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CHAPTER 1
INTRODUCTION

Theory of everything is a unified description of all four fundamental forces in
nature: weak, strong, electromagnetic, and gravitational forces [1, 2, 3]. Finding
this final theory is one of the major unsolved problems in physics. Unfortunately,
the main obstruction on the way to this unified theory is an incompatibility
between Einstein’s general relativity, the classical theory describing curved
spacetime as gravity in large scale and high-mass conditions, and quantum field
theory, expressing all the rest three non-gravitational forces in small scale and
low-mass limitations. In general, this contradictory between the two pillars of
physics is avoidable. However, if one wants to approach the theory of everything
all extremely high-mass in small scale situations such as in a black hole or the
Big Bang, the beginning stage of the universe are needed to be explained through
quantum gravity, the name of the developing consistent theory between general
relativity and quantum field theory.

Development of quantum gravity leads to the more fundamental theory in
higher dimension for example; ten-dimensional string theory and eleven-
dimensional M-theory, the two best candidates for the theory of everything. To
describe our four-dimensional world via these fundamental theories, a way of
extracting lower dimensional theory from the higher one is required.

Dimensional reduction is a procedure to extract a gravitational theory in
lower spacetime dimensions from a higher dimensional one with some
compactification imposed on some of the spacetime coordinates. It originated
in 1926 known as Kaluza-Klein reduction theory [4, 5, 6, 7] where the usual
Einstein’s general relativity was considered in five spacetime dimensions. The
fiftth extra dimension is compactified to a very small, in the order of Planck
length, circle or one-dimensional sphere (S'), as shown in Figure 1.1, such that
the compact space is unobservable at the present energy scale. This unobservable
compact space leads to the truncation to the massless sector process giving rises
to the Kaluza-Klein reduction ansatz, an expression of the higher dimensional
field in terms of the lower dimensional ones, that turns the five-dimensional
pure gravity theory into the Einstein-scalar-Maxwell system in four spacetime
dimensions. The result is well known to be the first unification theory between
gravity and electromagnetism, satisfying U(1) gauge symmetry that corresponds
to the symmetry on S*. Moreover, Kaluza-Klein reduction proposes the possible
way to unify gravity and other forces with a more complicated symmetry by
means of consideration a gravitational theory in higher dimensions with a more
complicated compact space. Unfortunately, there are some issues that are in
conflict with experiments, such as the requirement of an unobserved extra
dimension, the presence of the massless scalar field, called the dilaton, in the

resulting theory, fading this reduction out of the main research current for a long



time [8].

Figure 1.1: Illustration of the compact space S! where the rest four-dimensional spacetime are

simplified to the two dimensional grid.!

Until 1997, the AdS/CFT correspondence, a duality relating string theory
or its effective theory, supergravity, on anti-de Sitter (AdS) background to
conformal field theories (CFT) on the AdS boundary [9-11] as shown in Figure
1.2 for the AdS;/CFT, correspondence, was first developed. This new duality
was becoming a fascinating research topic for many theoretical physicists. Gauged
supergravities, the supergravities with gauged R-symmetry group or any subgroup
thereof, admit AdS vacuum solutions that have played the important role in the
AdS/CFT correspondence. As mentioned before, a conformal field theory in D
spacetime dimensions corresponds to a (D+1)-dimensional gauged supergravity,
therefore, the derivation of gauged supergravity in some specific dimensions
becomes valuable for this study. In many cases, lower dimensional gauged
supergravities can be derived from higher dimensional ungauged supergravities
such as the eleven-dimensional supergravity [12], the type IIA and IIB
supergravities by using the faded dimensional reduction.

Figure 1.2: Tllustration of AdS;/CFT4 correspondence.?

There are two general ways to obtain gauged supergravities by dimensional
reduction [13], as shown in Figure 1.3. The first way is represented by the vertical
arrow. From the reduction on an n-dimensional torus (7"), a product space of

limagining-other-dimensions-merl.jpg [Online]. Available from : http://www.pbs.org/wgbh/nova/

assets/img/full-size/imagining-other-dimensions-merl.jpg[2016,February]
2ads-cft.png [Online].  Available from : http://quantum-bits.org/wp-content/uploads/2015/09/
ads-cft.png[2016,March]



n-S! where an example 7° compact space is illustrated in the left panel of Figure
1.4, a lower-dimensional ungauged supergravity, which refuses an AdS vacuum,
is obtained. Then, gauged supergravity in lower dimensions is achieved later
by a gauging process (the horizontal arrow), selecting a subgroup, Gy of the
global symmetry, G' of the ungauged supergravity and promoting it to a local
gauge symmetry.

Figure 1.3: lower-dimensional gauged supergravity from the higher ungauged ones [13].

For the diagonal arrow, a lower-dimensional gauged supergravity can
directly be obtained by the consistent dimensional reduction on more complicated
structured compact space like an n-dimensional sphere (S™), for example the
dimensional reduction on S? is shown in the right panel of Figure 1.4, from the
higher dimensional ungauged supergravities as demonstrated in the study of AdS
black holes in [14]. Notable cases are the maximal gauged supergravities in 7
and 4 dimensions from consistent Kaluza-Klein reductions on S* [15, 16] and
S7 [17] of the eleven-dimensional supergravity and the five-dimensional maximal
gauged supergravities from the reduction on S® of type IIB supergravity [18]. The
reductions to maximal gauged supergravities are very complicated; the full
consistent reduction of S” has been recently proven in [19]. On the other hand,
many examples giving the half-maximal gauged supergravities in D = 7, 6, 5, and
4 have been worked out completely [20, 21, 22, 23].

Figure 1.4: Illustration of the compact space T? and S? [3].

However, the consistencies of the Kaluza-Klein sphere reductions,

mentioned above, are suspicious. They depend seriously on conspiracies between



contributions from the metric and the other fields in the higher-dimensional theory
and have no general understanding of their reasons unless for achieving the
consistency.

In general, Kaluza-Klein reduction on S™ with an arbitrary n > 1 leads
to inconsistencies. Fortunately, there exists an alternative way to perform a
spherical reduction. This is known as the Scherk-Schwarz reduction [24] that
is guaranteed to be consistent. It is a Kaluza-Klein reduction on a group manifold
of a Lie group, a continuous group equipped with a Lie algebra, for example,
the group manifold of SU(2) is S3, demonstrated in Appendix A. From the
consistency viewpoint, Lie algebras are classified into 2 types; the Lie algebras
with traceless structure constants are referred to as type A where the reduction
ansatz is consistent at the level of the higher-dimensional action, while for the
type B algebra, with non-vanishing trace of structure constants in Lie algebras,
the reduction is consistent only at the level of the field equations. There are some
previous works on this guaranteed consistent reduction. The SU(2) reduction of
six-dimensional (1,0) supergravity giving rise to a gauged supergravity in three
dimensions was studied in [25], and in a more general case, the group reduction
on an n-dimensional group manifold of the ten-dimensional heterotic supergravity
is given in [26].

The main purpose of this work is to study the dimensional reduction
theory for obtaining the N=4, half-maximal SO(4) gauged supergravity in four-
dimensional spacetime by truncating the Kaluza-Klein reduction on S7 of the
ungauged supergravity in eleven dimensions that was worked out in [23]. The
compact space ST is described by a foliation of the two three-dimensional spheres,
S3. In group theory, S? is a group manifold of Lie group SU(2). By replacing an
S3 with the SU(2) group manifold and keeping only SU(2) left invariant fields, it
is guaranteed to be a consistent reduction. This could possibly lead to the more
understanding in the consistency of the reduction on S7.

The reduced theory; N=4, half-maximal SO(4) gauged supergravity in
four-dimensional spacetime, has some applications in the study of superconductors.
By the AdS/CFT correspondence, a gauged supergravity is related to a
superconformal field theory in three-dimensional spacetime, a time dimension
together with the two-dimensional spatial surface, that has been recently used
for study two-dimensional superconductor in [27, 28].

Besides, knowing the procedure of the dimensional reduction allows us to
embed solutions in lower dimensions to higher dimensional theory through the
reduction ansatz as in [29, 30]. Since the two theories are consistent, solutions
in one theory have to be solutions in another one. The embedding solution
in the most fundamental eleven-dimensional M-theory possibly leads to more
interesting properties of the same solution in the lower dimensional description.



Thus, after the study of dimensional reduction, some solutions in this SO(4)
gauged supergravity in four dimensions will be reviewed, established and embedded
to study in eleven-dimensional supergravity.



CHAPTER 1II
LITERATURE REVIEW

2.1 Einstein’s Gravity Theory

Einstein’s gravity theory or general relativity is one of the cornerstones of classical
physics that applies special relativity to gravity. Albert Einstein spent almost ten
years after created his special relativity theory to formulate this elegant theory of
gravity in 1915 [31, 32]. General relativity can explain situations that Newton’s
gravity theory cannot figure out for a long time. The most famous example, which
appears in many textbooks is the perihelion shift of Mercury. It has been long
known that the point on Mercury’s orbit with the nearest distance from the sun is
shifted by 42.9 seconds of arc in every 100 years [33]. Calculations from Newtonian
mechanics cannot describe this weird situation even though adding the effect of the
neighbouring planets while Einstein’s general relativity can explain it effortlessly.
In this section, the brief main ideas about Einstein’s gravity theory are reviewed
from [33, 34, 35, 36] to introduce all the basic understandings and calculations
that will be always used in this study.

There are two essences in general relativity. Firstly, gravity is not a force
but a curvature of spacetime. Our four-dimensional spacetime is not only an
empty flat static stage of the universe anymore but also has dynamics and can be
curved. Some mathematical concepts describing the curvature of spacetime are
established in the first part of this section: differential geometry. Secondly, the
curvature of spacetime is caused by the existence of matter or energy. Hence, the
last part will be about Einstein’s field equations explaining this curvature’s cause.
Furthermore, some matter fields coupling to gravity will be reviewed at last.

2.1.1 Differential Geometry
2.1.1.1 Spacetime, manifold, tangent and cotangent spaces

In relativity framework, spacetime is the main character expressing all the weird
but true relativistic phenomena. The idea of spacetime was emerged in special
relativity by considering time as one of the universe’s dimensions that can be
related to different observers instead of the absolute time of the universe that is
the same for all observers.

Flat space is the simplest case that satisfies Euclidean geometry, all basic
geometry, such as interior angles in a triangle add up to 180 degrees. In special
relativity, the four-dimensional flat spacetime RY3 or Minkowski spacetime M?*
has an unusual rotational symmetry: Lorentz symmetry or SO(3,1). The Lorentz
symmetry corresponds to Lorentz transformations, the spacetime transformations

satisfying the two postulates of special relativity:

1. All physical laws are the same in all inertial frames.



2. The speed of light* is the same in all inertial frames.

The two inertial frames (O and O’) related by some relative speed v in Euclidean
coordinates are shown in the Figure 2.1. All four spacetime coordinates in each

frame can be related by the Lorentz transformations:

th= P)/(t - V.T),
¥ =y(x —vt),
, (2.1.1)
y - y7
7 =z,

where v = \/f_ﬁ is called Lorentz factor.

Figure 2.1: The two inertial frames O and O’ with some constant relative speed v.!

In the rest of this study, any vectors in spacetime coordinates can be easily
described by z* = (t,z,y, z,...) where a = 0,1,2,3,..., D — 1 is a D-dimensional
flat spacetime index where the zeroth coordinate is always the time coordinate.
By this convention, Lorentz transformations in four-dimensional spacetime from
(2.1.1) will become

2% = (2 — val),
v 1 0
r =y(x —va’),
y (2.1.2)
7 =a°,
)
or in matrix equation,
2" v —yv 0 0 20
zV —w oy 0 0] |2t
20 0 10| (2:1.3)
z 0 0 0 1]|a®

*For convenience, the speed of light is assigned to be unity, ¢ = 1.
Irelativita_04.jpg[Online]. Available from : http://images.treccani.it/enc/media/share/images/orig/

system/galleries/NPT/VOL_8/IMMAGINI /relativita_04.jpg[2016,May]



By introducing Lorentz operator,

v —yv 0 0
- 00
A=|"V T , (2.1.4)
0 0 10
0 0 01
the Lorentz transformations (2.1.2) can be written in a simple equation:
2% =AYb (2.1.5)

where the repeated indices are summed by Einstein’s summation convention
Ay =370 AY,a®. Moreover, if the two inertial frames (O and O') are related

by a relative speed v in arbitrary direction, (2.1.5) is still satisfied by using

Y W VU~
0

O (2.1.6)
YUy 0 Y 0
v, 0 0 gl

A

Figure 2.2: The unchanged distance As in two-dimensional space (x,y) due to rotational
symmetry SO(2) that turns (x,y) to (x',y") [33].

Four-dimensional Minkowski spacetime has an unusual rotational
symmetry SO(3,1) such that any distance in the spacetime should be unchanged
or said to be invariance under these Lorentz transformations (the unusual rotation)
similar to the unchanged distance in space due to rotational symmetry, for example;
SO(2) in two-dimensional space illustrated in Figure 2.2.  Spacetime interval is
the distance between two events, points in spacetime, defined* by

As® = —(At)? + (AT)? (2.1.7)

*This definition is called the mostly plus convention that prefers to use in many studies of general

relativity. However, one can use the mostly minus convention by defining spacetime interval as As? = (At)2 —
(A%)? together with n,p = diag(1, —1, —1, —1) but their physical meanings are the same



where (AZ)? = (Az')? + (Az?)? + (Ax?)? is the distance in three-dimensional
space. By introducing the Minkowski metric,

-1 0 0 0
Nab = 8 (1) (1) 8 ; (2.1.8)
0 001
the spacetime interval can be written in the form
As? = ngp Azt Az’ (2.1.9)
Hence, its infinitesimal form is
ds® = ngpdax®da’, (2.1.10)
that is invariant under Lorentz transformations
ds? = ds”°,
(2.1.11)

nabdxadxb = na/b/dx“/dxb/.
By using Lorentz transformations (2.1.5), Minkowski metric has to transforms by
Na'yy = Aaa/Abb/T]ab (2112)

where A% = (A¥,)~" is an inverse of the Lorentz operator in (2.1.5).
In vector’s point of view, spacetime interval is nothing but the square
magnitude of the vector dx®. Therefore, any vector V% in Minkowski spacetime

has its square magnitude as
VI* = naVV?. (2.1.13)

A dual vector of the vector V¢ in spacetime is defined by

Vo =naV?, (2.1.14)
and transforms by the inverse Lorentz operator

Vo = NV, (2.1.15)

Using this dual vector definition, the square magnitude of any vector V¢ in
Minkowski spacetime can be written in the form

V2V, Ve (2.1.16)

Note that the minus sign in Minkowski metric introduced in (2.1.8)
distinguishes vector V* into 3 types:

1. V2> 0:V is called space-like vector.
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2. V2 =0:V is called light-like or null vector.
3. V2 < 0:V is called time-like vector.

This dissimilarity depends on the difference between the components of time and
space coordinates while Lorentz transformations cannot change their type. In
group theory, Lorentz group SO(3,1) is categorised as a non-compact group, see
also Appendix A.

While spacetime and coordinates seem indivisible in special relativity, they
become vastly different in general relativity. To yield spacetime that can be curved,
the theory describes D-dimensional spacetime as a D-dimensional differentiable
real manifold M, a smooth and continuous topological real space that locally looks
like flat space MI?. A coordinate system x maps a subset of M to the well known
MP. However, there is no a unique coordinate system for a manifold M. On
the other hand, one coordinate system x has a smooth map to another coordinate
system 2’ that also maps a subset of M to some flat space MP, as shown in Figure
2.3.

Figure 2.3: Mapping of two subsets of a manifold M by coordinate systems x and 2’ where the
2

overlap region can be mapped smoothly between the two coordinate systems.

At each point p € M, there exists a tangent space T),(M), a vector space
containing tangent vectors at the point p, as displayed in Figure 2.4. T,(M) has
the same dimensions as M with a particular set of basis vector 9/dz* where z*
is the coordinates and yu = 0,1,...,D — 1 is a D-dimensional curved spacetime
index. Thus any vector V' € T,,(M) can be written as

V =V*+o, (2.1.17)

Along with the tangent space T,(M), the corresponding cotangent space 1,7 (M)

2manifold.svg.png[Online]. Availabel from : https://upload.wikimedia.org/wikipedia/commons/thumb
/0/06/Two_coordinate_charts_on_a_manifold.svg/2000px-Two_coordinate_charts_on_a_manifold.svg.png[2016,May]
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Figure 2.4: A tangent space T,,(M) (gray plane) of a manifold M (dark grey) at point p [34].

with a dual basis dz” is also defined where dx”(9,) = d,. Likewise, every vector
in the cotangent space W € T7 (M) may be written as

W = W,da" (2.1.18)

By using the fact that physics does not depend on the choice of coordinates
system, the general coordinates transformations (GCT) is defined as
transformation ofs x to 2’ that turns basis vectors in the tangent space T,(M)
from 0/0x" to §/0x* via using the chain rule,

ox”

- Ozt

Furthermore, any vector V' € T,(M) is a geometrical object that is independent

Oy d,. (2.1.19)

of the choice of coordinate system as mentioned so V' has to be invariant under
GCT,
V=V"0,=V"0,. (2.1.20)

Together with (2.1.19), this leads to the transformations of the vector components

V# under GCT,
VH

/ 'LL/
_ 8; VY, (2.1.21)
:L»V

92" can be claimed to be a GCT operator with its inverse 22 In the same

Oz Ok
fashion, the transformation properties of the cotangent vectors W € Ty(M) under

where

GCT can be determined. Starting from transformations of the basis vectors,
ozt
oxV

The invariance of the cotangent vectors W leads to the transformations of the

dzt =

da”. (2.1.22)

components W, 5
CC.I/

- Ozt

W, W, (2.1.23)
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To determine interval on curved spacetime, a multi-linear map from a
product space of r cotangent space T (M) and s tangent space T),(M) to the real
line called (r,s) tensor T is considered where (r,s) is called the rank of the
tensor,

TCS) 0 THM) X oo x THM) X Ty(M) x ... x T,(M) = R. (2.1.24)

J/

-~ ~~
r times s times

Note that 79 is nothing but a real number or real scalar field while 7% and
T are just an element of tangent and cotangent space in (2.1.17) and (2.1.18)

respectively. An (7, s) tensor T can be written in component form as

TS = et 9, ® .. @0, @drV @ ... ® da”, (2.1.25)
where ® is called a tensor product and T#'#r, , are the components of any
(r,s) tensor T that transform under GCT as

wy Hy Hpo1 s
o~ _ ox oxH'r Ox ox Torpr 9196
ViV g FBRER / 01...0¢ ..
s OxrPr  OxPr Oz¥'t OxV's s

For curved spacetime, any distance is now defined by a (0,2) symmetric tensor

called the metric g at each point p € M, i.e.
g: Ty(M) x T,(M) = R, (2.1.27)

which can be expressed in terms of the basis vectors dx* ® dx” and the components
() Dy

g = gu(x) det @ dx". (2.1.28)
By dropping ®, this equation becomes a familiar equation corresponding to the

interval on curved spacetime that called the line element,

ds® = g, (v) dztdx”. (2.1.29)

*

In the case of flat spacetime, the metric components g,,*, or called the metric
tensor for simplicity, becomes the constant Minkowski metric 7),,, defined in (2.1.8).
Moreover, g,, also have the same properties as 7),,, such as there exists inverse

metric g = g;l,l, if g, are non-degenerate (det g, # 0), which satisfy
9" g = 8. (2.1.30)

Similarly, the metric components and their inverses can be used to raise and
lower the components of tangent and cotangent vector correspondingly by mapping

between tangent and cotangent space,
g T(M) = T;(M) =V, = gV,

1 (2.1.31)
g Ty (M) = Tp(M) = WH =gV,

*For convenience, an argument (x) for the metric components g, is usually omitted but they are
always depend on coordinates x.
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The line element in (2.1.29) is sometimes called the metric equation containing the
metric tensor g, encoding the curvature’s information of spacetime. Therefore,
metric equation (2.1.29) is the keystone for describing spacetime curvature. Before
decoding the curvature’s information of spacetime, the totally anti-symmetric
tensor is useful to introduce.

