vousldiengulunmsuszanamenisianuasunilagisvesalmiuazeriliowdesvun

PR ILUULVD UL

a

YNENINUASHY NASNARAN

9

a a

enfinusiidudrumilivaansfnwimumdngasUsyyinemansnuivnds

AUNIVIAUAFAIENT NIAITIAMAFAIANTLAZINGINITADUNNADS
ANEINYIANENT PNRINTAIUNTINGSY
Yns@nwn 2559

AUAVITYRMIAINTINYINEEY

unAntiauazuindayaativifuaesineinusaeustinisdne 2554 NlEnsluadsloyay1q¥i+ (CUIR)
Huuilsdiayarestdnidnaadnednusndeiumisinugsmingas
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



NON-UNIFORM BOUNDS ON NORMAL APPROXIMATION BY STEIN’S
METHOD AND BOUNDED MONOTONE SIZE BIASED COUPLINGS

Miss Kamonrat Kamjornkittikoon

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2016
Copyright of Chulalongkorn University



Thesis Title NON-UNIFORM BOUNDS ON NORMAL APPROXIMATION
BY STEIN'S METHOD AND BOUNDED MONOTONE SIZE
BIASED COUPLINGS

By Miss Kamonrat Kamjornkittikoon

Field of Study Mathematics

Thesis Advisor Associate Professor Nattakarn Chaidee, Ph.D.

Thesis Co-advisor Professor Kritsana Neammanee, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

.................................. Dean of the Faculty of Science
(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

.................................. Chairman

(Associate Professor Imchit Termwuttipong, Ph.D.)

.................................. Thesis Advisor
(Associate Professor Nattakarn Chaidee, Ph.D.)

.................................. Thesis Co-advisor

(Professor Kritsana Neammanee, Ph.D.)

.................................. Examiner

(Associate Professor Songkiat Sumetkijakan, Ph.D.)

.................................. Examiner

.................................. External Examiner

(Dawud Thongtha, Ph.D.)



iv

nuasil dasiefan © veuwa lienguTunisyssanamenisuwaniasunilag
Fuosalniuazgediteudssvunamafsinuuiivouwn.  (NON-UNIFORM
BOUNDS ON NORMAL APPROXIMATION BY STEIN’S METHOD
AND BOUNDED MONOTONE SIZE BIASED COUPLINGS) a.fiUSnw
Ingniwududn . seasalsngat Taf, 8 AUSnuinerdnusion : aasnque
Weuue, 58 nN.

a a

IneinusatuiusenoumuaasdIunan Imamuﬁ%ﬁqL“fﬁJum{LﬁmawumlajLaﬂgﬂ

wuulavdmaslunisuszaname msuanuasunilag 5 vesalatuas g Arileuideavuin
= =~ | = < 59 v = o oA v !

mudeuuuiveun dunasadunmsuszyndlinguiunvaninelilaveunliionsy

Tunisuszanasensuanuasdnidmsunasinvesdulsguindudassaaiu d1uiuvaen

Tiifadne s nanaavihelunssuiunislanidu uagduiuves m Sy

AAIYN AMANEASHAZINGINITABUALADS AaNeilataidn

UnsAnw 2559 aNeileTe . NUINWSIU



# # 5572801023 : MAJOR MATHEMATICS

KEYWORDS : BOUNDED MONOTONE SIZE BIASED COUPLINGS/ STEIN’S

METHOD/ NON-UNIFORM EXPONENTIAL BOUNDS
KAMONRAT KAMJORNKITTIKOON : NON-UNIFORM BOUNDS ON
NORMAL APPROXIMATION BY STEIN’S METHOD AND BOUNDED
MONOTONE SIZE BIASED COUPLINGS. ADVISOR : ASSOC.PROF.
NATTAKARN CHAIDEE, Ph.D., CO-ADVISOR : PROF . KRITSANA
NEAMMANEE, Ph.D., 58 pp.

This dissertation contains two main parts. First, we give a non-uniform
exponential bound on normal approximation by using the Stein’s method and
bounded monotone size biased couplings. Second, applications of the main theo-
rem to give the bound on normal approximation for sum of independent random
variables, the number of bulbs on at the terminal time in the lightbulb process,

and the number of m runs are provided.

Department : ...Mathematics and..... Student’s Signature : ...................
...Computer Science...  Advisor’s Signature : ..............cccuneee
Field of Study : ...... Mathematics...... Co-advisor’s Signature : .....................

Academic Year : ............ 2016............



vi

ACKNOWLEDGEMENTS

I would like to give special thanks to Associate Professor Dr. Nattakarn
Chaidee, my advisor, and Professor Dr. Kritsana Neammanee, my co-advisor,
for teaching me Stein’s method, especially for normal approximation, giving me
worthy problems to work on and coaching me in preparing and writing this dis-
sertation. During my research, we had several discussions and I learned a lot from
their helpful advice. The expression of this dissertation has been greatly improved
following their suggestion.

I would like to thank Associate Professor Dr. Imchit Termwuttipong, Associate
Professor Dr. Songkiat Sumetkijakan, Dr. Jiraphan Suntornchost and Dr. Dawud
Thongtha, my dissertation committee, for their comments and assistance.

The Department of Mathematic and Computer Science at Chulalongkorn Uni-
versity is a great place to study in. I feel very thankful to all my teachers for
teaching me courses and all my friends for the happy times we had together.

Thanks to the Science Achievement Scholarship of Thailand (SAST) for finan-
cial support during my graduate student.

Finally, I would like to express my deepest gratitude to my family for their love

and encouragement during all these five years.



CONTENTS

page
ABSTRACT IN THAT . iv
ABSTRACT IN ENGLISH ... v
ACKNOWLEDGEMENTS ... vi
CONTEN TS e vii
CHAPTER

[ INTRODUCTION ... e 1
II  STEIN'S METHOD AND SIZE BIASED COUPLINGS............... 4
2.1 Stein’s Method for Normal Approximation......................... 4
2.2 Size Biased Couplings......... ..o 6

IIT  NON-UNIFORM BOUNDS FOR BOUNDED MONOTONE SIZE
BIASED COUPLINGS ... 9
3.1 Auxiliary Results. ... .o 10
3.2 Proof of Theorem 3.2...... .. . 15
IV. NON-UNIFORM BOUNDS FOR SUM OF INDEPENDENT RANDOM
VARIABLES 20
V  BERRY-ESSEEN BOUNDS FOR THE LIGHTBULB PROCESS ....28
5.1 Uniform Bounds ......... ... 34
5.2 Non-uniform Bounds ........ ... .. i 38
VI NON-UNIFORM BOUNDS FOR m RUNS ....... ... ... ... ... 48
REFERENCES . 54



CHAPTER 1
INTRODUCTION

Stein’s method introduced by Stein [44] in 1972 is a powerful tool to give
uniform and non-uniform bounds on normal approximation. There are many ap-
proaches of the Stein’s method, one of them is the size biased couplings approach.

For a non-negative random variable Y with finite and positive mean uy, we

say Y has the Y-size biased distribution if
EY[(Y)) = Ef(Y?)

for all functions f for which these expectations exist.
The size biased technique is a useful tool to give bounds in normal approxima-
tion which can be seen in [9] and [21].

In 2011, the bounded monotone size biased couplings, that is,
Y <Y <Y+B

with probability 1, for some non-negative constant B, are mentioned in [26] by
Goldstein and Zhang. They also gave a uniform Berry-Esseen bound for bounded
monotone size biased coupling via Stein’s method.

Let X4, Xo,... 7Xnnbe non-negative random variables with finite and positive
means, and let W = Z X;. Denote i, = E(W) and 02 = Var(W). By the result
of Goldstein and Zha;:g1 [26], we get a Berry-Esseen bound for W expressed in the

following theorem.

Theorem 1.1. (/26], p.880) If p, and o2 are finite and positive, and W* is a

random variable having the W -size biased distribution and satisfying W < W?# <



W + B with probability 1, for some B > 0, then

.B?> B
H + 2
On

sup P(u < z) —P(2)| <

z€R On

Prn+0.82

n n

where

A =/Var(E(Ws —W | W)).
In the present work, we obtain Theorem 1.1 in the case of a non-uniform ex-
ponential bound. Our main result is as follows.

