_{0}=(98,800+388,201) / 5 * 100,000=.974$					
$\mathrm{S}_{5-9}=\mathrm{L}_{5} \mathrm{~L}_{5} 5 *{\underset{0}{0}}=483,587 / 5 * 100,000=.967$					

[^1]Table 4-7: Survival ratios of males aged 0-4 and 5-9

Age group	\mathbf{x}	$\mathbf{l}_{\mathbf{x}}$	${ }_{\mathbf{n}} \mathbf{L}_{\mathbf{x}}$	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
<1	0	100,000	98,160	$6,465,000$	64.65
$1-4$	1	97,174	385,682	$6,366,840$	65.52
$5-9$	5	96,052	479,101	$5,981,158$	62.27

$\mathrm{S}_{0-4}={ }_{5} \mathrm{~L} / 5_{0}{ }^{*} \mathrm{I}_{0}=\left(\mathrm{L}_{0}+{ }_{5} \mathrm{~L}_{1}\right) / 5{ }_{0} \mathrm{I}_{0}=(98,160+385,682) / 5 * 100,000=.968$
$\mathrm{S}_{5-9}=\mathrm{L}_{5} / 5_{0}^{*}{ }_{0}=479,101 / 5^{*} 100,000=.958$
Note: the results were rounded

Table 4-8: Numbers of male and female births during 1999-2009

Age in 2009	$\begin{array}{c}\text { Enumerated in } \\ \text { the Census 2009 }\end{array}$		Survival ratio		$\begin{array}{c}\text { Male } \\ \text { births }\end{array}$	$\begin{array}{c}\text { Female } \\ \text { births }\end{array}$

Note: the results were rounded

Table 4- 9: The number and percentage of sex-selective abortions during 19992009

$\begin{gathered} \text { Age } \\ \text { in } \\ 2009 \end{gathered}$	Male births 1999-2009	$\begin{aligned} & \text { Female } \\ & \text { births } \\ & \text { 1999-2009 } \end{aligned}$	$\begin{gathered} \text { Actual } \\ \text { SRB } \end{gathered}$	$\begin{aligned} & \text { Normal } \\ & \text { SRB } \end{aligned}$	Expected female births 19992009	Missing	
						SSA	\%
	(1)	(2)	$(3)=(1) /(2)$	(4)	$\begin{gathered} (5)=(1)^{*} \\ 100 /(4) \end{gathered}$	$(6)=(5)-$ (2)	$\begin{aligned} & (7)=(6 \\ &) /(2) \end{aligned}$
0-4	3,785,212	3,461,241	109.4	105	3,604,964	143,723	4.15
5-9	3,609,007	3,362,971	107.3	105	3,437,150	74,179	2.21
Total	7,394,219	6,824,212	108.4	105	7,042,114	217,902	3.19

Note: the results were rounded

4.3. Determinants of the sex of the last birth

4.3.1. Sample characteristics

This section shows descriptive statistics of the sample, which are classified into 4 parts: (1) household-related factors, (2) maternal-related factors, (3) mother's motivation to have a son, and (4) characteristics of the last birth. Of total 11,663 women successfully interviewed in the MICS4 survey, only 2,983 ever-married women who reported to have at least one living child in the five preceding the survey (2006-2010) were selected for the analysis.

4.3.1.1. Household-related factors

As shown in Table 4-10, most sampled women resided in rural (71.3\%) and lived in the households that the household heads did not follow any religion (72\%). The distribution of women in each region was approximately the same ${ }^{2}$, except for Central highland where only 6.4% and more than half of women lived in middle-income families (58.8\%).

Table 4-10: Description of household-related factors

Variables	Sample size	Percent
Residence		
Urban	1200	28.7
Rural	1783	71.3
Religion of the household head		
Buddhism	567	18.4
Cao Dai	37	1.4
Hoa Hao	47	1.5
Christian Catholic	246	6.1
Other religions	49	.6
No religion	2037	72.0
Region		
Red River Delta	446	21.5
Northern Midlands and Mountain area	555	18.8
North Central and Central Coastal area	455	19.6
Central Highlands	590	6.4
South East	498	16.5
Mekong River Delta	449	17.2
Family wealth		
Poorest	676	20.5
Middle	1643	58.8
Richest	664	20.6
Total number of women	2983	100

[^2]
4.3.1.2. Maternal-related factors

Most women gave their last child at relatively young age when they were younger than $30(70.8 \%)$ and the mean mother's age at the last birth was 26.8 years ($\mathrm{SD}=5.4$ years, $\min =14$ years old, $\max =47$ years old). A vast majority of women had the secondary education or higher (79\%), and currently married (97.9\%). In addition, nearly half of them lived in the household as the wife of the household head.

Table 4-11: Description of maternal-related factors

Variables	Sample size	Percent
Mother's age at the last birth		
$14-19$	215	6.9
$20-24$	885	30.5
$25-29$	982	33.4
$30-34$	594	19.6
$35+$	309	9.6
Education level		
No education	199	4.5
Primary	501	16.4
Lower secondary	1129	40.3
Higher secondary and above	1154	38.7
Marital status		
Currently married	2917	97.9
Windowed/ Divorced/ Separated	66	2.1
Women's position in the household		
Head	285	8.7
Wife of the head	1526	49.7
Daughter of the head	309	10.0
Daughter in law of the head	807	29.6
Other relationships	56	2.0
Total number of women	2983	100

4.3.1.3. Mother's motivation to have a son

Excluding the last births, 40% of the women have never given birth. This pattern corresponded with the relatively young age structure of the studied women. Among those who ever had at least one child before the last birth, the percentage of women who never have had a son were still high in all parties. For example, nearly half of women (49.4\%), who already had two children but had no son. Given to the strong preference on sons, these women might desire to have a son for their following birth. In addition, with regard to the women with high parities, the number of sons was lower than the number of daughters. For instance, the women with 7 or 8 children had only 1 son. The younger cohort of women with lower parities such as 3 or 4 children, the majority of them had no son or one son. It is supposed that women extend their number of children to obtain at least one son.

Table 4-12: Description of women's birth histories

Number of living children excluding the last birth	Sample size	Percent	Percentage of existing of male births				
			0	1	2	3	4
0	1170	40.0					
1	1286	44.3	49.2	50.8			
2	351	11	49.4	36.7	13.9		
3	106	3.0	44.9	29.2	19.1	6.7	
4	40	1.1	39.4	27.3	12.1	18.2	3
5	18	. 4	16.7	0	25	8.3	50
6	5	. 1	0	0	50	50	0
7	3	0	0	100	0	0	0
8	4	0	0	100	0	0	0
Total	2983	100					

4.3.1.4. Description of the last birth

With respect to the last births aged less than 5 years old, over 60% were born in the year 2008 and after, and more than half were male (51.4\%). As mentioned previously in Chapter 3, one of this study's limitations was the definition of "the last birth", which was the youngest birth aged less than 5 years old of a woman, and it did not mean the actual last birth of the woman's reproductive life. In this study, we found that more than 40% of last births were the second child. According to the one-two
child policy in Vietnam, this suggested a possibility of this last birth to be the actual last birth of a woman.

Table 4-13: Description of the last births aged less than 5 years old

Variables	Sample size	Percent
Vietnamese zodiac year of the last birth		
2005 (Rooster)	34	1.0
2006 (Dog)	450	15.1
2007 (Pig)	586	19.9
2008 (Rat)	657	22.0
2009 (Water Buffalo)	684	22.7
2010 (Tiger)	572	19.3
Sex		
Female	1456	48.6
Male	1527	51.4
Birth order		
1	1170	40.0
2	1286	44.3
3+	527	15.7
Total number of last births	2983	100

4.3.2. Determinants of the sex of the last birth

This section examines the associations between household-related factors, maternalrelated factors, and mother's motivation to have a son and the sex of the last birth by using bivariate analysis, namely chi-square test. The results were considered as statically significance at the level of 1% and 5%. Moreover, in order to determine the strength of the associations between dependent variable and independent variables, multivariate analysis namely binary logistic regression was adopted, and the results were shown in Table 4-18. In addition, it is essential to test for multicollinearity among independent variables before conducting a logistic regression analysis. Of course, the results of multivariate analysis can be different with bivariate analysis. In this case, the results of logistic regression are selected due to the advantage of controlling for many potential confounding factors.