2.1.1.2 Differential forms and volume form

Differential forms or p-form* is the totally anti-symmetric (0, p) tensor w®,

w® T, (M) x .. x T,(M) = R, (2.1.32)
P arrnes
defined by
1
w®) = me---up dx"™ AN datr, (2.1.33)

where the components wy, .., are anti-symmetric in all indices,

(2.1.34)

Wit oottty — Wt i+

The basis operation of p-form is described by the wedge product A that totally
anti-symmetric instead of the usual tensor product ®,

dz" A ... Adatr = plda™ @ ... @ dat! (2.1.35)

where anti-symmetrizing in the indices ..., of any tensor component 7' is
denoted by

1
Tlurmp] — — (Tt + (=1)" permutation of (py...p1)), (2.1.36)
P!

with P = 0 for even and P = 1 for odd permutation.

There are some useful operations of differential forms, which are essential
to the calculation performed in this study, reviewed as following:

e Wedge product: A

A (WP w@) — Pt (2.1.37)

The wedge product of any p-form w® and g-form w(@ yeilds the resulting
(p+q)-form w® A W@, for example;

1
AP — — Ay gy AN A da,
D
1
B@ = aBmmyq dz”" A ... A dz", (2.1.38)

A A g — L 4
plq!

*Note that this p in differential forms is an integer number, 0 < p < D for D dimensional spacetime,

pteiy Bur v d?t AN dxtP N dx A A dat

while p in Tp M is a point p in a manifold M. They are confusing but fashionable notation.



14

Thus
AP A B@W = (—1)P1B@ A AP), (2.1.39)

Exterior derivative: d

d: w® — P+ (2.1.40)

The resulting object of an exterior derivative of a p-form w® is a (p +1)-form
dw® defined as

1
dw® = p (Opwys.opy) da? N dxht A oA dat'™. (2.1.41)
p!

The exterior derivative is a linear operation satisfying the following conditions,
d(w® Aw?) = dw® AWl 4 (=1)Pw® A dw@, (2.1.42)
Pw® =0, (2.1.43)

for any p-form w® and g-form w(?, where the operator d? in (2.1.43) is called

the nilpotent operator that always gives zero as a result of anti-symmetrization.

Hodge duality: *

Hodge duality is an operation with respect to the dimension of the spacetime
mapping a p-form in D-dimensional spacetime to a (D — p)-form,

w0 w® WP, (2.1.44)
defined by
1
P = me.__up s (dx™™ A oA datr). (2.1.45)
The hodge duality of the basis are given by
1

w(datt A N datr) = Hiebte qupbett A LA datP, (2.1.46)

m%ﬂ...up
hence hodge duality for any p-form in D-dimensional spacetime can be written

as
1

*w(p) = mwﬂlyﬁ Eﬂp+1"'tu‘D

H1ebp ebo 1l A A dpPD (2147)

Here, €,,.. ., is the totally anti-symmetric Levi-Civita tensor in D-dimensional

curved spacetime given by

€ = V9| €urins (2.1.48)

where g = det g,, and ¢, ,, is the totally anti-symmetric Levi-Civita
symbol defined by
+1: (p1...0p) is even permutation of (0,1,...,D — 1),
Eprenp = § —1: (p41...up) is odd permutation of (0,1,..., D — 1),

0 : otherwise.
(2.1.49)
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Note that the Levi-Civita tensor becomes the Levi-Civita symbol in flat
Minkowski spacetime where det g,, = detn,, = —1. For any p-form w®),
applying twice Hodge dualities gives rise to the same p-form w® with positive

or negative sign by
wx W) = (—1)PD-P)F ) (2.1.50)

where t is the number of time-like coordinate.

Volume form is a canonical volume that plays an important role for the

calculus on D-dimensional curved spacetime M defined by the unique D-form,

Vol(M) =+/|g|d”z = \/|g| dz® A ... A dazP7L. (2.1.51)

By using the totally anti-symmetric Levi-Civita symbol defined in (2.1.49), the

volume form can be written as

1
Vol(M) = /|4 Di Eppppdrt A LA dxtP

1
- D!

(2.1.52)
€prppdx A A dztP

where the second line is obtained by applying the relation (2.1.48) that is obviously
invariant under GCT. Moreover, the Hodge duality of the pure number 1 (a 0-form)
denoted by €py in D dimensions is also the volume form,

1
x1 = €p) = DI €prepup AT A N AP, (2.1.53)

= Vgl d°z = Vol(M).

Together with the wedge product, Hodge duality can describe the inner product

between any two p-forms, A and B, as follows
1
*ANB=+BNA=—[A-B|*1, (2.1.54)
p!
where the inner product is defined by

A-B| = A, B", (2.1.55)

I

that frequently appears in the kinetic terms in many theories for A and B being

derivative terms.

2.1.1.3 Spacetime curvature from vielbein formalism

Now, we are ready to describe curved spacetime. As declared before, the
information about the curvature of spacetime is encoded in the metric tensor
guw(x) that are functions depending on coordinates = at each point p € M.
Unfortunately, dealing with these tensor is more complicated. Especially, their

inversion g;; are difficult to find.
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In this study, an easier way for describing curved spacetime known as the
vielbein formalism is utilised. Since a D-dimensional manifold M is locally flat,
D-dimensional flat spacetimes can be defined at each point p € M. Precisely
there are the two Minkowski spacetimes defined before: the tangent space T},(M)
and cotangent space T (M). These flat spacetimes, known as Lorentz frames,
are described by the non-coordinate vielbein bases e, and e® respectively, where
a is the flat spacetime index defined previously. The relation between the metric

tensor and the Minkowski metric in these Lorentz frames is defined by

() = Ty €, ()€} (), (2.1.56)

where” e, , called vielbein, are the components of the vielbein basis e” with respect
to the coordinates basis dr”, i.e. e* = dr® = ef,dz". Equation (2.1.56) describing
the vielbein like the square-root of the metric g, is practically used to find these
vielbein components from a given metric tensor. Besides, inverse vielbein are
defined as e#, which are the components of the inverse vielbein basis e, with
respect to the coordinates basis J,, i.e. e, = 0, = €-0,, and they satisfy these

relations:

ele? = o1 kel =4 (2.1.57)

a~p a

By these vielbein basis component, any tangent vector V' and cotangent vector W

can be described as
V=V, W =W, (2.1.58)
with their components,
Vi=e Vi, W, =elW,. (2.1.59)

Therefore, any (r, s) tensor components can be transformed via these vielbein basis
components to be an (r, s) Lorentz tensor components in flat spacetime,

ai...a a1 ar V1 Vs il ... b
Ty b, = ey eireyt. eyt T T e (2.1.60)

However, the choice of the non-coordinate basis e® is not unique. One can define
another basis e’ satisfying (2.1.56). However, the transformations between e’ and
e® is not the GCT but the familiar Lorentz transformations in (2.1.5). Moreover,
the Lorentz operator now depends on spacetime coordinates, Ab/a(x), such that the
transformations between non-coordinate bases is called the local Lorentz

transformations (LLT) where the transformations of vielbein and inverse vielbein
are defined by

eg(a:) =AY (x) el (z), eb(x) = A% (z) e (z), (2.1.61)

“w

*In the same case as gu., an argument (z) is omitted but keep in mind that both ey, and el are always
depend on coordinates x.
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similarly, A% (z) is defined to be the inverse of AY,(z). Moreover, since both
vielbein and their inverse contain the spacetime coordinate index pu, they also
transform under the GCT,

ox” / Ozt
@ () — a W () — Y (). 2.1.62
e () e ey (), e (z) Ry eq() ( )

Consequently, vielbein are both (1,0) Lorentz tensor components and (0,1)

coordinate tensor components at the same time, while their inverse are (0, 1)
Lorentz tensor components and (1,0) coordinate tensor components. Therefore,
any tensor components could be both Lorentz and coordinate with respect to their
flat and curve spacetime indices. Even so, they can transform to pure Lorentz or
coordinate tensor components by virtue of vielbein and their inverse. The LLT of

any (r,s) Lorentz tensor components can be written as
a'y..a’ a’ a b b ai...a
Tt ", = A 1a1---A7~ aTA 1(,/1.../\ b T " by by (2163)

after subtracting (x) for convenience. Note that, in coordinate point of view, this
(r, s) Lorentz tensor components are just a scalar, which is invariant under GCT.
Apart from scalar fields, partial derivatives of any (r,s) Lorentz tensor
components do not transform as (2.1.63) anymore. For example, consider the
partial derivative, 0, = 9/0dx, of a one-form or a (0, 1) Lorentz tensor components,
i.e. 9,W,. By the index structure, they should transform as (0,2) Lorentz tensor
components. However, under LLT, this partial derivative transforms as

8a’Wb’(x) = Aca’ ($) 80 [Adb’(x)Wd(x)} )
= Aca/ (33) Adb/(l’) [80 Wd(l’)} -+ Wd(.’L‘)ACa/ (.1') [8C Adb/ ($):| .

Here the second line is obtained by using the Leibniz’s product rule where the

(2.1.64)

first term is the expected transformation law of (0,2) Lorentz tensor components
while the second term ruins it. The only one settlement is an elimination of this
second term by defining the Lorentz covariant derivative D, of any one-form as

D Wy = 0, Wy — wol Wy, (2.1.65)

where w,% is the spin connection that is anti-symmetric in the last two indices
Wape = —Waeh = —ncfwaf - To get rid of the problematic term in (2.1.64), the
transformations of the spin connection contracted with a one-form under LLT is
defined by

wa/fb/Wf = WdAca/(I) [86 Adb/ ($)] - Aca/ (ZL’) Adb/(l’) wabef. (2166)

Together with (2.1.64), the transformations of the Lorentz covariant derivative of
any one-form under LLT yields the expected (0,2) Lorentz tensor components’

transformations,
Da/Wb/ = Aca/ (LL’) Adb/ (l’) [8c Wd(ﬁ)] + Aca/ (.Z‘) Adb/<l’> wabef,

2.1.67
= Aca/ (ZL’) Adb/(l’) DCWd. ( )
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This procedure is called gauging acheived by promoting a global symmetry to
be local resulting in a new derivative that satisfies transformation rules of the
new promoted local symmetry. As demonstrated above, the Lorentz symmetry,
a global symmetry in flat spacetime, was promoted to be local, AY, — AY,(z).
Then, the transformations of the partial derivative of non-scalar fields turn out
to be inconsistent with the LLT. Here, defining a new derivative, the standard
derivative added by a correction term, gives the right transformations under LLT.
This gauging process will be reviewed soon in the literature review of gauge
theories in which some Lie groups are gauged.

Moreover, the Lorentz covariant derivative of any tangent vector, (1,0)
Lorentz tensor, components can be defined, by using the fact that the Lorentz
covariant derivative of any scalar fields reduces to the partial derivative,
D, (VW) = 9,(V®W}) together with (2.1.65), as

D,V =0,V? +w, V7. (2.1.68)

Thus the Lorentz covariant derivative of a (r,s) Lorentz tensor components can

be written as
ai...ar o ai...ar a C...Qr ar ai...c
D Ty, =0Ty by W™ Ty by A oo W™ T %y,

2.1.69
- wacbl Talmarc‘..b ( )

c ai...a
— =W BTy e

E]

Note that the Lorentz covariant derivative D, satisfies the following properties:

1. D, maps any (r,s) Lorentz tensor components to (r,s + 1) Lorentz tensor

components,
2. D, is a linear operator, i.e. D,(T'+S)= D, T + D,S,
3. D, satisfies the Leibniz’s product rule; D, (T ® S) = D, T ® S+ T ® D,S,
4. for Lorentz scalar fields, D, reduces to 0,.

The coordinate covariant derivative of any vector in coordinate basis V,V*
is defined from the transformed Lorentz covariant derivative, D, = e; D, = 0, +

b .
w,’,, as following

V,VP = elD, Ve = efD,(elV”),

, (2.1.70)
=0, VP + el (Ouey, + w, " en)V”,

while the last term in the first line is obtained by transforming to the vielbein basis.
The second line arises from the Leibniz’s product rule of the Lorentz covariant
derivative while the first term is just a normal partial derivative because V? is (0, 0)
Lorentz scalar. This equation is in the same form as (2.1.65) so the coordinate

connection can be defined by the second term in (2.1.70) as

I, = ef(9uel + wu%yer), (2.1.71)

14
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where this I, is called the affine or Christoffel’s connection making the
coordinate covariant derivative transforms in the right way under the GCT, in
the same way as the spin connection preserving the LLT transformation rules for
the Lorentz covariant derivative. Substitution this Christoffel’s connection back in
(2.1.70) yields the definition of the coordinate covariant derivative of any tangent

vector in coordinate basis,
v,VP=9,V?+ 17 V" (2.1.72)

However, the coordinate covariant derivative is usually defined to be the total
covariant derivative that contains both spin and Christoffel’s connections. If we
use the Lorentz covariant derivative in the first term of the second line in equation
(2.1.70), we will find

vV =D, V" +T V7, (2.1.73)
with Lorentz covariant derivative being an ordinary partial derivative for (0,0)
Lorentz tensor components. This covariant derivative becomes a partial derivative
only on a scalar quantity in both coordinate and non-coordinate frames. This
covariant derivative also satisfies the same rules as the Lorentz covariant derivative,

such as the coordinate covariant derivative of any one-form is given by
VW, =D,W, =T W, (2.1.74)

This leads to the definition of a coordinate covariant derivative of any (r,s)

coordinate tensor components,

1een _ 1-.- 1 1een
V;,LTM Mrl/1...l/5 _DMTM Mrljl...ljs + Fl/jpr MTVl...l/S + + FZ;TM le...VS

_ TP THpr TP i1
FWlT s ™ e FWST Vop-

(2.1.75)

Therefore equation (2.1.71) can be written in the form of the total covariant
derivative as,

Ve, = Dyey, — 17,5 =0, (2.1.76)
that is called the vielbein postulate. After anti-symmetrizing this equation, the

torsion tensor 7}, can be defined by

Vel = (T8, —T%,) =

T . (2.1.77)

Note that in common spacetime, this torsion tensor usually equals to zero, called
the torsion-free condition of spacetime, that allows the Christoffel’s connection
to be symmetric under the two lower indices, I'), = I'7, and turns the vielbein
postulate into

Ve = O[Meﬁ] + wp €5 = 0. (2.1.78)
Moreover, this torsion-free condition can be rewritten using the differential forms

as
de® = —w A e, (2.1.79)
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Figure 2.5: The parallel transport of a vector on a cloed path in flat and curved space.?
which is customarily used to find the spin connection.

To quantify the curvature of spacetime, the parallel transport of a vector
V = V%, along a path ~ parametrized by a parameter A\ on a manifold M is

defined as
ove  dxt

oA dx
which means the physical properties of a vector V are invariant along this path.
By Equations (2.1.73) and (2.1.68), the variation of a vector V' along this path
can be described by

v,V =0, (2.1.80)

sVe _dve . dab .
N W + wyp cav s (2181)

where the first term describes the variation of the vector component V¢ due to the

change in A\ and the second term expresses the variation in the non-coordinate basis
eq along . The parallel transport of a vector V' on a closed path is directly affected
by the curvature of spacetime. As shown in Figure 2.5, the parallel transport of
a vector on a closed path in flat space yields the same vector at the origin, while
the different vector is obtained in curved space.

Figure 2.6: The difference between the paralell transported vectors on the paths A — B and
B — A [34].

The quantity related to the curvature of spacetime can be obtained from
a commutator between parallel transports of a vector V' on any two different parts
parametrized by A and o, A and B in Figure 2.6, that exhibits the difference
between the parallel transported vectors that defined by

Cssve sove
_dxt dz” o

= ﬁ%(vuvy - V.,V )ve,

3Parallel-Transport-medium.jpg[Online] Available from : https://www.quantum-munich.de/fileadmin/

media/media/Aharonov-Bohm /Parallel-Transport-medium.jpg[2016,May]
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where the second line is obtained via (2.1.80). From this equation, the Riemann
curvature tensor I,,“,, the tensor measuring the deviation from flat spacetime, is

defined by
(V. V, =V, V,)V*=R,° V" (2.1.83)
Using the definition of the covariant derivative in (2.1.73) and (2.1.68), the

Riemann curvature tensor R,wab = nb/ R, ; can be expressed in terms of the

spin connection as
R’u,jab =2V, w,,]ab = Za[u w,,}ab + QW[Maf wl,]fb, (2.1.84)
or in differential forms,
Rf‘é’) = dw™ + W A w'®, (2.1.85)

where R‘é’) = %Ruyab dx? A dz¥ = %Rcd“b e® A e? is the curvature 2-form with the
Riemann tensor being its components. Moreover, it is more comfortable to deal
with the purely lower flat indices of the Riemann tensor, R.qu = € €l n.f R#,,f b
that has various symmetries in its indices. These symmetries are given by

Rcdab = _Rdcab = _Rcdba = Rabcd; (2186)

Rapea + Racap + Ragve = 0. (2187)
The last equation (2.1.87) implies the Bianchi identities, where V= ¢}V,

V(s Regap = 0. (2.1.88)

By taking traces, other important quantities describing the curvature of
spacetime can be derived from the Riemann tensor: the Ricci tensor R, and the

Ricci scalar R defined as follow
Ray = RaepS, (2.1.89)

R = n"Rg,. (2.1.90)

These two quantities play important roles in the descriptions of curved spacetime.
In the next section, Einstein’s field equations relating geometry and matter will

be introduced through these Ricci tensor and Ricci scalar.

