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TO COMPOSE

To compose is to be

the little you were created as
and let white birds out

in the dark night.

To live is to be

the great thing that you are
and stand alone and wonder
and hear birds fly in

from unknown worlds.

Tor Jonsson
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1X

NOTATION

the set of natural numbers

the set of integers

the set of real numbers

e?™® for all z € R

the greatest integer < x

x — [x]

the length of an interval

the multiplicative order of a in Z/qZ

the greatest common divisor of integers v and v

the number of primes smaller than or equal to x

the number of primes smaller than or equal to = in the arith-
metic progression r (mod k)

the number of positive integers smaller than or equal to n that
are relatively prime to n

the largest positive integer k with p*|n and p**! tn

von Mangoldt function

ngx logp



CHAPTER 1
INTRODUCTION

In this chapter, we attempt to give a general introduction to uniform distribu-
tion modulo 1.

Throughout this thesis, we use e(z) = e*™ for all z € R.

For a real number z, let [x] denote the integral part of x, that is, the greatest
integer < z; and let {x} = = — [z]| be the fractional part of x, or the residue of x
modulo 1. We note that the fractional part of any real number is contained in the
unit interval I = [0,1).

Let I' = (7,)22, be a sequence of real numbers. For a positive integer N and a

subset F of [0,1), let the counting function A(E; N;T') be defined by

AE;N;T)={neN:1<n<N and {y,}¢€ E}|

The sequence I' = (7,)22; of real numbers is said to be uniformly distributed
modulo 1 (abbreviated u.d. mod 1) if for every pair a,b of real numbers with

0<a<b<1wehave

=b—a. (11)



T = (y,)22, is u.d. mod 1, then (1.1) can be written in the form

N—oo N

lim lZc[ayb)({'yn}) :/0 Clap) (®)d. (1.2)

Let a < b be real numbers. A partition P of the interval [a,b] is a finite subset

of real numbers z, ..., x,, such that
a=29g <11 <+ <Tp_1<xy=0>o

We write P = {xq, 1, ..., Tn}.
A real-valued function f defined on [a, b] is called a step function provided there
is a partition P = {xg, 1, ..., z,} of [a,b] and numbers f1, fo, ..., f € R such that

for 1 <i<n,

f(x) = Z fic[xiflyxi)(l‘)'
=1

Let a < b be real numbers, let f : [a,b] — R be a bounded function, and let

P = {x¢,21,...,2,} be a partition of [a,b]. We define the upper Riemann sum

U(f. P) by
U(f. P) :=Z< sup f(x)) (2 — 21).

i—1 \Z€[zi—1,7i)

We also define the lower Riemann sum L(f, P) by

L(f, P) := Z ( _inf )f(@) (25 — 2i1).

- TE|Ti—1,T5
=1

Let a < b be real numbers, let f : [a,b] — R be a bounded function. We define

the upper Riemann integral f_;f of f on [a,b] by

/bf = 1inf{U(f, P) : P is a partition of [a, b]}.



We also define the lower Riemann integral fabf of f on [a,b] by

b
/ f:=sup{L(f,P): P is a partition of [a,b]}.

Let a < b be real numbers, let f : [a,b] — R be a bounded function.

If f_abf = fabf we say that f is Riemann integrable on [a,b], and we define

[Tl

The following proposition is taken from [6].

Proposition 1.1. The sequence I' = (v,)5, of real numbers is u.d. mod 1 if
and only if for every real-valued continuous function f defined on the closed unit

interval I = [0, 1] we have
1« !
fm S = / f(@)dz. (1.3)
Proof. Let I' = (7,)22, be u.d. mod 1, and let

k
g(x) = Zgic[aifhai)(l;)
=1

be a step function on I, where 0 = ay < a; < --- < ap = 1 and ¢1, go, ..., g € R.

