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CHAPTER I

INTRODUCTION

Considering a selfmap f on a set X, there is a simple question whether the map
has a fixed point in X, or in other words, whether an equation f(z) = z has a solu-
tion. However, solving such equations is not easy in general, and sometimes there
is no such solution (for example f : R — R such that f(x) = x + 1). Therefore,
some mathematicians who would like to discover some conditions that guarantee
the existence of a fixed point develop fixed point theorems. In general fixed point
theory, we try to identify conditions imposed on a set X and a selfmap f on X
for the existence of a fixed point.

Fixed point theory have many applications in various branches of mathematics,
and also in sciences such as chemistry, physics, engineerings, biology, or medicine.
It is an important tool for solving equations or systems of equations. For every
equation, we can find a corresponding map whose fixed point is a solution of the
original equation. Sometimes scientists need to use a complicated equation that
represents a real world problem, so it is not easy to find a solution for the equa-
tion. However, if we have a fixed point theorem for a map corresponding to the
equation, we immediately know when the solution exists. Moreover, some fixed
point theorems also provide an approximation of fixed points.

Many fixed point theorems are developed in the context of metric spaces, for
example, the celebrated Banach’s Contraction Theorem. Banach’s contraction
theorem is simple but powerful because it requires only a contraction selfmap and

completeness of its domain to guarantee the existence and uniqueness of fixed



points. Additionally, there is another well-known fixed point theorem in a Ba-
nanch space called Schauder’s fixed point theorem. Schauder’s fixed point theorem
requires convexity and compactness of the ambient space and continuity of a map;
however, Schauder’s result does not guarantee the uniqueness of fixed points. For
solving a differential equation, we usually need the uniqueness of solutions. With
this fact in mind, we are focusing on Banach’s contraction theorem.

In 1971 [5], Cain and Nashed introduced a notion of 7-contraction selfmaps
on a locally convex space and proved a fixed point theorem for a «-contraction as

follows:

Theorem 1.1. Let (E, A) be a locally convexr space generated by a collection A
of seminorms, X C E and T : X — X. If X is sequentially complete and T is a
~v-contraction for any v € A, then T has a unique fived point in X and for each

x € X, the iterative sequence of x converges to the fixed point of T

Furthermore, there is an application of a fixed point theorem for a y-contraction
that solves the differential equation in a locally convex space by Chonwerayuth,
Termwuttipong and Chaoha in 2011 [7].

In 1987 [1], Angelov gave a notion of ®-contraction selfmaps on a uniform
space whose uniformity is generated by a saturated collection of pseudometrics.
It is vivid that a ®-contraction simultaneously generalizes Banach’s contraction
theorem on a metric space as well as the fixed point theorem for y-contractions
mentioned above on a locally convex space. Moreover, Angelov presented fixed
point theorems for a ®-contraction and a special kind of a ®-contraction under
various conditions, and applied those theorems to find a solution of differential
equations.

Later in 1991 [2], Angelov extended the notion of a ®-contraction to a j-

nonexpansive selfmap on a uniform space whose uniformity is generated by a sat-



urated collection of pseudometrics, and gave some conditions for a j nonexpansive
selfmap and its domain to guarantee the existence of a fixed point. Moreover, his
result could be applied to some complicated differential equations for solving a
solution. However, we found that there was a minor flaw in the proof of Theorem
1 in [2] where the surjectivity of the map j was implicitly used without any prior
assumption.

In 2009 [12], the author introduced the notions of a functionally lipschitzian
selfmap and a functionally uniformly lipschitzian selfmap on a normed space and
gave criteria for a map to be functionally lipschitzian and functionally uniformly
lipschitzian in a Banach space with a Schauder basis. As results, being func-
tionally lipschitzian and being functionally uniformly lipschitzian are sufficient
conditions for weak continuity and weak virtual stability (Definition 2.67), re-
spectively, and being functionally (uniformly) lipschitzian and being (uniformly)
lipschitzian are equivalent in a finite-dimensional normed space. However, there is
a functionally uniformly lipschitzian map whose fixed point set free, so we inves-
tigate some fixed point theorems for a functionally uniformly lipschitzian selfmap
and improve definitions of a functionally lipschitzian selfmap and a functionally
uniformly lipschitzian selfmap in more general spaces.

According to the above observation, if we have finitely many ®-contractions
and j-nonexpansive maps on a locally convex space, then the sum of those maps
is similar to a functionally lipschitzian map, so a concept of a map j can be nat-
urally replaced by a multi-valued map J to obtain more general, yet interesting,
notions of J-contractions and J-nonexpansive maps (Definition 3.8 and Defini-
tion 3.1, respectively). Therefore, in this dissertation, we present main concepts
of J-contractions and J-nonexpansive maps on a uniform space generated by a

collection of pseudometrics which generalize ®-contractions and j-nonexpansive



maps, respectively, aim to correct and simplify the proof of Theorem 1 in [2], and
investigate the existence of a fixed point of J-contractions and J-nonexpansive
maps. Furthermore, a J-contraction which is a special kind of a J-nonexpansive
map plays a similar role as a contraction in yielding the uniqueness of fixed points
and we are able to recover results of a ®-contraction in [1].

In 1973 [4], Bruck’s result showed that if X is a weakly compact convex subset
of a Banach space and T': X — X is a nonexpansive selfmap satisfying the condi-
tional fixed point property, then the fixed point set of T" is a nonexpansive retract
of X. Later in 2001 [3], Benavides and Ramirez improved Bruck’s result to include
a larger class of asymptotically nonexpansive and weakly asymptotically nonex-
pansive selfmaps. A benefit of these Bruck-type results is a connection between
the fixed point set and the domain of the map that results in some topological
structures such as connectedness and contractibility of the fixed point set.

In 2009 [6], Chaoha and Atiponrat gave a notion of virtually stable selfmaps
on a Hausdorff space generalizing a nonexpansive-type selfmap. They also gave
the connection between the fixed point set and the convergence set of a virtually
stable selfmap via a retraction.

Although the concept of being J-nonexpansive is developed by using the con-
cept of being functionally uniformly lipschitzian which is a sufficient condition
for weak virtual stability, a .J-nonexpansive selfmap may not be virtually stable,
so we would like to investigate some sufficient conditions for a J-nonexpansive
selfmap to be virtually stable.

In this dissertation, we will recall some backgrounds in topology, functional
analysis and fixed point theory in the second chapter. Then, in Chapter 3, we
introduce notions of J-nonexpansive selfmaps and J-contraction selfmaps on a

uniform space whose uniformity is generated by a saturated collection of pseu-



dometrics, and present interesting results of fixed point theorems under various
conditions, and hence, our results cover Angelov’s results in [1] and [2]. Fur-
thermore, a notion of a functionally uniformly lipschitzian selfmap with respect
to the sequence on a normed space, which generalizes a functionally uniformly
lipschitzian selfmap, is introduced and fixed point theorems of a functionally uni-
formly lipschitzian selfmap with respect to the sequence are given. Then we also
show that every functionally uniformly lipschitzian selfmap with respect to the
sequence is a J-contraction, so it is J-nonexpansive. In Chapter 4, criteria for a
selfmap to be J-nonexpansive on a Banach space having a normalized Schauder
basis are given. Finally, in Chapter 5, we give some sufficient conditions for .J-
nonexpansive selfmaps to be virtually stable. Since a Hausdorff uniform spaces is
completely regular, by Theorem 2.6 in [6], we immediately obtain that the fixed
point set of a J-nonexpansive selfmap is a retract of its convergence set. As the
result, we obtain some explicit examples of functionally uniformly lipschitzian
selfmaps with respect to the sequence including the one in Example 5.5 that is

not nonexpansive and hence falls outside the framework of Bruck in [4].



CHAPTER II

PRELIMINARIES

In this chapter, we recall and collect some definitions, propositions and theorems

used in this dissertation.

2.1 Topological Spaces

Definition 2.1. A topology on a set X is a collection 7T of subset of X having

the following properties:
1. @ and X arein T,
2. the union of the elements of any subcollection of 7 is in T,
3. the intersection of the elements of any finite subcollection of 7 is in 7.

A topological space is an ordered pair (X,7) consisting of a set X and a
topology 7 on X, but we often omit specific mention of 7 if no confusion will

arise.

Definition 2.2. Let Y be a subset of a topological space (X, Tx). We define the
topology Ty on Y by Ty = {ANY C Y : A€ Tx} and call it the subspace

topology of Y.

Definition 2.3. Let (X, 7T) be a topological space and O a subset of X. We say

that

1. O is open if O belongs to the collection T.



2. O is closed if X — O is open.
3. For x € X, O is a neighborhood of z if O is an open set containing x.

Definition 2.4. Let (X,7) be a topological space and A C X. The closure of

A is defined as the intersection of all closed sets (in X') containing A. The closure

of A is denoted by A.
Note that : A is the smallest closed set containing A.

