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CHAPTER 1
INTRODUCTION AND PRELIMINARIES

Let (S,-) be a system consisting of a nonempty set S with binary operation - on
S. If (S, -) satisfies the associative law, i.e., Va,b,c € S,(a-b)-c=a- (b-c), we say
that (S,-) is a semigroup. For convenience, we write S for a semigroup (.5, ) and
ab for a - b where a,b € S. For a semigroup S, we call an element a in S reqular if
there exists an element x in S such that a = aza. If every element in S is regular,
then S is called a reqular semigroup.

In 1951, J.A. Green introduced regular semigroup in his paper “On the struc-
ture of semigroups”; this was also the paper in which Green’s relations were intro-
duced. In semigroup theory, regular semigroups are very familiar and are one of
the most extensively studied of semigroups.

A significant benefit of regularity can be found in the study of Green’s relations
and the natural partial order, which are important relations in semigroup theory.
The relation between Green’s relations and regular semigroups are difficult to be
briefly mentioned here. However, we describe the relation between the natural
partial order and regular semigroups.

The natural partial order < on a semigroup S is defined by a < b if and only
if @ = b = by and a = ay for some z,y € S' where S* is the semigroup S if S
contains an identity; otherwise S! is the semigroup obtained from S by adjoining
a new symbol 1 as its identity. It is known that any semigroup endowed with the

natural partial order hands down the order to its regular subsemigroups.

Theorem 1.1. [2] If T is a reqular subsemigroup of a semigroup S and a,b € T.
Then a < b on T if and only if a < b on S.

Moreover, there are many researches about regularity of transformation semi-

groups. For example, Y. Kemprasit studied regularity of generalized semigroups of



linear transformations in [4] and studied regular elements of some transformation
semigroups in [5]. The main purpose of this thesis is to investigate the regularity
of certain transformation semigroups with restricted range.

In the rest of this chapter, we give precise definitions, notations and funda-
mental results which will be used throughout this thesis. We separate this chapter
into two sections. The first section is to introduce necessary background and basic
results of transformation semigroups, and the other section is to give definitions,
notations and results of linear transformation semigroups, and provide some results

needed in this thesis.

1.1 Transformation semigroups

Given a nonempty set X, the full transformation semigroup on X means the set

of transformations on X, denoted by T(X). That is,
T(X) ={a: ais a function on X}.

Y. Kemprasit showed in [3, p. 109] that T'(X) is a regular semigroup under com-
position.

In this thesis, all maps are written on the right of the argument. For a € T'(X),
the range of « is denoted by ran o, and the inverse relation of « is denoted by a™1.
Also, the inverse image of z under « is written by za~!. Furthermore, let 1x be
the identity map on X and let | X| be the cardinality of X.

For any transformation a € T'(X) and x € X, « is said to be one-to-one at x if
lzaa™ | = 1. If {z € X : [xaa™!| > 1} is finite, then « is called almost one-to-one.
A transformation « in T'(X) is called almost onto if X \ ran« is finite. Then, a
transformation « in 7'(X) is one-to-one if and only if « is one-to-one at z for all
x € X. Moreover, every injection and surjection are almost one-to-one and almost
onto, respectively. But its converse is not true; see Example 1.2 (izi). In this

thesis, we study the regularity of a generalisation of the following transformation

semigroups.



For a nonempty set X, let AM(X) be the set of almost one-to-one transforma-

tions on X and AFE(X) the set of almost onto transformations on X, that is,
AM(X)={aeT(X):{z € X : |zaa™"| > 1} is finite} and
AE(X) ={a e T(X): X \rana is finite}.

Both AM(X) and AE(X) are subsemigroups of T(X) [3, p.133], known as the
almost one-to-one transformation semigroup on X and the almost onto transfor-

mation semigroup on X, respectively.

Example 1.2. (i) Every injection on a nonempty set X is contained in AM (X).
(77) Every surjection on a nonempty set X is contained in AE(X).

(77i) Let N be the set of natural numbers. We define p: N — N by

2 ifzx=1,
T =
x otherwise.
Then 2~ = {1,2} and ! = {z} forallz € N\ {2}. So {x e N: |zpu~t| > 1}
={1,2}, and hence p € AM(N). Clearly, ranpy = N~ {1}, so NN ranpy = {1}.

Hence p € AE(N). But p is neither injective nor surjective.

Note that if X is finite then AM(X) = T(X) = AE(X), so it is regular.
Actually, this is the only case for AM(X) and also AE(X) to be regular.

Theorem 1.3. [3, p.133] Let X be a nonempty set. The following statements are
equivalent:

(1) X is finite,

(17) AM(X) is reqular,

(1i1) AE(X) is reqular.



Next, for an infinite set X, define
OM(X)={aeT(X):{z € X : [vaa™"| > 1} is infinite} and
OE(X) ={a€T(X): X \rana is infinite}.

Clearly, both are subsemigroups of T(X), known as the opposite semigroup of
one-to-one transformation semigroup on X and the opposite semigroup of onto
transformation semigroup on X, respectively. These semigroups are intensively

studied in [3].

Example 1.4. (i) Every constant map on an infinite set X is an element in
OM(X) and OE(X).

(i1) Let Z be the set of integers, Z* the set of positive integers and Z~ the set of
negative integers. We define A\ : Z — Z by

x ifx >0,
T\ =

0 otherwise.

Then O\ =Z~U{0} and zA™! = {z} forallz € Z*. So {zr € Z : |[zA\7!| > 1} =
Z~ U {0}. Hence A € OM(Z). Clearly, ran A = Z* U {0}. Thus Z ~ran A = Z~,
so A € OE(Z).

From Theorem 1.3, there is a chance that AM(X) and AE(X) are regular
semigroups. But the story becomes different in OM (X) and OE(X).

Theorem 1.5. [3, p.135] OM(X) and OE(X) are not regular.

Now, we introduce a generalisation of the full transformation semigroup 7'(X)
on X. For a nonempty subset Y of X, let T'(X,Y") be the set of all transformations

on X whose range is in Y, that is,
TX,)Y)={aeT(X): rana CY}.

This semigroup is studied in [5] and one can see that it is a subsemigroup of T'(X)

and T'(X, X) = T(X). Then we may regard T'(X,Y’) as a generalisation of 7T'(X).



We call T(X,Y) the full transformation semigroup on X with restricted range Y .
Clearly if Y = X or |Y| = 1 then T'(X,Y) is regular. In addition, Y. Kemprasit

et al. showed that it fails in other cases.

Theorem 1.6. [5] For a set X and its nonempty subset Y, T'(X,Y) is reqular
if and only if [Y| =1 orY = X.

We next introduce a generalisation of AM (X). For a nonempty subset Y of X,
we mean by AM(X,Y) the set of all elements in AM (X') whose range is contained
in Y. That is,

AM(X,)Y)={a e T(X,Y): {z € X : |[zaa""| > 1} is finite}.
Likewise, we have a generalisation of AF(X), defined by
AE(X,Y) ={a €T(X,Y): X \rana is finite}.

