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Chapter 1

Introduction

The optical line shapes of excitons in molecular crystals and aggregates
are of interest in many research groups [1-12]. Exciton spectra can display either
a set of distinct narrow lines, a set of relatively broad, merging lines or can consist

only of a single broad line with a characteristic shape.

The structure of the spectrum is due to exciton interaction with internal
molecular vibrations, lattice vibrations and to disorder in the system. In this
thesis we evaluate the spectral density function of electronic excitation on linear
polymer chains of identical monomers under the influence of lattice vibration.
Nearest-neighbor intermolecular ‘coupling and the absence of internal vibrations

are assumed.

In this method, for convenience, we approach the model system in terms
of the time-dependent Schrodinger equation in the tight-binding representation
[13] and show that the continuous limit of this discrete model can be formulated

in terms of the Feynman path integral [14] by using a coordinate space matrix



element of the time evolution operator (Hamiltonian path integrals) [15].

We now introduce randomness into the system and study the case where
the electronic excitation energy &° (7) (diagonal disorder) is distributed in a Gaus-
sian random fashion [18,19]. We assume an electronic excitation-lattice vibration
coupling ¢ [7(7)] (off-diagonal disorder) and apply to the model of an electron
moving in a random system [16]. In the Feymnan path integral approach we
calculate the 2D density of state (DOS) in the presence of a disordered potential

17].

The spectral density function of the Schrodinger equation for a particle in
a random potential is defined in Ref. (34) which we apply to a 3D system. In this
thesis we calculate the spectral density function for the case K -F<< l(eﬁ Tl
dipole approximation) where K is the excitation wave vector. In the low-energy
range ( % — —o0, or, equivalently, » > 1), we consider the limiting value of

v and plot the optical density funetion A (v), which is a function of the energy

5,2 2
22y ”—} and obtain the

v. For the case v > 1, we have A(v) = TN [—25,

asymmetric line shape. The width of the electronic excitation line shape is directly
proportional to the fluctuations of the system. If the width is wide (narrow) then

there is high (low) fluctuation .

The thesis is organized as follows. First we review the Feynman path



integral approach to calculate the propagator of the exciton in Chapter 2. In
Chapter 3, we review some important basic ideas about excitons on polymers
and define the model system. In Chapter 4, we present an evaluation of the
propagator for an electronic excitation moving on a polymer chain under the
influence of a Gaussian distribution in 3D and apply our result to calculate the
density of states and the spectral density functional. Discussion and Conclusion

are presented in Chapter 5.



Chapter 2

Feynman’s Path Integration

The application of the Feynman path integral method to the prob-
lem of polymer physics is given in details by Khandekar [20]. Before we present
our calculation in next chapter, in this chapter we introduce the basic ideas of
the Feynman path integral formulation of the propagator and present some ap-

plications for our work.

2.1 Feynman Propagator

According to Feynman'’s idea [21], when a particle moves from one point to
another point there are an infinite number of possible paths. We can consider the
particle as a point in classical mechanics. The principle of least action technique

is used to determine a particular path from all possible paths.

If a particle moves under the restrictive condition from Z (t,) = Z, at an
initial time ¢, and goes to Z (t,) = &}, at a final time ¢;, there are an infinite number

of possible paths of interest. Each trajectory contributes to the total amplitude



to go from 7, to 7. They contribute equal amounts to the total amplitude, but
have different phases. The phase of the contribution from a given path is the

action S for that path in units of action hA. The action S is defind by

s /ttL (f,f,t) dt , (2.1)

where L is the Lagrangian of the system. According to the principle of least
action, the particular path @ (¢) which the particle travels in the area of interest,
is such that S takes a minimum value. We can say that the value of S is unchanged
if the path Z () is “the classical path”. In quantum mechanics one deals with
probabilities, the probability of a particle for a path Z (¢) lying somewhere within
the space time continuum is the absolute square of the probability amplitude.
The probability amplitude is associated with the entire motion of the particle
as a function of time, rather than simply with the position of the particle of a
particular time. We now consider the path by which the particles move from a
to b and we specify how each trajectory contributes to the probability amplitude
K (b,a). The amplitude K (b, a) is the sum over all trajectories between the end

points a and b of the contributions ® [ (¢)]

K (b,a) = > O (1) , (2.2)

over all path from a to b

where the contribution ® [Z ()] of a path depends on the classical action S in



unit of & .
B [# (£)] = (conts) exp {%S[i’(t)]} | (2.3)
From Eq. (2.2) and Eq. (2.3), we obtain

K (bya) = Z (conts) exp {%S [ (t)]] : (2.4)

over all path from a to b

From the above equation, we cannot evaluate K (b, a) directly because we have
infinitely many paths contributing. Feynman [21] proposed another way to for-
mulate the amplitude in Eq. (2.4) by dividing the time variable into steps of
width € — 0. This gives us a set of time {f; spaced at a distance ¢ apart between
the values ¢, and t,. At each time ¢; we select some special 7; and construct a
path by connecting all point. It is possible to define a sum over all paths in this
manner by taking a multiple integral over all values of #; for ¢ between 1 and

n — 1, where

ne=t,—t, )
€=t —ti
to =t,
S (2.5)
Lo = Tq
Tn = Tp

From this method; Eq: (2.4) becomes

K (b,a) = / / / (const.) exp {%S[;ﬁ’(t)}} B dry By 1. (26)

In order to proceed we take the limit ¢ — 0 and find normalizing factor A™"

which depends on e. This leads Eq. (2.6) to
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Figure 2.1: Diagram showing the sum over paths defined as a limit, in which
at first the path is specified by giving only its coordinate x at a large number
of specified times separated by very small interval e. The path sum is then an
integral over all these specific coordinates. Then to achieve the correct measure,

the limit is taken as e approaches zero[21].



d3x1 d3$2 d3SL’n,1
K (b Nllir(l) // /exp{ ]] 1T 41 (2.7)

This is a path integral and the amplitude K (b,a) is known as the Feynman

propagator.

2.2 Propagator from Schrodinger’s Equation

In this section we will show that the propagator can be derived directly
from Schrodinger’s equation [36]. In Quantum mechanics, the dynamical infor-
mation of the system is contained in the wave function which is sometimes called
the probability amplitude. Therefore, in Schrédinger’s picture, the state vector

is defined by

[U(6)) = U (&) [ () , (2.8)
where U (t,#) is the time development operator, given by

l

U (t,1") = exp [_gﬁ (t — t’)] o(t—1t), (2.9)

with H is the time-independent Hamiltonian operator and 6 (t = #') is the step

function

1 t>t
e(t—t’)_{ 0 fop (2.10)



The configuration of the wave function can be expressed in terms of the coordinate

—

space projection of the state vector W (Z,t) = (Z |V (¢)) . So Eq. (2.8) becomes

<f|xy(t)>=/+ood3x’ <:E ;

e}

v (t’)> , (2.11)
where the complete set of coordinate states

=1, (2.12)

has been introduced. Eq. (2.11) can be rewriten as

(@ |V (1)) = [ K &o KT, 4 & ) <f‘ v (t’)> , (2.13)

o

where

K(Z t:8,t) = <§:’ U (t,t)

f> . (2.14)
This is the “propagator” as the probability amplitude of a particle to go from
Tat time #' to 7 at time t. We now substitute Eq. (2.9) into Eq. (2.14) and
obtain,

Kz 1) = <f f> (2.15)

exp [—%H (t— t’)]

Breaking the time interval ¢ —¢' (assumed to be positive) into n discrete steps of

size

€= : (2.16)
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we can write

+oo ;o
K(z,t,Z,t) = / d*xy...d*z, 1 (T,] exp (—%EH) |Zp_1)

B i o\ L B i o\ L
(1| exp <—ﬁeH> | o) ... (Z1| exp (—ﬁeH) | o) -

(2.17)

We now consider the Hamiltonian of the system in the position representation

7

HE 2 Ly, (2.18)

2m

where p is the momentum operator. Thus in the limit of large n, the time slices

become infinitesimal

<£‘l f;_1> — <:z, exp [—%e (%H/(ﬁ:))]

= (-%Gv (f,)) )

(e[ )

exp [—%df[ (t — t’)}

Q

Introducing a complete set of momentum states, we have

- 52 +oo | 13 -
7y |exp e (2 i) = / d—pg exp 16? (%) — 2)1)
h \2m —x (27h) h

; 2
<exp—ie (g_m)

m Tm
exp ——
2mihe P h2¢

3

(T —@_1), (2.20)
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and, taking the continuum limit, we find the path integral prescription

n—1
K(f,t;fl,t = lim — // /exp [;i %$+€V(j’l)

-1
d T d?’l’g dgl’n_l

XL T

(2.21)

3
)2is the normalization factor . Or, in short,

1 _ m
where A (2m'~6

/D )] exp ~ 5 HOR (2.22)

where the notation is that the integral represents a sum over all paths Z (¢) con-

necting the initial and final space time point &, ¢ and Z, ¢ respectively. For each
. -2
path there is a weighting factor given by exp (%S) where S = fth dt (% -V (Z (t)))

is the classical action associated with that path.

