
����������	
������	��
���������������	���������
���� 
 

 
 
 
 
 
 
 
 
 
 

���
����� �����!���"���#	 

 
 
 
 
 
 
 
 
 
 

�������$�%���&
�'�()��!�*+�,�����-*�.����!	��(/�����00������-�(���!���"1�� 
(�,����������������$��
����       2�������"��-�(��� 

�"
�����-�(���   �#3�	���"��!������	�� 
�4���-*�.�  2551 

	�,(��%�8,���#3�	���"��!������	�� 



 ii 

WEB NAVIGATION ANALYSIS AND SIMULATION USING ANT COLONY 
OPTIMIZATION 

 
 

 
 
 
 
 
 
 
 
 Mr. Ekachai   Jinhirunkul 

 
 
 
 
 
 
 
 

A Thesis Submitted in Partial Fulfillment of the Requirements 
for the Degree of Master of Science Program in Computer Science 

Department of Mathematics 
Faculty of Science 

Chulalongkorn University 
Academic Year 2008 

Copyright of Chulalongkorn University 

 

 



 iii 

Thesis Title WEB NAVIGATION ANALYSIS AND SIMULATION USING 
ANT COLONY OPTIMIZATION 

By Mr. Ekachai Jinhirunkul 
Field of Study Computer Science 
Advisor Assistant Professor Peraphon Sophatsathit, Ph.D. 
 

 

  Accepted by the Faculty of Science, Chulalongkorn University in Partial 
Fulfillment of the Requirements for the Masteris Degree 
 

jjjjjjjjjjjjjjjjjj.. Dean of the Faculty of 
Science 

(Professor Supot Hannongbua, Ph.D.) 
 

THESIS COMMITTEE 
 

jjjjjjjjjjjjjjjjjj.. Chairman 
(Professor Chidchanok Lursinsap, Ph.D.) 
 
jjjjjjjjjjjjjjjj.jj. Advisor 
(Associate Professor Peraphon Sophatsathit, Ph.D.) 
 

jjjjjjjjjjjjjjjjjj.. External Examiner 
(Associate Professor Arit Thammano, Ph.D.) 

 
 
 

 
 



 iv 


����� �����!���"���#	 : ����������	
������	��
���������������	���������
����. 
(WEB NAVIGATION ANALYSIS AND SIMULATION USING ANT COLONY 
OPTIMIZATION)  �.��+��*�.��������$�%�!	�� : �-. ��. $��
$�%� �($�-(p����, 52 
!���. 

 
 
 ����������&������ Ant Colony Optimization ��	�����*���r����
�����r����(����� �	
 
���	������(����
������� �����p*��������(��	��������
,��p*�,��!���!���
��������*+��'����
���r!������,��,���/	r����
,��p*� �	
 ��
(��%�2�$,��
������� ���(�������&���(����p���r!�
����p*����
�	�+����	�����(����,��
������� 
�)� ���
�s+�����,��!���
��������+
���,*&�r!�), 
���
�s+�����,��!���
���������+p/������� �	
 ���
�s+�����,��
���������+��)(����p
,��p*���� 
t		�$%�������(�������&������r!�����p*�!���
���������+(����p
,��p*������&�!�� �	
 ,���/	���
(p���,����
(��%�2�$r����
,��p*�!���
������� 
$s+��)��r����������#��#"2�$,��
�������)��� 
,����,��������)�������r��

������%� Ant Colony Optimization ���r!�(����pr��
�������+�)��u
r������	����!���,��,���/	r!�
�'�,���/	��+����
�����r����������#��#"2�$,��
������� 
�	
 ��
�����
���$�"�����)��� 
 

2������ �"��-�(��� 	���s��s+���(��  
(�,����� �����������$��
����   	���s��s+��.��+��*�.��������$�%�!	��  
�4���-*�.� 2551  



 v 

# # 507 36228 23       : MAJOR  COMPUTER SCIENCE 
KEYWORDS :  WEB NAVIGATION / WEB STRUCTURE ANALYSIS / WEB AGENT /  
ANT COLONY OPTIMIZATION 

EKACHAI JINHIRUNKUL : WEB NAVIGATION ANALYSIS AND SIMULATION 
USING ANT COLONY OPTIMIZATION. ADVISOR : ASST. PROF. PERAPHON 
SOPHATSATHIT, Ph.D., 52 pp.  

 
 
 This paper utilizes the Ant Colony Optimization algorithm to explore an 
unknown web site, mapping its structure and navigation routing so that accessibility 
and performance information can be attained. The investigation will also unveil 
changing structure of the web site adaptively such as new links, removed links, and 
unreachable links. As a consequence, coverage of all reachable nodes within the 
designated web site can be obtained, along with essential performance statistics to 
reflect near optimal accessible paths to any given node in the web site. By virtue of 
the simplicity of the Ant Colony Optimization algorithm, some straightforward 
mapping techniques were employed to entail opportunistic commercialization of the 
proposed algorithm. 
 
 
 
 
 
 
 
 
 
Department : Mathematics Studentis Signature  
Field of Study : Computer science               Advisoris Signature  
Academic Year : 2008  



 vi 

ACKNOWLEDGEMENTS 

I would like to acknowledge my advisor, Associate Professor Peraphon 
Sophatsathit, at The Advanced Virtual and Intelligent Computing (AVIC) Research 
Center, for all his great support and patience that tremendously helped me accomplish 
this thesis. He also suggests the solution for solving many problems occurred while 
doing an experiment. I would also like to thank all my friends, and most importantly, my 
father, mother and sister for everything that they have supported me. 

May I dedicate this work to all the people as I mentioned above. Without them, 
this work will never be done. Throughout this thesis, I had encountered many problems, 
but they were trivial, compared to all the supports given by these people. The 
encouragement from them was so great and those impressions will always be 
remembered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vii 

CONTENTS 

 
 Page 
ABSTRACT (THAI)jjjjjjjjjjjjjjjjjjjjjjjjjjjj. iv 
ABSTRACT (ENGLISH)jjjjjjjjjjjjjjjjjjjjjjjjjj. v 
ACKNOWLEDGEMENTSjjjjjjjjjjjjjjjjjjjjjjjjj.. vi 
LIST OF TABLESjjjjjjjjjjjjjjjjjjjjjjjjjjjjj ix 
LIST OF FIGURESjjjjjjjjjjjjjjjjjjjjjjjjjjjj. x 
 

CHAPTER  

I    INTRODUCTION��������������.................................  1 

1.1 Problem Identificationjjjjjjjjjjjjjjjjjjjjj 2 

1.2 Research Objectivesjjjjjjjjjjjjjjjjjjjjjj.. 3 
1.3 Scopejjjjjjjjjjjjjjjjjjjjjjjjjjjjj 3 
1.4 Research methodologyjjjjjjjjjjjjjjjjjjjjj.. 3 
1.5 Benefitsjjjjjjjjjjjjjjjjjjjjjjjjjjj..... 5 

   

II    THEORETICAL BACKGROUND�������������........... 6 

2.1 Literature reviewjjjjjjjjjjjjjjjjjjjjjjjj.. 6 
 2.1.1 Ant Colony Optimizationjjjjjjjjjjjjjjjjjj.. 6 
 2.1.2 Messor load balancingjjjjjjjjjjjjjjjjjjj. 6 
 2.1.3 Graph searching with Antjjjjjjjjjjjjjjjjjj 7 
 2.1.4 Software Test Data Generation using Ant Colony Optimizationjj 8 

2.2 Website technologyjjjjjjjjjjjjjjjjjjjjjjj 9 
 2.2.1 Websitejjjjjjjjjjjjjjjjjjjjjjjjj... 9 
 2.2.2 Static and Dynamic websitesjjjjjjjjjjjjjjjj.. 10 
 2.2.3 Web 1.0 and Web 2.0jjjjjjjjjjjjjjjjjjj.. 12 

2.3 Site mapjjjjjjjjjjjjjjjjjjjjjjjjjjjj 16 
2.4 Swarm Intelligencejjjjjjjjjjjjjjjjjjjjjjj. 17 
2.5 Ant Colony Optimization Algorithmjjjjjjjjjjjjjjjj.. 20 

 



 viii 

CHAPTER Page 

III    WEB NAVIGATION ANALYSIS AND SIMULATION USING ANT 

COLONY OPTIMIZATION������������������... 

 

25 

3.1 Web navigation and ACOjjjjjjj................................................. 25 

3.2 Web navigation structure simulation by ACOjjjjjjjjjjjj 26 

 3.2.1 Define prerequisite fundaments based on antis behaviorjjjj. 27 

 
3.2.2 Web navigation and information gathering by the modified ACO 
algorithmjjjjjjjjjjjjjjjjjjjjjjjjjjj... 

 
27 

          3.2.2.1 Ant packagejjjjjjjjjjjjjjjjjjjj.. 28 

          3.2.2.2 Ant algorithmjjjjjjjjjjjjjjjjjjjj 28 

 3.2.3 Web navigation routing parameters analysisjjjjjjjjj... 33 

 3.2.4 Site map creation and analysisjjjjjjjjjjjjjjj.. 36 

   

IV    EXPERRIMENTAL RESULTS AND MEASUREMENT STATICTICS 42 

4.1 Experimental resultsjjjjjjj......................................................... 42 

4.2 Measurement statisticsjjjjjjjjjjjjjjjjjjjjj.. 47 

   

V    CONCLUSION���������������������.......... 48 

   

REFERENCESjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj. 50 

CURRICULUM VITAEjjjjjjjjjjjjjjjjjjjjjjjjjjj 52 

 
 
 



 ix 

LIST OF TABLES 

 
Table  Page 
1.1 Research methodology time tablejjjjjjjjjjjjjjjj. 4 
3.1 Example of analysis resultjjjjjjjjjjjjjjjjjjj... 40 
4.1 Predefined constantsjjjjjjjjjjjjjjjjjjjjjj 43 
4.2 The relationship between the number of Ant sent into the system and 

number of page foundjjjjjjjjjjjjjjjjjjjjj. 
 