Since
1 N 1
A ; Clan)({7m}) = /O Cla,p) () d,
we have

N k-1

.1 !
Jim 5 33 i (1)) = [ ato

n=1 =0



Now we suppose that f is a real-valued continuous function defined on I. Given

€ > 0, there exist two step functions f; and fy such that

B 1
fi(z) < f(x) < fo(x) forall €l and / (fa(x) — fi(z)) dx <,
0
by the definition of the Riemann integral. Then we see that
1 1
/ flz)dz — € S/ fi(z)dx
0
hm — Z fi{m})

< hmlnf— Zf {7})

N—o0

< hmsup%Zﬂ{%})

N—o0

N
< _
—J&LH;ONZ 2({])

< /0 f(z)dz +e.

Since € is arbitrarily small and f is a continuous function, we see that

Jm 3 ) = [ sy

Conversely, let T' = (,,)%°; be a sequence, and suppose that

Jim —Zf n}) = /0 f(@)da

holds for every real-valued continuous function f on I. Given [a,b) C I and € > 0.



Then there exist two continuous functions, ¢g; and g, such that

1
91(7) < capy(z) < go(x) forall z €l and / (g2(z) — g1(x)) dx < e.
0

Then we see that
1
b—a—eg/ g2(x)dr — €
0
1 1 X
< [ mwde = jim N 2 (b))

.. . A([a,b); N;T)
< - 7 7
_hNHSo%f N

A N;T
o gup Alla:D: VD)
N—oo N

< Jim NZQQ {1}) —/ 2(2)da

1
< / g1(x)dx + €
0

<b—a-+te

Since € is arbitrarily small, we obtain

Alla, b N5 D)

lim
N—o0

Corollary 1.2. The sequence T' = (7,)%, of real numbers is u.d. mod 1 if and

only if for every complez-valued continuous function f on R with period 1 we have

Nhg;oNZf ) /f (1.4)

Proof. Using Proposition 1.1 to the real and imaginary part of f, we see that (1.3)

also holds for complex-valued function f. Since f is a function with period 1, that



1s f({’yn}) = f(’yn)’ we have

Conversely, we need only note that in the second part of the proof of Proposition
1.1 the functions ¢; and ¢ can be chosen in such a way that they satisfy the

additional requirements

91(0) = g1(1) and g(0) = ga(1),
so that (1.4) can be applied to the periodic extensions of g; and g, to R. O

We will use the following theorem in the proof of Proposition 1.4, (see [9].)

Proposition 1.3. (Weierstrass Approximation Theorem) Any 27— periodic con-
tinuous function, f : R — C and an arbitrary e > 0 there exists a trigonometric

polynomial p such that
|f(z) —p(x)] <€

for all z in [0, 27].
One of the most important facts of the theory of uniformly distributed modulo

1 is the following result, (see [6].)

Proposition 1.4. (Weyl’s criterion) The sequence I' = (v,)5 is u.d. mod 1 if
and only if

N
1 :
]\}1_{1;0 N Zle(hfyn) =0, for all nonzero integers h. (1.5)
Proof. The necessity follows from Corollary 1.2.

Now suppose that I' = (,,)22, satisfies

N

) 1
Jim, 7 2 elha) =0,

n=1



for h € Z ~ {0}. Then we will show that (1.4) holds for every complex-valued
continuous function f on R with period 1. Let ¢ > 0. By the Weierstrass approx-
imation theorem, there exists a trigonometric polynomial p(x), that is, a finite
linear combination of function of the type e(hz), h € Z, with complex coefficients,

such that

SUPg<z<1 |f(z) —p(r)] < e (1.6)

Now we have

[ 1 daz——van

dx__zp %z

(Yn) = p(m))] -

N

==

n=1

The first and the third terms on the right are both < ¢ whatever the value of N
because of (1.6). By taking N sufficiently large, the second term on the right is
< € because of (1.5). We see that

/Olﬂ dx——Zf ")

Since € is arbitrarily small, we have I" = (+,,)2% ; is u.d. mod 1. O
One of the most well-known examples of a u.d. mod 1 sequence using Weyl’s
criterion is the following result.