4.3.2.1. Bivariate analysis

a) Household-related factors

It is found that religion of the household head showed the significance association with the sex of the last birth. The percentage of having a son as the last birth of the women who had the household head following the Hoa Hao religion was higher than the others ($\chi^{2}=6.19, \mathrm{p}<.05$). Aforementioned in the literature review, region is one of the main determinants of SRB. The percentage of having a son as the last birth was significantly higher among women living in the North Central and Central Coastal area, compared to those living in other regions ($\chi^{2}=4.02, \mathrm{p}<.05$). Besides, family wealth was very negative with the sex of the last birth $\left(\chi^{2}=9.31, \mathrm{p}<.01\right)$.

Table 4-14: The sex of the last birth by household-related factors

Variables	Sex of the last birth	χ^{2}	
	Female (\%)		χ^{2}
Residence			
Urban	51.2	48.8	3.298
Rural	47.6	52.4	
Religion of the household head			
Hoa Hao	30.4	69.6	$6.186^{* *}$
Otherwise	48.9	51.1	
Region			
North Central and Central Coastal area	44.9	55.1	$4.0199^{* *}$
Otherwise	49.5	50.5	
Family wealth			
Poorest	45.9	54.1	
Middle	47.7	52.3	$9.307^{* * *}$
Richest	53.9	46.1	

[^3]
b) Maternal-related factors

With regard to personal characteristics of the women, only women's education level showed a negatively significant association with the sex of the last birth ($\chi^{2}=6.80$, $\mathrm{p}<.01$). The percentage of having a son as the last birth was more likely to decline when the women's education level increased.

Table 4-15: The sex of the last birth by maternal-related factors

Variables	Sex of the last birth		
	Female (\%)	Male (\%)	χ^{2}
Mother's age at the last birth			
14-19	47.8	52.2	
$20-24$	47.4	52.6	
$25-29$	50.4	49.6	2.791
$30-34$	49.2	50.8	
$35+$	45.8	54.2	
Education level			
Lower secondary and below	46.8	53.2	$6.804 * * *$
Higher secondary and above	51.6	48.4	
Marital status			
Currently married	48.5	51.5	1.553
Windowed/ Divorced/ Separated	56.5	43.5	
Women's position in the household			
Head	51.0	49	
Wife of the head	47.4	52.6	
Daughter of the head	46.4	53.6	5.424
Daughter in law of the head	50.0	50.0	
Other relationships	59.3	40.7	

Note: ${ }^{* * *}$ significance level of 1 percent, ** significance level of 5 percent

c) Mother's motivation to have a son

There was a positively significant association between parity excluding the last birth and the sex of the last birth ($\chi^{2}=5.49, \mathrm{p}<.05$). The percentage of having a son as the last birth was much higher among women who already had more than two children, which suggests that women continue their childbearing because of a desire for a son. Another crucial motivation for sex selection was having no son before the last birth. The percentage of having a son as the last birth significantly increased when the women have never had a son before the last birth ($\chi^{2}=5.17, \mathrm{p}<.05$).

Table 4-16: The sex of the last birth by the mother's motivation to have a son

Variables	Sex of the last birth		χ^{2}
	Female (\%)	Male (\%)	
Parity excluding the last birth			
More than two	39.0	61.0	$5.495^{* *}$
Otherwise	49.1	50.9	
Having a son before the last birth			
No	47.2	52.8	$5.167^{* *}$
Yes	51.7	48.3	
Vietnamese zodiac year of the last birth			
Compatible year with boy	48.9	51.1	0.118
Otherwise	48.3	51.7	

Note: ${ }^{* * *}$ significance level of 1 percent, ${ }^{* *}$ significance level of 5 percent

4.3.2.2. Logistic Regression Analysis

a) Multicollinearity test

It is essential to test for multicollinearity among all variables before conducting a logistic regression analysis. Menard (1995) and Myers (1990) suggested that a tolerance value less than 0.1 and a VIF value greater than 10 indicated a serious multicollinearity problem (Field, A., 2009). This study result suggests that there was no problem with multicollinearity.

Table 4-17: Tolerance and VIF for independent variables

Variables	Tolerance	VIF
Religion of the household head	.991	1.010
Region	.979	1.021
Parity excluding the last birth	.939	1.065
Having a son before the last birth	.959	1.042
Education level	.728	1.373
Family wealth	.762	1.313

b) Binary logistic regression analysis

The interested dependent variable in our model is the sex of the last birth. By adopting multivariate analysis, we can see the pure effect of each independent variable on the dependent variable when other independent variables are controlled. In the process of model building up, six independent variables which denoted significant associations with the sex of the last birth in the bivariate analysis, namely religion of the household head, region, parity excluding the last birth, having a son before the last birth, education level, and family wealth were included in the model. With regard to education level and family wealth, when only the main effects were initially examined, none denoted the significance. As their influence showed in other studies (Aitsi-Selmi, A., Chandola, T. et al., 2012, Grinstein-Weiss, M., Shanks, T.R.W. et al., 2014), the interaction terms between education level and family wealth were included in the model.

With regard to the overall validity of the model, the chi-square was 34.7 , which was the gap between the -2 Log likelihood of adjusted model when all independent variables were included and the -2 Log likelihood of the initial model when only the constant included. It was significant at 1 per cent which indicated the positive improve of the model (Field, A., 2009). In addition, the Hosmer and Lemeshow test showed the goodness of fit of the model. With the value of p above .05 , the model had adequate fit with the MICS4 data (University of Strathclyde). Thus, our model was well-fitting because the p value of the Hosmer and Lemeshow test was 0.887 .

As shown in Table 4-18, women who had the household head following the Hoa Hao religion increased 2.126 times the odd of having a son as the last birth (p<.05). With respect to the parity excluding the last birth, women who had more than two children were more likely to have a son as the last birth, the odd of having a son as the last birth was 1.497 times higher ($\mathrm{p}<.05$). Among all other variables, having no son before the last birth was the strongest predictor. The odd ratio indicated that having no son before the last birth increased the likelihood of having a son as the last birth 1.270 times, compared to those who already had at least one son before the last birth.

Finally, education level and family wealth denoted strongly negative associations with the sex of the last birth in the bivariate analysis, but both were insignificant when putting in the regression model. However, after controlling for their interaction terms, family wealth became significant. Specifically, women with higher secondary education and from the middle class families were 1.287 times more likely to have a son as the last birth than women with higher secondary education and from the rich families ($\mathrm{p}<.05$).

Table 4-18: Logistic regression analysis of likelihood of factors affecting the sex of the last birth

Variables	B	SE	OR
Constant	$-.428 * * *$. 111	. 652
Religion of the household head			
Hoa Hao	.754**	. 321	2.126
Otherwise (ref)			1
Region			
North Central and Central Coastal area	. 182	. 093	1.199
Otherwise (ref)			1
Parity excluding the last birth			
More than two	.404**	. 182	1.497
Otherwise (ref)			1
Having a son before the last birth			
No	.239***	. 081	1.270
Yes (ref)			1
Education level			

Variables	B	SE	OR
\quad Lower secondary and below	.287	.195	1.333
\quad Higher secondary and above (ref)			1
Family wealth			
\quad Poorest	.074	.246	1.077
\quad Middle	$.252^{* *}$.123	1.287
\quad Richest (ref)			1
Interaction education * family wealth			
\quad Lower secondary * poorest	.021	.313	1.021
\quad Lower secondary * middle	-.233	.220	.792
-2 Log likelihood	4143		
Model χ^{2}	$34.7 * * *$		
Hosmer and Lemeshow test	$\mathrm{p}=.887$		
Number of observation	2983		

Note: *** $^{* *}$ significance level of 1 percent, ${ }^{* *}$ significance level of 5 percent, ref: reference group

Chapter 5: Discussion and Conclusions

5.1. Introduction

This concluding chapter aims to provide a discussion of salient findings and policy implications to reduce the number of SSAs and preference for sons in Vietnam. The chapter begins with a brief review of the thesis, followed by a discussion of the validity of SSA estimation method, key determinants of the sex of the last birth and certain policy gaps (Section 5.2). Then, three policy implications are suggested (Section 5.3). Next, contributions of this study to son preference research are presented (Section 5.4). In the final section, directions for future studies are highlighted (Section 5.5).

5.2. A brief review of the thesis

This study was conducted in the context of enormous public attention that has been focused on the increasing trend of SRBs in many countries around the world, especially in Asia. However, most of research on this topic has been located in the two highest SRB countries, namely China and India. In Vietnam, the number of SSAs is still unknown, even though many qualitative studies have highlighted the social reasons of the preference for sons. Hence, this study applied the reverse survival method to estimate the number of SSAs and used the latest secondary data of a MICS survey to identify the determinants of having a son as the last birth. This section reveals the high validity of this SSA estimation method in order to show the validity of the study results. In addition, the main determinants of the sex of the last birth and certain policy gaps are also discussed.

