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CHAPTER I

INTRODUCTION

Difference equations have been used to explain real dynamical systems that
evolve discretely, in which the independent variables are integers. They are ex-
tremely useful in biology, physiology, physics, economics, and engineering, etc.
(see for example, [8,10]). In fact, almost all physical systems, biological processes
and real-world applications can be modeled by nonlinear difference equations.
Nonlinear difference equations may behave very complicated and there have not
yet been any standard methods for studying them. Therefore, many researchers
have been concentrated on rational difference equations because they believe that
results about such equations offer prototypes towards the development of the basic
global theory of nonlinear difference equations [17,20].

In recent years, many types of rational difference equations have been inves-
tigated. There are a great interest in studying some behaviors of rational differ-
ence equations such as asymptotic stability, boundedness nature and periodicity
character. For example, Kulenovi¢ et al. [18] investigated the global asymptotic

stability of the positive equilibrium of the equation

Ty + 5:En—1

=0,1,2,...
A‘i_l'n_l’n ) 9y ’

Tnt1 =

where the parameters and initial conditions x_; and zy are nonnegative. DeVault

et al. [9] studied the rational difference equation

D+ Tp—k
Ty = ——"k n=0,1,2,...,
qxn_‘_xnfk



with the positive parameters and positive initial conditions and obtained the exis-
tence of period-two solutions and some sufficient conditions for global asymptotic
stability of positive equilibrium. Kulenovié¢ and Ladas [17] studied the second
order rational difference equation

a+ BT, +YTn
A+ Bz, +Cxpq’

Tpi1 = n=0,1,2,...,

with nonnegative parameters and nonnegative initial conditions. They investi-
gated the global stability, the boundedness and the periodicity of solutions of all
special cases of such equation. Camouzis and Ladas [5] presented several results,

open problems and conjectures on period-three solutions of the equation

a+ BTy YT+ 0T,
A+ Bx,+Cxpq+ Dps’

Tn+t1 n=20,1,2,...,

with nonnegative parameters and nonnegative initial conditions. They also ob-
tained the period-three trichotomy behavior of some special cases of the above
equation. For other related works, see [1,4,6,7,11-15,19-21].

Our aim in this work is to investigate some behaviors of solutions of the rational
difference equation

Tn—k

Tpi1 = , n=0,1,2,..., (1.1

' A+ Byt + Bitay + Bowyo + -+ + Bty (1)
where the parameters A, By, By, Bs, ..., By and the initial conditions z_x, x g1,
T_jyo, ..., To are nonnegative real numbers such that the denominator in (1.1) is

always positive.
The behavior of solutions of the rational difference equation

o Tn-1
A+ Bx, + Tt

Tpil , n=0,1,2,..., (1.2)

was studied by Kulenovi¢ and Ladas in [17]. They established that when A < 1,

(1.2) has the unique positive equilibrium

~1-A
r=-——

1+ B



and then the positive equilibrium Z is locally asymptotically stable when B < 1
and is unstable when B > 1. Furthermore, they examined the existence of prime
period-two solutions of (1.2) and showed that when A < 1 and B > 1, the prime
period-two solution

01— A0,1—A,...

of (1.2) is locally asymptotically stable.

In [5], Camouzis and Ladas investigated the behaviors of solutions of

Tp—2
A+ Bx,+Cx, 1+ 7, 9

. n=01,2.... (1.3)

Tpt1 =

They proved that when A € [0,1), (1.3) has the positive equilibrium point

1-A
B+C+1

T =

which is locally asymptotically stable provided

2—A+VA2+38 1—2B+/b+4A+4B(1— A)
< 5 and C < 5 .

B

Furthermore, when A, B + C € [0, 1), every positive solution of (1.3) converges
to the positive equilibrium z of (1.3). They also classified that all possible prime

period-three solution of (1.3) are of the form

,0,0,6,0,0,6, ...
with ¢ € (0,00) or

"'707¢7¢70’¢7¢7"'
with ¢, € (0,00) or

"7¢7¢7w7¢7w7w7"'

with ¢,1¥,w € (0,00). Moreover, they obtained that when A € [0,1) and B =

C' =1, every solution of (1.3) converges to a period-three solution.



We notice that (1.1) is a generalization of (1.2) and (1.3). For arbitrary positive
integer k, it follows from the result in [6] that every positive solution of (1.1)

converges to its positive equilibrium point

_ 1-A
T = :
By+ B+ By + -+ By

provided A € [0,1) and By + By + By + - -+ + By_1 < By. Although the stability
of equilibrium point of (1.1) has been investigated, however, several important
problems remain open such as the periodicity and the local stability of periodic
solutions of such equation. Therefore, in this thesis, we intent to investigate these
behaviors. The results in this work are organized as follows.

Chapter II contains some basic definitions and results about difference equa-
tions which will be useful thoughtout this thesis.

Chapter III, the periodic character of (1.1) is investiged. We establish the
existence of periodic solutions with prime period-two, prime period-three and
extend to prime period-p, where p is a prime number. We use the idea of the
proof of Theorem 3 in [5] to show that every solution of (1.1) converges to a
period-(k 4 1) solution under certain conditions.

Chapter IV, the local asymptotic stability of some periodic solutions of (1.1)
is examined by using the linearized stability analysis.

Chapter V, we give some numerical examples to illustrate the results that
we obtained. Also, we use MATLAB R2017a to draw graphs that represent the

behavior of their solutions.



CHAPTER II

PRELIMINARIES

In this chapter, we introduce the definitions of some behaviors of solutions of
difference equations. We also present some known results that will be useful for

studying our work.

2.1 Stability and Linearized Stability Analysis

Definition 2.1 ([6,12]). A difference equation of order k + 1 is an equation

of the form

Tnt1 :f(.??n,l'nfl,.’lfnfg,...,I'nfk), n=0,1,2,..., (21)

where f is a function which maps some set I**! into I and I is an interval of real

numbers.

Definition 2.2 ([6,13]). A solution of (2.1) is a sequence {x,, }>° _, that satisfies
(2.1) for all n > 0. If we give initial conditions x_x, 41, _k12,...,To € I, then

there exists a unique solution {z,}7° , of (2.1).

Definition 2.3 ([12,13]). An equilibrium point of (2.1) is a point € I that
satisfies the condition

= f(z,z,%,...,T).

That is, the constant sequence {x,}0> . with x, = Z for all n > —F is a solution

of (2.1), or equivalently,  is a fixed point of f.

Definition 2.4 ([13]). Let Z be an equilibrium point of (2.1).



(i) z is called locally stable if for every ¢ > 0, there exists 6 > 0 such that if

{z,}2 . is a solution of (2.1) with

[ — &+ [t — 3] + [oors — 2+ + oo — 7] < 5,

then

|z, —Z| <€ forall n>—Fk.

(ii) z is called locally asymptotically stable if it is locally stable and if there

exists v > 0 such that {z,,}°° _, is a solution of (2.1) with

[ = &+ s — 2+ [oorn — E 4+ |zo — 7] < 7,

then

lim z, = .
n—oo

iii) 7 is called a global attractor if for every solution {z,}°° _, of (2.1), we
n=—k
have
lim z, = Z.

n—oo

(iv) z is called globally asymptotically stable if it is locally stable and a

global attractor.
(v) z is called unstable if it is not locally stable.

In general, we can rewrite (2.1) in vector form as

Xpi1 =T(X,), n=0,1,2,..., (2.2)



where
_ xglo) -
o
e
Xo=| | 2l =aeaey (G€{0,1,2,... k)
xg—n
o
and
_ mg) _
o2
o
T(Xn) =
e
f(x%o), x%l), ycg), . ,w%k))

Let {X,}5%, be a unique solution of (2.2) which is determined by the initial
condition Xg = (T_p, T _py1,T pyo,...,T0) € I*1 Previously, we defined an
equilibrium point of (2.1). Similarly, we can also define an equilibrium point of
(2.2) to be a vector X € I**1 such that X = T'(X) (see [6,15]). Next, we present
the stability definitions for the difference equation (2.2). Let || - || denote the

Euclidean norm.

Definition 2.5 ([15]). Let X be an equilibrium point of (2.2).

(i) X is called locally stable if for every e > 0, there exists § > 0 such that

| Xo — X|| < 6 implying

X, — X|| <e forall n>0.



(ii) X is called locally asymptotically stable if it is locally stable and there

exists v > 0 such that || X, — X|| < v implying
lim || X, — X|| =0.
n—o0
(iii) X is called globally asymptotically stable if it is locally asymptotically
stable and for every X,
lim || X, — X|| = 0.
n—oo
(iv) X is called unstable if it is not locally stable.