2.3 Path Integral for a Free Particle

We now calculate the propagator for a free particle with the Lagrangian

for a free particle [21] given by
. m -2
L (f 7, t) =24 (2.23)

Thus Eq. (2.21)becomes

n—1 2
Koo = g f [ fo 55

-1
% d T d3x2 d3$n,1

(2.24)
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The integrations may be performed sequentially using the Gaussian integral

+oo T b?
/_OO d*z exp [—aZ® + bF] = i’/gexp [—El . (2.25)

First, we consider the integral of

1 Zm by 5y = N2 dgl'l
Z /exp {ﬁ% [(.’L’l == ZL'()) -+ ($2 F— 271) :|} A s (226)

we have

m N3 [T i BN\ L
(2m'he) / AP {ﬁ% (@& — )" + (& — 31)"] } d*zy

- (%) : exp {%-2% (7> — 7o)’ } . (2.27)

Second, we consider the integration of 7

1 Tm o, 7 = L d3x, dx
Z//GXP {73% [(371 - 560)2 (7= 371)2 + (75 — 562)2] } Al Az- (2.28)
Substituting the result from Eq. (2.27) into Eq. (2.28) and forming the integra-

tion of 75, we obtain

()

We integrate to n — 1 steps, and obtain

K@ 0T 1 = (#W)) {%2";;6) (. —50)2]}. (2.30)

. I — — —/
Since ne =t —1t, ¥, = &, and Ty = ¥ , therefore

Y m > im (:17:'—33/)2
K(x,t,x,t)—(m) {ﬁ? [ﬁ]} (2.31)

Njw

exp {%2.’(7;6) (@ — 0)7] } . (2.29)
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2.4 The Quadratic Lagrangian

For the case of a free particle, we can carry out the direct integration.
In other cases, the path is more difficult to work out. Therefore, we present
a different way to solve this difficult problem. We now consider a quadratic
Lagrangian|[21], this corresponds to the case in which the action S contains the

path z (t) up to the second power, i.e.
L(z,zt)=a®) i+ b))z +c@) > +d@)i+elt)z+ f (), (2.32)
and the general form of the Feynman path integral

K(b,a) / Dz (t)]exp - S[ )] , (2.33)

is integral over all paths which go from (z,,t,) to (zp,t,) - Since we can determine
the most important characteristics of the propagator. Let x (t) be the classical
path between the specified end points. This is the path, which has an extremum

for the action 'S. For this notation we have been using
Se by al'= S [za(t)]- (2.34)

For any path z (t), we can express as the sum of the classical path, z (), and a

new variable y (t). That is

() =za(t) +y(). (2.35)
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Figure 2.2: The difference between the classical path z., and some possible alter-
native path. The end point y (t,) = y (¢,) = 0[21].

That is to say, instead of defining a point on the path by its distance z (¢) from
an arbitrary coordinate axis, we measure instead the deviation y (¢) from the

classical path as shown in Fig. (2.2)

At each t the variable z (t) and y () differ by the constant = (t). There-
fore, clearly, dx; = dy,; for each specific point ¢; in the subdivision of time. In
general, we may say D[z (t)] = D[y (t)]. The integral for the action can be

written as

ST ()] = S [za(t) +y (6] = /t i [a (4) (ril nE gf) + } 1 (2.36)

If all the terms, which do not involve y are collected, the resulting integral is just
Sz (t)] = Sy. If all the terms, which contains y as a linear factor, are collected,

the resulting integral vanishes. This could be proved by actually carrying out the
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integration, however, such a calculation is unnecessary, since we already know
the result is true. The function z. is determined by this very requirement Eq.
(2.34). That is x is chosen so that there is no change in S, to first variation of
path around z. All that remains are the second order term in y. These can be

easily picked out, so that we can write
ts ~ _ ,
(e (1) = Su Balt [ d[a(@F 4005+ O] (237
ta

From above equation, the classical path does not depend upon the integral over

all paths. So we can separate the propagator to be
K (bja) = exp {%Sd b, a]}
ty
ta

/OOD[y]exp{%/ dt [a(t);’y2+b(t)y~y—|—c(t)y2}}.

(2.38)

Since all paths y start from and return to the point y = 0, the integral over paths
can be a function only of times at the end points. Thus the propagator can be

written as

K (bya)=F (T)exp {%Scz [b, CL]} : (2.39)

where

tp
ta

F(T):/OOD[y]exp{%/ dt [a(t)y%b(t)y-wc(t)y?}} . (2.40)

is the prefactor.
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2.5 Path Integral for Forced Harmonic Oscilla-
tor

The example of a problem which can be solved exactly to obtain the
propagator, is that of a one dimensional forced harmonic oscillator which is acted
by an external time varying force f (¢). The corresponding Lagrangian [21] is

L@z, t) = %ﬁ’ A\ %w%ﬂ +f() 7. (2.41)

We will obtain the equation of motion by using the Fuler-Lagrange equation for

the Lagrangian

0L  d oL
73K | < Tridias A 2.42
Ox  dt 0x i\ ( )
thus we have
Tt uwin— A= 0. (2.43)
m

From the action S, substituting Eq. (2.41) into Eq. (2.1) and using Eq. (2.43),

we obtain

The solution of Eq. (2.43) is

z(t)=z;(t)+zg (1), (2.45)
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where xy and z; are the homogeneous and inhomogeneous solutions respectiveiy.

For the homogeneous case (xy) and using Eq. (2.42), we have
r+wr=0, (2.46)

with solution

pr= A" Be " (2.47)

For the Inhomogeneous case (z;), we use the Green’s function method, i.e.

(d-2 +w2> Gt—t)=0(t—t), (2.48)

dt?
where
Gt —t)= d—wew(t*”G(u}) : (2.49)
\/ 27
and
S(t—t)= o piwte—t) (2.50)

Vo

Substituting Eqgs. (2.49) and (2.50) into (2.48), we obtain

L iat=t) piwlt—t')

Gt—t)Y=-0@t—-t)—— -0t -1 2.51
() =) ) (2.51)
So, we can rewrite the solution of Eq. (2.45) to be
_ iwt —iwt 2 ! Y f (t/)
z(t) = Ae"™" 4+ Be ™" + at'G (t —t') ol (2.52)
t1



18

and we obtain

r(t) = mlcosw(t—tl)+/tdt’Lz;)Sinw(t—t’)

t1
Tg — x1cosW (ty — t1) — tz dt’f(t sinw (ty — ')

sin w (tz — tl)

sinw (t — ts) .

(2.53)

Using Eq. (2.53) to find the derivative of #, and substituting into Eq. (2.44), we

have

mw

Sz(t)] = —/——— [(I?—l—m%) COSWT—F%/Zdtf(t)SiH(U(tQ—T>

2sinwT

—z198+ ——/ dtf (t)sinw (t —t1)

dt dsf s)sinw (s —t1)sinw (ty — t)|

(2.54)

and T = ty — t1, that is the classical action of a forced harmonic oscillator. From
Egs. (2.39) and (2.40), we see that, to complete the propagator we must find the

prefactor F'(T);which-is equivalent to a free harmonic oscillator. We have

= /0 D flexs {ﬁ /0 T{%z‘f Zbuﬂy?}} , (2.55)

with the boundary condition y (0) = y (T') = 0. By expressing y (¢) in the form

of a Fourier series with a fundamental period of T,

y(t) = Zan sin T (2.56)
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we can consider the paths as functions of the coefficients of a,, instead of functions
of y for any value of t. This is a linear transformation whose Jacobian J is a
constant and independent of w, m and h. However, we shall avoid the evaluation
of J by collecting all factors which are independent of w (including J) into a
single constant factor. The integral for the action can be written in terms of the