43 

4.3 The relationship between the number of Ant sent into the system 
number of page found, unreachable page and additional pagejjj. 

 
44 

4.4 The relationship between the number of Ant sent into the system 
number of page found in each iterationjjjjjjjjjjjjjj 

 
46 

4.5 The comparison of DFS, BFS and ANTjjjjjjjjjjjjjj. 47 
   
   
   
   
   
   
   
   
   
   
   
   
   
 
 
 
 



 x 

LIST OF FIGURES 

 

Figures  Page 
2.1 Example of Messor Architecturejjjjjjjjjjjjjjjjj.. 7 
2.2 Example of using Ant Colony Optimization to search on graphjjjj. 8 
2.3 Example of using Ant Colony Optimization to generate the test case 

datajjjjjjjjjjjjjjjjjjjjjjjjjjjjj... 
 
8 

2.4 The market value earned from Web 2.0 technologyjjjjjjjjj. 14 
2.5 Comparison of Web 1.0 and Web 2.0 usagejjjjjjjjjjjj. 15 
2.6 Example of sitemapjjjjjjjjjjjjjjjjjjjjjjj 16 
2.7 Ant Colony Optimizationjjjjjjjjjjjjjjjjjjjjj 21 
2.8 Example of Traveling Salesman Problem solving by Ant Colony 

Optimizationjjjjjjjjjjjjjjjjjjjjjjjjjj. 
 
24 

3.1 Web navigation structure analysisjjjjjjjjjjjjjjjj... 26 
3.2 A sample IP address tablejjjjjjjjjjjjjjjjjjjj 27 
3.3 An Ant package entryjjjjjjjjjjjjjjjjjjjjjj 28 
3.4 A sample entry of the Ant packagejjjjjjjjjjjjjjjj. 28 
3.5 Sample data kept in pheromone tablejjjjjjjjjjjjjjj 30 
3.6 Web navigation using Ant Colony Optimizationis pseudocodejjjj. 32 
3.7 An Ant decision flow chartjjjjjjjjjjjjjjjjjjjj 33 
3.8 Sample data of the Ant package after first ant sent to the systemjjj 34 
3.9 Sample inputs of adjacent table for Ant 1jjjjjjjjjjjjj.. 34 
3.10 Sample data of the Ant package after two ants sent to the systemjj.. 34 
3.11 Sample inputs of adjacent table for Ant and Ant 2jjjjjjjjj... 35 
3.12 Sample data of the Ant package after two ants sent to the systemjj..  35 
3.13 Sample calculation using data from the adjacent table (Tij/Nij)jjjj. 36 
3.14 A web navigation diagram resulting from Ant packagejjjjjjj.. 36 
3.15 Samples inputs of adjacent table after web pages are being added or 

removedjjjjjjjjjjjjjjjjjjjjjjjjjjjj 
 
37 

3.16 A web navigation error found after changing the web structurejjjj 38 



 xi 

Figures  Page 
3.17 Sample methods to identify the unreachable pagesjjjjjjjjj 38 
4.1 Web site structurejjjjjjjjjjjjjjjjjjjjjjj.. 42 
4.2 The number of pages found VS the numbers of ants sentjjjjjj.. 45 
4.3 The number of pages found, unreachable pages, and additional pages 

after modifying web site structurejjjjjjjjjjjjjjjjj 
 
45 

4.4 Different number of ants deployed in separate iterationsjjjjjjj 47 
 

 

 



CHAPTER I 

INTRODUCTION 

 

 The Internet online service has become an integral part of our daily life. Many 
web site technologies precipitated from such insatiable demands have been 
implemented and deployed at an escalating pace. Web 2.0 is one example that has 
been developed and integrated into many online services and applications. Many 
people are able to develop their own web site or participate in various web blog 
services provided by the host owner. Better yet, general public can edit or add new web 
contents dynamically any time and anywhere. These capabilities facilitate several web 
sites to transform their web configuration from static to dynamic. Such an undertaking 
becomes an enormous responsibility for the administrator or webmaster to maintain 
satisfactory performance of their service as the size of web site increases. 

Latest news and up-to-date information are vital edges in todayis highly 
competitive businesses. Various technological approaches have been employed to 
carry out the tasks. The dynamic web page technique is one popular approach 
embraced by many online businesses. The technique helps the companies easily 
maintain the latest updated information of their web sites. As the number of web sites 
and their corresponding size grow exponentially, navigation through such a labyrinth 
becomes a formidable task. Some prevalent issues that influence web sites accessibility 
are (1) navigation paths cannot be straightforwardly established as web sites expand 
dynamically; (2) the number of unknown dead links and unreachable pages is difficult to 
determine as a direct consequence of (1); and (3) access and processing time are 
computationally difficult as complexity increases. Bearing the above problematic issues 
in mind, an automated system seems to be a viable consideration. To assist the amount 
of innumerable development efforts expended by web developers, a simple, concise, 
yet highly efficient web site analysis method is proposed. The approach rests primarily 
on the notions of Swarm of Autonomous Agents [1] and Ant Colony Optimization (ACO) 
[2] algorithm to analyze the structure of a given web site, where ants (or crawler agents) 
are dispatched to map the site "terrain." In so doing, various site configurations can be 

   



 2 
discovered, whereby performance tuning, follow-up design modifications, 
reconfiguration, and the likes can also be carried out to improve web structure, namely, 
dead link removal, placement of newly added pages, unreachable page fixes, and 
excessively depth of page location, etc.  

Studies [2] show that the ACO is an efficient proposed technique to explore 
unknown systems and unknown environments offering three advantages, i.e., autonomy, 
self-organizing, and resilience. In order to apply the ACO algorithm to web navigation, 
three provisions need to be addressed, namely, (1) bound the ant agents to explore 
within the designated area; (2) modify the ACO algorithm to ensure that ant agents will 
cover all pages of the unknown web structure; and (3) establish a technique to translate 
all information gathered from the ant agents in a presentable form. In the sections that 
follow, the modified ACO algorithm will be further elaborated to resolve the above 
provisions. 

 

1.1 Problem Identification 

  
 From the new website technologies describe above, numerous problems arise in 
the development of web application. Some of the problems are 
 

1. Web sites structure and Web navigation change everyday and need more effort 
and maintenance cost; 

2. Historical changes of web site have not been kept and hard to reference in the 
future; 

3. A lot of pages have been added, modified or removed without verification from 
administrators; 

4. The number of unexpected unreachable pages increases; 
5. It is hard to find the root cause of all unreachable pages; 
6. Performance is reduced; and 
7. More staffs are needed to maintain the web site. 
 



 3 
1.2 Research Objectives 

 
In order to address and solve some of the above problem, an algorithm is 

proposed to investigate and analyze web site structure that will serve the following 
aspects:  

 
1. Explore any designated web site, mapping its structure and navigation 

routing;   
2. Unveil changing structure of the web site such as new links, removed links, 

and unreachable links; and 
3. Obtain accessibility and performance information of the website. 
 

1.3 Scope 

 
Due to the dynamicity and the sheer volume of the World Wide Web, the 

propose reach will confine scope of study within the following domain of application: 
1. The websites under researched are not prevented by useris authentication 

page. 
2. Researchers initially do the research and experiment on a limited website 

environment. Extended studies on web page and web site will be focused in 
future work. 

3. Web search is limited to internal links only. All external references are 
considered unreachable. 

 

1.4 Research methodology 

 
In order to achieve the defined objectives above, the following tasks will be stated 

by means of appropriate theoretical work described below: 
 



 4 
 1. Investigate related technologies. 
 - Study Website technology, advantage and disadvantage of Web2.0 

compared with Web 1.0 
 -  Study basic concept of Swam intelligence 
 -  Research and study the Ant Colony Optimization (ACO) algorithm 
 -  Research the concept of sitemap 
 2. Devise the solutions to the research objective 
 3. Establish an algorithm to construct the web site analysis model   
 4. Conduct an experiment to verify the viability of the proposed model 

5. Write the thesis 
 
Below is a time table covered all of the above tasks. 

 
Table 1.1 : Research methodology time table 

 

No Tasks 1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

1 Investigate related 
technologies 

                  

2 Devise the solutions 
to the research 
objectives 

                  

3 An algorithm to 
construct the web site 
analysis model 

                  

4 Conduct an 
experiment to verify 
the viability of the 
proposed model 

                  

5 Write the thesis                   

 
 



 5 
1.5 Benefits 

 
The proposed approach will permit automated website investigation, analysis, 

unveil changing web site structure, and measure the web site navigation performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 6 
 

   CHAPTER II 

THEORETICAL BACKGROUND 

 

2.1 Literature review 

 
2.1.1 Ant Colony Optimization 

 Marco Dorigo and Christian [2] introduced Ant Colony Optimization in the early 
1990s. It is as a nature-inspired metaheuristic for the solution of hard combinatorial 
optimization (CO) problems. This algorithm used to obtain good enough solutions to 
hard CO problems in a reasonable amount of computation time. The inspiring source of 
ACO is the foraging behavior of real ants. When searching for food, ants initially explore 
the area surrounding their nest in a random manner. As soon as an ant finds a food 
source, it evaluates the quantity and the quality of the food and carries some of it back 
to the nest. During the return trip, the ant deposits a chemical pheromone trail on the 
ground. The quantity of pheromone deposited, which may depend on the quantity and 
quality of the food, will guide other ants to the food source. This characteristic of real ant 
colonies is exploited in artificial ant colonies in order to solve CO problems. In general, 
the ACO approach attempts to solve an optimization problem by repeating the following 
two steps: 

• Candidate solutions are constructed using pheromone model 

• The candidate solutions are used to modify the pheromone values in a way that 
is deemed to bias future sampling toward high quality solutions. 