Definition 2.5. If X is a set, a basis for a topology on X is a collection B of

subsets of X (called basis elements) such that
1. for each x € X, there is at least one basis element B containing x.

2. if x belongs to the intersection of two basis elements B; and B, , then there

is a basis element Bj containing z such that Bs C B; N Bs.

If B satisfies these two conditions, then we define the topology 7T generated by
B as follows: A subset O of X is said to be open in X (that is, to be an element
of T) if for each x € O, there is a basis element B € B such that z € B C O.

Equivalently, 7 is the collection of all unions of basis elements.

Definition 2.6. A subbasis S for a topology on X is a collection of subset of X
whose union equals X. The topology generated by the subbasis § is defined

to be the collection T of all unions of finite intersections of elements of S

Note that the collection of all finite intersection of elements of S is a basis for

a topology T.
Definition 2.7. A metric on a nonempty set X is a mapping

d: X xX =R



having the following properties :

1. d(z,y) > 0 for all z,y € X; the equality holds if and only if z = y.
2. d(z,y) = d(y,x) for all z,y € X.
3. (Triangle inequality) d(x, 2) < d(z,y) + d(y, z), for all z,y,z € X.

Given x € X and € > 0, consider the set
By(xz,e) ={y € X : d(z,y) < €}.

It is called the e-ball centered at x. Sometimes we omit the metric d from the

notation and write this ball simply as B(z, €), when no confusion will arise.

Example 2.8. Let d : R x R — R be defined by d(z,y) = |z — y| for all z.y € R.
Then d is a metric on R. Now we say that d is a euclidean metric on R, denoted

Definition 2.9. If d is a metric on the set X, then the collection of all e-balls
By(x,¢€), for x € X and € > 0, is a basis for a topology on X, called the metric

topology induced by d.

Definition 2.10. If X is a topological space, X is said to be metrizable if there
exists a metric d on X that induces the topology of X. A metric space (X, d)
is a metrizable space X together with a specific metric d that gives the topology

of X.

Definition 2.11. A filter on a set X is a nonempty collection F of nonempty

subsets of X such that the followings are true:
1. ifFl,FQ Gf, then FlﬂFQE.F,

2. if Fe Fand F C G, then G € F.



Definition 2.12. A filter base on a set X is a nonempty collection C of nonempty
subsets of X such that if U;, Uy € C, then there exists Uz € C such that Uz C
Uy UU,. Then F = {F C X : 3U € C with U C F} is a filter, and F is called

the filter generated by the filter base C.

Definition 2.13. Suppose F is a filter on a topological space X and x € X.
We say F converges to z if N, C F where N, is the family of all neighborhoods

of z and we say z is a cluster point of Fif x € {F : F € F}.

Definition 2.14. A relation < on a set A is called a partial order relation if

the following conditions hold for all o, 8,7 € A
1. a<a.
2. If a < and 8 < a, then a = £.
3. fa< B and g <7, then a < 7.

A directed set J is a set with a partial order < such that for each pair «, 8 of

elements of J, there exists an element 7 of J having the property that a <~ and

B<n.
Example 2.15. N with a partial order < is a directed set.

Definition 2.16. Let X be a topological space. A net in X is a function f from
a directed set A to X. If a € A, we usually denote f(«) by z,. We denote the
net f itself by symbol (z,)aeca, or merely by (z,) if the index set is understood.
Moreover if A = N, then (z,,).en is called a sequence.

The net (z,) is said to converge to the point x of X (written x, — z) if for

each neighborhood U of z, there exists 5 € A such that for all v > 3, then z, € U.
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Definition 2.17. Suppose that F is a filter on a set X. We define
Ar ={(x,F):x € F e F}

and (z, F) < (y,G) if and only if G C F for any (z, F), (y,G) € Ax. Since F is
a filter, (Ax, <) is a directed set. We defined (z, F') — =z is the net generated

by the filter F.
Definition 2.18. Suppose that (z,)aca is a net in a set X. We define
T, :=A{xx: A > p}.

Since A is a directed set, {T,, : @ € A} is a filter base. The filter generated by this

filter base is called the filter generated by the net (z,)aca

Theorem 2.19. Let F be a filter on a topological space X, (T4)aca a net in X,

and xr € X.

1. F converges to x if and only if the net generated by the filter F converges

to x.

2. (Ta)aca converges to x if and only if the filter generated by the net (To)aca

converges to x.

Definition 2.20. Let (X, d) be a metric space. A sequence (z,,) of points of X is
said to be a Cauchy sequence in (X, d) if it has the property that given ¢ > 0,

there is an integer N such that
d(zp, ) < € whenever n,m > N.

The metric space (X, d) is said to be complete if every Cauchy sequence in X

converges to some point in X.
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Example 2.21. Let X be a metric space.

Every convergent sequence in X is necessarily a Cauchy sequence.

Definition 2.22. A topological space X is said to be Hausdorff if each pair
x,y of distinct points of X, there exist disjoint open sets containing x and v,

respectively.

Definition 2.23. Suppose that one-point sets are closed in X. Then X is said
to be regular if for each pair consisting of a point x and a closed set B disjoint

from x, there exist disjoint open sets containing x and B, respectively.

Definition 2.24. Suppose that one-point sets are closed in X. Then X is said
to be completely regular if for each pair consisting of a point x and a closed
set B disjoint from z, there exists a continuous mapping f : X — [0, 1] such that

f(z)=0and f(y) =1 for every y € B.

Remark 2.25. Every regular space is Hausdorff, and a completely regular space

is regular.
Example 2.26. Every metric space is completely regular.

Definition 2.27. Let X and Y be topological spaces.
A mapping T : X — Y is said to be continuous if for each open subset V of Y,

the set T-1(V) ={z € X : T(z) € V} is an open subset of X.

Theorem 2.28. [10, pp. 104] Let X andY be topological spaces; let T : X — Y.

Then the followings are equivalent:
1. T is continuous;
2. For every open set C of Y, the set T~*(C') is open in X ;

3. For every subset A of X, one has T(A) C T(A);
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4. For every closed set B of Y, the set T~1(B) is closed in X;

5. For each x € X and each neighborhood V' of T'(x), there is a neighborhood

U of x such that T(U) C V.

If the condition 5 holds for the point x of X, we say that T is continuous at

the point x.

Definition 2.29. Let X be a Hausdorff space and 7" : X — X a continuous

mapping. We say that
1. F(T)={x € X : Tx = z} is the fixed point set of T.

2. C(T) = {z € X : the sequence (T"z) converges} is the convergence set

of T.

When F(T) # @, let T : C(T) — F(T) be defined by Tz = lim,,_,o,T"x for

all x € C(T).

Definition 2.30. [6] Let X be a nonempty Hausdorff space and T': X — X a
continuous mapping. A fixed point x of T is said to be virtually T-stable if for
each neighborhood U of z, there exist a neighborhood V' of x and an increasing
sequence (k,) of positive integers such that 7% (V) C U for all n € N. We simply

call T' virtually stable if every fixed point of T is virtually T-stable.

Definition 2.31. Let X be a topological space and A C B C X. A continuous
map r : B — A is called a retraction if for each a € A, r(a) = a and A is called

a retract of B if there exists a retraction from B onto A.

Theorem 2.32. [6] Suppose that X is a reqular space and T : X — X a selfmap
with F(T) # @. If T is a virtually stable, then T is continuous, so the fized

point set of T is a retract of the convergence set of T.
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2.2 Uniform Spaces

Definition 2.33. [11] Let X be a set and W a filter on X x X. We say that
the filter W defines a uniformity (or uniform structure) on X if W satisfies

these axioms :
e Each W € W contains the diagonal A where A = {(z,z) : z € X}.
o I € W implies W= € W where W™ = {(y,z) : (z,y) € W}.

e For each W € W, there exists V € W such that VoV C W where VoV =

{(z,2): Jy e X, (x,y) € V and (y,2) € V}.

Each W € W being called a vicinity of the uniformity.

Let x € X, W € W and B,(W) = {y € X : (z,y) € W}. Then Ty is
a topology generated by a neighborhood base B = {B,(W) : W € W} at x.
The space (X, W), endowed with the topology Ty, is called a uniform space.
A topological space X is uniformisable if its topology can be derived from a

uniformity on X. In general, a uniformity is not unique.

Theorem 2.34. [11] A Hausdorff topological space is uniformisable if and only if

it 15 completely reqular.

Definition 2.35. Let X and Y be uniform spaces. A mapping T": X — Y is
uniformly continuous if for each vicinity V of Y, there exists a vicinity U of X
such that (z,y) € U implies (Tx,Ty) € V.