Example 1.1. Let v be an irrational number. Then the sequence (nvy), is u.d.

mod 1. To show this, let h be a nonzero integer. Since + is an irrational, Ay is not



an integer and so 1 — e(h+y) is nonzero. Then for each N, we have

N
1 1 |e(hy) —e(h(N + 1)7)|
— e(hn —
anl (hn)| = 11— e(hy)|
< 1 2
N1 —e(h)|
Since
. 1 2
lim ——— =0,

N N L= (i)

by Weyl’s criterion, we have the sequence (ny)$2, is u.d. mod 1.

Example 1.2. Weyl generalized the above example to the following result. Let
p(n) be a polynomial with real coefficients such that a coefficient, other than the

constant term, is irrational. Then (p(n))2, is u.d. mod 1. (Theorem 3.2 of [6].)

Example 1.3. Let v = 0.123456789101112131415... in decimal notation. Suppose
that ~+ is periodic with period length n. But in v = 0.123456789101112131415...
there are 2n consecutive zeros an infinite number of times. So the period can only
have n zeros, which is a contradiction. Then 7 is irrational. Therefore, by Example

1.1, the sequence (ny)%; is u.d. mod 1.

Example 1.4. The sequence (ne)°2; is u.d. mod 1 according to Example 1.1.

However, the subsequence (nle)?®, has 0 as the only limit point. We have

[0}

(n+ 1)V

1 1 1
e:1+—+—+...+—'—|— 0<a<l,
n.

11 2l

so that nle = k+

for some k € N. Hence, for n > 2, we get {nle} = ~2— <

g D)

e : e
—l Since =

— 0 as n tends to infinity, we have ({nle})°, is not dense in [0, 1).
We can show that if the sequence is u.d. mod 1, then its fractional parts is dense

in 1. So the sequence (nle)>° ; is not u.d. mod 1.



Let I'y = (7,))_; be a finite sequence of the first N terms of I'. The number

Dy = Dy(r) = sup | UGN

—(b—a
[a,)C[0,1] N ( )

is called the discrepancy of the given sequence.
The pertinence of the concept of the discrepancy in the theory of u.d. mod 1

is revealed by the following criterion.

Proposition 1.5. The sequence T' = (v,)%%; is u.d. mod 1 if and only if

N—o0

Proof. The sufficiency is obvious because of (1.1).

To show the necessity, we choose an integer m > 2. For 0 < k< m — 1, let

Since I' is u.d. mod 1, there exists M = M (m) € N such that for N > M and for
every k=0,1,...,m — 1, we have

i(l_i>gw§i<1+i> (1.7)

m m m m

Let J = [a, ) C I. Clearly there exist intervals J; and Js, finite unions of intervals

Iy, such that

2 2
JCJC JQ, )\(J) — /\(Jl) < E’ and )\(JQ) — )\(J) < E’

where A is the length of an interval. It follows from (1.7) that we have for all

N > M,

1)<A(J1;N;F) A(J;N;T) _ A(J; N;T)

A(Jl)(l—g g e < SA(JQ)(H—%).



10

Consequently, we obtain

(- 2) (12 1) <4000 (35, 2) (1.1

Then, by using A(J) < 1,

3 2 A(J;N;T) 3 2
S i G el A 242 > M. ,
T N A(J) < - + — forall N> M (1.8)

Since the bounds in (1.8) are independent of J, we arrive at

2
+ —

3
Du(T) < m . m?

for all N > M. But 2 + % can be made arbitrarily small, so the proof is

m

complete. n

We use the Landau’s symbol O as well as the Vinogradov’s symbols < and >>.
Recall that

f(n) =0(g(n), f(n)<g(n), and g(n)> f(n)
are all equivalent to the fact that there is ¢ € R such that
for all n > N, the inequality |f(n)| < cg(n) holds.

We say f(z) =o0(g(z)) as x tends to infinity if

1m M =
Ei g(z) >

We also use f(x) ~ g(z) as x tends to infinity if

im M =
ki 9() -
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One of our main tools is the classical Erdds-Turan Inequality that relates the
uniformity of distribution to exponential sums, by bounding the discrepancy of a

sequence in terms of its exponential moments. (See [3].)