It is easy to see that AM(X,Y) =T(X,Y) = AE(X,Y) when X is finite. Fur-
thermore, if Y = X then AM(X,Y) = AM(X) and AE(X,Y) = AE(X).

Note that AM(X,Y) =T(X,Y)NAM(X)and AE(X,Y) =T(X,Y)NAE(X).
We notice that there is an occasion that AM(X,Y) or AE(X,Y) becomes the
empty set, and we will discuss about this in the next chapter. If this is not the
case, AM(X,Y) and AE(X,Y) are semigroups, called the almost one-to-one trans-
formation semigroup on X with restricted range Y and the almost onto transfor-
mation semigroup on X with restricted range Y, respectively. Moreover, we show
in Proposition 2.8 that these two semigroups are different under some conditions.

In the case that X is an infinite set and Y is a nonempty subset of X, we define
OM(X,Y)={aeT(X,Y): {z € X : [rac™'| > 1} is infinite} and
OE(X,Y) ={a e T(X,Y): X \rana is infinite}.

Obviously, OM(X,Y) and OE(X,Y’) are not empty, containing all constant maps.
Also, it is clear that both are semigroups as OM (X,Y) =T(X,Y)NOM(X) and
OE(X,)Y)=T(X,Y)NOE(X). We call OM(X,Y) the opposite semigroup of one-

to-one transformation semigroup on X with restricted range Y and OE(X,Y) the



opposite semigroup of onto transformation semigroup on X with restricted range Y .
Clearly, OM(X,Y) and OE(X,Y’) can be considered as generalisations of OM (X)
and OF(X), respectively.

In Chapter II, we intensively study these semigroups; examples and character-

isations of regularity are provided.

1.2 Linear transformation semigroups

Let V' be a vector space over a division ring and £(V) the set of all linear transfor-
mations on V. Under composition £(V') is a regular semigroup [3, p. 145], known
as the full linear transformation semigroup on V.

Throughout this thesis, we denote by dim (V') the dimension of a vector space V.
For any subset A of a vector space V, the subspace spanned by A is denoted by
(A). For a vector space V and a subspace W of V| we let V/W be the quotient
space of V and W. For a € L(V), the kernel of linear transformation « is denoted
by ker , and « is said to be almost one-to-one if dim(ker o) < oo, and we call
a almost onto if dim(V/ran«) < oo. In this thesis, we study the regularity of a
generalisation of the following linear transformation semigroups.

For a vector space V over a division ring, let
AM((V) ={a € L(V) : dim(ker @) < oo} and
AE(V) ={a e L(V) :dim(V/rana) < co}.

In [3], the author showed that these are subsemigroups of £(V), called the al-
most one-to-one linear transformation semigroup on V and the almost onto linear

transformation semigroup on V| respectively.

Example 1.7. (i) Every monomorphism on a vector space V' belongs to AM (V).

(17) Every epimorphism on a vector space V' is contained in AE (V).

Note that if dim (V) < oo then AM(V) = L(V) = AE(V). Y. Kemprasit
showed that AM(V') and AE(V') are regular semigroups under a certain conditions.



Theorem 1.8. [3, p.168] Let V' be a vector space over a division ring. The fol-
lowing statements are equivalent:

(7) dim (V') < o0,

(i1) AM(V') is regular,

(1ii) AE(V) is regular.

Let V' be an infinite dimensional vector space over a division ring and let
OM(V) ={a e L(V) : dim(ker ) is infinite} and
OE(V) ={ae€ L(V):dim(V/ran«) is infinite},

which have been defined and proved in [3, p. 170] that they are subsemigroups of
L(V), called the opposite semigroup of one-to-one linear transformation semigroup
on V and the opposite semigroup of onto linear transformation semigroup on V,

respectively; however, we do not worry about the regularity of OM (V') and OE(V).
Theorem 1.9. [3, p. 171] OM(V) and OE(V') are not regular.

We now introduce a generalisation of the full linear transformation semigroup

L(V) on V. Given a subspace W of V', we let
LV,W)={ae L(V) :rana C W}.

Then £(V, W) is a subsemigroup of L(V'). Clearly, L(V,W) = L(V) when W = V.

Throughout this thesis, we let 0 be the zero element in a vector space V over
a division ring, that is, u + 0 = u for all uw € V. The proposition below is a direct
consequence of Theorem 2.2 in [4]. For the sake of completeness, we provide the

reader with a proof.

Proposition 1.10. Let V' be a vector space over a division ring and W a subspace

of V.. Then L(V,W) is regular if and only if V = {0} or W = {0} or W =V.

Proof. Clearly, if V= {0} or W = {0} then L(V,W) is a singleton of the zero
map, and hence L(V, W) is regular. In case W =V, we have L(V,W) = L(V),

which is done.



To prove the necessity, by contrapositive, suppose that V' # {0}, W # {0} and
W # V. Since W # {0}, it contains a nonzero vector, say w. Let B; be a basis
of W and By a basis of V' such that By C Bs. Since W # V', By \ By is not empty.

Let a: V — W be a linear transformation defined by

0 if’UGBl,
v =

w ifUGBQ\Bl.

Let 8 € L(V,W) and v € By \ By. Then vafa = wpa € (Bj)a = {0} and

va = w. Thus afa # «, and hence « is not regular. n

Next, we introduce generalisations of AM (V') and AE(V). For a subspace W
of V, by AM(V, W) we mean the set of all elements in AM (V') whose range is
in W and AE(V, W) the set of all elements in AE(V') whose range is in W. That is,

AMV, W) ={a € L(V,W) : dim(ker @) < oo} and
AE(V, W) ={a e LV, W) :dim(V/rana) < oo}.

It is clear that if dim (V') is finite, then AM(V,W) = L(V,IV) = AE(V,W).
Moreover, if W =V then AM(V, W) = AM(V) and AE(V, W) = AE(V'). Notice
that AM(V, W) = L(V,W) N AM(V) and AE(V, W) = L(V,IW) N AE(V). We
need to be aware that AM(V, W) and AE(V, W) are possibly empty. When this
is not the case, we call AM(V, W) the almost one-to-one linear transformation
semigroup on V' with restricted range W and AE(V,W) the almost onto linear
transformation semigroup on V with restricted range W.

When V' is an infinite dimensional vector space and W is a subspace of V,

we let

OM(V, W) ={a € L(V,W) : dim(ker «) is infinite} and
OEV, W) ={a € L(V,W):dim(V/ran«) is infinite}.

Obviously, OM(V, W) and OE(V,W) are not empty, as they contain the zero
map. Since OM((V, W) = LIV, W) N OM(V) and it is not empty, OM(V, W) is



a semigroup. The set OE(V, W) can be considered similarly. We call OM(V, W)
the opposite semigroup of one-to-one linear transformation semigroup on V with
restricted range W and OE(V, W) the opposite semigroup of onto linear transfor-
mation semigroup on V with restricted range W. It is clear that if W = V then
OMV, W) =0OM(V) and OE(V, W) = OE(V).

