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CHAPTER I

INTRODUCTION

Stein’s method introduced by Stein [44] in 1972 is a powerful tool to give

uniform and non-uniform bounds on normal approximation. There are many ap-

proaches of the Stein’s method, one of them is the size biased couplings approach.

For a non-negative random variable Y with finite and positive mean µY , we

say Y s has the Y -size biased distribution if

E(Y f(Y )) = µYEf(Y s)

for all functions f for which these expectations exist.

The size biased technique is a useful tool to give bounds in normal approxima-

tion which can be seen in [9] and [21].

In 2011, the bounded monotone size biased couplings, that is,

Y ≤ Y s ≤ Y +B

with probability 1, for some non-negative constant B, are mentioned in [26] by

Goldstein and Zhang. They also gave a uniform Berry-Esseen bound for bounded

monotone size biased coupling via Stein’s method.

Let X1, X2, . . . , Xn be non-negative random variables with finite and positive

means, and let W =
n∑

i=1

Xi. Denote µn = E(W ) and σ2
n = Var(W ). By the result

of Goldstein and Zhang [26], we get a Berry-Esseen bound for W expressed in the

following theorem.

Theorem 1.1. ([26], p.880) If µn and σ2
n are finite and positive, and W s is a

random variable having the W -size biased distribution and satisfying W ≤ W s ≤



2

W +B with probability 1, for some B > 0, then

sup
z∈R

∣∣∣P(W − µn

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ µn

σ2
n

∆+ 0.82
µnB

2

σ3
n

+
B

σn

,

where

∆ =
√

Var(E(W s −W | W )).

In the present work, we obtain Theorem 1.1 in the case of a non-uniform ex-

ponential bound. Our main result is as follows.

Theorem 1.2. Under the assumptions in Theorem 1.1, for z ∈ R such that

0 < |z| ≤ 4σn and c > 0, we have

∣∣∣P(W − µn

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ C1(z)
µn

σ2
n

∆+ C2(z)
µnB

2

σ3
n

+ C3(z)
B

σn

where

C1(z) =
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

µn|z|3

192Bσ3
n e

− z2

8B

(
1

1+c
− µn

8σ2
n

)
,

C2(z) =
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
µn|z|3

96Bσ3
n
+

|z|
4σn e

−z2
(

9
40B

− µn
32Bσ2

n

))
,

C3(z) = 2
(
e

µn|z|3

192Bσ3
n
+

|z|
8σn

)
e
− z2

2

(
1
4B

− µn
32Bσ2

n

)
.

There are three examples to illustrate the usefulness of Theorem 1.2 consisting

of sum of independent random variables, the number of bulbs on at the terminal

time in the lightbulb process and the number of m runs.

In 2005, Chaidee [7] presented a non-uniform Berry-Esseen bound for sum

of independent bounded random variables in the term of e−
|z|
2 . A non-uniform

bound for sum of independent random variables in the term of e− z2

2 with unknown

constant which was suggested by Chen, Fang and Shao [8]. In this work, we apply

Theorem 1.2 to obtain a non-uniform exponential bound for sum of independent

random variables, especially, the bound is in the term of e− z2

16 with known constant
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when the approximated random variable is binomial with parameter p = 1
2
.

In 2011, Goldstein and Zhang [26] gave a uniform Berry-Esseen bound for the

number of bulbs on at the terminal time in the lightbulb process by using a version

of the Stein’s method for bounded monotone size biased couplings. We obtain it

in the case of a non-uniform bound. Application of the lightbulb process is also

mentioned as the dermal patch problem.

In 2005, Goldstein derived a uniform bound for approximating the distribution

of the number of m runs by normal distribution which can be found in [21]. Now,

we attain the non-uniform exponential bound.

This dissertation is organized as follows. In Chapter II, we review some concept

of the Stein’s method and some properties of size biased couplings. In Chapter III,

the proof of Theorem 1.2 is provided. The applications of Theorem 1.2 such as the

sum of independent random variables, the lightbulb process and the number of m

runs are presented in Chapter IV, Chapter V and Chapter VI, respectively.



CHAPTER II

STEIN’S METHOD AND SIZE BIASED COUPLINGS

In this chapter, we introduce the Stein’s method for normal approximation and

size biased couplings equipped with some involved properties.

2.1 Stein’s Method for Normal Approximation

In 1972, Stein [44] introduced a method in finding a Berry-Esseen bound which

is not concern with Fourier transformation and relied on the elementary differen-

tial equation. This method was extended from the normal distribution to other

distributions, for example, Possion, Cauchy, binomial and clubbed binomial which

can be seen in [3], [30], [43] and [25], respectively. In this dissertation, we interest

in normal approximation. Consider the Stein’s equation for normal distribution

function

f ′(w)− wf(w) = I(w ≤ z)− Φ(z), (2.1)

where I is the indicator function and Φ is the standard normal distribution function.

The above linear differential equation has the unique solution fz which is form

fz(w) =


√
2πe

w2

2 Φ(w)[1− Φ(z)] if w ≤ z,
√
2πe

w2

2 Φ(z)[1− Φ(w)] if w > z.
(2.2)

Then

f ′
z(w) =

 [1− Φ(z)][1 +
√
2πwe

w2

2 Φ(w)] if w < z,

Φ(z)[−1 +
√
2πwe

w2

2 (1− Φ(w))] if w > z.
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Note that the derivative of fz at the point w = z does not exist. From the Stein’s

equation (2.1) and the Stein’s solution (2.2), we define f ′
z at the point w = z by

f ′
z(z) = [1− Φ(z)][1 +

√
2πze

z2

2 Φ(z)].

Therefore,

f ′
z(w) =

 [1− Φ(z)][1 +
√
2πwe

w2

2 Φ(w)] if w ≤ z,

Φ(z)[−1 +
√
2πwe

w2

2 (1− Φ(w))] if w > z.
(2.3)

For any random variable W , by (2.1), we note that

E(f ′
z(W ))− E(Wfz(W )) = P (W ≤ z)− Φ(z)

which implies that we can find a bound of E(f ′
z(W )) − E(Wfz(W )) instead of

P (W ≤ z)− Φ(z). This technique is called the Stein’s method.

In our work, we need the following properties of f ′
z:

|f ′
z(w)| ≤ 1 for all w ∈ R (2.4)

([10], p.246).

For each z > 0, define g : R → R by g(w) = (wfz(w))
′. Then

g(w) ≥ 0 for all w ∈ R, (2.5)

g(w) ≤ 2(1− Φ(z)) for w ≤ 0, (2.6)

g(w) ≤ 2

1 + w3
for w ≥ z, (2.7)
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and

g(w) =


(√

2π(1 + w2)e
w2

2 [1− Φ(w)]− w
)
Φ(z) if w ≥ z,(√

2π(1 + w2)e
w2

2 Φ(w) + w
)
(1− Φ(z)) if w < z

(2.8)

([10], pp.248–249).

In order to bound |E(f ′
z(W )) − E(Wfz(W ))|, we rewrite E(Wfz(W )) in a

suitable form presented by many approaches, for example, the exchangeable pairs

approach (see [33]–[36] and [45]), the zero bias transformations (see [21] and [23])

and the size bias transformations (see [5], [17]–[20], [22] and [24]). In this work,

we focus on the size biased couplings approach to obtain the bound.

2.2 Size Biased Couplings

For a non-negative random variable Y with finite and positive mean µY , the

distribution of Y s is said to be Y -size biased if

E(Y f(Y )) = µYEf(Y s) (2.9)

for all functions f for which these expectations exist.

The distribution of Y s exists with Radon Nikodym derivative which can be

seen in [4] and [9].

The size biased coupling (Y, Y s) is bounded if there exists a non-negative

constant B such that

|Y s − Y | ≤ B

with probability 1 and it is monotone if

Y s ≥ Y
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with probability 1. Therefore, if there exists a non-negative constant B such that

Y ≤ Y s ≤ Y +B

with probability 1, (Y, Y s) is called the bounded monotone size biased cou-

pling (see [26]).

These are some examples of size biased couplings.

Example 2.1. If Y has a Bernoulli distribution with parameter p ∈ (0, 1), then

Y s = 1 has the Y -size biased distribution (see [2]). Note that the coupling is

monotone and bounded by B = 1.

Example 2.2. If Y has a Poisson distribution with parameter λ > 0, then Y s =

Y + 1 has the Y -size biased distribution (see [2]). It is easy to see that (Y, Y s) is

bounded monotone size biased coupling with B = 1.

Example 2.3. Let X1, X2, . . . , Xn be non-negative independent and identically

distributed (i.i.d.) random variables with E(Xi) > 0 for i = 1, 2, . . . , n. Consider

Y = X1 +X2 + · · ·+Xn. Following the construction of size biased coupling in [1],

for each i = 1, 2, . . . , n,

Y s = X1 + · · ·+Xi−1 +Xs
i +Xi+1 + · · ·+Xn

has the Y -size biased distribution where Xs
i has the Xi-size biased distribution,

independent of Xi and Xs
j for j ̸= i. By choosing a random index I such that

P (I = i) =
1

n

for i = 1, 2, . . . , n and X1, X2, . . . , Xn, I are independent,

Y s = Y −XI +Xs
I

has the Y -size biased distribution. We note that (Y, Y s) is not necessary bounded

or monotone.
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Example 2.4. In the classical urn allocation model, n balls are thrown indepen-

dently into one of m urns, with the probability of a ball being in any urn having

equal probability. For i = 1, 2, . . . , n, let Xi be the location of ball i, that is, the

number of urn where ball i lands. The number of non-isolated balls is given by

Y =
n∑

i=1

I(Zi > 0) where Zi = −1 +
n∑

j=1

I(Xj = Xi).

In 2011, Ghosh and Goldstein [17] gave the construction of size biased coupling of

Y such that

|Y s − Y | ≤ 2,

but is not necessarily monotone in some situation.

Example 2.5. Let Y be a geometric random variable with parameter p ∈ (0, 1).

Arratia and Goldstein [2] showed that

Y s = Y +G+ 1

has the Y -size biased distribution where G is an independent copy of Y . This

coupling is monotone but unbounded.



CHAPTER III

NON-UNIFORM BOUNDS FOR BOUNDED

MONOTONE SIZE BIASED COUPLINGS

Let X1, X2, . . . , Xn be non-negative random variables with finite and positive

means, and let W =
n∑

i=1

Xi with mean µn and variance σ2
n. A random variable

W s having the W -size biased distribution exists by using the size bias construction

appearing in [4] and [9].