Suppose that the function f is a continuously differentiable in some open

neighborhood of an equilibrium point z. Let

0
pi=3 f(z,z,z,...,z) forall i€{0,1,2,... k}
U;
denote the partial derivative of f(ug,u1,us, ..., ux) with respect to u; evaluated

at the equilibrium point Z of (2.1). Then, the linearized equation of (2.1) about

the equilibrium point Z is the linear difference equation of the form

Ynt1 = DoYn + P1Yn—1 + P2Yn—2 + -+ + Pln—r, n=0,1,2,. ., (2.3)
and the equation
NAL g XN —p N A= =0 (2.4)

is called the characteristic equation of (2.3) about Z (see [6]). Likewise, we assume
that the function T is a continuously differentiable in some open neighborhood
of an equilibrium point X. Then, the linearized equation of (2.2) about the

equilibrium point X is the equation of the form

Yoi1 = Jr(X)Y,, (2.5)



where Jr(X) is the Jacobian matrix of T at the equilibrium point X and the

characteristic equation of (2.5) about X is
det(Jp(X) — Mj11) = 0. (2.6)

The following theorems will be useful for studying the local stability character

of an equilibrium point X of (2.2).

Theorem 2.6 ([15]). Let X be an equilibrium point of (2.2) and assume that T

is a continuously differentiable in I**1. Then, the following statements are true:

(1) If all eigenvalues of the Jacobian matriz Jp(X) lie in the open unit disk

IA| < 1, then the equilibrium point X of (2.2) is locally asymptotically stable.

(ii) If at least one eigenvalue of Jr(X) has absolute value greater than one, then

the equilibrium point X of (2.2) is unstable.
Theorem 2.7 ([13]). Assume that po,p1,pa2, - - -, P are real numbers such that
Ipol + [p1| + |p2| + -+ + || < 1.

Then, all roots of (2.4) lie inside the open unit disk |\ < 1.

2.2 Periodicity

Definition 2.8 ([13]). A solution {z,}°° , of (2.1) is called periodic with
period p (or a period-p solution) if there exists an integer p > 1 such that

Tpyp =, forall n>—k. (2.7)

A solution is called periodic with prime period p if p is the smallest positive

integer for which (2.7) holds. In this case, a p-tuple

(xn—i-la Tn+2, Tnt3s - - - 7xn+p)

of any p consecutive values of the solution is called a p-cycle of (2.1).
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Finally, to study the convergence to periodic solutions, we have the following

lemma which was proved in [13].

Lemma 2.9 ([13]). Let {x,}22_, be a solution of (2.1) and let p > 1 be a positive

integer. Suppose that there exist real numbers lo, 11, 1o, ..., l,_1 € I such that
lim zp,4; =1; forall j€{0,1,2,...,p—1}.
n—oo

Finally, let {y,}> _, be the period-p sequence of real numbers in I such that for

every integer j with 0 < j < p—1, we have
Ypntj =1; forall ne€{0,1,2,...}.
Then, the following statements are true:
(1) {yn}>2_, is a period-p solution of (2.1).

(i1) nh_{go Tpny; =Y; for every j> —k.



CHAPTER III

PERIODICITY OF SOLUTIONS

In this chapter, we investigate the periodic character of (1.1). First, we estab-
lish the existence of periodic solutions with prime period- two, prime period-three
and extend to prime period-p, where p is a prime number. Finally, we also prove

the convergence of solution to a (not necessarily prime) period-(k + 1) solution.

3.1 Period-Two Solutions of (1.1)

We now examine the existence of prime period-two solutions of (1.1). It is easy
to verify that the only positive prime period-one solution of (1.1) when 0 < A < 1
1s

B 1- A
- By+Bi+ Byt + By

T for all n > —k.

In this case, the solution is called an equilibrium solution of (1.1). Let us define

the following notations which are used throughout this section:

by := Z B;, and b; = Z B;. (3.1)

2)i 2|(i—1)
0<i<k 0<i<k

Theorem 3.1. Let k be an even integer. Then, (1.1) has no positive solution of

prime period-two.

Proof. Suppose that there exists a distinctive positive solution

"7¢7¢7¢7¢7¢7¢7'”



of prime period-two of (1.1). Since k is even, z,, = x,_. It

12

follows from (1.1)

that
¢: w
A+ By + B1¢ + Bot) + B3 + - - - + Bytp
_ v
A+ (Bo+By+By+- -+ Bp)Y + (B + B3+ Bs + - - + By_1)¢
_ Y
A+ bgyp + bi¢
and
b= ¢
A+ By + Bitp + Bap + Byi) + - - + By
_ ¢
A+ (By+ By +By+ -+ By)p+ (Bi+Bs+ Bs + - - + By_1)¢
_ ¢
A+byp+brp’
Then, we get
A + bt + by = o (3.2)
and
A + borp + bip® = ¢. (3.3)

Subtracting (3.2) by (3.3) gives
Alp =) +01(¢° — %) = —(¢ — ¥).
Since ¢ # 1, it follows that

A+bi(p+1¢)=—1.

Notice that A+ b(¢ + 1) is negative. Because A, by, ¢ and 1 are all nonnegative,

we have a contradiction. Therefore, the proof is complete.

]

The following result states the necessary and sufficient conditions that (1.1),

when k is odd, has a prime period-two solution.
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Theorem 3.2. Let k be an odd integer. Assume that by > 0. (1.1) has a prime

period-two solution if and only if
0<A<1 or (A=0 and by >0). (3.4)
Proof. Suppose that there exists a nonnegative prime period-two solution

--,¢>¢,¢>¢,¢>¢a---

of (1.1). We will show that (3.4) holds. Since k is odd, it follows from (1.1) that

_ ¢
¢_A+B0¢+Bl¢+321/1+33¢+-~-+Bk¢
_ ¢
A+ (Bo+By+Bi+- -+ By)+ (Bi+ B3+ Bs+ -+ + Bi)g
B ¢
A+ by + b (3.5)
and
= (0
A+ By + Bitp + Bagp + Bstp + - - - + Byt
_ (0
A+ (Bo+ Ba+ By+ -+ By 1)p+ (Bi+ Bs + Bs + -+ - + By)y
B (0
A+ bod+ byt 30
Then,
A + bt + b1 = ¢ (3.7)
and
A + bodth + by = . (3.8)

Subtracting (3.7) by (3.8) gives

Al =) +bi(¢* — %) = ¢ — 4.
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Since ¢ # 1, it follows that
A+bi(op+7y) =1
Thus, we obtain

1-A

p+y = o (3.9)

Since ¢+1) is positive, it implies that 0 < A < 1. Now we suppose that A ¢ (0, 1).

Then, A = 0 and by adding (3.7) and (3.8), we have

2bodt) + by (¢ + p*) = ¢ + .

The relation ¢? + % = (¢ + 1)? — 2¢¢) implies that

2bot) + bi(p + 1) — 2b1gyp = ¢ + ¥,

and thus,

2 (bo — b1) 9¢ + bi(¢ + )° = & + 0.
Then, we see that
2(bo — br) ¢ = (¢ + ) — bi(¢ + ¢)?
=@+ ¢)[1—bi(o+9)].

It follows from (3.9) that

1—mw+¢o:1—m(é)zo

Therefore, we obtain
2 (by — by) ¢ = 0.

If ¢p1p # 0, then by = by, which implies that by > 0. If ¢ = 0, then it follows from

(3.5) and (3.6) that
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0 1
0=-— and ¢ =—.
o YT

Thus, by must be positive. Similarly, if ¢» = 0, then by > 0. Hence, (3.4) is true.
Conversely, we assume that (3.4) holds. Then, there exist two distinct non-

negative real numbers ¢ and ¢ such that

1—A
=0 and ¢ = :
by
Suppose that
=0, 241 =%, T j10=0, z_p3=2, ..., x_1=0 and x9=1.
From (1.1), we have
T_p
€rT1T =
! A + Bol‘o + BlfL‘_l + BQZ'_Q —f- s + Bkl'_k
B 0
A+ (By+ Ba+ By+ -+ By 1)
B 0
A+ bop

It follows from (3.4) that A + bytp > 0 and then x; = 0. Thus, we see that

Ty — Tkt1
T A+ Boxy + Bixg + Box_y + -+ + Bro_pq1
B Y
A+ (Bi+ B3+ Bs+ -+ By
_ ¥
A+ by
__ v
A+ (1-A)

which implies that o = ¢. Using the mathematical induction, we have
Top—1 =0 and x9, =1 forall n> %

Therefore, the difference equation (1.1) has a prime period-two solution

"‘707/¢}’07w70?,¢}7"'

Consequently, the proof is now complete. n
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3.2 Period-Three Solutions of (1.1)

In this section, the existence of prime period-three solutions of (1.1) will be
investigated. We now give the necessary and sufficient conditions that (1.1) has a
periodic solution with prime period-three. The following notation is used through-

out this section:

(3.10)
for each i € {0, 1,2}.

Theorem 3.3. Let k be a positive interger such that 3 | (k+1) and by > 0. (1.1)

has positive prime period-three solutions of the form
...,0,0,7,0,0,7,... (3.11)
with v € (0,00) if and only if
0<A<1 or (A=0 and by,b; > 0). (3.12)

Furthermore, when (3.12) holds, (1.1) has a unique positive prime period-three

solution with
1—A
by

’Y =
Proof. Assume that there exists a prime period-three solution

"?¢7¢77?¢7¢?77"“

Since 3 | (k + 1), it follows from (1.1) that

¢

O A by L b+ b (3.13)
_ Y

¢“_A+m¢+my+@¢’ (3:14)

y 7 (3.15)

T At by b+ by
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Suppose that ¢ =1 =0 and v > 0. From (3.13) and (3.14), we have

0
e d g
0 At b and 0 A0

which means A > 0 or (A =0 and by,b; > 0). Then, from (3.15), we see that

1-A
Y= bg ’

which implies 0 < A < 1. Therefore, (3.12) is true.
Conversely, we assume that (3.12) holds. Then, there exists a positive real

number v such that

_1-A
Suppose that
=0, v 41=0, T pio=7, ..., v 2=0, x_1=0 and xy=1.
From (1.1), we have
T
Tr1 =
! A + Boaj‘o + le—l + ng_g + -+ Bkilﬁ_k
B 0
A+ by + b1(0) + by(0)
B 0
N A + bo’}/.