Chapter III is devoted to the study of regularity of these linear transformation
semigroups. In addition, we finish this present chapter with a list of background

knowledge which is always used in this thesis.

Proposition 1.11. [3, p.144] Let o € L(V). If By and By are base of ker o and
ran «, respectively and for any v € Bo, w, € va~! is fized, then By U{w, : v € By}

s a basis of V.

Proposition 1.12. [3, p.144] Let o € L(V). If U is a subspace of V, By is a
basis of U and B is a basis of V with By C B, then dim(V/U) = |B \ By|.



CHAPTER II
REGULARITY OF TRANSFORMATION SEMIGROUPS

In this chapter, X is a nonempty set and Y is a nonempty subset of X. Our
main purpose is to determine regularity of specific subsemigroups of the total

transformation that are introduced in the previous chapter, namely,
AM(X,Y)={a e T(X,Y): {zr € X : |zaa™"| > 1} is finite},
AE(X,Y) ={a€T(X,Y): X \rana is finite},
OM(X,Y)={aeT(X,Y): {z € X : |zac™'| > 1} is infinite},
OE(X,Y) ={aeT(X,Y): X \rana« is infinite},

and also AM(X,Y)NAE(X,Y) and OM(X,Y)NOE(X,Y).

Before that, we give a characterisation of regular elements in 7'(X,Y’), which
is given by Y. Kemprasit in [5]. However, for convenience, we bring only a part
of the statement of Theorem 2.1 in [5]. Actually, the proof we provide is different

from the original one.

Theorem 2.1. [5] For any transformation o in T(X,Y), « is reqular in T(X,Y)

if and only if Yoo = ran .

Proof. Let avbe an element in T'(X,Y'). First, we assume that « is a regular element

in T(X,Y). Then there exists a transformation 8 in T'(X,Y’) such that afa = .

Thus Yo Crana = Xa = Xafa = (Xaf)a C Ya. Hence Yo = rana.
Conversely, we assume that Yoo = ran .. For each y in ran « there is an element

2y in Y such that z,a = y. Let b € Y and define §: X — Y by

z, ity crana,
yb =

b  otherwise.
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For any z € X, we have xafa = (za)fa = 2z, = za, S0 affa = . Hence « is

regular in T(X,Y). O

Remark 2.2. Let S(X,Y) be a subsemigroup of 7(X,Y) and a € S(X,Y). If
Ya # ran « then « is not regular in S(X,Y).

The converse of Remark 2.2 is not true. That is, the condition Yoo = ran a does
not always imply that « is regular in S(X,Y"). Theorems 1.3, 1.5, 1.8 and 1.9 show
that there exists an element « in S, when S is the semigroup AM(X), AE(X),
OM(X), OE(X), AM(V), AE(V), OM(V) or OE(V), such that Xa = rana or
Va =rana, but « is not regular in S.

However, some transformation semigroups satisfying the converse of Remark 2.2

are given in Corollaries 2.11 and 3.7.

Theorem 2.3. IfY is a proper subset of a set X, then every injection in T(X,Y)
is not regular in T(X,Y).

Proof. Let a be an injection in T'(X,Y’) where Y is a proper subset of X. Then
Ya C Xa =rana. By Theorem 2.1, a is not regular in T'(X,Y). O

Remark 2.4. In case Y is a proper subset of a set X, every subsemigroup of

T(X,Y) containing an injection is not regular.

The next example shows that there exists a class of transformations in T'(X,Y)
which are neither regular in 7'(X,Y") nor injective, when Y is a proper subset of

X with |Y] > 2.

Example 2.5. Let a and b be distinct elements in a proper subset Y of a set X.
Define o € T(X,Y) by

a ifxey,
To =

b otherwise.

Then « is not injective and Yoo = {a} # {a,b} = ran . By Theorem 2.1, « is not
regular in T'(X,Y).
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2.1 Regularity of AM(X,Y) and AE(X,Y)

As we mentioned before, there is a chance that AM(X,Y) or AE(X,Y’) becomes

the empty set. A condition that would help eliminate such a weak spot is in need.

Proposition 2.6. Let X be an infinite set. Then
(1) AM(X,Y) is not the empty set if and only if | X| =Y/,
(11) AE(X,Y) is not the empty set if and only if X \Y is finite.

Proof. (i) We first assume that AM(X,Y) is not the empty set. Then there
exists a transformation « in AM(X,Y). Since a is an element in AM(X,Y),

1

{z € X : |vaa™!| > 1} is finite; hence for each y € rana, ya~! is finite. Since

{ya~! : y € rana} is a partition of X, we have X = [J(ya™') where the union

1'is a finite set

is taken over all y in rana. Since X is an infinite set and ya~
for all y € rana, rana must be an infinite set with the same cardinality as X.
Consequently, |X| = |rana| < Y| < |X].

The other implication follows from the fact that if X and Y have the same
cardinality, then there exists an injection from X to Y and it is clearly contained
in AM(X,Y).

(i7) Assume that AE(X,Y) contains a transformation 5. We have X \ Y is a
subset of X \ ran 3, which is finite since § € AE(X,Y). Therefore X \ Y is also
finite.

For the sufficiency, we assume that X \ Y is finite. Since X is infinite and

X \Y is finite, Y is infinite and | X| = |Y|. Then we have a transformation from

X onto Y and AE(X,Y’) contains this element. O
From Proposition 2.6, we have the following proposition.

Proposition 2.7. Let X be an infinite set. Then

(1) AM(X,Y) is a semigroup if and only if | X| = |Y/|,

(1) AE(X,Y) is a semigroup if and only if X \'Y is finite,

(1ii) AM(X,Y)NAE(X,Y) is a semigroup if and only if X \'Y is finite.
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Proof. Note that the necessity of (i) and (ii) follow from Proposition 2.6.

(1) For the sufficiency, assume that | X| = |Y|. By Proposition 2.6, AM(X,Y)
is not empty. Then AM(X,Y) =T(X,Y)N AM(X) is a subsemigroup of 7'(X).

(i7) The sufficiency is obtained from Proposition 2.6 and the fact that AE(X,Y)
is T(X,Y) N AB(X).

(77i) For the necessity, we assume that AM(X,Y)NAFE(X,Y) is a semigroup.
Then AM(X,Y)N AE(X,Y) is not empty. Hence AE(X,Y) is not empty. By
Proposition 2.6, X \ Y is finite.

For the sufficiency, we assume that X Y is finite. Since X \Y is finite and
X is infinite, |X| = |Y|. Thus there exists a bijection from X to Y, which is
contained in both AM(X,Y) and AE(X,Y). O

Proposition 2.8. Given semigroups AM(X,Y) and AE(X,Y), if X is infinite,
then neither AM(X,Y) N AE(X,Y) nor AE(X,Y)N AM(X,Y) is the empty set.

