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.

TO COMPOSE

To compose is to be

the little you were created as

and let white birds out

in the dark night.

To live is to be

the great thing that you are

and stand alone and wonder

and hear birds fly in

from unknown worlds.

Tor Jonsson
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NOTATION

N the set of natural numbers

Z the set of integers

R the set of real numbers

e(x) e2πix for all x ∈ R

[x] the greatest integer ≤ x

{x} x− [x]

λ(I) the length of an interval I

ordqa the multiplicative order of a in Z/qZ

(u, v) the greatest common divisor of integers u and v

π(x) the number of primes smaller than or equal to x

π(x; k, r) the number of primes smaller than or equal to x in the arith-

metic progression r (mod k)

φ(n) the number of positive integers smaller than or equal to n that

are relatively prime to n

νp(n) = k the largest positive integer k with pk|n and pk+1 - n

Λ von Mangoldt function

θ(x)
∑

p≤x log p



CHAPTER I

INTRODUCTION

In this chapter, we attempt to give a general introduction to uniform distribu-

tion modulo 1.

Throughout this thesis, we use e(x) = e2πix for all x ∈ R.

For a real number x, let [x] denote the integral part of x, that is, the greatest

integer ≤ x; and let {x} = x − [x] be the fractional part of x, or the residue of x

modulo 1. We note that the fractional part of any real number is contained in the

unit interval I = [0, 1).

Let Γ = (γn)∞n=1 be a sequence of real numbers. For a positive integer N and a

subset E of [0, 1), let the counting function A(E;N ; Γ) be defined by

A(E;N ; Γ) = |{ n ∈ N : 1 ≤ n ≤ N and {γn} ∈ E}|.

The sequence Γ = (γn)∞n=1 of real numbers is said to be uniformly distributed

modulo 1 (abbreviated u.d. mod 1) if for every pair a, b of real numbers with

0 ≤ a < b ≤ 1 we have

lim
N→∞

A([a, b);N ; Γ)

N
= b− a. (1.1)

Let c[a,b) be the characteristic function of the interval [a, b) ⊆ I; i.e.,

c[a,b)(x) =

 1, x ∈ [a, b),

0, x /∈ [a, b).
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If Γ = (γn)∞n=1 is u.d. mod 1, then (1.1) can be written in the form

lim
N→∞

1

N

N∑
n=1

c[a,b)({γn}) =

∫ 1

0

c[a,b)(x)dx. (1.2)

Let a < b be real numbers. A partition P of the interval [a, b] is a finite subset

of real numbers x0, ..., xn such that

a = x0 < x1 < · · · < xn−1 < xn = b.

We write P = {x0, x1, ..., xn}.

A real-valued function f defined on [a, b] is called a step function provided there

is a partition P = {x0, x1, ..., xn} of [a, b] and numbers f1, f2, ..., fn ∈ R such that

for 1 ≤ i ≤ n,

f(x) =
n∑
i=1

fic[xi−1,xi)(x).

Let a < b be real numbers, let f : [a, b] → R be a bounded function, and let

P = {x0, x1, ..., xn} be a partition of [a, b]. We define the upper Riemann sum

U(f, P ) by

U(f, P ) :=
n∑
i=1

(
sup

x∈[xi−1,xi)

f(x)

)
(xi − xi−1).

We also define the lower Riemann sum L(f, P ) by

L(f, P ) :=
n∑
i=1

(
inf

x∈[xi−1,xi)
f(x)

)
(xi − xi−1).

Let a < b be real numbers, let f : [a, b]→ R be a bounded function. We define

the upper Riemann integral
∫ b
a
f of f on [a, b] by

∫ b

a

f := inf{U(f, P ) : P is a partition of [a, b]}.
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We also define the lower Riemann integral
∫ b
a
f of f on [a, b] by

∫ b

a

f := sup{L(f, P ) : P is a partition of [a, b]}.

Let a < b be real numbers, let f : [a, b]→ R be a bounded function.

If
∫ b
a
f =

∫ b
a
f we say that f is Riemann integrable on [a, b], and we define

∫ b

a

:=

∫ b

a

f =

∫ b

a

f.

The following proposition is taken from [6].

Proposition 1.1. The sequence Γ = (γn)∞n=1 of real numbers is u.d. mod 1 if

and only if for every real-valued continuous function f defined on the closed unit

interval Ī = [0, 1] we have

lim
N→∞

1

N

N∑
n=1

f({γn}) =

∫ 1

0

f(x)dx. (1.3)

Proof. Let Γ = (γn)∞n=1 be u.d. mod 1, and let

g(x) =
k∑
i=1

gic[ai−1,ai)(x)

be a step function on Ī, where 0 = a0 < a1 < · · · < ak = 1 and g1, g2, ..., gk ∈ R.