5.2.1. The validity of the SSA estimation method

It is important to mention the validity of the estimation method to indicate how accurately the results of this study reflect the real situation in Vietnam. The methodology can be of high quality itself if it has good background theory and solid characteristics. In addition, the researcher can contribute to the validity of the method by choosing the highest quality data sources and using assumptions that have high validity for the chosen method. In addition, the validity of the estimation can be determined by examining whether the results are consistent with previous studies. Therefore, to ensure the validity of the results, four aspects have been investigated: the methodology; the assumptions used; the quality of the data sources; and the consistency of the study results with prior studies.

Methodology

With respect to the methodology, according to Spoorenberg (2014), the reverse survival method of fertility estimation is simple and the data requirements are not too onerous. Moreover, this method tends to produces fertility estimates that are very insensitive and consistent with the original values of the population. This method can be applied to a large body of existing and easily available population data - both contemporary and historical - that so far has remained largely under-exploited. In addition, UN (1983) and IUSSP (2012) also recommended estimating fertility by using the reverse survival method. Thus, applying this technique can provide the accurate number of births in the specific period since the selected year, which was needed to estimate the number of SSAs in this current study.

Moreover, the reverse survival method has advantages when applying the life table and the survival ratio to get a more accurate number of missing girls due to SSA. The previous studies (Guilmoto, C.Z., 2010, Sen, A., 1990, UNFPA, 2012) on estimation of the number of missing girls did not consider the difference in mortality rate and population structure between countries when they compared sex ratios by age, thus
seeming to be more like a snapshot on the differences in the sex ratio between countries.

Assumptions of the method

The three assumptions used in this method - no migration of children aged 0-9 during 1999 to 2009, full reporting of males aged 0-9 in Census in 2009, and selecting 105 as the normal level of SRB were strongly validated.

First, most international migrants have been of working age (Johns Hopkins University, 2006), so groups in early age of life, such as at $0-9$ years old, are less likely to migrate oversea, except for a small number of those whose parents migrate. Thus, the assumption of no migration of children aged 0-9 during 1999 to 2009 is not violated by this study. According to GSO (2009), there was underreporting of the population aged $0-4$ in the 2009 Census, but the estimated percentage of underreported rate by sex was not provided in the final report. However, the undercount rate of the whole country was quite low (1.5\%), and girls tended to be undercounted more than boys in general. In addition, another report of GSO (2009) compared the child population aged $0-4$ as recorded in the Census and the estimated child population during the five years prior to the Census. The number was higher than estimated for both sexes, and the difference among male children was higher than among female children, which means that males were more likely to be counted than females. Thus, it is possible to use the assumption of full reporting of males as reported in the Census in 2009.

Third, the normal sex ratio at birth has varied between 104 and 107 boys to 100 girls (Ganatra, B., 2008). However, the value of 105 was adopted by most studies (Kulkarni, P.M., 2007, Nixon, N.N., 2013, UNFPA, 2012, Yadav, P., 2011), except for Cai (2003) which used 106. Hence, this study elected to use 105 as the normal level of SRB.

Quality of the data sources

With regard to the quality of the data sources, this study obtained the number of males and females from the 2009 national Census, which has been considered the most reliable and up to date nationally-representative data in Vietnam. In addition, the survival ratios were calculated from the WHO's life table, which was based on the national data of Vietnam, including the Demographic and Health Surveys in 1988 and 1997, and the 1989 Census (Lopez, A.D. and ect, 2000).

Consistency of the study results with prior studies

With reference to the consistency of the study results with prior studies, this current study found that the total number of births was 14,218,430 for 1999-2009, similar to the UN's estimate of 14,455,000 births for 2000-2010 (United Nations). ${ }^{3}$

This study found that the average number of abortions due to sex selection was 21,790 per year. According to the statistics reported in Table 2-3, Section 2.8.3, the average number of abortions due to all reasons, including SSA, was 184,348 per 4 year. ${ }^{4}$ This suggests that SSAs accounted for 11.8% of total abortions in Vietnam. This percentage is considerable lower than the statistics of the two highest SRB in the world, namely China and India. A study (Ganatra, B., Hirve, S. et al., 2001) indicated that 36% of married women said their abortions were sex selective in rural China and 17% of abortions were related to sex selection in India.

Preference for sons surprisingly has not led to discriminatory treatment of females after births in Vietnam, which commonly occurs in India (Yadav, P., 2011). As well,

[^4]mortality rates for boys have been substantially higher than for girls in Vietnam. The IMR as well as U5MR for girls were always lower than for boys from 2009 to 2012 (GSO, 2012). Since boys are more involved in risky behavior in early ages of life, accidents, such as drowning, traffic accidents and violence, increase the mortality rate (Pham, T.L., Kooreman, P. et al., 2013). Therefore, it is assumed that most missing girls in Vietnam occur before birth due to SSAs, rather than after birth. Accordingly, reducing SSAs is a crucial intervention method to lower the missing girls in Vietnam. It can, therefore, be concluded that the results of this study are valid and can use as a reference for later research on SSA.

5.2.2. The key determinants of the sex of the last birth

This study found that the strongest factor is not having a son before the last birth as the only factor denoted significance at 1%. This finding is consistent with previous studies (Gray, E. and Evans, A., 2004, Guilmoto, C.Z., 2010, Leone, T., Matthews, Z. et al., 2003). In the case of Vietnam, couples want to have the ideal family consisting of one boy and one girl, or if only one child, it should be a boy. This explains why the pressure of having a son declines when they already had at least one son (Guilmoto, C.Z., 2012).

This study also found that women with high parity excluding the last birth were more likely to have a son as the last birth, which is similar to other studies (GSO, 2009, Leone, T., Matthews, Z. et al., 2003, Retherford, R.D. and Roy, T.K., 2003, WHO, 2011). Gray (2004) indicated that sex composition of existing children was a factor in progressing to having a further birth, and a more important factor under low fertility regimes than under high fertility regimes. Thus, sex preference had the effect of increasing fertility or sex selection before birth.

In addition, this study has identified that women who lived in the household that the household head followed the Hoa Hao religion were more likely to bear a son as the last birth. The motivation for this comes from the need for having a son in the family because patriarchal values have been more influential on Hoa Hao followers. This is owing to the fact that Hoa Hao is a fundamental Buddhist religion associated with two
other great and old doctrines of oriental philosophy - Confucianism and Taoism - that have had a deep influence on the Vietnamese people for centuries. This has led to the oldest son always having a strong voice in the family and if there is only one son in family, that son needs to bear a son to perpetuate the family name (Hoa Hao Youth). This religion, founded in 1939, has spread widely over the Red River Delta, which had the highest SRB in Vietnam (GSO, 2009). Surprisingly, this study did not find a significant effect of having a son as the last birth among women who reside in the Red River Delta.

Moreover, existing studies (Aitsi-Selmi, A., Chandola, T. et al., 2012, GrinsteinWeiss, M., Shanks, T.R.W. et al., 2014) have indicated the association between education and family wealth. Apparently, wealthier families tend to invest more on the education of all family members. This study found the indication of declining son preference among women with higher secondary education and from rich families in Vietnam. Using the 2009 Vietnam Census, GSO indicated that the probability of having a son as the last birth has increased corresponding with the rising level of wealth (GSO, 2009). In this study, however, the level of wealth just matters with higher educated women; those from rich families were less likely to have a son as compared to those from middle-class families. It can be explained that women with high education are commonly working in formal sectors and influenced by peers and media. Therefore, they are more likely to be independent, aware the social consequences of imbalance SRB and adopt modern thinking from Western countries of no gender preference on children easily. This pattern is found to be similar to South Korea before they were successful in resolving the imbalance SRB. It is observed that the sex determination technologies were adopted first by better educated, white-collar workers, urban dwellers, and the signal of reducing son preference also emerged from these groups, who spread the new idea to other people in the community (UNFPA, 2011).

Surprisingly, women's position in the household did not have any significance in this study. Using the Vietnam Census in 2009, UNFPA (2012) showed that women who were the head of their household appeared to have significantly fewer boys than those
who were spouses or daughter-in-laws of the household head because they have more voice in household decisions.

Overall, the results of this study were quite justified, particularly as explained in a Vietnamese context and compared with other previous studies. The p value of Hosmer and Lemeshow test indicates the model used in this study as being well-fitting with MICS data. In addition, a new group with a high son preference was found in this study, that being women who lived in the household that the household head followed the Hoa Hao religion, which has not been noted with any significance in previous studies. Moreover, this study highlights that preference for sons is the root determinant of the sex of the last birth, which reflects the significant impact of having no son before the last birth, while external factors, such as household or women characteristics, play less of a role.