In 2011, Goldstein and Zhang [26] used the Stein’s method and bounded mono-

tone size biased couplings to give a uniform Berry-Esseen bound as the following

result.

Theorem 3.1. ([26], p.880) If W ≤ W s ≤ W + B with probability 1, for some

B > 0, then

sup
z∈R

∣∣∣P(W − µn

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ µn

σ2
n

∆+ 0.82
µnB

2

σ3
n

+
B

σn

,

where

∆ =
√

Var(E(W s −W | W )).

In our work, we obtain Theorem 3.1 in the case of a non-uniform exponential

bound.

Theorem 3.2. If W ≤ W s ≤ W +B with probability 1, for some B > 0, then for

z ∈ R such that 0 < |z| ≤ 4σn and c > 0,

∣∣∣P(W − µn

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ C1(z)
µn

σ2
n

∆+ C2(z)
µnB

2

σ3
n

+ C3(z)
B

σn
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where

C1(z) =
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

µn|z|3

192Bσ3
n e

− z2

8B

(
1

1+c
− µn

8σ2
n

)
,

C2(z) =
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
µn|z|3

96Bσ3
n
+

|z|
4σn e

−z2
(

9
40B

− µn
32Bσ2

n

))
,

C3(z) = 2
(
e

µn|z|3

192Bσ3
n
+

|z|
8σn

)
e
− z2

2

(
1
4B

− µn
32Bσ2

n

)
.

This chapter is organized as follows. Auxiliary results are in Section 3.1 while

the proof of the main result appears in Section 3.2.

3.1 Auxiliary Results

In this section, we give auxiliary results to prove our main result in Section 3.2.

For convenience, we let

U =
W − µn

σn

and Ũ =
W s − µn

σn

.

To obtain a non-uniform Berry-Esseen bound for sum of independent random

variables W , we can apply the Bennett-Hoeffding inequality

EekU ≤ exp(ek − 1− k)

for k > 0 ([11], p.40). But in this work, W is a sum of not necessarily independent

random variables. Therefore, we cannot apply the Bennett-Hoeffding inequality

and thus Lemma 3.3 is required to get the bound.

First, we need to bound EekU seen in Lemma 3.3. To do this, we use some

ideas from Lemma 5.1 of Chen et al. [8] and apply the technique in Lemma 3.1 of

Chuntee and Neammanee [13].
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Lemma 3.3. If W ≤ W s ≤ W + B with probability 1, for some B > 0, then for

any k > 0 such that kB ≤ σn, we have

EekU ≤ e
µnk2B

2σ2
n

+ 2µnk3B2

3σ3
n .

Proof. Let k be a positive real number such that kB ≤ σn. Let f : R → R and

h : (0,∞) → R be defined by f(u) = eku and h(t) = EetU . Note that

|Ũ − U | =
∣∣∣W s −W

σn

∣∣∣ ≤ B

σn

. (3.1)

By the fact that

E(Ug(U)) =
µn

σn

E(g(Ũ)− g(U)) (3.2)

for all functions g for which these expectations exist (see [9], p.31) equipped with

(3.1), we have

h′(k) = E
(
UekU

)
= E(Uf(U))

=
µn

σn

E(f(Ũ)− f(U))

=
µn

σn

E

∫ Ũ−U

0

f ′(U + t)dt

=
µn

σn

E

∫ Ũ−U

0

kek(U+t)dt

≤ µnk

σn

E

∫ B
σn

0

ek(U+ B
σn

)dt

=
µnkB

σ2
n

e
kB
σn EekU

≤ µnkB

σ2
n

EekU +
µnkB

σ2
n

EekU
∣∣e kB

σn − 1
∣∣

≤ µnkB

σ2
n

EekU +
2µnk

2B2

σ3
n

EekU

where the last inequality holds by the fact that |ew − 1| ≤ 2|w| for any |w| ≤ 1.
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Thus,

h′(k)

h(k)
≤ µnkB

σ2
n

+
2µnk

2B2

σ3
n

which implies that

lnh(k) ≤ µnk
2B

2σ2
n

+
2µnk

3B2

3σ3
n

.

Therefore, we have the lemma.

We use the idea from Lemma 2.1 of Goldstein and Zhang [26] to obtain the

lemma below.

Lemma 3.4. If W ≤ W s with probability 1, then for any z > 0 and λ, r > 0,

µn

σn

E(Ũ − U)I(Ũ − U ≤ λ)I(z − λ ≤ U ≤ z) ≤ 2λ(Ee2rzU)
1
2 e−rz(z−λ).

Proof. Let z > 0, we define f : R → R by

f(t) =


0 if t < z − λ,

(t− z + λ)erzt if z − λ ≤ t ≤ z + λ,

2λerzt if t > z + λ.

Then

|f(t)| ≤ 2λerzt for all t ∈ R (3.3)

and

f ′(t) =


0 if t < z − λ,

(rz(t− z + λ) + 1)erzt if z − λ < t < z + λ,

2λrzerzt if t > z + λ.
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These imply that

f ′(t) ≥

 erzt for z − λ < t < z + λ,

0 otherwise.
(3.4)

By (3.2)–(3.4) equipped with EU2 = 1 and the Hölder inequality, we get

2λ(Ee2rzU)
1
2 = 2λ(EU2)

1
2 (Ee2rzU)

1
2

≥ E(Uf(U))

=
µn

σn

E
(
f(Ũ)− f(U)

)
=

µn

σn

E

∫ Ũ−U

0

f ′(U + t)dt

≥ µn

σn

EI(z − λ ≤ U ≤ z)

∫ Ũ−U

0

I(0 ≤ t ≤ λ)f ′(U + t)dt

≥ µn

σn

EI(z − λ ≤ U ≤ z)

∫ Ũ−U

0

I(0 ≤ t ≤ λ)erz(U+t)dt

≥ µn

σn

erz(z−λ)EI(z − λ ≤ U ≤ z)min(λ, Ũ − U)

≥ µn

σn

erz(z−λ)E(Ũ − U)I(Ũ − U ≤ λ)I(z − λ ≤ U ≤ z).

Therefore,

µn

σn

E(Ũ − U)I(Ũ − U ≤ λ)I(z − λ ≤ U ≤ z) ≤ 2λ(Ee2rzU)
1
2 e−rz(z−λ).

We use the idea from Chuntee and Neammanee ([13]) to prove the following

lemmas.

Lemma 3.5. Let fz be the solution of the Stein’s equation (2.1). Then for any
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z, c > 0, we have

|f ′
z(w)| ≤


e−

z2

2√
2πz

if w < 0,(
e−

z2

2√
2πz

)[
1 +

√
2πze

z2

2(1+c)2

]
if 0 ≤ w ≤ z

1+c
,

1 if w > z
1+c

.

Proof. Let z, c > 0 and w ∈ R be given. From (2.4) and [12] (p.43), we have

|f ′
z(w)| ≤ 1 for w > z

1+c
and |f ′

z(w)| ≤ e−
z2

2√
2πz

for w < 0, respectively. Assume that

0 ≤ w ≤ z
1+c

. From (2.3) and the fact that

1− Φ(z) ≤ e−
z2

2

√
2πz

for z > 0 (3.5)

([11], p.11), we get

f ′
z(w) = [1− Φ(z)][1 +

√
2πwe

w2

2 Φ(w)]

≤ [1− Φ(z)][1 +
(√2πz

1 + c

)
e

z2

2(1+c)2 ]

≤
( e−

z2

2

√
2πz

)[
1 +

√
2πze

z2

2(1+c)2

]
.

Lemma 3.6. Let g(w) = (wfz(w))
′. Then for any z > 0, we have

g(w) ≤


(1+z2)

z
e−

19z2

200 + e−
z2

2√
2π

if w ≤ 9z
10

,
1+z2

z
+ e−

z2

2√
2π

if w > 9z
10

.

Proof. Let z > 0 and w ∈ R be given.

Case w ≤ 9z
10
. For w ≤ 0, by (2.6) and (3.5), we have

g(w) ≤ 2(1− Φ(z)) ≤ 2e−
z2

2

√
2πz

≤ e−
19z2

200

z
.
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For 0 < w ≤ 9z
10

, we use (2.8) and (3.5) to obtain

g(w) =
(√

2π(1 + w2)e
w2

2 Φ(w) + w
)
(1− Φ(z))

≤
(√

2π(1 + z2)e
81z2

200 + z
)( e−

z2

2

√
2πz

)
=

(1 + z2)

z
e−

19z2

200 +
e−

z2

2

√
2π

.

Therefore, we get the bound as desired.

Case w > 9z
10

. If w < z, by (2.8) and (3.5), we get

g(w) =
(√

2π(1 + w2)e
w2

2 Φ(w) + w
)
(1− Φ(z))

≤
(√

2π(1 + z2)e
z2

2 + z
)( e−

z2

2

√
2πz

)
=

1 + z2

z
+

e−
z2

2

√
2π

.

For w ≥ z, from (2.7), we have

g(w) ≤ 2

1 + w3
≤ 2

1 + z3
≤ 1 + z2

z

where the last inequality holds by using the fact that

2

1 + z3
− 1 + z2

z
=

−(z − 1)2 − z3 − z5

z(1 + z3)
≤ 0.

These lead us to obtain the bound.

3.2 Proof of Theorem 3.2

Assume that 0 < z ≤ 4σn. In the case −4σn ≤ z < 0, we use the symmetry of

Φ(z) that Φ(z) = 1− Φ(−z) and apply the result to −U .

Goldstein and Zhang [26] used the Stein’s method and the property of the
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monotone size biased coupling for W in (3.2) to obtain

P (U ≤ z)− Φ(z) = E
(
f ′
z(U)

(
1− µn

σn

(Ũ − U)
))

− E
(µn

σn

∫ Ũ−U

0

(
(U + t)fz(U + t)− Ufz(U))

)
dt
)

− E
(µn

σn

∫ Ũ−U

0

(
I(U + t ≤ z)− I(U ≤ z)

)
dt
)

=: R1 −R2 −R3

([26], p.881). By using (2.9) with the identity function, we have

EW s =
EW 2

µn

which leads us to the property that

µn

σn

E(Ũ − U) =
µn

σ2
n

E(W s −W ) =
µn

σ2
n

(EW 2

µn

− µn

)
=

1

σ2
n

(
EW 2 − (EW )2

)
= 1.