Since

lim
N→∞

1

N

N∑
n=1

c[a,b)({γn}) =

∫ 1

0

c[a,b)(x)dx,

we have

lim
N→∞

1

N

N∑
n=1

k−1∑
i=0

gic[ai,ai+1)({γn}) =

∫ 1

0

g(x)dx.
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Now we suppose that f is a real-valued continuous function defined on Ī. Given

ε > 0, there exist two step functions f1 and f2 such that

f1(x) ≤ f(x) ≤ f2(x) for all x ∈ Ī and

∫ 1

0

(f2(x)− f1(x)) dx ≤ ε,

by the definition of the Riemann integral. Then we see that

∫ 1

0

f(x)dx− ε ≤
∫ 1

0

f1(x)dx

= lim
N→∞

1

N

N∑
n=1

f1({γn})

≤ lim inf
N→∞

1

N

N∑
n=1

f({γn})

≤ lim sup
N→∞

1

N

N∑
n=1

f({γn})

≤ lim
N→∞

1

N

N∑
n=1

f2({γn})

=

∫ 1

0

f2(x)dx

≤
∫ 1

0

f(x)dx+ ε.

Since ε is arbitrarily small and f is a continuous function, we see that

lim
N→∞

1

N

N∑
n=1

f({γn}) =

∫ 1

0

f(x)dx.

Conversely, let Γ = (γn)∞n=1 be a sequence, and suppose that

lim
N→∞

1

N

N∑
n=1

f({γn}) =

∫ 1

0

f(x)dx

holds for every real-valued continuous function f on Ī . Given [a, b) ⊆ I and ε > 0.
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Then there exist two continuous functions, g1 and g2, such that

g1(x) ≤ c[a,b)(x) ≤ g2(x) for all x ∈ Ī and

∫ 1

0

(g2(x)− g1(x)) dx ≤ ε.

Then we see that

b− a− ε ≤
∫ 1

0

g2(x)dx− ε

≤
∫ 1

0

g1(x)dx = lim
N→∞

1

N

N∑
n=1

g1({γn})

≤ lim inf
N→∞

A([a, b);N ; Γ)

N

≤ lim sup
N→∞

A([a, b);N ; Γ)

N

≤ lim
N→∞

1

N

N∑
n=1

g2({γn}) =

∫ 1

0

g2(x)dx

≤
∫ 1

0

g1(x)dx+ ε

≤ b− a+ ε.

Since ε is arbitrarily small, we obtain

lim
N→∞

A([a, b);N ; Γ)

N
= b− a.

Corollary 1.2. The sequence Γ = (γn)∞n=1 of real numbers is u.d. mod 1 if and

only if for every complex-valued continuous function f on R with period 1 we have

lim
N→∞

1

N

N∑
n=1

f(γn) =

∫ 1

0

f(x)dx. (1.4)

Proof. Using Proposition 1.1 to the real and imaginary part of f , we see that (1.3)

also holds for complex-valued function f . Since f is a function with period 1, that
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is f({γn}) = f(γn), we have

lim
N→∞

1

N

N∑
n=1

f(γn) =

∫ 1

0

f(x)dx.

Conversely, we need only note that in the second part of the proof of Proposition

1.1 the functions g1 and g2 can be chosen in such a way that they satisfy the

additional requirements

g1(0) = g1(1) and g2(0) = g2(1),

so that (1.4) can be applied to the periodic extensions of g1 and g2 to R.

We will use the following theorem in the proof of Proposition 1.4, (see [9].)

Proposition 1.3. (Weierstrass Approximation Theorem) Any 2π−periodic con-

tinuous function, f : R → C and an arbitrary ε > 0 there exists a trigonometric

polynomial p such that

|f(x)− p(x)| < ε

for all x in [0, 2π].

One of the most important facts of the theory of uniformly distributed modulo

1 is the following result, (see [6].)

Proposition 1.4. (Weyl’s criterion) The sequence Γ = (γn)∞n=1 is u.d. mod 1 if

and only if

lim
N→∞

1

N

N∑
n=1

e(hγn) = 0, for all nonzero integers h. (1.5)

Proof. The necessity follows from Corollary 1.2.