Proof. Assume that X is infinite. Since AM(X,Y) is a semigroup, by Proposi-
tion 2.7 (i), |X| = |Y|. Since AE(X,Y) is a semigroup, by Proposition 2.7 (ii),
X \Y is finite, which implies that |X| = |Y|. In either case, we have | X| = |Y].
Since Y is infinite, there exists an infinite subset Z of Y with |Y| = |Z] = |V \ Z].
Choose z € Z. Provided two bijections ¢ : Y =Y N Z and ¢ : Z — Y ~ {z}, we
define o, 5 € T(X,Y) by

xp ifzey,

z  otherwise,

and (
xp ifx ez,

z otherwise.

First, we show that « € AM (X, Y)NAE(X,Y). Wehaverana = (Y\Z)U{z}.
Thus X Nrana = [X N (YN 2)| {2z} = (X \NY)U(Z ~{z}). Since Z \ {z}
is infinite, X \ ran« is infinite. Hence « is not in AE(X,Y’). Now, we have that

{re X :|jzaa™|>1} =X \Y,s0 {r € X : |[raa™!| > 1} is finite, as X \ Y is
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finite. Thus « belongs to AM(X,Y).

Next, we show that § is in AE(X,Y) N AM(X,Y). Clearly, rans = Y, so
X Nranf = X \ Y, which is finite. Therefore 5 is in AE(X,Y). We have
{xr € X :|2887' > 1} = X N Z DY ~\ Z, which is infinite. Thus £ is not in
AM(X,Y). 0

If X is finite, we have AM(X,Y) = T'(X,Y) = AE(X,Y); otherwise, these
semigroups are different. From these results we have AM(X,Y) = AE(X,Y) if
and only if X is finite.

For the semigroups AM (X,Y) and AE(X,Y), when |Y| = 1, these semigroups
are the same and their unique element is a constant map. In this case, they are

regular semigroups. For the other cases we have:

Theorem 2.9. Let S(X,Y) with |Y| > 2 be either the semigroup AM(X,Y) or
the semigroup AE(X,Y). Then S(X,Y) is regular if and only if X is finite and
Y =X.

Proof. The sufficiency is directly obtained from Theorem 1.3. To prove the ne-
cessity, by contrapositive, suppose that X is infinite or Y # X. We divide the
situation into three cases.

Case 1: X is finite and Y # X. Then S(X,Y) = T(X,Y). Since |Y| > 2 and
Y # X, by Theorem 1.6, S(X,Y) is not regular.

Case 2: X is infinite and Y # X. Then by the assumption that S(X,Y) is a
semigroup and by Proposition 2.7 (i) and (i7), |X| = |Y|, and hence there is a
bijection from X to Y, say a. Clearly « is in S(X,Y’). Since « is an injection, by
Theorem 2.3, « is not regular in 7'(X,Y’). Hence S(X,Y) is not regular.

Case 3: X is infinite and Y = X. We can follow directly from Theorem 1.3.

Therefore the proof is complete. O

Theorem 2.10. Let X be an infinite set. The semigroup AM(X,Y)NAE(X,Y)

1s reqular if and only if Y = X.

Proof. To prove the necessity, by contrapositive, we suppose that ¥ # X and
AM(X,Y)NAE(X,Y) is a semigroup. By Proposition 2.7 (i7i), X \'Y is finite.
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Consequently, | X| = |Y|. Thus there exists a bijection from X to Y and this map
is in AM(X,Y)N AE(X,Y). In addition, by Theorem 2.3, it is not regular even
in T(X,Y). Hence AM(X,Y)NAE(X,Y) is not regular.

Conversely, we assume that Y = X. Let a be an element in AM(X)NAE(X).
For each y € ran «, we choose z, € ya~'. By Theorem 2.1, « is regular in T'(X).
Moreover, according to the proof of sufficiency of Theorem 2.1 we have 5 € T'(X)
such that

48 = zy ify€ranca,
b otherwise,

where b € Y and afa = a. Claim that {z € X : |[¢387!| > 1} is a subset of
(X ~rana)U {ba}. Let y € X be such that |y35~!| > 1. Suppose that y € ran .
Since |yB57| > 1, there exists t € X \ {y} such that {3 = y. Then we have two
cases to consider.
Case 1: t € rana. Then z, =t = yf = z,, sot = za = zya = y, which is a
contradiction.
Case 2: t ¢ rana. Then b =t = yf = z,, which implies that ba = z,a = y.
Then we have the claim. Since a is in AE(X), X \ ranc« is finite. Therefore
{z € X : |zBB71 > 1} is finite. Hence 3 belongs to AM (X). To see that § belongs
to AE(X) we consider the set X \ran 3. Since {z, : z € rana} Cran 3, X \ran 3
is a subset of X \ {2, : € rana}. Claim that X \ {z, : * € rana} is finite. It
suffices to prove that X \ {z, : ¥ € rana} is a subset of {z € X : |[zaa™!| > 1},
since « € AM(X). Let y € X \{z, : v € rana}. Then ya € rana and zy,a = yo
but y # z,,. Consequently, |[yawa™| > 1 and the claim is done. This implies that
X \ran /3 is finite. Hence f € AE(X). O

From Theorem 2.1 and applying the converse proof of Theorem 2.10, we have

a subsemigroup of T'(X,Y) preserving the converse of Remark 2.2.

Corollary 2.11. For any « in the semigroup AM(X,Y)NAE(X,Y), « is regular
in AM(X,Y)NAE(X,Y) if and only if Ya = rana.

Note that when X is finite, we have AM(X,Y)NAE(X,Y) = T(X,Y), and
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by Theorem 1.6, it is regular if and only if Y = X or Y is a singleton. In general,

we have
Corollary 2.12. AM(X) N AE(X) is a regular semigroup.

Theorem 2.3 showed that for any proper subset Y of X, every bijection from
X to Y is not regular in 7'(X,Y’) and in its subsemigroups, including AM(X,Y),
AE(X,Y) and AM(X,Y)NAE(X,Y). We next show that, apart from the bijec-

tions, there is some other kind of nonregular elements.

Proposition 2.13. Let X be an infinite set and Y a proper subset of X such that
AM(X,Y)NAE(X,Y) is a semigroup. Then there are infinitely many elements
in AM(X,Y)NAE(X,Y) which are not reqular in T(X,Y) and which are neither

mjective nor surjective.