By (3.12), we have A + byy > 0. This implies that x; = 0. Then,

_ L—k+1

A+ Bozy + Bizg + Borq + - 4 Brr g
B 0

A+ bo(0) + byy + b2(0)

B 0

A+ by

X2
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From (3.12), we get A + b1y > 0. It implies that xo = 0. Then,

_ L—k+2

A+ Byxy + Bixy + Bawg + -+ + By
_ v
_ Y

A+ byy

_ gl
A+ (1= A)

€3

Thus, 3 = 7. Using the mathematical induction, we have

k

2 _
T3p_2=0, w3,.1=0 and x3, =+ forall n> 3

Hence, (1.1) has prime period-three solutions of the form (3.11). O

Theorem 3.4. Let k be a positive integer such that 3 | (k + 1). Assume that
A+by+ by >0 and by > 0. (1.1) has positive prime period-three solutions of the

form

-"707w77707w777'-- (3'16)

with v,y € (0,00) if and only if one of the following statements holds:
(Z) 0<A<1 and bo,bl € (bQ,OO).
(ZZ) 0<A<1 and bo,bl € [O,bg)

Furthermore, when (i) or (ii) holds, (1.1) has a unique positive prime period-three

solution with

(1—A)(by —b1)

(1= A)(by — bo)
b2 — boby '

V= b2 — bobs

and v =

Proof. Assume that there exists a positive prime period-three solution

"'707w77707w777""
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Since 3 | (k + 1), it follows from (1.1) that

O:A+a2+mw’ (3.17)
V= A+b;§+b2w’ (3.18)
T AT bOZ/) + by (3.19)
Then, we have
A + byabry + botp? = 1)
and
Ay + bothy + bay? = 7.
Since 7,1 > 0, we obtain that
bivy+bp=1—A (3.20)
and
bot) + byy = 1 — A, (3.21)

from which it follows that 0 < A < 1. Subtracting (3.20) by (3.21) gives

(b1 = ba)y = (bg — ba)1).

Because 7y and 1 are both positive, we get either by, by € (by, 00) or by, by € [0, bs).
Conversely, assume that (i) or (i7) holds. Then, there exist two positive real

numbers ¢ and v such that

(1— A)(by — by)
b2 — boby

(1 —A)(b2 — bo)

v= b2 — boby

and v =
Suppose that

k=0, Topp1 =%, Tpr2="7 ..., T2=0, ;=79 and =z =1.



From (1.1), we have

T g
" A+ Byro+ Bix_1 + Bor_9 + - + Brx_g
B 0
A+ boy + bt + by(0)
B 0
A+ byy + by

X1

Since A + bgy + b1y > 0, x1 = 0. Then,

_ T k41
A+ Boxy + Biwg + By + -+ + Brr
_ v
A+ bo(0) 4+ byy + batp
Y

- (1—A)(ba—bo) (1—A)(ba—b1)

Y

A (1 ) (gt
Y

T A+ (1-A)

X2

Thus, x5 = 1. Then, we see that

. T2
A+ Byxa + Biay + Baxg + - + Brt_pao
. i
A+ botp + b1(0) + by
~

- (1—A)(b2—b1) (1—A)(b2—bo)
A —+ bO < bg—b()le ! ) + b2 ( b%—b()le 0 )

€3

_ g
At (1—A) <b0b27b0b1+b§fbob2>

bZ—bobs

_ gl
A+ (1= A

Hence, x3 = . Using the mathematical induction, we have

k

T3n-o =0, x3,.1 =17 and x3, =7 forall n> %

Thus, (1.1) has prime period-three solutions of the form (3.16).

20
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Theorem 3.5. Let k be a positive integer such that 3 | (k+1). If b; # b; for some
i,7 € {0,1,2} with i # j, then (1.1) has no positive prime period-three solutions

of the form

-'7¢7w777¢7w777--- (322)

with 6,1, € (0,00).

Proof. Assume that there exist i, j € {0, 1,2} such that ¢ # j and b; # b;. Suppose

that (1.1) has a prime period-three solution of the form

"'7¢7¢7’77¢7¢777"‘7

where ¢, and  are all positive real numbers. Then, it follows form (1.1) that

¢: ¢
A‘i‘bo’}/—i‘bllb—i‘bgd)’

= Y
A+b0¢+b1’y+b2¢’

i

7T A both + b1 + by

Since ¢, 1,y > 0, we get

boy + 01Y + b =1 — A,
bop + b1y + by =1 — A,

bot) + b1 + by =1 — A,

which is equivalent to the matrix equation

by b1 bo| | @ 1-A
bo by bi| || = |1—A]- (3.23)

bi by ba| |7 1-A
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Let A be the coefficient matrix of (3.23). We now calculate the determinant of

A. Note that

by + b2 + b3 — 3bobiby = (b + by + by) (b3 + b3 + b3 — boby — byby — bby)

—~

(bo 4 by + b2)[(bo — b1)? + (by — b2)* + (bo — b2)?].

N | —

Because b; # b; for some 4, j € {0,1,2} with i # j, det A # 0. By the Cramer’s

rule, the system of equations (3.23) has a unique solution with

_ det Ay _ det Ay det Az

= det A’ ~ det A and 7y = det A’

where A; is the matrix obtained by replacing the i® column of A by (1 — A,

1—A,1— A)T. Notice that for any ¢ € {1,2, 3},

This implies that ¢ = ¢ = ~, which is a contradiction. Therefore, (1.1) has no

prime period-three solutions of the form (3.22). O

3.3 Period-p Solutions of (1.1)

First, we give the necessary and sufficient conditions that (1.1) has periodic
solutions with prime period-p, where p is a prime number. Define the notation

that will be useful in this section:

bi:= Y Bn (3.24)

for each i € {0,1,2,...,p— 1}.

Theorem 3.6. Let p be a prime number such that p | (k+1) and b,_y > 0. (1.1)

has positive prime period-p solutions of the form

0,..,0,7,0, .. ,0, 7, . (3.25)
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with 7, € (0,00) if and only if
0<A<1 or (AZO and bo,bl,bz,...,bp_z >0) (326)

Furthermore, when (3.26) holds, (1.1) has a unique prime positive prime period-p

solutions with

Proof. Assume that there exists a prime period-p solution

0,.,0,7,0,..,0, %, - .

of (1.1). Since p | (k+ 1), it follows from (1.1) that for any 1 <i <p—1,

0
0= ———
A + bi—l’Yp
and
_ Tp
f)/p A + bp—lf)/p '

Since 7, > 0, 7, = (1 — A)/b,—1. From which it implies that (3.26) holds.
Conversely, assume that (3.26) is true. Then, there exists a positive real

number -, such that

1A
/yp - bp_l .

Notice that for each 0 <7 <p —2, A+ by, > 0. Suppose that

Topg =T p41 =T 42 = " =T f4p-2 — 0, T ftp—1 = Vpy -
Toptl =Topi2 =Tpy3=-+=2-1=0, To=".

From (1.1), we have

= A + B()CL’() + Bll‘_l + BQCL’_Q R ka—k
B 0
N A + bo’yp + 51(0) + bQ(O) + - bp_l(())

B 0
N A—Fbo’)/p.
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Thus, 1 = 0. Then, we see that

L1—k
2= A + Boxl + Bll’o + Bgl‘_l st kal—k
B 0
A+ bo(0) + bi () 4 b2(0) + - + b1 (0)
B 0
- A + bwp .

Thus, o = 0. Then, we obtain that for each 3 <i <p—1,

- T(i-1)—k
" A+ Bowi_1 + Bixi_o + Bow;_s - + Brri_1)—i
B 0
A+ by,

Therefore, x; =0 for all 1 <7 <p—1 and then we get
_ Lp—1)—k
A + B(].Tp_l + lep_g + -+ Bp_2I1 + Bp_1$0

_ Tp
A + bo(O) + bl (O) + -+ bp_Q(O) + bp_l’}/p

= Tp .

This implies that z, = «,. Using the mathematical induction, we have

Lp

Tpn—p+1 = Tpn—p+2 = Tppn—p+3 = " ° = Tppn—-1 = 0

and
p—1—k

Tpn =Y, forall n> p

Hence, (1.1) has positive prime period-p solutions of the form (3.25). The proof

is now complete. O

Theorem 3.7. Let p be a prime number such thatp > 2 and p | (k+1). Assume
that A+b; >0 for i € {0,1,2,...,p—2} and b,—y > 0. (1.1) has positive prime

period-p solutions of the form

,0,...,0,75,0,...,0,7,, . .. (3.27)
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with 0 < j < p and v;,7, € (0,00) if and only if one of the following statements

holds:
(Z) 0<A<1 and bj—l;bp—j—l € (bp—b OO)
(ZZ) 0<A<1 and bjfl,bp,jfl S [O,bp,1>.