Now suppose that Γ = (γn)∞n=1 satisfies

lim
N→∞

1

N

N∑
n=1

e(hγn) = 0,
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for h ∈ Z r {0}. Then we will show that (1.4) holds for every complex-valued

continuous function f on R with period 1. Let ε > 0. By the Weierstrass approx-

imation theorem, there exists a trigonometric polynomial p(x), that is, a finite

linear combination of function of the type e(hx), h ∈ Z, with complex coefficients,

such that

sup0≤x≤1 |f(x)− p(x)| ≤ ε. (1.6)

Now we have∣∣∣∣∣
∫ 1

0

f(x)dx− 1

N

N∑
n=1

f(γn)

∣∣∣∣∣ ≤
∣∣∣∣∫ 1

0

(f(x)− p(x)) dx

∣∣∣∣
+

∣∣∣∣∣
∫ 1

0

p(x)dx− 1

N

N∑
n=1

p(γn)

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
n=1

(f(γn)− p(γn))

∣∣∣∣∣ .
The first and the third terms on the right are both ≤ ε whatever the value of N

because of (1.6). By taking N sufficiently large, the second term on the right is

≤ ε because of (1.5). We see that

∣∣∣∣∣
∫ 1

0

f(x)dx− 1

N

N∑
n=1

f(γn)

∣∣∣∣∣ ≤ 3ε.

Since ε is arbitrarily small, we have Γ = (γn)∞n=1 is u.d. mod 1.

One of the most well-known examples of a u.d. mod 1 sequence using Weyl’s

criterion is the following result.

Example 1.1. Let γ be an irrational number. Then the sequence (nγ)∞n=1 is u.d.

mod 1. To show this, let h be a nonzero integer. Since γ is an irrational, hγ is not
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an integer and so 1− e(hγ) is nonzero. Then for each N , we have

∣∣∣∣∣ 1

N

N∑
n=1

e(hnγ)

∣∣∣∣∣ =
1

N

|e(hγ)− e(h(N + 1)γ)|
|1− e(hγ)|

≤ 1

N

2

|1− e(hγ)|
.

Since

lim
N→∞

1

N

2

|1− e(hγ)|
= 0,

by Weyl’s criterion, we have the sequence (nγ)∞n=1 is u.d. mod 1.

Example 1.2. Weyl generalized the above example to the following result. Let

p(n) be a polynomial with real coefficients such that a coefficient, other than the

constant term, is irrational. Then (p(n))∞n=1 is u.d. mod 1. (Theorem 3.2 of [6].)

Example 1.3. Let γ = 0.123456789101112131415... in decimal notation. Suppose

that γ is periodic with period length n. But in γ = 0.123456789101112131415...

there are 2n consecutive zeros an infinite number of times. So the period can only

have n zeros, which is a contradiction. Then γ is irrational. Therefore, by Example

1.1, the sequence (nγ)∞n=1 is u.d. mod 1.

Example 1.4. The sequence (ne)∞n=1 is u.d. mod 1 according to Example 1.1.

However, the subsequence (n!e)∞n=1 has 0 as the only limit point. We have

e = 1 +
1

1!
+

1

2!
+ ...+

1

n!
+

eα

(n+ 1)!
, 0 < α < 1,

so that n!e = k+ eα

(n+1)
, for some k ∈ N. Hence, for n ≥ 2, we get {n!e} = eα

(n+1)
<

e
n+1

. Since e
n+1
→ 0 as n tends to infinity, we have ({n!e})∞n=1 is not dense in [0, 1).

We can show that if the sequence is u.d. mod 1, then its fractional parts is dense

in I. So the sequence (n!e)∞n=1 is not u.d. mod 1.
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Let ΓN = (γn)Nn=1 be a finite sequence of the first N terms of Γ. The number

DN := DN(Γ) = sup
[a,b)⊆[0,1]

∣∣∣∣A([a, b);N ; ΓN)

N
− (b− a)

∣∣∣∣
is called the discrepancy of the given sequence.

The pertinence of the concept of the discrepancy in the theory of u.d. mod 1

is revealed by the following criterion.

Proposition 1.5. The sequence Γ = (γn)∞n=1 is u.d. mod 1 if and only if

lim
N→∞

DN(Γ) = 0.

Proof. The sufficiency is obvious because of (1.1).

To show the necessity, we choose an integer m ≥ 2. For 0 ≤ k ≤ m− 1, let

Ik =

[
k

m
,
k + 1

m

)
.