Proof. Since AM(X,Y)NAE(X,Y) is a semigroup and Y is a proper subset of X
by Proposition 2.7 (i7i), X \Y is a nonempty finite set. We know that X is infinite,
so is Y. Let B be a finite subset of Y with |B| > 3. Let by,by € B and y;,y2 € Y
be distinct. Since B is a finite subset of an infinite set Y, |Y ~\ {y1, 12} = |Y \ B].
Choose a bijection ¢ from Y ~\ {y1, 42} to Y ~\ B. Define o € T(X,Y) by

”

xe ifzeY ~{y, 2},

Th = bl it x S {yhyQ}J

by  otherwise.
\

Then rana = (Y N\ B)U{by,bo} #Y and X ~\rana = (X \Y) U (B~ {b1,b2}),
which is finite, so a is not surjective and o € AE(X,Y). It is easy to see that

Y,y € {r € X i |raa™| > 1} C (X NY)U{y1, 12},

these show that « is not injective and o € AM(X,Y), since X \Y is finite. We
have Yo = (Y ~ B) U{b;} # rana, by Theorem 2.1, « is not regular in 7'(X,Y).

Notice that if B has only two elements then the nonregular element « in

T(X,Y) is surjective and it is still contained in AM (X,Y)NAE(X,Y). O
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2.2 Regularity of OM(X,Y) and OE(X,Y)

Throughout this section, X is an infinite set. Recall that OM(X,Y), OE(X,Y)
and their intersection are always semigroups. In addition, let us note that under
the condition in Proposition 2.8, Y is an infinite proper subset of X, we have
OM(X,Y)NOE(X,Y)and OE(X,Y)N\OM (X,Y) are not the empty sets, as both
{AM(X,Y),OM(X,Y)} and {AE(X,Y),OF(X,Y)} are partitions of T'(X,Y).
First of all, if |Y| = 1 then OM(X,Y) = OE(X,Y) = OM(X,Y)NOE(X,Y),
which is a singleton of one constant map; in this case, the semigroup clearly is
regular. Otherwise, by Theorem 2.14, OM (X, Y )NOE(X,Y) contains a nonregular
element in T'(X,Y).

Theorem 2.14. Let Y be a proper subset of a set X with |Y| > 2. Then
the semigroups OM(X,Y), OE(X,Y) and its intersection have infinitely many
nonreqular elements in T(X,Y). In particular, oll OM(X,Y), OE(X,Y) and
OM(X,Y)NOE(X,Y) are nonregular semigroups.

Proof. Let y1,y2 € Y be distinct. Let m € X \Y. Define a« € T(X,Y) by

yp ifx=m,
ro =

Yo otherwise.

Then {z € X : |[zaa™!| > 1} = X ~ {m} and X \rana = X \ {y1, v}, which
implies that « € OM(X,Y)NOE(X,Y). Since Yo = {y2} # {y1,92} = rana, by
Theorem 2.1, « is not regular in 7'(X,Y). O

Theorem 2.15. OM(X,Y)NOE(X,Y) is regular if and only if either Y = X or
Y] =1.

Proof. For the sufficiency, we have two cases to consider.

Case 1: Y = X. Let a belong to OM(X)NOE(X) and let a« € X. For each

1

x € ran «, we choose an element z, € za~' and a transformation on X defined in
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the proof of Theorem 2.1, that is,

z, if x €Erana,
xf =

a  otherwise,

and clearly we have afa = «a. Since o € OF(X) and X \ rana is a subset
of {z € X : |zB887'] > 1}, the set {x € X : |zB887!| > 1} is infinite. Thus
peOM(X).

Next, we let T'={z, : € rana}. Then X \ranf = X ~ (T'U{a}). To show
that 8§ € OF(X), we prove that X \ 7T is infinite. One can see that X \ T =
U(zzaa™t \ {2,}) where the union is taken over all z in ran a. Since o« € OM (X)),

! is infinite, or {z, € T : |zzaa™t| > 1} is

there exists m in ran a such that ma~
infinite. In either case, we get that X \7T is an infinite set, and so is X \ (T'U{a}).
Hence 8 belongs to OE(X).

Case 2: |Y| =1. Then OM(X,Y)NOE(X,Y) is a singleton, containing exactly
one constant map. Obviously, OM(X,Y)NOE(X,Y) is regular.

The necessity follows directly from Theorem 2.14. O]
From Theorem 2.15, we have the following corollary.

Corollary 2.16. OM(X)NOE(X) is a regular semigroup.



CHAPTER I11
REGULARITY OF LINEAR TRANSFORMATION
SEMIGROUPS

Previously, we investigated regularity of the semigroups AM(X,Y), AE(X,Y),
OM(X,Y) and OF(X,Y). One may question what will happen if we switch over
to vector spaces. Throughout, let V' be a vector space over a division ring and W

a subspace of V. We now recall the semigroups of our interest, namely,
AMV, W) ={a € L(V,W) : dim(ker ) < o0},
AE(V, W) ={a e L(V,W) :dim(V/rana) < oo},
OM(V, W) ={a € L(V,W) : dim(ker «) is infinite} and
OE(V, W) ={ae L(V,W):dim(V/ran«) is infinite}.

The purpose of this chapter is to determine the regularity of the above sets, and
also AM(V,W)NAE(V, W) and OM(V,W)NOE(V, W) whenever they are semi-
groups. This chapter comprises two parts: the first is concerned with regularity of
AM(V, W) and AE(V, W), while the second is dedicated to the study of regularity
of OM(V, W) and OE(V,W). Note that if dim (V') < oo then L(V, W), AM(V, W)
and AE(V, W) are the same semigroup. Therefore, in the rest of this chapter, in-
finite dimensional vector spaces become of particular interest. Moreover, one can
see that every subsemigroup of L(V, W) is also a subsemigroup of T'(V, W). That
means we can apply and take advantage of Remarks 2.2 and 2.4, and Theorem 2.3

in this chapter.
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3.1 Regularity of AM(V,W) and AE(V, W)

Note that it is not certain that AM(V,W) and AE(V,W) will be semigroups
even though dim (V) is infinite. So we need characterisations for AM(V, W) and
AE(V, W) to be semigroups.

Proposition 3.1. Let V' be an infinite dimensional vector space. Then
(1) AM(V, W) is not the empty set if and only if dim (V') = dim (W),
(17) AE(V, W) is not the empty set if and only if dim (V/W) < co.

Proof. To show that (i) holds, we first assume that dim (V') = dim (W). Thus
there exists an isomorphism from V' to W, which is contained in AM(V, W).

Next, we assume that there exists a linear transformation g in AM(V,W).
Thus dim(ker ) is finite. Since dim (V) = dim(ker 5) + dim(ran ), dim (V) is
infinite and dim(ker /) is finite, we have dim (V') = dim(ran ) < dim (W). Hence
dim (V) = dim (W).

(77) Assume that AE(V, W) is not empty and let ¢ be a linear transformation
in AE(V, W). Since ¢ € AE(V, W), dim (V/W) < dim (V/ran¢) < oo.

Conversely, we assume that dim (V/W) < oo. Let B; be a basis of W. Then
we extend By to a basis B of V. By Proposition 1.12, |B\ By| = dim (V/W) < 0.
Since By C B, B is infinite and B \ Bj is finite, we have Bj is infinite and |B| =
|B1]. Then there exists a bijection from B to Bj, which induces an isomorphism

from V' to W. Obviously, it is contained in AE(V, W). O

Below is a consequence of Proposition 3.1 and the fact that AM(V, W) is
an intersection of £(V,W) and AM(V). Similar arguments can be applied to
AE(V, ).