Furthermore, when (i) or (ii) holds, (1.1) has a unique positive prime period-three

solution with

(1 —A)(bp-1 —bj-1)

. (L= A)bp-1 —bpj)
T b = bpjibia

by 1 = bp—j—1bj

and v, =
Proof. Assume that there exists a positive prime period-three solution
o5 0,000,0,75,0, 000,09, -1

where 7;,7, € (0,00). Since p | (k+ 1), it follows from (1.1) that

V= g
DA+ b+ b1y
and
f)/
T -

A+ bp—j-17; + bpflpr.

Since 7;, v, > 0, we obtain that
bjs1p +bp1y; =1-A (3.28)
and
bp—j-17 + bp17p = 1= A, (3.29)
from which it follows that 0 < A < 1. Subtracting (3.28) by (3.29) gives

(bj—1 = bp—1)p = (bp—j—1 — bp—1)7;.



26

Because «; and 7, are both positive, we get either b;_1,b,—;_1 € (b,—_1,00) or

bj_1,b,—j—1 € [0,b,_1). Therefore, the statement (7) or (i¢) holds.

Conversely, let j € {1,2,3,...,p — 1}. Assume that (i) or (i7) holds. Then,

there exist positive real numbers ~; and ~, such that

1—A)(b,_1 —b;_ 1—A)(by_1 —b,_;_
;= (b2 z(bp 1 b‘J 1) and %:( . )(_1;) 1. bp' J 1)‘
p—1 p—j—1Yj—1 p—1 p—j—1Yj—-1

Suppose that

T =T 1 =T p2=""=T p1j2=0, Tprj_1 =",

Tptj = Tktjt+l = Tkpjd2 = " = Tfgp-2 — 0, T pyp—1="ps ---,
Toptl1 = Tpy2 =T py3 = " = Tptj—1 = 07 Tptj =y

Topijrl = Toprjiz = Tpijrz = -+ = T = 0, 20 = .

From (1.1), for each 1 <1i < j — 1, we have

0
A+ by + b

X

Note that A + b;_17, + bp—jri—1y; > 0 for all 1 < ¢ < j — 1. This implies that

r;=0forall 1 <i<j—1. Then, we see that

;= T—k4j-1
A+ bjaz0 + by 1Ty
_ g0
At b+ by

= Vi
A + bjfl <(1—A)(bp—1—bp_j—1)> + bpfl <(1—A)(bp,1—bj_1))

b2 —bp—j—1bj—1 by 1 —bp—j—1bj—_1

_ "
A+ (1-A)

This implies that z; = 7;. Next, for each j +1 <17 < p — 1, we have

. L—k+i—1

A+ b+ bojri
B 0

A+ by by

X
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Note that A + b1y, +b_j4i—17; > 0forall j +1 <7 < p—1. Thus, z; = 0 for

all j +1 <4 <p—1. Then, we get

= L—k4p—1
P A4 by + by
_ Tp
A b

_ Tp
A+ b,y <(1—A)(bp71—bp—j—1)) by ((1—A)(bp71—bj—1)>

by 1 —bp—j—1bj—1 by 1 —bp—j—1bj—1

A4+ (1-A)

Hence, z, = 7,. Using the mathematical induction, we have

Ton—p+1 = Tpn—p+2 = *°° = Tpn—p+j—1 — Lpn—p+j+l — " = Tpn—1 = 0,
p—1—k

Tpn—pt; =7; and xp, =7, forall n>
p

Therefore, (1.1) has positive prime period-p solutions of the form (3.27). The

proof is now complete. O

Here, we give the following lemma to study the existence of p-cycle, namely,
(0,...,0,74,0,...,0,7%,0,...,0,7,), where v;,7; and =, are all positive real num-

bers.

Lemma 3.8. Let A be the matriz
1 2 3
a§1) aSQ) ags)

3 1 2
aél) ag; aé:s)

2 3 1
@gn) a:(32) a:(a:a)

and for any 1 <1i,7 <3,

(1) (2) (3)
Uijy 2 iy 2 gy 2 0,

(3.30)
a(l). > a(Z) > a(g), > 0’

i1] = Ti2j = i3]

where i17i277;37j17j27.j3 € {17273}



(1) If
mln{a 4,7 € {1,2,3}} > max{a” |i,7 € {1,2,3}}
or
min{a{? | 4,5 € {1,2,3}} > max{a{) | 4,5 € {1,2,3}},
then det A > 0.
(i1) Letl e {1,2,3}. ]fa ¥ —a(2l) —a(gl) =c¢>0 and
min{al} | j € {1,2,3} ~ {I}} > max{a{) | j € {1,2,3} ~ {I}}

or

min{a) | j € {1,2,3} ~ {I}} > max{a{? | j € {1,2,3} ~ {1}},

then det A > 0.

Proof. (i) Assume that (3.31) holds. We now consider

1 1 2 2 3
det A = agl) <a;2)a§,5) - aéQ)a§3)> + agz) (a§3 %1 - a33 a21 ) + a (a§2)a21

2 2 2 3
> agQ) (ag;ai({’;) - aé;aé;) + agQ) <a§3 a31 a33 021 ) + a12 <a§2)a21

2 1 2 2

= a§2) [aéQ) (ags) - afﬂ)) + aé:s) (aél) - a32> + a21 (a - CL33 )}
2 1 2 2 2

> agQ) [aés) <az(’)3) - a:(Sl)> + aés) (a:(Sl) - a32> + a23 (a 2 CL33 ﬂ

2
= agz)aé?,) (0).

This implies that det A > 0. Similarly, if (3.32) holds, then det.A > 0.
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(3.31)

(3.32)

(3.33)

(3.34)

2 1
Do)

2) (1
a:(n) a§2)>

1) Let [ € {1,2,3}. Assume that a( = a(Z) —a® =¢ > (0 and (3.33) holds.
1

iol il



Case 1. [ =1,

C CL§22)

det A = det Is aél;

c a :(g)

2 2
= [agz) <ag3) -
> C [a%) <(Ié§) —

2
= ca3(0).

This implies that det A > 0.

Case 2. [ =2,
a(lll) c
det A = det agi) s
ag) c

1 1
NI
> C [Cl:(fl) <a§? -

2
= ca$; (0).

Then, we get det A > 0.

3
ag;

2
aé:s)

1
a§3)

1 1 1 3 3 3 2
a:(s3)> + agz) (a:(%s) - a§3)> + az(az) <a§3) - aég,))}

)+ oy () - o) 4 (o — )]

3
aga)

2
aéz’))

1
a:(33)

2 3 3 1 2 2 3
o)+ o) () — ) + o (o8 — o)

2 2 3 1 2 2 3
aé3)> + a:(n) <a§3) - a§3)> + a:(n) <ag3) - ag?,))}

Case 3. [ = 3,
1 2
agl) ag2) ¢
det A = det a,gi) a;12) c
2 3
@:(ﬂ) a:(aQ) ¢

1 1
=cC [agl) <a§2) -

> C |:a:(321) <CL§12) —

3 3 3 2 2
a:(az)> + a§1) (a:(az) - @52)> + a:(n)

3 2 3 2 2
ai(’>2)> + a:(n) <a§2) - a§2)> + az(n)

2 1
(agQ) Gé;) :|
2 1
(ag; a’g2)> }

29
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Then, we obtain that det A > 0. Similarly, if aglll) = afl) =a¥ =¢>0and (3.34)

i i3l

holds, then det A > 0. ]

By interchanging the pair of columns or rows of the matrix in Lemma 3.8, we

have the following corollary.

Corollary 3.9. Let A be the matriz

G RIACY, @ M (2 @ @ 1)

ay; Qpo 13 ay; Gy A3 aj; Gy Qg
2 1O (3 2 3 (1) L B (2
Ay Ay Qg3 | 5 |Gy Gy Gz | OT fagy ayy  agg

3) (2 1 1 2) (3 2 1 3
az(n) a:(aQ) a:(as) a:(n) a:(n) @:(’)3) ai(ﬂ) a:(az) a§3)
such that (3.30) holds.
(i) If the matriz A satisfies (3.31) or (3.32), then det A > 0.

(i) Let | € {1,2,3}. If aglll) = a?) = agfl) = c¢ > 0 and A satisfies (3.33) or

iol T

(3.34), then det A > 0.

Theorem 3.10. Let p be a prime number such that p > 3 andp | (k+1). Assume

that b,y > 0. (1.1) has positive prime period-p solutions of the form
5 0,000,0,795,0,...,0,79,0,...,0,7, - ... (3.35)
with 0 < j <1 <p and ~v;, v, € (0,00) if one of the following statements holds:
(1)) 0<A<L, by<b <by<---<b,9 and b,y <b; forall 0<i<p-—2.
(1)) 0<A<L, by<b <by<---<b,o and b,y >b; forall 0<i<p-—2.
(1)) 0 < A<L, bg>by>by>--->b,o and b,_1 <b; forall 0<i<p-—2.