Since Γ is u.d. mod 1, there exists M = M(m) ∈ N such that for N ≥M and for

every k = 0, 1, ...,m− 1, we have

1

m

(
1− 1

m

)
≤ A(Ik;N ; Γ)

N
≤ 1

m

(
1 +

1

m

)
. (1.7)

Let J = [α, β) ⊆ I. Clearly there exist intervals J1 and J2, finite unions of intervals

Ik, such that

J1 ⊆ J ⊆ J2, λ(J)− λ(J1) <
2

m
, and λ(J2)− λ(J) <

2

m
,

where λ is the length of an interval. It follows from (1.7) that we have for all

N ≥M ,

λ(J1)

(
1− 1

m

)
≤ A(J1;N ; Γ)

N
≤ A(J ;N ; Γ)

N
≤ A(J2;N ; Γ)

N
≤ λ(J2)

(
1 +

1

m

)
.
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Consequently, we obtain

(
λ(J)− 2

m

)(
1− 1

m

)
<
A(J ;N ; Γ)

N
<

(
λ(J) +

2

m

)(
1 +

1

m

)
.

Then, by using λ(J) ≤ 1,

− 3

m
− 2

m2
<
A(J ;N ; Γ)

N
− λ(J) <

3

m
+

2

m2
for all N ≥M. (1.8)

Since the bounds in (1.8) are independent of J , we arrive at

DN(Γ) ≤ 3

m
+

2

m2

for all N ≥ M . But 3
m

+ 2
m2 can be made arbitrarily small, so the proof is

complete.

We use the Landau’s symbol O as well as the Vinogradov’s symbols� and�.

Recall that

f(n) = O(g(n)), f(n)� g(n), and g(n)� f(n)

are all equivalent to the fact that there is c ∈ R such that

for all n ≥ N, the inequality |f(n)| ≤ cg(n) holds.

We say f(x) = o (g(x)) as x tends to infinity if

lim
x→∞

f(x)

g(x)
= 0.

We also use f(x) ∼ g(x) as x tends to infinity if

lim
x→∞

f(x)

g(x)
= 1.
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One of our main tools is the classical Erdős-Turán Inequality that relates the

uniformity of distribution to exponential sums, by bounding the discrepancy of a

sequence in terms of its exponential moments. (See [3].)

Lemma 1.6. (Erdős-Turán Inequality) For any integer L ≥ 1 and for the discrep-

ancy DN of the sequence Γ, we have

DN �
1

L
+

1

N

∑
1≤|h|≤L

1

|h|

∣∣∣∣∣
N∑
n=1

e(hγn)

∣∣∣∣∣ .

For every positive integer a ≥ 2, let fa, ha be the arithmetic functions defined

by

fa(n) =
an−1 − 1

n
and ha(n) =

an − a
n

(n ≥ 1).

Note that fa and ha are integer if n is a prime number and n - a.

In [1], W.D. Banks, M.Z. Garaev, F. Luca amd I.E. Shparlinski proved the

following.

(i) For any nonzero integer b such that log |b| = o
(√

logN log logN
)
, the following

inequality holds :

∑
1≤n≤N

n composite

∣∣∣∣∣∣∣∣
∑

1≤a≤n
(a,n)=1

e (bfa(n))

∣∣∣∣∣∣∣∣ ≤ N2e−(0.5+o(1))
√

logN log logN .

(ii) For any nonzero integer b such that |b| < (log log logN)3 the bound

∑
1≤n≤N

n composite

∣∣∣∣∣∣∣∣
∑

1≤a≤n
(a,n)=1

e (bha(n))

∣∣∣∣∣∣∣∣�
N2 log log log logN

log log logN

holds as N →∞.

These results imply that the fractional parts {fa(n)}∞n=1 and {ha(n)}∞n=1 are

uniformly distributed modulo 1, on average over a ∈ (Z/nZ)∗.
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Let a ≥ 2 be an integer. J. Cilleruelo, A. Kumchev, F. Luca, J. Rue, and I.E.

Shparlinski [2] defined the set A = { pq : p, q primes, q ≤ (log p)/(log a) } and put

A(N) = A ∩ [1, N ]. They also proved that the discrepancy DN of the sequence

(an/n)n∈A(N) is

DN = O

(
log log log logN

log log logN

)
,

implying that the sequence is uniformly distributed modulo 1.

However, the statement that the sequence (an/n)∞n=1 is uniformly distributed

modulo 1 still be a conjecture. In this thesis, we prove that the sequence (an/n)

is uniformly distributed modulo 1 when we restrict n to a certain subset of the

positive integers. This restriction is on the set B where

B = {pq : p, q primes, aq ≤ pq}

and we set B(N) = B ∩ [1, N ] for each positive integer N .