Proposition 3.2. Let V' be an infinite dimensional vector space. Then

(1) AM(V, W) is a semigroup if and only if dim (V') = dim (W),

(17) AE(V, W) is a semigroup if and only if dim (V/W) < oo,

(i11) AM(V, W) N AE(V, W) is a semigroup if and only if dim (V/W) < oo.
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Proof. It remains to show that if dim (V/W) < oo, then AM(V, W) N AE(V, W)
is not empty. Assume that dim (V/W) < oo. By the proof of the sufficiency of
Proposition 3.1 (i7), we have an isomorphism from V' to W, which is contained in

AMV, W)NAE(V,W). Thus AM(V, W) N AE(V, W) is not empty. O

Proposition 3.3. Given semigroups AM(V,W) and AE(V,W), if dim (V) is
infinite, then neither AM(V, W)~ AE(V. W) nor AE(V, W)~ AM(V, W) is the
empty set.

Proof. Assume that AM(V, W) and AE(V,W) are semigroups and dim (V') is
infinite. Let B; be a basis of W. Then we extend B; to a basis B of V. By
Proposition 1.12, |B \ By| = dim (V/W) < oo. Since B is infinite, we have B is
infinite and there exists an infinite subset Z of By with |By| = |Z| = |By \ Z|. We

now are able to provide two bijections ¢ : By — Z and ¢ : Z — B;. Then we
define o, B € L(V, W) by

xp ifx e By,
ra =
0 ifIEB\Bl,
and o p
x Ix e 4,
xf =

0 ifrxeB~NZ

First, we show that « € AM(V, W) ~ AE(V,W). We have dim (kera) =
|B\.B| < 0o. Hence a € AM(V,W). By the definition of a, we have rana = (7).
By Proposition 1.12, dim (V/rana) = |B ~\ Z|, which is infinite, since By \ Z
is an infinite subset of B\ Z. Thus a ¢ AE(V,W). Therefore a belongs to
AMV, W) N AE(V, V).

Next, we show that § € AE(V, W)~ AM(V,W). By the definition of S,
dim (ker §) = |B \ Z] and ran 8 = W. Since |B \ Z| is infinite, so is dim (ker ),
and hence f ¢ AM(V,W). Since ran § = W, dim (V/ran ) = dim (V/W) < oo,
we have 5 € AE(V,W). Therefore g € AE(V, W)~ AM(V,W). ]

From Proposition 3.2 (¢) and (i7), if AE(V, W) is a semigroup then AM(V, W)
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is also a semigroup, but the converse is not true. It follows from Proposition 3.3
that the semigroup AM(V, W) = AE(V, W) if and only if dim (V) is finite.

Consider semigroups AM(V, W) and AE(V,W). From Proposition 1.10, if
dim (V) is finite and W is the zero subspace of V' then AM(V, W) = L(V, W) =
AE(V, W) is regular.

Theorem 3.4. Let W be a nonzero subspace of V' and let S(V, W) be either the
semigroup AM(V, W) or the semigroup AE(V,W). Then S(V, W) is reqular if and
only if dim (V') < oo and W = V.

Proof. For the sufficiency, we assume that dim (V) < oo and W = V. Then
AMWV, W) = AM(V) and AE(V,W) = AE(V). By Theorem 1.8, S(V,W) is
regular, as dim (V') < co. To prove the necessity, by contrapositive, suppose that
dim (V') is infinite or W # V.

Case 1: dim (V) is infinite and W = V. By Theorem 1.8, S(V, W) is not regular.
Case 2: dim (V) < oo and W # V. Then S(V,W) = L(V,W). Since V' # {0},
W # {0} and W # V', by Proposition 1.10, S(V, W) is not regular.

Case 3: dim (V) is infinite and W # V. Since S(V,W) is a semigroup, by
Proposition 3.2 (i) and (i7), dim (V') = dim (W). Then there exists an isomorphism
a from V to W, which clearly is in S(V,W); the reader is reminded that, when
S(V,W) = AE(V, W), dim (V/W) is finite. By Theorem 2.3, « is not regular in
S(V,W). O

We use Theorem 3.4 to generalise Theorem 1.8 as follows.

Corollary 3.5. Let AM(V,W) and AE(V,W) be semigroups with W a nonzero
subspace of V. The following statements are equivalent:

(1) dim (V) < oo and W =V,

(it) AM(V, W) is regular,

(1ii) AE(V, W) is regular.

It is clear that AM(V, W) N AE(V, W) = L(V,W) when dim (V) < co. We

therefore consider only the case when V' is an infinite dimensional vector space,
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and give a necessary and sufficient condition for AM(V, W) N AE(V,W) to be

regular.

Theorem 3.6. Let V' be an infinite dimensional vector space. The semigroup

AMWV, W) N AE(V, W) is reqular if and only if W = V.

Proof. To prove the necessity, by contrapositive, we suppose that W is a proper
subspace of V. Since W # V and dim V' is infinite, by the proof of Theorem 3.4,
it is clear that the linear transformation « that we have in the third case of the
proof is also a nonregular element in the semigroups AM(V, W) and AE(V,W).
Therefore AM(V, W) N AE(V, W) is not regular.

For the sufficiency, we assume that W = V. Thus AM(V,W) = AM(V) and
AE(V, W) = AE(V). Let @« € AM(V) N AE(V). Let K be a basis of ker o and
P a basis of ran «. For each v € P, we choose z, € va~!. By Proposition 1.11,
K U{z, :v € P} is a basis for V. Let B be a basis for V with P C B. Then we
define g € L(V) by

z, ifveP,

vf =
0 ifveB~P

We have
dim (ker 5) = |B \ P|
=dim (V/rana)  (by Proposition 1.12)

< 00 (as a € AE(V)).

Thus € AM(V'). We then show that 5 € AE(V). We know that KU{z, : v € P}
is a basis of V. By Proposition 1.12,

dim (V/ran ) = | K|
= dim (ker o)

< 00 (as v € AM(V)).

That is, 8 belongs to AE(V). Next, claim that afa = a. Lett € KU{z, : v € P}.
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If t € K, then tafa = 0 = ta. Otherwise, t = 2z, for some u € P. Then
tafa = zy,afa = ufa = z,a = ta. Hence we have the claim. Therefore the proof

is complete. O

Corollary 3.7. For any a in the semigroup AM(V,W)NAE(V,W), « is regular
in AM(V,IW) N AE(V, W) if and only if Wa = rana.

Proof. 1t is obtained from Theorem 2.1 and the converse proof of Theorem 3.6 step

by step. O]

From Theorem 3.6 and the fact that AM(V) = L(V) = AE(V') when dim (V)

is finite, we have the following corollary.
Corollary 3.8. AM(V)NAE(V) is a regular semigroup.