Therefore,

E
∣∣∣E(1− µn

σn

(Ũ − U) | U
)∣∣∣2 = µ2

n

σ2
n

E
∣∣∣E(Ũ − U)− E(Ũ − U | U)

∣∣∣2
=

µ2
n

σ2
n

E
∣∣∣E(Ũ − U | U)− E(E(Ũ − U | U))

∣∣∣2
=

µ2
n

σ2
n

Var(E(Ũ − U | U))

which implies that√
E
∣∣∣E(1− µn

σn

(Ũ − U) | U
)∣∣∣2 = µn

σn

√
Var(E(Ũ − U | U))

=
µn

σ2
n

√
Var(E(W s −W | W ))

=
µn

σ2
n

∆. (3.6)
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For c > 0, we can see that

|R1| ≤ E
∣∣∣f ′

z(U)E
(
1− µn

σn

(Ũ − U) | U
)∣∣∣I(U < 0)

+ E
∣∣∣f ′

z(U)E
(
1− µn

σn

(Ũ − U) | U
)∣∣∣I(0 ≤ U ≤ z

1 + c

)
+ E

∣∣∣f ′
z(U)E

(
1− µn

σn

(Ũ − U) | U
)∣∣∣I(U >

z

1 + c

)
=: R11 +R12 +R13.

By Lamma 3.5 equipped with (3.6), we obtain

R11 ≤
( e−

z2

2

√
2πz

)
E
∣∣∣E(1− µn

σn

(Ũ − U) | U
)∣∣∣

≤
( e−

z2

2

√
2πz

)√
E
∣∣∣E(1− µn

σn

(Ũ − U) | U
)∣∣∣2

=
( e−

z2

2

√
2πz

)µn

σ2
n

∆. (3.7)

Similar to (3.7), we get

R12 ≤
( e−

z2

2

√
2πz

)[
1 +

√
2πze

z2

2(1+c)2

]
E
∣∣∣E(1− µn

σn

(Ũ − U) | U
)∣∣∣

≤
( e−

z2

2

√
2πz

)[
1 +

√
2πze

z2

2(1+c)2

]√
E
∣∣∣E(1− µn

σn

(Ũ − U) | U
)∣∣∣2

=
( e−

z2

2

√
2πz

)[
1 +

√
2πze

z2

2(1+c)2

]µn

σ2
n

∆ (3.8)

and

R13 ≤ E
∣∣∣E(1− µn

σn

(Ũ − U) | U
)∣∣∣I(U >

z

1 + c

)
≤
√

P
(
U >

z

1 + c

)√
E
∣∣∣E(1− µn

σn

(Ũ − U) | U
)∣∣∣2

=

√
P
(
U >

z

1 + c

)µn

σ2
n

∆. (3.9)

Since 0 < z ≤ 4σn, we can apply Lemma 3.3 with k = z
4B

and the Markov’s
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inequality to get

P
(
U >

z

1 + c

)
≤ Ee

z
4B

U

e
z2

4B(1+c)

≤ e
µnz2

32Bσ2
n
+ µnz3

96Bσ3
n

e
z2

4B(1+c)

= e
µnz3

96Bσ3
n e

− z2

4B

(
1

1+c
− µn

8σ2
n

)
. (3.10)

By this fact and (3.7)–(3.9), we conclude that

|R1| ≤
[2e− z2

2

√
2πz

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

µnz3

192Bσ3
n e

− z2

8B

(
1

1+c
− µn

8σ2
n

)]µn

σ2
n

∆. (3.11)

Next, we will bound the term R2. Let g(w) = (wfz(w))
′. We use (2.5), Lemma 3.6

and the fact that 0 ≤ U s − U ≤ B
σn

to obtain

|R2| ≤ E
∣∣∣µn

σn

∫ Ũ−U

0

[
(U + t)fz(U + t)− Ufz(U))

]
dt
∣∣∣

=
µn

σn

E

∫ Ũ−U

0

(∫ t

0

g(U + u)du
)
dt

≤ µn

σn

E

∫ B
σn

0

(∫ t

0

g(U + u)du
)
dt

≤ µn

σn

E

∫ B
σn

0

∫ t

0

(1 + z2

z
e−

19z2

200 +
e−

z2

2

√
2π

)
I
(
U + u ≤ 9z

10

)
+
(1 + z2

z
+

e−
z2

2

√
2π

)
I
(
U + u >

9z

10

)
dudt

≤ µn

σn

∫ B
σn

0

∫ t

0

(1 + z2

z
e−

19z2

200 +
e−

z2

2

√
2π

+
1 + z2

z
P
(
U + u >

9z

10

))
dudt.

Applying Lemma 3.3 which is the same argument as (3.10),

P
(
U + u >

9z

10

)
≤ P

(
U +

B

σn

>
9z

10

)
= P

( z

4B
U >

9z2

40B
− z

4σn

)
≤ Ee

z
4B

U

e
9z2

40B

e
z

4σn

≤ e
µnz3

96Bσ3
n
+ z

4σn e
−z2
(

9
40B

− µn
32Bσ2

n

)
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for 0 ≤ u ≤ t whenever 0 ≤ t ≤ B
σn

. Therefore,

|R2| ≤
µn

σn

∫ B
σn

0

∫ t

0

(1 + z2

z
e−

19z2

200 +
e−

z2

2

√
2π

+
1 + z2

z
e

µnz3

96Bσ3
n
+ z

4σn e
−z2
(

9
40B

− µn
32Bσ2

n

))
dudt

=
B2µn

2σ3
n

[(1 + z2

z

)(
e−

19z2

200 + e
µnz3

96Bσ3
n
+ z

4σn e
−z2
(

9
40B

− µn
32Bσ2

n

))
+

e−
z2

2

√
2π

]
=

B2µn

2σ3
n

(1 + z2

z

)(
e−

19z2

200 + e
µnz3

96Bσ3
n
+ z

4σn e
−z2
(

9
40B

− µn
32Bσ2

n

))
+

B2µne
− z2

2

2
√
2πσ3

n

. (3.12)

To finish the proof, it remains to bound R3. Goldstein and Zhang [26] showed that

|R3| ≤
µn

σn

E(Ũ − U)I
(
z − B

σn

≤ U ≤ z
)

(3.13)

([26], p.882). Applying Lemma 3.4 when λ = B
σn

and r = 1
8B

,

µn

σn

E(Ũ − U)I
(
Ũ − U ≤ B

σn

)
I
(
z − B

σn

≤ U ≤ z
)
≤ 2B

σn

(
Ee

z
4B

U
) 1

2
e−

z
8B

(
z− B

σn

)
.

(3.14)

By (3.13), (3.14) and the fact that 0 < Ũ − U ≤ B
σn

, we obtain

|R3| ≤
2B

σn

(
Ee

z
4B

U
) 1

2
e−

z
8B

(
z− B

σn

)
≤ 2B

σn

(
e

µnz3

192Bσ3
n
+ µnz2

64Bσ2
n

)
e−

z2

8B
+ z

8σn

=
2B

σn

e
µnz3

192Bσ3
n
+ z

8σn e
− z2

2

(
1
4B

− µn
32Bσ2

n

)
(3.15)

where the last inequality holds by using Lemma 3.3 with k = z
4B

.

Combining (3.11), (3.12) and (3.15), the proof is completed. �



CHAPTER IV

NON-UNIFORM BOUNDS FOR SUM OF

INDEPENDENT RANDOM VARIABLES

Let X1, X2, . . . , Xn be independent and not necessary identically distributed

random variables with zero means and finite variances. Let

W =
n∑

i=1

Xi

and assume that Var(W ) = 1.

Under the finiteness of the third moment, we have the uniform and non-uniform

Berry-Esseen theorem

|P (W ≤ z)− Φ(z)| ≤ C0

n∑
i=1

E|Xi|3

and

|P (W ≤ z)− Φ(z)| ≤ C1

1 + |z|3
n∑

i=1

E|Xi|3,

respectively, where C0 and C1 are absolute constants. If Xi’s are identically dis-

tributed, then both inequalities shown above can be found in the original works of

Esseen [15] and Nagaev [29], respectively. The upper estimate of the constant C0

was studied for a long history seen in Van Beek [47], Shiganov [42], Shevtsova [39],

Korolev and Shevtsova [28] and Tyurin [46]. In 2011, Shevtsova [41] obtained the

bound as the following

sup
z∈R

|P (W ≤ z)− Φ(z)| ≤ 0.4748nE|X1|3.
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The result in the case that Xi’s are non-identically distributed was generalized by

Bikelis [6] and the constant is 0.5600 obtained by Shevtsova [40]. For the non-

uniform version, the constant C1 was calculated to be 31.395 by Paditz [31] for

non-identically distributed random variables. In 2001, Chen and Shao [10] gave

the non-uniform bound without assuming the existence of the third moment. In

the case of bounded random variables, that is, |Xi| ≤ δ for i = 1, . . . , n, they

obtained the uniform bound as

|P (W ≤ z)− Φ(z)| ≤ 3.3δ

([11], p.23). Next, Chaidee [7] used the idea of Chen and Shao [11] to prove a

non-uniform exponential bound for independent bounded random variables

|P (W ≤ z)− Φ(z)| ≤ Cδe
− |z|

2 δ,

where Cδ = 4.45 + 2.21e2δ+δ−2(e2δ−1−2δ). Furthermore, a non-uniform exponential

bound in the term of e− z2

2 with unknown constant was proved by Chen, Fang and

Shao [8].

In this chapter, we concentrate on finding a non-uniform exponential bound

for sum of independent random variables in the term of e− z2

k equipped with some

known constants by using Stein’s method and bounded monotone size biased cou-

pling.

Now, we consider

W =
n∑

i=1

Xi

where Xi’s are non-negative independent random variables with finite and positive

mean µ̃i for i = 1, . . . , n, and let µn = E(W ) and σ2
n = Var(W ).

For each i = 1, . . . , n, let Xs
i have the Xi-size biased distribution, independent

of Xj and Xs
j for j ̸= i, and 0 ≤ Xs

i −Xi ≤ l with probability 1, for some l > 0.