A filter F on a subset X of a uniform space F is a Cauchy filter if, for each
vicinity V', there exists F' € F such that FF X FF C V. A net (z4)aeca in X is a
Cauchy net if, for each vicinity V', there exists v € A such that for any §, 8 > 7,
(x5, 2p) € V. If each Cauchy filter (or Cauchy net) converges to an element of X

then X is called a complete subset of F.
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If each Cauchy sequence in X converges to an element of X, then X is called

a sequentially complete subset of E.
Definition 2.36. A pseudometric on a nonempty set X is a mapping
d: X xX —=R

having the following properties :
1. d(z,y) >0 for all x,y € X.
2. d(z,y) =d(y,z) for all x,y € X.
3. (Triangle inequality) d(x, z) < d(x,y) + d(y, 2), for all z,y,z € X.

Definition 2.37. Suppose A is an index set and A = {d, : « € A and d, is a
pseudometric on X'}. Let € > 0,a € A, and W, (€) = {(z,y) € X x X : d,(x,y) <
€}. Then we have Wy = {W,(€) : @ € A and € > 0} is a uniformity on X and
Tw, is a topology on X. The space (X,.A), endowed with the topology Ty, is
called a uniform space whose uniformity is generated by a collection A
of pseudometrics.

A collection A is saturated if Vo € A,d,(x,y) = 0 implies = = y for any

z,y € X.

Proposition 2.38. Let (X,.A) be a uniform space whose uniformity is generated
by a collection A = {d, : « € A} of pseudometrics indexed by A. Then (x,) is a
Cauchy sequence if and only if for all e > 0, o € A, there exists N € N such that

for any m,n > N, do(x,, x,) < €.

2.3 Vector Spaces

Definition 2.39. A set X is called a vector space (or a linear space) over R

if we have a mapping + from X x X to X and a mapping - from R x X to X that
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satisfy the following conditions :
l.x4+y=y+axforalzye X.
2. (z+y)+z=x+(y+z2) forall z,y,z € X.

3. There is a vector 0 € X such that x +0 =z for all z € X.

W

M4y = x+ Ay forall A € Rand z,y € X.

ot

A+ p)r = r+ px forall \,p € Rand x € X.
6. Mux) = (Ap)x for all \,p € Rand z € X.
7.0-x=0and 1-z =2z for all z € X.

We call + addition and - multiplication by scalars. Suppose that Y is a nonempty
subset of X. We say that Y is a subspace of X if for any z,y € Y and o, 5 € R,

ax + By belongs to Y.

Definition 2.40. A mapping ||-|| from a vector space X to R is called a norm

on X if

L. ||z|| > 0 for all z € X; the equality holds if and only if x = 0.
2. lz +yll < [lzfl + [yl for all z,y € X.

3. |laz|| = |af||x| for all « € R and x € X.

We call X with a norm |||, a normed space (or normed vector space), denoted

by (X, [[-]1)-

Proposition 2.41. Let (X,||-||) be a normed spaces and dj. : X x X — R be
defined by dj. (x,y) = ||z —y||. Then dj.| is a metric on X, so (X,dy) is a

metric space. Therefore every normed space is a metric space.
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Example 2.42. For 0 < p < o0, €, = {(z,) € R : Y2 |77 < oo} and
1[I, : € — R be defined by [|(z,)[|, = O, |xz|p)% Thus ¢, is a vector space

(over R) and |[-[|, is a norm on £,. So, £, with this norm is a normed space.

Definition 2.43. A normed space (X, ||-|[) is a Banach space if (X,d|) is a
complete metric space. If (z,,) is a sequence in X, the series Y .o, z; (or Y x,,) is
said to be summable if a sequence of partial sums (>, ;) converges to some

point in X, and it is called absolutely summable if > ||z, || < cc.

Theorem 2.44. (8, pp. 152] A normed space X is complete if and only if every

absolutely summable series in X 1s summable.

Example 2.45. For any 1 < p < oo, £, is complete and hence ¢, is a Banach

space.

Definition 2.46. Let X and Y be normed vector spaces and T': X — Y. We
say that T" is a linear mapping or linear operator if for each z,y € X and
a,f € R, T(ax + By) = oT(z) + BT (y). In particular, if Y = R, we call T" a
linear functional.

A linear mapping T is called bounded if there exists C' > 0 such that for all

e X, |T@)| <Ol -

Proposition 2.47. [8, pp. 153] If X and Y are normed vector spaces and T :

X =Y a linear mapping, the followings are equivalent :
1. T is continuous;
2. T 1s continuous at 0;

3. T is bounded.
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Definition 2.48. If X and Y are normed vector spaces, we denote the space of
all bounded linear mappings from X to Y by L(X,Y). Thus L(X,Y) is a vector

space. Let ||-|| : L(X,Y) — R be defined by

1T} = sup{|[T'(2)[| : € X and |[z]| = 1}

:sup{%:xé)(andx%()},

for all T € L(X,Y). Then ||| is a norm on L(X,Y) and called the operator
norm. Hence, L(X,Y) with the operator norm is a normed vector space. In
particular, The space L(X,R) of bounded linear functionals on X is called the

dual space of X and denoted by X™*.

Remark 2.49. Every dual space of a normed vector space with the operator

norm is a Banach space.

Example 2.50. Let 1 < p < oo and ¢ € R such that % + % = 1.
Then the dual space of £, is isometrically isomorphic to £,; i.e., for each f € (£,)*

there exists (z,,) € ¢, such that f(y,) = > xny, for all (y,) € ¢, and || f] =

Gzl

Definition 2.51. Let A be a subset of a vector space. A is convex if for all

z,y € Aand a € (0,1), ax + (1 — a)y belongs to A.

Definition 2.52. A mapping p(-) from a vector space X to R is called a semi-

norm if

1. p(x) >0 for all z € X.
2. p(z +y) <plx)+py) for all z,y € X.

3. plax) = |a|p(z) for all @ € R and z € X.
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Proposition 2.53. Let d, : X x X — R be defined by d,(x,y) = p(x —y). Then

d, is a pseudometric on X induced by the seminorm p.

Definition 2.54. Let (X,d) and (Y, p) be metric spaces and T: X — Y.

Then T is said to be
1. nonexpansive if p(Tz, Ty) < d(z,y) for any z,y € X;

2. quasi-nonexpansive if T(X) C X C Y, and p(Tz,p) < d(z,p) for any

x € X and p € F(T);

3. lipschitzian if there is £ > 0 such that p(Tx,Ty) < kd(z,y) for any z,y €
X;

4. uniformly lipschitzian if 7(X) C X C Y and there is £ > 0 such that

p(T"x, T"y) < kd(z,y) for any z,y € X and n € N;

5. contraction if if there is k£ € (0,1) such that p(Tz,Ty) < kd(x,y) for any

z,y € X.

2.4 Locally Convex Spaces and The Weak Topology

Proposition 2.55. [9, pp. 203] Let X be a set and let F be a family of maps and
{(Y, Ty) - f € F} a family of topological spaces such that each f € F maps X
into the corresponding Yy. Then there is the smallest topology for X with respect

to which each member of F is continuous. That is, there is a unique topology Tr

for X such that the followings hold :
1. For each f € F, f is a continuous mapping from (X, Tx) into (Y, Ty).

2. If T is any topology for X such that for each f € F, f is a continuous

mapping from (X, T) into (Y, Ty), then T C T.
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The topology T has {f~(U) : f € F,U € T;} as a subbasis, and it is called the

weak topology on X induced by F.

Definition 2.56. Let A be a collection of seminorms on a vector space X. If
the collection of pseudometrices induced by all seminorms in A is saturated, then
X equipped with the weak topology on X induced by A (or (X,.4)) is a locally

convex space generated by A .

Proposition 2.57. Every locally convex space generated by a collection A of semi-
norms 1s a Hausdorff uniform space generated by the collection of pseudometrics

induced by all seminorms in A.

Definition 2.58. Let X be a normed space. Then the weak topology on X is
the weak topology induced by the dual space of X and the strong topology on

X is the topology induced by its norm.

Example 2.59. Let X be an infinite-dimensional normed space. Then X equipped

with the weak topology (or (X, X*)) is a non-metrizable locally convex space.

Example 2.60. Let X be a normed space, f € X*, and a function || - ||f: X —
[0, 00) defined by

lelly = 1f(@)l, for any @ € X.

Then || - || is a seminorm on X and a function d¢(-,-) : X x X — [0, 00) defined
by d¢(z,y) = ||z — y||; for any z,y € X is a pseudometric on X. Hence (X, X*)

is a uniform space generated by a collection of pseudometrics.