By Theorem 2.3, for any proper subspace W of V', every isomorphism from
V to W is not regular in T(V, W) and certainly in its subsemigroups, including
AMV, W), AE(V, W) and AM(V, W) N AE(V,W). The next proposition shows

that, apart from the isomorphisms, there is some other kind of nonregular elements.

Proposition 3.9. Let V' be an infinite dimensional vector space and W a proper
subspace of V' such that AM(V, W)NAE(V, W) is a semigroup. Then there are in-
finitely many elements in AM(V, W)NAE(V, W) which are not reqular in L(V, W)

and which are neither injective nor surjective.

Proof. Let W be a proper subspace of V' such that AM(V,W) N AE(V,W) is a
semigroup. Then dim (V/W) is finite. Let By be a basis of W. Then we extend
By to a basis B of V. By Proposition 1.12, |B \ B;| = dim (V/W) < co. Since
B is infinite and B ~\ Bj is finite, we have Bj is infinite. Since W # V| B \ By is
not empty. Let a € B~ By. Let Z be a finite subset of By with |Z| > 2. Choose
z € Z. Since By is infinite and Z is a finite subset of By, B; \ Z is infinite and
|By \ Z| = |By|. Let uy,us € By be distinct. Thus |B; \ Z| = |By ~ {ug, us}|.
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Hence there exists a bijection 7 : By \ {uy,us} — By~ Z. Define o € L(V, W) by

(

xy ifx € By~ {uy,us},
ra=40 ifze{u,utU[B~\(ByU{a}),

z if z = a.

\

Then rana = ((B; \ Z) U {z}). By Proposition 1.12,

dim (V/rana) = |B \ [(By ~ Z) U {z}]]
=[(B N\ B1)U(Z~{z})]

< Q.

Thus « is not surjective and « belongs to AE(V, W). We have

dim (ker a) = [{us, us} U [B ~ (B, U {a})]]
= [{ur, ug}| + |B ~\ (By U {a})|

< 0.

Thus « is not injective and o« € AM(V,W). Hence o € AM(V, W) N AE(V, ).
By the definition of oo, Wa = (Bya) = (By N\ Z) # ((B1 ~ Z) U {z}) = rana. By
Theorem 2.1, « is not regular in L(V, ). O

3.2 Regularity of OM(V,W) and OE(V, W)

Throughout this section, we let V' be an infinite dimensional vector space over
a division ring. The objective of this section is to investigate the regularity
of linear transformation semigroups OM(V, W) and OE(V,W). We note that
under the constraint in Proposition 3.3, we have OM(V, W) ~ OE(V, W) and
OE(V,W)NOM(V, W) are not the empty sets, as both { AM(V, W), OM(V, W)}
and {AE(V, W), OE(V, W)} are partitions of L(V,W).
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Theorem 3.10. For any nontrivial subspace W of V', the semigroups OM(V, W),
O&(V, W) and its intersection have infinitely many nonregular elements in L(V, W).
In particular, all OM(V, W), OE(V, W) and its intersection are nonreqular semi-

groups.

Proof. Let By be a basis of W. Then we extend B to a basis B of V. Let b € B,
and let m € B\ B;. Define a € L(V, W) by

b if v =m,
va =

0 ifveB~{m}

Then dim (kera) = |B ~ {m}|, which is infinite. Hence a« € OM(V,W). We
have rana = ({b}). Thus dim (V/rana) = |B ~\ {b}|, and hence o« € OE(V, W).
Therefore « € OM(V,W)NOE(V,W). Since Wa = (Bya) = {0} # ({b}) =rana,
by Theorem 2.1, « is not regular in £(V, W). O

Theorem 3.11. OM(V, W) N OE(V,W) is reqular if and only if either W =V
or W = {0}.

Proof. Clearly, if W = {0} then the zero transformation is the only one element
in OM(V,W)NOE(V, W), and hence OM(V,IW)NOE(V, W) is regular. Assume
that W = V. Then OM(V, W) = OM(V) and OE(V,W) = OE(V). Let a be in
OM((V)NOE(V). Let K be a basis of ker aw and P a basis of ran a. For each
v € P, we choose z, € va~!. By Proposition 1.11, KU{z, : v € P} is a basis of V.
Let B be a basis for V with P C B. Then we let v be the linear transformation
defined by

z, ifveP,

vy =

0 ifve B\P.
Thus dim (kery) = |B \ P| = dim (V/ran «), which is infinite, since o € OE(V).
Thus v € OM(V). We show that v € OE(V). We have K U {z, : v € P}
is a basis of V. Then dim (V/ran~v) = |K| = dim (ker o), which is infinite, since
a€ OM(V). Hencey € OE(V). Thusy € OM(V)NOE(V). 1t is straightforward



to see that aya = «, and the proof is then complete.

The neccessity follows directly from Theorem 3.10

Corollary 3.12. OM((V)NOE(V) is a reqular semigroup.

27



CHAPTER IV
SUPPLEMENTARY COMMENTS

In Chapter II, the transformations under consideration are contained in T'(X,Y);
the codomain of each map is Y. Possibly, there is one likely to put a question why
the conditions of elements o in AE(X,Y) is not “Y \ ran« is finite”.

We show that both AE(X,Y) and
AE(X,)Y)={a e T(X,Y): Y \rana is finite},

are the same semigroups under certain conditions. We also discuss in which way
they differ to each other. In addition, AE(X,Y) and AE(X,Y) are identical
whenever they both are semigroups. Then it is enough only to study the regularity
of the semigroup AE(X,Y).

Furthermore, in the last section, we discuss its analogous problem in case of

linear transformations.

4.1 The relation between AE(X,Y) and AE(X,Y)

In this section, we assume that Y is a nonempty subset of X. By the definition of
AE(X,Y) and AE(X,Y), we have that AE(X,Y) is a subset of AE(X,Y), and
we see that if X is finite then AE(X,Y) = T(X,Y) = AE(X,Y). In general, we

have

Proposition 4.1. AE(X,Y) = AE(X,Y) if and only if X \Y is finite.
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Proof. Suppose that X \'Y is infinite. Let a € Y. Define a € T(X,Y) by

x ifzx ey,
T =

a otherwise.

Then rana = Y. Thus a ¢ AE(X,Y) but a € AE(X,Y). Hence AE(X,Y) and
AE(X,Y) are different, and AE(X,Y) is not empty.

Conversely, assume that X \ Y is finite. Clearly, AE(X,Y) C AE(X,Y). Let
a € AE(X,Y). Then Y \rana is finite. Since X \rana = (X \Y)U (Y \rana),
X NY and Y ~\ rana are also finite, we have X \ ran« is finite. Hence « is in

AE(X,Y). Therefore AE(X,Y) = AE(X,Y). O

Propositions 2.7 (ii) and 4.1 show that if AF(X,Y) is a semigroup then so is

E(X,Y). The converse holds whenever Y is infinite.