Fourier series of Eq. (2.56). Thus the kinetic-energy term becomes

T P
: t t
/0 det — E E Tmm’ﬁanam/o cosn%cosm%d
_ g 2
y §Zn (5) e (2:57)

and similarly the potential-energy term is

ot 7
/O y2dt = EZai : (2.58)

n

with the assumption that the time 7" is divided into discrete steps of length e, so

that there are only a finite number N of coefficients a,,, the path integral becomes
too oo +oo TN N 2 da, day da

o | g2\ 201072 BON

/ / / eXp{Q;%{( ) w]“"}A ATTA

(2.59)

Since the exponent can be separated into factors, the integral over each coefficient

a, can be done separately. The result of one such integration is

o0 N 5 2.2 -3
im | /nm 9 o day, nem 9
/ {exng—n {(?) “”H%7:<Tz ‘w) - (260)
o0 n=1
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Thus the path integral is proportional to

1 1 1
N (272 )\ 2 N (n272\ "2 N W2T?2\ "2
o) () m(-ts) e

The first product does not depend on w and combines with the Jacobian and

other factors we have collected into a single constant. The second factor has the

limit [(sinwT) /wT]féas N — o0, that is, as € — 0. Thus

N

F(T)=cC (Siz;‘fT) .~ (2.62)

where C' is independent of w. But for w = 0 our integral is that for a free particle,

for which we have already found that

F(T) = (27:;1:[’)% . (2.63)

Hence for the harmonic oscillator we have

i )é (2.64)

pry— (o
() 2mihsin wT

Substituting Eqgs. (2.54) and (2.64) into (2.39) to obtain the complete solution.



Chapter 3

The Molecular Exciton for One
Dimension

Many researchers are interested in the exciton problem and at-
tempt to describe the optical properties of molecular aggregates [16]. The concept
of the exciton was first introduced by Frenkel [27] and led to studies of the optical
properties of solids and molecular aggregates [32]. In this chapter we introduce
the basic idea of polymers, some important properties of the exciton and intro-

duce also a model system.

3.1 Polymers

Molecular aggregates (polymer or crystals) are small agglomerations of
molecules having one (chain), two (monolayer), or three spatial dimensions. In
this thesis we are interested in the linear case. The molecular aggregate in one
dimension, the polymer, is essentially a macromolecule consisting of many re-
peating units. These units are called monomers which are strongly bound by

chemical forces.
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3.2 The Molecular Exciton Spectra

In this section we introduce the exciton and discuss its properties. A
superposition of states in which one monomer is excited electronically whilst the
rest remain in their electronic ground states is ealled an “exciton”. The structure
of the spectrum is due to exciton interaction with molecular vibrations and optical
phonons. It splits the exciton band into a series of bands each corresponding to
a specific vibration transition. Acoustical phonons which couple to the exciton
yield the phonon side band, a broad and structureless feature accompanying the

individual lines.

The exciton band (in the case of a single excitation) consists of N states,
where N is the aggregate size, the number of molecules in the aggregate. The
number Ny, of molecules over which the exciton is delocalized is called delocal-
ization length and usually ranges from a few to some ten molecules. One has to
clearly distinguish between Ny and the aggregate size /N -which may be much
larger (10* — 10°molecules). Many excitons may be located on one aggregate and
the delocalization length of the excitons on an aggregate depends on the coupling
strength between the molecules and other factors like the presence of dynamic

(phonons) and static (environmental inhomogeneities, kinks, ...) disorder.

The width of the exciton band is given by the coupling strength between
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the molecules in an aggregate and the exciton band usually extends over an
energy region around the monomer transition energy. The transitions to different
states in the exciton band are not all equally allowed, causing the appearance
of bands in the absorption spectrum which are located within the exciton band,
but much narrower than the exciton band itself. If the molecules in an aggregate
are all identical and have equivalent positions, only one absorption band appears,
resulting either from tramsitions to the bottom or the top edge of the exciton

band.

3.3 Model System

In this thesis we consider a linear polymer chain consisting of a sum of
n identical monomers in three dimensions. The exchange of electrons between
the constituent monomers and nuclear interaction within a monomer (internal
vibrations) are ignored. Different monomers, have (repulsive) nuclear interactions
and electronic coulomb interaction. The monomers execute vibrations (lattice
vibration) along the polymer chain. -~ We: assume- that monomers have only a

single excited electronic state. The model are shown in Fig. (3.1) and Fig. (3.2)
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Fig. (3.1) Schemat linear chain of polymer

which consists of a s. R, is the position of the center

AOUUINBUINT )
RN ININENAY
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Fig. (3.2) Schematic representation of coordinates of internal electronic and nu-

clear degrees of freedom of the monomer molecules 7 and p respectively.

The present model is described by the polymer Hamiltonian as

=" [Iflgl (7o) + HY (ﬁn)} Y Vi (P F)+ K, (ﬁn) +> VN (ém, }?n>
n mn n mn.

(3.1)
where R, is the position of the center of mass of the n** monomer with summa-
tion over all monomers in the polymer chain. The internal electronic and nuclear
coordinates of monomer molecules are 7,,, g, respectively. The Hamiltonian I:Lil
and f[TJLV are the internal electronic and nuclear Hamiltonian of the n'® monomer.
The Hamiltonian K, describes the kinetic energy of the n” monomer as a whole
(lattice kinetic energy) and VN, (ﬁm, ﬁn> describes the (repulsive) nuclear in-

teractions of nuclei on different monomers. The nuclear interaction within a

monomer is contained in HY. The totality of electronic coulomb interactions
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on different monomers is contained in an (Tm, ™). In the first approximation
we neglect the internal vibrational Hamiltonian f[,]LV (pn) and we can write the

polymer Hamiltonian in terms of a sum over electronic and vibrational lattice

Hamiltonian
= B (3.2)
where
BY=S2H (7 + 30V (P ) (33)
and

o =%k, (én> LS (ém, En) . (3.4)



Chapter 4

Path Integral Representation

The main concept of Feynman’s path integral is the propagator
which contains all information about the system. In this thesis, the propagator
which leads to the density of states is important for understanding the spectral
density function. The propagator is defined by the coordinate space matrix ele-
ment of the time evolution operator. The propagator G (7%, t9; 7, t1) represents
the quantum mechanical transition amplitude for a particle at position 7 at time
t; “propagates” to position 75 at time t5. For more details on the concept of Feyn-
man’s path integral, the interested reader is referred to see the book of Feynman
and Hibbs [21]. In this problem, we apply the method of Sa-yakanit [17, 22] to
the exciton moving in a randomly ‘distributed system. The introduced non-local
harmonic trial action and the path integral of this action involves only a Gaussian

integral and can be performed exactly [23].
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4.1 Hamiltonian Equation

4.1.1 Time-Dependent Schrodinger Equation

The starting point of our calculation is the time-dependent Schrédinger

equation of polymer state vector, and we look for a solution of

(H—zh ))\Iff’ t)>:0, (4.1)

where ‘\IJ <7_”: T1y ey TN R = ﬁl, . 2 RN; t>> is dependent on the internal elec-
tronic and center of mass coordinates of N monomers. The electronic part de-
scribes the de-localization of the excitation and the state vector can be written

in terms of the monomers state vector |m, (7)) as

‘ U(7, R, 1) > Zan<R t) 170 (7)) (4.2)

There are n monomers excited electronically and all others in their ground states.