The structure of this thesis is as follows. In chapter II, we give some basic

preliminaries in analytic number theory which are used to prove our lemmas. In

chapter III, we prove some lemmas and our main result.



CHAPTER II

PRELIMINARIES

In this chapter, we give some basic preliminaries which are needed for this

work.

Throughout this thesis, p and q always denote prime numbers. For two integers

u and v, their greatest common divisor is denoted by (u, v).

As usual, for relatively prime integers a and q we denote by ordqa the multi-

plicative order of a in Z/qZ.

For a real number x > 1, we use π(x) for the number of primes p ≤ x, and

for coprime positive integers k and r we use π(x; k, r) for the number of primes

smaller than or equal to x in the arithmetic progression r (mod k).

We also denote by φ(n) the Euler function and by νp(n) = k if pk|n and pk+1 - n.

We use the asymptotic estimate that follows from the prime number theorem

about counting prime numbers, (see [5].)

Theorem 2.1. (Prime Number Theorem) As x→∞, we have

π(x) ∼ x

log x
.

We also use the asymptotic estimate that follows from the Siegel-Walfisz theo-

rem about primes in arithmetic progressions, (see [5].)

Theorem 2.2. (Siegel-Walfisz Theorem) Let k ≥ 1 and A > 0. We have

π(x; k, r) =
π(x)

φ(k)
+O

(
x

logA x

)
(2.1)

for any x ≥ 2 and (k, r) = 1.
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We also need the bound given by the Brun-Titchmarsh Theorem, (see [5].)

Theorem 2.3. (Brun-Titchmarsh Theorem) For (k, r) = 1 and x ≥ k, we have

π(x; k, r)� x

φ(k) log(x/k)
. (2.2)

Lemma 2.4. (Abel’s Summation Formula) Let y < x, and let f be a function

having a continuous derivative on [y, x]. Then

∑
y<n≤x

a(n)f(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt (2.3)

where the integers a(n) are given, and where

A(x) :=
∑
n≤x

a(n). (2.4)

The von Mangoldt function, denoted by Λ(n), is defined as

Λ(n) =

 log p, if n = pk for some prime p and integer k ≥ 1,

0, otherwise.

Lemma 2.5. We have

∑
n≤x

Λ(n) = x+O

(
x

log x

)
.

Proof. Take

a(n) =

 1, if n is prime number,

0, otherwise,

that is, a(n) is the characteristic function of the set of prime numbers. Moreover,

take

f(x) := log x.
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We obtain

∑
n≤x

Λ(n) =
∑
p≤x

Λ(p) +
∑
p≤x1/2

Λ(p2) +
∑
p≤x1/3

Λ(p3) + ...

=
∑
n≤x

a(n)f(n) +
∑
p≤x1/2

Λ(p2) +
∑
p≤x1/3

Λ(p3) + ...

= π(x) log x−
∫ x

2

π(t)

t
dt+O

 ∑
2≤k≤log2 x

π(x1/k) log x


= x+O

(
π(x) +

∫ x

2

td
π(t)

t

)
+O

(
x1/2 log2 x

)
= x+O

(
x

log x

)
,

where we use Abel’s summation formula in the third equality.

We also note that

θ(x) =
∑
p≤x

log p = x+O

(
x

log x

)
. (2.5)

We recall the Mertens’ Theorem for the sum of reciprocals of the primes p ≤ x

in the following crude form. Typically, the proof involves Mertens’ proof, starts

with estimate ∑
p≤x

1

p1+η

where η > 0. Then letting η → 0 gives Mertens’ theorem. Here we present

an alternative proof which start estimate the summation function of Λ(n), then

translates into estimates of

∑
p≤x

log p

p
and

∑
p≤x

1

p
.

Theorem 2.6. (Mertens’ Theorem) There exists a constant C > 0 such that

∑
p≤x

1

p
= log log x+ C +O

(
1

log x

)
. (2.6)
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Proof. Take a(n) := 1 and f(x) := log x. By Abel’s Summation formula, we have

∑
n≤x

log n = [x] log x− 2 log 2 + log 2−
∫ x

2

t− {t}
t

dt

= x log x− {x} log x− 2 log 2 + log 2−
∫ x

2

1− {t}
t
dt

= x log x− x+O(log x).