Definition 2.61. Let Y be a subset of a normed space X. The weak topology

on Y is a subspace topology of the weak topology on X

Theorem 2.62. [9, pp. 215] Let X be a normed space. If X has finite dimension,

the weak topology and strong topology are the same.
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Remark 2.63. [9, pp. 212] The weak topology on a normed space is completely

regular.
Definition 2.64. Let X be a normed space and O a subset of X. We say that

1. O is weakly open if O belongs to the weak topology.
2. O is weakly closed if X — O is weakly open.

3. For x € X, O is a weak neighborhood of z if O is a weak open set

containing x.

Definition 2.65. Let X and Y be normed spaces. A mapping 7' : X — Y is said
to be weakly continuous (or weak-to-weak continuous) if for each weakly

open subset V of Y, the set T-(V) is a weakly open subset of X.

Theorem 2.66. Let X andY be normed spaces. A mappingT : X — 'Y is weakly

continuous if and only if for any f € Y*, foT is a weakly continuous functional.

Definition 2.67. Let X be a normed space and 7" : X — X a weakly continuous
mapping. A fixed point x of T is said to be weakly virtually T-stable if for
each weak neighborhood U of z, there exist a weak neighborhood V' of x and an
increasing sequence (k,) of positive integers such that 7% (V) C U for all n € N.
We simply call T" weakly virtually stable if every fixed point of T is weakly

virtually T-stable.

Proposition 2.68. [9, pp. 212| A linear functional on a normed space is contin-
uous with respect to the weak topology if and only if it is continuous with respect

to the metric induced by its norm.

Definition 2.69. Let X be a subset of a normed space F and T : X — X. We

say that
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1. T is functionally lipschitzian if for each f € E* there exist N € N and

Jd1,92, - -, gy € E* such that

N
1Tz —Tyll; <D llz =yl

i=1

for any x,y € X.

2. T is functionally uniformly lipschitzian if for each f € E* there exist

N eNand ¢1,9s,...,98y € E* such that

N
IT*2 =Tyl < lle —y

i=1

gi»
for any z,y € X and k € N.

Proposition 2.70. [12] Every functionally lipschitzian selfmap is weakly continu-
ous and every functionally uniformly lipschitzian selfmap is weakly virtually stable

with respect to the sequence of all natural numbers.

Definition 2.71. [9] A sequence (x,,) in an infinite-dimensional Banach space X
is a Schauder basis for X if for each = in X there is a unique sequence («;,) of

scalars such that x =) a,z,.

,L'th

~~
Example 2.72. Let i € N and e¢; = (0,0,...,0, 1 ,0,...). Then e; € ¢, for all

1 < p < oo and a sequence (e,,) in ¢, is a Schauder basis for ¢, for all 1 < p < oco.

Theorem 2.73. [9, pp. 351] If (x,,) is a Schauder basis for an infinite-dimensional
Banach space, then H:L’nw1 Tn 18 a Schauder basis for the space, so there is a

Schauder basis (e,) such that ||e;|| =1 for any i € N.

Definition 2.74. Let X be a Banach space. We say that X has a normalized
Schauder basis if there is a Schauder basis (e,,) for X such that ||e;]| = 1 for

any ¢ € N.
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Definition 2.75. Let X be an infinite-dimensional Banach space with a Schauder
basis (z,,). For each positive integer m, the m'" coordinate functional z*, for

(x,,) is the mapping > a,, — @, from X into R.

Theorem 2.76. [9] Fach coordinate functional associated with a basis for a Ba-

nach space is a continuous linear functional.



CHAPTER III

FIXED POINT THEOREMS

In this chapter, new kinds of selfmaps on a uniform space and fixed point theorems
for those maps are presented. For any set S, we will use P/(S) and |S| to denote
the set of all nonempty finite subsets of S and the cardinality of S, respectively.
Let (E,A) be a Hausdorff uniform space whose uniformity is generated by a
saturated collection of pseudometrics A = {d, : @ € A} indexed by A, @ # X C
E, and J : A — P/(A). The definition of a J-nonexpansive map is given as

follows :

Definition 3.1. A selfmap T : X — X is said to be J-nonexpansive if for each

a € A,

o(Tx, Ty) < Z ds(z,y),
peJ ()
for any x,y € X.

Proposition 3.2. Every functionally lipschitzian selfmap on a subset X of a

normed space Y 1is J-nonexpansive on X equipped with the weak topology.

Proof. Since T is functionally lipschitzian, for each f € Y*, there are n € N and

1,92, - -, gn € Y* such that

[f(Te =Ty)| = Tz = Tyl; <> llz —ylly, =D lgi(z —y
i=1

=1

for any x,y € X. Then Y is a uniform space generated by a collection A = {|f| :
f € Y*} where |f|(z,y) = |f(z—y)| for any z,y € Y. By letting J : Y* — P/ (Y*)
be defined by J(f) = {g1,92,...,9n} for each f € Y* it follows that T" is J-

nonexpansive. ]
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Following the above proposition, we obtain many examples of J-nonexpansive

maps.

Example 3.3. Let 1 < p < oo, ' = {,, equipped with the weak topology, and

T :{, — {, be defined by

T(ml,xg,...):<

|21 + x3] |72 + 24
3 ’ 3 y L3, Lgy - - )

for any (z1,2s,...) € £,. Then A= {|f|: f €3}
By example 2.8 in [12], T is functionally lipshitzian, so it is J-nonexpansive.

However, we directly show that

5z =Tyl < | Ll a — by -

+ ‘@(% — Yo + T4 — Ys)
+ [ f (@1 =yl + [ f (@2 = y2)| + [ f(z —y)],

for each f € 03, v = (v1,72,...) €Ly and y = (y1,Y2,...) € Ly
By letting J : {5 — Pf(@‘) be defined by J(f) = {f, 91,92, 93,94}, for each

[ € ¢, where

02 = ey 1 03), aa(o) = 1y 1) ) = e g0() = 17

for each © = (21, 22,...) € {,, it follows that T" is J-nonexpansive.

The above definition of a J-nonexpansive map clearly extends the definition
of a j-nonexpansive map in [2]. Before giving general existence criteria of fixed
points for a J-nonexpansive selfmap, we need the following notations. For each

a € Aandn €N, we let
Ap(a) ={(a1,...,a,) s o € J(a) and oy, € J(ay_1) for 1 < k < n}

and

Ala) = {(a1,a9,...) 1y € J(a) and oy € J(ag_1) for k> 1}.
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When there is no ambiguity, we will denote an element of both A, (a) and A(«)
simply by (ay). Notice that for each o € A and n € N, the sets A, («) and

Tn(A()) are finite, where 7, denotes the n-th coordinate projection (ay) — .
Lemma 3.4. Fvery J-nonexpansive map is continuous.

Proof. Suppose T': X — X is J-nonexpansive. Let 2 € X, (z,),ea be a net in X
converging to z, e > 0, and a € A. Since (x.,) converges to z, there exists n € A

such that for all v > n and g € J(«), dg(z,, x) < Then we have

()]

do(Tzy, Tx) < Z dg(, ) < €,
BeJ(a

and hence T is continuous. O

An equivalent definition of a fixed point for a J-nonexpansive selfmap is shown

in the next theorem.

Theorem 3.5. Let T : X — X be J-nonexpansive whose A(«) is finite for any

a € A. ThenT has a fized point in X if and only if there exists xo € X such that

(i) the sequence (T"xq) has a convergent subsequence, and

(ii) for each o € A and (o) € A(a), limy, 00 da, (T0, Txo) = 0.

Proof. (=): It is obvious by letting xy be a fixed point of T

(«<): Suppose that (T™xy) converges to some z € X. Let a € A and (ay) € A(«).
Then lim; o do(z, T"x¢) = 0 and lim,_,o da, (20, Tx9) = 0. We can choose
N € N sufficiently large so that dn(2, T"zg) < € and da,, (0, Tzo) < ¢, for all

7 > N. It follows that
do(2, T 2g) < do(z, T"20) + do(T" 20, T" (T2))

<do(z,Tx0) + Y day, (w0, Tx0)
(ar)€AR, (o)

< (1 + ]A(a)\)e.



26

Since « is arbitrary, (T 'z) converges to 2. By the continuity of T, we have

T(T"xy) converges to Tz, so z = Tz and hence z is a fixed point of 7T O

As a corollary of the previous theorem, we immediately obtain Theorem 1 in

[2], with a corrected and simplified proof, as follows :

Corollary 3.6 (Theorem 1 in [2]). Let T : X — X be a j-nonexpansive map. If

there exists xg € X such that
(i) the sequence (T™xy) has a convergent subsequence, and
(ii) for every a € A, limy,_,o djn(a) (0, Txo) = 0,

then T has a fized point.