It is required the normalization that

(W R [P R ) =D anan (Tl m) =D la* =1, (43)

since the |m,) are orthonormal. In according of Eq. (3.2), we evaluate the matrix

element of the Schrodinger operator, H— ihl by projecting the bra state (my,|

ot?
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on Eq. (4.1) from the left hand-side and the result is

(o (7 =in) ) = (] (55 2) S () 2
—(wm]ih%;an (£t) Ima) |

(4.4)
where
S (il HY fmatn (Ro) = 3 (ol B (Fo) b 0 (B t)
D (ol Vi (Fos ) [ @ (B 1)
= (B0) o (). 45)

n#m
with &, is the molecular excitation of energy at site m and V,,,,, = (m,| V. (Trms Tn) |7n)
is the matrix element of interaction between monomers. Since (m,,| does not de-
pend on R coordinates and time, we can write

S (b HY ). (é, t) - i, (z%, t) , (4.6)

n

and

W ih%an (é, t) 77, = ih%am (é, t) (4.7)

n

From Eqgs. (4.4), (4.5), (4.6) and (4.7), we can represent the system in terms of

the time-dependent Schrodinger equation in the tight-binding representation
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ih%am (ﬁ, t) = £mlm (ﬁ, t) + Zanan <fi, t) + fINam (ﬁ, t) ) (4.8)

n#m

4.1.2 Adiabatic Approximation

In this thesis the effect of electronic excitation and interaction between
monomers is due to the monomer molecular vibration (lattice vibration). From
the previous subsection, we have obtained ¢, and V,,,, which are scalar quanlities
and depend on sites m and mn respectively. Hence, the site of each monomer
can be labelled by using only the center of mass coordinates we have assumed no
internal vibration in the previous section. Since in the adiabatic limit the lattice
coordinates move slower than electronic coordinates. So we can expand ¢, and

Vinn about the equilibrium ﬁ% and ]3;91 up to the first order. We then have

Em (ﬁm> R Em, (ﬁ%) + 5m (ng5m> ~_ 4+ ., (4.9)
Rm:R?n

and

IAL <§ma én) ~ Vin (R;On’ Rg) + gm : <€Rmen) R R0
A
+C ( anmn>§m:1§9n + o (4.10)
Aot

where (,, and (, are small displacement of each monomer at site m and n re-

spectively. Let ¢, <ﬁ%> = &% and V,,, (ﬁ%,ﬁg) = V9 . Then Eq. (4.8)

n:
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becomes
; a ~ 0 0 r N g _
Zhaam = Eplm T van&n + H ap + G - (VRm€m> P (m,
n#m
+Z2Cm ) <va mn)R R?n Qn - (411)
n#Em RnfR

4.1.3 The Nearest-Neighbor Approximation

In most other works, polymers are assumed to be a one dimensional linear
chain with nearest neighbor interaction (excluding volume effects). So we can
approximate the interaction of the system to have nearest neighbor interaction

only, n = m= 1, then the off-diagonal terms of Eq. (4.11) become

2
O —
Vm7m—1am—1+2Cm = (va Vm,m—l) Em:égn Am—1
Fp—F0

+Vn01,m+lam+1 — 25771 = (vaVm,m+1)R RO am+1 - (412)
R.=R°

For a linear chain, we approximate both sums in Eq. (4.12) to have the same

value <VRmV> _po and we shall write G = C. Thus Eq. (4.11) becomes

R.= Ro
0 0 0 TN F (o
Zhaam = Emlm + V (aerl + amfl) ‘olinom b C ’ (vaEm) Rpn=RY, (m
Rn=RY
—|—25 (vav)ﬁm:ﬁ% (aerl + amfl) ) (413)

Ro—F0
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where V0 = VTS s, Assuming that the functions a,, 11 and a,,—; can be expanded

about the function a,, at site m, we then have

st (é, t> = a ((m + 1)3, q, t) =a (mg> + 3, R, t) = (maﬁ, t)
b - Vopa (maﬁ, t) ¥ Z;—Qvilba (mb,R, t) o, (414)
and
(1 (ﬁ, t> = a ((m — 1);, R, t> 2 (mg> — 3, R, t) =a (mbﬁﬁ, t)
E £ == 1)2 -
£y N4 (mb,R, t) Vi (mb,R, t) o, (415)

is the lattice constant of the system

where V,,; is the gradient at site m and I b

and we assume that 0% < 1; then b?V° becomes constant. Thus we have

Vo (Ama1+@m_1) = 2V% (maﬁ, t) + bQVOVE,Lba (maﬁ, t>

— h2 —
_ o1/0 W o2
— 2V% (mb,R, t) o Vi <mb,R, t) . (4.16)
where p?V0 = — = [13]. Expanding
25 <VRmV> R’m:R‘% (am—H + CLm—l) ) (417)
R,=FRY
we have
o — — hg —
of . (vav) _— {m (mb,R, t) — 5 Vit <mb,R, t)} L (4.18)

R.=R?
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Thus the time-dependent Schrédinger equation can be rewriten as

ih%a <maﬁ, t) = [60(m3) ~C-yq (mz) +2V°
_% (1 + % (%Rmvmn) _ 5) V2, + gN]a (mz?,ﬁf, t) .

(4.19)

where ¢ <m b) = - {V RmEm T4 (V R V) — as the electronic excitation-

Rn:R2:| E’m:é(r)n

lattice vibration coupling.

4.1.4 The Continuous Limit

From now on, we will neglect the term % <VRm an> 7, —po inEq. (4.19)
Roe 0

(assume < 1). In the continuum limit, we can write Eq.

= (VRm an> R 0.
a0
(4.19) as

0 (. n? AN _ 2 (e Jla (7.6
ihgpa (7. Ct) =B +2V°0 = 5oVt HY =g () Ja (7.0t) L (420)

where 7 is the electronic excitation coordinates and H” is the vibrational monomer

Hamiltonian which is assumed as the harmonic oscillator Hamiltonian:

X P2 M
HNe L0 L Da2ee 4.21

where P is the monomer momentum operator, {2 is monomer-vibration frequency

and M is the mass of each monomer. Thus we can write Hamiltonian as

A

9 2
2 p 0 /= 0o, | M o - g
H=— 2V 4+ — + —Q — . 4.22
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where p is the momentum operator of the electronic excitation.

4.2 Path Integral Representation

4.2.1 The Feynman Propagator

We now consider the probability amplitude for a quantum process starting
from the initial position 7, 5 " at t' and by returning to the final position 7, 5 at
t. The propagator can be written as coordinate space matrix element of the time

development operator U (t,t') -

/

7 5> (4.23)

FITAIA-Y T

=

K(ru Ct) = (7G
where the time development operator U (t,t") is defined by

A

U(t,t))=exp {—;H’ (t— t')] Ot —1"), (4.24)

with H is the time-independent Hamiltonian operator and 6 (t —t') is the step

function defined by

1 t >t
0 (t—1") :{ 0 A9 (4.25)

Substituting Eq. (4.24) into Eq. (4.23), thus we can rewrite the propagator as

A

exp {—%H (t — t’)]

F’,5’>. (4.26)
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From the above equation we will divide the time interval ¢t — ¢’ into n discrete

. 4!
steps of size € = &L

Fn—la@b—l> X
i A
exp l:—ﬁGH:|

= {—%eﬁ[]

<Fn17 571—1

In the limit of large n the time slices become infinitesimal

Loz Wl 2
<TZ>C1 exp {—ﬁEH] 7‘171,C171>

. ~9 A2
_ = IO Y = v o, 7 Mepm - #
= <rl,g exp[ h€<2m+€ (r) + 2V —|—2M—|— QQC g () ()]

Fn727 <n2> X

Fo,fo> . (4.27)

. ~9 S
~ - S R B 0 0, & oMo = o
= <rl,g 1 h6<2m—|—€ () +2V° + + —Q°¢ — g (P g)

- i 2 p2
<”’<l exp {—# (zp—m & m)

+%9252 ~ g () 5)] +0.(e),

14

and we can evaluate the coordinate space matrix element of the momentum p

<Fl7<—l

operator

i 2. -
exp — €9 71,1 ) - (4.29)

(4.28)
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By introducing a complete set of momentum states for electronic excitation, we

have [ ~%L |5 (p] = 1 and inserting into Eq. (4.29), we get

(27r

A2

d3p oo i P L o
/W <7‘1,Q |p> eXp [—ﬁé%] <p | Tl—17C1—1>
d*p > - i PP
— | ol 4 —-)7 - _ I 4.
/—(27rh)3 <7°17Q |P> <P|71 1,C1 1>exp[ h€2 } (4.30)
Since the plane wave is define as
<7’I>Q |p> = exp {ﬁp ' 7”1} and <p | 7’1—1,C1—1> = exp [_ﬁp : 7"1—1] . (4.31)

Inserting the plane wave into Eq. (4.30), we obtain
. _Q 3 . _Q .
.- PPN 4 & d°p PPt
<Tl:<l eXp (_ﬁ62_> 7”1—1,C1—1> =- / (27rh)3 exp (—ﬁe% + ﬁp- (r) — Tz_1)) .