Lemma 1.6. (Erdds-Turdn Inequality) For any integer L > 1 and for the discrep-

ancy Dy of the sequence I', we have

N
1 1 1
D -+ — — hyp)l .
N<<L+N Z ’h’Ze(v)
1<|h|<L n=1

For every positive integer a > 2, let f,, h, be the arithmetic functions defined

by
L) =" and hm) =T ).

n n

Note that f, and h, are integer if n is a prime number and n t a.
In [1], W.D. Banks, M.Z. Garaev, F. Luca amd L.E. Shparlinski proved the

following.

(i) For any nonzero integer b such that log [b| = o (v/log N'loglog N), the following
inequality holds :

Z Z e (bfa(n))| < N2e~(05+o(1) Vg NTogTog N

1<n<N |1<a<n

n composite |(a,n)=1

(ii) For any nonzero integer b such that |b| < (logloglog N)? the bound

NZ?loglogloglog N
ST el <« e eks
1<n<N |1<a<n 08 108 108

n composite |(a,n)=1

holds as N — oo.
These results imply that the fractional parts {f,(n)}>2; and {h,(n)}2, are

uniformly distributed modulo 1, on average over a € (Z/nZ)*.
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Let a > 2 be an integer. J. Cilleruelo, A. Kumchev, F. Luca, J. Rue, and LE.
Shparlinski [2] defined the set A = { pq : p, ¢ primes, g < (logp)/(loga) } and put
A(N) = AN 1, N]. They also proved that the discrepancy Dy of the sequence

Dy =0 log log log log N ’
log log log N

(a”/n)neA(N) 18

implying that the sequence is uniformly distributed modulo 1.

However, the statement that the sequence (a”/n)%°, is uniformly distributed
modulo 1 still be a conjecture. In this thesis, we prove that the sequence (a"/n)
is uniformly distributed modulo 1 when we restrict n to a certain subset of the

positive integers. This restriction is on the set B where

B={pg : p,qprimes, a® < pq}

and we set B(N) = BN [1, N] for each positive integer N.
The structure of this thesis is as follows. In chapter II, we give some basic
preliminaries in analytic number theory which are used to prove our lemmas. In

chapter III, we prove some lemmas and our main result.



CHAPTER 11
PRELIMINARIES

In this chapter, we give some basic preliminaries which are needed for this
work.

Throughout this thesis, p and ¢ always denote prime numbers. For two integers
u and v, their greatest common divisor is denoted by (u,v).

As usual, for relatively prime integers a and ¢ we denote by ord,a the multi-
plicative order of a in Z/qZ.

For a real number z > 1, we use m(z) for the number of primes p < z, and
for coprime positive integers k and r we use 7(x;k,r) for the number of primes
smaller than or equal to z in the arithmetic progression r (mod k).

We also denote by ¢(n) the Euler function and by v,(n) = k if p¥|n and p* { n.

We use the asymptotic estimate that follows from the prime number theorem

about counting prime numbers, (see [5].)
Theorem 2.1. (Prime Number Theorem) As z — oo, we have

X

m(x) ~ gz’

We also use the asymptotic estimate that follows from the Siegel-Walfisz theo-

rem about primes in arithmetic progressions, (see [5].)

Theorem 2.2. (Siegel-Walfisz Theorem) Let k > 1 and A > 0. We have

W(x;k,r):——i—O( - ) (2.1)

logA x

for any x > 2 and (k,r) = 1.
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We also need the bound given by the Brun-Titchmarsh Theorem, (see [5].)
Theorem 2.3. (Brun-Titchmarsh Theorem) For (k,r) =1 and x > k, we have

xz

W(ﬁ;k,r)<< giiiiagzg7%5.