2.1.2 Einstein’s Field Equations

After introducing all ingredients for describing curved spacetime, the elegant
relation between this curvature and existences of energy and matter described by
the energy-momentum tensor 7,;, will be established in this section. For simplicity,
the vacuum curved spacetime in the region containing no matter and energy will
be firstly discussed to give a basic concept for a more complicated cases in which

matter sources are coupled to gravity at the end of this section.
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2.1.2.1 Pure gravity field equation

In the case of vacuum spacetime, there is no matter and energy occur in the
region. To find an action describing the curvature of vacuum spacetime, it is
more convenient if we start from the field equations expressing behaviour of the
curvature. Bianchi identities in (2.1.88) are the suitable equations describing
nature of the Riemann tensor, or precisely the curvature of spacetime. By taking
traces, the Bianchi identities implies

1
Va(Rab - 577abR) = VaGab = O, (2191)

where the Einstein tensor is defined by G, = R — %nabR and this equation leads
to the pure gravity field equations or the vacuum Einstein’s field equations,
1
Rap = 5aplt = 0, (2.1.92)
describing the curvature of empty spacetime. Furthermore, an action giving rise
to this field equation in D-dimensional spacetime is known as the Einstein-Hilbert
action that is simply written in just only a term of Ricci scalar as

Spn = /de V19| R. (2.1.93)

Note that, at the level of actions, it is easier to deal with their variations with
respect to the metric g, so the vacuum Einstein’s field equations (2.1.92) can be
obtained by varying this Einstein-Hilbert action Sgpy with respect to the metric

g,u,ln

0SEn D 1
S —/d = VI9l(Byw = 59 R), (2.1.94)

after applying the least action principle 0Sgy = 0 and contactions with e”e;. The
Einstein-Hilbert Lagrangian density is just the integrand in the Einstein-Hilbert
action (2.1.93),

In the language of differential forms, notice that the Einstein-Hilbert action in

(2.1.93) is an integration on the volume form defined in (2.1.53),

where the Einstein-Hilbert Lagrangian density takes the form

Note that the concept of Lagrangian density is now changed. In general,
Lagrangian density is a scalar quantity whose integral over all space gives the
scalar action. Henceforth, from a differential forms point of view, Lagrangian
density is not a scalar quantity or O-form anymore, but rather D-form that can

be integrated over a D-dimensional manifold giving rise to a O-form action.
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2.1.2.2 Matter-coupled gravity field equation

As stated at the beginning, existences of energy and mass affact the curvature of
spacetime. The energy-momentum tensor T, is defined to describe all energies,
momentums, and also stresses in spacetime by relating this gravity-source-tensor

to the Einstein tensor explaining the curvature of spacetime as G o< T, or*

1
Gap = KTy = 5 Lo (2.1.98)

where the last term is obtained by using the convention x? = 1/2. Using the
definition of Einstein tensor, the matter coupled Einstein’s field equations are
obtained from (2.1.98) in the forms

1 1
— = = =T 2.1.
Rab 2nabR 9 ab ( 99)

This equation is the famous Einstein’s field equations describing the relation
between the curvature of spacetime and matter sources. This equation can be
derived from a matter coupled Einstein-Hilbert action,

S(g,X) :SEH(Q> +$Matter(g7X), (21100)

where the argument ¢ refers to the dependence of the metric and X denotes any
matter field. The total variation of this matter coupled action takes the form

1 IS\ atter 0SMatter
5S = {\/|g|(R,w—§gu,,R)+ﬁ}5g“”+%5X. (2.1.101)

By applying the least action principle, 6§ = 0, the last term corresponds to the
field equation of the matter source X while the terms in the bracket will become the

Einstein’s field equations (2.1.99), if the energy-momentum tensor 7}, is defined
by
—2 68Matte7‘

Vgl g

Note that, for some matter fields that will be henceforth described, this coordinate

T,, = (2.1.102)

version of the energy-momentum tensor is conveniently derived from matter actions
describing their behaviour on curved spacetime by the metric g,,. However,
Einstein equations are simpler in flat spacetime as in (2.1.99), since dealing with
the Minkowski metric 7, is easier than g,,. Thus the energy-momentum tensor
can transforms to (0, 2) Lorentz tensor components by using the inverse vielbein,
Toy = ebey T,

There are two kinds of the matter fields involving in this study that will
be reviewed. They are both bosonic fields with integer spin: 0 and 1. The simpler

*To obtain the Newton’s gravity theory, this constant is related to the Newton’s gravitational constant,
G = 6.674 x 10711 N - m?/kg?, by 2 = 87G. In this study, we use the convention that 2x2 is set to unity,
2
K*=1/2.
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case is the zero-spin real scalar field ¢(z) described by an action,

1

1
Sy = /d%\/@{ — 50u00"6 — 5m2¢2}, (2.1.103)

where m corresponds to its mass. Variation of this action with respect to ¢ leads
to the well-known field equation of scalar field; the Klien-Gordon equation,

O¢ —m?p =0, (2.1.104)

where the d’Alembert operator [ is defined by L = V#V ,, which can be reduced
to O ¢ = V*0,¢ for any scalar field ¢. Its energy-momentum tensor can be derived
by (2.1.102) as

1
Ty = 0,00,¢ — ng{apgbapqs +m*¢*}. (2.1.105)

Moreover, by using the volume form (2.1.53) and the inner product in (2.1.55),
the Lagrangian density of a real scalar field can be written in form of

L, = —% x do A do — (%m2¢2) * 1. (2.1.106)

Another case is a vector field or gauge field A* corresponds to U(1) gauge
symmetry that will be introduced in the review of the gauge theory. An action
expressing behaviour of a U(1) gauge field is simply of the form

Sa= —i/dDm\/EFWFW, (2.1.107)
where the fields strength is defined by
F,=90,A,-0,A,, (2.1.108)
or simpler in the form of differential form,

F = dA, (2.1.109)

where F' = %F wdx? A dx” is the field strength 2-form. Notice that the exterior
derivative of the field strength 2-form certainly equals to zero due to the nilpotent
property in (2.1.43). This leads to the Bianchi identities, that can be written in
component form as

0uF,+ 0,F,, + 0,F,, = 0. (2.1.110)

The variation of the action (2.1.107) with respect to the gauge field gives the field
equations,
V*E,, = 0. (2.1.111)

By using (2.1.102), the energy-momentum tensor of a gauge field A* can be
obtained as 1
T = FypFl = 39 Fpe P (2.1.112)
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Moreover, the Lagrangian density of a gauge field A" can be expressed by using
the differential form as

1
La=—7*FAF, (2.1.113)

where the inner product in (2.1.55) is applied.

2.2 Kaluza-Klein Reduction on S!

Kaluza-Klein reduction, the original simplest case of dimensional reduction, which
is briefly introduced in the introduction, now can be demonstrated in more
mathematical details. As mentioned before, this dimensional reduction is a
consideration of Einstein’s general relativity in five spacetime dimensions where
the fifth dimension is compactified to a very small circle or S!, as shown in Figure
1.1. In general, this procedure can be generalized to reduce any (D+1)-dimensional
gravitational theories to the reduced ones in D dimensions. In this section,
fundamental concepts about dimensional reduction will be reviewed. Even though
it is the simplest compact space S*, these concepts and also calculational processes
can be applied to a more complicated compact space such as an S” that we want
to study.

Since the higher dimensional theory is just a pure gravity theory, a
Lagrangian density describing this theory is only the Einstein-Hilbert Lagrangian
density from (2.1.95),

Lon = VIR, (2.2.1)

where the hat-fields are higher-dimensional fields. Equations of motion from this
Lagrangian density are also the Einstein’s field equations in vacuum from (2.1.92)
that can be contacted and written as

Ryn =0, (2.2.2)

where M, N =0, 1,2..., D are the (D+1)-dimensional spacetime coordinate indices.
As introduced in Section 2.1, Ricci scalar R can be derived from the metric
field gpsn that depends on the higher dimensional spacetime coordinates y. Now
suppose that one of the spatial coordinates labelled by z is compactified to a circle,
St with radius L, such that, the coordinates y are separated to be (z,2) where
x denote the reduced D-dimensional spacetime coordinates. The coordinate z is
then periodic, therefore, the metric gy n(y) can be described in Fourier series of
the form

gun(x, 2) = Z@J(\%v(x)eimﬂ

n

~(0 ~(n inz
= g\ (@) + ) gl (@)e™E,
n#0

(2.2.3)
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where the dependence on z is excluded. The Fourier modes n are integers associated
with masses of the metric field in the lower dimensional point of view, since the
twice partial derivative with respect to z will always give the real number n?/L?
which corresponds to the square of mass, as in (2.1.104). In the second line
of (2.2.3), these massless and massive modes of the metric field are apparent
separated. This process is called compactification giving rise to a stack of higher-
dimensional metric field’s mass states called the infinite Kaluza-Klein tower with
the masses of the field in each Fourier mode n equal to |n|/L. Note that only
compactifying procedure cannot reduce spacetime dimensions. Since in lower
dimensional theory this compact space S' should be unobservable, the radius
L should be assumed to be very small in the order of the Planck length, 1073°
metres. In this limit, the non-zero massive modes will have masses in order of
the Planck mass, 1078 kilogrammes, that is too heavy for fundamental particles.
The next step of dimensional reduction is neglecting all these massive modes and
keeping only the massless one called the truncation to the massless sector process.
Thus the metric gyn(z) is now only dependent on the D-dimensional spacetime
coordinates.

In group theory, these Fourier mode functions ¢”*/* in (2.2.2) are the
representations of an Abelian U(1) group of the circle S* where the Fourier mode
n corresponds to a U(1) charge. The n = 0 mode is a singlet while the n # 0
modes are all doublet where the modes n and —n are complex conjugate of each
other. Keeping only n = 0 mode makes the net charge always neutral or said
to be invariant under the U(1) transformation that is consistent because the rest
n # 0 representations are impossibly generated from the n = 0 due to the charge
conservation.

As a result, dimensional reductions are the compactifying some spatial
coordinates together with the truncation to the massless sector that turn the
higher dimensional fields to be independent of the compact space’s coordinates.
For the case S', the (D+1)-dimensional spacetime coordinate index splits to u =
0,1,2...,D — 1 the D-dimensional spacetime coordinates and the compactified
spatial coordinate z. Thus the massless mode metric field can be divided into g,
symmetric (0,2) tensor components, §,. 1-form components, and a scalar field g..,
in the D-dimensional point of view. Kaluza-Klein reduction ansatz is an expression

of these (D+1)-dimensional metric components in the following forms
O =g +PALA,, G =ePPA,, g = (2.2.4)

where g,,,, is the metric tensor, 1-form’s components A,,, and a scalar field ¢, which
are all independent of z. The two constants o and [ are chosen to be

2 1 _
= ooy P2 (2.2.5)
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By using these expressions in (2.2.4), the metric equation in higher dimensions
can be written as
ds?* = e**? ds® + e*?(dz + A, dxt). (2.2.6)
Note that the reduction ansatz of the metric is always written in the form of the
line element for convenience. Reduction ansatze are the key to obtain dimensional
reduction describing relations between the two different dimensional worlds. As
demonstrated above, the reduction ansatz of the metric describes the geometry of
spacetime in which there are D non-compact spacetime dimensions together with
a compact circle S*. Translation in this compact space S described by a U(1)
gauge transformation corresponds to the gauge transformation of the field A, in
the ansatz. In conclusion, reduction ansatze of the metric can be deduced from
the symmetry corresponding to the chosen compact space. We will use this fact
to derive the reduction ansatz for the eleven-dimensional metric compactified on
ST
To obtain the consistent dimensional reduction, substitutions of
the reduction ansatze in the higher dimensional equations of motion giving rise to
lower dimensional equations of motion are required. However, gravity’s equations
of motion, the Einstein’s field equations, are only expressed by Ricci tensor. Hence,
before providing the substitutions, all components of the Ricci tensor are needed
to be derived from the ansatz (2.2.4). Starting from finding the higher dimensional

vielbein bases, by using (2.1.56), each vielbein basis can be expressed as*
e* = e*%e”, ¢* = e (dz + A), (2.2.7)

where A = A,e® is a 1-form and a is a flat index in D dimensions while z is also

used for the flat index of the compactified dimension. Then, (D+1)-dimensional

spin connections can be obtained, in the vielbein bases through the torsion-free
condition in (2.1.79),

" = w4+ ae” (8" pe" — 0" pe") — %F“be(ﬁza)¢éz,

. (2.2.8)

W% = —Be”9%pe* — §F“be(5_2“)¢éb,

where F;, are the components in the Lorentz frame of the field strength F' = dA.
Finally, the higher dimensional Ricci tensor components can be derived from the
reduction ansatz (2.2.4) by finding the curvature 2-form via (2.1.85) and reading
off their components as

. 1 1
Ry = € *(Ryp — §aa¢ab¢ — angdp) — 56_2Da¢Ffb,
Raz — %e(Di&)ad)Vb (672(D71)Q¢Fab)’ (229)

. 1
R.. = (D —2)ae**0¢ + Ze_QDa¢F2,

*Beware confusing between an exponential e and a vielbein e.
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where the two type contractions of the field strengths are defined by F? = F, . Fy°
and F? = F,F®. After transformation to the curve spacetime indices, these
(D+1)-dimensional Ricci tensor components can be substituted into the Einstein’s
field equations (2.2.2) to obtain all equations of motion of the reduced theory in
D-dimensions,

1 1 1 1 op-1)a 1
R“y - §g‘u,yR == §(a#¢ al/¢ - égm/ap¢ ap¢) + ée 2(D 1) ¢(F311 - ZlgHVF2)7
Vﬂ(efz(Dfl)aqﬁFW) =0,

1
O¢=—5(D - Dae 2P~ Dad 2,
(2.2.10)

The first equation of motion is nothing but the Einstein’s field equation describing
the curvature of the D-dimensional spacetime corresponding to the two kinds
of matter source, the scalar field ¢ and the U(1) gauge field A4,, as shown on
the right-hand side of the equations. The terms in the first parenthesis are the
energy-momentum tensor of a massless scalar field, as introduced in (2.1.105), and
the other ones are the gauge field’s energy-momentum tensor defined in (2.1.112).
The rest lower dimensional equations of motion describe behaviours of the two
matter fields coupled to each other. Note that the elimination of the gauge field
makes the scalar field to be a harmonic function while the truncation of the scalar
field, setting ¢ = 0, turns all components of the U(1) field strength to be zero.
It’s said to be inconsistent in the later case.

In conclusion, consistent dimensional reductions giving rise to the
gravitational theory together with some additional fields in lower spacetime
dimensions can be achieved if their reduction ansatze, expressions of the higher
dimensional fields in terms of the lower dimensional ones, yield all equations of
motion in the reduced theory via substitutions them into the higher dimensional
equations of motion. By this procedure, the dimensional reductions are said to be
consistent at the level of equations of motion.

Moreover, the stronger consistency of dimensional reductions can be
obtained by substitutions their reduction ansatze into the higher dimensional
Lagrangian density to get the lower dimensional one. In this case, dimensional
reductions are said to be consistent at the level of actions. For example, this
simplest Kaluza-Klein reduction on S* is also consistent at the level of actions. The
higher dimensional Ricci tensors are contracted to be a Ricci scalar by contractions
of these tensors with the (D+1)-dimensional Minkowski metric as follows

) 1 1
R=e2R — 5000070 — 2a0¢) — Ze’2Da¢F2. (2.2.11)

The determinant of the (D+1)-dimensional metric can be easily calculated through
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the block metric form in the reduction ansatz (2.2.4),

Vg = PPN /1| = e**¢1/|g], (2.2.12)

where the last term is obtained by the choice of 5 constant in (2.2.5). Then
multiplication of these two quantities gives an expression for the higher dimensional

Lagrangian density in lower D dimensions,

= Vil R = V|g|( R——apqsapqs 200¢ — -2<D—1>0¢F2), (2.2.13)

where the [¢ term can be dropped from this Lagranglan density because it is just a
total derivative that does not contribute to the equations of motion. Therefore the
final form of the Lagrangian density is just a combination of the Einstein-Hilbert
and the two matter fields’ Lagrangian densities,

= V1§l R =lgl(R - —6@6%— e HPTNedp2) (2.2.14)

which corresponds to all the lower dimensional equations of motion in (2.2.10).
Note that the choices of the two constant, a and 3, in (2.2.5) have their background
in the following way. For «, it ensures that the kinetic term of the scalar field,
9,0 0°¢, has the canonical normalisation, 0,0 9”¢, as in (2.1.103). The other
thing is to ensure that the dimensionally-reduced Lagrangian density contains the
usual Einstein-Hilbert form, i.e. \/ER. It is obviously shown in the above that
the choice of f makes the coefficient of the lower dimensional Ricci scalar, after
multiplied by the determinant of the metric in (2.2.12), to be one.

However, consistency only at the level of equations of motion is sufficient
for studying their solutions. Since all solutions must satisfy their equations of
motion so consistency between equations of motion in the two theory turn solutions
in lower dimensions into the higher dimensional theory’s solutions, which is called
lifting up or embedding solutions, and vice versa.

At this point, Kaluza-Klein reduction can be extended to produce on
more complicated compact spaces a more complicated symmetry. For example,
reduction on n-dimensional torus, 7" = S! x ... x S, reduces a D-dimensional
gravitational theory to be a reduced one in (D-n)-dimensions. This dimensional
reduction can be obtained by performing n-sequent of S! reductions. In this case,
the final reduced theory will contain n-U(1) gauge fields corresponding to a U(1)"
symimetry.

Moreover, performing Kaluza-Klein reduction on a group manifold is also
guaranteed to be consistent. Group manifold is a topological space that corresponds
to a transformation satisfying group theory. For example, in this study, a group
manifold of a Lie group SU(2) is a three-dimensional sphere 53, as discussed
in Appendix A. The group manifold G admits a metric with the isometry group

GG, X G corresponding to left- and right-transformations. Truncation to the set of
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all fields that are invariant under the left action GG, is guaranteed to be consistent
since, in group theory, the retained Gr-singlet fields cannot act as sources for
generating the discarded Gz -non-singlet fields, in the same way as the truncation
to the massless sector process for a U(1) symmetry described above. Note also
that Kaluza-Klein reduction on a Lie group manifold is called Scherk-Schwarz
reduction [24].

2.3 Gauge Theory

In general relativity’s framework, it is more relevant to consider local symmetries
than global ones. Since spacetime can be curved, so locality, or dependence
on spacetime’s position, becomes an essential feature of gravitational theories.
Gauging is a procedure of promoting any continuous global symmetry to be a local
one that depends on the spacetime coordinates z. For example, in Section 2.1,
the Lorentz symmetry, which is a global symmetry on flat spacetime in special
relativity, was promoted to be the local one with transformations called local
Lorentz transformation or LLT. After that, the Lorentz covariant derivative was
defined to preserve their transformation rules. Furthermore, this procedure can
be applied to promote some continuous symmetries associated with Lie groups
that are briefly introduced in Appendix A. Note that all the four fundamental
forces i.e. electromagnetism, weak and strong interactions and also gravity can be
formulated through this gauge procedure, therefore understanding general gauge
theories is very valuable.

Classical gauge theories are summarily demonstrated in this section,
starting from the simplest case; Abelian gauge theory in which a U(1) gauge
symmetry is promoted to be local. Then, all basic concepts from this simple
gauge theory will be applied to a more involved case: non-Abelian gauge theory
in which global symmetries associated with simple Lie groups, such as SU(N),
SO(N), or USp(N) are local. Finally, an SU(2) gauge theory involving to this
study is given at last.

2.3.1 Abelian Gauge Theory

Gauging of a U(1) symmetry corresponding to a vector field or gauge field
presented in Section 2.1.2.2 is mainly described in this section. To explain this
simplest gauge theory, we consider a complex scalar field ¢(z) with mass m in

D-dimensional flat spacetime with the action given by

Socomprex = —% /dDI{au(b I +mp p}. (2.3.1)
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It is straightforward to see that this action is invariant under a global U(1)
transformation that can be defined as a constant phase shift on the scalar field,

global U(1) : ¢(x) — ¢/(x) = e“6(a),
o' (2) = (6" () = e 6" (1),

where « is a real phase parameter and ¢*(x) is a complex conjugate of the scalar

(2.3.2)

field ¢(x) whose global U(1) transformation in the second line can be obtained
from the complex conjugation of the first one.

Then, promoting this phase parameter o to depend on the spacetime
coordinates, «(z), turns the global transformations in (2.3.2) into a local U(1)

transformations,
local U(1) : ¢(z) — ¢/ (z) = @ (),
¢*(x) = (¢") () = e g ().