(i) 0 <A<, byg>by >by>--->b, o and b,y >b; forall 0<i<p—2.
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Proof. We find the positive prime period-p solutions of the form (3.35). It follows

from (1.1) that

i
Vi = 3
A by by b1y
o= i
=
A+ b1y + b1y + by
and
T = o
P At by by b1
Then,
bj—1%p + bprjmrm1n + bp1yy =1 — A,
bioj17 + b1y +bpa=1-A
and

Op—t-1Yt + bp—j1%j + bpap = 1 = A

The above system is equivalent to the matrix equation

bp—1 bp+j—l—1 bj—l Y5 1-A
bi_j1 bpr b | || T (1A
bpfjfl bpflfl bpfl Vp 1-A

To solve this equation by using the Cramer’s rule, let A denote the coefficient
matrix and A; the matrix obtained by replacing the i*" column of A by (1 — A,

1— A1 — A)T. Assume that (i) holds. Then, we can rewrite the matrix A as

3 1
B,

(2)
ptj—1—1 bjfl

(2) (3) (1)
bl—j—l bpfl by

1) (2 3)
b B b
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From (7), we have

b

2 2 3 3
-1 bl(—)'—17 b;(g—)l—1} > b;fajl = maX{béjl}'

min{ J
Then, it follows from Corollary 3.9(i) that det.4 > 0. Thus, the unique solution

to this equation is given by

o det A, _det Ay n  det A
Eh det A’ "= det A T det A -

Notice that
2 52 @ 5@ (2 2 3
mln{bﬁ»_)l,b;_)l_l}, m1n{b§31,b§_)j_1}, mln{bl(_)j_l,b;_)l_l} > max{b]gjl}.

By Corollary 3.9(i7), we obtain that det A;, det As, det A3 > 0. Therefore, v;, v
and 1y, are all positive real numbers. Similarly, by using Lemma 3.8 and Corollary
3.9, we can show that (1.1) has a unique positive solution when (i), (ii7) or (iv)

holds. The proof is now complete. O]

Next, we present some definitions and results which will be useful to study the
non-existence of p-cycle, (71,72, 73, . .., Yp) of (1.1), where 7;’s are all positive real

numbers.

Definition 3.11 ([2]). For a given vector A := (ag,as,as,...,a,-1) in R, let

C(A) denote the circulant matrix of A,

(%) ai ag -+ QAp—1

Ap—1 (%) ap -+ Ap—2

C(A) = |ap_y an1 ag Qp—3
ay a2 ag - Qo

Theorem 3.12 ([16]). If {v;}o<j<n—1 i a weakly monotone sequence (that is,

a nondecreasing or nonincreasing sequence) of nonnegative or nonpositive real
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numbers, then the circulant matriz C(V') with the vector V = (vg, v1, Vg, ..., Up_1)
is singular if and only if for some integer d | n and d > 2, V' consists of n/d
consecutive constant blocks of length d. In particular, if the sequence {v;}o<j<n—1

1s strictly monotone of nonnegative or nonpositive, then V is non-singular.

Definition 3.13 ([3]). Let S = [s;;] denote the n-by-n shift operator where s;; = 1

if i —j =1 (mod n), s;; = 0 otherwise.

The following properties of S are given in [3], which are S" = [,,,S71 = ST
and M S* shifts the columns of matrix M over k steps to the left. Moreover, it
is easy to see that M (ST)¥ shifts the columns of M over k steps to the right.
Similarly, S¥M and (ST)*M are the matrices that shift the rows of matrix M

over k steps up and down, respectively.

Lemma 3.14. Let V = (vg,v1,v2,...,0,-1) be a vector over R" and C(V) a
circulant matriz of V. Let C(V); denote a matriz formed by replacing the i™

column of C(V') by (c,c,c,...,c)t € R™. Then, we have the following results:
(Z) C(V)l = STC<V)H_1S = SC’(V)1+1ST fO’F all 1 € {1,2,3, e, = 1}
(i) det C(V); =det C(V);p1  forall i€{1,2,3,...,n—1}.

Proof. (i) For any i € {1,2,3,...,n — 1}, we consider

Vo v ot Vi1 € Vjgr 0 Up—a
Up—1 Vo - Vi—2 C Uy -+ Up_2
Up—2 Up—1 - Vi3 C Vj—1 - Up-3
T T
STC(V)i1S =8 S.
U V3 ot Uipr C Ujpg vt 0
0 ChEE Vi € Vjyg - Vo
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By using the properties of S, STC(V);;; is the matrix that shifts each rows of

C'(V);41 one step up, then we get

Up—1 Yo -+ Vi—2 C Ui -+ Up_2

Up—2 Up—-1 - Vi3 C Vj—1 -+ Up-3

Un—3 Up—2 - Vi—4 C V2 -+ Up—4

T
STC(V)i1S = S

0 vy e Vi € Ujyp2 - Vo
Vo U1 v Vi € Vig1 vt Up—d
Vo vy ot Vg C Ut Up

Up—1 Yo -+ Vi3 C Vi1 -+ Up-2

Up—2 Up—-1 - Vi—g C Vji—g -+ Up-3
Vo U3 s Vi C Vjyo - U1
U1 Vo v Vi1 C Ui e Vo

= O(V)z

Similarly, we can show that SC(V);;1ST = C(V);.

(i7) We consider

000 - 0 01
100 0 00
06010 -+ 000
det S = det = (=) det I, ; = (=1)"".
: : : . : . 0
000 - 1 00
000 - 010




Note that det S = det ST. Then, it follows from (i) that fori € {1,2,3,...,n—1},
det C(V); = det (STC(V)i115)

= (det ST) (det C(V)i11) (det S)

= (=)™ det C(V)jua (1)

=det C(V);41.
Thus, we obtain that det C'(V); = det C(V);4; for all ¢ € {1,2,3,...,n—1}. O

The following theorem gives the sufficient condition that (1.1) has no p-cycle,

(71,792,735 - - -5 Vp), Where ;’s are all positive real numbers.

Theorem 3.15. Let p be a prime number such that p | (k+ 1). Let {b;}o<i<p—1
be a weakly monotone sequence of nonnegative real numbers such that b; # b; for
some 1,7 € {0,1,2,...,p — 1} with i # j. Then, (1.1) has no prime period-p
solution of the form

Y Y2 V3 Ve e

where ;s are all positive real numbers.

Proof. Suppose there exists a prime period-p solution of the form

s VY2, V3 s Vpy ey

where ~;’s are all positive real numbers. Since p | (k + 1), it follows from (1.1)

that
vy = it
1= Y
A+ boyp + bivp—1 +bayp—o + - F bpov2 + by
Yo = V2
2 - )
A+ by +b1vp + baypo1 + -+ b2y + by
vy = V3
A+ Dov2 + b1y + Doy - F Dpoya + byo1ys
fypil 712—1

A+ b2 0 bapa Doy 0y 1Y
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and

_ Tp
A4 boyp—1+b1vp—2 + bz + - Fbpon +0p1yp

Tp
Since Y1 7V2, Y35 - Up 7£ Oa we get

boYp + b1Yp—1 + b2Yp—2 + - F bp2y2 F b1y =1 — A,
boyi +b1vp +Fbovp—1 + - F bpovs +bp172 =1 — A,

bova +b1v1 + b2+ + by 2V + b3 =1— A,

boYp—2 + b1Yp—3 + baYp—a + -+ bp_2Vp + bp_1Yp—1 = 1 — A,

boYp—1 + b1Yp—2 + b2Yps + -+ bpov1 + b1y =1 — A,

which is equivalent to the matrix equation

bp—l bp_g bp_g e b1 bo 1 1—-A
bo bp-1 bpo - by b V2 1-A
bl b() bp_1 e b3 bQ Y3 _ 1-A

bp73 bpf4 bpf5 e bpfl bpr Yp-1 1-A

_bp_Q bp_g bp_4 e bo bp—l Vp 1—-A

Let C(B) denote a circulant matrix of the vector B = (by_1,b,-2,b,-3,...,bp).
Since b; # b; for some 4,5 € {0,1,2,...,p — 1} with ¢ # j and p is a prime
number, B contains no p/d consecutive constant blocks of length d with d | p and
d > 2. It follows from Theorem 3.12 that determinant of C'(B) is non-zero. In
fact, det C(B) > 0 according to Theorem 1 of Beckenbach and Bellman [2]. By

using the Cramer’s rule, the unique solution to this system is given by

7T et O(B)”
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where C(B); is a matrix obtained by replacing the i*" column of C(B) by the
vector (1 — A, 1 — A1 —A,...,1 — AT, By Lemma 3.14(ii), we obtain that
det C(B);’s are all equal. It implies that v3 = 72 = 73 = --- = 7,, which is a

contradiction. O

Remark 1. The case when {b;}o<;<,—1 is a weakly monotone sequence of non-
negative real numbers such that b; # b; for some ,j € {0,1,2,...,p — 1} with
i # 7, it follows from Theorem 3.15 that a p-cycle of (1.1) must contain at least

one zero.

Theorem 3.16. Let 0 < A< 1landby =b; =by =---=b,_1 = C > 0. Then,

(1.1) has infinitely many prime period-p solutions of the form

s Y1 Y2, V3 s Vpy ey (336)
where v;’s are all positive real numbers.