(4.32)
Performing the p-integration by using the Gaussian integral

+0o0 T % b2
/ dz exp [az® + bz] = (—) exp l—ﬁ} : (4.33)

o0

thus we can write the kinetic energy of electronic excitation as
" E ) = () e | 2 (Tl
bo bl 2mihe h 2 € '

Similarly we can write the kinetic energy of polymers as

3 .
A aoa N NE i (GG
bl b 2mihe h 2 €

(4.35)

I0i7
exp h€2

i P
R A



37

Substituting Eqs. (4.28), (4.34) and (4.35) into (4.27) and taking the continuum

limit, we find the path integral prescription

Lz A . m STTL M 37n too +oo
K(T,C,t;r , C ,t/> = nh—»rgo (2m’h€) (27?2'716) / d3r1...d3rn1/ d*Cr...d®Cuq

o0 o0

2¢
(Cz—511>2 —
M e EEQ Cl +€g (7’1) Cl s

3 3
where the quantities (27:;[6) 2and(2 7Jr\2[~6) 2are normalization factor of particles of

mass m and mass M, respectively. So the time-dependent Schrodinger equation

can be rewriten in the path integral representation as

K(ﬁ,é,tgﬂ,@,h) = /D[F(T)]/D [5(7)} exp[% tt2 CZT(%?2 (1) —&° (F (1))

(4.37)

where the symbol [ D [7(7)] and [ D [5(7)} are defined by Eq. (4.36) and rep-
resent the integration over all possible path connecting the points (7,;) and

(7, ta) ,(ﬁ,t1> and (52,152) respectively.

4.2.2 The Path Integral as a Functional

When a Kernel contains more than one variable and can not be separated,

the analysis therefore is very difficult. However because of the quadratic action in

(4.36)
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the coordinate 5 , we can simply write the Kernel by eliminating 5 (1) coordinates.

The resulting propagator can be written in “functional form” as

- — o — t2 m_? 0/—
K<7“27C27t2;7“1,C1,t1 /D {GXP h/ d7(57" (1) —¢e ((7))
t1

=2V x T [r (1)}, (4.38)

where

(4.39)
Integrating over all paths available to the 5 coordinates produces a functional T'.
From Eq. (4.39) it is just the path integrals of a forced harmonic oscillator. We
shall assume the electronic excitation-lattice vibration coupling ¢ [ (7)] (forcing

function) as an external force. Then Eq. (4.39) can be determined exactly [21].
2 M M 22 - =

i) = [pfie]esty [Car (50 - 00 1T EO]C0)
t1

_ M¢2 2 iMQ b
B (QWihsinQ(Q—tl)> eXp{thinQ(t2_tl)[<C1 +C2>COSQ(t2 t1)

_2C1 CQ + % / ’ dT? [7(7)] sin Q2 (1 — t)
t1
2]

—l—m / ) drg [7(7)] sin Q (ta — 7)

t1

o / a : 405 [F(7)] 9 [F(0)] sin© (1 — 7) sin 2 (o — “”} |

(4.40)




Thus we can rewrite the propagator as

R o 7 M % . 7 t2 m -2
K(szfzjtz,rl,Cl,h) = (QWihsinQ(tQ—t1)> /D[T(T)]exp{}—i/t1 dT(ET (1)

—0 (7 (r)) — 2V°

1M Y
+2hsinQ(t2 '/ tl)[(ﬁ + Cg) cos Q (ta — t1)
_25]'Eﬁza_%'/2dT§[F(¢)]st(7_tl)

t1

7/t
+% / drg [F(7)]sin Q (ty — 7))

t1

4 (ﬁ / dr g 7 ()]
/ 10 [ ()] St - ) sin 2 (o — “)) } |

t1

(4.41)



40

The coordinate 5 can be eliminated by first setting 51 = 52 and integrating Eq.

(4.41) with respect to the variable (5. As a result, we obtain

K(tant) = [ Gdis (G- )

K
i (" m -2
p— d __;
(2mhst (ta — t1) > {exp[h/tl ( 2" (7)

— (P (7)) = 2V°

<T27C2,t2,7‘1, Chtl)
§
2

y

to
_hMQ sin ) (tg " tl) /tl dTg [T <T)]

: / dog [F (o)) sinQ (ty — 7)sinQ (o — h)]}

t1

f/ iMQ S S
d 3 Q(ty —1t1) — 2
2 / C (exp 2h sin £ (tg =1 tl)[ C €08 ( 2 1> C

+%Q t] drg @) sin Qe = 1)
+]é—(Q ; dr g Fsin 2 (12 — T)]>

(4.42)

For simplicity, let us consider the case when the nearest neighbor interaction V°
and exciton-lattice vibration coupling - ¢ [7 (7)] are constant. Performing the ¢

integration by using Eq. (4.33), we obtain

to m -2
K{fadint) = ( 2 (cos 2 ( t2—t1 ) /D )l expl /1 dT(ir (1)

—e (F(7)) — 2V +

2MQQ)]
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4.2.3 Inclusion of Randomness

We now introduce randomness into the system and study the case when
g% (7) is distributed in a Gaussian random fashions with zero mean () = 0
and finite correlation length L. Therefore, the correlation function of the second

moments is defined by
(2 2 (7)) = W (7 = 7). (4.44)

We can write the correlation function as

W (7 (r) = 7H(0)) = €& exp (— () ~7(0)l ) | (4.45)

where £ is the variance of the random Gaussian potential. The quantity &,
having the dimension of energy squared, was first introduced by Halperin and
Lax [35]. In order to calculate the average propagator with respect to probabillity

distribution of ° (7) (P[e° (F)]), we write the average propagator in the form
G (7o, 171,11 ) = (K (P2, 03571, 60)) preo - (4.46)

By using cumulant expansion (exact semi-invariant expansion)[25] defined by

(oxp [A]) = exp | A) + o ((47) = (A4)%) + 55 ((4°) = 3(A) ({(4) = (4)%) = (4)") + .

(4.47)
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up to the second order, we obtain the propagator with randomness as

- S 7 ( b2 m:2
G (7o, ty; 7, 11) = ( 2 (o2 ( t2_t1 ) /Dr |exp[— {(/t1 dT(;?‘ (1)

oy 2]\9492) + %//W(F(T)—F(a))drda}]

N (Z(Cosﬂztz _tl)))g /D[F(T)] exp (%S) , (4.48)

where S is the action of the system and we have set the propagator starting from

7 at t; =0tomy at ty =1.

4.2.4 The Approximated Propagator

In many path integral problems one cannot carry out the path integral
easily. Thus we need an approximation method to handle this problem. In this
research we apply the method given by Sa-yakanit [13; 24] and introduce the

nonlocal harmonic trial action :

2 0= [aokm -rof), @)

where w is a parameter to be determined. Sy (w) is chosen to be translation
invariant since we are not considering the localized states. The average propagator

may be written in terms of the trial action as

G (73,71 t,w) = Gy (72,7131, w) <eXPh(S So)> ; (4.50)
So(w)
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where the non-local harmonic oscillator propagator is defined by

Go (FQ,Fl;t,W) = ( C()S Ot ) /D eXp So( ) (451)

and the average (...)g,(, is defined by

J DIF (7)] exp (L5, (w)) O
J DIF () exp (28 (w))

(O) so(wy = (4.52)

where O denotes a physical quantity to be averaged. Consequently, it is conve-
nient to use the cumulant expansion and keep only the first order cumulant, Eq.

(4.50) becomes
G (7, 1 tyw) = Go (T2, T3t w) exp[h (5= 50) 5 () (4.53)

To obtain G (72, 71; ¢, w) we have to find G (7,7 ; £, w) and the average (S — So) g, -
Since their kinetic energy terms are identical and always cancelled each other, the
exponent (S — So) g, can be replaced by (S"— Sy) sy Where the prime sym-
bol in both actions mean excluding out the kinetic energy terms. For convenient,
we shall denote <SI> £ (w)and ( 55 (w)) SRS the averages of the second term

respectively. So we can write the average propagator to be

Gy (9715 t,w) = Go (72, 713 ¢, w) exp [h (<Sl> So(w — (S (w)) So(w)>:| . (4.54)

From Ref. (25) the propagator Gy (7, 71;t,w) can be calculated exactly to be

3
1 3 m o \s wt 3
— — _t — . 4'
Go (?“2, 15 7W) (2 (cos Qt)> (2m’ht> (2 sin %wt) ( 55)
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We now consider average (S') g ) from Eq. (4.54)

2

. etopt
_ 0 9 ? . -

(S") Sow) = 2V + —QMQQt + %/0 /o drdo (W (7'(1) = 7(0))) 5wy » (4-56)

where W (7 (1) — 7 (0)) is given by Eq. (4.45) for Gaussian potentials. To

evaluate this average (S') g ,ywe expand it in powers of Fourier transforms.