We observe, however, that

x log x− x+O(log x) =
∑
n≤x

log n =
∑
n≤x

∑
p|n

νp(n) log p

=
∑
n≤x

∑
p|n

∑
i≤νp(n)

log p

=
∑
n≤x

∑
pi|n

Λ(pi)

=
∑
n≤x

∑
d|n

Λ(d)

=
∑
d≤x

Λ(d)
[x
d

]
=
∑
d≤x

Λ(d)
(x
d
−
{x
d

})
= x

∑
d≤x

Λ(d)

d
+O

(∑
d≤x

Λ(d)

)

= x
∑
d≤x

Λ(d)

d
+O(x),

where the last step follows from Lemma 2.5. Combining with the previous equation,

we deduce that ∑
d≤x

Λ(d)

d
= log x+O(1). (2.7)
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Next we show that
∑

d≤x
Λ(d)
d

=
∑

p≤x
Λ(p)
p

+O(1) :

∑
d≤x

Λ(d)

d
=
∑
p≤x

log p

p
+
∑
p≤x1/2

log p

p2
+
∑
p≤x1/3

log p

p3
+ · · ·

=
∑
p≤x

log p

p
+O

 ∑
p≤x1/2

log p

p2

(
1

1− 1
p

)
=
∑
p≤x

log p

p
+O(1).

Hence A(x) =
∑

p≤x
log p
p

=
∑

d≤x
Λ(d)
d

+O(1). It follows from (2.7), we have

A(x) =
∑
p≤x

log p

p
= log x+O(1).

Using Abel’s Summation formula, we have

∑
p≤x

1

p
=
∑
p≤x

log p

p

1

log p
=
A(x)

log x
+

∫ x

2

A(t)

t (log t)2 dt

=
log x+O(1)

log x
+

∫ x

2

log t+O(1)

t (log t)2 dt

= 1 +O

(
1

log x

)
+

∫ x

2

1

t (log t)
dt+O

(∫ x

2

1

t (log t)2 dt

)
= 1 +O

(
1

log x

)
+ log log x− log log 2 +O

(
1

log x
− 1

log 2

)
= log log x+ C +O

(
1

log x

)
.

We will use the following lemma in the proof of Theorem 2.8, (see [8].)

Lemma 2.7. For x ≥ 2, we have
∏

p≤x

(
1− 1

p

)−1

= eγ log x + O(1), where γ is

the Euler’s constant.
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We also use the following well-known lower bound for φ(n), (see [8].)

Theorem 2.8. For all n ≥ 3,

φ(n) ≥ n

log log n

(
e−γ +O(1/ log log n)

)
, (2.8)

where γ is the Euler’s constant and there are infinitely many n for which the

equality of the above relation holds.

Proof. Let E = { n ∈ N| φ(n)
n

< φ(m)
m

for all positive integers m < n}. If n ∈ E

has k prime factors, let n∗ be the product of the first k prime factors. If n 6= n∗,

then n∗ < n and φ(n∗)
n∗ < φ(n)

n
, which is impossible. Hence E consists entirely of n

of the form

n =
∏
p≤y

p for some y. (2.9)

Then for n ∈ E , there exists y so that log n =
∑

p≤y log p = θ(y). Then by

Corollary 2.7, we have

φ(n)

n
=
∏
p≤y

(
1− 1

p

)
=

e−γ

log y
+O

(
1

(log y)2

)
.

Since log log n = log(θ(y)) = log y +O(1) by (2.5), we have for n ∈ E

φ(n) =
ne−γ

log log n

{
1 +O

(
1

log log n

)}
.

If n /∈ E then there exists an m < n such that m ∈ E and φ(m)
m

< φ(n)
n
. Therefore

φ(n)

n
>
φ(m)

m
=

e−γ

log logm

{
1 +O

(
1

log logm

)}
≥ e−γ

log log n

{
1 +O

(
1

log log n

)}
.

Note that φ(n) = ne−γ

log logn

{
1 +O

(
1

log logn

)}
holds for all n of the type (2.9), so

the proof is complete.



CHAPTER III

MAIN RESULT

In this chapter, we prove some lemmas and show that the sequence (an/n)n∈B

is uniformly distributed modulo 1 where

B = {pq : p, q primes, aq ≤ pq}.

The following lemma is an asymptotic estimate of the number of elements in

B(N) where B(N) = B ∩ [1, N ] for each positive integer N .

Lemma 3.1. We have

|B(N)| ∼ N log log logN

logN
.

Proof. We observe that if pq ∈ B(N) then

aq

q
≤ p ≤ N

q
.

Let Q be the largest prime q such that aq ≤ N. So Q ∼ logN
log a

. Then by prime

number theorem, we have

∑
q≤Q

π

(
aq

q

)
�
∑
q≤Q

aq

q2
� aQ

Q2
� N

log2N
.