Proof. We find the prime period-p solutions of the form (3.36). It follows from
(1.1) that

1-A
71+72+73+"'+7p:_c : (3.37)

Therefore, the prime period-p solutions of the form (3.36) are given by (3.37) with

1-A1—-A1-A 1—A
pC 7 pC T pC 7 pC )

(717727737"'7717) ;é (

3.4 Convergence to Period-(k + 1) Solutions

In this section, we give an extension to an open problem 8 in [1]. The conver-
gence of solutions to a (not necessarily prime) period-(k + 1) solution is shown.

First, we introduce the following lemmas which will be useful in the proof of

Theorem 3.19.
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Lemma 3.17. Every solution of (1.1) is bounded if By # 0.

Proof. Let {z,}22 _, be a solution of (1.1). It follows from (1.1) that

n— 1
Tpy1 = nk < =
A + BQQZn + Bl$n—1 + Bgl‘n,Q + -+ kan,k Bk
Because By, # 0, the sequence {z,}2° . is bounded by 1/B. O

Lemma 3.18. Assume that B; = C >0 for all 0 <i <k and let {x,}3>_, be a

solution of (1.1). Set
Jn=1—A-Clxy,+xp 1+ Tpo+ -+ Ty i)

Then, the following statements are true:

A+ C(xn + Tp-1 +Tpo+ -+ xn—k—l—l)

) T =
(D) T A+ C(@p+Tp g+ T o+ +Top)

g, forall n>0.

o Tn—k
A+ C(rn T F Tyt T

Proof. (i) We consider

(1) Tpi1 — Tp_y Jp  forall n>0.

Jpp1=1-A—~Cxppy —Crxp— - = Crpppn

Tn—k
—1-A-C Cay = — Cpprn
(A+an+0xn1+---+oa:nk) ’ okl

Multiplying the denominator and numerator of the right side of the above equation
by A+ Cx, + Cxp_1 + -+ Cx,_j, we obtain
Jnp1 = (A4 Cap+ Crpy + -+ + Capyy
— A2 - CAz, — CAxpq — - — CAxp_j — CTppie
— CAz, — C?zpx, — C?xp 1y — - — C%p_ip

2 2 2
- CAxnfl -C Tnlp—1 — C Tp—1Tp—1 — ' — C Tn—kTn—1

2 2 2
— CAzp 1 — C?xpTpps1 — CPp1Zngyr — - — C°TyjTpks1) /

(A+Cxp+ Cxpoy + -+ Cppy).
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This gives

1
A+Crp+Cxpq+ -+ Cxyy)

JnJrl = ( [(A + C:Cn + anfl +---+ ankarl) X

(1-A—-Cx,—Cxpq—- —Cxyy)]

_ A+ O(:Ij'n + Tp—1+ Tp—o+ -+ SUnka)J
A+ C@p+Tp 1+ Tp ot +Tng)

(1) We now consider

Tn—k
T ek A O+ Ty + Tna + ot i)
Ty (1 —A-Crp+opq+xy o0+ + xn,k))
B A+C(xp+opq+xp o+ + oz, y)
_ Ln—k
AL C(Tn F Ty F T T )

— Tn—k

The proof is complete. O

The following theorem states the sufficient conditions that every positive so-

lution of (1.1) converges to a (not necessarily prime) period-(k + 1) solution.

Theorem 3.19. Assume that B; = C > 0 for all 0 < i < k. Then, every solution

of (1.1) converges to a (not necessarily prime) period-(k + 1) solution.

Proof. Let {x,}2 _, be a solution of (1.1). For each n > 0, set

n=—=k
Jo=1—-A-Clxp,+xp 1+ Tp o+ + Ty i)

We have that one and only one of the following three statements is true: Jy =0
or Jy<0or Jy>0.

If Jo = 0, then by using Lemma 3.18, it is easy to see that J, = 0 for all
n > 0. Then, 41 — 2, = 0 for all n > 0. In this case, the solution {x,}>> .
is periodic with period (k + 1).

If Jy < 0, then by using Lemma 3.18, J,, < 0 and thus, z,,1 — 2, < 0 for all

n > 0. In this case, the subsequences {Z(x41)n+;}oeq for 0 < j < k of the solution
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{z,}2 _, are all decreasing and bounded, so they are convergent. By Lemma 2.9,
the solution converges to a period-(k + 1) solution of (1.1).

If Jy > 0, then by using Lemma 3.18, J,, > 0 and thus, z,,1 — 2, > 0 for all
n > 0. In this case, the subsequences {Z(x41)n+;}oeg for 0 < j < k of the solution
{z,}2 _, are all increasing and bounded, so they are convergent. By Lemma 2.9,

the solution converges to a period-(k + 1) solution of (1.1). O

Remark 2. The result of Theorem 3.19 means that (1.1), in the case By = B; =

By =--- = By > 0, admits at least one period-(k + 1) solution.



CHAPTER IV

LOCAL STABILITY OF PERIODIC SOLUTIONS

In this chapter, we study the asymptotic stability of some periodic solutions of
(1.1). We seperate our work into two sections. In Section 4.1 , the local stability
character of a two-cycle is presented and the local stability of a three-cycle of (1.1)

is shown in Section 4.2.

4.1 Local Asymptotically Stability of a Two-Cycle

Here, we investigate the local stability character of a two-cycle of (1.1) when
k is an odd integer and (3.4) holds. Assume that b; > 0. Let ¢» = (1 — A)/b;. By

Theorem 3.2, (1.1) has a prime period-two solution of the form

"'7O7w707w70?w7""

Let {z,}>° _, be a solution of (1.1). To study the local stability character of

the two-cycle (0, ), we rewrite (1.1) in the vector form (2.2). For any n > 0, set

20

1 2 k—1 k
= Tn—k, xq(—b) = Tn—k+1, .CE%) = Tp—k+2, -+ 'T7(1 ) = Tn-1, x»sl) = Tn.

Then, for any n > 0, we have

o _ _.Qa
Toly = Tnopyr = T4,

O _ _ .2
Tpi1 = Tn—k42 = 'T7(1 )7

2 _ _ .3
Tpi1 = Tn—k43 = $7(1 )7

(k—1)

xn—l—l



and

(0)

(®) n
x| = — — .
i A+ Box%k) + le%k 2 + Bgsm(f 2) R Bk:c%o)
Let T be the function on [0, 00)*** defined for ug, uy, us, . .., ux € [0,00), by
Uo Uy
Uy U2
(%) us
T —
Up—1 Uk
Uo
Uk
L - _A+Bon+B1’LLk_1 + - +BkU0_
Set U = (ug, up, Us, . .., ux)’. Then, we see that
Ug fo(U)
Uy f1(U)
72 U2 _ fQ(U)
Up—1 Jre—1(U)
Uk fk(U)
where
filU)=uis  (0<i<k—2),
Ug
1(U) =
fer(U) A+ Bouy, + Big_1 + - - + Byug
and
u
fi(U) :

AT Bofr—1+ Biug + Boug_1 + -+ + Brug
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Set U = (0,1,0,%,0,%,...,0,9)T € [0,00)*!. We have

o]\ [awm] [o
v A ||

£ (D)
e =] @ | =|¢
0 fr—1 (¥) 0
)] Law ] v

Therefore, ¥ is an equilibrium point of T2 and the Jacobian matrix of T? at this

equilibrium point is

o 0 Of
Oug Ouy  Ous Ouy,
o Of Oh  Of
Oug Ou;  Ous Ouy,
Jp2(0) = | 02 0f2 Of2 O
Jug Ou;  Ous ouy,
Ofc O0fc Of  Ofk
| Oug  Ou;  Ous Ouy, |
0 0 1 0 0 0 0
0 0 0 1 0 0 0
o o0 o0 o0 1 0 0
0 0 0 0 0 0 1
C 0 0 0 0 0 0
| Do D1 Dy D3 Dy Dy Dy |
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where

1 —Boy
C: —7 _D p— ,
Atbyp 70T A+ by

D, =1— B
and
Dj==DByjn¢ (2<j<k).