&k
(27)

W (7 (1) = 7(0)) = / S W(k) exp [112 (7 () =7 ()], (4.57)

where W (k) denotes the Fourier transform of W (7 () — 7(c)) which appears to

be

W (k) = €, exp [—%2/5’2} \ (4.58)

Thus we can rewrite <S /> as

So(w)

/ d3k
= 910
<S>so(w) VOt +2MQ2 2h/ dT/ da/

(exp |ik - (7 (r) = 7())]) (4.59)

e (w)

The average of the above equation can be expanded in cumulants. Because the

average is quadratic, only the first two cumulants survive (see appendix A). Hence

’ 0 g il (T Bk
<S> So(w) T 25/0 T/O ‘7/ (27T)3W( ) exp (a1 + az) ,

(4.60)
where
o = ik (F(T) = 7(0)) gy (4.61)
/;2 1 5 N 2 2
ay = =5 [3{FE) =7(0) )5y = (r (1) =7 (ONigy| - (462)
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Substituting W (k) into Eq. (4.60) and performing the k-integration, we obtain

/ 0 'S i ! ¢ 1 gA_g B?
) s =2Vt + gt g [Lar [ () aben (7).

(4.63)

where

1 5, 11, < )
A= ZL +513 ((F(r)=7(0)) >S0(w) —(r (1) — 7 (0)) ey | - (4.64)
and

B = (r(r) — F(U»So(w) . (4.65)

Next we consider the average of the trial action { Sg (w)) g, (from Eq.

(4.49); excluding the kinetic energy terms) which is easily written as

m w?

t t
— — 2
( S} (w)) S _EZ_t/O dT/O do <(r (1) —=7(0)) >SO(W) : (4.66)
From Eq. (4.63) and Eq. (4.66) all averages can be expressed in terms of the
averages ( 7 (7)) gy(oyand (7 (1) —7(@))g,,)- Such averages-can be obtained from
. . . ; t e — e .
the characteristic functional <exp (% Jodrf(r)- r (7’)) > where f (1) is any

So(w)

arbitrary function of time. To be explicit, we write the characteristic functional

D@ exp (£ [So @) + fyarf (). 7(7)])
(7)) > e T DIF ()] exp (28 (@) |
(4.67)

T
0]
>
ko]
VR
ST
O\“
QU
\]
=y
o
N~—
=L



46

From Eq. (4.67), if the trial action Sy (w) is quadratic, then the forced action is

defined by

S(J; (w) = So (w) +/0 de(T) -7 (7). (4.68)

From Feynman and Hibbs (1965), the characteristic functional can be carried out

exactly as

<exp (% /O nf @) wm) > R <% oy, So,cl]) , (4.69)

where S({cl , So are the forced classical trial action and classical trial action
corresponding to classical actions of S (w) and Sy (w) respectively. We have
derived these in Appendix B. From the transition element given by Eq. (4.69) we
can obtain the transition element of 7 (7) by differentiating with respect to f (7).

The result is

(roren (| P 7)) e . fz) (ex0 | 550~ S0a]

(4.70)
Therefore, by evaluating both sides when f (1) =10, we obtain
il bl bl e )
7 (7) Vao() === :
OF ()| =0
and further differentiating Eq. (4.69), we get the second derivative as
no %Sl oS!, oS!
(F(7) 7(0) Vopy = | 7=+ — = 21 (4.72)
P57 (1)-6f @) of () 5@ |5y
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Using Egs. (4.60), (4.71) and (4.72), the first and second functional derivatives

can be evaluated, and we can get A and B for 7 > ¢

() *Soq
r\T S()(UJ) - =
6f (T) f(T)EO
mw i WA L 2_w7"w<t ),wt
= —= | sinwT — 2sin — sin — (£ — 7) sin —
2sinwt | mw 2 2 2

273 WwT w wt
imfores | ——— W
+mw <51nw( T) — 2sin 555 (t — 7)sin 5 )] :

(4.73)

and
52S! ;
(F(1) 7(0) Vo) | = =
OF 6@ -6F(0) | o
3h
R o [sinw (t —7)sinwo — 4sin 27 %
1w sin wit 2

in - (£ — ) sin =" sin = (¢ — 7)]
W = o 1n — S1n — — .
S 2 T)S 2 S 2 T

(4.74)

Substituting Eqs. (4.73) and (4.74) into (4.64) and (4.65), we obtain

1.2 ih sin L - Lot —(r—
L sin sw (1 — o) ?0812w( (1 J))) @)
4 mw sin swi

AEA@T—@@—(

and

sinjw (1 —o)cossw (t—(T+0)) .

B =B (i, —m;t, T, 0w) = 2

sin %wt
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Using Eqgs. (4.73) and (4.74) and performing the integration in Eq. (4.66), we

obtain

and substituting Eqs. (4.63) and (4.77) into (4.54), we obtain the propagator as

3 3
. . 1 2 m wt 3 [wt
G (2 i, w) = (2 (cos Qt)) <2m’ht> (2 sin “—t) exp[§ (7 cotewt = 1)

2 B
£ oo it 9 A
it hzz\mzzf 212 ( ) / / drdoA”E exp (4A)

i | wit twt wt  wt |r2—7‘1]]
— eot— —['=—'esc — —_
2 Y 2 X 2 t ’

N

*on

(4.78)

where A and B are Eq. (4.75) and Eq. (4.76), respectively.

4.3 The Density of States

From the Kane theory ; the density of states per unit volume ' at energy

E' is defined as
1
= 525 (E—E)), (4.79)
where the sum is over the energy F; and ¢ is the Dirac delta function. The Dirac

delta function can be represented in terms of a transformed propagator. With
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the energy expansion formula of the propagator [18,30]

G (2, ;7,0 Z@ ) eXp[ ;Et} (4.80)

we have the trace of the propagator of the form

TrG (ry, t;7m,0 Zexp [——E t} (4.81)

Taking Fourier transforms of both sides, the above equation leads to

+o0 :
/ dtTrG (ry, t;71,0) exp {%Et} o 27rh25 (E—-E;). (4.82)

o0

Note that the following identities,

+0o0
d (a) = 517;/ dx expliaz], (4.83)
and
5 (%) — b5 (a), (4.84)

are used in Eq. (4.82). Now the required relation between the density of states
and the propagator can be obtained by comparing Eqs. (4.79) and (4.82), then

we have

riB) =559 |

1 1 [T Lo
dtTrG (ry,7,t,0) exp -

iEt} | (4.85)

Because of translational invariant of the propagator, hence

TrG (7, 7,t,0) = QG (0,0:¢,0) . (4.86)
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From Eq. (4.86) the density of states can be writen to be

1 [t i

— 00

4.3.1 Approximated Density of States

We obtained the DOS in first cumulant approximation by substituting

Eq. (4.78) in Eq. (4.87)

S
1 [t 1 2om NS [ wt \® 3wt
E) = — [ dt ( ) 2 cotwt — 1
nE) = 53] (2(coth)) oriht (QSin“’t> eXp[2(2C0w )
3
2

. . 2 . L
Y t+1Et—5—L(Z> !

(NI

t T
/ drdoA(t, 7 — o;w)”
0

h R2MQ2—h S 0
(4.88)
Now using the property
Alt,T,00w) = A(t,t — (T —0);w), (4.89)
the double integral in Eq. (4.88) can be reduced to a single integral:
¢t ) t (
/ / drdoA(t, 7 —o;w) 2 = t/ dzA(t,z;w)" 2, (4.90)
o Jo 0
where
L? ik sin9zrsin% (t —x
Alt,zw)=—+ : 2 3 ( ) (4.91)

4 mw sin %t
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Thus we can rewrite Eq. (4.88) to be

3
1 +oo 1 2 mo\s wt 3 3 [wt
E) = — dt ( ) S otwt —1
) = 55 (2(cosm)) omiht (ZSin“’—t) eXp[2(2 core )
3

2

. . 2 . t
1 T g 1 & (L _3
— 2V + — t+ Bt — > =) t [ deA(t,x;w) 2]
Y T hame T 2h2<4> /0 wA (L z0)

(4.92)

Since the density of states are complicated to calculate, we shall consider the
density of states in another energy limit which is easy to solve. In this thesis we

are interested in the low-energy limit.