Thus, we have

|B(N)| =
∑
q≤Q

π

(
N

q

)
− π

(
aq

q

)
=
∑
q≤Q

π

(
N

q

)
+O

(
N

log2N

)
.



20

Use prime number theorem again, then

∑
q≤Q

π

(
N

q

)
∼
∑
q≤Q

N

q log(N/q)

∼ N

logN

∑
q≤Q

1

q
.

Using Mertens’ theorem, we have

∑
q≤Q

π

(
N

q

)
∼ N log log logN

logN
.

Therefore,

|B(N)| ∼ N log log logN

logN
.

For a pair of primes p > q we define uq(p) by the condition

uq(p)p ≡ 1 (mod q), 1 ≤ uq(p) ≤ q − 1. (3.1)

For α, β ∈ R, we also write α ≡ β (mod 1) if α− β ∈ Z.

Lemma 3.2. For primes p > q, we have

apq

pq
≡ (ap − a)

q
uq(p) +

aq

pq
(mod 1).

Proof. By (3.1), we have

ap−1 − 1

p
≡
(
ap−1 − 1

)
uq(p) (mod q),
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and then

apq

pq
=
a(p−1)(q−1)ap+q−1

pq

≡ ap+q−1

pq

≡ aq

q

(ap−1 − 1)

p
+
aq

pq

≡ a

q
(ap−1 − 1)uq(p) +

aq

pq

≡ (ap − a)

q
uq(p) +

aq

pq
(mod 1).

The following lemmas will be used to prove our main result.

Lemma 3.3. For every fixed nonzero integer constant h, a ≥ 2, and prime number

q, we have

s(a, h, q) :=
∑

1≤u≤q−1

∑
1≤v≤q−2
(v,q−1)=1

e

(
h(av − a)u

q

)
≤


2q(q−1)
ordqa

, if (q, ah) = 1,

φ (q(q − 1)) , if (q, ah) > 1.

Proof. The case (q, ah) > 1 is obvious.

Now suppose (q, ah) = 1. We have

q−1∑
u=1

e

(
h(av − a)u

q

)
=

q−1∑
u=1

e

(
ah(av−1 − 1)u

q

)
=

 −1, if q - av−1 − 1

q − 1, if q|av−1 − 1.

Let

V = {1 ≤ v ≤ q − 2 : (v, q − 1) = 1, av−1 ≡ 1 (mod q)}.

Thus

s(a, h, q) = − (φ(q − 1)− |V |) + (q − 1)|V | = −φ(q − 1) + q|V |.

Since m = ordqa is the smallest positive integer such that am ≡ 1 (mod q), then



22

for each v ∈ V , we can write v = mk + 1 for some k = 0, 1, ..., q−1
m
− 1.

Hence,

|s(a, h, q)| ≤ φ(q − 1) +
q(q − 1)

ordqa
≤ 2q(q − 1)

ordqa
.

Lemma 3.4. For q primes and N > q2 and Q = logN/ log a, we have

S0 :=
∑
q≤Q

π(N/q)

φ(q(q − 1))
s(a, h, q)� N

logN

1 +
∑
q|h

1

q

 .

Proof. By Lemma 3.3, we have

|S0| ≤ 2N
∑
q≤Q
q-ah

q(q − 1)

qφ(q(q − 1)) log(N/q)ordqa
+N

∑
q≤Q
q|ah

φ(q(q − 1))

qφ(q(q − 1)) log(N/q)

� N

logN

∑
q≤Q

1

φ(q − 1)ordqa
+

N

logN

∑
q≤Q
q|ah

1

q
.

Using ordqa ≥ log q/ log a and the lower bound (2.8), φ(n)� n
log logn

, we have

∑
q≤Q

1

φ(q − 1)ordqa
�
∑
q

log log q

q log q
= O(1).

Hence

S0 �
N

logN

1 +
∑
q|h

1

q

 .

Lemma 3.5. For N sufficiently large and Q = logN/ log a, we have

S̃(h,N) :=
∑

pq∈B(N)

e

(
h(ap − a)uq(p)

q

)
� N

logN

1 +
∑
q|h

1

q

 .

Proof. First we fix a prime number q and a pair of integers u, v with 1 ≤ u, v ≤ q−1

and (u, q) = (v, q − 1) = 1. By the Chinese Remainder Theorem, we see that all
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prime p which satisfy

up ≡ 1 (mod q), p ≡ v (mod q − 1),

belong to a certain arithmetic progression zq(u, v) (mod q(q − 1)). Thus,

S̃(h,N) =
∑

q≤ logN
log a

q−1∑
u=1

q−2∑
v=1

(v,q−1)=1

e

(
h(av − a)uq(p)

q

)

×
[
π

(
N

q
; q(q − 1), zq(u, v)

)
− π

(
aq

q
; q(q − 1), zq(u, v)

)]
.