To evaluate the eigenvalues of the matrix Jy=(V), we consider

_—)\ 0 1 o o0 .- 0 0 ]

0 —Xx 0 1 0 -- 0 0

0 0O —Xx 0 1 0 0
det(Jp2(V) — A}y 1) = det

0 0 o o o -- 0 1

c 0 0O 0 0 - =X 0

(Do Dy Dy Dy Dy -+ Dyy Dy—A

For finding the above determinant, we use minors and cofactors by expanding
along the last row first and continuing this process. To get an idea of what

det(Jp2(V) — Alx41) should be, we find the case when k = 3 first:

C -\ 0 C 0 -
Dy Dy Dy Ds—A
A1 A1
= -D, — A(Ds — A)
C -\ C -\

Thus,

det(Jr2 (V) — M) = (=D; — D3A + A?)(\? = C)

= A — D3\* — (C + D)N\? + CD3sA + CD;.
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Moreover, if we check the case when k& = 5, we find

det(Jp2 () — Ag) = (—D; — DA — DsA + M)\ = C)

= A — DsA’ — D3\ — (O + Dy)A* + CDsA? + COD3\ + CD;.
Generally, it follows by induction that

det(Jp2 (V) — Mjy1) = AT — DAY — Dy oy A1 — Dy _g) A" 72 — Dy gz A" 2
— oo = DAEFDZ (O D)AEFDZ L oD N1/
+ ODk,z(l))\[’“‘z(l)‘”/? + CDk72(2))\[k:—2(2)—1}/2

+ C’Dk,g(g))\[k_%?’)_”/g +.--4+CDy.
Thus, all eigenvalues of Jr2 at the equilibrium point ¥ are all A’s that satisfy
det(JTQ(‘I’) — )\[],H_l) =0. (42)

Theorem 4.1. Let k be an odd integer, by > 0 and ¢ = (1 — A)/by. Assume that

(5.4) holds. If
bony® + (An+n)y +2 < 0, (4.3)
where n = by — 2By, with n < 0, then the prime period-two solution

0, 0,15,0,9,0,9, . .. (4.4)

of (1.1) is locally asymptotically stable.

Proof. Assume that (4.3) holds. Then, we have

bon? + A +mp +2 < 0

or

(A+bo)n +mp +2 <0.
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It follows from (3.4) that A + bgy) > 0. Then,

ny 2

< 0.
T AT b T AT bov

ny

Then, we see that

(Bi+Bs+Bs+---+ By_a— Bi) ¢

Bi+By+Bs+ -+ Byy— By) v +
(B 3 5 k-2 k)Y AT bt

2

_|_
A+ by

< 0,

from which it follows that

1 By
B3y Bsy Bi_o 1 — By
+<A+bow> - <A+bow) T (A‘i‘bo@b) " (A+bo¢) <t
Since 0 <1—-A<1, Bp(l—A) < B <by,s0

Bk¢_Bk<1;A) <L

1

Thus, we obtain that

By
Byb| + | Bst)| + | Bstp| + - - - + | By_ot| + +1— By| +
B3y By By 21 1 — By
+ 4.+ <1,
‘A+%w ‘A+%¢ ‘A+%w A byt

that means

|Di| 4+ |Di—2| + |Di—a| + -+ -+ |Ds| + |C + D1| + |CDy| + |CDy_s|

+|CDgs| +--- +|CDy| < 1.

By Theorem 2.7, we conclude that all eigenvalues of (4.2) lie inside the unit
disk. Therefore, by Theorem 2.6, the prime period-two solution (4.4) is locally

asymptotically stable. O
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4.2 Local Asymptotically Stability of a Three-Cycle

In this section, we investigate the local stability character of a three-cycle of
(1.1) when k is a positive integer such that 3 | (k+ 1) and (3.12) holds. Assume
that by > 0. Let v = (1 — A)/by. By Theorem 3.3, (1.1) has a prime period-three

solution of the form

ey 0,0,79,0,0,7, ..
Let T be the function on [0, 00)**! defined for U = (ug, u1, us, . .., ux)T € [0, 00)**!
by (4.1). Then, we have
Up fo(U)
Uy fl(U)
73 Uz _ fz(U)
Uk—1 fkfl(U)
ug | | fe(U) ]
where
filU) =uipz (0<i<k—3),
Ug
L(U) = ,
fia(U) A+ Bouy + Biug—1 + Byug_s + - - - + Byug
U1
(U) =
fir(U) A+ By fr—2 + Biug + Boug_1 + - - + Bruy
and
u
fi(U) :

- A+ Bofi_1+ Bifu—o + Bouy, + Bsug_1 + -+ + Bruy



48

Set I' = (0,0,7,0,0,7,...,0,0,7)T € [0, 00)**1. We have

o\ [am] [o]
0 f1 (D) 0
v fo(T) v
il =1  |=
0 fea (T) 0
0 feo1 (T) 0
7] RAONENES

Thus, I' is an equilibrium point of 7% and the Jacobian matrix of 7% at this

equilibrium is

o s s Of
Jug Ou;  Ous Ouy,
o Of Oh  Of
Jug Ouy  Ous Ouy,

Ja(T) = | 02 02 Of O
Jug Ouy  Ous Ouy,
Of O0fx Of  Ofk
| Oug  Ou;  Ous Ouy, |
0O 0 0 1 0 O 0 0
O o O o0 1 0 0 0
O 0 0 0 o0 1 0 0
O o0 O o0 0 0 0 1
c 0 0 0 0 o0 0 0
O D 0 0 0 0 0 0
_Eo E, By Es Ey FEs E,1 Ej |
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where

= , = , FEy=-BCvy, E,=-ByDvy, E;y=1-—1B
A—i—bw A-I—bw 0 107 1 o7y 2 kY

and
Ej=—Br oy (3<j<k).

To evaluate the eigenvalues of the matrix Jzs(I'), we consider det(Jrs(I') — Alg41).
For finding this determinant, we use minors and cofactors by expanding along the

last row first and continuing the process. Then, it follows that

(k—5)/3
det(Jrs(T) — Mjyqq) = (—=1)FFL| AR+ — Z Ep_gi N\

— (C + D + Ey) APFH2/3
(k—5)/3
+ (C + D) Ej,_gi \PF=3-1/3
+(CD + CEy + DE)NFH/3
(k—5)/3

> CDE;_\**25 — CDE,|.

1=0

=
~

Il
o

Thus, all eigenvalues of Jrs at the equilibrium point I' are all \’s that satisfy

Theorem 4.2. Let k be a positive integer such that 3 | (k+ 1), by > 0 and

v=(1—A)/by. Let 6 = A+ byy and w = A+ byy. Assume that (3.12) holds. If
(w+d+w+Dny+2(0+w+1) <0, (4.6)

where n = by — 2By, with n < 0, then the prime period-three solution
,0,0,7,0,0,7,... (4.7)

of (1.1) is locally asymptotically stable.
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Proof. Suppose that inequality (4.6) is true. Then, we obtain that

(w+d+w+ny+2(0+w+1)

5 < 0.

Then,

nmwoony oy 202 2
ey T T 2 <0
e 10) +w+5w+5+w+5w

from which it follows that

<B2+B5+Bg+“‘+Bk73—Bk)’}/
o

+(BQ+B5+38+"'+Bk—3—Bk)’Y+(BQ+B5+Bs+"'+Bk—3—Bk)7
w ow

2202 o
§ w  dw ’

(By+ Bs + Bg + -+ + B3 — By)y +

(4.8)

Since By < byy, By <1 — A < 1. It follows by (4.8) that

1 1
Burl + 1Bl 4 |Bua| 1B + 5+ £ 41 B

)
B B B B B B Bi_ Bi_
I 27Jr 2’Y+ 5”YJr 5’Y+ 8'7+ 87 NI lcz’Y+ k—37
) ) ) w ) w
1 1-B 1-B B B B Bi_
T k7+ w+ 27+ 57+ 87+H.+ k=37 <1
ow ) w ow ow ow dw

Thus, we obtain that

|Ey| + [ Er—s| + | Ex—g| + - - - + | E5| + |C + D + Ey| + |CEy + DEy|
+|CEy_3+ DEy 3|+ |CEy_¢+ DEy_g|+ ---+ |CE5 + DE3|

+|CD + CEy+ DEs| 4+ |CDEy| + |CDEy_3| + |CDEy_¢| + - -- + |CDEs| < 1.

By Theorem 2.7, we conclude that all eigenvalues of (4.5) lie inside the unit
disk. Therefore, by Theorem 2.6, the prime period-three solution (4.7) is locally

asymptotically stable. O



CHAPTER V

NUMERICAL EXAMPLES

The previous chapters discussed periodicity and local stability of periodic so-
lutions of (1.1). In this chapter, we give some numerical examples to illustrate
the results that we obtained. We also use MATLAB R2017a to draw graphs that

represent the behavior of solutions to such equations.

Example 5.1. Consider the difference equation

Tn—9
0.4 + Tp-1+ Tp-3+ Tp-s5+ Tp6+ Tn-7+ 0-2:1371—9

Tn+l = ’ n:Oa1)27"'7

(5.1)
with the initial conditions z_ g = x s =2 7 =2_6=0, x_5 =3, x4 = r_3 =
r_o=x_1 =0 and zg = 3. In this example, £k = 9,04 = 0.2 and A = 0.4. That
means the condition (3.26) of Theorem 3.6 is satisfied. Then, (5.1) has a prime

period-5 solution of the form ...,0,0,0,0,3,0,0,0,0,3,... as shown in Figure 5.1.

3.5

3+ . . . . . . . .o —
25+ 1
— 2 [ B
=
x
15 *
1+ .
0.5 _
0 | | | | | | | |
0 5 10 15 20 25 30 35 40

Figure 5.1: The solution of (5.1)
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Example 5.2. Consider the difference equation

Tp—9
Ty = o n=0,12.... (52
T+ Tt + Tnes + 0.2520_6 + Tno7 + 1.5T0_g (5:2)

with the initial conditions x_g =2x_3 =0, z_7=0.5, v_¢ =0, z_5 =0.25, x_4 =
r_3=0, x_9=0.5, x_1 =0 and z¢ = 0.25. In this example, k =9, A =0,b5_; =
by = 1.5,b3_1 = by =1 and bs_3_1 = by = 1.25. That means if we set 7 = 3 and
p = 5, then the condition (i) of Theorem 3.7 is satisfied. Thus, (5.2) has a prime
period-5 solution of the form ...,;0,0,0.5,0,0.25,0,0,0.5,0,0.25,... as shown in
Figure 5.2.