5.2.3. Policy gaps

The first policy gap is the prohibition of SSAs that was initiated in the context of legal abortion in Vietnam. Health providers generally provide abortion services without asking the women the reason for the abortion. The Law on Protection of People's Health states: "women have the rights to have an abortion" (Vietnam Goverment, 1986). Therefore, Vietnamese women can have an abortion on request up to $22^{\text {nd }}$ weeks of gestation (Asian safe abortion partnership, 2013). At the beginning, ultrasound scans were used in most health centers in Vietnam to monitor the health of pregnant women, but later such scans have become the most common mean to know the sex of the fetus. Women who go to the health center for a routine medical check in their $12^{\text {th }}$ weeks of pregnancy, either by chance or on purpose, learn the sex of the fetus (GSO, 2011). Those who are hoping for a son will undergo an abortion if the fetus is a girl without reporting the true reason. According to Truc (2011), among 381 pregnant women having abortions, no one expressed as sex selection the reason; the common reasons were insufficient economic resources, already having two children and health problems of the mother.

This situation raises a concern about the second policy gap, which is how can women know the sex of the fetus after an ultrasound scan when the health providers are not allowed to inform them. The women may not be afraid to ask about the sex of their fetus because they are not subject to any punishment. The regulations (Vietnam Goverment, 2006) have targeted the health providers who performing ultrasound scans and then inform pregnant women, and those who force women to have an abortion because of sex selection. Evidence shows that most women know the sex of the fetus from $12^{\text {th }}$ to $22^{\text {nd }}$ weeks of pregnancy (77%), with the percentage of women knowing the sex of the fetus before birth having increased continuously from 63.8\% in 2006 to 81.3% in 2012 (GSO, 2011, GSO, 2012). Therefore, health providers must be informing the women of the sex of their fetus in an informal way without recording such in their medical report, which would seems to be out of control of the law.

This study has found that the number of sex selective abortions has nearly doubled, going from 74,179 in 1999-2004 to 143,723 in 2005-2009. It can be seen that the number of SSAs did not decline after the first law was introduced in 2003 and has continue to increase, even though higher penalties were enacted in 2006 (see more detail in Section 2.8.3.2). The policy gaps mentioned above partly explain the positive causes that have made the laws and many government intervention efforts ineffective. However, incomplete and insufficient monitoring of laws, as well as delays in punishments for prohibited behaviors, also is responsible for the increasing trend of SSAs.

5.3. Policy implications of this study

This section suggests implications of this study for policy makers and health facilities. Three main policy implications are discussed: (1) the need to strengthen monitoring of laws and punishments; (2) establishment of community-based intervention programs; and (3) encouragement of women's empowerment and gender equality.

Strengthening monitoring of laws and punishments

As mentioned in the policy gaps above, more stringent monitoring and evaluation of the related laws is essential, especially in private health centers. Commonly, women who cannot access information on the sex of their fetus in public hospitals will go to a private hospital. Medical doctors who violated the laws should be received strong punishments as a warning to others.

In addition, data sources on the number of sex-selective abortions should be increased. Community surveys to determine the prevalence of prenatal sexdetermination and sex-selective abortions are needed. This information can support the estimation of SSAs. In addition, missing girls before birth are caused by miscarriages which should be reported in some ways in medical centers or via community surveys.

Community-based intervention programs

Besides the national laws on paper to promote bilateral kinship models such as the child can bear the mother's surname, equally inherited between sons and daughters; it is important to change the attitude and the practice of the society toward partial role and son preference, starting with males and older parents who will be husbands, fathers, and grandparents respectively in the future. This is because husbands and grandparents have enormous influence on women's decision on sex selection (Junhong, C., 2001, Robitaille, M.-C. and Chatterjee, I., 2013).

The community-based intervention programs may be an alternative. The communitybased approach has advantage of engaging the involvement of many units in the community including the administration, the local council and management, and the local people. Thus, a friendly living environment for females can be created when the traditional social norm on son preference changes. Media campaigns play an important role in declining the need for sons and enhancing the value of daughters on supporting for older parents. For example, negative consequences of son preference
and sex-selective abortions, such as the marriage squeeze and poor well-being of women should be propagated via public means such as radio, poster, banner, and community meeting. In addition, the national laws on banning prenatal sex determination and its punishments should also need to be promoted widely. Media can increase the spread of the awareness on the new ideal family concept, in which having son is not necessary. As evident in this study, campaigns may target first at the more educated people in the community.

In addition, all the intervention programs should focus on the groups with high son preference that have been identified by this study, such as those following the Hoa Hao religion, who currently have more than two living children but without any son. Moreover, specific programs should directly target those groups to change their attitude and behavior regarding son preference.

Encouragement of women's empowerment and gender equality

It is a fact that son preference is strong because of the long-standing traditional culture in Vietnam. Thus, the objectives of policies need to be broader to encourage women's empowerment and gender equality in all spheres of life through legal and regulatory reforms. Therefore, under legal protection in Vietnam, if women could overcome the influence of husbands or parents-in-law, or social norms, and make their own decision, the number of SSA would decline.

In addition, policy action against gender discrimination is a lesson to be learned from countries that have had success in reducing a high SRB. For example, South Korea has tried to weaken the patrilineal family system and increase the status of women in society (UNFPA, 2011). Consequently, South Korea has been successful in bringing their SRB down to a normal level in 2007, only 20 years after the first prohibited law on SSA was introduced (Liisanantti, A. and Beese, K., 2012). Moreover, there has been an emergence of daughter preference in Japan as the result of efforts to address gender relations inside and outside the family (Fuse, K., 2013).

5.4. Contributions to son preference research

This study provides a fuller conceptual framework to examine the determinants of the sex of the last birth in Vietnam. Specifically, we use the parity excluding the last birth instead of using the parity of women or birth orders, as in prior studies (GSO, 2009, Leone, T., Matthews, Z. et al., 2003, Retherford, R.D. and Roy, T.K., 2003, WHO, 2011). It is assumed by this study that the number and the sex of the children that the women had before the last birth would have a true impact on the sex of the last birth.

Moreover, the zodiac year of the last birth was added in the framework by this study. The national statistics of Vietnam revealed that SRB was significantly higher in some zodiac years, such as Horse, Monkey, Rat, and Dragon (GSO, 2009, GSO, 2012). However, it seems that MICS is not an appropriate dataset to analyze the zodiac year of the last birth. The distribution of the sex of the last birth by the single zodiac year could not be explained by the theories and be reversed with the national trend of SRB, as mentioned in Figure 2-3, Section 2.7.2. Therefore, we tried to work with the group of the compatible years with boys, but no significance was noted in this study. Accordingly, future studies can try to work with another national dataset and may find interesting result.

5.5. Directions for future studies

Four directions for future research are suggested as below:
a) Conduct a qualitative research to explore why currently women with high education and from rich family are more likely to become neutral on gender of children.
b) Compare policies related to a decreased imbalance in SRB between Vietnam and South Korea, which is a unique case of success in the world, by analyzing the time line of relevant events during the SRBs transitional period in each country and Bongaarts' theory (2013).
c) Estimate the number of missing girls in Vietnam, including those missing both before birth and after birth.
d) Use this current study method to estimate the number of SSAs for the next coming period when the needed data is available.
e) Study fertility preference, such as how many children women want, how many boys and how many girls, to project the trend of SRB in Vietnam in the future

REFERENCES

Aitsi-Selmi, A., Chandola, T. and Friel, S. (2012). "Interaction between Education and Household Wealth on the Risk of Obesity in Women in Egypt." PLoS ONE 7(6): e39507.

Asian safe abortion partnership (2013) "Country Profile - Vietnam." http://www.asap-asia.org/country-profile-vietnam.html

Bongaarts, J. (2002). "The End of the Fertility Transition in the Developed World." Population and Development Review 28: 419-443.

Bongaarts, J. (2013). "The Implementation of Preferences for Male Offspring." Population and development review 39(2): 185-208.

Burgess, R. and Zhuang, J. (2002). Modernization and Son Preference in People's Republic of China, Asian Development Bank.

Cai, Y. and Lavely, W. (2003). "China's Missing Girls: Numerical Estimates and Effects on Population Growth." The China Review 3(2): 13-29.