However, the action in (2.3.2) is no longer invariant under this local transformation

(2.3.3)

since there is an undesirable term arising when the partial derivatives of the
scalar field in this action, 0,¢(z) and 0"¢(z), transform. This term makes the

transformation of d,¢(x) differ from the transformation rule in (2.3.3) such that

local U(1) : 0,6(x) = 40/ (x) = Ou(e* (), (2.3.4)
= "99,8(@) +i0,ae)e* o), T

where the last term in the second line is the undesirable term that spoils the
expected transformation rule. To achieve an action that is invariant under this
local U(1) transformation, the partial derivatives in (2.3.1) need to be replaced by
covariant derivatives defined by

D,d(2) = 8,6(2) — i4,(2)(x), (2.3.5)

where A,(x) is a U(l) gauge field that transforms under the local U(1)
transformation as

local U(1) : Ay(x) — A, = A, — po(). (2.3.6)

Therefore, this new covariant derivative satisfies the local U(1) transformation
rule (2.3.3) in the way that

Dyd(z) = (Dud)' (x) = 0u¢'(x) — iA} ()¢ (2),
= @9, 6(x) + i0,0(x)d (x) — iA,d (x) — i0,a(z)d (2),
= @D, ¢(x).
(2.3.7)

Replacing partial derivatives in the ungauged action (2.3.1) by covariant derivatives,

known as the minimal coupling procedure, gives rise to the U(1) gauged complex
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scalar field theory described by an action of the form

S anged = -1 /de{ D,¢) D"¢ +m*¢*¢}, (2.3.8)

that is obviously invariant under the local U(1) transformation, where (D, ¢)* is a
complex conjugation of the covariant derivative of the complex scalar field defined
in (2.3.5) whose phase shift from local U(1) transformation cancels another one
from (2.3.7).

However, there is still no dynamical term for the gauge field A, itself
n (2.3.8). Adding the action expressing dynamics of the gauge field, which
is introduced in (2.1.107), gives the well-known action describing interactions
between a complex scalar field ¢(z) and the U(1) gauge field A, () in D-dimensional
flat spacetime, called the scalar electrodynamics theory,

S = —%/de{ D,¢)*D'¢ +m?¢*¢ + LF Y, (2.3.9)
where ¢ is a coupling constant. Here, the U(1) field strength is defined by
F..=[D,, D, =0,A, —0,A,, (2.3.10)
which is also invariant under local U(1) transformations,
local U(1) : Fj, — F/iy = 0,A, — 0,0,a — 0,A, + 0,0,q,

— 0,4, — 0,4, (2.3.11)
—F

ns

such that this scalar electrodynamics action is invariant under U (1) transformations.

2.3.2 Non-Abelian Gauge Theory

As mentioned in the previous section, U(1) gauge symmetry is a symmetry
describing one of the four fundamental forces, electromagnetism. Apart form this
Abelian gauge symmetry, in the standard model of elementary particle interactions,
weak and strong interactions can be expressed through the two simple Lie groups,
SU(2) and SU(3) that are non-Abelian, respectively. Therefore, to explain all of
the four fundamental forces the study of non-Abelian gauge theory is required.

A more complicated local transformation associated to an N-dimensional
compact simple Lie group G is now considered. In adjoint representations, see also
in Appendix A, a set of scalar fields ¢(x)4, where A = 1,2,...N, can be written
as a scalar matrix ®(x) that transforms by elements of the Lie group G, U(z), as

(z) — &' () = U(x)®(x)U ' (x) (2.3.12)

where ®(x) = Th¢(x)?. These group elements can be written in an expoenetial

form,
Uz)=e " 074, (2.3.13)
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where a(x) are real parameters depending on the spacetime coordinates x, which
indicate that the above transformation (2.3.12) is local, and 74 are the group
generators satisfying the Lie algebra introduced in (A.10),

[Ta, T) = fa“Te, (2.3.14)

where fap" are real numbers called structure constants. A, B, and C label the
number of the group generators.

As in the Abelian case, a partial derivative of the scalar matrix ®(z) does
not transforms in the same way as (2.3.12). To preserve the local transformation
rule, the non-Abelian covariant derivative of a scalar matrix ®(z) is introduced
by the definition

D,®(z) = 0,2(x) + [ALu(z), D(2)], (2.3.15)

where A, (z) = A/} (x)T4 are the gauge field matrices whose transformation by the
group elements U(z) can be imposed to be

Ayu(r) = Aly(2) = U()Ay(2)U(2) " + U(2)9,U (),

» C (2.3.16)
=U(@)Au(@)U(x)" = (9.U(2))U(z) ",

where the second line is obtained through applying the Leibniz’s product rule to
the last term in the first line. By using these definitions, the non-Abelian covariant

derivative of a scalar matrix ®(z) now satisfies the same transformation rules as
®(2),
(D,®) () =0,(USU )+ [(UA, U —3,UU ), UdU ],
=U{0,2+[A,,®}U "+ (9,U)2U " — (9,U)0U "
—U®9, U +UPI, U,
=U(z)D,®(x) U (z)

(2.3.17)

Furthermore, by using the Lie algebra (2.3.14), the covariant derivative of the
scalar fields ¢(x)? can be written as

D™ (2)Ta = 0,0™ (2)Ta + fpc” AL ()6 ()T, (2.3.18)

where Af () are the G gauge fields. Eliminating the generators T4 gives the
definition of the gauged covariant derivative of scalar fields ¢*(x),

D¢ (x) = 0,0 (x) + foc* Af ()6 (2). (2.3.19)

The non-Abelian field strength matrices are defined by F,, () = [D,,, D,]
that can be expressed in terms of the gauge fields by

F,(2) = FA@) T4 = ,A,(2) — 0,A,(2) + [A,(2), A, (2)],

A A A B (2.3.20)
= (0,4, (z) = 0,A,(z) + fec" A, (2)AY (2))Ta.
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Thus the field strengths F ;j,‘, (x) are defined in terms of the G gauge fields Aﬁ as
Fio () = 8,4 () = 0,A5(x) + fre” Ay (2) AY (x). (2.3.21)

A gauge invariant action describing the dynamics of these gauge fields in D-
dimensional flat spacetime can be written in the similar form as (2.1.107) by
1 174
S[A] = o dPx FA FA. (2.3.22)
where ¢ is a gauge coupling constant that can be absorbed into the definition of

the gauge fields such that the covariant derivative of the scalar metrices and the
field strength metrices can be written as

DNCI)(:L') = auq)(ﬂﬁ) + g[Au(ﬂﬂ)’ ¢($>]7

2.3.23
Foul@) = <D, D.). (2:3:29)

Hence, the covariant derivative of the scalar fields and the field strenghts become

Dy () = 8,0™ (x) + g fnc AL (2)¢° (2),

.3.24
FA (@) = ,4%(@) — 0,A(z) + g5 A (2) AC ). (2324

The field equations and Bianchi identities describing the nature of the gauged
fields AZ‘ derived from the action (2.3.22) are of the same forms as given in Section
2.1.2.2 but the partial derivatives d, are needed to be replaced by the non-Abelian
covariant derivative D,,

DFFA (z) =0, (2.3.25)
D, F},(x) + D, Fj,(x) + D,F (x) = 0. (2.3.26)

Note that it is easier to write the non-Abelian gauged covariant exterior derivative
of any k-form and the definition of the field strength 2-forms by using diferential
forms,

A _ 7 A A A

A 1 A B . (2.3.27)
F5 = dAy) + §9ch Ay NAw,

where Aé) = Afl(x)dz* are the gauge 1-forms.

For SU(2) gauge theory, the structure constant is nothing but a three-
dimensional Levi-Civita symbol ¢;;;, from (A.21), where the gauge indices become
1,7,k = 1,2,3. The non-Abelian gauged covariant exterior derivative of any k-form
and the definition of the field strength 2-forms defined above are now written as

Dwék) = dwfk) + gsijkAzl) A wé“k), (2,3,28)

i i 1 j
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By using the isomorphism SO(4) ~ SU(2) x SU(2), an SO(4) gauge theory
can be obtained from the two sets of commuting SU(2) gauge groups that will
be exhibited later when our lower dimensional theory; N = 4 SO(4) gauged
supergravity is discussed in Section 2.4.2.

2.4 Extended Supergravity

Apart from Einstein’s general relativity, dimensional reductions can also be applied
to another gravitational theory combined with supersymmetry, the symmetry
between bosons and fermions, which is called supergravity. As mentioned in the
introduction, if gravity is quantized, it will give a notorious divergence.
Supersymmetry might cure this problem. In fact, supersymmetry is an essential
ingredient in superstring theory, a finite quantum theory of gravity in ten spacetime
dimensions. It is also strongly believed that N = 8 supergravity in four dimensions
might give a finite quantum theory.

Supergravity is a general relativity theory whose symmetries are extended
by local supersymmetry corresponding to supercharge operators @ [35, 37]. In
the simplest case with only one supersymmetry operator, there exists a spin
3/2 vector-spinor field called the gravitino W,(z) that is a superpartner of the
bosonic gravitational field ef.(z) relating to each other through supersymmetry
transformations. Moreover, supersymmetry can be extended by adding more
supercharge operators up to the number N. With more supercharge, there are
more fields contained in supergravity multiplet, a set of various spin fields
transforming to each other through supersymmetry transformations. For four-
dimensional supergravity, N = 8 is the maximal case that has all fields with spin
< 2 in its supergravity multiplet. Furthermore, supergravity can be considered in
higher dimensional spacetime in which their component fields have more degrees
of freedom. The eleven-dimensional supergravity is the unique maximal case
for the dimensional extension. Note that beyond these maximal limits, local
supersymmetry will be ruined and their equations of motion are all inconsistent
[35].

The simplest linear N = 1 supergravity in four-dimensional spacetime is
first introduced in this section to familiarize with the universal part of supergravity,
starting from gauging the global supersymmetry. After that, extended
supergravities involved in this study, both higher and lower dimensional theory,
will be considered.

First of all, the structure of global supersymmetry is required. The global
supersymmetry transformations that change a bosonic field denoted by B into a

fermionic spinor field, F', and vice versa, are schematically written in the following
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forms
0B  €F, OF o< ey"0,DB, (2.4.1)

where € is called the infinitesimal supersymmetry spinor parameter and v*(z) are
the coordinate gamma matrices, which are related to the Dirac gamma matrices
defined in Appendix B through inverse vielbein’s contractions, v#(x) = et (x)y®.
As shown in Appendix B, 70 is anti-hermitian and the rest 72 with 7 = 1,2,3
are hermitian®. Using this ’yﬁ, the Dirac adjoint can be defined in the same way
as (B.11) by € = eTi’yO. The commutator of two supersymmetry transformations
acting on a bosonic field leads to an operator that is proportional to the

spacetime-derivative,
[51,(52]3 X (617“62)@3. (242)

This implies the important fact that the commutator of two supersymmetry
transformations is an infinitesimal spacetime translation with a parameter €,v"¢y
that transforms under GCT in the same way as a (1,0) coordinate tensor
demonstrated in (2.1.21). Promoting the infinitesimal supersymmetry spinor
parameter to be dependent on spacetime coordinates turns the global
transformations to be local such that the supersymmetry transformation in (2.4.1)
can be written as

OB x é(x)F, OF x e(x)y"*0,B. (2.4.3)
Thus, the commutator of two supersymmetry transformations becomes
[51,52]3 X (Eyy“@)(x)@uB. (244)

For local supersymmetry, this commutator yields a vector field (€;v*es)(x)
corresponding to an element of spacetime (local) translation, which is called
diffeomorphism. Therefore, the local supersymmetry requires Einstein’s general
relativity describing spacetime metric as a dynamical object to assure the
diffeomorphism invariance.

Four-dimensional N = 1 supergravity is the simplest supersymmetric
theory describing gravity as a vielbein field eZ(m) together with its superpartner,
a Majorana gravitino ¥,(z) that is a vector-spinor field containing both vector
and spinor indices. The supersymmetry transformations relating these fields are

given in [35] by,

1
dey, = SE(x)Y" Y,

2 1 (2.4.5)
80, = Dye(x) = 9e + ~wpay™e,

4
where v = 1[y* 4*]. Here, D, = enDa = Oy + twuapy™ is defined to be
the Lorentz covariant derivative for a spinor. At this moment, the gravitino

*For avoiding confusion, the hat-indices are now used to separate flat spacetime indices from the curved

ones.
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behaves as a gauge field of the local supersymmetric theory. Therefore the linear
supersymmetric Lagrangian density for this theory, which is invariant under the
local supersymmetry transformation (2.4.5), is just a combination of the ordinary
Einstein-Hilbert Lagrangian density, introduced in (2.1.95), and a kinetic action
expressing the dynamics of the gauge field gravitino given by a Rarita-Schwinger
Lagrangian density in [38], of the form

L= /CEH + ﬁRS, = \/ |g| [R + ‘I’M’}/MVPDV\pr]. (246)

Here ~#° = %{7“, 7*P} and the gravitino covariant derivative is given by D, ¥, =
0V, + }lwyaw“b\llp. Note that the equation of motion for this gravitino gauge field
can be obtained through the variation of this Lagrangian density with respect W,

as
YDV, = 0. (2.4.7)
helicity | =2 -3 -1 -3 0 1 1 3 2
N=1 1 1
N=2 2 1
N =4 14 6 4 1
N=8 |1 8 28 5 70 56 28 8 1

Table 2.1: The various supergravity multiplets for N = 1,2,4,8. [37]

Adding more supercharge operators extends supergravity to the N >
1 case whose supergravity multiplet contains various fields, as shown in Table
2.1. Here helicity is the projection of the spin onto the direction of the linear
momentum. This quantity can be both positive or negative while the spin is just a
positive integer or half-integer. Apart from the maximal N = 8 case, supergravity
multiplets in Table 2.1 are not invariant under CPT discrete transformations that
all physical theory must be invariant under these transformations

e Charge conjugation : the transformation between paritcle and anti-particle,
e Parity : the spatial inversion (7 <> —7),
e Time reversal : the time inversion (t <> —t).

CPT transformations just flip the helicity of each field in the supergravity multiplet
to the opposite sign. Therefore CPT invariant supergravity multiplets can be
obtained by adding their CPT conjugate states to the multiplets. For example,
in the N=1 case, the supergravity multiplet invariant under CPT transformations
contains (2, 2) and (-2, —3) states corresponding to a graviton % and a gravitino
V,. Note also that the number of bosonic and fermionic states are always equal
in each supergravity multiplet [35, 37], for example in the maximal N = 8
supergravity, the CPT invariant supergravity multiplet has 256 degrees of freedom,

which are divided into 128 bosonic and also 128 fermionic states [37].
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2.4.1 Eleven-dimensional Supergravity

The higher dimensional theory for this study is the effective theory of M-theory
i.e. the unique eleven-dimensional supergravity firstly constructed by Cremmer,
Julia, and Scherk in [12]. In eleven dimensions, one may expect that this N = 1
supergravity will contains only a graviton é (x) and a vector-spinor gravitino
Uy(z) in the same way as the simplest N = 1 four-dimensional supergravity
introduced previously, where M = 0,1,...10 is a curved eleven-dimensional
spacetime index, M = 0,1,...10 is an eleven-dimensional flat space index, and
hat-fields are eleven-dimensional bosonic fields.

However, fermionic degrees of freedom from the Majorana vector-spinor
is 128 in eleven dimensions, while degrees of freedom from an eleven-dimensional
graviton is just 44 [35, 37]. Thus 84 bosonic degrees of freedom are missing due to
the fact that the number of bosonic and fermionic states are always identical
in each supergravity multiplet. An antisymmetric 3-form potential AMNp(x)
corresponding to the missing 84 bosonic degrees of freedom is added to the
supergravity multiplet to fix this problem. Consequently, the unique eleven-
dimensional supergravity contains a graviton field é%(az), a 3-form potential
AMNp(a:), and a Majorana vector-spinor gravitino Wy (z) where their

supersymmetry transformations are given in [35] by,
v _ L
0éy = 2&7 W,

V2

6War = Dy(@)e + oo S(VMN@PM — 8yNOPSI B oo pEs (2.4.8)
SAnnp = —Z%/EE’Y[MN\I’P],
in which
Dy (@)e = Opre + Z(IJMNP’YNPE,
OyRp = Wyp — i(‘PM%ﬁ‘I’N — Uy ¥p + Upryy Uar), (2.4.9)

N . 3
Fyunpg = 40 Anpg) + 5\/5‘1’[M’YNP\I’Q]-

The tillded spin connection and field strength are called supercovariants that are
the same hat-quantity added by gravitino’s interaction terms from the following
3-form potential’s Lagrangian density [35, 37],

1 - . 1 N R .
La=+/]9| [ - — MNPQFMNPQ + MEML“MHFM1...M4FM5...M8AM9...M11

V2 - . .
— S (MNOPRR 4 129 MN gORGPRYY o (Fyivop + Fuvor) |

(2.4.10)
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where the components of the 4-form field strength are defined by 13 MNPQ =
48[MANPQ while the second term is called the Chern-Simon term. Together
with the naive eleven-dimensional supergravity Lagrangian density, the analogue
of (2.4.6),

Lo =9[R+ TpyMNP DT, (2.4.11)

the full Lagrangian density of the eleven-dimensional supergravity can be obtained,

u 1
Ef iw_ /_\g\ [R X \IJM,}/MNPDN\IJP 4 MNPQFMNPQ

48
— @‘ MNOPQR MN _0Q PR 2 ~
192 Yoy + 129" g g ) U R(Funop + Funor)
1 ~ el ~
—+ —207365M1...M11 FMl~~'M4FM5-~~M8AM9.A.M11 .

(2.4.12)

Nevertheless, in most applications, only bosonic parts are sufficient to perform the
dimensional reduction while all fermionic fields can be obtained from
supersymmetry transformations (2.4.8). Therefore, the bosonic Lagrangian density
for eleven-dimensional supergravity consists only of the usual Einstein-Hilbert
Lagrangian density along with kinetic and Chern-Simons terms of the 3-form

potential Aynp (x) as

~ 1 - ~ ~ ~ ~
L1 =+/|g|[R - = MNPQFMNPQ] + MM B s Ay My

20736
(2.4.13)
or in the more compact format using differential forms,
~ 1. - . 1. . .
L1 = R¥1 — 5* (4) N\ F(4) + EF(4) A F(4) A A(g), (2.4.14)

~

where the 4-form field strength is defined by F = dA(3). There are three bosonic
equations of motion in this theory,

1

. 1 - .
Run = E(F}%M — EgMNFa)), (2.4.15)
. 1. -
dFyy =0, (2.4.17)

where the two contractions of the field strength’s components are given by F 2N =
Fy PO R0 W @ and F = Fun PQF MNP® While the first two equations describing
the dynamics of both bosonic fields, the graviton and the 3-form potential, can be
directly derived from the bosonic Lagrangian density (2.4.14), the last equation is
just the Bianchi identity arisen from the definition of the field strength 4-form.
The clues to the dimensional reduction on S7 of this theory can be

investigated from the eleven-dimensional Einstein’s field equations (2.4.15)
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describing the curvature of eleven-dimensional spacetime coupled by the gauge
matter fields. This is obtained by assuming that eleven-dimensional spacetime
is splitted such that the spacetime index can be written as M = (u, m), where
i is a four-dimensional spacetime index and m is running over the remaining
seven-dimensional space, along with setting all components of the 4-form field
strength to be zero except

F;u/pa = _3\/§g€uupa7 (2418)
where ¢ is a constant. Note that this field strength’s assumption satisfies both
equations of motion in (2.4.16) and (2.4.17). Thus, all contractions of the two
field strengths can be obtained by

F2, = —108¢%g,,, F2,=0, F2 =-432¢". (2.4.19)

mn

Substitutions of these contractions into the eleven-dimensional Einstein’s field
equations (2.4.15) lead to two separated Ricci tensors corresponding to four-

dimensional spacetime and seven-dimensional compact space,
R, = —6gqu,,, Emn = 30°Gimn. (2.4.20)

The opposite-sign between the two Ricci tensors indicate that the eleven-
dimensional theory admits AdS,; x S” solutions since these Ricci tensors can be
directly obtained from the four-dimensional metric g,, describing AdS, and the
seven-dimensional metric g,,, on S7 with radius 2¢~! respectively. Therefore if
the dimensional reduction on S7 is applied to the eleven-dimensional supergravity,
four-dimensional supergravity will be obtained together with non-vanishing
cosmological constant related to the seven-dimensional sphere’s radius.