Proof. Follows directly from the previous theorem by considering the map J :

a— {j(a)}. Notice that A(a) = {(j"(«))} which is finite. O

We now consider a special kind of J-nonexpansive maps. Let ® denote the

family of all functions ¢ : [0,00) — [0, 00) satisfying the following conditions :
(®1) ¢ is non-decreasing and continuous from the right, and
(®2) ¢(t) <t for any t > 0.

Notice that ¢(0) = 0, and we will call ¢ € & subadditive if ¢(t1+t2) < & (t1)+o(t2)
for all t1,t, > 0. For a subfamily {@q }aca of ®, a € A, (o) € Ay(«) and i < n,

we let

Qbéak) = (bal O"'O(bai'

Example 3.7. Let ¢ € (0,00) and ¢ : [0,00) — [0,00) be defined by ¢(t) = ct.
Then ¢ is non-decreasing, continuous from the right, and subadditive. If ¢ € (0, 1),

then ¢ € ®.



27

Definition 3.8. A selfmap T': X — X is said to be a J-contraction if for each
a € A, there exists ¢, € ® such that
do(Tx, Ty) < Z daldp(z,y))
BeJ(a

for any z,y € X, and ¢, is subadditive whenever |J(a)| > 1.

Clearly, a ®-contraction as defined in [1] is a J-contraction and a J-contraction
is always J-nonexpansive. A natural example of a J-contraction can be obtained
by adding (finitely many) appropriate ®-contractions as shown in the following

example.

Example 3.9. Given two ®-contractions 77 : X — X and T, : X — X. Then

there exist ji,7j2 : A = A, and for each a € A, there exist ¢ o, p2., € P such that

d (Tll' le) < ¢1 a( )($ y)) and da(T2x7T2y) < ¢2,oz<dj2(a)<x>y))a

for any o € A and z,y € X. If for each o € A, ji(a) # ja() and there is
a subadditive ¢3, € ® so that ¢;,(t) < ¢34(t) and ¢oa(t) < ¢34(t) for any
t > 0, then the map H = T} + 15 is clearly a J-contraction with respect to

J(a) = {ji(@), j2(2)} and ¢y = @3, for any a € A,

Considering the iterative sequence of a J-contraction T, because of the multi-
valued map J, the sequence (T™) is very complicated, so a useful lemma which

simplifies 7" by a notion ¢7 ! is shown in the next lemma.
(o)

Lemma 3.10. If T : X — X s a J-contraction. then we have

do(T"2, T"y) < Y Gao ¢ (dan (2, 1)),

(ar)€An (@)

foranya € A, n>2and x,y € X.
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Proof. Recall that ¢, is assumed to be subadditive whenever |J(«)| > 1. Then,

for any « € A, n > 2 and z,y € X, we clearly have

(T2, T"y) < Y Galdey (T2, T 'y))

ar1€J(a)

<Y 6al Y (eI, T 2)))

ar1€J(a) azs€J(aq)

S S a0 by (A (T2, T 2)

a1€J(a) ascJ(ar)

IA

< Z Z Z ¢ao¢alO“.Oqﬁan—l(dan(‘r’y))

a1€J(a) aseJ(a) an€J(an—1)

= Y b0 @ (da(2.1)).

(ak)EAR(a)
O
A general criterion for the existence of fixed points of a J-contraction self-
map is obtained in the next theorem. Moreover, a condition which guarantees a
uniqueness of a fixed point is given, so a .J-contraction plays a similar role as a

contraction in yielding the uniqueness of a fixed point.

Theorem 3.11. Suppose X is sequentially complete and T : X — X is a J-
contraction whose A(«a) is finite for any o € A. If T satisfies the following

conditions :
(i) for each oo € A, there exists c, € ¢ such that
Bu(t) < calt),
for any (ax) € A(a), i € N, t >0, and

(ii) there exists xg € X such that for each o € A, (ay.) € A(a), i € N and
n,m € N, we have

dai (Tnxo, Tm‘fo) S MQ(SL’()),
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for some M, (x) € R,

then T has a fized point. Moreover, if for each o € A and x,y € X, there exists
F,(x,y) € Ry such that

dai({[',y) S Fa(l',y),

for all (o) € A(a) and i € N, then the fized point of T is unique.

Proof. For each @ € A and n,m, N € N, since ¢, is non-decreasing, we have

do(T"20, T"x0) < Y balda, (T 20, T™ " 20))

a1€J(a)

< Z Go (SUp{da, (T 120, T™ ta9) : mym > N},

ar1€J(a)
since ¢,, is non-decreasing, and by letting h%; := sup{d,(T"zo, T"x¢) : n,m > N},

it follows that

hy < Z Go(sup{da, (T" ‘2o, T 20) : n,m > NY)

a1€J(a)

= Z ¢a<h?\f11)

ar1€J(a)

< DD Galba (b))

a1€J(a) azeJ(a1)

<Y a0l (SN

(ar)EAN_1()

< Y AMalw)

(ar)EAN—1(a)

< [A(@)|eq (Ma(z0)). ()

Since 0 < cY(t) = co(cV7H(t)) < A7Y(t) for any ¢t > 0, there exists r, > 0,

limy o Y (t) = ro. Because ¢, is right continuous, we have limy o, ¢ (cY71(t)) =

ca(ra), and hence ¢, (ry) = r4. Therefore, r, = 0.
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By (%), it follows that limy_,. h% = 0.
Since « is arbitrary, (T%zg) is a Cauchy sequence, and by sequential complete-
ness, converges to some z € X. Notice also that z must be a fixed point of T" by
continuity.

Now suppose that for each z,y € X and o € A, there exists F,(z,y) € R§
such that d,,(z,y) < F,(x,y) for all (ay) € A(a) and i € N. If x,y are fixed

points of T, then by Lemma 3.10, we have for each a € A and n € N,

da(x7 y) - da(Tnx, Tny)

> a0 ¢l (day(2,y))

(ar)€An(@)

< Y Gda(ay)

(ak)EAR(a)

IA

< [A()|ca(Fa(z, y)-
Since lim,, o 2 (Fu(x,y)) = 0, we must have z = y. O

As a corollary of the previous theorem, we immediately obtain Theorem 1 in

[1] as follows :

Corollary 3.12 (Theorem 1 in [1]). Suppose X is a bounded and sequentially

complete subset of E and T : X — X is ®-contraction. If

(i) for each o € A, there exists co € ® such that gjn(a)(t) < calt) for alln € N

andt > 0,

(ii) for each n € N, sup{djn((z,y) : 2,y € X} < p(a) = sup{da(z,y) : x,y €

X},

then there exists a unique fized point v € X of T.
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Proof. For each xg,z,y € X, o € A, (o) € A(a) and i,m,n € N, by letting

J(a) = {j(a)} and M, (xg) = p(a) = Fo(z,y), we have
Ala) = {(a, j(a), (@), ..., j" (), .. )},

Ao, (T 20, T"10) = djio) (T 20, T"x0) < Mo(20) and dy,(z,y) < Fo(z,y). Hence,

by Theorem 3.11, T" has a unique fixed point. O

In the next theorem, we give a special kind of a selfmap, and obtain a criterion
for the existence of its fixed points. Furthermore, a condition that guarantees a

uniqueness of its fixed point is also given.

Theorem 3.13. Suppose X is sequentially complete and T : X — X s a con-
tinuous selfmap satisfying : for each o € A and k € N, there exist a function
Gak : [0,00) = [0,00), a finite set Doy and a map Py : Doy — A such that ¢o

18 mon-decreasing, and

do(T 2, T%) < > Ganldp, (2. 9)),

'YEDa k

for any z,y € X.

1. If there exists xy € X such that for each o € A there exists M,(zo) € RE{

50 that Y, o [ Dak|Pae(Ma(z0)) < 00 and
dPa,k(W)(x(]?T‘TO) < Ma(l‘o),
for allk € N and v € Dy, then T has a fized point in X.

2. 1If for each a € A and xz,y € X, there exvists F,(r,y) € RS such that

ZkeN ’Da k|¢a k( ( y)) < 00 and

dp, (7, y) < Folz,y),
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for all k € N and v € D,y, then T has a unique fized point in X and

C(T) = X.

Notice that if ¢o1 belongs to @, then T is clearly a J-contraction.