Carlson, M.D.A. and Morrison, R.S. (2009). "Study Design, Precision, and Validity in Observational Studies." Journal of Palliative Medicine 12(1): 77-82.

Chun, H. and Gupta, M.D. (2009). "Gender discrimination in sex selective abortions and its transition in South Korea." Women's Studies International Forum 32: 89-97.

Do, Q.T. and Phung, T.D. (2009). The Importance of Being Wanted, The World Bank.

Field, A. (2009). Discovering Statistics Using SPSS-3rd edition, SAGE Publications.
Fuse, K. (2013). "Daughter preference in Japan: A reflection of gender role attitudes?" Demogarphic research 28(36): 1021-1052.

Ganatra, B., Hirve, S. and Rao, V.N. (2001). "Sex-Selective Abortion: Evidence from a Community-based Study in Western India." Asia-Pacific Population Journal 16(2): 109-124.

Ganatra, B. (2008). "Maintaining Access to Safe Abortion and Reducing Sex Ratio Imbalances in Asia." Reproductive Health Matters 16(31): 90-98.

General Office for Population Family Planning (2013) "Reducing the imbalance sex ratio at birth program for 2013-2020 in Vietnam." http://www.gopfp.gov.vn/

Gray, E. and Evans, A. (2004). Sex composition of children as a determinant of parity progression. Series, N.t.L.C.D.P.

Grinstein-Weiss, M., Shanks, T.R.W. and Beverly, S.G. (2014). "Family Assets and Child Outcomes: Evidence and Directions." The future of children 24(1): 147-170.

GSO (2007). The 1/4/2007 time point population change and family planning survey Major findings.

GSO (2009). The Vietnam Population and Housing cencus 2009: Age-sex structure and marital status of the population in Vietnam

GSO (2011). Viet Nam Multiple Indicator Cluster Survey-Final Report, 2011. Ha Noi, Viet Nam.

GSO (2009). The Vietnam Population and Housing cencus 2009 - Sex Ratio at Birth in Vietnam: The new evidence about prevelance, trends and differences.

GSO (2010). The 1/4/2010 time point population change and family planning survey Major findings.

GSO (2009). The Vietnam Population and Housing cencus 2009 - Completed results.
GSO (2011). Population projection for Vietnam 2009-2049 Vietnam, Ministry of Planning and Investment

GSO (2009). The Vietnam Population and Housing cencus 2009 - Major findings.
GSO (2011). The 1/4/2011 time point population change and family planning survey Major findings.

GSO (2012). The 1/4/2012 time point population change and family planning survey Major findings.

GSO (2008). The 1/4/2008 time point population change and family planning survey Major findings.

Guilmoto, C.Z. (2012). "Son Preference and Sex Selection in Vietnam." Population and Development Review 38(1): 31-54.

Guilmoto, C.Z. (2009). "The Sex Ratio Transition in Asia." Population and Development Review 35(3): 519-549.

Guilmoto, C.Z. (2010) "Sex imbalances at birth in 2010: Some theory and a few recent estimates."

Guilmoto, C.Z. (2012). "Missing Females" Facts and implications Global Asia Institute Signature Conference. Singapore: 6.

Gilles, K. and Jacobs, C.F. (2012). "When technology and tradition collide: From gender bias to sex selection." Population Reference Bureau: 1,3.

Hoa Hao Youth "Characteristics of Hoa Hoa Buddhism." http://tuoitrephatgiaohoahao.com

Hoang, T.T., Phan, T. and Huynh, N.T. (2008). "Second Trimester Abortion in Viet Nam: Changing to Recommended Methods and Improving Service Delivery." Reproductive Health Matters 16(31): 145-150.

Hu, L. and Schlosser, A. (2011). Prenatal Sex Selection and Girls' Well- Being: Evidence from India, Federal Reserve Bank of Chicago.

Institute for Social Development Studies (2007). New "Common Sense": FamilyPlanning Policy and Sex Ratio in Viet Nam 4th Asia Pacific Conference on Reproductive and Sexual Health and Rights.

IUSSP (2012) "Estimation of fertility by reverse survival." http://demographicestimation.iussp.org/content/estimation-fertility-reverse-survival

Johns Hopkins University (2006) "Migration: Theories and Trends." http://ocw.jhsph.edu/courses/populationchange/PDFs/Lecture8.pdf

Jonhston, H.B. and Hill, K.H. (1996). "Induced Abortions in the Developing World: Indirect Estimations." International Family Planning Perspectives 22: 108-114.

Junhong, C. (2001). "Prenatal Sex Determination and Sex-Selective Abortion in Rural Central China." Population and Development Review 27(2): 259-281.

Kulkarni, P.M. (2007). Estimation of missing girls at birth and juvenile ages in India UNFPA, School of Social Sciences, Jawaharlal Nehru University.

Lee, S.Y. and Marwell, G. (2013). A general theory of gender preference for children. XXVII IUSSP International Population Conference. Korea.

Leone, T., Matthews, Z. and Zuanna, G.D. (2003). "Impact and Determinants of Sex Preference in Nepal." International Family Planning Perspectives 29(2): 69-75.

Liisanantti, A. and Beese, K. (2012). Gendercide: the missing women? The European Parliament's Committee on Development.

Lopez, A.D. and ect (2000). Life table for 191 countries: Data, Methods and Results
Lynch, K.A. (2011). "Why weren't (many) European women 'missing'?" History of the Family 16: 250-266.

Man, A. and Karmakar, M.K. A brief history of ultrasound. Ultrasound Guided Regional Anesthesia Workshop. Hong Kong.

MedlinePlus (2012) "Miscarriage."
http://www.nlm.nih.gov/medlineplus/ency/article/001488.htm
Mehta, M. and Pattanayak, R. (2013) "Follow-up for improving psychological wellbeing for women after a miscarriage." http://apps.who.int/rhl/pregnancy_childbirth/antenatal_care/general/cd008679_mehta m_com/en/index.html

National Committee (2003). The Ordinance on population: 5.
Nixon, N.N. (2013). Maternal age at birth delivery, birth order and secondary sex ratio in the old order amish of Lancaster County Master of Science University of Massachusetts Amherst.

Nguyen, K. (2013) "Approximately 3,000 billion VND for gender imbalance intervention." http://www.sggp.org.vn/ytesuckhoe/2013/3/312487/

Portner, C.C. (2009). The Determinants of Sex Selective Abortions, University of Washington.

Pham, T.L., Kooreman, P., Koning, R.H. and Wiersma, D. (2013). "Gender patterns in Vietnam's child mortality." Journal Population Economic 26: 303-322.

Retherford, R.D. and Roy, T.K. (2003). Factors affecting sex -selective abortion in India and 17 major states, National Institue for Population Sciences, Mumbai, India.

Robitaille, M.-C. and Chatterjee, I. (2013). Mothers-in-Law and Son Preference in India, Social Science Research Network.

Robitaille, M.C. (2013). "Determinants of Stated Son Preference in India: Are Men and Women Different?" The Journal of Development Studies 49(5): 657-669.

Science-Based Medicine (2013) "Baby's DNA in Mom's Blood: Noninvasive Prenatal Testing." http://www.sciencebasedmedicine.org/babys-dna-in-moms-blood-noninvasive-prenatal-testing/

Sen, A. (1990). More Than 100 Million Women Are Missing, The New York Review of Books.

Siegel, J.S. and Swanson, D.A. (2004). The Methods and materials of demography.
Singh, S., Remez, L. and Tartaglione, A. (2010). Methodologies for Estimating Abortion Incidence and Abortion-Related Morbidity: A Review, International Union for the Scientific Study of Population.

Sjösten, C. (2014). A minor field study on abortion legislation and practice in Vietnam. Master of Laws programme, Lund University.

Spoorenberg, T. (2014). "Reverse survival method of fertility estimation: An evaluation." Demographic research 31(9): 217-246.

The World Bank (2011). World Development report 2012: Gender equality and Development.

Thinh, H.B. (2009). Abortion in Vietnam: A Review of Policies and Practices. Research Centre for Gender, Family and Environment in Development (CGFED).

Truc, N.T.T., Lo, N.V., Nga, T.T.T. and My, D.T. (2011). "The reasons of abortions and the contraceptive user errors among women having abortion in Hung Vuong hospital." HCMC Medical Journal 17(1): 266-275.

UNFPA (2011). Report of the International Workshop on Skewed Sex Ratios at Birth: Addressing the Issue and the Way Forward. Ha Noi, Vietnam.

UNFPA (2009). Recent increase in the Sex Ratio at Birth in Viet Nam: A review of evidence.