In this study, we will use this fact to perform dimensional reduction of
the eleven-dimensional supergravity to obtain N = 4 gauged supergravity in four
dimensions. However, the compact space is not the full S” but the truncated
foliation x93 x S3. Note that these eleven-dimensional equations of motion,
(2.4.15) to (2.4.17), are needed for the dimensional reduction such that their
substitutions by given reduction ansatze, expressions of the two eleven-dimensional
bosonic fields in terms of the lower dimensional ones, have to yield all equations
of motion in the reduced theory to achieve the consistent dimensional reduction.

2.4.2 N = 4 Gauged Supergravity in Four Dimensions

There are two discovered versions for four-dimensional N = 4 supergravity [39];
the first one is a theory that has a global SO(4) symmetry [40, 41], and another
version with global SU(4) symmetry [42]. SO(4) gauged supergravity is the main
dimensionally reduced theory obtained from the dimensional reduction of the

eleven-dimensional supergravity in this study. Besides, there is a one-way map
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from this standard SO(4) gauged theory to another gauged supergravity, known
as Freedman-Schwarz model [43], in which the four-dimensional supergravity is
gauged by SU(2) x SU(2) subgroup of the global SU(4) symmetry. Therefore,
after introducing the main reduced theory, N = 4 SO(4) gauged supergravity,
this related Freedman-Schwarz N = 4 SU(2) x SU(2) gauged supergravity will be
given together with the one-way map from the main SO(4) gauged theory.

As shown in Table 2.1, N = 4 supergravity contains the following fields in
its CPT invariant field content, i.e.

e 1 spin-2 graviton e},

e 4 Majorana vector-spinor gravitinos, Wi,

e 6 gauge fields AZ‘B, where the two upper indices are anti-symmetrized,
e 4 Majorana spinor fields A%,

e 2 real scalar fields, A and B, corresponding to the complex scalar field W =
—A+ 1B [39],

where o, 8 = 1,2,3,4. For the first kind of this N = 4 theory that is invariant
under a global SO(4) transformation, the local supersymmetry transformations

relating the above bosonic and fermionic fields are given in [40] by

oey, = — 1€y U,
T —Q 17 v e}
ow = $u — 1667"7 prpﬂ,
aff __ i aBys 1) —an1, B —B\1
0A; —ﬁ[e TE YN+ W, — € \I/u],
_ i 1 (2.4.21)
IN =— (0, A + i OBy — ——_cB70gh /U/F’Yg’
7 (OuA +iv;0B)y VG Y
1
0A =——e*\“,
2
5B :%eawa,

where € are four spacetime dependent majorana spinor in which right covariant

dericatives of their dirac adjoint are given by é*V, = 0,€* + }lw#abﬁ‘yab and the
field strengths F are defined by Fo = 9,A%% — 8, A3°.

To obtain the SO(4) gauged supergravity, the isomorphism SO(4) ~

SU(2) x SU(2) is used. Thus the six gauge fields in the above N = 4 supergravity

multiplet are divided into the two sets associated with each SU(2) gauge group

defined by

i A1 af A1 1 af

A, = a AT, Al = bz AT, (2.4.22)
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where i = 1,2,3. Here a’ and b’ are the six real anti-symmetric 4 x 4 matrices
represented by the Pauli matrices from (A.19) in [43] as

alzl'o o3 a2:1——z'02 0 33:1—0 —oy
2 —03 0 ’ 2 0 —iUQ ’ 2 01 0 ’
1[0 1 1 [—io, © 1[0 io
b! = b* = - b’ = - . (2423
2 -1 0 ] ’ 2 0 iO’Q] 7 2 iUQ 0 ] ( )
These matrices generate the Lie algebra SU(2) x SU(2),
[a’, a’] = Fa”, b’ b’] = b, [a’,b/] =0, (2.4.24)

which are two commuting SU(2) Lie algebras from (A.21). Therefore, the SO(4)
gauged supergravity can be described as a theory that is gauged by two commuting
SU(2) gauge groups. The SU(2) Yang-Mills field strength 2-forms are given by

i 7 J k
F(Z) = dA(l) + §ggz]kA(1) VAN A(1)7
1 (2.4.25)
[ At AJ Ak
F(2) = dA(].) + §g€l]kA%1) A A(l)’

where ¢ is a gauge coupling constant. The couplings for the two factors of SU(2)
can be chosen to be equal in this case without losing of generality. The bosonic
Lagrangian density of the four-dimensional N = 4, SO(4) gauged supergravity
can be written in differential form as [23],

1 1 1 . .
550(4):R*l—§*d¢/\dq§—§X4*dX/\dX_v*1_§X_2*F(Z2)/\F(z2)

Lo o i Lo i Lo vog2mi i
(2.4.26)
where the potential V' is given by
V=244 X*+ X?), (2.4.27)

and the two scalar fields, called the dilaton ¢ and the axion Y, are written as
X = e%¢, X=X where ¢ =1+ y?X" (2.4.28)
These two real scalar fields are related to the complex scalar field W defined by
= —-A+iB or W = ¢e“ tanh %)\ through the following parametrisation
L,y
cosh A = cosh ¢ + 5xe

1
cososinh A = sinh ¢ — §X2e¢, (2.4.29)

sinosinh A = ye?,
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which is a map from a two-dimensional metric ds3 = d\? + sinh® Ado? to ds? =
de? + e*dy®. This SO(4) gauged Lagrangian density is invariant under the
ungauged supersymmetry transformations in (2.4.21) added by some extra terms
for fermionic fields due to gauging process,

_ 7 g
YU = — %y, —— T,
2 (L WP

All equations of motion describing each bosonic field can be directly
obtained from variations of the above bosonic Lagrangian density (2.4.26). Firstly,
the equations of motion for the two scalar fields; the dilaton ¢, which is now
described by X, and the axion Y, are

1 1 . .
d(X71 e dX) = = X e dx Nx + g7 (X7 = X724 XX )eqa) + X7 % Flgy A Fy)

1 v —4 11 [ 1 — [ [
+ EXX 4F(2) N F(Q) — Z(l — X2X4)X2q 4 * F(2) A\ F(2)7
(2.4.31)
4 2 2 1 2 yv4\ v—4 i n 1 I I3
+ XXGq_4 kS F(E) A\ F(i2),
(2.4.32)

where €4y = %ewpa dx? A dx¥ A dxP N dx? is the four-dimensional volume form
defined in (2.1.53). The two Yang-Mills equations, the equations of motion
describing each SU(2) gauge fields, are given by

D(X 7% Fly)) = —dx A Fly, (2.4.33)

D(X 72 % Fly)) = d(xX*X72) N Fly, (2.4.34)
where both D and D are the SU(2) gauge covariant exterior derivatives for
each SU(2) gauge fields, expressed in (2.3.28). Moreover, there are two Bianchi
identities automatically followed from the definitions of both SU(2) field strength
in (2.4.25),

DFpyy = dFjy) + geii Ay A Fyy =0, (2.4.35)

DFjyy = dFjyy + geipAfyy A Fyy = 0. (2.4.36)
Finally, the last four-dimensional equations of motion are the usual contracted

Einstein’s field equations with the remaining fields being gravitational sources
together with the scalar potential V. These can be written in the following typical
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component form,

1 1 1 Lo o/ i 1 i
Ry = 50,6 006 + S X X Ox + 50wV + 5 X 2 (FL P — 200 (F)°)
Lo o i i 1 [
+ S XELEY = 100 Fy)?)

(2.4.37)

where R, is the four-dimensional Ricci tensor and p,v = 0,1,2,3 are the four-
dimensional curved spacetime indices. It is easy to see that this gauged theory
admits an AdS vacuum solution through these Einstein’s field equations. By
setting all the six gauge fields and the two scalar fields* to be zero such that there
are only the spacetime’s equations of motion,

R = —69,,9%, (2.4.38)

which is the Ricci tensor describing vacuum AdS, spacetime’s curvature.

The Freedman-Schwarz N = 4 SU(2)xSU(2) gauged supergravity contains
the same bosonic fields as the SO(4) gauged theory while its bosonic Lagrangian
density is given in [23] by

1 1
£fS=R*l—§*d¢/\d¢—562¢*dx/\dX_VFS*1

1 ) ) 1 ~ . ~ . 1 ) ) 1 =~. ~
ol i Pt ) i i I i % %
(2.4.39)

Here the Freedman-Schwarz potential is
Vis = —=2(¢* + §°)e?, (2.4.40)

where the two coupling constants g and g are independent and correspond to each
SU(2) gauge group. The two SU(2) field strength 2-forms are defined in the same
way as (2.4.25) but using different coupling constants,

Flyy = dAjy + %ggijkA'Zl) A Ay,
» N 1 B . (2.4.41)

Flyy = dA(y) + igsl-jkA{I) A A,
This Freedman-Schwarz Lagrangian density is invariant under the ungauged
supersymmetry transformations of the second version of four-dimensional N = 4
supergravity containing a global SU(4) symmetry given in [43] together with the

following extra terms for fermionic fields,

_ i
(;/qfa = —e¢/2Eo‘(g + 275.6)75
m )
2v2 (2.4.42)

1 )
A = §e¢/2€ﬂ(9 +1759)-

*In general vacuum solutions, scalar fields are the critical points of the scalar potential and need not
be zero.
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As mentioned before, there exists a one-way map to this Freedman-Schwarz
supergravity from the standard SO(4) gauged theory [23]. The distinction between
the two equal SU(2) gauge coupling constants in the standard theory can be
obtained by making the fields and coupling constant redefinitions as follow

¢:¢/+k, X:X/e_k,
Ay = Ay, Al = Afye ™, (2.4.43)
g/ _ gek/Q, g/ _ gefk/g’

where k is a constant. After that, dropping the primes makes the SO(4) bosonic
Lagrangian density in (2.4.26) unchanged under these redefinitions except for the
definitions of the two SU(2) field strength 2-forms, which are now defined by
(2.4.41), and the potential V' that can be written in the following forms

V = —8¢g — 2¢°X?% — 25°X?,
= —897 — 2(¢* + §°) cosh A — 2(g*> — §*) cos o sinh \,
1

- (P =|W) =21 =3W|*) —4g,.g_A).
1_|W|2(Q+( W17) —g=( |W1") —4g,9-A)

(2.4.44)

In the second line, the two scalar fields are parametrized by (2.4.29), while in the
last line, the potential V' is written in terms of the complex scalar field W, and
two coupling constants g+ = g & §. Besides, the redefinitions (2.4.43) also turn
the extra terms in the supersymmetric transformations for fermionic fields (2.4.30)
into [23, 39

IANTEe Z - + - _A+Z B
5o = e %[9+ 9-( : 1/35 J

V2 (1= W) (2.4.45)
5o = Lealg+(A—18) — g

2 -y

From this g # g SO(4) gauged supergravity, the Freedman-Schwarz model can
be obtained by applying the following redefinitions of the fields and coupling
constants,
x=x+b Ay =0A%, g=gb" (2.4.46)
where b is also a constant. Then, after taking the limit b — oo and dropping the
primes, the bosonic Lagrangian density for the Freedman-Schwarz supergravity in
(2.4.39) is finally obtained together with the extra terms in fermionic
supersymmetry transformations (2.4.42), while the ungauged supersymmetry
transformations (2.4.21) map to the transformation rules in [43] appropriately.
In conclusion, the Freedman-Schwarz model can be derived from the SO(4)
gauged supergravity. However, this map is irreversible since there is no analogue
scaling of fields and coupling constants turning the Freedman-Schwarz gauged
theory into the SO(4) gauged supergravity [23]. The scaling (2.4.43) means there
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is no distinction between the situations where the gauge coupling constants g
and ¢ are equal or unequal because they leave the SO(4) gauged Lagrangian
density invariant. Whereas, the loss of this scaling in the Freedman-Schwarz
model indicate that the ratio between these two SU(2) gauge coupling constants
is a genuine parameter of the theory. Afterwards, the redefinitions of these fields
and coupling constants mapping the standard SO(4) gauged supergravity to the
Freedman-Schwarz model will be reconsidered in the investigation of the effects of
this one-way map on the Kaluza-Klein reduction ansatze giving N=4, half-maximal
SO(4) gauged supergravity from eleven-dimensional supergravity in Section 3.1.



CHAPTER III
DIMENSIONAL REDUCTION

The dimensional reduction of eleven-dimensional supergravity giving rise to half-
maximal N = 4 SO(4) gauged theory in four dimensions will be demonstrated
in this chapter. The reduction ansatze for the bosonic eleven-dimensional fields,
i.e. the metric and the 4-form field strength, are first discussed together with
their geometry and symmetry. After that these ansatze will be substituted in all
eleven-dimensional equations of motion in Section 3.2 to verify the consistency at

the level of equations of motion for the dimensional reduction.

3.1 Reduction Ansatze

The consistent reduction ansatz for the eleven-dimensional metric can be deduced
from the maximal Abelian case U(1)* and the full S7 reduction ansatze in [14]
and [17] respectively, as explicated in Appendix C. This metric ansatz describes
eleven-dimensional spacetime as a product space between four-dimensional
spacetime and a distorted seven-dimensional sphere where its geometry can be
described as a foliation of S3 x S3. By the fact that three-dimensional sphere S is
a group manifold of Lie group SU(2), parts of the metric ansatz involving S* can
be obtained from the Scherk-Schwarz reduction [24]. Therefore the whole metric

reduction ansatz is given by
2

2 A249 onZg0 L 9,2 c 2 s 7i\2
dSH —A3d34+29 A3d§ +§g A3 [m zl:(h) +52X2——|—62223(h) }7
(3.1.1)

where
A= [(02X2+32)(32X2 +62)}%’
c=cos, s=siné, (3.1.2)
b =0, — gAél), h=g; — gzzlél).
The six quantities, o; and &; , are left-invariant 1-forms on each S* [44] satisfying
the Maurer-Cartan algebras:
do; = —§5ijk0j Noy, do; = —Esijkfrj A Op. (3.1.3)

It is more explicit to consider the geometry of eleven-dimensional spacetime in
“unexcited” state where the SU(2) gauge fields, axion, and dilaton vanish such
that

= [(P+ )P+ A2 =1, (3.1.4)

Therefore the metric reduction ansatz (3.1.1) becomes

1 1
ds}) = dsi + 297 [dé”Q +c*2 ) (007 + 5% Z(@)Q] , (3.1.5)

% %
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where 13" .(0,)? = dQ3 and 13°,(5,)? = dQ3 are the metrics on the two round
unit three dimensional spheres S3 [38]. The terms in the bracket represent the

metric on the round unit seven-dimensional sphere S7,
A2 = de* + 2dQ2 + 22, (3.1.6)

where ¢ is called the “latitude” coordinate running between the limits 0 < & < 7/2,
at which one of the two S3 shrinks to zero radii. In this unexcited state, the metric
ansatz in (3.1.5) clearly describes the compact space as a round S7 with radius
V2 /g. However, the existence of other fields distorts the shape of the round S7.
While the consistent reduction ansatz for the metric can be deduced by
using the SU(2) group reduction, the 4-form field strength ansatz are determined
by a trial and error process introducing additional terms from the already known
reduction ansatz in the Abelian case [17] until the dimensional reduction are finally
consistent. The reduction ansatz for the 4-form field strength is given in [23] by

2sc
g

where
U= (X% +X%2+2). (3.1.8)

The primed terms can be described as an exterior derivation of the primed 3-form
potential ansatz, F = dA’ , that is purely given in terms of the two S? of the

form
Al = few + [, (3.1.9)

where the two volume forms on each S? are defined by

1
€@3) = B'EUkh AR ARF

1 o (3.1.10)
g(g) = ggijkhz AN A hk
The two functions, f and f, are given by
_ —304 X2 2X2 +s 7
f=3 \/—g XX(c o7
3 1 st a2 e (3.1.11)
=———q X?%(s*X% 4 ¢
f=-3 N (s )
Hence, the primed 4-form field strength ansatz can be written as
: of af of
Fi,y= ==dx Ne ——dX A dé A
W= g TaxdX New T gede N
0 . 0
—l—%dx/\e(g)—i- a){,dX/\egg)—i- Jgdg/\e(g,) (3.1.12)

1 o 1 S
— 5 fgik ' AR Ay — 5 fgei W AR A EY
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The remaining terms contained in F(’fl) involving to the two SU(2) field strength
2-forms, F&) and FZQ), are given by

_92 _9
; g - % 7 g — i i
F(lzll) = ESCX Qdf VAN h A *F(2) —+ 4—\/§CQX 25’ij‘h A h] A *F(ké)

g2 g2

— %SCX_ng AhE A *F(g) + mSQX_Z&‘ijkiLi AR A *F(kg)

) -2
g i i 9 i j
+ ESCde WA F(Z) + 4—\/§CQX€ijkh AR A F(kQ)
) —2
+ L _sexX2X2e N A By — I XX e A A By,

V2 4v2
(3.1.13)

Note that these reduction ansatze for both eleven-dimensional bosonic fields still
depend on the internal space coordinate £ through its sinusoidal functions, s and
c. In order to obtain all four-dimensional equations of motions in SO(4) gauged
supergravity, (2.4.31)-(2.4.34) and (2.4.37), every single £-dependent term arising
from substitutions of the eleven-dimensional equations of motion, (2.4.15)-(2.4.17),
by these reduction ansatze need to be canceled. Therefore the consistent
dimensional reduction between the two supergravities is achieved.

The reduction ansatze, (3.1.1) and (3.1.7), are invariant under a residual Z
subgroup of the original global SL(2,R) symmetry of the ungauged four-dimensional
N = 4 supergravity that transforms the various quantities to their primed image
by

X' = X/) X/X/2 — _XX27
W i T i
Ay = Ay, Ap) = Ay,
d=s, §=-c (3.1.14)
Wi=Fi W= hi
6,(3) = g(g), €,(3) = 6(3).

This residual Z, corresponds to an interchange of the two S® in the foliation of
S3 x S3. In the four-dimensional theory, this associates with an interchange of the
two SU(2) gauge fields.