 

2.1.2 Messor load balancing 

 Alberto Montresor, Hein Meling, and Ozalp Babao glu [1] presented Messor 
application that used for control P2P Load-Balancing using a Swarm of Autonomous 
Agents. Messor is a grid computing system aimed at supporting the concurrent 
execution of highly-parallel, time-intensive computations, in which the workload may be 

   



 7 
decomposed into a large number of independent jobs. Figure 2.1 illustrates the 
architecture of the Messor system. A Messor system is composed of a collection of 
interconnected Anthill nests configured to run the Messor software. Every such nest can 
submit jobs to the nest network, where each job is composed of some input data and 
the algorithm to be computed over these data. Messor offers a very simple API to its 
users, enabling them to submit new jobs to be computed and collecting results once the 
jobs have been computed. The originator nest of a job is the nest where the job has 
been submitted. Once submitted, jobs may remain in the originator, or may be 
transferred to other nests in order to exploit their unused computational power. When a 
job is completed, the result is sent back to the originator. Once there, the user is either 
notified of the job result, or the result is locally stored. 

 
 

Figure 2.1 : Example of Messor Architecture 
 
2.1.3 Graph searching with Ant 

 Israel A. Wagner, Michael Lindenbaum and Alfred M. Bruckstein [5][6][8] 
described the solution to efficient exploration of large networks using ACO. They 
presented the Vertex Ant Walk that is a trace oriented process to cover a dynamic graph 
in a bounded time which is depicted in Figure 2.2. This concept utilizes ACO to be used 
on graph, subgraphs, trees and network searching. 
  



 8 

 
Figure 2.2 : Example of using Ant Colony Optimization to search on graph. 
 

2.1.4 Software Test Data Generation using Ant Colony Optimization 

Huaizhong Li and C. Peng Lam [3][4][7] presented the Software Test Data 
Generation using Ant Colony Optimization. They used ACO as a supplementary 
optimization stage for finding sequences of transitional statements in generating test 
data for evolutionary testing. This proposal uses UML Statechart diagrams and ACO for 
test data generation. The advantages of the proposed approach are:  

1) the approach directly uses the standard UML artifacts created in software 
design processes; and  
2) the automatically generated test sequence is always feasible, non-redundant 
and achieves the all state coverage criterion. 
A group of ants can effectively explore the graph and generate optimal test data 

to achieve test coverage requirement, as illustrated in Figure 2.3 
 

 
 

Figure 2.3 : Example of using Ant Colony Optimization to generate the test case data. 



 9 
2.2 Website technology 

2.2.1 Website 

A website [12] (alternatively, web site or Web site, from the proper noun World 
Wide Web) is a collection of Web pages, images, videos or other digital assets that are 
hosted on one or more web servers, usually accessible via the Internet. All publicly 
accessible websites on the Internet are seen collectively as constituting the "World Wide 
Web.� 

Websites are written in, or dynamically converted to, HTML (HyperText Markup 
Language) and are accessed using a software interface classified as user agent. Web 
pages can be viewed or otherwise accessed from a range of computer-based and 
Internet-enabled devices of various sizes, including desktop computers, laptops, PDAs 
and, cell phones. 

 A website is hosted on a computer system known as a web server, also called 
an HTTP server. These terms can also refer to the software that runs on these systems 
that retrieves and delivers the Web pages in response to requests from the website 
users.  

 Some websites require a subscription to access some or all of their contents. 
Examples of subscription sites include many business sites, news sites, academic 
journal sites, gaming sites, message boards, Web-based e-mail, services, social 
networking websites, and sites providing real-time stock market data. Because they 
require authentication to view the content, they are technically an Intranet site. 

There are several categories of websites, for example, 

• a personal website 

• a commercial website 

• a government website 

• a non-profit organization website 



 10 
 Any website can contain a hyperlink to any other websites, so the distinction 
between individual sites, as perceived by the user, may sometimes be blurred. 

A Web page is a document, typically written in (X)HTML, that is almost always 
accessible via HTTP which is a protocol used to transfers information from the Web 
server to be displayed in the user's Web browser. 

The pages of a website can usually be accessed from a common root URL 
called the homepage which resides on the same physical server. The URLs of all pages 
are structurally organized in a hierarchy.  Nevertheless, the hyperlinks between them 
control how the reader perceives the overall structure and how the traffic flows between 
the different parts of the site. 

 Static content of a web page may also be dynamically generated either 
periodically, or if certain conditions for regeneration occur (cached) in order to avoid the 
performance loss of initiating the dynamic engine on a per-user or per-connection basis. 

2.2.2 Static and Dynamic websites 

Static Website 

A Static Website is one that has web pages stored on the server in the same 
form as the user will view them. It is primarily coded in HTML (Hypertext Markup 
Language). 

A static website is also called a Classic website, a 5-page website or a Brochure 
website because it simply presents pre-defined information to the user. It may include 
information about a company and its products and services via text, photos, flash 
animation, audio/video, and interactive menus and navigation. 

Static website usually displays the same information to all visitors, thus the 
information is static. Similar to handing out a printed brochure to customers or clients, a 
static website will generally provide consistent, standard information for an extended 
period of time. Although the website owner may make updates periodically, it is a 



 11 
manual process to edit the text, photos, and other contents and may require basic 
website design skills and software. 

Visitors are not able to control what information they receive via a static website, 
and must instead settle for whatever content the website owner has decided to offer at 
that time. 

Dynamic website 

A Dynamic Website is one that does not have web pages stored on the server in 
the same form as the user will view them. Instead, the web page content changes 
automatically and/or frequently based on certain criteria. It generally collates information 
on the hop each time a page is requested. 

A dynamic website also describes its construction or how it is built, and more 
specifically refers to the code used to create a single web page. A Dynamic Web Page 
is generated on the fly by piecing together certain blocks of code, procedures or 
routines. A dynamically-generated web page would call various bits of information from 
a database and put them together in a pre-defined format to present the reader with a 
coherent page. It interacts with users in a variety of ways including by reading cookies 
recognizing users' previous history, session variables, server side variables etc., or by 
using direct interaction (form elements, mouseovers, etc.) A site can display the current 
state of a dialogue between users, monitor a changing situation, or provide information 
in some way personalized to the requirements of the individual user. 

The main purpose behind a dynamic site is that it is much simpler to maintain a 
few web pages plus a database than it is to build and update hundreds or thousands of 
individual web pages and links. In one way, a data-driven website is similar to a static 
site because the information that is presented on the site is still limited to what the 
website owner has allowed to be stored in the database (data entered by the owner 
and/or input by users and approved by the owner). The advantage is that there is 
usually more information stored in a database and made available to users. 



 12 
This type of website usually displays different information depending on the 

visitor, thus the information is dynamic. Similar to talking to a customer service 
representative on the telephone, a dynamic website will provide personalized, real-time 
information and take the appropriate action intended to serve the customer's needs 
immediately. The website usually requires advanced programming and a database. It 
often includes admin tools for the website owner to update the website content 
frequently. 

Visitors are able to control what information they wish to receive via a dynamic 
website, instead of settling for only static content that the website owner has decided to 
offer. In addition, a visitor may be able to manipulate the content of the website and 
perform a multitude of tasks. 

2.2.3 Web 1.0 and Web 2.0 

Web 1.0 is a retronym which refers to the state of the World Wide Web and any 
website design style used before the advent of the Web 2.0 phenomenon. It is the 
general term that has been created to describe the Web before the 'bursting of the dot-
com bubble' in 2001, which is seen by many as a turning point for the internet.  

Some typical design elements of a Web 1.0 site include: 

• Static pages instead of dynamic user-generated content.  

• The use of framesets.  

• Proprietary HTML extensions such as the <blink> and <marquee> tags 
introduced during the first browser war.  

• Online guestbooks.  

• GIF buttons, typically 88x31 pixels in size promoting web browsers and other 
products.  

• HTML forms sent via email. A user would fill in a form, and upon clicking submit 
their email client would attempt to send an email containing the form's details.  



 13 
The shift from Web 1.0 to Web 2.0 can be seen as a result of technological 

refinements, which included such adaptations as "broadband, improved browsers, and 
Ajax, to the rise of Flash application platforms and the mass development of 
wigetization, such as Flickr and YouTube badges". 

As well as such adjustments to the internet, the shift from Web 1.0 to Web 2.0 is 
a direct result of the change in the behaviour of those who use the World Wide Web. 
Web 1.0 trends included worries over privacy concerns resulting in a one-way flow of 
information, through websites which contained 'read-only' material. Widespread 
computer illiteracy and slow internet connections added to the restrictions of the 
internet, which characterised Web 1.0. Now, during Web 2.0, the use of the Web can be 
characterised as the decentralisation of website content, which is now generated from 
the 'bottom-up', with many users being contributors and producers of information, as 
well as the traditional consumers. 

Web 2.0 

Web 2.0 [13] describes the changing trends in the use of World Wide Web 
technology and web design that aim to enhance creativity, communications, secure 
information sharing, collaboration and functionality of the web. Web 2.0 concepts have 
led to the development and evolution of web culture communities and hosted services, 
such as social-networking sites, video sharing sites, wikis, blogs, and folksonomies. The 
term became notable after the first O'Reilly Media Web 2.0 conference in 2004. Although 
the term suggests a new version of the World Wide Web, it does not refer to an update 
to any technical specifications, but rather to changes in the ways software developers 
and end-users utilize the Web.  