Theorem 1.2. Under the assumptions in Theorem 1.1, for z € R such that

0 < |z| <40, and ¢ > 0, we have

[P(T <o)~ o(2)] < i) A + o) T 4 Oy()
where
2€_é 22 1 Mn|z‘3 22 1 Htn
Cl(’z) - 2—|| + 6_7(1_(1%)2) + e192B03 e‘@(m_go )7
V2|2
2 2
Sy )
24/ 21 2 ’

Hnlz \ + | 22( 1 Kn )
O( >—2<6192B”n SUn)e 2 \4B  32B03/

There are three examples to illustrate the usefulness of Theorem 1.2 consisting
of sum of independent random variables, the number of bulbs on at the terminal
time in the lightbulb process and the number of m runs.

In 2005, Chaidee [7] presented a non-uniform Berry-Esseen bound for sum
of independent bounded random variables in the term of e=5'. A non-uniform
bound for sum of independent random variables in the term of e’é with unknown
constant which was suggested by Chen, Fang and Shao [8]. In this work, we apply

Theorem 1.2 to obtain a non-uniform exponential bound for sum of independent

22
random variables, especially, the bound is in the term of e~ with known constant
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when the approximated random variable is binomial with parameter p =

In 2011, Goldstein and Zhang [26] gave a uniform Berry-Esseen bound for the
number of bulbs on at the terminal time in the lightbulb process by using a version
of the Stein’s method for bounded monotone size biased couplings. We obtain it
in the case of a non-uniform bound. Application of the lightbulb process is also
mentioned as the dermal patch problem.

In 2005, Goldstein derived a uniform bound for approximating the distribution
of the number of m runs by normal distribution which can be found in [21]. Now,
we attain the non-uniform exponential bound.

This dissertation is organized as follows. In Chapter I, we review some concept
of the Stein’s method and some properties of size biased couplings. In Chapter III,
the proof of Theorem 1.2 is provided. The applications of Theorem 1.2 such as the

sum of independent random variables, the lightbulb process and the number of m

runs are presented in Chapter IV, Chapter V and Chapter VI, respectively.



CHAPTER 11
STEIN’S METHOD AND SIZE BIASED COUPLINGS

In this chapter, we introduce the Stein’s method for normal approximation and

size biased couplings equipped with some involved properties.

2.1 Stein’s Method for Normal Approximation

In 1972, Stein [44] introduced a method in finding a Berry-Esseen bound which
is not concern with Fourier transformation and relied on the elementary differen-
tial equation. This method was extended from the normal distribution to other
distributions, for example, Possion, Cauchy, binomial and clubbed binomial which
can be seen in [3], [30], [43] and [25], respectively. In this dissertation, we interest
in normal approximation. Consider the Stein’s equation for normal distribution

function

J(w) = wf(w) = Iw < 2) - B(2), (2.1)

where [ is the indicator function and @ is the standard normal distribution function.

The above linear differential equation has the unique solution f, which is form

fo(w) = 27rew72®(w)[1 —®(2)] ifw <z, 22)
’ Vare s ®(2)[1 — d(w)] if w> z. '

Then

1 ®(2)][1 + V2rwes ®(w)]  ifw < z,
O(2)[—1+ 27Twe%(1 — d(w))] fw > z.



Note that the derivative of f, at the point w = z does not exist. From the Stein’s

equation (2.1) and the Stein’s solution (2.2), we define f! at the point w = z by
22
fi(z) =[1—®(2)][1 + V2rze= ®(2)].
Therefore,

[1—®(2)][1+ 27Twew72<1>(w)] if w <z,
B(2)[—1 + V2rwes (1 — d(w))] if w > =.

For any random variable W, by (2.1), we note that

E(fz(W)) = EW [.(W)) = P(W < 2) — ®(2)

z

which implies that we can find a bound of E(f.(W)) — E(W f,(W)) instead of
P(W < z) — ®(z). This technique is called the Stein’s method.

In our work, we need the following properties of f:
|fi(w)] <1 forallweR (2.4)

([10], p.246).
For each z > 0, define g : R — R by g(w) = (wf.(w)). Then

g(w) >0 forall weR, (2.5)
g(w) <2(1 —¢(2)) for w <0, (2.6)
g(w) < 2 for w > z, (2.7)

1+ w3



and

(V2r(1+ w2)ew72[1 — O(w)] —w)®(2) ifw>z,

7\ (IR 1 R o) + )1 - 0 i< -

M

(2.8)

([10], pp.248-249).

In order to bound |E(f.(W)) — E(W f.(W))], we rewrite E(W f,(W)) in a
suitable form presented by many approaches, for example, the exchangeable pairs
approach (see [33]-[36] and [45]), the zero bias transformations (see [21] and [23])
and the size bias transformations (see [5], [17]-[20], [22] and [24]). In this work,

we focus on the size biased couplings approach to obtain the bound.

2.2 Size Biased Couplings

For a non-negative random variable Y with finite and positive mean py-, the

distribution of Y? is said to be Y-size biased if

B(YF(Y)) = iy Ef(Y?) (2.9)

for all functions f for which these expectations exist.
The distribution of Y* exists with Radon Nikodym derivative which can be
seen in [4] and [9].
The size biased coupling (Y,Y*) is bounded if there exists a non-negative
constant B such that
Y*-Y|<B

with probability 1 and it is monotone if

Y°>Y



with probability 1. Therefore, if there exists a non-negative constant B such that
Y <Y<Y +B

with probability 1, (Y,Y?®) is called the bounded monotone size biased cou-
pling (see [26]).

These are some examples of size biased couplings.
Example 2.1. If Y has a Bernoulli distribution with parameter p € (0, 1), then
Y*® = 1 has the Y-size biased distribution (see [2]). Note that the coupling is

monotone and bounded by B = 1.

Example 2.2. If Y has a Poisson distribution with parameter A > 0, then Y* =
Y + 1 has the Y-size biased distribution (see [2]). It is easy to see that (YY) is

bounded monotone size biased coupling with B = 1.

Example 2.3. Let X;, X5,..., X,, be non-negative independent and identically
distributed (i.i.d.) random variables with F(X;) > 0 for i = 1,2,...,n. Consider
Y =X, +Xo+---+ X,. Following the construction of size biased coupling in [1],

foreachi=1,2,...,n,

YSIX1+"'+Xi71+XiS+Xi+1+"'+Xn

has the Y-size biased distribution where X} has the Xj-size biased distribution,

independent of X; and X? for j # . By choosing a random index I such that

fori=1,2,...,n and X1, X,,..., X, I are independent,

V=Y - X+ X}

has the Y-size biased distribution. We note that (Y,Y*) is not necessary bounded

or monotone.



Example 2.4. In the classical urn allocation model, n balls are thrown indepen-
dently into one of m urns, with the probability of a ball being in any urn having
equal probability. For i = 1,2,...,n, let X; be the location of ball 7, that is, the

number of urn where ball 7 lands. The number of non-isolated balls is given by

Y =) 1(Z>0) where Z; = -1+ > I(X; = X).
i=1

Jj=1

In 2011, Ghosh and Goldstein [17] gave the construction of size biased coupling of
Y such that
Y*-Y]| <2,

but is not necessarily monotone in some situation.

Example 2.5. Let Y be a geometric random variable with parameter p € (0, 1).

Arratia and Goldstein [2] showed that
Y=Y +G+1

has the Y-size biased distribution where G is an independent copy of Y. This

coupling is monotone but unbounded.



CHAPTER I11
NON-UNIFORM BOUNDS FOR BOUNDED
MONOTONE SIZE BIASED COUPLINGS

Let X1, Xs,..., X, be non-negative random variables with finite and positive
n

2

means, and let W = ZXi with mean pu, and variance ;. A random variable

W?# having the W -size i):ilased distribution exists by using the size bias construction
appearing in [4] and [9].

In 2011, Goldstein and Zhang [26] used the Stein’s method and bounded mono-
tone size biased couplings to give a uniform Berry-Esseen bound as the following

result.