Moreover, it is of interest to see what happens to the reduction ansatze, if
the fields and coupling constants redefinitions in (2.4.43) and (2.4.46) are taken.
For the metric ansatz, these redefinitions turn the metric (3.1.1) into

1 2 2 o~ 1 ) 1 ~.
2 (L 2[ o 2 L o2 V2 | L2y -2 2
d511—<2bX)5[d54+_g§d§ +29 X El (h') —|—29 X EZ (h') }, (3.1.15)

where the new latitude coordinate is defined by & = b_%é + iﬂ. The reduction
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ansatz for the 4-form field strength (3.1.7) reduces to

. b N 1, o
Py = <= ( X dx N dE = 59728 A ey — 55720 N

V299 2 (3.1.16)

L i PN PR 7i
+ 597 EA By AB' 4 357E N Fily AR

through these fields and coupling constants redefinitions. Note that even though b
is sent to infinity, these reduction ansatze are still consistent. In eleven-dimensional

theory, there is a scaling symmetry under
gun = € gun, Aynp = e Aynp, (3.1.17)

where k is a constant, that leave all equations of motion unchanged. Substitutions
of these dimensional reduction ansatze, which contain overall constant factors b3
and b for the metric and the 4-form ansatze respectively, into the eleven-dimensional
equations of motion cancel these factors out from the equations of motion. Therefore,
the factor b is effectively set to be any value under these scaling (3.1.17) and it is
conveniently set to be b = 2 [23].

The reduction ansatze (3.1.15) and (3.1.16) can be interpreted as ansatze
for two-step dimensional reduction obtaining another N = 4 gauged theory in
four dimensions. The first step is the simplest Kaluza-Klein reduction of eleven-
dimensional supergravity on an internal space S! described by the new latitude
coordinate 5 giving rise to ten-dimensional type IIA supergravity. In this case,
the reduction ansatze for the metric can be written in the same form as (2.2.6),
while the 4-form ansatz for the Kaluza-Klein reduction on S* is given in [7] by the
following form

432, = e 5%ds?) + 39 (d€ + Aw)?,
Fay = Fuy + Fay A (dE+ Ay),

where ¢ is a ten-dimensional dilaton scalar field and A(y) is called the Kaluza-Klein

(3.1.18)

U(1) potential 1-form obtained from a dimensional reduction of the metric S,
while the lower-dimensional 4-from and 3-form field strengths are defined by F(4) =
dAz) — dA@) N Aqy and Fis) = dA (o) respectively. Comparing these ansatze with
(3.1.15) and (3.1.16) leads to expressions of all bosonic fields in the type IIA
supergravity in terms of the four-dimensional ones,

dsty = %)é |eidst + e H (g Y ()2 + 572 Y0

K3 2

1 - P —1 i i =—1 7 7i
Fis) = —[262¢*dx+g 26(3)+g 26(3) —g 1F(2)/\h —J 1F(2)/\h ,

V299
1 3 qg
—_ - ——1 —_—
@ 2¢ 4og(2),

Flay =0, ./4(1) =0.
(3.1.19)
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These expressions can be viewed as the reduction ansatze for the second step
dimensional reduction of the ten-dimensional heterotic supergravities on an S® x
S3 internal space giving rise to the Freedman-Schwarz model demonstrated in
[45]. Therefore, the reduction ansatze (3.1.1) and (3.1.7) can also reduce eleven-
dimensional supergravity to another version of four-dimensional gauged
supergravity, the Freedman-Schwarz model, through the two-step dimensional
reduction described above when the field and coupling constant redefinitions in
(2.4.43) and (2.4.46) are taken.

3.2 Dimensional Reduction Procedures

All procedures of examining the consistency at the level of equations of motion
for the dimensional reduction are established in this section through substitutions
of eleven-dimensional equations of motion, (2.4.15)-(2.4.17), by the two reduction
ansatze given in the previous section. If these ansatze lead to the consistent
dimensional reduction of eleven-dimensional supergravity giving rise to the N =4
SO(4) gauged supergravity in four dimensions, these substitutions have to yield
all four-dimensional equations of motion that are introduced in Section 2.4.2.
Fortunately, there are two equations of motion in the four-dimensional
SO(4) gauged supergravity directly arisen from the definitions of the SU(2)
Yang-Mills field strengths in (2.4.25) without dimensional reduction procedure.
These two equations of motion are the Bianchi identities (2.4.35) and (2.4.36) for
each set of SU(2) Yang-Mills field strengths that can be written in component

forms as
DaFiC +D Fcia + DCF; =0,
o be T o T b (3.2.1)
D.F,.+ DyF., + D.F, = 0.

Here D, and D, are the Lorentz SU(2)-gauged covariant derivatives defined by

i _ i c pi
DoFy, 4, = acLPl>1...l;p — wa'p, Pe

. . c 7 .. J pk
by Wa prbl...c + ggZJkAanl-- by

L _ N - (3.2.2)
% % c i c % k
Danl...bp = aapbl...bp — Wa InPc...b,, — o wap, ot gfijkAZszl...bpa

in which P,flmbp and pgl._.bp are components of the two p-forms separately charged
by each SU(2). These Bianchi identities are very helpful for substitutions involving
the equations of motion for the SU(2) field strengths. Note that it is simpler to
deal with flat spacetime so all substitutions of the eleven-dimensional equations
of motion will be more conveniently performed in the Lorentz frame described by

vielbein non-coordinates bases.
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Our dimensional reduction procedures take the first step from the simplest
equation of motion in eleven dimensions, the Bianchi identity (2.4.17),

If the reduction ansatz for the eleven-dimensional anti-symmetric tensor is
constructed on the fundamental 3-form potential A(g), this equation will obviously
satisfy due to the property of the nilpotent operator in (2.1.43), d2121(3) = 0.
However, there is no way to express an explicit form of the potential from our
field strength ansatz (3.1.7) [23], so the Bianchi identity is not a true identity.
Substitution of the 4-form reduction ansatz in (3.1.7) in this equation of motion
leads to some of the four-dimensional equations of motion. However, an exterior
derivative of the primed 4-form field strength ansatz vanish due to the property
of the nilpotent operator, dﬁ’(’4) = d2fl’(3) = 0. Thus the remaining terms in an

exterior derivative of the 4-form ansatz (3.1.7) are

A = d(g\@U%) _ d(;j%Xl xdX A df) + d(%

9 oeX2dE N A #F ) +d(— \/_ EX eyl A A )

VX dy A dg)

—2
CX 2d§ N hz A *F(2)> + d(W82X 52]khZ A hJ A\ *F( ))

g2
c X%kh NN F(2)>

sexdé A i A Fy >+d<

LS NG
—2 ~ . . —2
L sexX2X g AR A By )~ d( . =

S2XX2X_2€ijkiLi VAN iLj VAN F(’Z)) .
(3.2.3)

There are five non-zero components survive from this simplest substitution
corresponding to the following 5-form’s bases i.e.

o (d€ A €(y)) basis

This basis is obtained from the first line in (3.2.3) and the terms containing

d¢ in their bases. The component corresponding to this basis equals to a
particular combination of components of the two equations of motion (3.2.10)
and (3.2.11) for the dilaton and the axion respectively,

O¢ — X*Ox =X*0"0.x + 2x X000, x + 2¢°[X? — X? + x* X7

1 - 1
— _X72FébF2ab 8X abchz z (324)

+

=

v —2 1 Tia 1 abed 171 i
X2, e 8XX2X 2gabed i i
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o (dEAR Ne* Neb Nel) and (WP AR A e Aeb Ael) bases
These two bases can be obtained from the second and the fourth lines in
(3.2.3). While the first basis is obtained from the two left terms containing
d¢, the second basis is obtained from the right terms. By using the four-
dimensional Bianchi identity of the untilded SU(2) field strength given in
(2.4.35), the two components imply the same equation of motion for the first
SU(2) Yang-Mills field strengths,

) ) 1 )
D F' = 9,pF" + §X25abcdaaXng, (3.2.5)
that is a component form of the first Yang-Mills equation of motion (2.4.33).

o (dENR Ne* NeP Nel) and (P AR Ae® A e Ael) bases
These two bases are parallel to the previous ones and can be obtained from
the third and the fifth lines in (3.2.3). These two components equal to the
component form of the equation of motion for the tilded SU(2) Yang-Mills
field strength Fé) in (2.4.34),

Daﬁwiab :(X2X4 . 1)q72aa¢ﬁwiab + 2XX72X28aXFiab
L abed g2 2 yrd i (3.2.6)
- 55 X [2Xaa¢ + (1 - X X )aaX} ch7

when another four-dimensional Bianchi identity is applied.

Therefore, the substitution in this simplest higher-dimensional equation of motion
of the 4-form reduction ansatz implies the two SU(2) Yang-Mills equations and a
particular combination of the equations of motion for the dilaton and the axion
in four-dimensional spacetime.

Then, the next substitution in the equation of motion for the 4-form field
strength (2.4.16) with the 4-form reduction ansatz is considered. As shown in

(2.4.16),
. 1.
d*F(4) = —§F(4) A F(4),

this equation requires the eleven-dimensional Hodge duality of F(4) that turns the
4-form field strength into a 7-form expressed through (3.1.7) by

A
~

1 1
*Flg) :Zg_68363A_2U d§ Ne@y N €y — —g_634c4A_2X_1dX N €3y N €3)

. v ) (3.2.7)
+ gg_684c4A_2X4de N €@y N €Egz) + >T<F('4) + % (,4/1)‘



The eleven-dimensional Hodge duality of 13 (’ 5 is given by

. ) s
My = — \/§g13303A2§238—£ x dx A dE N Eg)

of

— ﬁg—ls3c—3A—2936—X * dX A dE N &)

1 0
+ —gS3C_3A_2938—£ €4) N €@3)

V2

+ \/59_18_363A_2QS% *dx N\ dE N e

of

Vs Afzgsa_x *dX N dE N e

| s
- —gs_3c3A_2§23% €1y N €@3)

V2

1

V2

1 - - - _
+ —2f9725’103Q’1Qd£ AR A xFig) N €y,

%

fg 2P QO AE AR A < Fly N
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(3.2.8)

where the two scalar quantities O = 2X2s? and Q = s2X2 + ¢2 are defined in

(D.2), and the last term %F(Q) is given by

A

*>

16
L -1y — i i A
— 19 P3O X T2dE N R N Fioy N €

1 N L
— —g’5s2c4Q’1X’25ijk F(ZQ) AR AREA €(3)

16
1 - L
+ Zg—f’sc?’Q—1&2)(—%55 AR A Flyy A e
1 oy on o .
+ 69 P10 e * Fioy AR A h* A €(3)
1 X o
+ 19758309971)(615 AR N xFio) N €

1 . o
— —g_58204Q_lxX2X_25ijk * F(’2) AR ARFEA €(3)

16

1 ~ ~ -~ ~
+ Zg’5sc3Q’1QXX2X’2d£ AR A xFly) N eg).

1 ~ 4 .
= — =g s QT X ey Flyy AW AR A&

(3.2.9)

We now take an exterior derivative on this 7-form and substitute this into the
left-handed side of the equation of motion for the 4-form field strength in (2.4.16)
together with a wedge product of the two ﬁ’(4) on the right-handed side. This

equation of motion now describes an 8-form in which there are 13 differential bases

in which each component equals to some four-dimensional equations of motions

or zero, as exhibited in the following:
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o (e NdE N e)) > the two scalar fields’ equations of motion,

o (e NdE N E)) + the two scalar fields’ equations of motion,
o (c.y NAEND ABI ARF) 0,
o (c.y NAEND AR ANRF) 0,
o (g NREARI AR AR 5 0,

o (e Neb Nef A €e3) N hi A h7) <+ the second Yang-Mills equation,
<> the first Yang-Mills equation,

o (e Neb Ned NdEN €3 hi) < the second Yang-Mills equation,

)
))
h')
o (e ANeb Nel AdENRA 6(3)) > the first Yang-Mills equation,
o ("N NdEN e AR AR

) &

o (e®Neb /\df/\hz/\hj/\q;;)

(€
(€
(€
(€
(€
(e
o (e"NePNel NRTAR NE
(e
(e
(e
(e
o (" NeP Negy ANém) < 0,
(

o (" Nd§Neg /\6(3))(—>O

There are 6 differential bases that give non-zero components equal to some four-
dimensional equations of motion. For the first two 8-form’s bases, their components
contain the component form of the equation of motion for the dilaton,

1 .
X TR

1 L 1 - 4 o (3.2.10)
+40- XXX F Fieb 4 ZXX—“gabch;b i

O¢ =X*0"x0,x — 297 2(X? — X2 + \2X?) —

together with the component of the axion’s equation of motion,

Ox = —20%¢d.x — 49 *x X % — ; X2q ELE
L4 _abed i1 2 34\ —4_abed i i (3.2.11)
_gX R d+8<1_X XO)q e Fry,
in some particular combinations in which the two scalar fields’ equations of motion,
(3.2.10) and (3.2.11) are each multiplied by some different coefficient proportional
to cos? € or sin? €. By using the fact that these coefficients are orthogonal to each
other, the components of the first two 8-form’s bases therefore contain the two
independent scalar fields’ equations of motion.
In addition, the non-zero components of the 8-form’s bases equal to the
component of the SU(2) Yang-Mills equations, (3.2.5) and (3.2.6), in the same
way as the previous substitution. Therefore, the substitution of the reduction

ansatz for F| (4) (3.1.7) in the eleven-dimensional 4-form’s equation of motion gives



56

rise to four-dimensional equations of motion for the dilaton, the axion, and the
SU(2) gauge fields.

Finally, substitution in the eleven-dimensional Einstein’s field equation
given in (2.4.15) is performed,

Ry = 1—12(%1@ - %ﬁMNﬂi))

Note that this is the most significant equation of motion for our dimensional
reduction in which the reduction ansatze for both bosonic fields are required for
this substitution. In Appendix D, all components of the eleven-dimensional Ricci
tensor will be derived from the reduction ansatz for the metric given in (3.1.1).
The contractions of the 4-form’s components on the right-hand side of the equation
can be obtained from the reduction ansatz for the 4-form field strength. Starting
from all non-zero components of the 4-form field strength that can be read off
from (3.1.7) where the eleven-dimensional flat spacetime indices split to M,N =
(a,0,1, 5) where a is a four-dimensional flat spacetime index, 0 is a flat space index

corresponding to the spatial coordinate ¢, i and 7 are the flat coordinate index on
each S3,

Foped = —V2gA 3 (P2 + $°X? + 2)eaped, (3.2.12)
Fopw = SCA™ (XX orx — aqu)gabc , (3.2.13)
Fje = cQ3A~ (%% + XQaaX>gijk, (3.2.14)
B = —s AT XX (252X 2 4 )00 + (5 — 5X " + X200 e,
(3.2.15)
Foije = —v2gs Q2 A3 X% (1 + Q)eyji, (3.2.16)
Fo%jic = —V2gc Qf%Af%XXQ(l + Q)eijn, (3.2.17)
Fos = %595 A3 (XFg'b X2 F’dsab“l), (3.2.18)
= %c Q3 A5 X2 (XXQF;I, ;chgab ) (3.2.19)
Fus = —=QA %gmk< 5 5 — e’ ) (3.2.20)

V2
- 1 ~ 4 ~ X322 - 1~
F -~ = EQA3€Z]]€X2< - Q Fkb + - ngab >7 (3221)
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the contractions of these components in F = o PO RF NPQR can be obtained as

follow

£2 = 3!A—%s2c2{zxx4aaxaa¢ — 0G0, — 2 X39O,

—2,2x4 —2.2y4 o
+ 207 [ (14 20408 + X (142004 02)
P SN . abed i i
+ Q[XPFLF 4 xe™ FL Fl
sTAX 2 y4 i priab 2 _abed fvi i
+ 5 O0CX - DL F + xX%e Fachd}}, (3.2.22)
= 31V2gA "3 sc X
14+ Q 50 oy 2_5_224 2.2 22
0a9| 3 XX (25X + ) QXX(1+Q) (Pa® + s°X? 4 2)]
4 2,2 2 %2 _ (1+Q) 2 2. 24
+ XX 0ux[(P2® + °X? + 2) (1+Q)—|——Q X2(Q = XY ¢,
(3.2.23)
Fg; =0, F =0, (3.2.24)

F2 = 31 AN X0 — 0000 — P X*0xI N
— 203 (Q+ Q+1)%n
82C2 282X—2 _'_02 2

+ 520,000 [ + X* X*(

2
+ 0, xOpx [SQCQXQXS + X0+ s—(Q — 32X2X4)2}

Q
32XX2 2. 2v4 2 v —2 2
+ (aaX8b¢ + aa¢abX) Q (Q —S5X X )(23 X +c )

1o om0~ - L
+ = [POXPX 72+ XD + AN XY | FLES

Ll V)

+ 5(529)(—25(2 + X402 4 s\ ELFe

o ox QX4

<82 -+ Q)FcidFiCdnab — (02 + Q)ﬁzdﬁmdnab

+ SQQXX_Q(F;dFéfsdef + Fciff‘fadchlfd)
— PO XX N EL Pl ey ™ + Fle, ™! Fg’d)}, (3.2.25)

2,24
2= — iCQ2A§{232X2(1 p AT
V2

OOFba) + "X + Q)X Fly |,
(3.2.26)

at
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~ 3 ~ 1 8 &~
F2="_s502A"3X 2%x
at \/5

{2[(1-

+ Q2" [2x06 + (1 — x2X 1)y ] Fg‘d}, (3.2.27)

QX2 — §2y2X?2 .
)0 — x X (1 + 5 X )Opx| FP

X2X4(252X_2)

4.2
F2 = 3IA3 {C2X4(5U(%&1¢3a¢ + Q0,x0x + 25*x0,x0"®)
22X

+ 292 (1 + Q)25ij
1 - X284 - % ja
+ ZQ[SQ(XQ — X = o X Y] FiF
1 2.4 X—2 2
+ 000, (A — ol Ph - X el gl pE] L (3.2.28)

2
FZ = 3!A‘§{%5ij [2X4(25%072 + 2)20,00%0 + (2 — s*x* X*)?0,x0"x
+2xX?(25%272 + ) (Q — 2 X 10, x0"¢]

END'E .
+2¢° 5 (1+ Q)25

Lo o ar o 4 ~ C4X2X4 i tjab
+ ZLQX [Pzt — 1) — Q & 1) Fo F

1~ - 4.2 4 o 2, 2 o
+ 12X (5 é ) ERER %gabchngc’ji] } (3.2.29)

. 3 5 g
F? =5 SCATI Fgy b b (3.2.30)

At this point, all off-diagonal-block components of the Einstein’s field equation
can be substituted. By using the fact that all off-diagonal-block components of
the eleven-dimensional Minkowski metric tensor are zeros (D.6),

foa = Toi = Tg; = Nai = Nz = 15 = 0, (3.2.31)

the second term on the right-hand side of the eleven-dimensional Einstein’s field
equation vanishes for off-diagonal-block components. While most of substitutions
with these contractions of the 4-form ansatz together with the Ricci tensor’s
components from (D.9) into off-diagonal-block components of the eleven-
dimensional Einstein’s equations lead to zero, there are two components, i.e.
(a,i) and (a,1), in which their substitutions give rise to the components of the
four-dimensional SU(2) Yang-Mills equations (3.2.5) and (3.2.6) respectively.