By the size bias construction appearing in [9] and [37], W s can be constructed as
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follows. For a random index I such that

P (I = i) =
E(Xi)

µn

for i = 1, . . . , n and X1, . . . , Xn, I are independent,

W s = W −XI +Xs
I

has the W -size biased distribution satisfying

W ≤ W s ≤ W + l

with probability 1. Thus, Theorem 3.2 can be applied with B = l, and then we

get a non-uniform exponential bound for independent random variables as below.

Theorem 4.1. Let Xs
i have the Xi-size biased distribution, independent of Xj and

Xs
j for j ̸= i. Assume that 0 ≤ Xs

i −Xi ≤ l with probability 1, for some l > 0 and

for i = 1, . . . , n. Then for z ∈ R such that 0 < |z| ≤ 4σn and c > 0,

∣∣∣P(W − µn

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ C1(z)
µn

σ2
n

∆+ C2(z)
µnl

2

σ3
n

+ C3(z)
l

σn

where

C1(z) =
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

µn|z|3

192lσ3
n e

− z2

8l

(
1

1+c
− µn

8σ2
n

)
,

C2(z) =
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
µn|z|3

96lσ3
n
+

|z|
4σn e

−z2
(

9
40l

− µn
32lσ2

n

))
,

C3(z) = 2
(
e

µn|z|3

192lσ3
n
+

|z|
8σn

)
e
− z2

2

(
1
4l
− µn

32lσ2
n

)
and ∆ =

√
Var(E(W s −W | W )).

If X1, . . . , Xn are independent Bernoulli random variables with parameter p,
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then W =
n∑

i=1

Xi is a binomial random variable with

µn = np and σ2
n = npq

where q = 1− p. Since Baldi et al. [5] showed that Xs
i = 1 has the Xi-size biased

distribution satisfying

Xi ≤ Xs
i ≤ Xi + 1 and Var(E(W s −W | W )) =

pq

n

which imply that

l = 1 and ∆ =
√

Var(E(W s −W | W )) =

√
pq

n
,

we can apply Theorem 4.1 to obtain a non-uniform exponential bound for W shown

in the following theorem.

Theorem 4.2. Let W ∼ Binomial(n, p). For large n such that 0 < |z| ≤ 4
√
npq

and c > 0,

∣∣∣P(W − np
√
npq

≤ z
)
− Φ(z)

∣∣∣ ≤ C1(z)

√
p

nq
+ C2(z)

1

q
√
npq

+ C3(z)
1

√
npq

where

C1(z) =
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

|z|3
192q

√
npq e−

z2

8

(
1

1+c
− 1

8q

)
,

C2(z) =
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
|z|3

96q
√
npq

+
|z|

4
√
npq e−z2

(
9
40

− 1
32q

))
,

C3(z) = 2
(
e

|z|3
192q

√
npq

+
|z|

8
√
npq

)
e−

z2

2

(
1
4
− 1

32q

)
.

Theorem 4.3. If W ∼ Binomial(n, 1
2
), then for all real numbers z such that
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|z| ≤
√
n,

∣∣∣P(W − n/2√
n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ 1
√
ne

z2

2

+
17.9278
√
ne

z2

16

.

Remark 4.4. Since W ∼ Binomial(n, 1
2
), 0 ≤ W ≤ n. Then P

(W−n/2√
n/4

≤ z
)
= 1

for all z >
√
n and P

(W−n/2√
n/4

≤ z
)
= 0 for all z < −

√
n. Therefore, it is reasonable

considering the bound when |z| ≤
√
n.

Proof of Theorem 4.3

Let W ∼ Binomial(n, 1
2
) and |z| ≤

√
n.

Case |z| ≤ 4. Since e
z2

16 ≤ e ≤ 2.7183, we apply Theorem 3.1 with

B = 1, µn =
n

2
, σn =

n

4
and ∆ =

1

2
√
n

to get that

∣∣∣P(W − n/2√
n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ 2.7183

e
z2

16

( 1√
n
+

3.28√
n

+
2√
n

)
≤ 17.071

√
ne

z2

16

.

Case |z| > 4. Applying Theorem 4.2 with p = 1
2
, we obtain

∣∣∣P(W − n/2√
n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ C1(z)
1√
n
+ C2(z)

4√
n
+ C3(z)

2√
n

(4.1)

where

C1(z) =
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

|z|3
48

√
n e−

z2

8

(
1

1+c
− 1

4

)
,

C2(z) =
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
|z|3
24

√
n
+

|z|
2
√
n e−z2

(
9
40

− 1
16

))
,

C3(z) = 2
(
e

|z|3
48

√
n
+

|z|
4
√
n

)
e−

z2

2

(
1
4
− 1

16

)
.
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By the assumption that |z| ≤
√
n, we can bound the terms of C1(z), C2(z) and

C3(z) as follows. First, we consider the bound of C1(z) and see that

C1(z) ≤
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

z2

48 e−
z2

8

(
1

1+c
− 1

4

)
=

2e−
z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e−

z2

8

(
1

1+c
− 1

4
− 1

6

)
.

Next, we will find a positive constant c such that e
− z2

2

(
1− 1

(1+c)2

)
= e−

z2

8

(
1

1+c
− 1

4
− 1

6

)
.

Assume that

1− 1

(1 + c)2
=

1

4

( 1

1 + c
− 1

4
− 1

6

)
.

Then
1

(1 + c)2
+

1

4(1 + c)
=

53

48
,

that is,

53(1 + c)2 − 12(1 + c)− 48 = 0.

Thus,

53c2 + 94c− 7 = 0

which implies that

c =
−94±

√
942 − 4(53)(−7)

2(53)
=

−47± 2
√
645

53
.

Choose c = −47+2
√
645

53
. This leads us to obtain that

e
− z2

2

(
1− 1

(1+c)2

)
= e−

z2

8

(
1

1+c
− 1

4
− 1

6

)
≤ e−

807z2

12500 .
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Therefore,

C1(z) ≤
2e−

z2

2

√
2π|z|

+ 2e−
807z2

12500

=
2e−

z2

2

√
2π|z|

+ 2e−
103z2

50000 e−
z2

16

≤ 0.2e−
z2

2 + 1.9352e−
z2

16 .

To estimate the term C2(z), we use the fact that 1

|z|
e−

13z2

400 ≤ 0.1487, |z|e− 13z2

400 ≤

2.3781, 1
|z|e

− 7z2

120 ≤ 0.0984 and |z|e− 7z2

120 ≤ 1.573 for |z| ≥ 4 to get

C2(z) ≤
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
z2

24
+ 1

2 e−z2
(

9
40

− 1
16

))
=

e−
z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
1
2 e−z2

(
9
40

− 1
16

− 1
24

))
=

e−
z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
1
2 e−

29z2

240

)
≤ 0.2e−

z2

2 +
(1 + z2

2|z|

)
e−

z2

16

(
e−

13z2

400 + 1.6488e−
7z2

120

)
≤ 0.2e−

z2

2 + 2.6412e−
z2

16 .

For the last term C3(z), we see that

C3(z) ≤ 2
(
e

z2

48
+ 1

4

)
e−

z2

2

(
1
4
− 1

16

)
= 2e

1
4 e−

z2

2

(
1
4
− 1

16
− 1

24

)
= 2e

1
4 e−

7z2

96

= 2e
1
4 e−

z2

16 e−
z2

96

≤ 2.1739e−
z2

16 .
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Including the bounds of C1(z), C2(z) and C3(z) as above into (4.1),

∣∣∣P(W − n/2√
n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ 1
√
ne

z2

2

(0.2 + 4(0.2))

+
1

√
ne

z2

16

(1.9352 + 4(2.6412) + 2(2.7139))

=
1

√
ne

z2

2

+
17.9278
√
ne

z2

16

.

From the both cases, for |z| ≤
√
n,

∣∣∣P(W − n/2√
n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ 1
√
ne

z2

2

+
17.9278
√
ne

z2

16

.

�



CHAPTER V

BERRY-ESSEEN BOUNDS FOR THE LIGHTBULB

PROCESS

A medicated adhesive patch which delivers the medication through the skin

by placing on the skin is called a dermal patch or skin patch. In pharmaceutical

studies, the dermal patch method is a way to measure the amount of pesticide

residue directly deposited on the skin in various body area. It is applied to estimate

the true exposure of pesticide by Clough et al. [14]. Moreover, this method is also

developed in exposure studies using video imaging techniques and in lyphocyte

transformation testing for quantifying metal hypersensitivity in Houghton et al.

[27] and Garino and Beredjiklian [16], respectively. In addition, a study in the

pharmaceutical industry, see Rao, Rao and Zhang [32] and Sharma et al. [38], the

potential of using the dermal patch has been recognized.

The problem from a study in the pharmaceutical industry, how to check the

patches before going to market, on the effects of dermal patches designed to activate

targeted receptors continues to receive attention. This system includes inactive

receptors which is active if it receives a dose of medicine released from the dermal

patch and inactive if it receives once again. The doses are increased progressively

for a limited number of days as follows: for the number of receptors n, on each day

r = 1, . . . , n of the study, there exist r randomly selected receptors for which each

receives one dose of medicine from the patch. Thus, their status will be changed

between the active and inactive states. By this problem, we can simulate it into

the lightbulb process given by the following argument.

Let n be any positive integer. We have n switches and n individuals, both

serially numbered from 1 to n. Each switch is attached to a lightbulb.

Initially, all the bulbs are off.



29

Day 1: Individual 1 selects one switch randomly and presses it. The corresponding

lightbulb lights up.

Day 2: Individual 2 selects two switches randomly and presses them.

Day 3: Individual 3 selects three switches randomly and presses them.

...

Day n: Individual n presses all switches.

Therefore, for the number of bulbs n, on each day r = 1, . . . , n of the study, there

exist r randomly selected bulbs which each is pressed the toggle switch connected

to a bulb, thus their status will be changed between on and off, we consider the

number of bulbs on at the terminal time n. Let

X =
{
Xrk | r = 0, 1, . . . , n; k = 1, . . . , n

}
,

a collection of Bernoulli random variables such that for r ≥ 1,

Xrk =

 1 if the status of bulb k is changed on Day r,

0 otherwise.

In the initial state, all bulbs are off, that is, X0k = 0 for all k = 1, 2, . . . , n. At

stage r, the bulbs are chosen uniformly to have their status changed and the stages

are independent of each other. Let

Xk =
( n∑

r=0

Xrk

)
mod 2 and W =

n∑
k=1

Xk,

the random variable Xk is the indicator that bulb k is on at the terminal time and

the random variable W is the number of bulbs on at the terminal time.