Proposition 4.2. Let Y be an infinite subset of X. Then AE(X,Y) is a semigroup
if and only if X \Y is finite.

Proof. For the sufficiency, assume that X \ Y is finite. Whether X is finite or
infinite, by Proposition 2.7 (i) and the fact that AE(X,Y) = T(X,Y) when
X is finite, one can see that AF(X,Y) is a semigroup. By the assumption and
Proposition 4.1 , E(X, Y') is a semigroup.

To prove the necessity, by contrapositive, we suppose that X \ Y is infinite.

By the contrapositive proof of Proposition 4.1, AE(X,Y) is not empty. It suffices
to show that AE(X,Y) is not closed. We have two cases to consider.
Case 1: | X \ Y| < |Y]. Since X \Y is infinite and | X \ Y| < |Y], there exists
a subset Z of Y with |X \ Y| =|Z|. Then there exists a bijection a from X \Y
to Z. Clearly, we have a surjection 8 from Y to Y\ Z. Now, we define ¢ : X — Y
by

wa ifwe X \Y,
wp =
wf otherwise.
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Then ran = Y. Thus ¢ belongs to AE(X,Y). We have ran 9> = Y \ Z. Hence
Y \ ran p? = Z, which is infinite. Thus ¢? ¢ AE(X,Y). Hence AE(X,Y) is not
closed.

Case 2: | X \ Y| > |Y|. Then there exists a surjection v from X \Y to Y. Let
acY. Wedefine p: X — Y by

zy ifrxreX\Y,
T =
a otherwise.

Then ranp =Y, so p is in AE(X,Y). Clearly, ran u? = {a}. Thus Y \ ranp? =
Y ~\ {a}, which is infinite. Hence p* ¢ AFE(X,Y). Therefore AE(X,Y) is not
closed. O

The first main theorem follows from Propositions 2.7 (i7), 4.1 and 4.2.

Theorem 4.3. Let Y be an infinite subset of X. The following are equivalent:
(1) X \Y is finite,

(1) AE(X,Y) is a semigroup,

(1ii) AE(X,Y) is a semigroup,

(i) AB(X,Y) = AB(X,Y).

In particular, OE(X,Y) = {a € T(X,Y) : Y N rana is infinite} if and only if
X \Y is finite.

From Proposition 4.2 and the fact that AE(X,Y) = T(X,Y) when Y is finite,

we have the following theorem.

Theorem 4.4. AE(X,Y) is a semigroup if and only if either Y is finite or'Y is
nfinite and X \Y is finite.

Proof. We first assume that AE(X,Y) is a semigroup and Y is an infinite set. By
Proposition 4.2, we have X \ Y is finite.

The converse is obtained from Proposition 4.2 and the fact that AE(X,Y) is
T(X,Y) when Y is finite. O
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Therefore the semigroup AE(X,Y) is either T(X,Y) or AE(X,Y). This is a
reason why it suffices only to study the regularity of the semigroup AE(X,Y), but
not both.

4.2 The relation between AE(V, W) and AE(V, W)

Let AE(V,W) ={B € L(V,W) : dim (W/ran3) < co}. In this section, we study
the relation between AE(V, W) and AE(V, W) in the same fashion as we have done

in the previous section. Throughout, W is a subspace of a vector space V.

Theorem 4.5. For a basis By of W and a basis B of V containing By, we let
f€T(B,By) and a € L(V,W) be such that a|g = f. Then f € AE(B, By) if and
only if « € AE(V,W)

Proof. Let f € T(B, By) and a € L(V, W) be such that a|g = f. Thenran f C By
and it is easy to see that ran f is a basis of ran . Consequently, dim (W/ran«a) =

|B; ~ ran f|. The proof is then complete from this fact. ]
Proposition 4.6. AS(V,W) = AE(V,W) if and only if dim(V/W) < oo.

Proof. For the necessity, we prove by contrapositive. Let B; be a basis of W.
Then we extend Bj to a basis B of V. Suppose that dim(V/W) is infinite. Define
B e LV,W) by
2B — x ifx € By,
0 ifxe B~ By.

Then ran 3 = W. Thus 8 € AE(V,W) but 8 ¢ AE(V,W) . Hence AE(V,W) is
not empty and AE(V, W) # AE(V,W).

To prove the sufficiency, we assume that dim(V/W) < oo. It is clear that
AE(V,W) C AE(V,W). Let a € AE(V,W). Let P be a basis of rana. We
extend P to a basis By of W, and we then extend B; to a basis B of V. By
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Proposition 1.12,

|B N By| = dim(V/W) < oo,
|B; " P| =dim (W/rana) < oo (as a € AE(V,W)) and
|B~\ P| =dim(V/rana).

Since BN P = (B~ B;)U(B; \ P) is finite, we have dim (V/ ran «) is finite. Hence
aec AE(V, V). O

Next, we will show that AE(V, W) and AE(V, W) are semigroups in the same
time. Note that if dim(V/) is infinite and dim (W) is finite then AE(V, W) is empty
and AS(V,W) = L(V,W).

Proposition 4.7. Let W be an infinite dimensional subspace of V.. Then AE(V, W)
is a semigroup if and only if dim(V /W) < oc.

Proof. Assume that dim(V/W) < co. By Proposition 4.6, AE(V, W) = AE(V,W).
By Proposition 3.2 (i7), AE(V, W) is a semigroup.

Conversely, suppose that dim(V/W) is infinite. Let B; be a basis of W and
B a basis of V' containing B;. By assumption and Proposition 1.12, B \ By is
infinite. By the necessary proof of Proposition 4.2, there exists f € AE(B, B;)
but f2 ¢ AE(B, B;). Extend f to a linear transformation o € L(V, W). We have
o?|p = f%2. From these facts and Theorem 4.5, we have o? ¢ AE(V,W) when
a € AE(V,W). Therefore a nonempty set AE(V, W) is not closed, and hence it is

not a semigroup. ]
These results give us an interesting fact.

Theorem 4.8. Let W be an infinite dimensional subspace of V. The following are
equivalent:

(1) dim(V/W) < oo,

i1) AE(V, W) is a semigroup,

(
(113) AE(V, W) is a semigroup,
(iv) AE(V,W) = AE(V,W).
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In particular, OE(V,W) = {a € L(V,W) : dim(W/ran«) is infinite} if and only
if dim(V/W) < oo.

Below is a consequence of Proposition 4.7 and the fact that AE(V,W) =
L(V, W) when dim(W) is finite.

Theorem 4.9. AE(V,W) is a semigroup if and only if either dim(W) is finite or
dim(W) is infinite and dim(V/W') < oco.

Proof. For the forward implication, we assume that AE(V, W) is a semigroup and
dim (W) is infinite. By Proposition 4.7, we have dim(V/W) < oc.

The other implication follows from Proposition 4.7 and the fact that AE(V, W)
is L(V, W) when dim(W) is finite. O

From the above theorem, it is reasonable to only study the regularity of the

semigroup AE(V, W).
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