4.3.2 Low-Energy Limit

In the low-energy limit, we consider the system at large imaginary time
(it — o00). This is called the “ground state ” approximation. Hence, we are able

to approximate

1
cos (Ot = 5 eXP [iQ] (4.93)
wt 1 wt
il Sa | e & 4.94
sin 2Z,exp[Q}, (4.94)
t Wit
Lottt L12 %, (4.95)

sin gasing (t—x) 1 (4.96)

sin %t 2i
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Thus Eq. (4.92) becomes

1 [t m o\ 3 i 3
E) = — dt(—) 3(it)2 exp[—— ( —E + 2w
p(E) = oo | digey) @ D7 expl h( T3
1 g9’ 93 t?
RO+ 2V0 — P VR — 4
e 2MQ2) W N (4.97)

where E, = hw and Ej, = % is the correlation energy (the kinetic energy
of localization over a distance L., the correlation length of the random potential

fluctuations). By using the tabulated formula (Gradshteyn and Ryzhik)[31]

+oo
/; dt (’Lt)p exp (—ﬁ2t2 r th) — Q_g\/%ﬁ‘;LPl exp (_q2/8ﬁ2) Dp (CJ/ﬁ\/i) ,

(4.98)

where D, (z) is the parabolic cylinder function, Eq. (4.97) can be rewritten as

o (B) = s () witymefoxp (<f8) Dy (4/9v2) . (499)

2rh \27h
where
—
2
g=1 (%hw +Ey—FE

We are now interested in the case of the low-energy limit of the density of states.
There are two equivalent ways, following Halperin and Lax (1974 ), [24], by
letting £ — —oo (¢ — +00) or keeping F constant and reducing the magnitude

of fluctuation by letting & — 0. The asymptotic properties of the parabolic-
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cylinder function is

D, (2) = exp (—i%) 2P (1 — @i + ) . (4.101)

22

For z — oo, keeping only the first order, Eq. (4.99) becomes

1 moNs o A S4B
p(E) = ﬁ(%) W27 i/TB g exp (—q7/45%)

= [(Be/L)’ /€] a(v,2)exp [-E7b (v,2) /2¢1] . (4.102)

where the dimensionless variational parameter, = E,/E}, energy normalization

with respect to the correlation energy v = (Ey — E) /E},
3 3
a(v,x) = (Zx 0 u) (44 z)° /8V/2, (4.103)

and

2 (4.104)

Wl

3 2
b(v,x) = (4:{:—1—1/) (L+4/x)
At the moment the parameter w introduced in the trial action Sy has not yet

been determined.

4.3.3 The Variational Equation

In order to adjust the variational parameter x, it is introduced in the trial
action. We know that the justification of this procedure was given by Lloyd and

Best (1975) [28]. Lloyd and Best have shown that, the exact density of states is
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the function which maximizes the pressure P(E) of the system

/

P(E) = /E dE' 7 dE'p (E) = /E dE' <E - E) P (E) . (4.105)

This means that, for calculating the approximated density of states, the varia-
tional parameter should be that the pressure function reaches its maximum value.

Therefore, the variational equation is obtained in the form

%P(E.x) BN (4.106)
or
E
/ dH (E Z E) (%p (Em) —0. (4.107)

The asymptotic behavior of this variational principle is to maximize the density of
states, which is so-called the Halerin and Lax’s variational principle (1966,1967).
That is

0

— (Ex) — 0. (4.108)

In Halperin and Lax’s work, this equation has been reduced to a more simple one
by assuming that the prefactor of the exponential varies slowly with respect to
the exponential term. The left-hand side of Eq. (4.108) then becomes a partial

derivative of the exponent of the density of states. In symbol

0
£b (v,z) = 0. (4.109)
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From Eq. (4.102), it is clear that when £, — 0, the exponential factor becomes
very sensitive to the choice of x while the prefactor is not. Thus the best choices

of z with using Eq. (4.109) found to satisfy the equation
Ry AP A0 (4.110)
by keeping only the positive root

=

[(1 +160)% — 1} , (4.111)

N | —

and then substituting Eq. (4.111) into both a (v, z) and b (v, z), we obtain

3/2 9/2
a) = [(1+160)" = 1) {1 £160) 24 7| j2122022, (4.112)

and
1/2 7/2
b(v) = [(1 1+ 160)Y2 — 1] [(1 +160)% 4 7] /28, (4.113)
respectively. By introducing the dimensionless quantity

Y i

g 4aeh (4.114)
Ej

we can rewrite the density of states in the final form

p1 (v) = [1/ELL*¢?] a(v) exp[—b(v) /2¢]] . (4.115)
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4.4 The Spectral Density Function

The spectral density function for the electronic excitation in a random

potential from Ref. (34) can be adoped to
2

(2

A (ﬁE) - Qi <Z 5(E — El-)> : (4.116)

/ dre™ e, (i)

where ¢; () is the wave function of the i electronic excitation state with a corre-
sponding energy F;, K is the excitation wave vector and € is the normalization
volume. Eq. (4.116) is averaged over all possible configurations of the random
potential fluctuations ( (...) indicating an average over the statistical ensemble).
We are now interested in calculating the optical density function of which the
wave function for electronic transition is in the eV range while molecular size is

of order the Angstrom unit. Then we have

. ’ 1
K.i~1 1A — ~ — < 1 411
7 eV x 1A 5000 < 1 (4.117)

so that it is reasonable to replace

=
3
=

(4.118)

This is called the electric dipole approximation. Thus Eq. (4.116) becomes

/ dre; (1)

25(3 - E)> (4.119)
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In the low-energy range we shall be interested only in the ground state contri-
bution to the density of states (since we have taken the limit of large imaginary
time in obtaining it), and we can consider that the main contribution to the above
equation comes from the ground state wave function in a harmonic potential well,
ie.,
ol = (2 Fexp [ (227 (4.120)
This is a Gaussian envelope function. We now introduce v which is the Gaussian
parameter:
7T % - % ) (4.121)
where x is a variational parameter. Substituting Eq. (4.121) into Eq. (4.120),
we get
3
oo (T) = (2%) : exp [—77 7] . (4.122)
By taking the factor U dre; (F)|20ut of the functional integral in Eq. (4.119) and

performing the integral over dr’, the remaining functional integral is, by definition,

the density of states. We obtain

Ay ] [t AYRE (27”)/) o (4.123)

Substituting Eq. (4.121) and Eq. (4.111) into the above equation, we obtain the

final result of our spectral density function

167 L2 ’
Av) = ((1 FTRVE 1) p(v) (4.124)

w




where p; (v) is given in Eq. (4.115).
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Chapter 5

Discussions and Conclusions

In this thesis we have developed a quantum mechanical descrip-
tion of the spectral density function of a single electronic excitation in randomly
distributed identical polymer chains. The proposed method is based on the path
integral technique for the calculation of the density of states of disordered sys-
tems. In this model we consider a long linear polymer chain under the influence
of lattice vibration, nearest neighbor intermelecular coupling and assume that

each monomer has only a single excited electronic state.

The model system is described by the polymer Hamiltonian in tight bind-
ing approximation which consists of a sum over electronic and vibrational lattices
where we assume absence of internal vibration. The starting point of our calcu-
lation is the time-dependent Schrodinger equation using delocalization of the

excitation state vector (Eq. (4.2)).

In the absence of internal vibrations, we assume the quantities ¢,, and V,,,

to be a function only of the lattice coordinates. In the adiabatic limit the lattice
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coordinates move slower than the electronic coordinates. Thus the quantity &,

and V,,, can be expanded about the equilibrium position.

For a one-dimensional linear chain, the interaction of the system are as-
sumed to have only nearest neighbor interactions (excluded volume effect) only,

ile. n=m=+ 1.

Upon introducing of the electronic excitation-lattice vibration coupling ,
¢, and approximating the vibrational lattice Hamiltonian to be harmonic (Eq.
(4.21)) we show that in the continuous limit the discrete model can be formu-
lated in terms of the Feynman path integrals by using coordinate space matrix
elements of the time development operator (Hamiltonian path integral). Thus the
“propagator” (or kernel) represents the probability amplitude that a single par-
ticle (electronic excitation) produced at a position 77, 51 at time t; “propagates”

to another position 7o, 52 at time to.

In this system, the path integral is a “functional form” containing more
than one variable, which cannot be separated because it contains a coupling term
between coordinates 77 and 5 For convenience, the coordinates 5 can be eliminated
by integration over the variable ¢ giving the functional T'[7(7)]. From Eq. (4.39)
one can see that the functional T[(7)] is a path integral of the forced harmonic

oscillator. For the external oscillator (this is a force function) the electronic
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. . . . . - — .
excitation-monomer vibration coupling ¢[r(7)] is assumed and we can calculate

exactly [21] .