(2.2)

Lemma 2.4. (Abel’s Summation Formula) Let y < x, and let f be a function

having a continuous derivative on |y, x]. Then

y<n<z

where the integers a(n) are given, and where

A(z) = a(n). (2.4)

n<x

The von Mangoldt function, denoted by A(n), is defined as

A) logp, if m = p* for some prime p and integer k > 1,
n)=
0, otherwise.

Lemma 2.5. We have

S Am)=x+0 (10;).

n<x

Proof. Take

1, if n is prime number,
a(n) =
0, otherwise,

that is, a(n) is the characteristic function of the set of prime numbers. Moreover,

take
f(x) :=logz.
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We obtain
SAM) =D AP+ Y. AP+ DY AR+ ..
n<zx p<z pgwl/Q pr1/3
=> am)f(n)+ > AP+ Y AR+ ..
n<z p<zl/? p<zl/3
T (t
= m(z)logx — / Mdt +0 Z m(z*) log x
2 t 2<k<logqy
v t
=40 (W(x) + / td#) +0 (:rl/Q log? )
2
ool
log x
where we use Abel’s summation formula in the third equality. O]

We also note that

H(x):Zlogp:x—i—O(lOzx). (2.5)

p<z

We recall the Mertens’ Theorem for the sum of reciprocals of the primes p < z
in the following crude form. Typically, the proof involves Mertens’ proof, starts

with estimate

1
Z lern

p<z
where 7 > 0. Then letting n — 0 gives Mertens’ theorem. Here we present
an alternative proof which start estimate the summation function of A(n), then

translates into estimates of

1 1
Zoip and Z}—Q

p<z p<z

Theorem 2.6. (Mertens’ Theorem) There exists a constant C' > 0 such that

1 1
Z—zloglogx+0+0 — . (2.6)
D log x
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Proof. Take a(n) := 1 and f(z) :=logx. By Abel’s Summation formula, we have

Zlognz[m]logx—210g2+1og2_/ t_t{t}dt

n<zx 2

=xlogr — {m}logx—210g2+log2—/ 1— #dt
2

=zxlogz —x + O(log ).
We observe, however, that

zloge —x + O(logz) = Zlogn = ZZyp(n) logp

n<x n<z pln

SYY Y e

n<z pln i<vp(n)

=3 > AG)

n<x piln

d<z

where the last step follows from Lemma 2.5. Combining with the previous equation,

we deduce that

Z# =logz + O(1). (2.7)

d<x
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Next we show that »,__ Al s~ AB 4 o1)

d p<z p
A(d) log p log p log p
Zdzzp+zp2+z 5 T
d<z p<lz p<zl/2 p<zl/3
1 lo 1
N L A
P p =
p<z p§x1/2 p
lo
=3 =2 o).
p<z p

Hence A(z) =5 _ losp — > d<a @ + O(1). It follows from (2.7), we have

p<z p

Ax) = Z lo]g?p =logz + O(1).

p<z

Using Abel’s Summation formula, we have

I logp 1 A(x) A
ZE_Z +/2 t(logt)th

= = p logp - log x

_ logz + O(1) +/’3 logt + O(1) @
2

log x t (logt)?
1 v 1 v 1
:1+O(—>+/ —dt+0</ —th)
log = 5 t(logt) 2 t(logt)
1 1 1
=140 (—— ) +loglogx —loglog2 + O —
log logx log2

1
zloglogx+C+O< )
log x
We will use the following lemma in the proof of Theorem 2.8, (see [8].)

-1
Lemma 2.7. For xz > 2, we have [, (1 - %) = eVlogx 4+ O(1), where v is

the Euler’s constant.
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We also use the following well-known lower bound for ¢(n), (see [8].)

Theorem 2.8. For alln > 3,

¢(n) =

Toglog (e7+ 0O(1/loglogn)), (2.8)

where 7 is the Euler’s constant and there are infinitely many n for which the

equality of the above relation holds.