Theorem 3.1. (/26], p.880) If W < W* < W + B with probability 1, for some
B >0, then
u.B* B

+_7
On

sup P(W_Mn < z) —@(z)‘ <A tos2

2
zER On o, 0'2

where

A =/Var(E(Ws —W | W)).

In our work, we obtain Theorem 3.1 in the case of a non-uniform exponential

bound.

Theorem 3.2. If W < W?* < W + B with probability 1, for some B > 0, then for

z € R such that 0 < |z| < 40, and ¢ > 0,

Pt <) o] <croan+ a2 4 o) 2

3
Un n n n
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where

2

_z 3 )
= —26 ’ _|_ e_é(l_ (1+1c)2) + ell;gll;c‘rn 6_573(%"’0_8;:1 )
V27 |z|
2

z_ 2 " 3 . .
Cue) = o+ (R (0 4 B (i),
T
onlsl® s\ 2 ()
C’( )—2<6192B% SUn)e 2 \1B " 32803/

Cl (Z)

Y

This chapter is organized as follows. Auxiliary results are in Section 3.1 while

the proof of the main result appears in Section 3.2.

3.1 Auxiliary Results

In this section, we give auxiliary results to prove our main result in Section 3.2.
For convenience, we let
W — ~ W -
W ZHn ond =2 " Hn

On On

U:

To obtain a non-uniform Berry-Esseen bound for sum of independent random

variables W we can apply the Bennett-Hoeffding inequality
BV < exp(e® —1—k)

for k > 0 ([11], p.40). But in this work, W is a sum of not necessarily independent
random variables. Therefore, we cannot apply the Bennett-Hoeffding inequality
and thus Lemma 3.3 is required to get the bound.

First, we need to bound Ee*Y seen in Lemma 3.3. To do this, we use some
ideas from Lemma 5.1 of Chen et al. [8] and apply the technique in Lemma 3.1 of

Chuntee and Neammanee [13].
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Lemma 3.3. If W < W?® < W + B with probability 1, for some B > 0, then for
any k > 0 such that kB < o,, we have

WU wnk?B | 2unkS B2
Ee™ <e 2 8o

Proof. Let k be a positive real number such that kB < o,,. Let f : R — R and
h: (0,00) — R be defined by f(u) = e* and h(t) = Ee'V. Note that

|ﬁ—U\:‘W‘§£. (3.1)
By the fact that
E(Ug(U) = B2 E(g(0) - g(U)) (3.2)

On
for all functions g for which these expectations exist (see [9], p.31) equipped with
(3.1), we have

W(k)=E(Ue")
= BUF())
= B2B(£(0) - £(U))

n

o U-uU /
_ /0 F(U + tydt

On

U-U
Y / kb U gy

Op 0
k B

on B
Hn E/ U+ dt
On 0

= “nkBe% EetV

<

On

kB kB kB
< Bk B g kB g2 )
g,

o a
kB 2, k% B?

< Hn EetU 1 Hn EekU
on oy

where the last inequality holds by the fact that |e¥ — 1| < 2|w| for any |w| < 1.
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Thus,

/ 2 132
h' (k) < pnkB n 2u,k*B
h(k) — o2 ol

which implies that

1 k2B 2, k3 B

Inh(k) <
nh(k) < 202 303

Therefore, we have the lemma. O

We use the idea from Lemma 2.1 of Goldstein and Zhang [26] to obtain the

lemma below.

Lemma 3.4. If W < W? with probability 1, then for any z > 0 and \,r > 0,

ELB(U - U0 = U < NI(z = A S U < 2) < 2A(Be2 =V )he 7=,

On

Proof. Let z > 0, we define f: R — R by

0 ift<z—M\
fiO)=9Q (t—z+Ne? ifz—-A<t<z+ )\,

2Xe"t ift>z4+ A\
Then

If(t)] <2Xe™ forallt € R (3.3)
and

0 ift <z—A,
i) =19 (rz(t —z4+ N+ 1)t ifz— A<t <z+ )\

2\rze’#t ift >z+ M\
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These imply that

) et for z — N <t<z+ )\,
f(t) = (3.4)

0 otherwise.

By (3.2)—(3.4) equipped with EU? = 1 and the Holder inequality, we get

2N(Be*™V)2 = 2M(EU?)? (Ee**V):
> BE(UU))
= "LB(f(0) - £(U)

U-U
z—EJIz—Agng)/ I0 <t <N)f(U+t)dt
0

0 U-U
2 Bz -A<U<2) / (0 <t < NVt
0

> Hners=NEI(z; — A < U < 2)min(\, U — U)

On
> M ers=Np(0 — U)(U — U < MI(z — A< U < 2).
On

Therefore,

(O — U — U < NIz — A < U < 2) < 2\(Ee* V)20,

o
OJ

We use the idea from Chuntee and Neammanee ([13]) to prove the following

lemmas.

Lemma 3.5. Let f, be the solution of the Stein’s equation (2.1). Then for any
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z,c¢ >0, we have

I8
o,

£ if w <0,
| fo(w)] < (F) [1 + 27rze2<1+6>2} if0<w< 7,
1

wa > Tre 1+c

Proof. Let z,c > 0 and w € R be glven From (2.4) and [12] (p.43), we have
|1 (w)] <1 for w > 3

0 <w< 3. From (2.3) and the fact that

and |fl(w)] < e T — for w < 0, respectively. Assume that

Y
ot

1-®(z2) < c

for z>0 (3.5)
2mz

([11], p.11), we get

Fiw) = [1 = B(2)][1 + V2rwes B(w)

<[1—d(2)][1+ (ﬁj)em]

2

< ( > )[1+v ze2<1+0) }
2mz

Lemma 3.6. Let g(w) = (wf.(w)). Then for any z > 0, we have

2
(1+z ) 129020 + -5 wa
g(w> S z o Vo — 107
1422 e 2 .

Proof. Let z > 0 and w € R be given.
Case w < 2. For w < 0, by (2.6) and (3.5), we have

_ 22 _ 19z
2 2 e~ 200

<
27z %

g(w) <2(1 - &(2)) <



For0<w§?—g,weuse

(2.8) and (3.5) to obtain

21z
(1 + 22 1922 e*§
= e 200 + .
Z V2T

Therefore, we get the bound as desired.

Case w > %. If w < z, by (2.8) and (3.5), we get

g(w) =

(V2r(1 + w)e's ®(w) + w) (1 — 3(2))

[V

2

< (\/%(1 + 2He7 + z) ( ¢ 2

v/ 27rz>
2
1422 e %
— + )
z \ 2T

For w > z, from (2.7), we have

2 2 14 22
gw) < 7 < <

1423 —

z
where the last inequality holds by using the fact that

2 1+22_—(z—1)2—z3—z5<0
14 23 z 2(14 23) -

These lead us to obtain the bound.

3.2 Proof of Theorem 3.2

Assume that 0 < z < 40,,. In the case —40,, < z < 0, we use the symmetry of
®(2) that ®(z) = 1 — ®(—2) and apply the result to —U.

Goldstein and Zhang [26] used the Stein’s method and the property of the
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monotone size biased coupling for W in (3.2) to obtain

PU < 2) = d() = B(£0)(1- 220 - 1))

On

_ E(@ /Oﬁ_U (U +0)f(U+1) — UfZ(U)))dt>

_ E<@ /ﬁ_U (U 4+t < 2)—T(U < z))dt)

On

:2R1—R2—R3

([26], p.881). By using (2.9) with the identity function, we have

E 2
EW?® = W
[,

which leads us to the property that

M ~ Hn s o, EW?

B0 —U) = L3 B —W):J—%( > ~ ) :—%<EW2—(EW)2) ~1
Therefore,

2 M?L 2

E‘E(l @ vy o)

n

- 2E)E(fj—U)—E(fj—U|U)

On

= Z_izE)E(ﬁ—U |U) = E(EBEU-U| U))]2

s ~
= a—gVar(E(U— Ulu))

n

which implies that

= Nar(B(T - U | U))

On

\/E‘E(l @ vy o)

‘2
On

M,
= J—%\/Var(E(WS —W | W)
_ Hn

(3.6)



For ¢ > 0, we can see that

|Ri| < E

re(l -0 -u

rE(i =20 -y v)io< v <
)

+E
o
/ Hn 27
+Elpoe( -0 -v) v

=: Ry + Ria + Rys.