Web 2.0 websites allow users to do more than just retrieve information. They can 
build on the interactive facilities of "Web 1.0" to provide "Network as platform" 
computing, allowing users to run software-applications entirely through a browser. Users 
can own the data on a Web 2.0 site and exercise control over that data. These sites may 
have an "Architecture of participation" that encourages users to add value to the 
application as they use it. This stands in contrast to very old traditional websites, the sort 



 14 
which limited visitors to viewing and whose content only the site's owner could modify. 
Web 2.0 sites often feature a rich, user-friendly interface based on Ajax, OpenLaszlo, 
Flex or similar rich media. Figure 2.4 exemplifies some commercial values obtained from 
Web 2.0. 

 

Figure 2.4 : The market value earned from Web 2.0 technology 

The characteristics of Web 2.0 are rich user experience, user participation, 
dynamic content, metadata, web standards and scalability. Further characteristics, such 
as openness, freedom and collective intelligence by way of user participation, can also 
be viewed as essential attributes of Web 2.0. 

Some typical design elements of a Web 2.0 site include: 

• Search: the ease of finding information through keyword search which makes the 
platform valuable. 

• Links: guides to important pieces of information. The best pages are the most 
frequently linked to. 



 15 
• Authoring: the ability to create constantly updating content over a platform 

that is shifted from being the creation of a few to being the constantly updated, 
interlinked work. In wikis, the content is iterative in the sense that the people 
undo and redo each otheris work. While in blogs is cumulative that posts and 
comments of individuals are accumulated over time. 

• Tags: categorization of content by creating tags that are simple, one-word 
descriptions to facilitate searching and avoid rigid, pre-made categories. 

• Extensions: automation some of the work and pattern matching by using 
algorithms e.g. amazon.com recommendations. 

• Signals: the use of RSS (Really Simple Syndication) technology to notify users 
with any changes of the content by sending e-mails to them.� 

 

 

Figure 2.5 : Comparison of Web 1.0 and Web 2.0 usage 

 



 16 
2.3 Site map  

A site map (or sitemap) [11][14] is a representation of the architecture of a web 
site. It can be either a document in any form used as a planning tool for web design, or 
a web page that lists the pages on a web site, typically organized in hierarchical 
fashion. This helps visitors and search engine bots find pages on the site. 

While some developers argue that site index is a more appropriately used term 
to relay page function, web visitors are used to seeing each term and generally 
associate both as one and the same. However, a site index is often used to mean an A-Z 
index that provides access to particular content, while a site map provides a general 
top-down view of the overall site contents. 

 

Figure 2.6 : Example of sitemap 

Site maps can improve search engine optimization of a site by making sure that 
all the pages can be found. This is especially important if a site uses Adobe Flash or 
JavaScript menus that do not include HTML links. 



 17 
Most search engines will only follow a finite number of links from a page, so if 

a site is very large, the site map may be required so that search engines and visitors 
can access all content on the site. The basic premise is that some sites have a large 
number of dynamic pages that are only available through the use of forms and user 
entries. The sitemap files can then be used to indicate to a web crawler how such pages 
can be found. Google, MSN, Yahoo and Ask now jointly support the Sitemaps protocol. 

2.4 Swarm Intelligence 

Swarm intelligence (SI) [9] is an artificial intelligence based on the collective 
behavior of decentralized, self-organized systems. The expression was introduced by 
Gerardo Beni and Jing Wang in 1989 [16], in the context of cellular robotic systems.  

SI systems are typically made up of a population of simple agents interacting 
locally with one another and with their environment. The agents follow very simple rules, 
and although there is no centralized control structure dictating how individual agents 
should behave, local interactions between such agents lead to the emergence of 
complex global behavior. Natural examples of SI include ant colonies, bird flocking, 
animal herding, bacterial growth, and fish schooling. 

Swarm intelligence has a marked multidisciplinary character since systems with 
the above mentioned characteristics can be observed in a variety of domains. Research 
in swarm intelligence can be classified according to different criteria.  

Natural vs. Artificial: It is customary to divide swarm intelligence research into 
two areas according to the nature of the systems under analysis. We speak 
therefore of natural swarm intelligence research, where biological systems are 
studied; and of artificial swarm intelligence, where human artifacts are studied.  
Scientific vs. Engineering: An alternative and somehow more informative 
classification of swarm intelligence research can be given based on the goals 
that are pursued: we can identify a scientific and an engineering stream. The 
goal of the scientific stream is to model swarm intelligence systems and to single 
out and understand the mechanisms that allow a system as a whole to behave in 
a coordinated way as a result of local individual-individual and individual-



 18 
environment interactions. On the other hand, the goal of the engineering 
stream is to exploit the understanding developed by the scientific stream in 
order to design systems that are able to solve problems of practical relevance.  

The two dichotomies natural/artificial and scientific/engineering are orthogonal: 
although the typical scientific investigation concerns natural systems and the typical 
engineering application concerns the development of an artificial system, a number of 
swarm intelligence studies have been performed with swarms of robots for validating 
mathematical models of biological systems. These studies are of a merely speculative 
nature and definitely belong in the scientific stream of swarm intelligence. On the other 
hand, one could influence or modify the behavior of the individuals in a biological swarm 
so that a new swarm-level behavior emerges that is somehow functional to the solution 
of some task of practical interest. In this case, although the system at hand is a natural 
one, the goals pursued are definitely those of an engineering application. In the 
following, an example is given for each of the four possible cases.  

Natural/Scientific: Foraging Behavior of Ants  

In a now classic experiment done in 1990, Deneubourg and his group showed 
that, when given the choice between two paths of different length joining the nest to a 
food source, a colony of ants has a high probability to collectively choose the shorter 
one. Deneubourg has shown that this behavior can be explained via a simple 
probabilistic model in which each ant decides where to go by taking random decisions 
based on the intensity of pheromone perceived on the ground, the pheromone being 
deposited by the ants while moving from the nest to the food source and back.  

Artificial/Scientific: Clustering by a Swarm of Robots  

Several ant species cluster corpses to form cemeteries. Deneubourg et al. 
(1991) were among the first to propose a distributed probabilistic model to explain this 
clustering behavior. In their model, ants pick up and drop items with probabilities that 
depend on information on corpse density which is locally available to the ants. Beckers 
et al. (1994) have programmed a group of robots to implement a similar clustering 



 19 
behavior demonstrating in this way one of the first swarm intelligence scientific 
oriented studies in which artificial agents were used.  

Natural/Engineering: Exploitation of collective behaviors of animal societies 

A possible development of swarm intelligence is the controlled exploitation of the 
collective behavior of animal societies. No example is available in this area of swarm 
intelligence although some promising research is currently in progress: For example, in 
the Leurre project, small insect-like robots are used as lures to influence the behavior of 
a group of cockroaches. The technology developed within this project could be applied 
to various domains including agriculture and cattle breeding.  

Artificial/Engineering: Swarm-based Data Analysis  

Engineers have used the models of the clustering behavior of ants as an 
inspiration for designing data mining algorithms. A seminal work in this direction was 
undertaken by Lumer and Faieta in 1994. They defined an artificial environment in which 
artificial ants pick up and drop data items with probabilities that are governed by the 
similarities of other data items already present in their neighborhood. The same 
algorithm has also been used for solving combinatorial optimization problems 
reformulated as clustering problems (Bonabeau et al. 1999).  

Properties of a Swarm Intelligence System  

A typical swarm intelligence system has the following properties:  

• it is composed of many individuals;  

• the individuals are relatively homogeneous (i.e., they are either all identical or 
they belong to a few typologies);  

• the interactions among the individuals are based on simple behavioral rules that 
exploit only local information that the individuals exchange directly or via the 
environment (stigmergy);  



 20 
• the overall behaviour of the system results from the interactions of individuals 

with each other and with their environment, that is, the group behavior self-
organizes.  

The characterizing property of a swarm intelligence system is its ability to act in a 
coordinated way without the presence of a coordinator or of an external controller. Many 
examples can be observed in nature of swarms that perform some collective behavior 
without any individual controlling the group, or being aware of the overall group 
behavior. Notwithstanding the lack of individuals in charge of the group, the swarm as a 
whole can show an intelligent behavior. This is the result of the interaction of spatially 
neighboring individuals that act on the basis of simple rules. Most often, the behavior of 
each individual of the swarm is described in probabilistic terms, each individual has a 
stochastic behavior that depends on his local perception of the neighborhood.   

2.5 Ant Colony Optimization Algorithm 

The Ant Colony Optimization (ACO) [10] algorithm is a probabilistic technique 
for solving computational problems which can be reduced to finding good paths 
through graphs. 

This algorithm is a member of Ant colony algorithms family that constitutes some 
metaheuristic optimizations based on Swarm intelligence methods. Initially proposed by 
Marco Dorigo in 1992 in his PhD thesis, the first algorithm was aiming to search for an 
optimal path in a graph; based on the behavior of ants seeking a path between their 
colony and a source of food. The original idea has since diversified to solve a wider 
class of Numerical problems. As a result, several problems have emerged, drawing on 
various aspects of the behavior of ants. 

In the real world, ants (initially) wander randomly, and upon finding food return to 
their colony while laying down pheromone trails. If other ants find such a path, they are 
likely not to keep traveling at random, but to instead follow the trail, returning and 
reinforcing it if they eventually find food. 