Proof. 1. Let ¢ > 0 and a € A. Since ), . |Dak|dar(Ma(xo)) < 00, there is

N € N such that for any m >n €N, 37 _. . [Dail¢ai(Ma(70)) < €. Then

d (T JIQ,T IO Z d JIO,Ti+1I0)

n<i<m

Z Z (bozz anTxO))

n<i<m y€Dq i

2. 2 GeilMaa

n<i<m y€Dq,;

Z | D Pai( Mo (0)) < €.

n<i<m
Therefore, (T%z,) is a Cauchy sequence and converges to a fixed point of T' by
the sequential completeness of X and the continuity of T
2. Let e > 0,27 € X, and o € A. Since ) ;. |Dai|dar(Fo(z, Tx)) < 00, there

is N € N such that for any m >n €N, 37, |Dai|¢ai(Fuo(z,Tx)) < e Then

do(T"x, T™x) Z do(T'z, T 1)

n<i<m

< Z Z ¢a,i<dPa,i(V)<x’T$>)

n<i<m y€Dq ;

> D bailFulz, Tx))

n<i<m y€Dq ;

= Z | D il i (Fo(, T)) <

n<i<m

IN

Therefore, (T%z) is a Cauchy sequence and converges to a fixed point of 7' by the
sequential completeness of X and the continuity of T'. Notice also that, since x is

arbitrary, C(T) = X.
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Now, lete > 0, € A, and z,y € F(T). Since limy_,o0 | Do k| Par(Fa(z,y)) =0,

there is K € N such that for any k > K | | Dy k|¢ar(Fa(z,y)) < €. Then

do(z,y) = do(TFz, T*y)

< Z ¢C¥,k(dpa,k(“/)(x7y))

'YeDa,k

< Y bunlFule,y))

’YeDa,k

= [Da | Ga i (Fa(z,y)) <€

Then we have the uniqueness.

Also, we immediately obtain Theorem 5 in [1] as follows :

Corollary 3.14 (Theorem 5 in [1]). Let us suppose that

(i) for each o € A and n > 0, there exists ¢on € © and j(a,n) € A such that
da(Tn:C, Tny) < Qba,n(dj(a,n)(xa y))?

for any x,y € X,

(ii) there exists xg € X such that dji.n)(xo, Txe) < pla) <o00) (n=1,2,...),

Yon Gan(pla)) <ooand j: AxN— A

Then T has at least one fixed point in X.

Proof. By letting Doy = {j(a, k)} for any a € A and k € N and Py = m|p, -
Then for each i € N, we have |D, ;| = 1 and M,(z¢) = p(a). By Theorem 3.13

2), T has a fixed point. O
(2), p

In the next theorem, another fixed point theorem for a J-contraction selfmap

by using the previous theorem is presented.
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Theorem 3.15. Suppose X is sequentially complete and T : X — X is a J-
contraction whose A(«) is finite for each o € A. If, for each o € A | there ezists

co € P satisfying :
(i) co(t)/t is non-decreasing in t,
(11) P, (t) < colt) for any () € A(a), n € N and t € [0,00), and

(1ii) there exists xg € X and M, (xo) € RT such that dg, (zo, Txo) < My(xg) for

any (o) € A(a) andn € N |
then T has a fixed point in X.

Proof. Let D,; = Ai(a), Pai((ag)) = o, and ¢, ;(t) = ¢, (t) forany i € N, a € A,

(o) € Aj(), and t € [0,00). Then for any a € A and z,y € X, we have, by

Lemma 3.10,
do (T2, T'y) < Pa © P (Ao (,))
(ap)EA;(a)
< o (do, (7, y))
(ap)EA;(a)
= ¢a,i(dpa,i((ak)) (ZE, y))
(ak)EDaz
Since
| Daitilairt(Ma(wo)) _ [Aipi(a)|eg (Ma(wo))
| Dev,i| @i (Ma(z0)) |A§(Of)|%(Ma(fCo))
< Ca(Ch(Mo(0))
T (Ma(20))
< Ca(Ma(10)) <1,
Ma<l‘0)

for any i € N, we have ). |Da,i|¢a,i(Ma(20)) < 0o. Then by Theorem 3.13 (1),

T has a fixed point. O]

Corollary 3.16 (Theorem 2 in [1]). Let us suppose
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(i) the operator T : X — X is a ®-contraction,

(ii) for each o € A there exists a ®-function c, such that gjn)(t) < calt) for

all n € N and ¢, (t)/t is non-decreasing,

(iii) there exists an element xg € X such that dm)(zo, Txo) < pla) < 00 (n =

1,2,...).
Then T has at least one fized point in X.

Proof. By letting J(a) = {j(a)} for any a« € A and M,(z9) = p(«). Then

|A(a)| = 1, and by Theorem 3.15, T" has a fixed point. O

Example 3.17. Given a sequentially complete locally convex space X, and two
®-contractions 11,7, : X — X; ie., there exist ji;,jo : A — A, and for each

a € A, there exist @14, P2, € ® such that
da(Tll'a le) S ¢1,a(dj1(a) (CC, y)) and da(TQxaTQy) S ¢2,oz<dj2(a)<x>y))a

for any « € A and z,y € X. Suppose further that

(i) jit! = jP o and j5 o jy = jy! for any n € N,

(ii) foreach o € A, ¢y 4(t) = c1(a)t and ¢g 4 (t) = ca(a)t for some ¢1(a)+ca(ar) €

(0,1), and

(iii) there exist zo € X such that djn(q)(zo, T170) < p1(z0, ) < 0o and
djp () (w0, Tawo) < pa(z0, ) < 00 for any a € Aandn =1,2,....

Then H = BEL js a J-contraction with J(a) = {ji(a), j2(a)} and ¢y (t) =

(c1(a) + ea())t. Also, by (i) and (iii), we have |A(a)| =2 < oo and

da,, (950>T11'0) + da, (xo, Tﬂo) < pl(%a 04) +p2($07 04)

da, (o, Hxo) <
o (w0, Hxg) < 9 B
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Hence, H satisfies all conditions in Theorem 3.15, and has a fixed point in X.
Notice that H may not be a ®-contraction, by choosing ji, jo such that dj ) +

dj,(a) ¢ A for some a € A, and hence Theorem 2 in[1] cannot be applied.

We now consider a normed space E equipped with the weak topology. Let E*
be the dual space of E, ||z||; = |f(z)| for any € E and f € E*. Then for all
f € E* | -|sis aseminorm on E, and hence ds(z,y) = ||z —y||; is a pseudometric
on E. Then A= {d;: f € E*} is a collection of pseudometrics on E. A definition
of functionally uniformly lipschitzian selfmaps on a subset X of E with respect

to the sequence (z) is given as follows :

Definition 3.18. Let (z;) be a sequence of positive real numbers. The map
T : X — X is called functionally uniformly lipschitzian with respect to
the sequence (z;) if for each f € E*, there exist n € N, and g1, ¢92,...,9, € E*

1T = Tryllp < 2 ) llz—y

i=1

9i
for any x,y € X and k € N.

Remark 3.19. Every functionally uniformly lipschitzian selfmap is always func-
tionally uniformly lipschitzian with respect to the constant sequence (1), while a
functionally uniformly lipschitzian selfmap with respect to the bounded sequence

is always functionally uniformly lipschitzian.

Proposition 3.20. Let (z;) be a sequence of positive real numbers and T : X — X
be functionally uniformly lipshitzian with respect to the sequence (zi,). Then T* is

a J-contraction for any k > 1.

Proof. Since T is functionally uniformly lipshitzian with respect to the sequence
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(zk), for each f € E*, there exist n € N, and g1, ¢2,...,9, € E*

9i

IT* = Tryl; < 2> lle—y

i=1

2k u
= 1 E — ,
Zk+1(zk+ ) p Hl’ Y 9i
- ot 1 ;:1: ||:B yH(ZkJrl)gi

for any @,y € X. By letting J(f) = {(zx + D)gu,..., (2 + Dgn}, 0(t) = 25,

then ¢ € ® is subadditive, so T* is a J-contraction. O

Next, a fixed point theorem for functionally uniformly lipschitzian selfmaps
with respect to the sequence (z;) which does not require sequential completeness

is presented.

Theorem 3.21. Suppose T : X — X s a functionally uniformly lipschitzian
selfmap with respect to a sequence (zi) converging to 0. If there exists xy € X
such that the sequence (T*xq) has weakly convergent subsequence, then T has a

unique fized point in X.
Proof. Since T is functionally uniformly lipschitzian, for each f € E*, there exist
n €N, and ¢1,92,...,9, € E*

|1T*z = THylly < 2 ) Ml = yllg,

i=1

for any z,y € X and k € N. Let f € E*, € > 0, and (T7*z) be a subsequence
of T*xy such that (T%xq) converges weakly to p € X. Since (2;) converges

to 0, we can choose N € N sufficiently large so that z; < and

€
23 i [Txzo—=ollg,

|7 20 — p||; < § for any k > N. Then we have
177 g = plly < 177 (Tx0) — T ol + 17720 — plly

n
< 2, Y 1 To — zollg, + || 7720 — pl s < €.
=1
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Then (T 'zy) converges weakly to p. Since T is J-contraction, T is weakly
continuous and hence the sequence (T7**1x() converges weakly to T'p. Since the
weak topology is Hausdorff, Tp = p. For the uniqueness, suppose x and y are

fixed points of T'. Then for each f € E* and k € N

gi*

|z = ylly = 17" = Tryllp <z Yz —y

i=1

Since the sequence (z;) converges to 0, we must have x = y. ]
Also, we immediately obtain this corollary.