By Lamma 3.5 equipped with (3.6), we obtain

n
ol

n

y|U ‘]I(U<0)

)E’E(l gy U))

Ry < (\6/%2
< () Pl
-(5=)ae

- 22 -
1 4+ V2mze20+0)?

- 22
14+ V2mze20+0)?

- 22
14+ V2mze20+0)?

and

Ris < E‘E(l g oy v

On

o)

E‘E(l gy U)‘

On

NEE

1 tim

102

n

- -uv) v

On

)iV~ 52)

< ol ) Bl

P(U> : )@A
1+c¢/ o2

Since 0 < z < 40,, we can apply Lemma 3.3 with £ = 2

1_@(5—U)1U)(2

On

4B

)

2

17

(3.9)

and the Markov’s
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inequality to get

Kn 32 Kn 23

=Ll o o nz 22 (1
P(U > z ) < Ee423 < e32B 296B _ 69230%6 43(1ic s‘fy%) (3_10)
L+e/ ™ it ¢ TB(1T)
By this fact and (3.7)—(3.9), we conclude that
7£ 2 3 2
Ri| < {262_2 v (o) | it e (o )} tn p, (3.11)
V212 o

Next, we will bound the term Rs. Let g(w) = (wf.(w))’. We use (2.5), Lemma 3.6
and the fact that 0 < U® - U <= to obtain

" U-U
Ry < E J"/ (U + DU + 1) = UL(U))] ]|
- / (/ (U + ) du)dt
0
g (/ g(U + u) du dt
0 0
1922 7§ 9z
S / / o7+ m)ﬂ(U—i—uS E)
1+ 22 e*%

+< . —|—\/%>I[<U—I—u>?—g>dudt

22
un/i bl 422 102 e T 14 22
< — e +

+

- =t P<U+u>?—0>>dudt.

Applying Lemma 3.3 which is the same argument as (3.10),

9z B 9z
P<U >—)<P(U —>—)
tu=g) S o 710
z 922 Z
—P(U> 2 - —)
<4B 40B 4o,
EeszU »
S 922 edon
€40B
an3 2 7Z2(L* KUn )
< e96Bay | don o 140B  32Bo2
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for 0 < u <t whenever 0 <t < Uﬁ. Therefore,

M

B

E 2 -5 2 3

/’l’ on 1+Z _M e 2 1+Z pnz 4 = .2 9 pun

’RQ‘ S - e 200 + 2 —|— 69630731 40’n6 (403 3230%) dudt
On Jo 0 z V2T z

2 2 22 ang z 2 9 _ _un _%
- {<1 = )(ef% + eooBal AT o (st 32BU">> + = ]

z

2 2 pnzS z Hn 2
= B pin (1 Ttz ) (e’% + egGBU%Jr‘“’"e_ZQ(‘“’%_?’?B“%)) + Blme > . (3.12)
To finish the proof, it remains to bound R3. Goldstein and Zhang [26] showed that
Hn 17 B
IRy < Hrp(0 - U)]I(z 2 <Uuc< z) (3.13)
o

n O-TL

([26], p.882). Applying Lemma 3.4 when A\ = ﬁ and r = =

P p(@ - u(U-U < 5)11(2 “Soue< 2) < ﬁ(EeﬁsU)Qe‘sz(Z‘ffi).

O'n 0-7L O-n Un
(3.14)
By (3.13), (3.14) and the fact that 0 < U — U < %, we obtain
1
|Rs| < §<E64§3U> 2@—%(2—%)
On
23 nz2
< @(6 >f+f
On
23 z 22 n
= _ewng.,?f'rﬁe_T(ﬁ_gzﬁsW) (3.15)
On

where the last inequality holds by using Lemma 3.3 with k = .
Combining (3.11), (3.12) and (3.15), the proof is completed. O



CHAPTER IV
NON-UNIFORM BOUNDS FOR SUM OF
INDEPENDENT RANDOM VARIABLES

Let X, Xs,..., X, be independent and not necessary identically distributed

random variables with zero means and finite variances. Let

W:iXi

and assume that Var(W) = 1.
Under the finiteness of the third moment, we have the uniform and non-uniform

Berry-Esseen theorem

[P(W < 2) = 0(2)] < Co ) BIX,|

i=1

and
|P(W < 2) —®(2)] < G iE;X\S

respectively, where Cy and C are absolute constants. If X;’s are identically dis-
tributed, then both inequalities shown above can be found in the original works of
Esseen [15] and Nagaev [29], respectively. The upper estimate of the constant Cj
was studied for a long history seen in Van Beek [47], Shiganov [42], Shevtsova [39)],
Korolev and Shevtsova [28] and Tyurin [46]. In 2011, Shevtsova [41] obtained the

bound as the following

sup |[P(W < 2) — ®(2)| < 0.4748nE| X, |°.

z€R
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The result in the case that X;’s are non-identically distributed was generalized by
Bikelis [6] and the constant is 0.5600 obtained by Shevtsova [40]. For the non-
uniform version, the constant C; was calculated to be 31.395 by Paditz [31] for
non-identically distributed random variables. In 2001, Chen and Shao [10] gave
the non-uniform bound without assuming the existence of the third moment. In
the case of bounded random variables, that is, |X;| < § for i = 1,...,n, they

obtained the uniform bound as
|[P(W < z)—®(2)] <3.30

([11], p.23). Next, Chaidee [7] used the idea of Chen and Shao [11] to prove a

non-uniform exponential bound for independent bounded random variables

[Ed]

|IP(W < z)—®(z)| < Cse™ 29,

where Cs = 4.45 + 2.2120+07%(e*'~1-20) Furthermore, a non-uniform exponential
bound in the term of e’é with unknown constant was proved by Chen, Fang and
Shao [8].

In this chapter, we concentrate on finding a non-uniform exponential bound
for sum of independent random variables in the term of e_% equipped with some
known constants by using Stein’s method and bounded monotone size biased cou-
pling.

Now, we consider

where X;’s are non-negative independent random variables with finite and positive
mean ji; for i = 1,...,n, and let u,, = E(W) and o2 = Var(W).

For each ¢ =1,...,n, let X/ have the X;-size biased distribution, independent
of X; and X7 for j # i, and 0 < X7 — X; <[ with probability 1, for some [ > 0.

By the size bias construction appearing in [9] and [37], W* can be constructed as
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follows. For a random index [ such that

fori=1,...,nand X;,...,X,, I are independent,
We=WwW - X;+ X;
has the W-size biased distribution satisfying
WWwe<W+1

with probability 1. Thus, Theorem 3.2 can be applied with B = [, and then we

get a non-uniform exponential bound for independent random variables as below.

Theorem 4.1. Let X have the X;-size biased distribution, independent of X; and
X3 for j #1i. Assume that 0 < X7 — X; < [ with probability 1, for some l > 0 and

fori=1,...,n. Then for z € R such that 0 < |z| < 40, and ¢ > 0,

(P(u <z) - o) < aiz)a+ @(z)“(jlz T Cy(5)—

On n ?L On

where
2
2¢~ % —ﬁ(l— 1 ) pnz® _ﬁ( 1 _uin)
C z) = _.I_ e 2 (1+c)2 + el92la% e 8l \1+c 80% ,
1(2) V27 |z|
2
e T 1+ 22 w02 emleP el oo i)
C’Q(z) = + ( > <€— 200 - e %6loy ' don g 200 32102 >7
242 2|z|
2|3 z 22 n
03(2) — 2<€’I—L$;l2lo'|%+80n>e_2<41l_3;a'%)
and A =/Var(E(Ws =W | W)).

If X4,...,X, are independent Bernoulli random variables with parameter p,
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then W = Z X, is a binomial random variable with
i=1

tn =np and o2 =npq

where ¢ = 1 — p. Since Baldi et al. [5] showed that X7 = 1 has the X;-size biased

distribution satisfying
X, <X <X;+1 and Var(E(W*-W |W))= P
n

which imply that

I=1 and A= /Var(E(W:—W [W))= %,

we can apply Theorem 4.1 to obtain a non-uniform exponential bound for W shown

in the following theorem.