 21 
Over time, however, the pheromone trail starts to evaporate, thus reducing its 

attractive strength. The longer it takes for an ant to travel down the path and back again, 
the more pheromones evaporate. A short path, by comparison, gets marched over 
faster, and thus the pheromone density remains high as it is laid on the path as fast as it 
can evaporate. Pheromone evaporation has also the advantage of avoiding the 
convergence to a locally optimal solution. If there were no evaporation at all, the paths 
chosen by the first ants would tend to be excessively attractive to the following ones. In 
that case, the exploration of the solution space would be constrained. 

Thus, when one ant finds a good (i.e., short) path from the colony to a food 
source, other ants are more likely to follow that path, and positive feedback eventually 
leads all the ants following a single path. The idea of the ant colony algorithm is to mimic 
this behavior with "simulated ants" walking around the graph representing the problem to 
solve. 

 

 

Figure 2.7 : Ant Colony Optimization 

 The original idea comes from observing the exploitation of food resources 
among ants, in which antsi individually limited cognitive abilities have collectively been 
able to find the shortest path between a food source and the nest. This is shown in 
Figure 2.7. 



 22 
1. The first ant finds the food source (F), via any way (a), then returns to the nest 

(N), leaving behind a trail pheromone (b) 

2. Ants indiscriminately follow four possible ways, but the strengthening of the 
runway makes it more attractive the shortest route. 

3. Ants take the shortest route, long portions of other ways lose their trail 
pheromones. 

In a series of experiments on a colony of ants with a choice between two unequal 
length paths leading to a source of food, biologists have observed that ants tended to 
use the shortest route. A model explaining this behavior is as follows: 

1. An ant (called "blitz") runs more or less at random environment around the 
settlement; 

2. If it discovers a food source, it returns more or less directly to the nest, leaving in 
its path a trail pheromone; 

3. These pheromones are attractive, ants from nearby will be inclined to follow, 
more or less directly, the track; 

4. Returning to the nest, these ants will strengthen the runway; 

5. If two tracks are possible to achieve the same food source, that being the 
shorter will be at the same time, traveled by ants over the long runway; 

6. The short track will be increasingly enhanced and therefore more attractive; 

7. The long runway will eventually disappear as pheromones are volatile; and 

8. Eventually, all the ants determine the shortest track. 

 Ants use the environment as a medium of communication. They exchange 
information indirectly by depositing pheromones, all detailing the status of their "work.� 
The information exchanged has a local scope, only ants located where the pheromones 
were filed access. This system is called "Stigmergy" and occurs in many social animals 



 23 
(it has been studied in the case of the construction of pillars in the nests of termites). 
The mechanism to solve a problem too complex to be addressed by ants alone is a 
good example of a self-organized system. This system is based on positive feedback 
(the deposit of pheromone attracts other ants that will strengthen their turn) and negative 
(dissipation of the runway by evaporation prevents the system from thrashing). 
Theoretically, if the quantity of pheromone remained the same over time on all branches, 
no runway would be chosen. However, because of feedback, a variation on a low 
branch will be amplified and allow the choice of a branch. The algorithm will move from 
an unstable state with no branch is stronger than another to a stable state where the 
route is composed of the strongest branch. 

 Ant colony optimization algorithms have been applied to many combinatorial 
optimization problems, ranging from quadratic assignment to fold protein or routing 
vehicles. A lot of derivate methods have been adapted to dynamic problems in real 
variables, stochastic problems, multi-targets or parallel implementations. It has also 
been used to produce near-optimal solutions to the traveling salesman problem. They 
have an advantage over simulated annealing and genetic algorithm approaches of 
similar problems, when the graph may change dynamically; the ant colony algorithm 
can be run continuously and adapt to changes in real time. This is of interest in network 
routing and urban transportation systems. 

An annotated example 

 The first ACO algorithm was called the Ant system and was aimed to solve the 
traveling salesman problem, in which the goal is to find the shortest way to link a series 
of cities. The general algorithm is relatively simple based on a set of ants, each 
traversing a distance from a series of cities. At each stage, the ant chooses to move 
from one city to another according to some rules: 

1. It can visit each city only once; 

2. A far town has less chance of being chosen (or less visible); 



 24 
3. The more intensity of the pheromone trail lay out on the edge between two 

cities, the greater the trip will likely be chosen; 

4. Once completed its journey, the ant files on all edges traveled having high 
concentration of pheromones if the journey is short; and 

5. After each iteration, trails of pheromones evaporate. 

 Figure 2.8 shows a step-by-step application of ACO algorithm to the Travelling 
Salesman Problem. 

 

 

Figure 2.8 : Example of Traveling Salesman problem solving by Ant Colony Optimization 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25 
CHAPTER III 

WEB NAVIGATION ANALYSIS AND SIMULATION  

USING ANT COLONY OPTIMIZATION 

 

3.1 Web navigation and ACO 

 
Latest news and up-to-date information are vital edges in todayis highly competitive 

businesses. Various technological approaches have been employed to carry out the 
tasks. The dynamic web page technique is one popular approach embraced by many 
online businesses. The technique helps the companies easily maintain the latest updated 
information of their web sites. As the number of web sites and their corresponding size 
grow exponentially, navigation through such a labyrinth becomes a formidable task. 
Some prevalent issues that influence web sites accessibility are (1) navigation paths 
cannot be straightforwardly established as web sites expand dynamically; (2) the number 
of unknown dead links and unreachable pages is difficult to determine as a direct 
consequence of (1); and (3) access and processing time are computationally difficult as 
complexity increases. 

Bearing the above problematic issues in mind, an automated system seems to be a 
viable consideration. Studies show that the ACO is an efficient proposed technique to 
explore unknown systems and unknown environments offering three advantages, i.e., 
autonomy, self-organizing, and resilience. In order to apply the ACO algorithm to web 
navigation, three provisions need to be addressed, namely, (1) bound the ant agents to 
explore within the designated area; (2) modify the ACO algorithm to ensure that ant 
agents will cover all pages of the unknown web structure; and (3) establish a technique 
to translate all information gathered from the ant agents in a presentable form. In the 
sections that follow, the modified ACO algorithm will be further elaborated to resolve the 
above provisions. 

 

   



 26 
3.2 Web navigation structure simulation by ACO 

 
This study utilizes a few known and accessible web sites as a preliminary 

experimental analysis to verify the viability of proposed approach. A number of relevant 
statistics are subsequently collected. We resorted to set up a simulation based on these 
preliminary statistics to procedurally explore the structure of any given web sites. The 
procedures can be performed step-by-step as follows: 

A. Define some prerequisite theoretical fundaments based on antis behavior; 

B. Devise navigational path traversals using ACO, whereby related information can be 
orderly gathered; 

C. Analyze the web navigation routing parameters; and 

D. Create a site map, along with pertinent statistics, as a visual representation of the 
web site under investigation. 

 

 
Figure 3.1 : Web navigation structure analysis. 

 
 

Figure 3.1 illustrates a conceptual view of the proposed web structure analysis 
approach. The ant agents hereafter will be simply referred to as ants are employed as a 
means to navigate through the designated web site. Thereby the structure of the web site 
can be determined. Details on analysis procedure are elucidated in the sub-sections that 
follow. 



 27 
3.2.1 Define prerequisite fundaments based on ant3s behavior 

The ACO algorithm is derived from observations of real antis behavior. An ant 
releases a chemical residue called pheromone along the path as it passes [3]. This 
behavior facilitates all following ants instinctively guess the appropriate path to their food 
based on the density of pheromone. Such a behavior was adopted by the ACO algorithm 
to successfully solve the popular travelling salesman problem [4]. 

Basically, ants can travel around their habitat in search for food. They simply react in 
accordance with the information obtained from the ants ahead along that path. In web 
navigation case, the above provision is inadequate to accommodate navigation through 
such complex interconnections, where ants can move to any web pages either inside or 
outside the web site under investigation. A common encounter for most commercial 
websites and online services is that they carry many advertisements, banners, or 
exchange links to the external websites. These are usually out of the administratoris or 
webmasteris responsibility to monitor and maintain efficient access and quality of 
service. To avoid indefinite cascading external links, the modified ACO algorithm will 
confine the URL access limit via antis traversal based only on internal links. The 
proposed solution can be accomplished by simply creating an IP address table that 
keeps track of all connecting domain servers to be analyzed. As such, the algorithm can 
always access and verify their destination pages from this IP address table. Figure 3.2 
shows an example of the IP address table. 

 

ID Internal IP addresses 

1 161.100.100.0 

2 162.100.100.0 

Figure 3.2 : A sample IP address table. 

 

3.2.2 Web navigation and information gathering by the modified ACO algorithm 

The original ACO algorithm was designed to discover the shortest path on a graph 
using the pheromone update technique based on the path that has the largest density of 
pheromone [2]. The proposed modified ACO algorithm reverts the antsi travel to the 



 28 
opposite direction that has the lowest density of pheromone first. This will help the ants 
explore new paths, whereby increasing more coverage for web navigation structure 
analysis. The following Ant package structure and Ant algorithm are proposed to explore 
the web navigation paths by means of ant agents. 

3.2.2.1 Ant package 

An Ant package entry encompasses 4 elements shown in Figure 3.3. 

 
Figure 3.3 : An Ant package entry. 

where S denotes the set of antis visited pages; T is the set of time the designating ants 
spent moving from source page to target page, or equivalently speaking, it is the time 
used for loading all required web page contents; TS is the recorded timestamp captured 
after the ants arrive at the page in Julian day format [15]; and Age is the variable 
representing the available life time of the ants.  Figure 3.4 shows the Ant package after 
the ants visiting to the pages 1 � 2 � 3 � 4 �1.  The navigation time from page 1 
to 2, 2 to 3, 3 to 4 and 4 to 1 are 5, 4, 4, and 6, respectively. The time that the ants arrive 
at the current page is 2454647 and the current antis life time is 50. 
 