In 2007, Rao et al. [32] gave the mean and the variance of W as follows:

µn = E(W ) =
n

2

(
1−

n∏
s=1

λn,1,s

)
(5.1)
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and

σ2
n = Var(W ) =

n

4

(
1−

n∏
s=1

λn,2,s

)
+

n2

4

( n∏
s=1

λn,2,s −
n∏

s=1

λ2
n,1,s

)
, (5.2)

where

λn,1,s = 1− 2s

n
and λn,2,s = 1− 4s

n
+

4s(s− 1)

n(n− 1)
for s = 1, . . . , n. (5.3)

In addition, they proved the distribution of W can be approximated by the stan-

dard normal distribution.

In the case that n is an even number, λn,1,n
2
= 0 which implies

n∏
s=1

λn,1,s =
n∏

s=1

λ2
n,1,s = 0,

and then, from (5.1) and (5.2),

µn =
n

2
and σ2

n =
n

4

(
1 + (n− 1)

n∏
s=1

λn,2,s

)
, (5.4)

respectively.

In 2011, Goldstein and Zhang [26] described that W can be coupled to a variable

W s having the W -size biased distribution. For every i = 1, . . . , n, the collection of

variables Xi is constructed from X as follows. If Xi = 1, then Xi = X. Otherwise,

with J i uniformly chosen from {j | Xn/2,j = 1 − Xn/2,i}, let Xi = {X i
rk | r, k =

1, . . . , n}, where

X i
rk =



Xrk if r ̸= n/2,

Xn/2,k if r = n/2, k /∈ {i, J i},

Xn/2,Ji if r = n/2, k = i,

Xn/2,i if r = n/2, j = J i,
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and let

X i
k =

( n∑
r=1

X i
rk

)
mod 2 and W i =

n∑
k=1

X i
k.

By choosing a random index I uniformly from {1, . . . , n} and independent of all

other variables, W s = W I has the W -size biased distribution. This lead them to

obtain that

W ≤ W s ≤ W + 2.

They also provided a Berry-Esseen bound for W by using Theorem 3.1 which is

shown in the following theorem.

Theorem 5.1. ([26], p.877) For any even number n ≥ 6,

sup
z∈R

∣∣∣P(W − n/2

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ n

2σ2
n

∆0 + 1.64
n

σ3
n

+
2

σn

where

∆0 =
√

Var(E(W s −W |W )).

For the odd case, n = 2m+1, Goldstein and Zhang [26] formed a symmetrical

random variable V closely W in the following proceeds. Set Jr = {j | Xrj = 0}

for r = m,m + 1, so that Jm and Jm+1 are the bulbs that do not get toggled in

stages m and m + 1, respectively. Let Bm and Bm+1 be uniformly chosen from

Jm and J c
m+1, respectively, which are independent of X and of each other. Let

Cm and Cm+1 be symmetric Bernouli variables, independent of X and of Bm and

Bm+1. Now, let the collection of variables

V = {Vrj | r, j = 1, . . . , n}
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be given by

Vrj =



Xrj if r /∈ {m,m+ 1},

Xmj if r = m, j ̸= Bm,

Cm if r = m, j = Bm,

Xm+1,j if r = m+ 1, j ̸= Bm+1,

Cm+1 if r = m+ 1, j = Bm+1,

and let

Vj =
( n∑

r=1

Vrj

)
mod 2 and V =

n∑
j=1

Vj.

From this construction, they attained

|W − V | ≤ 2

with the mean and the variance of V given, respectively, by

µV =
n

2

(
1−

n∏
r=1

λ̄n,1,r

)
=

n

2

and

σ2
V =

n

4

(
1− (1− n)

n∏
r=1

λ̄n,2,r

)
where

λ̄n,b,r =

 1
2
(λn,b,m + λn,b,m+1) if r ∈ {m,m+ 1},

λn,b,r otherwise,
(5.5)

for b = 1, 2.

To obtain the bound for W when n is odd, they constructed a random variable
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V s with the V -size biased distribution satisfying

V ≤ V s ≤ V + 2.

Applying Theorem 3.1, their result is presented as follows.

Theorem 5.2. ([26], p.877) For any odd number n ≥ 7,

sup
z∈R

∣∣∣P(W − n/2

σV

≤ z
)
− Φ(z)

∣∣∣ ≤ n

2σ2
V

∆1 + 1.64
n

σ3
V

+
2

σV

(
1 +

1√
2π

)
where

∆1 =
√

Var(E(V s − V |V )).

Theorem 5.1 and Theorem 5.2 contain the terms ∆0 and ∆1 respectively, which

is not accurate values. The bounds above can be expressed in the easier forms as

the following.

Theorem 5.3. For any even number n ≥ 6,

sup
z∈R

∣∣∣P(W − n/2

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ 18.72√
n

.

Theorem 5.4. For any odd number n ≥ 7,

sup
z∈R

∣∣∣P(W − n/2

σV

≤ z
)
− Φ(z)

∣∣∣ ≤ 21.15√
n

.

In this chapter, we generalize Theorem 5.1 and Theorem 5.2 to the case of

a non-uniform bounds by using the non-uniform bound for a binomial random

variable and the result of the clubbed binomial approximation for W . These are

our results.

Theorem 5.5. For all even numbers n ≥ 6 and for any real number z such that

0 < |z| ≤
√
n,

∣∣∣P(W − n/2

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ 2.7314
√
n

e
n+1
12 e

z2+1
4

+
1

√
n− 1e

z2

2

+
34.3131

√
n− 1e

z2

16

.
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Theorem 5.6. For all odd numbers n ≥ 7 and for any real number z such that

0 < |z| ≤
√
n,

∣∣∣P(W − n/2

σV

≤ z
)
− Φ(z)

∣∣∣ ≤ 2.7314
√
n

e
n+1
12 e

z2+1
4

+
1

√
n− 1e

z2

2

+
34.3131

√
n− 1e

z2

16

.

Remark 5.7. Note that 0 ≤ W ≤ n and σ2
n ≈ n

4
(see (5.7)). These implies

that P
(W−n/2

σn
≤ z
)
= 1 for all z >

√
n and P

(W−n/2
σn

≤ z
)
= 0 for all z < −

√
n.

Therefore, it suffices to consider the bounds when 0 < |z| ≤
√
n.

Table 5.1 compares the constants of the uniform bounds (Theorem 5.1 and

Theorem 5.2) and the non-uniform bounds (Theorem 5.5 and Theorem 5.6).

Statistics Wn−n/2
σn

Wn−n/2
σV

Uniform bounds 18.72√
n

21.15√
n

Non-uniform bounds

z = 2 0.79
√
n

e
n+1
12

+ 26.86√
n−1

z = 6 2.63×10−4√n

e
n+1
12

+ 3.62√
n−1

z = 8 2.4×10−7√n

e
n+1
12

+ 0.63√
n−1

z = 10 2.96×10−11√n

e
n+1
12

+ 0.07√
n−1

z = 100 3.91×10−1086√n

e
n+1
12

+ 1.27×10−270
√
n−1

Table 5.1: Constants of uniform and non-uniform exponential bounds.

This chapter is organized into 2 sections as follows. Section 5.1 includes the

proofs of Theorem 5.3 and Theorem 5.4. The proof of Theorem 5.5 and Theorem

5.6 are given in Section 5.2.

5.1 Uniform Bounds

In this section, we wil prove Theorem 5.3 and Theorem 5.4 by estimating σ2
n

and σ2
V , and using the bounds of ∆0 and ∆1 which are given by Goldstein and
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Zhang in [26].

5.1.1 Proof of Theorem 5.3

In the case that n is an even number, by (5.3), we see that

λn,2,n/2 = 1− 4(n/2)

n
+

4(n/2)(n/2− 1)

n(n− 1)
= − 1

n− 1
. (5.6)

Goldstein and Zhang ([26], pp.896) showed that for n ≥ 6,

−e−n ≤
n∏

s=1
s̸=n/2

λn,2,s ≤ e−n,

and then, by (5.6),

− e−n

n− 1
≤

n∏
s=1

λn,2,s ≤
e−n

n− 1
.

From this fact and (5.4), we have

n

4
(1− e−n) ≤ σ2

n ≤ n

4
(1 + e−n). (5.7)

Therefore,

0.249n ≤ n

4
(1− e−6) ≤ σ2

n ≤ n

4
(1 + e−6) ≤ 0.251n for n ≥ 6. (5.8)

By Theorem 5.1, (5.8) and the fact that

∆0 ≤
1

2
√
n
+

1

2n
+

1

3
e−n/2
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([26], p.888), we have

sup
z∈R

∣∣∣P(W − n/2

σn

≤ z
)
− Φ(z)

∣∣∣
≤ n

2σ2
n

( 1

2
√
n
+

1

2n
+

1

3
e−n/2

)
+ 1.64

n

σ3
n

+
2

σn

≤ 1

2(0.249)

( 1

2
√
n
+

1

2n
+

1

3
e−n/2

)
+

1.64

0.249
√
0.249n

+
2√

0.249n

≤ 18.72√
n

where we use the fact that en
2 ≥ 8.19

√
n and n ≥ 2.4

√
n for all n ≥ 6 in the last in-

equality. �

5.1.2 Proof of Theorem 5.4

Let n = 2m+ 1 be an odd number. By (5.3) and (5.5), we have

λ̄n,2,m =
1

2

(
1− 4m

n
+

4m(m− 1)

n(n− 1)
+ 1− 4(m+ 1)

n
+

4m(m+ 1)

n(n− 1)

)
= − 1

n

which implies

σ2
V =

n

4

(
1 +

(1− n

n

) n∏
r=1
r ̸=m

λ̄n,2,r

)
.

Goldstein and Zhang ([26], p.888) showed that for n ≥ 7,

−e−n ≤
n∏

r=1
r ̸=m

λ̄n,2,r ≤ e−n.