Proof. Let € = {n € N| @ < @ for all positive integers m < n}. Ilf n € &
has k prime factors, let n* be the product of the first k& prime factors. If n # n*,
then n* < n and % < @, which is impossible. Hence £ consists entirely of n

of the form

n = Hp for some y. (2.9)

<y

Then for n € &, there exists y so that logn = > _ logp = 6(y). Then by

P<y

Corollary 2.7, we have
o(n) 1 e 1
o _1p(1-Y = o).
no o\ p) logy (log y)

Since loglogn = log(6(y)) = logy + O(1) by (2.5), we have for n € £

ne~”’ 1
=— 1 — | .
¢(n) loglogn { o (log log n)}

If n ¢ £ then there exists an m < n such that m € £ and @ < @ Therefore

o) (o))
n m log logm log logm

e 7 1
> 14+0 .
loglogn loglogn

Note that ¢(n) = 2 {1 +0 <;>} holds for all n of the type (2.9), so

" loglogn loglogn

the proof is complete. O



CHAPTER I11
MAIN RESULT

In this chapter, we prove some lemmas and show that the sequence (a™/n),ecs

is uniformly distributed modulo 1 where

B={pq : p,q primes, a? < pq}.

The following lemma is an asymptotic estimate of the number of elements in

B(N) where B(N) = BN [1, N] for each positive integer N.

Lemma 3.1. We have
N logloglog N
log N '

[B(N))]

Proof. We observe that if pg € B(N) then

<ps—.

a? N
q q

Let @ be the largest prime ¢ such that a? < N. So Q) ~ lf’fT]Z. Then by prime

number theorem, we have

aq) a?  a® N
(L)« XL < < oy
9<Q q 9<Q 9 @ log™ N

Thus, we have



Use prime number theorem again, then

2 (g) ~2 qlog](VN/Q)

q<Q q<Q

log N = q

Using Mertens’ theorem, we have

Z ﬁ N logloglog N
: q log N '

Therefore,
N loglog log N
log N '

For a pair of primes p > ¢ we define u,(p) by the condition

ug(p)p = 1 (mod q), 1< wuy(p) <q—1.

For a, f € R, we also write « = f (mod 1) if a — 5 € Z.
Lemma 3.2. For primes p > q, we have

a’?  (a? — a) a?
— = Uqg(p) + — (mod 1).
. . o(P) pq( )

Proof. By (3.1), we have

20

(3.1)
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and then

abt  qlp=Da=1)gpta—1

pg pq

pg
_al (a7t =1)  af
q P Pq
a al
= — ("' — Duy(p) + —
q( Juy(p) o
p _ q
=D 0+ D (mod 1),
q Pq

The following lemmas will be used to prove our main result.

Lemma 3.3. For every fized nonzero integer constant h, a > 2, and prime number

q, we have

Proof. The case (q,ah) > 1 is obvious.

Now suppose (¢, ah) = 1. We have

Ze(w):ie(w>: q—l, if gfa -1

u=1 q q —1, if glav™!'—1.

Let
V={1<v<qg—-2:(v,g—1)=1, a" ' =1 (mod q)}.

Thus

s(a,h,q) = —(¢(g—1) = V) + (¢ = D|V] = —d(qg— 1) +q|V|.

Since m = ord,a is the smallest positive integer such that a™ =1 (mod ¢), then
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for each v € V', we can write v = mk + 1 for some £ = 0,1, ..., % — 1.
Hence,
q(¢—1) _ 29(q—1)
h < —1 < .
|s(a, b, q)| < ¢(q — 1) + ordya = orda
O
Lemma 3.4. For q primes and N > ¢* and Q = log N/ log a, we have
N/q N
Z s(a,h,q) K —= [ 1+ Z -
=5 olalg = 1)) log N o
Proof. By Lemma 3.3, we have
(g — 1) ¢(q(q — 1))
Sol < 2N + N
% ;2 49(q(q — 1)) log(N/g)ord,a q;? q9(g(q — 1)) log(N/q)
qfah q|_ah
N 1 N 1
<
log N ngc;) (g — 1)0rdqa logN Z q
q\ah
Using ordga > log ¢/ log a and the lower bound (2.8), ¢(n) > i, we have
> S T < 2 gy = O
q<Q¢q—10rda - qlogq
Hence
N 1
— |1 -
So < log N * Z q
qlh
O