 
Figure 3.4 : A sample entry of the Ant package. 

3.2.2.2 Ant algorithm 

1. Update ant�s Age 

    The antis Age is a variable defined to limit the number of move for each ant. This 
variable will be reduced every time the ant arrives at a page. An antis traversal will 
terminate if the antis Age is reduced to zero. This helps prevent potential infinite loops 
problem. Updating the antis Age proceeds as follows: 
 If Age > 0, Age = Age � 1 
 If Age = 0, terminate itself (skip steps 2-6) 
    The Age value will be initialized to CONST_AGE before sending an ant in the web 
site. A proper value of CONST_AGE should be more than the expected number of 



 29 
pages contained in the web sites so that the ants will not prematurely stop before 
reaching to the leaf pages. 
2. Update the accessing time T  
    Access time can be calculated as follows: 

             T = Current Timestamp ! latest value of TS              (3.1) 
3. Update the Ant package information 

    Add visited page ID, access time, and current timestamp to Ant package entry. 
4. Discover all HTML links 
   At this stage, the ants will find all html links connecting to the current page α.  A new 
node ID and the pageis URL will thus be inserted in the pheromone table.  Let P(α) be 
the pheromone density value having set to MIN_P if the arrived web page is an internal 
web page, and MAX_P if the arrived web page is an external web page. MIN_P and 
MAX_P are constants denoting the lower-bound and upper-bound of possible 
pheromone density values, respectively. The ant uses the formula below to assign the 
pheromone value for the new page to be added to the pheromone table. 

 
         P(α) = MIN_P               , if EL(α) = 0             (3.2) 

  = MAX_P                  , if EL(α) = 1 

 
where EL(α) is a function which determines whether the arrived page is an external web 
page by comparing with the IP addresses in the IP address table, i.e., 
     EL(α) = 1          , if page α is not in the IP address table. 
               = 0          , if page α is in the IP address table. 
This will prevent the antsi traversal to any unexpected external links. 
5. Update pheromone value P(α) in the pheromone table 

    The pheromone value of the visited page is updated and kept in the pheromone table 
following the rules below. 

(a) If the current page α is the page that the ants have never visited  (P(α) is 
equal to MIN_P), the ants will find all html links on the current page and 
update the pheromone P(α) in pheromone table to the negative value of 
number of outgoing links from that page. 



 30 
(b) If the current page α is the page that the ants have visited before (P(α) is 

greater than MIN_P), the ants will increase the pheromone value P(α) by ∆. 
 

ID Pages α P(α) 

1 161.100.100.0/index.htm -5 

2 161.100.100.0/page2.htm MIN_P 

3 165.100.100.0/page2.htm MAX_P 

Figure 3.5 : Sample data kept in pheromone table. 
 

The original Pheromone update formula shown below simulates the real antis 
pheromone behaviour. 

                                  (3.3) 

where  is the set of solutions that are constructed in the current iteration, and  is 

the best-so-far solution. The parameter  Є (0, 1] is called evaporation rate. It has the 
function of uniformly decreasing all the pheromone values. From a practical point of 
view, pheromone evaporation is needed to avoid a too rapid convergence of the 
algorithm toward a sub-optimal region. It implements a useful form of forgetting, favoring 
the exploration of new areas in the search space.  F is commonly called the quality 
function. This is a function to determine the feasible possibility of solutions. For the 
advantage of web navigation, the pheromone value will be kept as long as the ant 

traveling around the web site. So, the evaporation rate is always equal to 1. Also,  
is usually not used. This introduces for the mathematical purpose only. 
 Furthermore, we can consider the last expression (F function) of formula as a 
constant so that the pheromone update formula can be simplified.  

As the ants arrive, they will update the pheromone value of that page according 
to the formula shown below. 
 

             P(α) = P(α) + ∆ , if P(α) > MIN_P                       (3.4) 
        = DEF_P(α)  , if P(α) = MIN_P 



 31 
where ∆ denotes the pheromone increment upon arriving at page α.  DEF_P(α) is the 
starting value of pheromone at node α. Thus, 
       DEF_P(α) = - (number of internal links on page α) 

The results are stored in the pheromone table as illustrated in Figure 3.5. 
6. Determine the destination page β 

    The pheromone information kept in the pheromone table is used to determine next 
destination page to which the ants will move. The ants will choose the destination page 
β according to the following rules: 
 

• Select page β with the lowest pheromone level P(β)  
• If there are pages that share the same lowest pheromone level P(β), select one 

of those pages arbitrarily. 
• If the lowest pheromone reaches MAX_P, the ant will terminate itself. 

    The proposed Ant algorithm can be procedurally described by the pseudocode in 
Figure 3.6. 
 
 
 
 
 
 



 32 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 : Web navigation using Ant Colony Optimizationis pseudocode 
 

PRODEDURE TRAVERSAL (WebPage WP) 

BEGIN 

     IF Ant.Age > 0 AND WP is not Nothing THEN 

 MIN = MIN_P, Destination = Nothing 

 Timestamps = GetTimeStamp () 

 T = Timestamps � Ant.TS 

 UpdateAntPackage (WP, T, Timestamps, Ant.Age-1) 

LINKS = DicoveryLink (WP)  

InsertNewPagesToPheromoneTable (LINKS)  

UpdatePheromoneAtPage (WP) 

 FOR EACH I IN LINKS  

      IF Pheromone (I) < MIN THEN 

Clear RandomList 

            MIN = Pheromone (I) 

       ELSE 

           IF Pheromone (I) = MIN THEN 

Clear RandomList 

   MIN = Pheromone (I) 

           Put I in RandomList 

            END IF 

                        END IF 

 END FOR 

 IF MIN ≠ MAX_P THEN 

            Destination = RANDOM (RandomList)       

 END IF 

TRAVERSAL (Destination) 

     END IF 

END 



 33 
3.2.3 Web navigation routing parameters analysis 

    Any arbitrary number of ants can be sent in the web site simultaneously. The ants will 
stop further exploration after arriving at the page that does not have an html link 
(hereafter referred to as leaf page). This information will be kept in the Ant package and 
the reference database for subsequent analysis and future exploration. The number of 
ants being sent in the web site depends on the increasing rate of new pages found. This 
can be calculated from the number of pages kept in the pheromone table using the 
formula given below. 
 
         INCREASE_RATE = [(Vt - Vt-1)/Vt-1] * 100                         (3.5) 
 

where Vt denotes the number of cumulative pages kept in the pheromone table at time t. 
For example, given there are 10 pages already kept in the pheromone table.  If we find 
two more pages after sending more ants in the web sites, the INCREASE_RATE will be 
equal to (12-10)/10 = 20% 
 

 
Figure 3.7 : An Ant decision flow chart. 

As shown in Figure 3.7, the algorithm releases ANT_AMOUNT ants in the web site in 
every INTERVAL_TIME time, and will stop if the value of number of pages kept in the 
pheromone table does not change more than CONST_R % compared with the previous 
number of pages found within CONST_LOOP times. A number of threshold constants 
are predefined for simulation propose, namely, INTERVAL_TIME, ANT_AMOUNT, 
CONST_R, and CONST_LOOP. 



 34 
When INCREASE_RATE < CONST_R and LOOP > CONST_LOOP, the modified 

ACO algorithm will stop and use the information from the Ant package to generate the 
adjacent table for use in drawing the web navigation structure diagram.  

Figure 3.8 shows samples of information kept in the Ant package after the first ant has 
been sent in the sample web site. Figure 3.9 shows the adjacent table after retrieving 
information from the first ant package. Figure 3.10 illustrates samples of information kept 
in the Ant package after 2 ants have been sent in the sample web site. The visited 
pages set (S) and used time set (T) in the Ant package will be added to the adjacent 
table as a pairwise aij of the form (Nij, Tij). The first element Nij represents the number of 
visited ants leaving from page i for page j and the second element Tij is the cumulative 
time used by the ants to move from page i to page j.  

 
ANTS ANT Package 

1 S= {1, 2, 3}, T= {0, 1, 1} 

Figure 3.8 : Sample data of the Ant package after first ant sent to the system 

 

 1 2 3 

1  (1,1)  

2   (1,1) 

3    

Figure 3.9 : Sample inputs of adjacent table for Ant 1 

 
 

ANTS ANT Package 

1 S= {1, 2, 3}, T= {0, 1, 1} 

2 S= {1, 4, 1, 7, 1, 4, 5, 6},T= {0, 1, 1, 1, 1, 2, 2, 1} 

Figure 3.10 : Sample data of the Ant package after two ants sent to the system 

 



 35 
 1 2 3 4 5 6 7 

1  (1,1)  (2,3)   (1,1) 

2   (1,1)     

3        

4 (1,1)    (1,2)   
5      (1,1)  
6        
7 (1,1)       

Figure 3.11 : Sample inputs of adjacent table for Ant 1 (bold borders) and Ant 2 (light 
borders). 

Figure 3.11 demonstrates the values kept in the adjacent table after the first ant and 
the second ant have been sent in the web site, respectively. The adjacent table at row i 
and column j will be updated corresponding to the data obtained from current ant; the Nij 
element will be calculated by counting number of ants leaving from page i and visiting at 
page j. In this example, the second ant moves from page i to visit page j 2 times as 
highlight in Figure 3.12. The Tij element will be calculated from cumulative time used by 
the first and second visit that the second ant moves from page i to page j. In this 
example, the elapsed times that the second ant moves from page i to page j at the first 
and second visit are 1 and 2, respectively. The cumulative of both elapsed times is 3. 
From this calculation, the pairwise (2,3) is updated into the adjacent table. 