UNFPA (2012). Sex Imbalances at Birth: Current trends, consequences and policy implications.

UNICEF. (2010). "MICS4 Data Processing Workshop." Retrieved 7/6/2014, from www.childinfo.org.

United Nations (1983). Manual X: Indirect techniques for demographic estimation.
United Nations. "World Population Prospects: The 2012 Revision." Retrieved 11/11/2014, from http://esa.un.org/unpd/wpp/index.htm.

University of Maryland Medical Center (2012) "Amniocentesis." http://umm.edu/health/medical/pregnancy/staying-healthy-duringpregnancy/amniocentesis

University of Strathclyde "Goodness of Fit Measures." http://www.strath.ac.uk/aer/materials

Vach, T.H., Bishop, A., Hoa, V.T., Hien, L.X., Chien, T.D. and Nguyen, T.I. (1998). "The Potential Impact of Introducing Pregnancy Testing into Menstrual Regulation Services in Vietnam." International Family Planning Perspectives 24(4): 165-169.

Vietnam Congress (2006). Gender Equality: 5.
Vietnam Goverment (1986). Protection of People's Health.
Vietnam Goverment (2011). The National Strategy on Population and Reproductive Health for the period of 2011-2020: 3 .

Vietnam Goverment (2006). Administrative sanction regulations on population and children.

WHO (2011). Preventing gender-biased sex selection: an interagency statement.
Yadav, P. (2011). "District wise Estimations of Total Missing Girls in Madhya Pradesh, India, 2004-2011: Evidences from recent Census 2011." XXVII IUSSP International Population Conference.

Yipa, P.S.F., Leeb, J. and Cheung, Y.B. (2002). "The influence of the Chinese zodiac on fertility in Hong Kong SAR." Social Science \& Medicine 55: 1803-1812.

Appendix A: Vietnam Life table in $\mathbf{1 9 9 9}$ for male and female

Males x	${ }_{\mathrm{n}} \mathrm{M}_{\mathrm{x}}$	${ }_{\mathrm{n}} \mathrm{q}_{\mathrm{x}}$	l_{x}	e_{x}
0	0.029	0.0283	100,000	64.65
1	0.0029	0.0115	97,174	65.52
5	0.001	0.0052	96,052	62.27
10	0.0008	0.0041	95,555	57.58
15	0.0014	0.0068	95,159	52.81
20	0.0018	0.0089	94,515	48.15
25	0.0017	0.0087	93,679	43.56
30	0.0024	0.012	92,863	38.92
35	0.003	0.0149	91,749	34.36
40	0.0042	0.021	90,384	29.84
45	0.0068	0.0333	88,487	25.43
50	0.0112	0.0546	85,539	21.22
55	0.0185	0.0884	80,871	17.3
60	0.0316	0.1464	73,724	13.74
65	0.0511	0.2265	62,928	10.66
70	0.0827	0.3426	48,676	8.05
75	0.1322	0.4968	32,000	5.95
80	0.2039	0.6754	16,101	4.35
85	0.3119	1	5,227	3.21

Females

x	${ }_{\mathrm{n}} \mathrm{M}_{\mathrm{x}}$	${ }_{\mathrm{n}} \mathrm{q}_{\mathrm{x}}$	l_{x}	e_{x}
0	0.0218	0.0214	100,000	68.64
1	0.0026	0.0103	97,862	69.13
5	0.0006	0.0032	96,856	65.84
10	0.0005	0.0026	96,550	61.04
15	0.001	0.0048	96,298	56.19
20	0.0013	0.0066	95,839	51.45
25	0.0012	0.0062	95,209	46.77
30	0.0015	0.0077	94,617	42.05
35	0.0018	0.009	93,892	37.35
40	0.0027	0.0133	93,046	32.67
45	0.0043	0.0215	91,807	28.08
50	0.0073	0.0357	89,836	23.64
55	0.012	0.0581	86,626	19.42
60	0.0215	0.102	81,591	15.47
65	0.0372	0.17	73,265	11.94
70	0.0671	0.2873	60,811	8.87
75	0.1138	0.4429	43,338	6.44
80	0.1881	0.6398	24,145	4.57
85	0.307	1	8,698	3.26

Appendix B: Viet Nam 2011 MICS questionnaires

？

근

$\bar{\square}$

Probe for additional household members.
Probe especially for any infants or small children not listed, and others who may not be members of the family (such as servants, friends, adopted children) but who usually live in the household.
Insert names of additional members in the household list and complete form accordingly.
Now for each woman age 15-49 years, wnite her name and line number and other identifying information in the information panel of a separate Individual Women's
Questionnaire.
For each child under age 5, write his/her name and line number AND the line number of his/her mother or caretaker in the information panel of a separate Under-5 Questionnaire.
You should now have a separate questionnaire for each eligible woman and each child under five in the household.

01	06 Parent	11 Niece $/$ Nephew
02	Wife $/$ Husband	07 Parent-In-Law

공

$\overline{7}$
齐

『

HCE. Does your househao heme:	Yes	No
[A] Eiectratr?	Electricity ... 1	2
[B] Amaco?	Radio... 1	2
[C] Atelevsow?	Television.. 1	2
[D] Anonmocee telertove?	Nor-mobile telephone 1	2
[E] Amefagrrator?	Refingerator...................................... 1	2
[f] Abeo?	Bed.. 1	2
[G] Athale ano anms set?	Tabie and chairs set.............................. 1	2
[H] Asofa?	Sofa .. 1	2
III ACumbano for aime	Cupboard... 1	2
[J] Kichen casmets?	Kitchen cabinets 1	2
[K] Agnn?	Fan .. 1	2
[L] Cusel cimmu TV?	Cable/digital TV 1	2
[M] A conputer?	Computer.. 1	2
[N] Ar conaminer?	Air condtioner................................... 1	2
HC9. Does ant neverr of Yovr houshlao omv:	Yes	No
[A] Anmest wator?	Wist watch ... 1	2
[B] Anobee telphione?	Mobile telephone 1	2
[C] Aabrae?	Bicyde.. 1	2
[D] Anotorcha or scooter?	Motorycle / Scooter 1	2
[E] Aponer-tuer or tractor?	Power-filler/ Tractor 1	2
[1] Acaror track?	Car/Truck ... 1	2
[G] Asw or boat with amotor?	Ship/ Boat with motor 1	2
HC10. DO YOU OR SOMEONE UNNG NTTHS HOUSEHOL OMN THS DNELN:		
If No", then ask: Do you rent thes dmeung FROM SOMEONE NOT UNWG N THE HOUSEHOLO?	Own	$\begin{aligned} & 1 \\ & . . \\ & 2 \end{aligned}$
If "Rented from someone else", cincie " 2 ": For other responses, circle "6".	Other (Not owned or rented)......................	6
HC11. Does any meneer of ties housenol omn OR HAVE USER FBGHTS FOR ANY LIND THAT CAN aE useo for Agacuture?	Yes.. No2	
HC12. HOW MuNY SOLWQE METERS (M2) OF agacultural lwo do meneers of the HOUSEHOLD OWN OR HAVE USER FBOHTS FCR?	M^{2} - - - -	
If unknown, record 99998: HC 12A. Daes niv meverr of thes houseriol own OR HUVE UEER FOBHIS FOR ANY WATER SUFFACE AEEA THAT CNN EE USED FOR AOUGOUTUNE?	Yes.. No2	… $1{ }_{20 H C 13}$
HC 12B. How maNr solure meters (M^{2}) of WAIER SURFACE IREA DO MEMEERS OF TMS HOUSEHOLD OMN OR HENE USER RLHTS FOR? If unknown, record "99998:	M^{2} - - -	
HC 13. DCES ThS HOUSEHOL OMN ANY LNESTOCK, HERDS, OTHER FNRM ANM/LS, OR POUTRT?	Yes No2	125 HC 15