Theorem 4.2. Let W ~ Binomial(n,p). For large n such that 0 < |z| < 4,/npq

and ¢ > 0,

1— ) |23 _ﬁ( 1 1)
a2/ 4 eTo2avima e~ 8 \THe " 8q) |

) 2 . 123 2
02(2;) €z <12—i‘_2”z )(6_129002 —|-@%‘1\}TW+4\/W622(3035¢1)>’

23 z
Ca(z) = 2 v i ) % (1-3k).

Theorem 4.3. If W ~ Binomial(n, %), then for all real numbers z such that
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2l < Vn,

—n/2 1 17.92
(V2 g Lt
n/4 Vnez  /nets

Remark 4.4. Since W ~ Binomial(n, %), 0 < W < n. Then P(W_—"/42 < z) =1

Vil

for all z > /n and P(%Q < z) =0 for all z < —y/n. Therefore, it is reasonable

considering the bound when |z| < y/n.

Proof of Theorem 4.3
Let W ~ Binomial(n, 1) and |z| < y/n.
Case |z| < 4. Since e% < e < 2.7183, we apply Theorem 3.1 with

B:L ,U/n:ﬁ

27 Op =

n
1 NG

to get that

NORRVCRNG

W —n/2 271831 328 2 17.071
P——t-<z)-® ‘ <= < -
‘ ( N Z> 2] = ( > ~ Vne's

2
Case |z| > 4. Applying Theorem 4.2 with p = %, we obtain

22
ei6

’P< n/4 §Z> —(I)(Z)‘ Sol(z)%“‘Cz(Z)%—i—Cg(z)% (4.1)
where
Ci(x) = 2y 7 0w ke (d),




25

By the assumption that |z| < y/n, we can bound the terms of Ci(z), Ca(z) and

C3(z) as follows. First, we consider the bound of C}(z) and see that

22

_2? E z
Ci(z) < 2 +€77(17ﬁ) +€%e*§2(ﬁ*i)
V27|z|
2

— %’1' + e*%(l <1+1c>2) + e*?(m*rg),

»

M‘NM
—~
-
+
)
€
~—
I
Q)
o[%,
—~
'
T
o
S
o~
~

Next, we will find a positive constant ¢ such that e

Assume that

(1+¢)?2 4\l4+c 4 6
Then
1 1 53
(1+c)2  4(1+c) 48
that is,
53(1 +¢)* —12(1 +¢) — 48 = 0.
Thus,

53¢ +94c—T7=0

which implies that

—94 + /942 — 4(53)(—7)  —47+2/645
2(53) B 53 ‘

CcC =

Choose ¢ = % V645 Thig leads us to obtain that

5(17#) ,ﬁ(L,l,l) _ 80722
e 2 (1+e)2) — ¢~ 8 \T+c 4 6 Se 12500 ,
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Therefore,
2%
e 2 8072
Ci(z) < + 2¢~ 12500
1(2) V272
2
2e7 2 10322 _ 22

+ 2e7 50000 ¢~ 1

~ Verl|

22 22
<0.2e72 +1.9352¢ 16.

1 ‘22 22
To estimate the term Cy(z), we use the fact that ﬂe’lfﬁ < 0.1487, |z]e w0 <
2

22 22
2.3781, Le~ < 0.0984 and |z|e" 0 < 1.573 for |2| > 4 to get

(
1922
2V 21 2|z <
e 222 1422 1022 1 20.2
3@*( H R
<027 (%)e—?e(e i 4164880 0 )

22

22
<0.2e" 2 +2.6412¢ 1.

For the last term Cj3(z), we see that

22
< 21739 16.
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Including the bounds of C}(z), Cy(z) and C3(z) as above into (4.1),

—n/2 1
M% <z) - a() < = (0.2 + 4(0.2))
n ne 2
1
b (19352 + 4(2.6412) + 2(2.7139))
\/nets
1 17.9278
+

\/ﬁeé \/ﬁe% .
From the both cases, for |z| < \/n,

1 17.9278
§z)—¢)(z)’§ - + -
Vnez V/nets

P



CHAPTER V
BERRY-ESSEEN BOUNDS FOR THE LIGHTBULB
PROCESS

A medicated adhesive patch which delivers the medication through the skin
by placing on the skin is called a dermal patch or skin patch. In pharmaceutical
studies, the dermal patch method is a way to measure the amount of pesticide
residue directly deposited on the skin in various body area. It is applied to estimate
the true exposure of pesticide by Clough et al. [14]. Moreover, this method is also
developed in exposure studies using video imaging techniques and in lyphocyte
transformation testing for quantifying metal hypersensitivity in Houghton et al.
[27] and Garino and Beredjiklian [16], respectively. In addition, a study in the
pharmaceutical industry, see Rao, Rao and Zhang [32] and Sharma et al. [38], the
potential of using the dermal patch has been recognized.

The problem from a study in the pharmaceutical industry, how to check the
patches before going to market, on the effects of dermal patches designed to activate
targeted receptors continues to receive attention. This system includes inactive
receptors which is active if it receives a dose of medicine released from the dermal
patch and inactive if it receives once again. The doses are increased progressively
for a limited number of days as follows: for the number of receptors n, on each day
r=1,...,n of the study, there exist r randomly selected receptors for which each
receives one dose of medicine from the patch. Thus, their status will be changed
between the active and inactive states. By this problem, we can simulate it into
the lightbulb process given by the following argument.

Let n be any positive integer. We have n switches and n individuals, both
serially numbered from 1 to n. Each switch is attached to a lightbulb.

Initially, all the bulbs are off.
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Day 1: Individual 1 selects one switch randomly and presses it. The corresponding
lightbulb lights up.
Day 2: Individual 2 selects two switches randomly and presses them.

Day 3: Individual 3 selects three switches randomly and presses them.

Day n: Individual n presses all switches.

Therefore, for the number of bulbs n, on each day » = 1,...,n of the study, there
exist r randomly selected bulbs which each is pressed the toggle switch connected
to a bulb, thus their status will be changed between on and off, we consider the

number of bulbs on at the terminal time n. Let
X = {er|r:0,1,...,n;k:1,...,n},
a collection of Bernoulli random variables such that for r > 1,

1 if the status of bulb k is changed on Day r,

0 otherwise.

In the initial state, all bulbs are off, that is, Xop = 0 for all £ = 1,2,...,n. At
stage r, the bulbs are chosen uniformly to have their status changed and the stages

are independent of each other. Let
X, = (ZX”’“) mod 2 and W:ZXk,
r=0 k=1

the random variable X}, is the indicator that bulb k is on at the terminal time and
the random variable W is the number of bulbs on at the terminal time.

In 2007, Rao et al. [32] gave the mean and the variance of W as follows:

fn = E(W) = 2(1 . f[AmLS) (5.1)
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and
o, = Var(W) = 1 <1 — H /\n,2,5> + T ( H An2,s — H )\n,Ls)a (5.2)
s=1 s=1 s=1
where
2 4 4s(s — 1
M= 12 and =1 WG (5.3)
v n - n  nn-—1)

In addition, they proved the distribution of W can be approximated by the stan-
dard normal distribution.

In the case that n is an even number, An,l,% = 0 which implies

n n
2
H )\n7178 = H )\n,l,s = 07
s=1 s=1

and then, from (5.1) and (5.2),

oy = g and o2 = %(1 +(n—1) HAH,2,5>7 (5.4)

s=1

respectively.

In 2011, Goldstein and Zhang [26] described that W can be coupled to a variable
W* having the W-size biased distribution. For every i = 1,...,n, the collection of
variables X" is constructed from X as follows. If X; = 1, then X’ = X. Otherwise,
with J* uniformly chosen from {j | X,,jo; = 1 — X,0:}, let X' = {X{, | rk =

1,...,n}, where

Xk if r £n/2,

Xpjor r=n/2,k¢{i,J},
Xpjoyi ifr=mn/2 k=i,
Xni ifr=mn/2,j= Jt,

i _
X’/‘k_
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and let
Xi = (Zxk) mod2 and W'=Y Xj.
r=1 k=1
By choosing a random index I uniformly from {1,...,n} and independent of all

other variables, W* = W' has the W-size biased distribution. This lead them to
obtain that
W<Ws<W+2.