 

Figure 3.12 : Sample data of the Ant package after two ants are sent to the system. The 
highlight shown the elapsed time that the ant uses to move from page 1 to page 4 

 

 



 36 
3.2.4 Site map creation and analysis 

We can simply draw the web navigation diagram from the data kept in the adjacent 
table as shown in Figure 3.14. The elapsed time that ants move from one page to another 
page might vary depending noise from the internet traffic, so the average value is used 
instead. Each number shown on each connecting edge is derived from the second 
element Tij of the adjacent pair divided by the first element Nij. This number denotes the 
average used time that the ants navigate from page i to page j.  Figure 3.13 shows the 
calculation of adjacent table. 

 

 1 2 3 4 5 6 7 

1  1  1.5   1 

2   1     

3        

4 1    1   
5      1  
6        
7 1       

Figure 3.13 : Sample calculation using data from the adjacent table (Tij/Nij) 

 

For example, the number 1.5 shown on the connecting edge between page 1 and 
page 4 represents the average used time (in seconds) that the ants move from page 1 to 
page 4. 

 
Figure 3.14 : A web navigation diagram resulting from Ant package.  

 



 37 
All of these data are stored in the database use for subsequent comparison and 

reference.  We can periodically keep track of web update on a daily, weekly, or monthly 
basis.  The results will help detect additional links, dead links, and unreachable links in 
the web site to be explained subsequently. 

 1 2 3 4 5 6 7 8 

1  (1,1)  (1,2)   (1,1)  
2   (1,1)      
3         
4         
5         
6         
7 (1,1)       (1,1) 
8         

Figure 3.15 : Samples inputs of adjacent table after web pages are being added or 
removed. 

Upon completion of site data and site map creation, analysis of web structure 
navigation begins. The adjacent table is used as a baseline to compare with the current 
web navigation structure. In the real world, as the web structure changes everyday, many 
pages are added or removed. The proposed method in this section will serve to identify 
those pages. Figure 3.15 shows sample data in the adjacent table retrieved from the ants 
that have been sent in the system on various occasions, where some pages have been 
added or removed. The page ID and IP address kept in the original IP address table 
have been reused, so each page found by the ants can refer to existing page ID 
contained in the pheromone table from the previous visit. This simplifies identification of 
pages to be removed or added. In this example, the link between pages 1 and 4 has 
been changed to point to wrong URL that results in the �page not found� error and blocks 
all following web page accesses. Consequently, pages 5 and 6 become unreachable. 
Figure 3.16 depicts the new web navigation diagram based on data from the new 
adjacent table.  



 38 

 
Figure 3.16 : A web navigation error found after changing the web structure. 

 1 2 3 4 5 6 7 8 

1  (1,1)  (1,2)   (1,1)  

2   (1,1)      

3         

4         

5         

6         

7 (1,1)       (1,1) 

8         

Figure 3.17 : Sample methods to identify the unreachable pages. 
 

By comparing updated data in the adjacent table with the original one, we can 
determine the added pages by locating all new columns being added to the IP address 
table from the set operation below. 

                                   Spages added = Sactual - Sbaseline                                                (3.6) 

where Sactual is a set of all page IDs kept the current adjacent table, and Sbaseline is a set 
of all baseline page ID in the baseline adjacent table.  The baselineis adjacent table can 

be chosen from a specific point of time from the reference database. 
To identify the removed pages, dead links, and the pages that might be the cause of 

other unreachable pages, a simple mapping technique is used. From Figure 3.17, the 
highlighted cells represent all dead links found in the new web structure. All navigation 
information is lost compared with the original one. The dead link set has been described 
as follows: 



 39 
Sdead links = {linkij, linkij is a link from page i to page j | aij ∈ baseline adjacent table Λ 

aij         ∉ current adjacent table}                                                   
(3.7) 

The unreachable pages can be determined by the columns in the adjacent table that do 
not contain any data of adjacent pairs. 

                                    Sunreachable pages = {j | ∀i, aij = ∅}                                              (3.8) 

As shown in Figure 3.17, the columns of page 5 and 6 do not contain any information 
for web navigation.  Thus, they are unreachable pages.  In addition, the cause of 
unreachable page can be traced by locating candidate rows whose navigation 
information is missing from the cells intersecting with the columns that have already been 
identified to be the unreachable pages.  Therefore, 

                         Sunreachable causal pages = Sdata missing rows - Sunreachable pages                               (3.9) 

where Sdata missing rows = {i | linkij ∈ Sdead links}.  Based on the above example, the 
unreachable causal page becomes {4,5} � {5,6} = {4}.  The results forewarn the 
webmaster to first investigate these pages as potential culprits for all the errors incurred. 

Access performance can be measured by comparing the weight of the 
connecting edges with the original value from the web navigation baseline. In Figure 
3.16, there is only one connection edge from page 1 to page 4 whose weight value 
differs from that of the original structure, thereby access time is reduced by 34%.  Other 
statistics such as external page links can be determined from the pages that have the 
pheromone value equal to MAX_P in the pheromone table.  Analysis results identify all 
changing attributes of the new web navigation structure as summarized in Table 3.1. 

The number of pages calculated from rows (or columns) of the adjacent table 
and the number of links calculated from the fields in adjacent table contains parewise aij 
information. From this example, the number of pages and links are 5 and 5, respectively. 
Similarly, the number of new additional pages is calculated by equation (3.5). In this 
example, page �8� becomes the newly added page to the web site based on the above 
set operation. 

Spages added = {1, 2, 3, 4, 7, 8} � {1, 2, 3, 4, 5, 6, 7} = {8} 

 



 40 
Table 3.1 : Example of analysis result. 

 

Attributes Analysis Result 

Number of pages/links 5/5 

Number of new additional pages 1 (page 8) 

Number of new additional links 1 (Link from 7 to 8) 

Number of removal pages 2 (page 5, 6) 

The pages that might be the cause of 
unreachable pages 

4 

Number of removal/dead links 3 (Links from 4 to 1, 
4 to 5, and 5 to 6) 

Number of unreachable pages 2 (page 5, 6) 

Performance compared with the 
original structure 

Access time of page 1 to 4 is 
reduced by 34% 

Number of external pages 1 

Number of leaf pages 3 (3, 4, 8) 

The highest content load time  2 seconds (from 1 to 4) 

The lowest content load time  1 second 
 

 
 We can use similar set operation to calculate number of new additional links and 

number of removal pages. From the above example, the number of new additional links 
and removed pages are 1 (new link from page 7 to page 8 found) and 2 (page 5 and 
page 6 are removed from the website), respectively. The number of dead links or 
removal links can be calculated from dead link set operation (3.6). In this example, the 
pairwise a41, a45 and a56 in the baseline adjacent table are absent in the current adjacent 
table. So the number of dead links is 3. Meanwhile, the number of unreachable pages 
can be simply calculated by seeking the columns that do not contain any pairwise entries 
in the adjacent table. In the above example, there is no pairwise entry in both column 5 
and 6, so they are classified as unreachable pages. The pages that might be the cause 
of unreachable page can be identified by using unreachable causal page set operation 
(3.8). The calculation and result are described above. The number of leaf pages can also 



 41 
be calculated by finding rows that do not contain any such pairwise entries. In this 
example, row 3, 4 and 8 can be identified as leaf pages. 

 The highest content load time and the lowest content load time can be retrieved 
from the maximum and minimum values of T set of Ant packages, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 42 
CHAPTER IV 

EXPERMENTAL RESULTS AND  

MESUREMENT STATISTIC 

 

4.1 Experimental results 

 
 From the experimental results, we have sent the ants in a number of web sites, in 
particular, our own which contains 50 web pages and 69 navigation links. Navigation 
structure of the web site, along with all prerequisite constants, is depicted in Figure 4.1 
and Table 4.1, respectively. All web pages have been discovered after only 15 ants were 
deployed.  Nonetheless, the Ant system still sent additional 10 ants to ensure that no 
more pages left uncovered. 

 
 

Figure 4.1 : Web site structure. 

 Table 4.2 and Figure 4.2 illustrate the number of pages found in relation to the 
numbers of ants being deployed.  Various test scenarios were conducted to verify and 

   



 43 
gauge the performance of the proposed algorithm, namely, non-existing references, 
dead links, newly added links, and unreachable links. Table entry creation, deletion, and 
update were also exercised to reaffirm that correct information was maintained. 

Table 4.1 : Predefined constants. 

Constant Assigned value 

MIN_P -1,000 

MAX_P 1,000 

INTERVAL_TIME 30 Seconds 

ANT_AMOUNT 1 

CONST_R 1 

CONST_LOOP 10 

CONST_AGE 50 

∆ 1 

 
Table 4.2 : The relationship between the number of ants sent into the system and 

number of pages found. 
 

ANT Pages found ANT Pages found 

1 8 14 49 

2 12 15 50 

3 25 16 50 

4 29 17 50 

5 34 18 50 

6 36 19 50 
7 39 20 50 

8 39 21 50 

9 40 22 50 

10 42 23 50 

11 42 24 50 

12 49 25 50 

13 49 26 50 

 



 44 
 

Table 4.3 : The relationship between the number of ants sent into the system number of 
pages found, unreachable pages and new additional pages. 