These lead us to see that

n

4
− (n− 1)

4
e−n ≤ σ2

V ≤ n

4
+

(n− 1)

4
e−n. (5.9)
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Then

0.249n ≤ n

4
− (n− 1)

4
e−7 ≤ σ2

V ≤ n

4
+

(n− 1)

4
e−7 ≤ 0.251n for n ≥ 7. (5.10)

By (5.10) and the fact that

∆1 ≤
1√
n
+

1

2
√
2
e−n/4

for n ≥ 7 ([26], p.890), the bound in Theorem 5.2 is expressed as follows.

sup
z∈R

∣∣∣P(W − n/2

σV

≤ z
)
− Φ(z)

∣∣∣
≤ n

2σ2
V

( 1√
n
+

1

2
√
2
e−n/4

)
+ 1.64

n

σ3
V

+
2

σV

(
1 +

1√
2π

)
≤ 1

2(0.249)

( 1√
n
+

1

2
√
2
e−n/4

)
+

1.64

0.249
√
0.249n

+
2√

0.249n

(
1 +

1√
2π

)
≤ 21.15√

n

where the last inequality holds by using the fact that en
4 ≥ 2.17

√
n for all n ≥ 7.�

5.2 Non-uniform Bounds

It is known that a uniform Berry-Esseen bound for W is discussed by Goldstein

and Zhang [26] in 2011. Next, in 2012, Goldstein and Xia [25] gave a uniform bound

for W in the clubbed binomial approximation. In this work, we use the result of the

clubbed binomial approximation and Theorem 4.3 to get a non-uniform exponential

bound for W .

We say that the random variable Cn has the clubbed binomial distribution if

Cn has the following distribution. If n mod 4 ∈ {0, 3},

P (Cn = i) =


(
n
i

)(
1
2

)n−1 if i is an even number in {0, 1, . . . , n},

0 otherwise,
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and if n mod 4 ∈ {1, 2},

P (Cn = i) =


(
n
i

)(
1
2

)n−1 if i is an odd number in {0, 1, . . . , n},

0 otherwise.

Goldstein and Xia ([25], p.32) showed that

sup
A⊆Z

∣∣∣P (W ∈ A)− P (Cn ∈ A)
∣∣∣ ≤ 2.7314

√
n

e
n+1
3

. (5.11)

5.2.1 Proof of Theorem 5.5

Starting with a non-uniform concentration inequality for binomial random vari-

able, it is a tool to prove Theorem 5.5 and Theorem 5.6. We use Lemma 3.3 to

obtain the inequality as mentioned above. The concentration inequality is pre-

sented as follows.

Lemma 5.8. Let Bn ∼ Binomial(n, 1
2
). Then for all z ∈ R and λ, s > 0 such that

2s ≤
√

n
4
,

P
(
z ≤ Bn − n/2√

n/4
≤ z + λ

)
≤ 2e−sze

2s2+ 32s3

3
√
n

(
e

s
2
√
n

(
λ+

1√
n

)
+

1

2
√
n

)
.

Proof. Let z ∈ R and λ, s > 0 be such that 2s ≤
√

n
4
. Since Bn =

n∑
i=1

Yi where

Yi’s are independent Bernoulli random variables with E(Yi) =
1
2

and Var(Yi) =
1
4

for i = 1, . . . , n. Thus,

γ :=
n∑

i=1

E
∣∣∣Yi − E(Yi)√

Var(Bn)

∣∣∣3 = nE
∣∣∣Y1 − 1/2√

n/4

∣∣∣3 = 1√
n
.

We follow the proof of a non-uniform concentration inequality in [11] by choosing
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a function f defined by

f(w) =


0 if w < z − γ

2
,

esw(w − z + γ
2
) if z − γ

2
≤ w ≤ z + λ+ γ

2
,

esw(λ+ γ) if w > z + λ+ γ
2
,

to obtain that

P
(
z ≤ Bn − n/2√

n/4
≤ z + λ

)
≤ 2e−sz

(
Ee

2s
(

Bn−n/2√
n/4

)) 1
2
(
e

sγ
2 (λ+ γ) +

γ

2

)
. (5.12)

In Chapter IV, we see that Y s
i = 1 for all i = 1, . . . , n and the size bias coupling

for the binomial random variable Bn, can be constructed. Following the size bias

construction as in Example 2.3, for a random index I such that

P (I = i) =
1

n

for i = 1, . . . , n and Y1, . . . , Yn, I are independent,

Bs
n = Bn − YI + Y s

I

has the Bn-size biased distribution satisfying

Bn ≤ Bs
n ≤ Bn + 1.

Under the assumption that 2s ≤
√

n
4
, we use (5.12) and Lemma 3.3 with k = 2s,

B = 1, E(Bn) =
n
2

and Var(Bn) =
n
4

to get

P
(
z ≤ Bn − n/2√

n/4
≤ z + λ

)
≤ 2e−sz

(
e
4s2+ 64s3

3
√
n

) 1
2
(
e

sγ
2 (λ+ γ) +

γ

2

)
= 2e−sze

2s2+ 32s3

3
√
n

(
e

s
2
√
n

(
λ+

1√
n

)
+

1

2
√
n

)
.
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From the result of Rao et al. [32], we know that the difference between the

cumulative distribution of Cn and Bn−1 converges to zero pointwise. This leads us

to find a bound for approximating the distribution of binomial by clubbed binomial

distribution seen in the following lemma.

Lemma 5.9. Let Bn ∼ Binomial(n, 1
2
) and t = 1, 2, . . . , n. Then

∣∣∣P (Cn ≤ t)− P (Bn−1 ≤ t)
∣∣∣ ≤ P (Bn−1 = t).

Proof. It suffices to assume that n is even. In the case that n is odd, we can follow

the proof in the even case to obtain the same result. Note that the inequality holds

when t = n. Therefore, it remains to prove the lemma for t = 1, 2, . . . , n−1. Since

n is even, n mod 4 ∈ {0, 2}. Suppose that n mod 4 = 0. If t is even, then

∣∣∣P (Cn ≤ t)− P (Bn−1 ≤ t)
∣∣∣

=
∣∣∣ t∑
i=0

P (Cn = i)−
t∑

i=0

P (Bn−1 = i)
∣∣∣

=
(1
2

)n−1∣∣∣ t
2∑

i=0

(
n

2i

)
−

t∑
i=0

(
n− 1

i

)∣∣∣
=
(1
2

)n−1∣∣∣ t
2∑

i=1

[(n

2i

)
−
(
n− 1

2i

)]
−

t
2∑

i=1

(
n− 1

2i− 1

)∣∣∣
= 0

where the last equality is true by using the property that
(
n
k

)
−
(
n−1
k

)
=
(
n−1
k−1

)
for

all integers n, k such that 1 ≤ k ≤ n− 1.

If t is odd, then for t = 1,

∣∣∣P (Cn ≤ 1)− P (Bn−1 ≤ 1)
∣∣∣ = ∣∣∣P (Cn = 0)−

1∑
i=0

P (Bn−1 = i)
∣∣∣ = (1

2

)n−1
(
n− 1

1

)
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and for t ≥ 3, we have

∣∣∣P (Cn ≤ t)− P (Bn−1 ≤ t)
∣∣∣

=
∣∣∣ t−1∑
i=0

P (Cn = i)−
t∑

i=0

P (Bn−1 = i)
∣∣∣

=
(1
2

)n−1∣∣∣ t−1
2∑

i=0

(
n

2i

)
−

t∑
i=0

(
n− 1

i

)∣∣∣
=
(1
2

)n−1∣∣∣ t−1
2∑

i=1

[(n

2i

)
−
(
n− 1

2i

)]
−

t−1
2∑

i=1

(
n− 1

2i− 1

)
−
(
n− 1

t

)∣∣∣
=
(1
2

)n−1
(
n− 1

t

)
.

Therefore, from both cases, we get

∣∣∣P (Cn ≤ t)− P (Bn−1 ≤ t)
∣∣∣ =


(
1
2

)n−1(n−1
t

)
if t is odd,

0 if t is even.

In the case that n mod 4 = 2, we use the same argument to obtain

∣∣∣P (Cn ≤ t)− P (Bn−1 ≤ t)
∣∣∣ =

 0 if t is odd,(
1
2

)n−1(n−1
t

)
if t is even.

Hence,

∣∣∣P (Cn ≤ t)− P (Bn−1 ≤ t)
∣∣∣ ≤ P (Bn−1 = t).

Proof of Theorem 5.5. Assume that 0 < z ≤
√
n. Let Bn ∼ Binomial(n, 1

2
). We
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note that

∣∣∣P(W − n/2

σn

≤ z
)
− Φ(z)

∣∣∣
≤
∣∣∣P(W − n/2

σn

≤ z
)
− P

(Cn − n/2

σn

≤ z
)∣∣∣

+
∣∣∣P(Cn − n/2

σn

≤ z
)
− P

(Bn−1 − n/2

σn

≤ z
)∣∣∣

+
∣∣∣P(Bn−1 − n/2

σn

≤ z
)
− P

(Bn−1 − (n− 1)/2√
(n− 1)/4

≤ z
)∣∣∣

+
∣∣∣P(Bn−1 − (n− 1)/2√

(n− 1)/4
≤ z
)
− Φ(z)

∣∣∣
=: A1 + A2 + A3 + A4. (5.13)

By the fact that n+1
3

= n+1
12

+ n+1
4

≥ n+1
12

+ z2+1
4

for 0 < z ≤
√
n and (5.11), we

have

A1 ≤
2.7314

√
n

e
n+1
3

≤ 2.7314
√
n

e
n+1
12 e

z2+1
4

. (5.14)

From (5.7) and 0 < z ≤
√
n, we have

n

2
< σnz +

n

2
≤
(√

1 + e−n
)n
2
+

n

2
≤
(
1 + e−

n
2

)n
2
+

n

2
= n+

n

2
e−

n
2 < n+ 1.

Hence,

3 ≤
⌊
σnz +

n

2

⌋
≤ n for n ≥ 6.