They also provided a Berry-Esseen bound for W by using Theorem 3.1 which is

shown in the following theorem.

Theorem 5.1. ([26], p.877) For any even number n > 6,

sup [P
zeR

<W —n/2

On

n n 2

On

n n

where

Ao = /Var(E(Ws — W|W)).

For the odd case, n = 2m + 1, Goldstein and Zhang [26] formed a symmetrical
random variable V closely W in the following proceeds. Set J, = {j | X,; = 0}
for r = m,m + 1, so that 7, and J,,+1 are the bulbs that do not get toggled in
stages m and m + 1, respectively. Let B,, and B,,; be uniformly chosen from
Jm and J ., respectively, which are independent of X and of each other. Let
Cy, and C,, 11 be symmetric Bernouli variables, independent of X and of B,, and

Byi1.- Now, let the collection of variables

V:{%j]r,jzl,...,n}
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be given by
.
Xyj if r ¢ {m,m+ 1},
Xmj if r=m,j # B,
Vii=4 O, ifr=m,j =B,
Xm+1,j 1f7“:m+1,] %Bm—&—h
\ Cny1 ifr=m+1,5=0B,.1,
and let

Vi = (;VM) mod 2 and V:;V}.

From this construction, they attained
W —-V]|<2

with the mean and the variance of V' given, respectively, by

n o n
—2(1-TT2war) =5
Hv 2( e b 2

and
2 N e

O'V = Z(]_ — (1 — n) g)\mg’r>

where
3 B %(/\n,b,m + Npmt1) ifr e {m,m+ 1}, (55)
n,b,r — .

Anbor otherwise,

forb=1,2.

To obtain the bound for W when n is odd, they constructed a random variable
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V* with the V-size biased distribution satisfying
VIVe<V 42

Applying Theorem 3.1, their result is presented as follows.

Theorem 5.2. ([26], p.877) For any odd number n > 7,

W —n/2 2 1
W —nj2 <2) = 0(2)| £ 5o A+ 164+ (14 ——)
20 o oy

sup P(
ov s s vV 27

z€R

where

Ay = /Var(E(Vs — V|V)).

Theorem 5.1 and Theorem 5.2 contain the terms Ay and A; respectively, which
is not accurate values. The bounds above can be expressed in the easier forms as

the following.

Theorem 5.3. For any even number n > 6,

W_n/ng

On

sup P(

z€R

Theorem 5.4. For any odd number n > 7,

21.15
vn o

W —n/2

oy

sup P(

z€R

< z) —@(z)’ <

In this chapter, we generalize Theorem 5.1 and Theorem 5.2 to the case of
a non-uniform bounds by using the non-uniform bound for a binomial random
variable and the result of the clubbed binomial approximation for W. These are

our results.

Theorem 5.5. For all even numbers n > 6 and for any real number z such that

0 < [z[ < V/n,

W —n/2 2.7314 1 34.3131
Tn ez e 14 vn—1lez /n—lets
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Theorem 5.6. For all odd numbers n > 7 and for any real number z such that

0< |2 < Vi,

—n/2 2.7314\/n 1 34.3131
‘P<—/ Z) B (b(z)) - n+1 z2+1 _|_ 22 _I_ 22 "
ov ez e 4 vn—le= vn — lets
Remark 5.7. Note that 0 < W < n and 02 ~ % (see (5.7)). These implies

that P(W;—:/ng) =1 for all z > y/n and P(W;—S/Q Sz) =0 for all z < —\/n.

Therefore, it suffices to consider the bounds when 0 < |z] < /n.

Table 5.1 compares the constants of the uniform bounds (Theorem 5.1 and

Theorem 5.2) and the non-uniform bounds (Theorem 5.5 and Theorem 5.6).

.. Wir—n/2 Wn—n/2
On oy
. 18.72 21.15
Uniform bounds T T
0.79v/n 26. 86
z=2 +
enl-gl /
2.63x10~%/n 3.62
z2=206
= + Vo1
Non-uniform bounds | , _ g 2.4x10 :f 4+ 0 63
M Vn
. 2.96x10~11/n 0.07
z=10 T 3
e 12
3.91x10~1086, /ny 1.27x10-270
z =100 1 vn =]
e 127

Table 5.1: Constants of uniform and non-uniform exponential bounds.

This chapter is organized into 2 sections as follows. Section 5.1 includes the
proofs of Theorem 5.3 and Theorem 5.4. The proof of Theorem 5.5 and Theorem

5.6 are given in Section 5.2.

5.1 Uniform Bounds

In this section, we wil prove Theorem 5.3 and Theorem 5.4 by estimating o2

and o, and using the bounds of Ay and A; which are given by Goldstein and



Zhang in [26].

5.1.1 Proof of Theorem 5.3

In the case that n is an even number, by (5.3), we see that

Goldstein and Zhang ([26], pp.896) showed that for n > 6,

n
—e " S H >\n,2,s S e—n’

s=1
s#n/2

and then, by (5.6),

Therefore,

0.249n < %(1 e <ot < %(1 +e7%) <0.251n for n > 6.

By Theorem 5.1, (5.8) and the fact that

1 11
Ng< ——=+—+ e ?

~2yn 2n 3
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(5.6)

(5.7)

(5.8)
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([26], p.888), we have

W —n/2
sup P(—n/ < Z) — ®(2)
zeR On
n 1 1 1 n 2

S (I - —”/2) 164 + =

_20%<2ﬁ+2n+36 + Uf’l+an
1 1 1 1 _ /2 1.64 2

< < +—+ e ) +

2(0.249) 2y/n 2n 3 0.2494/0.249n  v/0.249n
< 18.72
_ ﬁ

where we use the fact that ez > 8.19v/n and n > 2.4y/n for all n > 6 in the last in-

equality. O

5.1.2 Proof of Theorem 5.4

Let n = 2m + 1 be an odd number. By (5.3) and (5.5), we have

Mo = = (1= 2 2T 2y g
w3 2 n * n(n —1) * n n(n —1)

- 1( dm  4dm(m — 1) 4(m+1) 4m(m+1)>:_1

n

which implies

These lead us to see that

n —n
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Then

L (=1

n (n—1) _ n
0.249n§z— e7§0‘2,§1 1

1 e " <0251n forn>7. (5.10)

By (5.10) and the fact that

—n/4

A < 1 +

— + ——e
TV 22
for n > 7 (]26], p.890), the bound in Theorem 5.2 is expressed as follows.

W—n/QSZ

sup P( .
1%

z€R

< n(1+ _"/4)+164n+2<1+ 1)
[ [EN— _e . —_— —_— [
~ 205 \\/n 2V/2 oy oy V2

< 1 ( 1 n 1 7n/4) N 1.64 N 2 (1+ 1 )
—_— — _e —

~2(0.249)\/n - 2V2 0.249v/0.249n ~ 1/0.249n V2T

< 21.15

— \/ﬁ

where the last inequality holds by using the fact that e > 2.17/n for all n > 7.0

5.2 Non-uniform Bounds

It is known that a uniform Berry-Esseen bound for W is discussed by Goldstein
and Zhang [26] in 2011. Next, in 2012, Goldstein and Xia [25] gave a uniform bound
for W in the clubbed binomial approximation. In this work, we use the result of the
clubbed binomial approximation and Theorem 4.3 to get a non-uniform exponential
bound for W.

We say that the random variable C), has the clubbed binomial distribution if
C,, has the following distribution. If n mod 4 € {0, 3},

(7;) (%)n_1 if ¢ is an even number in {0,1,... n},

0 otherwise,
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and if n mod 4 € {1, 2},

) (%)"_1 if 4 is an odd number in {0,1,...,n},

0 otherwise.