0.6

05+ . . . . . . ° ° _

0.4 -
Gres i
< 0.3

0.2 -

01 *

0 ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40

Figure 5.2: The solution of (5.2)

Example 5.3. Consider the difference equation

o Tp—3
0.5+ 0.1z, + 0.1z, 1 +0.12,_9 + 0.1z,_3’

n=20,1,2,..., (5.3)

xn+1

with the initial conditions z_3=0.1, z_9s =1, z_; = 0.3 and 2o = 0.6. Clearly,
By = By = By = B3 =0.1. By Theorem 3.19, the solution of (5.3) converges to a

period-4 solution as shown in Figure 5.3.

Example 5.4. Consider the difference equation

Tp—3
Ty + 0121 + 22,9 + 0.42,,_5"

Tyt = n=0,1,2,..., (5.4)



25

15

x(n)

0.5

23

Figure 5.3: The solution of (5.3)

with the initial conditions x_3 = 0.1, x_s = 1.5, x_1 = 0.2 and x¢y = 1.7. In this

example, A = 0,b; = 3 and b; = 0.5. It is easy to see that the condition (4.3) of

Theorem 4.1 is satisfied. Then, the prime period-two solution ..., 0,2,0,2,0,2,...

of (5.4) is locally asymptotically stable as shown in Figure 5.4.

25

15

x(n)

0.5

Figure 5.4: The solution of (5.4)

Example 5.5. Consider the difference equation

Tnt1 =

Ln—3
—0.1.2.... 5.5
02+ 2, + 012, 1 + 20, 9+ 032, 5 | oo (5:5)

with the initial conditions x_3 =2, z_9 =3, v_1 = 0.5 and g = 1. In this

example, A =0.2,by = 3 and b; = 0.4. It is easy to see that the condition (4.3) of



o4

Theorem 4.1 is satisfied. Then, the prime period-two solution ..., 0,2,0,2,0,2,...

of (5.5) is locally asymptotically stable as shown in Figure 5.5.

3

25+ e
2 e ° . ° . ° ° [ ° . . -
L]
15+ * . e
L] L]
1+ . ° -
L]
05 . e
L]
L]
0 | ® | o Py . ° PO Py | Py |
0 5 10 15 20 25 30 35 40

Figure 5.5: The solution of (5.5)

Example 5.6. Consider the difference equation

Lp—5
Ty + Tpe1 + 42,4 + 0.22,_5

. n=0,1,2,..., (5.6)

Tnt+1 =

with the initial conditions z_5 =2, x4 =4, v_3 =25, v_9 =3, r_; =6 and
xo = 4. In this example, A = 0,bg = 1,b; = 2, and by = 0.2. It is easy to verify
that the condition (4.6) of Theorem 4.2 is satisfied. Then, the prime period-three
solution ...,0,0,5,0,0,5,... of (5.6) is locally asymptotically stable as shown in

Figure 5.6.

Example 5.7. Consider the difference equation

Tn—5
024 1.2x, + 22,1+ 0.2x,_4 + 0.22,_5

Tpy1 = n=0,1,2,..., (5.7)

with the initial conditions z_5 =2, x4y =4, v .3 =6, x o =3, v_; = 2 and
o = 4. In this example, A = 0.2,by = 1.2,b; = 2.2, and by = 0.2. It is easy
to verify that the condition (4.6) of Theorem 4.2 is satisfied. Then, the prime
period-three solution ...,0,0,4,0,0,4,... of (5.7) is locally asymptotically stable

as shown in Figure 5.7.
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Figure 5.7: The solution of (5.7)

o ° .
| e 1% he ee fu eal -d s | .
0 10 15 20 25 30 35 40 45 50
n
Figure 5.6: The solution of (5.6)
L . . . . . . . —
L]
| - L] -
Le . J
hd L]
i L]
| e o4 o, ool : : |
10 20 30 40 50 60



1]

2]

[12]

[13]

[14]

[15]

REFERENCES

Amleh, A.M., Ladas, G.: Convergence to periodic solutions, J. Diff. Equa.
Appl. 7, 621-631 (2001).

Beckenbach, E.F., Bellman, R.: On the positive of circulant and skew-
circulant determinants. In E.F. Beckenbach, General Inequalities 1 / All-
gemeine Ungleichungen 1: Proceedings of the First International Conference
on General Inequalities held in the Mathematical Research Institute at Ober-
wolfach, Black Forest, 39-48, 1976.

Benjamin, A.T., Yasuda, K.: Magic “square” indeed!, Amer. Math. Monthly
106(2), 152156 (1999).

Camouzis, E.: Global analysis of solutions of x,,1 = %, J. Math.
Anal. Appl. 316, 616-627 (2006).

Camouzis, E., Ladas, G.: On third-order rational difference equations part
5, J. Difference Equ. Appl. 11(6), 553-562 (2005).

Camouzis, E., Ladas, G.: Dynamics of third order rational difference equa-
tions: with open problems and conjectures, Chapman & Hall/CRC Press,
New York, 2008.

Camouzis, E., Ladas, G., Quinn, E.P.. On the dynamics of x,_;

anjﬁ;ﬁf‘“ﬂ, J. Difference Equ. Appl. 10(11), 963-976 (2004).

Clark, C.W.: A delayed-recruitment model of population dynamics with an
application to baleen whale populations, J. Math. Biol. 3, 381-391 (1976).

DeVault, R., Kosmala, W., Ladas, G., Schultz, S'W.: Global behavior of
PrUn—k_ - Nonlinear Anal. 47(7), 4743-4751 (2001).

Ynt1 = Gty «

Edelstein-Keshet, L.: Mathematical models in biology, Society for Industrial
and Applied Mathematics, Philadelphia, 2005.

Elabbasy, E.M., El-Metwally, H., Elsayed, E.M.: On the difference equation
2
Tppg = Lptbin itk Gurajevo J. Math. 4(17), 239-248 (2008).

cx2+den 1Tn_k’

Elsayed, E.M.: Qualitative behavior of a rational recursive sequence, Indag.
Math. (N.S.) 19, 189-201 (2008).

Grove, E.A., Ladas, G.: Periodicities in nonlinear difference equations, Chap-
man & Hall/CRC Press, New York, 2005.

Hu, L.X., Li, W.T., Xu, H.W.: Global asymptotical stability of a second order
rational difference equation, Comput. Math. Appl. 54, 1260-1266 (2007).

Kocic, V.L., Ladas, G.: Global behavior of nonlinear difference equations of
higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.



[16]

[17]

[18]

[19]

[20]

[21]

57

Kra, I., Simanca, S.R.: On circulant matrices, Notices Amer. Math. Soc.
59(3), 368-377 (2012).

Kulenovié¢, M.R.S., Ladas, G.: Dynamics of second order rational difference

equations : with open problems and conjectures, Chapman & Hall/CRC Press,
New York, 2001.

Kulenovi¢, M.R.S., Ladas, G., Prokup, N.R.: A rational difference equation,
Comput. Math. Appl. 41, 671-678 (2001).

Zayed, E.ML.E., El-Moneam, M.A.: On the rational recursive sequence x,, 1 =

A+2§=+ Math. Bohem. 133, 225239 (2008).
i=0 i Ln—1

Zayed, E.ML.E., El-Moneam, M.A.: On the rational recursive sequence x,, 1 =
aTn+bxy, _

VOnk + orrge—» Bull. Iranian Math. Soc. 36(1), 103-115 (2010).

Zayed, E.ML.E., El-Moneam, M.A.: On the rational recursive sequence x,, 1 =

QAOLn+Q1 Ty |+ 2Ty —
o e i Math. Bohem. 135(3), 319-336 (2010).




Name
Date of Birth

Place of Birth

Education

Scholarship

Publication

Conference

o8

VITA

Miss Butsayapat Chaihao
10 December 1992
Nakhon Si Thammarat, Thailand

B.Sc. (Mathematics)(First Class Honours),

Prince of Songkla University, 2013

Human Resource Development in Science Project

(Science Achievement Scholarship of Thailand, SAST)

Chaihao, B., Khomrutai, S.: Periodic solutions and local
stability of rational difference equations, Proceedings of
the 22nd Annual Meeting in Mathematics, ANA-01-1—

ANA-01-12, 2017.

Speaker
Periodic Solutions and Local Stability of Rational Difference
Equations at The 22nd Annual Meeting in Mathematics,

2-4 June 2017 at Lotus Pang Suan Kaew hotel, Chaing Mai



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	CHAPTER II PRELIMINARIES
	2.1 Stability and Linearized Stability Analysis
	2.2 Periodicity

	CHAPTER III PERIODICITY OF SOLUTIONS
	CHAPTER IV LOCAL STABILITY OF PERIODIC SOLUTIONS
	CHAPTER V NUMERICAL EXAMPLES
	REFERENCES
	VITA