Applying Lemma 5.9,

A2 =
∣∣∣P(Cn ≤

⌊
σnz +

n

2

⌋)
− P

(
Bn−1 ≤

⌊
σnz +

n

2

⌋)∣∣∣
≤ P

(
Bn−1 =

⌊
σnz +

n

2

⌋)
≤ P

(
σnz +

n

2
− 1 ≤ Bn−1 ≤ σnz +

n

2

)
(5.15)

where we use the fact that x− 1 ≤ ⌊x⌋ ≤ x for any x ∈ R in the last inequality.
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Next, consider A3. By (5.7), and the fact that en ≥ n for any n ∈ N, we have

σn ≥
√

n

4
(1− e−n) ≥

√
n− 1

4

and for z ≤
√
n,(

σn −
√

n− 1

4

)
z ≤ 1

2

(√
n(1 + e−n)−

√
n− 1

)
z

=
1

2

(
n(1 + e−n)− (n− 1)√
n(1 + e−n) +

√
n− 1

)
z

≤ 1

2

(
ne−n + 1√

n(1 + e−n) +
√
n− 1

)
√
n

=
1

2

(
ne−n + 1

√
1 + e−n +

√
1− 1

n

)

<
1

2

where we use the fact that ne−n + 1 ≤ 1.37 and
√
1 + e−n +

√
1− 1

n
≥ 1.91 for

n ≥ 6 in the last inequality.

Hence,

1

2
≤

(
σn −

√
n− 1

4

)
z +

1

2
< 1.

This leads us to

σnz +
n

2
− 1 <

√
n− 1

4
z +

n− 1

2

and

A3 = P

(√
n− 1

4
z +

n− 1

2
< Bn−1 ≤ σnz +

n

2

)
≤ P

(
σnz +

n

2
− 1 ≤ Bn−1 ≤ σnz +

n

2

)
. (5.16)
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From (5.15) and (5.16), we obtain

A2 + A3 ≤ 2P
(
σnz +

n

2
− 1 ≤ Bn−1 ≤ σnz +

n

2

)
= 2P

( 2σn√
n− 1

z − 1√
n− 1

≤ Bn−1 − (n− 1)/2√
(n− 1)/4

≤ 2σn√
n− 1

z +
1√
n− 1

)
.

Since z
5
≤

√
n
5

≤
√

n−1
4

, we can apply Lemma 5.8 to Bn−1 with s = z
10

, λ = 2√
n−1

and z replaced by 2σn√
n−1

z − 1√
n−1

,

A2 + A3 ≤ 4e
− z

10

(
2σn√
n−1

z− 1√
n−1

)
e

z2

50
+ 4z3

375
√
n−1

(
e

z
20

√
n−1

( 3√
n− 1

)
+

1

2
√
n− 1

)
≤ 4e

− σn
5
√
n−1

z2
e

1.1
10 e

z2

50
+

4(1.1)z2

375

(
e

1.1
20

( 3√
n− 1

)
+

1

2
√
n− 1

)
≤ 4e−

997
104

z2e
1.1
10 e

3174
105

z2
(
e

1.1
20

( 3√
n− 1

)
+

1

2
√
n− 1

)
≤ 16.3853

√
n− 1e

z2

15

(5.17)

where we use the fact that n
n−1

= 1 + 1
n−1

≤ 1.2 which implies z ≤
√
n ≤

√
1.2

√
n− 1 ≤ 1.1

√
n− 1 for n ≥ 6 in the second inequality and (5.8) in the

third inequality.

It remains to bound the error term A4. Applying Theorem 4.3 to Bn−1,

A4 ≤
1

√
n− 1e

z2

2

+
17.9278

√
n− 1e

z2

16

. (5.18)

Therefore, by (5.13), (5.14), (5.17) and (5.18),

∣∣∣P(W − n/2

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ 2.7314
√
n

e
n+1
12 e

z2+1
4

+
1

√
n− 1e

z2

2

+
16.3853

√
n− 1e

z2

15

+
17.9278

√
n− 1e

z2

16

≤ 2.7314
√
n

e
n+1
12 e

z2+1
4

+
1

√
n− 1e

z2

2

+
34.3131

√
n− 1e

z2

16

,

completing the proof. �
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5.2.2 Proof of Theorem 5.6

Assume that 0 < z ≤
√
n. To prove the theorem, we use the same technique

in the proof of Theorem 5.5 by considering

∣∣∣P(W − n/2

σV

≤ z
)
− Φ(z)

∣∣∣
≤
∣∣∣P(W − n/2

σV

≤ z
)
− P

(Cn − n/2

σV

≤ z
)∣∣∣

+
∣∣∣P(Cn − n/2

σV

≤ z
)
− P

(Bn−1 − n/2

σV

≤ z
)∣∣∣

+
∣∣∣P(Bn−1 − n/2

σV

≤ z
)
− P

(Bn−1 − (n− 1)/2√
(n− 1)/4

≤ z
)∣∣∣

+
∣∣∣P(Bn−1 − (n− 1)/2√

(n− 1)/4
≤ z
)
− Φ(z)

∣∣∣
=: R1 +R2 +R3 +R4. (5.19)

Applying (5.11), since z ≤
√
n,

R1 ≤
2.7314

√
n

e
n+1
3

≤ 2.7314
√
n

e
n+1
12 e

z2+1
4

. (5.20)

By using (5.9) and 0 < z ≤
√
n, we have

n

2
< σV z +

n

2
≤
(√n

4
+
(n− 1

4

)
e−n
)√

n+
n

2
≤ n

2
+

√
n(n− 1)

4
e−

n
2 +

n

2
< n+ 1.

Therefore,

3 ≤
⌊
σV z +

n

2

⌋
≤ n for n ≥ 7.

From Lemma 5.9, we obtain

R2 ≤ P
(
Bn−1 =

⌊
σV z +

n

2

⌋)
≤ P

(
σV z +

n

2
− 1 ≤ Bn−1 ≤ σV z +

n

2

)
. (5.21)
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Next, we will estimate the term R3. Using (5.9) and the fact that en ≥ n − 1 for

n ∈ N,

σV ≥
√

n

4
−
(n− 1

4

)
e−n ≥

√
n− 1

4

and for z ≤
√
n,(
σV −

√
n− 1

4

)
z ≤ 1

2

(√
n+ (n− 1)e−n −

√
n− 1

)
z

=
1

2

(
n+ (n− 1)e−n − (n− 1)√
n+ (n− 1)e−n +

√
n− 1

)
z

≤ 1

2

(
(n− 1)e−n + 1√

n+ (n− 1)e−n +
√
n− 1

)
√
n

=
1

2

(
(n− 1)e−n + 1√

1 + (1− 1
n
)e−n +

√
1− 1

n

)

<
1

2

where the last inequality holds by applying the fact that (n − 1)e−n + 1 ≤ 1.01

and
√

1 + (1− 1
n
)e−n +

√
1− 1

n
≥ 1.92 for n ≥ 7.

Thus,

1

2
≤

(
σV −

√
n− 1

4

)
z +

1

2
< 1.

This implies that

σV z +
n

2
− 1 <

√
n− 1

4
z +

n− 1

2

and

R3 = P
(√n− 1

4
z +

n− 1

2
< Bn−1 ≤ σV z +

n

2

)
≤ P

(
σV z +

n

2
− 1 ≤ Bn−1 ≤ σV z +

n

2

)
. (5.22)
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By (5.21) and (5.22), we see that

R2 +R3 ≤ 2P
(
σV z +

n

2
− 1 ≤ Bn−1 ≤ σV z +

n

2

)
.

Next, we use Lemma 5.8 which is the same argument as estimating A2 + A3 with

(5.10) and z replaced by 2σV√
n−1

z − 1√
n−1

, to bound the term R2 +R3 as follows.

R2 +R3 ≤
16.3853

√
n− 1e

z2

15

. (5.23)

Applying Theorem 4.3 with Bn−1,

R4 ≤
1

√
n− 1e

z2

2

+
17.9278

√
n− 1e

z2

16

(5.24)

Combining (5.19), (5.20), (5.23) and (5.24),

∣∣∣P(W − n/2

σV

≤ z
)
− Φ(z)

∣∣∣ ≤ 2.7314
√
n

e
n+1
12 e

z2+1
4

+
1

√
n− 1e

z2

2

+
16.3853

√
n− 1e

z2

15

+
17.9278

√
n− 1e

z2

16

≤ 2.7314
√
n

e
n+1
12 e

z2+1
4

+
1

√
n− 1e

z2

2

+
34.3131

√
n− 1e

z2

16

.
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CHAPTER VI

NON-UNIFORM BOUNDS FOR m RUNS

The m runs is an important model for applications such as sensors or stock

market measurements, where items arrive one at a time, and only most recent

m items remain active for some fixed parameter m. It can be represent as the

following mathematical model.

Let ξ1, ξ2, . . . , ξn be independent and identically distributed Bernoulli random

variables with parameter p ∈ (0, 1). Let W be the number of m runs of the

sequence ξ1, ξ2, . . . , ξn given by

W =
n∑

i=1

Xi where Xi = ξiξi+1 · · · ξi+m−1

with the periodic convention ξn+k = ξk.

Ghosh and Goldstein [17] gave the mean µn and the variance σ2
n of W for

n ≥ 2m in the following form

µn = npm and σ2
n = npm

(
1 +

2(p− pm)

1− p
− (2m− 1)pm

)
.

They also constructed the size bias W s of W as

W s =
n∑

i=1

ξ′iξ
′
i+1 · · · ξ′i+m−1

where

ξ′j =

 ξj if j /∈ {i, . . . , i+m− 1},

1 if j ∈ {i, . . . , i+m− 1},
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which satisfies the following property

0 ≤ W s −W ≤ 2m− 1

([17], p.76).

Moreover, Goldstein [21] bounded the term ∆ =
√

Var(E(W s −W |W )) in the

form of

∆ ≤ n−1/2(2m− 1)(6m− 5)1/2

to give a Berry-Esseen theorem for W as follows.

Theorem 6.1. ([21], p.664) If 2m− 1 ≤ σ
3
2
n√

6npm
, then for z ∈ R,

∣∣∣P(W − npm

σn

≤ z
)
− Φ(z)

∣∣∣ ≤ 0.4A+
npm

σn

(2m− 1)(64A2 + 4A3) +
23npm

σ2
n

∆

where A = 2m−1
σn

.

Note that a non-uniform exponential bound for the number of m runs of the

sequence ξ1, ξ2, . . . , ξn can be obtained by using Theorem 3.2. In particular, we

consider the bound in the case that m = 2 to attain a concrete example.

Now, we use Theorem 3.2 equipped with

B = 3, µn = np2, σ2
n = np2(1 + 2p− 3p2) and ∆ ≤ 3

√
7√
n

to get a bound for the number of 2 runs presented in Theorem 6.2.