Goldstein and Xia ([25], p.32) showed that

2.7314
sup |[POV € 4) — P(C, € 4)] < 2314V (5.11)

n+1
ACZ e 3

5.2.1 Proof of Theorem 5.5

Starting with a non-uniform concentration inequality for binomial random vari-
able, it is a tool to prove Theorem 5.5 and Theorem 5.6. We use Lemma 3.3 to
obtain the inequality as mentioned above. The concentration inequality is pre-

sented as follows.

Lemma 5.8. Let B, ~ Binomial(n, 3). Then for all z € R and X\, s > 0 such that

25 < /%,
B, —n/2 (208283 /s 1 1
P<Z§—n/§z+)\) < 2e7%%¢ +§ﬁ(e2ﬁ<>\+—)+—).
V/n/4 vn/ o 2y/n

Proof. Let z € R and A\, s > 0 be such that 2s < \/g. Since B,, = ZY; where
i=1

Y;’s are independent Bernoulli random variables with E(Y;) = % and Var(Y;) = 1

fort=1,...,n. Thus,

n

o Y — E(Y))
T Zl £| Var(B,)

3
=N

1/1—1/2‘3_ 1

Vel Ve

v
We follow the proof of a non-uniform concentration inequality in [11] by choosing
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a function f defined by

to obtain that

1

P<Z§ By —n/2 Sz—l—)\> < 2€_SZ<E€2S( Vn/d ))

Ve

In Chapter IV, we see that Y* =1 for all © = 1,...,n and the size bias coupling

(e?(A +)+ %) (5.12)

for the binomial random variable B,,, can be constructed. Following the size bias

construction as in Example 2.3, for a random index I such that

fore=1,...,nand Yy,...,Y,, I are independent,
B, =B, -Yr+Y/
has the B,,-size biased distribution satisfying
B, <B; <B,+1.

Under the assumption that 2s < /%, we use (5.12) and Lemma 3.3 with k = 2s,

B =1, E(B,) =% and Var(B,) = § to get

B, —n/2 §2.4 6453 s
P<z§ —n/ §z+)\) < 26_Sz<e4 2+§%/5>2<62 ()\+7)+1>

N

53 S
— 2e~5X T vm (eQﬁ (A + L) + L)
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From the result of Rao et al. [32], we know that the difference between the
cumulative distribution of C,, and B,,_; converges to zero pointwise. This leads us
to find a bound for approximating the distribution of binomial by clubbed binomial

distribution seen in the following lemma.

Lemma 5.9. Let B, ~ Binomial(n, %) andt=1,2,...,n. Then

P(C, < t) — P(Byy < t)| < P(Bp_y = 1)

Proof. Tt suffices to assume that n is even. In the case that n is odd, we can follow
the proof in the even case to obtain the same result. Note that the inequality holds
when ¢ = n. Therefore, it remains to prove the lemma for t = 1,2,... ,n—1. Since

n is even, n mod 4 € {0,2}. Suppose that n mod 4 = 0. If ¢ is even, then

‘P(Cn <{)— P(B,, < t)‘

where the last equality is true by using the property that (Z) — (”;1) = (Zj) for
all integers n, k such that 1 <k <n —1.
If t is odd, then for t =1,

P(C, <1) = P(By1 < 1)‘ = \P<Cn =0) - Zl:P(B"—l - ”‘ B <1>n1 (n I 1)
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and for t > 3, we have

Therefore, from both cases, we get

(D)"Y it s odd,

‘P(C’n <t)— P(B,, < t)‘ —
0 if ¢ is even.

In the case that n mod 4 = 2, we use the same argument to obtain

0 if ¢ is odd,
(%)nil (n;l) if ¢ is even.

Hence,

O]

Proof of Theorem 5.5. Assume that 0 < z < y/n. Let B, ~ Binomial(n, 3). We
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note that

‘P(W;—nn/Z < z) —d(z2)

(S22 <) p(@22 )
Flp( ot <) - p(P R <)
(Pt ) (Rl <)
PO )

=: A1 + Ay + A3 + Ay (5.13)

By the fact that %l = ntl 4 bl > ntl 4 2245 for 0 < 2 < /n and (5.11), we

have

4 < 2.7314y/n _ 2.7314/n

. 5.14
GTLTH N enTngeZ2zzrl ( )
From (5.7) and 0 < z < /i, we have
n n n n _n\ 1N n n _n
§<0nz—|—§§ (\/14—6*")5%—5 < (1~|—e 2)§+§:n+§e 2 <n+ 1
Hence,
3< {anz—i—gJ <n forn>6.
Applying Lemma 5.9,
A= |P(C0 < [zt 5]) = P(Bios < |70z 5])
<p(5r= [+ 3]
n n
< P(anz +5 1S Bua< o+ 5) (5.15)

where we use the fact that 2 — 1 < |z| < z for any € R in the last inequality.
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Next, consider A;. By (5.7), and the fact that e > n for any n € N, we have

n—1

4

n
2> )= (1—e ) >
o, > 4( e ) >

and for z < /n,

where we use the fact that ne™™ +1 < 1.37 and V1 +e ™+ 4/1 — % > 1.91 for
n > 6 in the last inequality.

Hence,

DO |
VAN
VR
Q
3
|

3
=~
[u—
N~
I
_|_
N |
AN
—_

This leads us to

and

gP(an—i—g—l < By, §an2+g>. (5.16)
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From (5.15) and (5.16), we obtain

A2+A3§2P(an+g—1§Bn_1Sanz+g>

20, . 1 <Bn_1—(n—1)/2< 20, . 1 )
Vil Vails JuoDA i i)

= 2p(

) = 2

Z
102 n—

=

< ‘/?ﬁ < ,/”T_l, we can apply Lemma 5.8 to B,,_; with s =

and z replaced by \/2% y— nl—l’

z 20n 1 22 423 z
Ay + As < 46_ﬁ(¢mz—m)eﬁ+37sm <ezom <

3 1
m> * 2m>

—_on ,2 11 22 40122/ 1a 3 1
< A4e 5vn-1° g0 50T 575 (eTO( > )

+
vn—1 2vn —1

< de 10t eT0e0s F <e%( ’ ) + L )
B vn—1 2vn —1
16.3853
< (5.17)
vn — leis
where we use the fact that ﬁ =1+ ﬁ < 1.2 which implies 2 < /n <

Vv12y/n—1 < 1.1yn—1 for n > 6 in the second inequality and (5.8) in the
third inequality.
It remains to bound the error term A4. Applying Theorem 4.3 to B,,_1,

1 17.9278
- + . (5.18)
vn—le= v/n— letis

Therefore, by (5.13), (5.14), (5.17) and (5.18),

Ay

IN

W —n/2 2.7314\/ﬁ 1 16.3853 17.9278
)P(_ K_§Z>—¢@ﬂg eV . -+ .
On €12 e 2 vn—1lez Jn—1lets /n— leis
< 2.7314\/ﬁ 1 34.3131
2

—  n4l 2241 + 22 + 22
e1z e 4 vn — lez vn — lets

completing the proof. O
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5.2.2 Proof of Theorem 5.6

Assume that 0 < z < y/n. To prove the theorem, we use the same technique

in the proof of Theorem 5.5 by considering

p(=2E "2 <L) e
<]

(ot <) p(Comnlt )
P

v

(CY"_”/2 ) -p(P <)

ov

fp(Bon <) - p(B i <)

P (Prtm =) -l

= R1 + R2 + R3 + R4. (519)

+

Applying (5.11), since z < \/n,

_ 27314y _ 27314V

1 ntl —  nt+l 22417
€ 3 e12 ¢ 4

(5.20)

By using (5.9) and 0 < z < y/n, we have

-1 —1) _n
A N e e e e A

Therefore,

3 < Lavz%—gJ <n forn>T.