In order to obtain the substitutions for the diagonal-block components
of the eleven-dimensional Einstein’s equation, the full contraction of the 4-form
field strength ansatz is needed. Since our calculations are performed in the
eleven-dimensional flat spacetime, the full contraction Fa) can be comfortably
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obtained from above contractions through
20— ﬁMN 2 :
v ab “zMNAQ ij 112 ij 112 (3.2.32)
Therefore the full contraction of the 4-form field strength components is then given
by
S22t \2(28% + a?)?
Q Q
2
+ 0,x0*X (2 — P X ) [Pa* + %(Q — "X XY)]

£y = 485 {20,00%]

— ¢

1
+ 25° X X0, x0"¢[2¢%2* + 5(9 — XX (282X + )]
2

—2¢°[(Q+Q+1)% - X2X4(552(1 + Q)% + %(1 +))]

1 o
+ Z [S2Q(X2 . X_4) + S4X2 _ QZX—ﬂ Fémeb
X—4

4

[CQQ(X2I4 1) + Myt — Q2]F£bﬁwiab

s2x X 20
2

+

AXX2X QO -

+ Eade[ FoFry — F;bpéd} }

(3.2.33)

Substitutions of these components in the diagonal-block components of the eleven-
dimensional Einstein’s field equation give some particular combinations of the two
scalar fields’ equations of motion, (3.2.10) and (3.2.11), in the same way as the
previous substitution in the 4-form’s equation of motion. However, the (a,b)
component gives the last four-dimensional equation of motion that never been
obtained from the previous substitutions, the four-dimensional Einstein’s field
equation in (2.4.37) described in flat spacetime indices by

Rap = 5040 069 + = X 0ux OpX + 50V + 5 X 2(F B — —nap(Fly))?)
2 2 2 2 4 (3.2.34)

Lo oz mic 1 i
+ EX 2<Fach - Znab(F(Q))2)‘

Hence, substitution of the reduction ansatze for the both metric (3.1.1) and 4-form
(3.1.7) in the last eleven-dimensional equations of motion leads to all equations of
motion in the four-dimensional SO(4) gauged supergravity.

In conclusion, substitutions of the reduction ansatze (3.1.1) and (3.1.7)
into the equations of motion of the eleven-dimensional supergravity (2.4.15)-
(2.4.17) yield all four-dimensional equations of motion for N=4, SO(4) gauged
supergravity (2.4.31)-(2.4.37). Consequently, this dimensional reduction is said to
be consistent only at the level of equations of motion. Note that the consistency

at the level of equations of motion for this reduction is satisfactory for studying
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embedding of the four-dimensional solutions in eleven dimensions. Since solutions
must satisfy equations of motion in each theory, solutions of one theory are also the
solutions of the other one through these reduction ansatze. In the next chapter,
some interesting solutions in the lower dimensional SO(4) gauged supergravity
will be examined together with their embedding in eleven dimensions obtained by
substitutions of the four-dimensional solutions into the reduction ansatze.



CHAPTER IV
APPLICATIONS

The most interesting and very useful application of consistent dimensional
reductions that we want to present in this chapter is the embedding of lower
dimensional solutions in higher dimensions. As seen in (3.1.1) and (3.1.7), the
eleven-dimensional bosonic fields are expressed in terms of four-dimensional ones
in the SO(4) gauged supergravity. Embedding is a procedure of lifting lower
dimensional bosonic solutions to the higher dimensional theory through expressions
from dimensional reduction ansatze. Note that things are very simpler and clearer
in eleven dimensions so embedding solutions of the four-dimensional N = 4 SO(4)
gauged supergravity into eleven-dimensional fundamental framework give a very
beneficial way to learn about the four-dimensional solutions.

In this chapter, two static solutions in four-dimensional N = 4 SO(4)
gauged supergravity are established together with their supersymmetries. After
that, the embedding of these solutions will be given. Finally, the way to embed
the maximal N = 8 solutions using the N = 4 consistent reduction ansatze when
all SU(2) Yang-Mills gauge fields vanish will be given.

4.1 The Simplest Static Four-dimensional Solutions

We will begin with the simplest static vacuum solution containing nothing in
four-dimensional spacetime. By setting all matter fields to zero, the four-
dimensional Lagrangian density of the SO(4) gauged supergravity given in (2.4.26)

becomes*

Ly =+/|gl (R+12a%). (4.1.1)

It can also be checked that setting the gauge fields and scalars to zero satisfies their
field equations. Note that, in this chapter, Lagrangian densities are conveniently
considered in component form since our example solutions are some particular
truncated theories of the SO(4) gauged supergravity in which most of the matter
fields vanish. The only one equation of motion from this Lagrangian density is just
the vacuum Einstein’s field equation containing a negative cosmological constant,

R, = —6a%g,,. (4.1.2)

It is well known that the Einstein’s field equation containing a negative

cosmological constant A in any D dimensions can be written as
A

RS

where A = —(D — 1)(D — 2)/L? and L is a constant. The solution for metric

describes AdSp spacetime [35, 36] of the form

Ry, = (4.1.3)

L2
ds%s, = ﬁ(dTQ + N dztdz”). (4.1.4)

*To avoid confusion between the gauge coupling constant g and the determinant of the metric tensor
g = det g1, the gauge coupling constant will be denoted by « in this chapter.
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Here p,v = 0,1,....,D — 1, 2° = ¢, and 7, = diag(—1,+1,...,+1). It is easily
to see that L? = 1/2a? for (4.1.2). Therefore, the vacuum solution for the above
Vacuum Einstein’s field equation (4.1.2) is a four-dimensional metric describing
AdS, spacetime given by

1
dshas, = W(—dt2 +dr? + da* + dy?). (4.1.5)

The second example of this application is a more complicated static solution,
the Einstein-Yang-Mills theory. For the standard SO(4) gauged supergravity in
four dimensions, setting the two scalar fields to zero and A’ = AL turns the
Lagrangian density in (2.4.26) into

LM — /g (R +120° — %(Fi)?). (4.1.6)

where the SU(2) Yang-Mills field strengths are defined by F ﬁy = 0,A, — 0,,AL +
agip Al AY, which is the component of the 2-form (2.3.29), and (F*)* = F, F'*".
Note here that this truncated theory is still consistent after truncating the scalar
fields, unlike the dimensionally reduced theory obtained from the simplest Kaluza-
Klein reduction in Section 2.2 that the vanishing of the dilaton makes the U(1)
field strength equals to zero. This Einstein-Yang-Mills Lagrangian density leads
to the following two equations of motion. The Einstein’s field equation is given

from the variation of (4.1.6) with respect to the inverse metric g"* by

) ) 1 )
Ry = —60%g,, + (F,, F — Zgw(F’)z), (4.1.7)

that is the Einstein’s field equation containing a negative cosmological constant
together with the energy-momentum tensor of the SU(2) Yang-Mills gauge fields.
For the SU(2) gauge fields, the variation of the Einstein-Yang-Mills Lagrangian
density with respect to these vector fields leads to the component form of the
source-free Yang-Mills equation in (2.4.33),

D, F" =0, (4.1.8)

where D, is the SU(2)-gauged covariant derivative defined in the first equation
of (3.2.2). To obtain the solution that preserve some fraction of supersymmetry,
the four-dimensional metric ansatz is taken to be a product space between two-
dimensional anti-de Sitter spacetime and a two-dimensional hyperbolic space,
AdSs x Hs, given in [29] by

2h(r)

dSQAdsszg = ‘32]0(74)(—d152 +dr?) + ¢ (dz? + dy?), (4.1.9)

y2

where r is the radial coordinate of AdSy and f(r), h(r) are functions that will be
determined later. All non-zero components of the spin connections for this metric
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ansatz can be computed as follow

Wir = _fla
h/
e = _phm
w{L‘T:E - wyry - € y ? (4110)
1
Wiy = -,
Ty y

where the hat-indices refer to flat spacetime indices and the prime denotes
derivatives with respect to the AdSy’s radial coordinate r. From these spin
connection’s components, all components of the Ricci tensor can be computed
through (2.1.85) by

Rtt = f” + Qh/f/a

A )
1 _
sz = Ryy = —? 62(h f)(h// + 2<h/>2) + 1 )

The gauge fields’ solution given in [29] in order to preserve supersymmetry for the
Yang-Mills equation (4.1.8) is chosen to be

k
A= (4.1.12)
Y
where k is a constant. Therefore, the only one non-zero component of the SU(2)

Yang-Mills field strength is

Ty

3 _ K
y*
Here, x and y are the two spatial coordinates describing two-dimensional

(4.1.13)

hyperbolic space Hy. Now, we consider a fixed point solution in which h(r)

becomes constant. Therefore, the remaining non-zero spin connection components

are
1
Wi = _f/ = ;7
. (4.1.14)
Wiy = —
Ty

where the last term in the first line is obtained by taking the AdS, factor to the

same form in (4.1.4) as 2/") ~ L?/r2. The Ricci tensor’s components in (4.1.11)

reduce to
Ru=f"="%
R, =—f"= _7“_12’ (4.1.15)
R, = Ry, = —l.
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Then substitution of all non-zero components of the Ricci tensor together with the
field strengths’ solution (4.1.13) into the Einstein’s field equations (4.1.7) leads to
the near horizon solution, (4.1.13) and (4.1.9) where the two exponential functions
are given by

2
(F? + 12a2)r?’
o (2k* + y*)y°
k2 + 6a2yt

Q21 _

(4.1.16)

where F? = 2a2/y*. Note that the AdS; and the near horizon AdSy x Hy solutions
are supersymmetric and it is very useful to discuss their supersymmetries.

Many bosonic solutions in which all fermionic fields vanish can be
interpreted as supersymmetric backgrounds whose fluctuation can be treated
quantum mechanically [35]. These supersymmetric background solutions preserve
some supersymmetry such that their variations due to local supersymmetry
transformations vanish when the solution is substituted,

d(€) boson = € fermion = 0, d(€e) fermion = € boson = 0. (4.1.17)

Since all fermionic fields are absent in supersymmetric backgrounds, the left-hand
side of the first equation obviously satisfy. The remaining variation is called the
supersymmetry condition giving an explicit form of the independent infinitesimal
supersymmetry spinor €(z) called the Killing spinor. A supersymmetric solution
is called maximally supersymmetric if and only if the Killing spinor e(x) can
be expressed for the maximal number of () supercharges, which are local real
components of the Killing spinor, for example, () = 4 for the simplest N = 1 in
four dimensions. However, there can be some projections for the Killing spinor
€(z) given from the supersymmetry condition when evaluated on background
solutions. These projections reduce the maximal ) local real components of
e(x) to Qo such that the solution is said to preserve a fraction (Qy/Q of the
original supersymmetry. The solution with (/@ unbroken supersymmetry is
called a (Qy/Q) Bogomol'nyi, Prasad and Sommerfield (BPS) solution [46, 47| that
is invariant under a subalgebra of the supersymmetry algebra of the action. Some
interesting examples of BPS solutions include multiple charged and multi-center
black holes and intersecting D-branes.

For our four-dimensional SO(4) gauged supergravity, supersymmetry
conditions can be determined from the ungauged local supersymmetry
transformation in (2.4.21) and the two extra terms in (2.4.30). Afer setting all
fermionic fields and the two scalar fields to zero, the remaining local supersymmetry
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conditions are given by

- 1

SN = __4\/§€a575g57NVF35 =0, (4.1.18)
_ 1 7

50y = D, — 1 B+ —aet, =0 (1.119)

where the supercovariant derivative is Ea%u = 0,6 + }waffay’) P4 2068 Azﬁ . The
above Yang-Mills field strength is now gauged under SO(4) gauge group defined
in [39] by

Fol =V,A2° —V,A% + 8gal seiiu Al AL + 8gbl geiin AL AL (4.1.20)
Here a’ and b’ are the six anti-symmetric 4 x 4 matrices expressed in (2.4.23)
generating SO(4) ~ SU(2) x SU(2) algebra.

In vacuum AdS; background, the SU(2) Yang-Mills gauge fields also

vanish such that there is only one supersymmetry condition given from (4.1.19)

by

NG
V2

By a transformation of the radial coordinates r = Ee_‘/ﬁo‘z, the AdS, metric

1
D + W™ +

1 aey, =0, (4.1.21)

or

1
0ue™ + —wuabeavab +

1 ae®y, = 0. (4.1.22)

solution (4.1.5) turns into
ds3 = e2ﬁaznﬁl~,dxﬂdxf’ +dz?, (4.1.23)

where 1,7 = 0,1,2 are the indices of the transverse coordinates ¢, x, and y
respectively while the three-dimensional Minkowski metric is defined by 1z; =
diag(—1,+1,41). Thus, the spin connection 1-forms are

wh* = /2ada?, Wi = 0. (4.1.24)

After substituting the above spin connection’s components, the supersymmetry
condition (4.1.22) now splits into radial and transverse components,
0,€* + Lavzea =0,
N V2 (4.1.25)
D€ + ﬁm(% +i)e® = 0.

Therefore the Killing spinors solution of these equations is given in [48] by

€ = el-i/Vaz: (1 + Lax["yﬁ(l — i")/z)>€8, (4.1.26)

V2

where 4 are the constant Dirac gamma matrices in three-dimensional spacetime.

Here, ¢ are four independent real constant spinors containing 4 real-



66

components for each one. Hence, the N = 4 AdS, solution is said to be maximally
supersymmetric containing 16 supercharges.

For the AdS; x Hy near horizon solution, the only one component of the
SU(2) gauge field solution (4.1.12) can be written in the af indices through the
linear combinations in (2.4.22) of the form

A2 = A% = _k (4.1.27)
)
Thus, the Yang-Mills field strength in (4.1.20) can be easily obtained
Foo e ¥ 4.1.28
zy — Twmy _E ( . )

Then, substitution of this Yang-Mills solution in the first supersymmetry condition
(4.1.18) clearly implies ¢! = ¢* = 0. By using the non-zero components of the
spin connections in (4.1.14) together with the above Yang-Mills gauge field and
field strength, the remaining Killing spinors can be obtained from the other
supersymmetry condition (4.1.19) in component forms,

O + (57" - %ef 7') = 5ol ey =0, (4.1.29)
. 7 . , 1.
a 2+ 2( Qf_i_iaeh m)+_3(204k+ k ?g) 0 (4131)
zE € - [ = 5 <AL
LR y | 2yer |
. h . k R
ay€2 + %%627y _ 2yeh 6371 = 0 (4132)

Assuming these killing spinors to depend only on the AdS; radial coordinate as
in [49] by imposing d;¢" = 0, = 9,6’ = 0 where i = 2,3, the first two equations
can be solved by

&(r) = /ré, (4.1.33)

where € is a real constant spinor containing 4 real-components. Afterwards, the
relation between this expression and € can be found from (4.1.31) and (4.1.32) of
the form

& =ié, (4.1.34)

after applying the twisting projection from [49]
Eqtyd = —jé. (4.1.35)

This projection reduces the 4 independent real components of €5 to 2. Therefore,

the AdSy x Hy near horizon solution is said to preserve 1/8 supersymmetry.



67

4.2 Embedding Solutions in Eleven-dimensional Spacetime

As declared in the beginning of this chapter, eleven-dimensional solutions can
be obtained from four-dimensional ones by using the reduction ansatze (3.1.1)
and (3.1.7). the embedding of the two simplest solutions in Section 4.1 will be
expressed in this section through appropriate ansatze.

By using the “unexcited” state of the metric ansatz in (3.1.5), the vacuum
AdS, solution can be embedded in eleven-dimensional spacetime as
ds? ! (—dt* + dr® + da* + dy?) + 2 [d§2 +et > (o) + 22 Z(&i)ﬂ

a? ’

= 20272 4 4

7 7

(4.2.1)
which is an eleven-dimensional metric describing spacetime as a AdS; x S7 product
space. Then the embedded solution of the eleven-dimensional 4-form field strength
can be easily obtained from (3.1.7) by

F(4) = —3\/5046(4), (4.2.2)

which is the well known solution for the 4-form field strength giving rise to the
product spacetime solution AdS; x ST in (2.4.18).

For the AdSs x Hs near horizon metric solution (4.1.9), the metric ansatz
(3.1.1) describes eleven-dimensional spacetime as a product space AdSs x Hy X ST,

2 2h

_ 2 2 € 2 2 2 9
811 ~F 1 1209), (—dt* + dr®) + ?(dx + dy®) + @dé

| . . (4.2.3)
AT 22, 2 N2 2022 | =2 (= _ N9
+2a2 (o7 + 07 + [o3 yda:] )+ s°(67 + 67 + [03 yd:v] )],

where e2" is given in (4.1.16) and tilde refers to the squashing of ST containing two
copies of SU(2) gauge fields pointing in one of the three S* directions. Moreover,
the eleven-dimensional 4-form field strength can be obtained via (3.1.7) by

13'(4) = — 3\/5(16(4) + 13’(’4),
\/§a2ﬁ(’4) = s2PdE N (hi A F(iQ) —hiA Fé)>+ (4.2.4)
+ i%k (02 R AR A *F(l;) + 2 AR A *F&),
where the 1-form gauge fields and the 2-form field strengths are given by

i o ko o
! (4.2.5)

The vacuum AdS,; and the AdS; x H, near horizon solutions are the
simplest ones demonstrated in this chapter for giving some examples of the
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embedded solutions. Apart from these static solutions, our dimensional reduction
ansatze, (3.1.1) and (3.1.7), can be used to embed more complicated solutions
of the four-dimensional SO(4) gauged supergravity. For example in [50], a time-
dependent solution describing a decaying white hole that settles down to the final
state as a static charged black hole has been embedded in eleven dimensions. The
embedded solution describes decaying, rotating M2-branes, fundamental objects
in eleven-dimensional supergravity.

Furthermore, not only solutions in the N =4 SO(4) gauged supergravity
but in the absence of gauge fields also N = 8 four-dimensional solutions, such as
dielectric flow and Janus solutions in [51] and [52] respectively, can be embedded in
eleven-dimensional spacetime through approppriately truncated reduction ansatze.
Since the isometry on a three-dimensional sphere S is a Lie group SO(4), setting
all SU(2) Yang-Mills gauged fields to zero turns our reduction ansatze into (C.23)
and

- 4 2 -
Fuay = —gvV2Uery — —=X "1« dX A dE + fTSCXX‘* *dy NdE + Fyy, (4.2.6)

gV2
which is the 4-form ansatz in (3.1.7) without F, (1) terms. These ansatze containing
only metric and scalar fields have SO(4) x SO(4) symmetry, a subgroup of the
N = 8 gauge group SO(8), as shown in [51].



CHAPTER V
CONCLUSIONS AND DISCUSSIONS

The consistent dimensional reduction giving rise to four-dimensional N = 4 SO(4)
gauged supergravity from the unique supergravity in eleven dimensions has been
achieved through the reduction ansatze, expressions of eleven-dimensional metric
and 4-form field strength in terms of all bosonic fields in four-dimensional N =
4 SO(4) gauged supergravity given in (3.1.1) and (3.1.7) respectively. Apart
from the main dimensional reduction of interest, another related N = 4 gauged
supergravity in four dimensions, the Freedman-Schwarz model, can also be obtained
from these reduction ansatze when the one-way mapping between the two versions
of N = 4 gauged supergravity is applied. However, this alternative dimensional
reduction giving rise to another N = 4 gauged supergravity is not the main interest
in this study because the Freedman-Schwarz model is not directly obtained from a
dimensional reduction of eleven-dimensional supergravity but a particular type of
ten-dimensional one obtained from a Kaluza-Klein reduction of eleven-dimensional
supergravity on S*.