इ

Insecticide treated nets						TN
TN1. Does your household have any mosquito nets that can be used while sleeping?			Yes Yes.... \qquad		1 $-\quad-\quad 1$ $-\quad-\quad . \quad-\quad . \quad 1$	$2 \Rightarrow$ Next Module
TN2. How many mosquito nets does your household have?			Number of nets.			
	* Not	$2^{\sim} \mathrm{Net}$	$3^{\mathrm{rr}} \mathrm{Net}$	$4{ }^{\text {- }}$ Net	$5^{\text {m }}$ Net	$6^{\text {n }}$ Net
TN4. Mosquito net observed?	Observed Not observed._-_ 1 2	Observed. 1 Not observed._._._- 1			Observed Not observed.__ 1 1	Observed Not observed.___ $\quad 1$ 2
TN5. Observe or ask the brand/fype of mosquilto net.		Long-lasting treated nets Global Fund Other (specily). \qquad DK brand \qquad ${ }_{18}^{16}$	Long-lasting treated nets Global Fund Other (specify) $\quad . \quad . \quad . \quad 11$ DK brand...............		Long-lasting treated nets Global Fund Other (specify) \qquad 16 DK brand.	Long-lasting treated nets Global Fund Other (specify) \qquad .11 DK brand \qquad . .18
If brand is unknown and you cannot observe the net, show pictures of typical net types/brands to respondent.	$\left.\begin{array}{lr} & \\ \hline \text { Pre-treated nets } \\ \text { Global Fund. }\end{array}\right) \quad 21$					 Pre-treated nets Global Fund Other (specify) O. 21 DK brand Other net (specify)
	DK brand / type ..._.... 98	DK brand/type....... 98	DK brand/type. - $^{\text {a }}$. 98	DK brand/type...- 98	DK brand / type. $\quad . \quad . \quad 98$	DK brand/ /type.___.....98
TN6. How manr MONTHS AGO DIC YOUR HOUSEHOLD GET THE MOSCUTO NET?	Months ago.... More than 36 mo . ago \qquad 95	Months ago.... \qquad More than 36 mo. ago \qquad 95	Months ago. \qquad More than 36 mo . ago. \qquad	Months ago... More than 36 mo . ago. \qquad	Months ago... More than 36 mo . ago \qquad 95	Months ago. More than 36 mo . ago. \qquad 95
If less than one month, record 000^{*}	DK/ Not sure......... 98	DK/ Not sure.... $\quad 98$	DK/ Not sure........ 98	DK/ Not sure.. $\quad 98$	DK/ Not sure. $\quad 98$	DK/ Not sure._._. 98
TN7. Check TN5 for type of net	$\begin{gathered} \square \text { Long-lasting (11-18) } \\ \Rightarrow \text { TN11 } \\ \square \text { Pre-treated (21-28) } \\ \Rightarrow \text { TN9 } \end{gathered}$	$\begin{gathered} \square \text { Long-lasting (11-18) } \\ \Rightarrow T N 1 \\ \square \text { Pre-reated (21-28) } \\ \text { oTN9 } \end{gathered}$	$\begin{gathered} \square \text { Long-lasting (11-18) } \\ \Rightarrow T N 1 \\ \square \text { Pre-treated (21-28) } \\ \Rightarrow T N 9 \end{gathered}$	$\begin{gathered} \square \text { Long-lasting (11-18) } \\ \& T N 11 \\ \square \text { Pre-reated (21-28) } \\ \Rightarrow T N 9 \end{gathered}$	$\begin{gathered} \square \text { Long-lasting (11-18) } \\ \Rightarrow T N 1 \\ \square \text { Pro-treated (21-28) } \\ \Rightarrow T N 9 \end{gathered}$	$\begin{gathered} \square \text { Long-tasting (11-18) } \\ =T N 11 \\ \square \text { Pre-treated (21-28) } \\ \Rightarrow T N 9 \end{gathered}$
	$\square E l s e \Rightarrow$ Continue	\square Else \Rightarrow Continue	\square Else \Rightarrow Continue	\square Else \Rightarrow Continue	$\square E l s e \Rightarrow$ Continue	$\square E l s e \Rightarrow$ Continue
TN8. When you GOT The net, was IT ALREAOY TREATED WITH AN INSECTCIDE TO KIL OR REPEL mosoutoes?	Yes................... 1 No2 DK/Not sure......... $\quad 8$	Yes. No2 DK / Not sure. 8 \qquad	Yes. No2 DK/ Not sure. 8 \qquad		Yes. No2 DK / Not sure. \qquad	Yes. \qquad No2 DK / Not sure. \qquad 8

TN9. Since you cot THE NET, was it EVER SOAKED OR DVPEO W A LIOUID TO KILL OR REPEL MOSOUTOES?	Yes . 1	Yes... 1	Yes .	Yes... ${ }^{\text {a }}$	Yes..._ 1	Yes ...
	No2 9 TN11	No2 9 TN11	No2 9 TN11	No2 9 TN11	No2 $¢$ TN11	No2 $¢$ TN11
	DK/ Not sure. $\quad .8$ ¢TN11	DK/Not sure... 8 ¢TN11	DK/ Not sure $8 \Rightarrow$ TN11	DK/ Not sure ... 8 ¢TN11	DK/Not sure._. 8 ¢TN11	DK/ Not sure _. 8 atN11
TN10. How manr MONTHS AGO WIS TME NET LAST SOAKED OR IIPPED? If less than one month, record ${ }^{\circ} 00^{\circ}$	Months ago...	Months ago....--	Months ago . - -	Months ago. - - -	Months ago. -- -	Montis ago - --
	More than 24 mo . ago. \qquad .95	More than 24 mo. ago. \qquad .95	More than 24 mo. ago. \qquad .95	More than 24 mo . ago. \qquad 95	More than 24 mo . ago. \qquad .95	More than 24 mo . ago. \qquad 95
	DK/ Not sure. $\quad . \quad 98$	DK/ Not sure._ $\quad 98$	DK/ Not sure $\quad 98$	DK/ Not sure. $\quad 98$	DK/ Not sure.	DK/ Not sure... 98
TN11. Dio anrone SLEEP UNDER THIS mosouto net last nient?	Yes... ${ }^{1}$	Yes ... ${ }^{1}$	Yes 1	Yes ... ${ }^{1}$	Yes... ${ }^{1}$	Yes 1
	No2¢TN13	No2 \Rightarrow TN13	No2 9 TN13	No2 $¢$ TN13	No2ctN13	No2 ¢TN13 $^{\text {a }}$
	DK/ Not sure. $\quad . \quad 8 \Rightarrow$ TN13	DK/Not sure.....8ヵTN13	DK/ Not sure..... 8 ¢ TN13	DK/ Not sure..... 8 ¢TN13	DK/Not sure. . 8 ¢ $¢$ TN 13	DK/ Not sure..... 8 ¢TN13
	Name	Name	Name	Name	Name	Name
TN12. Who stept UNOER TMIS MOSCOUTO net last mort?	Line number.	Line number..				
Record the person's line number from the household listing form	Name	Name	Name	Name	Name	Name
	Line number .-.--- Name	Line number .-.-_- Name	Line number- Name	Line number .-.-_- Name	Line number...--- Name	Line number....--- Name
If someone not in the household list slept under the mosquito net, record ${ }^{\circ} 00^{\circ}$	Line number.	Line number - .-.	Line number.	Line number. -	Line number .-	Line number....---
	Name	Name	Name	Name	Name	Name
	Line number.....--	Line number....---	Line number.	Line number.	Line number..	Line number......-
TN13.	Go back to TN4 for next net. If no more nets, go to next module	Go back to TN4 for next net. If no more nets, go to next module	Go back to TN4 for next net. If no more nets, go to next module	Go back to TN4 for next net If no more nets, go to next module	Go back to TN4 for next net If no more nets, go to next module	Go back to TN4 in first column of a new questionnaire for next net. If no more nets, go to next module
						Tick here if additional questionnaire used

CHILD LABOUR

To be administered for children in the household age 5 -17 years. For household members below age 5 or above age 17, leave rows blank

$\stackrel{\overline{3}}{\bar{a}}$

$\stackrel{\text { ? }}{0}$
릉

줄
否

2

ziwo	 ZIWO पाल बnupuco anpow SWOLdWAS SS 	OLWO－LWD of sesuodser अpeपつ ↔ON \square INT7I 0109 s Sमाव बMII ON \square \square SMOpg y0e40＇se人 \square C103selco sihl
	．．．．＂wns	＇GWO pue＇LWO＇sWo of siamsue uns olwo
		：00，prosar＇suou и Casa з．
01Wつ¢て		 como yilin ine zunv neos sim
8W0¢	aコeपmes｜e sapytnea \qquad әечмеsa suos	
		inor rum 30 LoN oo ina zniv zer ohu huara navo amh nox
9Wつ¢Z		：00，proosu＇вuои и1 ¿пох нum зun sesuenvo мmw noн ¿nox rum an snos inw woh＇SWo
		wotm or sabihmon צo swos In 3wh nol oa two
tWOe	Чй9 1s，	2H1as 1 sist ano
		＇YGNIrved INAYen S anOL LON UHDER LSels ano to 3IVO BHI SVM IVHM＇ZWO
8WO¢2	．	дuиas navo
พว		