From Lemma 5.9, we obtain

Ry

IN

P(Bua = |ovz+3])

P(O’VZ + g —1<B,_.1<oyz-+ g) (5.21)

IN
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Next, we will estimate the term Rj3. Using (5.9) and the fact that e” > n — 1 for

n €N,

< (n — )e—”+\/n—1)

1 (n—1e"+1 -
= 2<\/n+(n—1)e_”+\/n—1>\/_
:1< (n—1)e " +1 )

2 \/1—|—(1—%)e—”+\/1—%
<3

where the last inequality holds by applying the fact that (n — 1)e™™ + 1 < 1.01
and \/1—1—(1—%)6—”—#\/1—% >1.92 forn > 7.
Thus,

N | —
I
/N
Q
<
|

3
=1
—_
N~
N
+
O |
A
—

This implies that

n
——1<
avz+2 1 z+ 7

n—1 n—1 n
R3:P<\/ 1 z+ 5 <Bn,1§ovz—|—§)

< P(avz + g 1< By, <oprt g) (5.22)

and




By (5.21) and (5.22), we see that

47

R2+R3S2P<Ovz+g_1§3n—lSO'VZ"‘g)'

Next, we use Lemma 5.8 which is the same argument as estimating A, + Az with

(5.10) and z replaced by %z — \/n;j’ to bound the term Ry + Rs3 as follows.
16.3853
Ry+ Ry < ———. (5.23)
n— lets
Applying Theorem 4.3 with B,,_1,
1 17.9278
Ry < - + — (5.24)
vVn—1lez y/n—leis
Combining (5.19), (5.20), (5.23) and (5.24),
W —n/2 2.7314 1 16.3853 17.9278
PP <o) - a] < 2R ¢ o T,
ov €1z e 2 vn—1lez J/n—1lets /n—leis
< 2.7314\/5 1 N 34.3131
e%le% vn— 16% vn — 16% '



CHAPTER VI
NON-UNIFORM BOUNDS FOR m RUNS

The m runs is an important model for applications such as sensors or stock
market measurements, where items arrive one at a time, and only most recent
m items remain active for some fixed parameter m. It can be represent as the
following mathematical model.

Let &,&,...,&, be independent and identically distributed Bernoulli random

variables with parameter p € (0,1). Let W be the number of m runs of the

sequence &1, &o, ..., &, given by

W=73 Xi where X;= &€ it

i=1

with the periodic convention &, = &k.
Ghosh and Goldstein [17] gave the mean p, and the variance o2 of W for

n > 2m in the following form

2(p —p™)

- —(2m—1)pm>.

tn =np™ and o2 = np™ (1 +
They also constructed the size bias W* of W as
W = Z féleﬂ o 'fz{+m—1
i=1

where

, & ifjé{i,....i+m—1},
1 ifje{i,....i+m—1},



which satisfies the following property

0<W*—W <2m—1

([17], p.76).
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Moreover, Goldstein [21] bounded the term A = /Var(E(Ws — W|W)) in the

form of

A <n Y22m —1)(6m — 5)Y/?

to give a Berry-Esseen theorem for W as follows.

3

0.7
Theorem 6.1. (/21], p.664) If 2m — 1 < N then for z € R,

np™

‘P(M < z> - @(z)} < 0.4A +

On On

where A = %

n

(2m — 1)(64A2 + 4A3) + 23

n

Note that a non-uniform exponential bound for the number of m runs of the

sequence &1, &g, ..., &, can be obtained by using Theorem 3.2. In particular, we

consider the bound in the case that m = 2 to attain a concrete example.

Now, we use Theorem 3.2 equipped with

_B:?)7 Hn, :TLpQ, 0'3 :np2(1+2p—3p2) and A S T

to get a bound for the number of 2 runs presented in Theorem 6.2.

Theorem 6.2. For large n such that 0 < |z| < 4dpy/nr and ¢ > 0,

37 Co(2) 9

< 01(2)m +Cy

(o

< z> —®(2)

3

prvir T
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where
22 2 3
_22 . ] ;
Ci(z2) = 2 + 6_7(1‘ﬁ) + e%e_ﬁ(ﬁ_é)a
V27|z|
_ﬁ 5 \ z
Gla)= V 2 (1 o ) (e 5 6288prm+4p'¢%e‘32(ﬁ)—gér)>,
221 2|z|
&4, |z] —i(i_i)
03(Z) = 2<€576p’“\/ﬁ SP\/W>6 2 \12 96
and r=1+2p— 3p>

For a symmetric case, p = %, we give the exponential bound with a known

constant in the easier form as follows.

Theorem 6.3. If p =1, then for all real numbers z such that |z| < 3‘257”,

‘P(VV_—H/4 < z) —d(2)| <

3.7545 . 67.5622
Vbn/4

\/_62 \/ﬁeg.

Remark 6.4. Since 0 < W < n, P(VH/E < z) =1 for all z > %% and

P (%/44 < z) = 0 for all z < —%57”. Therefore, we regard the bound with
2| < 2.

Proof of Theorem 6.3

Let p = 5 and z € R be such that |z| < 222,
22
Case |z] < 4.3. Note that e3 < 1.8157. Applying Theorem 3.1 with

n 5n 3V7

VIR and A=—

B=3, p,=
 H 16 n’

we see that

‘P(W\/g——ﬁ . Z) - q)(z)‘ - 168:?57(152\/\/: 11;.0\2[ 152\>/_’> 4\3}:3918
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Case |z| > 4.3. Since p = %, 7 = 2. By Theorem 6.2, we have

1207 144/5 N 125

< G257z + Cald) g + Gale) 5 =

‘P(W_”/4 (6.1)

\/5_—71/4 < z> —®(2)

where

2 z2 23 .
Ci(z) = 2¢ > +6_7(1_<1+1c>2)_1_618‘()\'/%@—%(1%6—%)’

Z_ 2 3
e 2 142 22 E] El 1
CQ(Z) < + ) (3_ 12900 + 690\/5n+\/5n 6_22 (40_120)> :

= +
24/ 21

23 z z
C3(z) =2 (ewl()\/%+2l¢%)e_22 (&) .

Under the assumption that |z| < 3@, Ci(z), Cy(z) and C3(z) can be bounded as

follows. Starting with C}(z), we have

2

C’l(z) < 2¢ 7 + 6_%(1_(1%)2) + e%e_é(ﬁ_lflo)

z

- 2e7T + e_é(l_ﬁ) + e—ﬂ(m—ro—%)

2 2
L 2 (-1 _ z 1 12
We want to find a positive constant ¢ such that e 2 ( <1+C)2) =¢ = (1+c 10 25).

Suppose that

Then
609(1 + 0)2 —50(1+¢)—600=0

which is equivalent to

609¢% + 1168¢ — 41 = 0.

Hence,

 —1168 & /11682 — 4(609)(—41)  —584 % 605
B 2(609) 609




Choose ¢ = % = %. This lead us to see that

—5(1—71 ) _ﬁ( 1 _L_&) _ 5922
e 2 (1+¢)2) — @ 24 \THc 10 25) — ¢~ 1800 .

Therefore,

2”2 5922
C1(2) < 1 2e~ B0
1(2) V272
2
26_% 2922 22

4+ Qe 55800 ¢ 31

~ Vrl|
Z2 22
< 0.1856e™ 2 4 1.9809¢" 31.

Now, we bound the term Cy(z) as below.

-z 2
Co(x) < S 2 4 (1“ )(6—1555 pE-E ())
T 227 2|z
6_72 +<1—|—22><129502+ 3 2(4%_&0_%0))
- (& ese
22w 2|z
2 )
<2 4 (12+|2 )(e—% +1.82226—%>
z

2

Z2 z
< 0.2¢” 2 +3.1831e" 31

z2
where the last inequality is true by using the fact that Lm0 < 0.0729,

||
38922

2o~ 50 < 1.3479, Le 150 < 0.1393 and |z]e~ 5 < 2.5746 for |2 > 4.3.

Consider estimating in the last term, C5(z), we see that

22 7122
< 2.6998¢ 31 ¢~ 37200

2
< 2.6062¢e 31,

52
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Applying the bounds of C}(z), Cs(z) and Cs3(z), to (6.1), for |z| > 4.3,

(<) e

Von /4
< \/_16 : (12‘[(0 1856) + 14;2/5(0.2))
+ \/ﬁle (12\f(1 9309) + 14;15\f(3 1831) + 12—\[(2 6062))

3 7545 67.5622
\/_e > \/ﬁe%

Therefore, from the both cases,

- 7545 67.5622
’P(W n/4 §z)—¢>(z)’ _ 37545 6

Von/4 T Jner  Jmedr
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