Lemma 3.5. For N sufficiently large and @) = log N/ log a, we have

Sy = 3 e(h(ap_a)wz(p)) < 102[]\7 1+Zé
alh

pgeEB(N) 4

Proof. First we fix a prime number ¢ and a pair of integers v, v with 1 < u,v < ¢—1

and (u,q) = (v,q — 1) = 1. By the Chinese Remainder Theorem, we see that all
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prime p which satisfy

up =1 (mod ¢), p=wv (mod q—1),

belong to a certain arithmetic progression z,(u,v) (mod ¢(¢ — 1)). Thus,

S S i < a* —qa)uqoa))

log N y=1 v=1
SToga (vq 1)=1

Using (2.1) (with A = 2) and (2.2) and noticing that the sum over u and v contains
¢ (q(q — 1)) terms, we obtain

S(h,N) = Sy + O(S; + S,),

where
m(N/q) N 1
0= sta e ) <oy (12
q<Q qlh
a? a® N N
Si = Z —<<—2<<—2<<—N, and
g<log N/loga Q Q
N N 1 N logloglog N
Sp= > e Y 5 .
g<log N/loga q(lOg N/q) IOg N q<log N q IOg N
Therefore
S(h,N) ~ Sy < i | 1+ Z
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We will use the following theorem in the proof of Theorem 3.7, (see [4].)

Theorem 3.6. Let 0 < § < 1. Then, for 2% <y < x, we have

Y

O e

for some § = 6(0) > 0, provided that x is sufficiently large in terms of 0.

We are now able to prove the main theorem of this thesis. Basically, our idea

in the proof follow the one in the proof of the result in [2].

Theorem 3.7. The discrepancy Dy of the sequence (a”/n)nep(ny 5

1
Dy =0 .
N (log log log log N)

Hence, the sequence (a"/n)pep s u.d. mod 1.

Proof. Recall that B = {pq : p,q primes, a? < pq} and we set B(N) = BN|[l, N]

for each positive integer N. Then by Lemma 3.2, we have

SNy = Y e<h“pq)

pgeB(N) P
p_ q
o S (A
PgEB(N) 1 P
— S(h,N)+ E,
where
~ h(a? — a)u,(p) N 1
N) = ! 1 - L .
S(h,N) Z e( . <<10gN +Zq (by Lemma 3.5)



and

paEB(N)
|h\aq
< ) Z > 2 Il
al<N/q p<N llf)gg]: aqq <p<ad pq

Using Mertens’ theorem, we have

|F| <« Z ’h’ loglog N + Z Z

a?<N/q q<1§)ggf(j aqq <p<ad
|h|N log log N a?
< T B8 080 4 g ra) —x (L),
log® N ;N q

— loga

Using Theorem 3.6 with # = 0.5, we obtain

|h|NloglogN —al/q
Pl ——5—7—
] log IZgN log(ad( 1—1/q))
— loga
|h|N loglog N a’(l—1/q)
< log? N T Al Z loga
0g J<EEN qglog
|h| N log log N al
L —————+|h| —
log? N <1ng q
— loga
|h|N log log N N
Tt A
log® N log N
N
hl—.
<] |logN

Substituting the bound of S(h, N) and E, we get

AN
N
S(h N) < logN logN L Z

25
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Let L = % and M = |B(N)|. Then apply Lemma 1.6 to obtain the

bound of the discrepancy Dy of the sequence B(N) as follows:

1 1 |S(h, N)|

D 4 AL

N << I + Y Z ’ ’
0<|h|<L
1 LN NlogL
ST WognN T MlogN T MlogNO %;L Z_
log log log log N log N N
log loglog N N logloglog logNlogN

log N'log L
* (logloglog N)log N log log log N Zq: Z |q |

0<|l|<L/
log log log log N 1 log L

log log log N log log log log N * log log log N
1
< loglogloglog N

This completes the proof of the theorem. n
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