Using (2.1) (with A = 2) and (2.2) and noticing that the sum over u and v contains

φ (q(q − 1)) terms, we obtain

S̃(h,N) = S0 +O(S1 + S2),

where

S0 =
∑
q≤Q

π(N/q)

φ(q(q − 1))
s(a, h, q)� N

logN

1 +
∑
q|h

1

q

 ,

S1 =
∑

q≤logN/ log a

aq

q2
� aQ

Q2
� N

Q2
� N

log2N
, and

S2 =
∑

q≤logN/ log a

N

q(logN/q)2
� N

log2N

∑
q≤logN

1

q
� N log log logN

log2N
.

Therefore

S̃(h,N) ∼ S0 �
N

logN

1 +
∑
q|h

1

q

 .
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We will use the following theorem in the proof of Theorem 3.7, (see [4].)

Theorem 3.6. Let 0 < θ < 1. Then, for xθ ≤ y ≤ x, we have

π(x)− π(x− y) ≤ (2− δ) y

log y

for some δ = δ(θ) > 0, provided that x is sufficiently large in terms of θ.

We are now able to prove the main theorem of this thesis. Basically, our idea

in the proof follow the one in the proof of the result in [2].

Theorem 3.7. The discrepancy DN of the sequence (an/n)n∈B(N) is

DN = O

(
1

log log log logN

)
.

Hence, the sequence (an/n)n∈B is u.d. mod 1.

Proof. Recall that B = {pq : p, q primes, aq ≤ pq} and we set B(N) = B ∩ [1, N ]

for each positive integer N . Then by Lemma 3.2, we have

S(h,N) :=
∑

pq∈B(N)

e

(
hapq

pq

)

=
∑

pq∈B(N)

e

(
h

(
(ap − a)uq(p)

q
+
aq

pq

))
= S̃(h,N) + E,

where

S̃(h,N) =
∑

pq∈B(N)

e

(
h(ap − a)uq(p)

q

)
� N

logN

1 +
∑
q|h

1

q

 (by Lemma 3.5)
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and

|E| �
∑

pq∈B(N)

∣∣∣∣1− e

(
haq

pq

)∣∣∣∣
�

∑
pq∈B(N)

{
|h|aq

pq

}

�
∑

aq≤N/q

|h|aq

q

∑
p≤N

1

p
+
∑

q≤ logN
log a

∑
aq

q
≤p≤aq

|h|
{
aq

pq

}
.

Using Mertens’ theorem, we have

|E| �
∑

aq≤N/q

|h|aq

q
log logN +

∑
q≤ logN

log a

∑
aq

q
≤p≤aq

|h|

� |h|N log logN

log2N
+ |h|

∑
q≤ logN

log a

π(aq)− π
(
aq

q

)
.

Using Theorem 3.6 with θ = 0.5, we obtain

|E| � |h|N log logN

log2N
+ |h|

∑
q≤ logN

log a

aq − aq/q
log(aq(1− 1/q))

� |h|N log logN

log2N
+ |h|

∑
q≤ logN

log a

aq(1− 1/q)

q log a

� |h|N log logN

log2N
+ |h|

∑
q≤ logN

log a

aq

q

� |h|N log logN

log2N
+ |h| N

logN

� |h| N

logN
.

Substituting the bound of S̃(h,N) and E, we get

S(h,N)� |h|N
logN

+
N

logN

1 +
∑
q|h

1

q

 .
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Let L = log log logN
log log log logN

and M = |B(N)|. Then apply Lemma 1.6 to obtain the

bound of the discrepancy DN of the sequence B(N) as follows:

DN �
1

L
+

1

M

∑
0<|h|≤L

|S(h,N)|
|h|

� 1

L
+

LN

M logN
+

N logL

M logN
+

N

M logN

∑
0<|h|≤L

1

|h|
∑
q|h

1

q

� log log log logN

log log logN
+

logN

N log log log logN

N

logN

+
logN logL

(log log logN) logN
+

1

log log logN

∑
q

1

q

∑
0<|l|≤L/q

1

|ql|

� log log log logN

log log logN
+

1

log log log logN
+

logL

log log logN

� 1

log log log logN
.

This completes the proof of the theorem.
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