Corollary 3.22. If X is closed, conver and bounded subset of a reflexive Banach
space, and T : X — X 1is a functionally uniformly lipschitzian selfmap with respect

to a sequence (zi) converges to 0, then T has a unique fized point in X

Proof. By the assumption, X is weakly compact. Then every sequence in X has
a weakly convergent subsequence, and hence, T' has a unique fixed point in X by

the previous theorem. O

Theorem 3.23. Suppose X is weakly sequentially complete and T : X — X is a
functionally uniformly lipschitzian selfmap with respect to a sequence (z). If the

sequence (z) is summable, then T has a unique fized point in X and C(T) = X.

Proof. Let A= {dy: f € E*}. Since T is functionally uniformly lipschitzian with

respect to (zx), for any f € E*, there exist n € N, and ¢1,¢2,...,9, € E*

IT" e = Thyllp < 2> llz—y

i=1

9i

for any z,y € X and k € N. By letting ¢;x(t) = 2t, Dy = {1,2,...,n},

Pf7k<i> = Gi, and Ff(.f,y) - Z?:l dgi(x7y) = Z?:IH‘r -y

k eN,tel0,00), then ¢y is non-decreasing and continuous from the right, and

¢ Where f € B,
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Py (i) € E*. Since (z;) is summable,

Z|ka|¢fk Fy(x,y)) ank ZHI—

keN keN i=1

gz o0,

and

<Z||x—

for all K € N and i € Dyj. By Theorem 3.13(2), then 7" has a unique fixed point

de,k(i)(:B7y) |z — g = Ff(xv?/)a

in X and C(T) = X. O



40

Example 3.24. Let 0 # ¢ = (¢1,¢a,...) € by and T : {5 — {5 be defined by

1 1 1

T(xy,29,...) = (5 sin(g(x)), 3 sin®(g(x)),..., —on sin"(g(z)), . ..),

where g(x) = m Yoo oy for all x = (21, 29,...) € {5, In Chapter 4, we will
show that 7' is functionally uniformly lipschitzian with respect to a sequence (zj).

Moreover, T* is a J-contraction for any k > 1.



CHAPTER IV

CRITERIA FOR J-CONTRACTION MAPS

In this chapter, some criteria for a map to be functionally uniformly lipschitzian
with respect to a sequence (z;) on an infinite dimensional Banach space are given.
By Proposition 3.20, we also have criteria for a map to be J-contractions. Suppose
E is an infinite dimensional Banach space having a normalized Schauder basis (e,,).
Let X be a nonempty subset of £, and T : X — X. Moreover, for a lipschitzian
selfmap h: R — R, we will use L(h) to denote the Lipschitz constant of h.

First, we will recall the definition of functionally uniformly lipshitzian with
respect to a sequence (z) as follows: for any sequence (z;) of positive real num-
bers, a selfmap 7" on X is functionally uniformly lipshitzian with respect to the

sequence (z) if for each f € E* there are n € N and ¢y, ..., g, € E* such that

gi»

1T 2 = THylly < 21> [lz =y

i=1

for any x,y € X and k € N.

Proposition 4.1. If T' is functionally lipschitzian, then e; o T is a lipschitzian

functional for each n € N.

Proof. Since T is functionally lipschitzian, for each n € N, there are m € N and



g1,

, gm € E* such that for any x,y € X,
ey, 0 T(x) — e, o T(y)| = [T(z) — T(y)
<> =y
i=1
= gz —y)|

1=

*
€n

9i

m
|
=1

7

which implies that e’ o 7" is lipschitzian.

< (2 rgin) e~y
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]

The following lemma is important because the definition of being functionally

uniformly lipschitzian with respect to the sequence can be simplified in a Banach

space with a normalized Schauder basis.

Lemma 4.2. Let g1, 95, ..

nonnegative numbers with » >~ ¢i < oo. If for each n,k € N and x,y € X,

oo k
n=1"n

len (TH(@) = Tyl < Z l9:(x =),

., gv € E*, and for any k € N, (cF) sequences of

then T is functionally uniformly lipschitzian with respect to the sequence (zy),

where z, = > o0 cF

n=1"n-"

Proof. Let z, = > 0, cF

n=1"-"n"
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For each f € E* and =,y € X, we have

f (Z en (T () — T’“(y))en>

n=1

IT* () = Tl s =

<A len(TH () — T (y))]

<113 (43 ot )

N
=I£ll= ) lgi(z = y)l
i=1

N
=2z = vl
=1

]

Therefore, in a Banach space with a normalized Schauder basis, it is enough to
check only coordinate functionals to show the functionally uniform lipschitzianess

with respect to the sequence.

Theorem 4.3. Let g1,¢2,...,98v € E* and {h,; :n € N;i=1,...,N} a collec-
tion on lipschitzian selfmaps on R satisfying Y~ max{L(h,;):i=1,...,N} <
oo. If for each n € N

N
*
€n ol = E hn,i ogz’|X7

=1

then T' is functionally uniformly lipschitzian with respect to the sequence (zy),

o = [(ZmaX{L(hm) i= 1,...,N}> (Z ||gi||>] .

Consequently,

where

1af (O ymax{L(h,;):i=1,...,N}) <Zf\i1 ||gz||) <1, then T is function-

ally uniformly lipschitzian.

2. if (St max{Lihng) i =1, N}) (S0 lgill) < 1, then T has a unique

fized point and C(T) = X,
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Proof. Let B=Y"N_ llgill, C, = max{L(h,,):i=1,...,N}and C = 3., C,,.

First notice that, for any n € N and z,y € X, we have

len(T'(x) =T ()| = | p_ (hniogi(x) = hniogi(y))

B

@
Il
i

[Fin.i(9i(2)) = hni(9:(y))]

WE

1

.
Il

M =

L(hni)lgi(x — y)|

1

N
Co > lgilx = y)|-
i=1

-
Il

IN

Next, we claim that for each n,k € N and =,y € X,

e (T¥(x) = T*(y))| < Cu(BCYD  |gi(a — y)l-

=1

When k£ = 1, the statement immediately holds from the previous paragraph.

Suppose it is also true for some k£ € N, we then have

len (T (@) = T ()] < Cu(BC) ' Y 19i(T(2) = T(y))]

=1

< Cu(BO)*! <Z ||g@'||> 1T () =T ()l

< Cu(BC)'B Y |en(T(x) = T(y))|

< Cu(BC)F'BY (On Z |gi(x — y)l)
= C,(BC)*'B (Z Cn> Z 9:(z =yl

n=1

= Ca(BO)IBC Y |gi(w — )

=1

= Cu(BC)* ) lgilw = )1,

which proves the claim.
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By the previous Lemma, we have

N
IT*(z) = T*(y)lly < (BOY Y llz =yl
i=1

and hence T' is functionally uniformly lipschitzian with respect to the sequence
(21), where z, = (BC)*~t. Therefore, if BC' < 1, then (z;) is bounded and T is
functionally uniformly lipschitzian by Remark 3.19. Also, if BC' < 1, the sequence
(z) is summable, and hence by Theorem 3.23, T has a unique fixed point and

C(T) = X. 0

Example 4.4. Consider the map 7T given in Example 3.24. Let 0 # ¢ =

(c1,¢9,...) € by and T : {5 — l5 be defined by

1 1 1

T(xy,29,...) = (5 sin(g(x)), 3 sin®(g(x)), ..., —on sin"(g(2))),

where g(x) = Mﬁ > L enty for all @ = (z1,29,...) € {5, By letting N = 1,
h, = # sin™ and Theorem 4.3, then 7' is functionally uniformly lipschitzian with

respect to a sequence (zj) where

5 = [(Z L<hn>> <||g||>] .

Since Y2 | L(h,) <1 and ||g|] < 1 and Proposition 3.20, T* is a J-contraction

for any £ > 1. Furthermore, T" has a unique fixed point and C'(7) = X.

Theorem 4.5. Letl € N, {g,,;, :n=1,....L;i=1,...,m,} C E* and a € R.
Suppose that e’ (T(x) — T'(y)) = ael(x —y) for alln >1 and z,y € X.