 
ANT Pages Found Unreachable pages Additional pages 

1 5 45 0 

2 12 38 0 

3 15 37 2 

4 17 36 3 
5 23 31 4 

6 27 27 4 

7 31 23 4 

8 31 23 4 

9 35 19 4 

10 37 17 4 

11 39 16 5 
12 39 16 5 

13 43 12 5 

14 44 11 5 

15 44 11 5 

16 44 11 5 

17 44 11 5 

18 44 11 5 

20 44 11 5 
21 44 11 5 

22 44 11 5 

23 44 11 5 

24 44 11 5 

25 44 11 5 

26 44 11 5 



 45 
 

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

Ants

P
a
g

e
s

 
Figure 4.2 : The number of pages found VS the numbers of ants sent. 

 
 

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25

Ants

P
a
g

e
s

Pages Found Unreachable pages Additional pages

 
Figure 4.3 : The number of pages found, unreachable pages, and additional pages after 

modifying web site structure. 

 

 The following statistics were complied as the results of the experiment depicted 
in Table 4.3 and Figure 4.3, namely, 44 Web pages discovered by 14 ants, 3 of the 
above 44 pages were possible culprits of other 7 unreachable pages, 5 newly added 
pages, and 11 unreachable pages. The number of ants sent in the system to reach all 



 46 
available pages will depend on the random decision by the ants as to which page that 
has the same lowest pheromone to be chosen.  Irrespective of the page chosen, the 
outcome remains the same upon completion of executing the Ant algorithm. Table 4.4 
and Figure 4.4 compare different number of ants sent by the Ant algorithm on the same 
web site, yielding the same result. The Ant algorithm found all the pages contained in the 
web site after 15, 20, 18 ants being sent in the system for trial number 1, 2, 3, 
respectively. 

 
 

Table 4.4 : The relationship between the number of ants sent into the system number 
of pages found in each iteration. 

 
Page Found Page Found 

ANT Iteration 

1 

Iteration 

2 

Iteration 

3 

ANT Iteration 

1 

Iteration 

2 

Iteration 

3 

1 8 7 2 16 50 49 49 

2 12 21 4 17 50 49 50 

3 25 24 8 18 50 49 50 

4 29 29 15 19 50 49 50 

5 34 33 20 20 50 50 50 

6 36 38 20 21 50 50 50 

7 39 42 22 22 50 50 50 
8 39 44 26 23 50 50 50 

9 40 44 37 24 50 50 50 

10 42 45 42 25 50 50 50 

11 42 45 47 26 50 50 50 

12 49 47 47 27 50 50 50 

13 49 49 47 28 50 50 50 

14 49 49 47 29 50 50 50 
15 50 49 49 30 50 50 50 

 
 

 



 47 

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Ants

P
a
g

e
s

Iteration 1 Iteration 2 Iteration 3

 
Figure 4.4 : Different number of ants deployed in separate iterations. 

 

4.2 Measurement statistics 

 
 Further analyses of the depth-first-search (DFS) and breadth-first-search (BFS) of 
the original ACO search unveiled infinite looping caused by acyclic references among 
web pages.  This problem was resolved by the use of antis Age in the modified ACO 
algorithm (ANT).  As a result, many ants could be sent simultaneously to cover the 
designated web site so as to complete the exploration faster as oppose to the original 
approaches, which executed serially.  Some comparative statistics are given below. 

 

Table 4.5 : The comparison of DFS, BFS and ANT 

 DFS BFS ANT 

Infinite looping Yes Yes No 
Memory 

resource 

Linear 
O(bm+1) 

Exponential 
O(bd+1) 

Constant 
O(Age) 

Concurrency No No Yes 
b = branching, d = depth/path length and m = maximum depth 

 

 



 48 
CHAPTER V 

CONCLUSION 

 

 This thesis proposes a modified Ant Colony Optimization algorithm to analyze 
web navigation structure and performance monitoring. Implementation of the proposed 
algorithm lends itself to be a tool identifying dead links, unreachable pages, and new 
additional pages which result from regular updates.  
 From the experimental results shown in the previous chapter, we can conclude 
that  

1. The use of Ant Colony Optimization entails the correct solution with lower 
memory requirement than the DFS and BFS approaches. Ant deployment to 
explore the web site can be carried out concurrently, thereby obtaining the 
results faster. 

2. The outcome from the Ant package can be easily translated and kept in the 
database for future reference. All of this information can be used to reorganize 
web site structure and improve performance. 

3. The infinite loop searching problem that was found in DFS and BFS can be 
resolved with the help of Ant�s Age concept of modified Ant Colony Optimization 
proposed in this thesis. 

    
 The simplicity of the original of Ant Colony Optimization can be applied to solve 
many optimization problems such as Traveling Salesman Problem, Web navigation, and 
others. Nonetheless, this thesis makes a slight modification to the original concept to 
use in the opposite way. Instead of moving to the path that has the most pheromone 
density value, the ants will move to the path that has low pheromone density. This 
modification can help the ants seek and discover new paths in the system. In addition, 
many ants can travel around the system simultaneously. Consequence, the coverage of 
searching area is increasing. This concept can help ants find a number of additional 
links, removal links, and unreachable links and retrieve a lot more useful information 
from the system. Using simply table mapping technique, the raw information gathering 

   



 49 
from ants can be translated into valued information. All of this information can be kept 
in the reference database and used to improve the quality of the system, thus 
minimizing the amount of routine administrative work. 
 As the system adaptively operates without human intervention, it alleviates daily 
chores and routine work, whereby increasing the reliability of the web site. Further 
studies on seemingly recalcitrant issues such as autonomous intelligent web crawler 
agents within and beyond physical and logical web site boundaries, resolution of acyclic 
reference exploration, and minimal agents used will be conducive toward performance 
improvement of the proposed approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 50 
REFERENCES 

 
[1] Montresor, A., Meling, H., and Baboglu, O. (2002). Messor: Load-Balancing through 

a Swam of Autonomous Agents. Proceedings of the 1st International Workshop 
on Agents and Peer-to-Peer Computing : 25-137.  

[2] Dorigo, M., Maniezzo, V., and Colorni A. 1996. The Ant System: Optimization by a 
Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and 
Cybernetics-Part B 26 (1): 29-41.  

[3] Li, H., and Lam, C. P. (2004). Software Test Data Generation using Ant Colony 
Optimization. International Conference of Computational Intelligence : 1-4. 

[4] Li, H., and Lam, C. P. 2004. Optimization of State-based Test Suites for Software 
Systems: An Evolutionary Approach. International Journal of Computer & 
Information Science 5 (3): 212-223. 

[5] Wagner, I. A., Lindenbaum, M., and Bruckstein, A. M. 2000. ANTS: Agents, 
Networks, Trees, and Subgraphs, Special issue on Ant Colony Optimization. In 
M. Dorigo., G. Di Caro., and T.Stützle (ed.), Future Generation Computer 
Systems 16 (8): 915-926.  

[6] Babaoglu, O., Meling, H., and Montresor, A. (2002). Anthill: A Framework for the 
Development of Agent-Based Peer-to-Peer Systems. Proceedings of the 22nd 
International Conference on Distributed Computing Systems (ICDCS 02). 

[7] Pargas, R. P., Harrold, M. J., and Peck, R. 1999. Test-Data Generation Using Genetic 
Algorithms. Software Testing, Verification and Reliability 9: 263-282. 

[8] Golden, B., and Stewart, W. 1985. Empiric analysis of heuristics. In E. L. Lawler, J. K. 
Lenstra, A. H. G. Rinnooy-Kan, and D. B. Shmoys (ed.), The Travelling Salesman 
Problem, New York: Wiley.  

[9] Bonabeau, E., Dorigo, M., and Theraulaz, Z. 1999. Swarm Intelligence. From Natural 
to Artificial Systems, New York: Oxford University Press. 

[10] Dorigo, M. and Di, Caro, G. (1999). Ant colony optimization: a new meta-heuristic. 
Proceedings of 1999 Congress on Evolutionary Computation : 1470-1477. 

   



 51 
[11] Leung, K. R. P. H., Hui, L. C. K., Yiu, S. M., and Tang, R. W. M. (2000). Modelling 

Web Navigation by Statechart. Proceedings of the 24th Annual International 
Computer Software and Applications Conference (COMPSAC 2000) : 41-47. 

[12] Wikipedia. Website[online]. (n.d.). Available from: 
http://en.wikipedia.org/wiki/Website [2009, January 1] 

[13] Wikipedia. Web 2.0[online]. (n.d.). Available from : 
http://en.wikipedia.org/wiki/Web_2.0 [2009, January 1] 

[14] Wikipedia. Site map[online]. (n.d.). Available from : 
http://en.wikipedia.org/wiki/Site_map [2009, January 1] 

[15] Moyer, G. 1981. The Origin of the Julian Day System. Sky and Telescope 61 (April): 
311-313. 

[16] Gerardo, B., and Jing, W. (1989). Swarm intelligence in cellular robotics systems. 
Proceedings of NATO Advanced Workshop on Robots and Biological System. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 52 
 

CURRICULUM VITAE 

 
 Ekachai Jinhirunkul was born in 1982. He received a Bachelor Degree in 
Science (Majoring Computer Science) with Second Class honor from Chulalongkorn 
University in 2004. He is working as Team Leader for DST International, Bangkok and is 
also pursuing a Masters degree in computer science.  
 
 
 
 
 
 

 

 

 

 
 


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Tables
	Figures
	Chapter I Introduction
	Problem Identification
	Research Objectives
	Scope
	Research methodology
	Benefits

	Chapter II Thoretical background
	Literature review
	Website technology
	Site map
	Swarm Intelligence
	Ant Colony Optimization Algorithm

	Chapter III Web navigation analysis and simulation using ant colony optimiztion
	Web navigation and ACO
	Web navigation structure simulation by ACO

	Chapter IV Expermental results and mesurement statistic
	Experimental results
	Measurement statistics

	Chapter V Conclusion
	References
	Vita