In the path integral method, it is easy to include randomness in the sys-
tem. We study the case of nearest neighbor interaction V°, consider the electronic
excitation-monomers vibration coupling ¢ [7(7)] as a constant and introduce ran-
domness into the system. Specifically we study the case where the electronic
exciton energy £°(7) is distributed in a Gaussian random fashion with finite cor-
relation length L, in order to calculate the average propagator with respect to
probability of €°(7) (P[e°(F)]). Then we obtain the propagator which includes

randomness (Eq. (4.48)).

We approximate the propagator by introducing a trial action Sy based
on the harmonic oscillator potential. This is equivalent to assuming that all the
fluctuating potentials have the same quadratic shape. Thus, we need to approxi-
mate the full action by a nonlocal harmonic oscillator (Eq. (4.49)). The average
propagator can be rewritten in terms of the trial action, using the path inte-
gral normalization, corresponding to a zero-order approximation G, and keeping
only the first-order term in the cumulant expansion, the propagator in the first

cumulant approximation (G; is obtained.

The DOS is given by the Fourier transform of the diagonal path of the
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configuration averaged one-particle propagator. The DOS in the first-cumulant
approximation was derived by Sa-yakanit [22] and generalized for the case of

d-dimensions in Ref. (30), which led to the optical density function.

Considering the ground state contribution to the DOS in the limit of large
imaginary time (Eq. (4.97)) and performing the ¢-integration using Gradshteyn
and Ryzhik [31], we can rewrite the DOS in its asymptotic form which results in
the pre-exponential factor a (v, z) and the factor in the exponent b (v, z) being
obtained. We introduce the dimensionless variational parameter x = g—: and

.. - . _ Ey-E
energy normalizing with respect to the correlation energy v = 5= We have

minimized the DOS exponent and obtained the variational parameter z. Keeping

only the positive root and introducing the dimensionless disorder parametor,

’

£ = ]%, we obtain the final DOS in the form of a (v) and b (v) defined in (Eq.
L
(4.115)).

Since we are interested in the spectral density function, we wish to calcu-
late the spectral density function that represents the case K -7<<1 (eﬁ Tl
dipole ‘approximation) in the low-energy (Eq. (4.119) ). Introducing the ground-
state electronic excitation wave function in a harmonic potential well as the Gaus-
sian envelope function and using the Gaussian parameter -, we can take the factor

} [ drgy (F)‘Qout of the functional integral. The remaining integral is, by defini-
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tion, the density of states p (). So we have Eq. (4.124) as the final result for the
spectral density.

From Eq. (4.124), we are interested in the spectral density function in

E—FEq
Er

the low-energy range ( — —o00, or, equivalently, v > 1 ). For the limiting

case, ¥ > 1, we have the spectral density function

234 2
el

which is dependent on the dimensionless energy v and dimensionless disorder
parameter £ . In order to plot the spectral density function A (v) which is a
function of the dimensionless energy v, we have fixed the correlation energy £,
and varied the dimensionless energy v for any values of dimensionless disorder

parameter £ . We obtain the asymmetric line shape shown in Fig. (5.1)
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Fig. (5.1) Plot of the spectral density functional A (v) v.s. dimensionless energy

v = E%—_LE and dimensionless disorder parameters £ = 0.2, 0.4, 0.6, 0.8 and 1. The
plot are calculated using the path-integral method for the low energy limit of the

spectrum and assuming a constant correlation energy £y = 1 meV.

In Fig. (5.1) the plot of the spectral density functional of the dimension-
less energy with varying disorder parameters are shown for the low-energy limit.
The electronic excitation absorption line shape influenced by the random poten-
tial are broad and decreased in magnitude of the peak with increasing disorder.

Thus, the width of the electronic excitation line shape is directly proportional
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to the fluctuations (¢': disorder parameter) of the system. If the width is wide

(narrow) then there is high (low) fluctuation.
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Appendix A:

Approximated cumulant

We approximate <eXp [zlz (F(r) — 7 (0))] >s o by using cumulant ex-
o(w

pansion,

(exp [a]) = exp [(a) + % ((a*) = (a>2) + % [...] + } . (A1)

Considering only up to the second order, we therefore have
<eXp [zlg (7(7) — 7_”(0))}> = exp [<@E ((7) — F<U))>
+% {<(u§ (7(7) — F(a))>2>
= (- () - F(a)))f}] . (A2)

We are seperating (A.2) into 3 terms and manipulating these terms as follows

—

ar= (i (7(7) = (@) = ik (F(7) =7 () (A3)

and the last term is
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(A.5)
From (A.3) and (A.4), we give
Co =14 (7) =12 (0) (A.6)
Gy = 1y (1) =1y (0) (A7)
C.=r.(7) =12 (0) (A-8)

= EE) o) + R () - 7 (o)
(A.9)
where
(Caly) = (CaCy) = (C:Cy) = 0. (A.10)
See Feynman and Hibbs [21]. Hence, we have
i =3B | S ()~ 7))~ (7(r) ~ F(0)?] (A11)



Appendix B:

Find trial action

In this appendix, we find Sg,cz and Sy ¢ which are used to evaluate (7(7)) ¢/,
and (7(7) - 7(0)) 5(., - In order to obtain S({Cl and Sy ., we have to find the clas-
sical path by considering a variation on SJ (w)

t

Si(w) = /dTL(?(T),f(T),t)

At the extremum point,

55{; (w) = /dT [mF(r) 5?(7) + f(7).67 (1)

where 67 (1) =6 [dz(;)] = %}ET) and 07 (t) =-07(0)=0.-Thus

t

55({ (w) = —/dT |:m7_"(7') +

0

Therefore, we can obtain a classical equation

() + WP (1) = 2 / dori (o) + 217 (B4)

m
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and we can solve Eq. (B.4) by using the Green function method

1
w sin wt

g(r,0)=— [sinw (t — 2z)sinwo O (T — o) +sinw (t — o) sinwr O (0 — 7)]
(B.5)
where O is the Heaviside step function and we use the boundary condition 7 (0) =

1 and 7 (t) = 75. From Eq. (B.4), we use Eq. (B.5) and get

7o (7) = 70 (7) +/ u172/da/ﬁ. v

where 7%, (7) is the homogeneous solution of Eq. (B.4). Integrating both sides of

(") g(r,0)do (B.6)

Eq. (B.6) and adding the same term together, we obtain

t t t t

/daFC(T) _ £ /fh(T)dT+ /da /(h@g(m) (B.7)

0 — “’TQdefdag (1,0) Lo o o "
0.0
B t w(oc—1)
= Senuif2 (714 T5) sm —|— /f (sm sin 5 ) do
(B.8)
and
rof, > (0~ 7)
o - Cwo | w(o—T
/dO’/dT - g(r,0)= m/daf(a) (sm?S,lnT) .
o 0 0
(B.9)

Substituting Eq. (B.8) and Eq. (B.9) into Eq. (B.6), we have

1 2 t—
. (1) = 1] (rysinwr + rpsinw (t — 7)) — o <Sinw—Tsinw( T))

wo . w(t—o0)

t
X | (7 +F1)sin7 - —/daf (o) (sinTSin —)
0

+ / 1) (o 1) do (B.10)
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The forced classical trial action Sf o (T2, 7151, w) is obtained by substituting Eq.

(B.10) into the expression
t
S(J)c,cz (7%, T15t,w) = S (72, 715t W) + /dT F ()7 (1) (B.11)

which we have

) 2
Sfa o fitw) = 5 /dT ;(T)—”—t/dT/dayf(T)—ma)\?
0 0 0

1 .
4 g [Fc () e (T)— 72 (0) 7 (0)] . / i Py o)
0
(B.12)
Thus, we get
t
S({cl (F27Fl;t,CL)) = %Cot% |F2 _FI‘Q

H

2r - t
e = /dT f(r) (sian — 2sin % sin%u (t —7)sin ﬂ)

2sinwt | mw 2
0
t
211 - ) L owt L w . WT
+%/d7 f () (smw(t—T) —QSIH?Slng(t—T)SIIl7>
) } |
—W/dT/de?(T) Flo) fsinw (t = 7) sinwo
0. 0
~4 sing (t — 7)sin % sing (t —o)sin %}] : (B.13)

By means of Eq. (B.11), the classical trial action Sy can be obtained if we set

f (1) equal zero. Hence, we find

1 t
SO,cl (7?2, Fl;t,w) = §mw cot % |7?2 — Fl 2 . (B14)
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