Theorem 6.2. For large n such that 0 < |z| ≤ 4p
√
nr and c > 0,

∣∣∣P(W − np2√
np2r

≤ z
)
− Φ(z)

∣∣∣ ≤ C1(z)
3
√
7

r
√
n
+ C2(z)

9

pr
√
nr

+ C3(z)
3

p
√
nr
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where

C1(z) =
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

|z|3
576pr

√
nr e−

z2

24

(
1

1+c
− 1

8r

)
,

C2(z) =
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
|z|3

288pr
√
nr

+
|z|

4p
√
nr e−z2

(
3
40

− 1
96r

))
,

C3(z) = 2
(
e

|z|3
576pr

√
nr

+
|z|

8p
√
nr

)
e−

z2

2

(
1
12

− 1
96r

)
and r = 1 + 2p− 3p2.

For a symmetric case, p = 1
2
, we give the exponential bound with a known

constant in the easier form as follows.

Theorem 6.3. If p = 1
2
, then for all real numbers z such that |z| ≤ 3

√
5n
5

,

∣∣∣P(W − n/4√
5n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ 3.7545
√
ne

z2

2

+
67.5622
√
ne

z2

31

.

Remark 6.4. Since 0 ≤ W ≤ n, P
(W−n/4√

5n/4
≤ z

)
= 1 for all z > 3

√
5n
5

and

P
(W−n/4√

5n/4
≤ z

)
= 0 for all z < −3

√
5n
5

. Therefore, we regard the bound with

|z| ≤ 3
√
5n
5

.

Proof of Theorem 6.3

Let p = 1
2

and z ∈ R be such that |z| ≤ 3
√
5n
5

.

Case |z| ≤ 4.3. Note that e
z2

31 ≤ 1.8157. Applying Theorem 3.1 with

B = 3, µn =
n

4
, σn =

5n

16
and ∆ =

3
√
7√
n
,

we see that

∣∣∣P(W − n/4√
5n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ 1.8157

e
z2

31

(12√7

5
√
n

+
118.08

√
5

25
√
n

+
12
√
5

5
√
n

)
≤ 40.4498

√
ne

z2

31

.
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Case |z| > 4.3. Since p = 1
2
, r = 5

4
. By Theorem 6.2, we have

∣∣∣P(W − n/4√
5n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ C1(z)
12
√
7

5
√
n

+ C2(z)
144

√
5

25
√
n

+ C3(z)
12
√
5

5
√
n

(6.1)

where

C1(z) =
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

|z|3

180
√

5n e−
z2

24

(
1

1+c
− 1

10

)
,

C2(z) =
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
|z|3

90
√
5n

+
|z|√
5n e−z2

(
3
40

− 1
120

))
,

C3(z) = 2
(
e

|z|3

180
√
5n

+
|z|

2
√
5n

)
e−

z2

2

(
1
12

− 1
120

)
.

Under the assumption that |z| ≤ 3
√
5n
5

, C1(z), C2(z) and C3(z) can be bounded as

follows. Starting with C1(z), we have

C1(z) ≤
2e−

z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e

z2

300 e−
z2

24

(
1

1+c
− 1

10

)
=

2e−
z2

2

√
2π|z|

+ e
− z2

2

(
1− 1

(1+c)2

)
+ e−

z2

24

(
1

1+c
− 1

10
− 2

25

)
.

We want to find a positive constant c such that e
− z2

2

(
1− 1

(1+c)2

)
= e−

z2

24

(
1

1+c
− 1

10
− 2

25

)
.

Suppose that

1− 1

(1 + c)2
=

1

12

( 1

1 + c
− 1

10
− 2

25

)
.

Then

609(1 + c)2 − 50(1 + c)− 600 = 0

which is equivalent to

609c2 + 1168c− 41 = 0.

Hence,

c =
−1168±

√
11682 − 4(609)(−41)

2(609)
=

−584± 605

609
.
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Choose c = −584+605
609

= 1
29
. This lead us to see that

e
− z2

2

(
1− 1

(1+c)2

)
= e−

z2

24

(
1

1+c
− 1

10
− 2

25

)
= e−

59z2

1800 .

Therefore,

C1(z) ≤
2e−

z2

2

√
2π|z|

+ 2e−
59z2

1800

=
2e−

z2

2

√
2π|z|

+ 2e−
29z2

55800 e−
z2

31

≤ 0.1856e−
z2

2 + 1.9809e−
z2

31 .

Now, we bound the term C2(z) as below.

C2(z) ≤
e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
z2

150
+ 3

5 e−z2
(

3
40

− 1
120

))
=

e−
z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + e
3
5 e−z2

(
3
40

− 1
120

− 1
150

))
≤ e−

z2

2

2
√
2π

+
(1 + z2

2|z|

)(
e−

19z2

200 + 1.8222e−
3z2

50

)
=

e−
z2

2

2
√
2π

+
(1 + z2

2|z|

)
e−

z2

31

(
e−

389z2

6200 + 1.8222e−
43z2

1550

)
≤ 0.2e−

z2

2 + 3.1831e−
z2

31

where the last inequality is true by using the fact that 1
|z|e

− 389z2

6200 ≤ 0.0729,

|z|e− 389z2

6200 ≤ 1.3479, 1
|z|e

− 43z2

1550 ≤ 0.1393 and |z|e− 43z2

1550 ≤ 2.5746 for |z| ≥ 4.3.

Consider estimating in the last term, C3(z), we see that

C3(z) ≤ 2
(
e

z2

300
+ 3

10

)
e−

z2

2

(
1
12

− 1
120

)
= 2e

3
10 e−

41z2

1200

≤ 2.6998e−
z2

31 e−
71z2

37200

≤ 2.6062e−
z2

31 .
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Applying the bounds of C1(z), C2(z) and C3(z), to (6.1), for |z| > 4.3,

∣∣∣P(W − n/4√
5n/4

≤ z
)
− Φ(z)

∣∣∣
≤ 1

√
ne

z2

2

(12√7

5
(0.1856) +

144
√
5

25
(0.2)

)
+

1
√
ne

z2

31

(12√7

5
(1.9809) +

144
√
5

25
(3.1831) +

12
√
5

5
(2.6062)

)
≤ 3.7545

√
ne

z2

2

+
67.5622
√
ne

z2

31

.

Therefore, from the both cases,

∣∣∣P(W − n/4√
5n/4

≤ z
)
− Φ(z)

∣∣∣ ≤ 3.7545
√
ne

z2

2

+
67.5622
√
ne

z2

31

.
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69, 137–161 (2007).

[33] Reinert, G., Röllin, A.: Multivariate normal approximation with Stein’s
method of exchangeable pairs under a general linearity condition, Ann.
Probab. 37, 2150–2173 (2009).

[34] Reinert, G., Röllin, A.: U-statistics and random subgraph counts: Multi-
variate normal approximation via exchangeable pairs and embedding, Cornell
University Library [Internet]. 2009. Available from : http://arxiv.org/pdf/
0912.3425.pdf [2009, Dec 17].

[35] Rinott, Y., Rotar, V.: On coupling constructions and rates in the CLT for
dependent summands with applications to the antivoter model and weighted
U-statistics, Ann. Appl. Probab. 7, 1080–1105 (1997).

[36] Röllin, A.: Translated Poisson approximation using exchangeable pair cou-
plings, Ann. Appl. Probab. 17, 1596–1614 (2007).

[37] Ross, N.: Fundamentals of Stein’s method, Probab. Surv. 8, 210–293 (2011).

[38] Sharma, N., Parashar, B., Sharma, S., Mahajan, U.: Blooming pharma indus-
try with transdermal drug delivery system. Indo. Global J. Pharm. Sci. 2(3),
262–278, 2012.

[39] Shevtsova, I.G.: Sharpening of the upper bound of the absolute constant in
the Berry-Esseen inequality. Theory Probab. Appl. 51(3), 549–553 (2007).

[40] Shevtsova, I.G.: An improvement of convergence rate estimates in the Lya-
punov theorem. Dokl. Math. 82(3), 862–864 (2010).



57

[41] Shevtsova, I.: On the absolute constants in the Berry-Esseen type inequalities
for identically distributed summands, Cornell University Library [Internet].
2011. Available from : http://arxiv.org/pdf/1111.6554.pdf [2011, Nov 28].

[42] Shiganov, I.S.: Refinement of the upper bound of the constant in the central
limit theorem. J. Soviet Math. 35(3), 2545–2550 (1986).

[43] Soon, S.Y.: Binomial approximation for dependent indicators, Statist. Sinica
6(3), 703–714 (1996).

[44] Stein, C.: A bound for the error in normal approximation to the distribution
of a sum of dependent random variables. In Proceedings of the Sixth Berke-
ley Symposium on Mathematical Statistics and Probability, Vol. 2. Berkeley:
University of California Press, 583–602, 1972.

[45] Stein, C.: Approximate Computation of Expectations, Lecture Notes 7, IMS,
Hayward, Calif, 1986.

[46] Tyurin, I.: New estimates of the convergence rate in the Lyapunov theorem,
Cornell University Library [Internet]. 2009. Available from: http://arxiv.org/
pdf/0912.0726.pdf [2009, Dec 3].

[47] Van Beek, P.: An application of Fourier methods to the problem of sharpening
the Berry-Esseen inequality. Z. Wahrsch. Verw. Gebiete. 23, 187–196 (1972).



58

VITA

Name : Miss Kamonrat Kamjornkittikoon

Date of Birth : 29 June 1987

Place of Birth : Kanchanaburi, Thailand

Education : B.Sc. (Mathematics), Silpakorn University, 2008

M.Sc. (Mathematics), Silpakorn University, 2011

Scholarship : Science Achievement Scholarship of Thailand (SAST)


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	CHAPTER II STEIN’S METHOD AND SIZE BIASED COUPLINGS
	2.1 Stein’s Method for Normal Approximation
	2.2 Size Biased Couplings

	CHAPTER III NON-UNIFORM BOUNDS FOR BOUNDEDMONOTONE SIZE BIASED COUPLINGS
	3.1 Auxiliary Results
	3.2 Proof of Theorem 3.2

	CHAPTER IV NON-UNIFORM BOUNDS FOR SUM OFINDEPENDENT RANDOM VARIABLES
	CHAPTER V BERRY-ESSEEN BOUNDS FOR THE LIGHTBULBPROCESS
	CHAPTER VI NON-UNIFORM BOUNDS FOR m RUNS
	REFERENCES
	VITA