離

囟

өाnpow XXONGZ		2xwiswas
өпрош XQN N 己		
	て \qquad	
		（aumu） 70 HL ．26 3HL zows oanantzy corsłd Mneasiew ano svH EZNW
$\begin{aligned} & \varepsilon Z N W \oplus 8 \\ & \varepsilon Z N W \Leftrightarrow Z \end{aligned}$		 ZHEOM（aweu）CoO HONW NOH＇ZZNW
		¿hias iy crobu（eweu）sYM LZNW
OZNW 96		（Lino xave 3al zwiol
		（aseldjo ouren）
ozNWeZl OZNWゅ！		 coanos po adif oun kpuapt of aqaid
		Kiengep anfe of agosd＇pojsfse auo ou skies Juapuodsar Il
		uent siansue ae opup pue cupssse uosiod jo ed／foulf 10 oquid
		 Fquid 2（eweu）to ．

MONTORING THE STUUATION OF CHLLDRENAND WOMEN
Z

硘

돕

를

を

范

		auf aup prooey＇uWM
		¿sruy saivinit eut joi pelsa le6 of
	sed	
HWM¢8	＞0	
НWMッス HWMel		
	1．．－se入	
		ajem nok aun juesen sow eun sen ueum＇szVh
LZVHらこ		
	$\cdots \cdot \operatorname{sen}$	nox eney inq＇sinseas oul moux of Iuem zuOP I＇VEVH
นพMต НWMEZ HWMat	Obe sieak ajow 10 Z	
	$\iota^{\prime \prime \cdots}$	
SEOHEL	．．．${ }^{\text {on }}$	

 \square Received anternatal care \Rightarrow Continue with HA15
\square Didnot receive antenatal care \Leftrightarrow Go to HA24 \square One or more five births in last 2 years \Rightarrow Continue with HA14
HA14．Check MN1：Received antenatal care？ \square No ive bitht in last 2 years \because Go to HA24 HA13．Check CM13：Any five bitht in last 2 years？

 Pemson hoo te hivilis vrevs？

$$
\begin{array}{llll}
N & \sim & N & z \\
\infty & \infty & \infty & \text { 믓 }
\end{array}
$$

 N
$\frac{2}{2}$
$\frac{2}{6}$
MONTORING THE STUUATION OF CHLDREN AND WOMEN
इ

＂

蜜

	--:- sennum pue נnot	
		- -
		- awe

$\underset{\text { ® }}{\substack{>}}$
?

saun fo sequnn	
$\begin{aligned} & 8 \pm 8<8 \\ & 8 \pm 8 \Leftrightarrow 2 \end{aligned}$		
$\begin{aligned} & 948 \hookleftarrow 8 \\ & 948 \hookleftarrow 2 \end{aligned}$		
		Lumen to kyo su menc Avaralis3 silvm
¢ 8908	>о	
\&נ肬	\qquad	
38		9NIC33

$\begin{aligned} & \angle \forall D \leftrightarrow 8 \\ & \angle \forall D \leftarrow Z \end{aligned}$		
	 8 て 8 Z 821 8 2 8 て $y 0 \mathrm{NA}$ \qquad \qquad \qquad \qquad \qquad дееш／sepeteธ̄en peңıоq шоц Јецем dnos pany syo pe6exped－ard jexped syo wou pans	 （17Ts ¿（Syo）noumos nairsoury tmo astwo 1350 wa TVDS v vow sowv any $\forall[\forall]$ asuodsej proees pue proqe well पееө peey
		2sss ivwavos \％o eqoid＇：ssob．．月 OL SMAHLON \＆O＇TVns NVHL B\＆OW＇INกOW\％3NVS
		CSS97 lumawos zo＇xaso ：equad＇ssoll CTMns nver zuw yo＇innown zws （xwusrus
$\begin{aligned} & \angle \forall D \in B \\ & \angle V O \& Z \end{aligned}$	8 ．．． Y	
＊		ssanาlı $\ddagger 0$ зะช

NヨWOM ONVNヨyดTHO ュO NOUMUS ヨHL ONBOLINOW

27W¢8		
2าWอ\％	\qquad	
ชาพ¢8		
ถาพอ\％		
8าพ¢8	8 8．． ха $^{\text {a }}$	
ราพอน		¿30emos Mnv now ssemm
	て＂	
	$8 \times \ldots \ldots \ldots \ldots$	
	．．．．．．．．＂on	¢0x1s31
өnpow		
1 xen No8		TI NBG日（ouveu）SVH＇sYB3M OML $15 V 7$ 3HL M＇LTW
	z	
1×®N¢く	sod	
7w		viavivw

MONTORING THE STUUATION OF CHLDRENAND WOMEN
$\stackrel{5}{2}$
各

		（dn Eumpuejs） （umqp हинil） पдБue ainseaw \＆pio sieak z jepun piluo \square \square
	\qquad	
9NY gNVE 9NY		јиəuәnseou
Nv		גyIgwodoziliny
	 parossurupe oq of saлеuиogsanb g－vopun so s，uewom uөpuodsau oue 	1.10 s，uevom seupoue of anow pjoyesnoy shat ul OपमO ase asoun मl oos or ypoup nox jeul wiln 11 ब बul ol porensjumpe pxau alf of oŋ＇iejer uopuodsar oul ol ojeripu al so人 seyвjares do seupou eцq juepuodsex eup \＄1＇tlin
	．．．．．sennum pue 』	H （eup eup proogy＇Elan
	 8 2 8 て \％ 0 NA \qquad \qquad \forall ичшвил＇oloz euns	（VIS）newlov nolvanown nowawo y nwain otoz ans｜GI siva hutwer
	8．．． on	sdruks／segnsdea／sonndue jo sedk uauwoo moys

c.. ansu	puosar pue anesqo
${ }_{2}^{\varepsilon}$....................................juesedd jou ewrepeo	вшереО 'gNV
 реуэеч	

Nawom any ņyalito so noumus zel onizolinow
$\overline{\text { 商 }}$
흠

VITA

Full name: Thi Thanh Truc Nguyen
Date of Birth: 16th August 1988

Place of Birth: KonTum, Vietnam
Citizen: Vietnamese

Sex: Female
Religious: Buddhist
E-mail: nguyenthanhtruc16.8@gmail.com
Education
Degree: Bachelor of Public Health (academic year: 2006-2010)
Institution: University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
Work experience
From January, 2011 to now
Position: Lecturer
Office: Demography Department, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam

From June, 2011 to July, 2012
Position: Secretary
Project: Health Research for Development Initiative in Viet Nam - HRDI
Local academic publications

Truc, N.T.T., Lo, N.V. and Trang, N.T.M. (2010). "The reasons of late entry to antenatal care of Ba Na Women in Thong Nhat Ward, Kon Tum City, Kon Tum Province." HCMC Medical Journal 16(1): 345-350.

Truc, N.T.T., Lo, N.V., Nga, T.T.T. and My, D.T. (2011). "The reasons of abortions and the contraceptive user errors among women having abortion in Hung Vuong hospital." HCMC Medical Journal 17(1): 266-275.

Truc, N.T.T. and Morna, D.T. (2014). "Information sources and education demand of sexual-reproductive health knowledge among students of ethnic boarding high school in Ninh Thuan province." HCMC Medical Journal 18(1): 117-126.

[^0]: ${ }^{1}$ First, they computed sex ratios by age in "normal" countries, which mean countries without sex discrimination. Then they inferred from these sex ratios the expected number of women in countries with sex discrimination. Finally, the number of missing women was calculated by age by comparing the expected number of women with the observed number of women. This method did not consider the mismatch in the mortality rate and the population structure between countries.

[^1]: Note: the results were rounded

[^2]: ${ }^{2}$ Women were equally distributed according to the MICS4 survey design of sampling, in which 2,000 households were selected in each region (see Section 3.2.2)

[^3]: Note: ${ }^{* * *}$ significance level of 1 percent, ${ }^{* *}$ significance level of 5 percent

[^4]: ${ }^{3}$ The statistics were obtained from World Population Prospect. They reported that the total number of births per year were $1,414,000$ for 2000-2005 and $1,477,000$ for 2005-2010. Therefore, the total number of births for 2000-2010 was calculated by the formula: $(1,414,000+1,477,000) * 5=$ $14,455,000$.
 ${ }^{4}$ The data of the third column of Table 2-3, Section 2.8.3 showed the number of abortions excluding the menstrual regulation. Thus, the average number of abortions was calculated using the sum of abortions from 2001 to 2006, divided to 6 (the total number of years).