If for eachn <1, k € N and x,y € X, there is ¢ > 0

len (T () = TH(y)] < e 3210 lgnailz — ),

then T is functionally uniformly lipschitzian with respect to the sequence (zy),

where z, = max{cy, a|*}.
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Proof. Let f € E*, k € Nand z,y € X. Then

IT* () = T*(w)ll; = | £(T" () = T*(y))]
= f(ZGZ(T"“(w)—Tk(y)) )

n=1

_ f(Ze;Z(T’“(w)— )+ (ze (T a) — TH())e )
f(Ze?;(T’“(x)—T ) (ze T a) — TH())e )

<allfll) Z |gni(z — )|+ | f (Z a‘e;,(z — y)%)

n<l i=1 n>l

= all £ Z (gni(z —y)| + | (a’“(x —y) =Y des(x - y)en)

n<l i=1

IN

< llfI S lguale — )l + ot F (@ — y)|

n<l i=1

f (Z ave; (x — y)en>

n<l

+

<ck\|f||ZZ!gm |+ la* f(z —y)|

n<l =1

+ Yl flen)er (@ = y)l

n<l

< max{cy, \a’k} (Z Z |z — yH”ngn,i

n<l i=1

+Hle =yl + D llz - yH|f(en>|e;:> :

n<l
Therefore, T is functionally uniformly lipschitzian with respect to the sequence

(21), where 2, = max{cy, |al*}. O



CHAPTER V

FIXED POINT SETS AND VIRTUAL STABILITY

In this chapter, we will show that, under a mild condition, a J-nonexpansive map
is always virtually stable. This immediately gives a connection between the fixed
point set and the convergence set of a J-nonexpansive selfmap.

As in the previous section, let (E,.A) be a Hausdorff uniform space whose
uniformity is generated by a saturated collection of pseudometrics A = {d, : o €
A} indexed by A and @ # X C E. The following theorem gives a general criterion

for a selfmap on X to be virtually stable.

Theorem 5.1. Let T : X — X be a selfmap whose fized point set F(T) is

nonempty, and satisfies the following conditions :

(i) for each oo € A and k € N, there exist a finite set Doy and a map P,y :
D, — A such that
da(Tkvaky) < Z dPa,k(“/)(xuy)a
’yEDO&,k

for any z,y € X,

(11) there exists N € N such that |Dyy| < |Dan| and Py n(Dan) € Pan(Dan)

for anyn > N and o € A.

Then T is uniformly virtually stable with respect to the sequence of all natural
numbers. Moreover, the fized point set of T is a retract of the convergence set of

T.
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Proof. Let z € F(T) and let U be a neighborhood of z. We may assume that
U=N{we X :dy(w, z) < e} for some e > 0 and ay,...,a, € A. For each

n € N, let

€

}.
[ Dainl

Vo= m ﬂ {we X :dp, (W, 2) <

i=1 ’YEDai,n

By (ii), there exists N € N such that |D,, | < |Da,n| and Pa, n(Da,n) C

P, N(Do; ) foranyn > Nandi=1,...,m. Let V=V;NnVoN---NVy which is

clearly a nonempty open subset of X, y € V.l € Nandi € {1,...,m}. It follows

that
dai(le7 z) = da, (le7TlZ) < Z dPai,l('Y)<y7 z).
’YGDai,l
If | < N, then
da Tl 7Z < € = €.

ﬁ for each v € D,,,;, and hence

D,
do,(Ty, 2) < Z ¢ _ ADaw <e

¥EDa, 1 ’Dain‘ B ’Dain‘ -

Hence, T' is uniformly virtually stable with respect to the sequence of all natural
numbers. Since (E,.A) is regular, by Theorem 2.32, we immediately obtain that

the fixed point set of T is a retract of the convergence set of T'. m

Corollary 5.2. Suppose that T is J-nonexpansive with F(T) # &. If there exists
N € N such that |A,(a)] < |An(a)| and m,(An()) C mn(An(@)) for any n > N
and o € A, then T is uniformly virtually stable with respect to the sequence of all

natural numbers and the fized point set of T' is a retract of the convergence set of

T.

Proof. By letting Dy, = An(a) and P, ,, = T4, () for any n € Nand a € A, we
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have
do(T'z, T'y) Z dp, (v (2, 9),
’YGDa 1
for any x,y € X. The result then follows from Theorem 5.1. m

Corollary 5.3. Suppose that T is a functionally uniformly lipschitzian selfmap
on a subset X of a normed space E. If F(T) # @, then T is uniformly virtually
stable with respect to the sequence of all natural numbers and the fixed point set

of T is a retract of the weak convergence set of T'.

Proof. Since T' is functionally uniformly lipschitzian, for each f € E* there exist

N e N and ¢, go, . ..,9v € E* such that
N
|1T*2 = Tryllp <> llz = yllg,,
i=1
for any 2,y € X and k € N. Clearly, T is J-nonexpansive where J(f) =
{91,92,--.,9n} and 1, (A(f)) = mn(A(f)) for any f € E* and n,m € N. By
the previous corollary, 7' is uniformly virtually stable with respect to the se-

quence of all natural numbers and the fixed point set of 7" is a retract of the weak

convergence set of T O

In the final part of this chapter, examples of J-nonexpansive selfmaps are
given. They will help us, for the sake of completeness, construct a simple selfmap,
the last example, whose fixed point set is not convex and hence guaranteed be a

retract of its weak convergence set only by our results.

Example 5.4. Let E = {5 equipped with the weak topology, and T : {5 — {5 be

defined by

T(‘Tlaan"') = (|x1_§x3|7 ’x2—§x4‘7 3, L4, ")7

for any (x1,xs,...) € l3. Then A= {|f|: f € {2}, and by example 3.8 in [12], we

have T is functionally uniformly lipshitzian, so it is J-nonexpansive. However, we
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can directly show that

R

If(T”x—T"y)|§2||f||[ (|21 — 91 + 23 — Y| + |12 — Yo + 24 — y4)

" \/E(le—y1|+|w2—y2|—|—|I1—y1+x3—y3|+|x2—y2+m4—y4|)]

9 — 62

1 1
+ | ]l g\xl —y1!+!wl—y1+x3—y3\+glxz—y2\+\wz—yz+w4—y4!

+ ANy = vl + [ f 12 = ol + [ (2 = w)l,

for each f € lo, n € Nz = (21,29,...) and y = (y1,¥2,...) € L.
By letting J : o — P/ (¢y) be defined by J(f) = {f, 91,92, 93, 94} for each

f € ly, where

f 2v2
9—6\/5

f 2v2
9—6x/§

2V/2 4 2/2 4)
9— 6\/_ 9— 6\/_

for each x = (x1,9,...) € £, it follows that T is J-nonexpansive.

gi(x )—Ilfll(

+1) (21+23), ga(x) = ||f||(

+1) (zot24),

95(z) = 11 (G— 75 + 3)en (@) = 1 (c——%

Notice that (0,0,...) is a fixed point of T, and for each f € {5 and n,m € N,
Tn(A(f)) = mm(A(f)). Then, by Theorem 5.1, T is uniformly virtually stable
with respect to the sequence of all natural numbers and hence the fixed point set
of T'is a retract of the weak convergence set of T'. Moreover, the fixed point set
is not convex because z = (1,1,2,2,0,...) and y = (1,1, —4,—4,0,...) are fixed
points of T', while the convex combination 1z + iy = (1,1,—1,—1,0,...) is not.

Therefore, since /5 is uniformly convex, 7' is not nonexpansive.

Example 5.5. Let X = {(z,,) € {5 : |21],|22] <10 and for any i > 3, |z < 5%

and fix ¢ = (10,10, 15,4, 8, ;, =, 2%, ...) € ly. Notice that X is weakly-compact

and convex. Consider T : X — X defined by

T(xy,22,...) = (sin(g(x)), cos(g(x)), x3, x4, ... ),
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where g(z) = mz;ﬁl cny for all © = (z1,29,...) € ly. By letting [ = 2,

g1 =92 =9, hy =sin, hg = cos, a =1 and 0 = bg = by = ..., we have ||g1|| =

lgall = llgll = 52 and L(hy)|lg1ll+L(h2)[lg2l| < 1. By Corollary 3.7 in [12], T is
functionally uniformly lipschitzian, so it is J-nonexpansive. Then for each n,m &
N, m.(A(f)) = mm(A(f)) because of the definition of a functionally uniformly
lipschitzian selfmap. By Theorem 5.1, T" is uniformly virtually stable with respect
to the sequence of all natural numbers and hence the fixed point set of T is a retract
of the weak convergence set of T'. Notice also that x = (0, 1,0, 0, —2, 0,...),y =
(1,0, At 5 o )€ F(T) but Lo+ Lly= (1,1 Cldetr ' _5°_ 570 ¢

F(T); i.e., F(T) is not convex. Therefore, since /5 is uniformly convex, 7" is not

nonexpansive.
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