As shown in Section 3.1 and also Appendix D, the metric ansatz (3.1.1)
is conveniently described by symmetry of the SO(4) ~ SU(2) x SU(2) gauge
group in which each term involving SU(2) is obtained by the Scherk-Schwartz
reduction that is guaranteed to be consistent. Unfortunately, the reduction ansatz
for the eleven-dimensional anti-symmetric tensor is constructed on the 4-form field
strength F(4) by a trial and error process adding terms into the Abelian ansatz
in [17] to obtain a consistent reduction without another reason. Moreover, the
explicit form of the fundamental 3-form potential A(g) is impossible to express
from the 4-form ansatz (3.1.7), so the dimensional reduction is consistent only
at the level of equations of motion where this consistency has been thoroughly
verified in Section 3.2.

Nevertheless, the consistency at the level of the equations of motion of
the dimensional reduction allows us to embed any bosonic solutions of the four-
dimensional N = 4 SO(4) gauged supergravity into a more fundamental theory,
the supergravity in eleven dimensions. Some examples of embedded solutions
have been demonstrated in Chapter 4. Embedding gives a new way to study
four-dimensional solutions in eleven-dimensional theory that has a precise
geometrical interpretation in terms of various M-brane configurations. Therefore,
interesting solutions in four-dimensional N =4 SO(4) gauged supergravity, such
as in the study of holographic renormalization group (RG) flows and holographic
superconductors, can be embedded in the eleven-dimensional world via our
reduction ansatz in the future.

For further research effort, these reduction ansatze may be further
developed to embed four-dimensional solutions of the N = 4 gauged supergravity

coupled to a number of vector multiplet. As mentioned at the end of Section 4.2,
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our reduction ansatze can be used to embed N = 8 solutions with SO(4) x SO(4)
symmetry into eleven-dimensional spacetime in the absence of gauge fields since
the dimensional reduction ansatze in this case already exhibit a symmetry SO(4) X
SO(4) subgroup of SO(8). It might be possible to construct dimensional reduction
ansatze of the eleven-dimensional theory giving rise to N = 8 SO(4) x SO(4)
gauged supergravity base on these reduction ansatze. In order to enlarge SU(2)
gauge groups on each S®, the standard SO(4) gauged supergravity needs to couple
with some particular vector multiplets for a larger number of gauge fields.

Finally, the complete truncation of the N = 8 gauged supergravity has
been recently given in [19]. Truncating this reduction to the half-maximal theory
coupled to six vector multiplets would be interesting and may give some insights
to the relation between the maximal and half-maximal gauged supergravities in
four dimensions. This will eventually be useful for the studies of the AdS/CFT
holography and string dualities.
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APPENDICES
APPENDIX A INTRODUCTION TO LIE GROUPS

In physics, the concept of Lie groups is significant to express continuous symmetries
in which their generators of an infinitesimal symmetry transformation form a Lie
algebra. Since Lie groups have played many important roles in this study, this
appendix is provided to give some brief introductions to Lie groups including their
identities, representations, and classifications. Furthermore, some examples of Lie
groups involving to this study are discussed in the end of this appendix.

From group theory, group is an abstract mathematical concept defined as
a set G of elements g that satisfy the following properties:

1. Binary operations between any two elements are also elements of G,
9i®g; €Y, Vgi,9; €G. (A.1)
2. Binary operations of group elements g;, g;, g € G are associative,
9: @ (95 ® gr) = (9 ® g;) © i (A.2)
3. There exists an identity element, e € G such that,
eRg=9®e=g;,V9 €G. (A.3)
4. For every group elements g;, there exists an inverse g; ' € G such that,
g ®g=g®g =e (A4)

When G contains a finite number r of elements, it is called a finite group, and r
is called the order of the group.

Lie group is a continuous group whose elements can be described by a
finite number of parameters, g = g(A1,..., \,), where the integer n is called the
dimension of a Lie group G. Since Lie group is continuous, it can be viewed as
a manifold called group manifold on which each point corresponds to a group
element g;. By the closure identity (A.1), binary operations of any g; by g; on
left- or right-hand side provide translations on the group manifold to the new
point g; = g; ® g; or g = g; ® g; respectively. Note that, in general, g, and g are
unidentical so there are two types of translations on group manifolds that are the
generally given by non-commuting left- and right-handed transformations. In the
same concept with general relativity, due to the fact that a manifold is locally flat,
any group elements can be considered as expansions around the identity element

e of the infinitesimal forms,

g()\1,...,/\n) ze—@Agd/\A—l—..., (A5)
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where 04 = 9/0A4 and A = 1,2,...,n. By defining generators Ty = Jag and
parameters ¢! = 6\ 4, group elements g in (A.5) can be written in exponential

forms,
g=e""Tn, (A.6)

These generators T4 form basis vectors in the tangent space T.(G) at the identity
element e of the Lie group G and form a Lie algebra Lie(G), a vector space with
a Lie bracket operation [-, -] : Lie(G) ® Lie(G) — Lie(G), which is

e bilinear,

[aX+pY,Z] = a|X, Z]+ Y, Z], fora,p € Rand X,Y,Z € Lie(G), (A.7)

e antisymmetric,

X,Y] = [V, X], for X,Y € Lie(Q), (A.8)

e and consistent the Jacobi identity,

X[V, Z)) + Y, [Z,X]] + [Z.[X,Y]] =0, for X,Y,Z € Lie(G). (A.9)

Lie bracket of the two basis vectors gives a linear combination of other generators

with structure constants f ABC,
(T4, T) = fa“Te, (A.10)

where this equation is called the Lie algebra. Moreover any finite dimensional Lie
algebra can be represented in terms of matrices through the homomorphic map D

preserving their algebraic structures, i.e.
D([X,Y]) =[D(X),D(Y)], forany X,Y € Lie(G), (A.11)

such that the Lie algebra (A.10) is the same. There are some important
representations introduced in the following.

1. The trivial or singlet representation mapping all elements to the (1x 1) matrix
0,
D(X) =0, forall X € Lie(G). (A.12)

Therefore this trivial representation is one-dimensional.

2. The fundamental representation is the smallest irreducible finite-dimensional
representation of Lie algebra Lie(G) such that any finite-dimensional
representations of Lie algebras can be constructed from this elementary

representation.
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3. The adjoint representation is another important representation maps the Lie
algebra to the general linear group of the vector space Lie(G),

D : Lie(G) — GL(Lie(G)), (A.13)

Using (A.10), the adjoint representation is given in terms of its generators as

(dim(Lie(G))x dim(Lie(G))) matrices by

(T5") 6 = fa%c. (A.14)

A Lie group is called Abelian if all the structure constants vanish, such
that all generators commute with each other. For non-Abelian groups, there are
two interesting classes; semi-simple and simple Lie group. A semi-simple Lie
group G is a direct product of simple Lie groups G; that are non-Abelian,

GU = Gl X G2 X ..o X Gk- (A15)

The simple Lie groups are completely classified in terms of four infinite series
A,, B, C,, and D,,, where n is an integer called rank of Lie groups, and the
exceptional cases Go, Fy, Eg, E7, and Eg, as show in Table A.1.

Cartan  Lie group Name Dimensions Rank
A, SU(n+1) Special Unitary (n+1)2-1 n
B, SO(2n+1) Odd Special Orthogonal — n(2n + 1) n
Cp Sp(2n) Symplectic n(2n+1) n
D, SO(2n) Even Special Orthogonal — n(2n —1) n
Go Go Exceptional 14 2
Fy Fy Exceptional 52 4
FEg FEg Exceptional 78 6
E; Er Exceptional 133 7
FEyg FEg Exceptional 248 8

Table A.1: Catan Classification of simple Lie groups.

For example, consider the main Lie group of this study, an SU(2). Starting
from the simple Lie group SU(N), its group elements can be represented as (N x
N) matrices g satisfy the following two conditions:
1. Special : det g = 1.
By (A.6), detg = Tr(=etTa) — 1, which implies
T4 are tracless. (A.16)
2. Unitary : gf = ¢!

By (A.6), this condition implies the generators T4 to be anti-hermitian matrices,

(Ta)' = =Ta. (A.17)
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For a three-dimensional Lie group SU(2), the three genereators T4 can be
represented by (2 x 2) Pauli matrices 04 satisfying (A.16) and (A.17) of the form

T, = —%UA, where A = 1,2, 3. (A.18)

The three Pauli matrices are tracless and hermitian defined by

0 1 0 —i 10
_ _ _ A.19
o [1 o]’ 72 [z 0]’ 78 [0 —1]’ (A.19)

that satisfy the commutaion relations,
[O’A,O'B] = QigABCUC- (AQO)

These commutation relations of the Pauli matrices turn the Lie algebra in (A.10)
to be
(T4, Tg] = capcTc, (A.21)

called the SU(2) Lie algebra where the structure constants equal to the Levi-Civita
symbols with the three upper and lowwer indices are identical. Substitution of the
generators from (A.18) turns the SU(2)’s group elements to be unitary operators
of the forms ;

Uud) = exp(§0AaA), (A.22)

where § = 6404 is a parametrized three-dimensional vector described by three
continuous paremeters 4 on the basis #4. Since these parameters are continuous,

the group element can be expanded in the form of Tylaor’s series,

- 0, - 1.0 1.0 -
Uu@B) =1+ i(é)UA(‘)A - 5(5)2 - ZE(g)gUAHA + . (A.23)

by using 464 = 1, = V0404, and o405 = icapcoc + dapl. This series can be
divided into two series; odd and even orders of #4 and o4, then written as

U@l = cos(g) + o404 sin(g). (A.24)

Due to the imaginary ¢ in the last term, these operators corespond to rotations in

a two-dimensional complex space that leaves the quadratic form,
121 + |22, (A.25)
invariant. In general, SU(2)’s group elements can be written in the (2 x 2) unitary

[_0;* f ] , (A.26)

matrices,

satisfying the special conditions

lal* +|8)* = 1. (A.27)
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Obviously, these conditions are preserved under group transformation,
multiplications by the operators U (5).The conditions above indicate that group
elements can be interpreted as points on the surface of a unit three-dimensional
sphere, S3. Therefore, a group manifold of a Lie group SU(2) is an S?,

Another example is the neighbouring SO(3) Lie group. Starting from the
simple Lie groups SO(N) that their elements can be represented as a (/N x N) real
orthogonal matrices M satisfying MTM = 1, By (A.6), The SO(N) generators
T4 have to be traceless, due to the special condition (A.16), and anti-symmetric

(3 x 3) matrices. Thus the SO(3) generators can be written as

(Ta)pc = —€aBc, (A.28)

where € 4pc are the three-dimensional totally antisymmetric Levi-Civita symbols,
which are defined as €193 = 1. These representations of the SO(3) generators
satisfy the same Lie algebra of SU(2) in (A.21), therefore SU(2) and SO(3) are
said to be isomorphic, in the sense that there exists a homomorphic map preserving
Lie algebra between these two Lie group. However, SO(3) group manifold is not
S3, SU(2) group manifold. If the representations in (A.26) substitute in (A.6)
the SO(3) group transformations will be corresponding to rotations by an angle
0 € [—m, 7] about some three-dimensional axis 64,

—

RBC( ) = 530 COS(Q) + €BCAéA Sln(@) + éBéc(l — COS(Q)), (A29)

Hence a group manifold of a SO(3) Lie group is the inside and the surface of a

two-dimensional sphere S? with radius 7,

0
(&) + (&) + (&) = (;)27 (A.30)
where &; with i = 1,2, 3 are the three-dimensional coordinates of any SO(3) group
element, with antipodal identification on the surface |#| = 7 that means both
6 = m and 6 = — refer to the same group element as seen in (A.29).

Moreover, there is another isomorphism of the Lie groups that will be used
for gauging the N = 4 supergravity in four dimensions. A six-dimensional Lie
group SO(4) is isomorphic to a direct product of two SU(2) Lie groups; SO(4) ~
SU(2) x SU(2), such that a theory will be gauged by SO(4), if it is gauged under
the two commuting SU(2) Lie groups. In addition, by the isomorphism of SU(2)
and SO(3), it is also SO(4) ~ SU(2) x SU(2) ~ SO(3) x SO(3).

All the simple Lie groups, introduced above, are classified as the compact
Lie groups since their group manifolds have finite volumes. Moreover, these Lie
groups can be turned to non-compact Lie groups by replacing the unity matrix in
their defining conditions by the matrix n defined by,

n:[—()lq 10] (A.31)
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where 1,, is a (m X m) unity matrix. For example an SO(4) can be turned to be

non-compact SO(3, 1), the Lorentz group, by using the new orthogonal condition
-1 0 0

M™yM = (A.32)

o O =
o = O O
_ O O

0

which is the same Minkovski metric introduced in (2.1.8). Note that the Lie groups
SO(N) and SO(p, q) with p+q = N have different properties. While compact Lie
groups can be represented by finite-dimensional unitary matrices, non-compact

ones can not.
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Appendix B Spinor Representation

Another irreducible representation of the Lorentz group called a spinor
representation is introduced in this appendix to understand spinor quantities
describing fermionic fields in supergravity multiplets and also infinitesimal spinor
parameters in supersymmetry transformations. Starting from a brief introduction
of the non-compact Lorentz group represented by the more familiar vector
representation, then basic concepts about the spinor representation in general
dimension are given. Finally, irreducible spinor representations in both four- and
eleven-dimensional spacetime will be discussed.

As explained in Appendix A, D-dimensional Lorentz group SO(D —1,1)
is a non-compact Lie group corresponding to an infinite-volume group manifold.
By introducing the Lorentz generators M¢, which are D x D matrices, elements

of the Lorentz group can be written in exponential form as

Aw) = exp (—%wabM“b>, (B.1)

where the real parameters wy and also the Lorentz generators M® are
anti-symmetric under interchanging of the two D-dimensional flat spacetime indices
a and b. In vector representation, these group elements can be written in

infinitesimal form by

1
@)y = 8% = Sua(M™),, (B.2)

Here, any components of the Lorentz generators can be represented by
(M) = 15 — s, (.3)

where 7% is a D-dimensional inverse Minkowski metric which is defined by 7% =
diag(—1,1,1,...,1,1). Substitution of the Lie algebra in (A.10) by this vector
representation of the Lorentz generators (B.3) yields the well known Lorentz
algebra,

[Mab’ MCd] — anMad + 77(1Ldj\4bc o 77tzt:]\4l)d _ nbdMac. (B4)
Therefore the infinitesimal form of the group elements in (B.2) is given by

Aw); = 0% + 1n“"Waq. (B.5)

The D-dimensional Minkowski metric 7, transforms in the same way as the
4-diemensional one in (2.1.12). This representation therefore leaves the D-
dimensional spacetime interval ds? invariant under the Lorentz transformation.
Note that the generators M7*, in which j,k = 1,...,D — 1, correspond to the
(D-1)-dimensional spatial rotation, an SO(D — 1) subgroup of the Lorentz group
SO(D—1,1), whereas M are called the boost generators. Moreover, other tensor

representations can be constructed from the Lorentz generators in (B.3).
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Spinor representation is another class of irreducible representations of the
Lorentz group SO(D — 1,1) constructed from the D-dimensional Clifford algebra
defined by

7+ = {0 = 20, (B.6)
where 7 are the Dirac gamma matrices labeled by a D-dimensional flat spacetime
index. This anti-commutation relations imply that (7°)? = —1 and (7/)*> = 1 for
any j = 1,...,D — 1. Thus the eigenvalues of each gamma matrix are +i for °
and %1 for 47 such that 7° is anti-hermitian while the rest 4/ are hermitian,

(") ==" () =A (B.7)
Note that these Dirac gamma matrices transform under the Lorentz transformation

in the same way as (1,0) Lorentz tensors demonstrated in (2.1.5). The Lorentz
generators M can be represented via these Dirac gamma matrices in the form

1
M =2y, (B.8)
that is called the spinor representation and also satisfying the same Lorentz algebra
in (B.4).
A Dirac spinor W(x) is an elementary field, whose quantization corresponds
to a fermionic particle, represented by a D-dimensional complex column matrix

that transforms under the Lorentz transformation given by the generators in (B.8),
1
AU — U =exp (- gwab[fy“,fyb])\lf. (B.9)

To obtain a Lagrangian density describing the Dirac spinor, its Lorentz invariant
bilinear form is required. However, a multiplication between a Dirac spinor and

its hermitian conjugation is not invariant under the Lorentz transformation,

1 1
AT — 0T = Wlexp (cwmy™ 1) exp (= cwwh 1) P,

8
= Ut [eXp (- Lo, 1]+ lwz‘jhiﬁj])
8 8 (B.10)
x exp (— %wmh",vi] - %wmhwj])] v,
# v,

where the second line is obtained by the hermitian and anti-hermitian properties
of v* from (B.7). Here, the obvious obstacle is the bracketed term that is not
equal to the unity matrix 1 since the two exponential functions do not cancel each
other. To obtain the Lorentz invariant bilinear form, the Dirac adjoint is defined
by

U = Uiy, (B.11)

Whereupon using the Clifford algebra (B.6) together with an important property
of the 1% i.e. [1°,7' 17" = —7°[7°, 7] and [7',47]7° = 7°[y",7’], a multiplication
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between a Dirac spinor and its Dirac adjoint is now invariant under Lorentz

transformation,
_ _ 1 , 1
AW — U = W exp (wa[y™, 2")ir" exp (= qwaly” 1) Y,
, 1 P
= Wliy? [eXp (geoily ]+ gwilr's 7))
1 Sl (B.12)
x exp (- gwm‘hoﬁ] - ng‘jh 773])]‘1’7
= Uiy,
= UV,

Note that, in particular, Dirac spinor is reducible. Besides, there are two irreducible
spinor representations called Weyl and Majorana spinors satisfying different
projection conditions, some notable similarity transformations for the Dirac gamma
matrices.

The first transformation is simply implied by the definition of Clifford
algebra (B.6) in which 7° can be used to turn v into their hermitian conjugations

7% through the following similarity transformation,

Py =~ (B.13)
In even dimension, the special gamma matrix can be defined as a multiplication

of all gamma matrices,
Yo = (=) P20 P71 (B.14)
which satisfies the following properties
w=1 Tr(n) =0, {57} =0, [y, M =0. (B.15)

Its eigenvalues are +1 due to the first property in (B.15). This special gamma
matrix is used to flip the sign of ¢ by

a

VY v = =7 (B.16)

However, in odd dimensions, 7, is not special anymore but behaves as one of the
Dirac gamma matrices satisfying the Clifford algebra (B.6).
The last important similarity transformation is given by

Cyre = —(y)", (B.17)

where the matrix C is known as the charge conjugation matrix satisfying to the
following properties
cct=1, c=-c". (B.18)

By using this transformation together with (B.13), the relation between v* and
their complex conjugations can be obtained of the form

(") = —=("C)v ()~ (B.19)
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These similarity transformations are used to identify the two irreducible spinor

representations:

e Weyl spinors

Since the eigenvalues of 7, are =1 and the 7, is also traceless, these eigenvalues
can be equally divided by choosing a basis that makes v, diagonal, for example
the 75 in four-dimensional spacetime expressed in (B.24). Since ~, commutes
with the Lorentz generators M@, this particularly chosen basis describes the
Lorentz generators as block diagonal matrices such that a Dirac spinor ¥ in
even dimensions can be projected on the complex components of the two left-
and right-handed Weyl spinors, 17, and g, defined by

Yy 0
0

VR

1
=P_V, where Py =—(1=x,).

v, = 5

:PJ,_\I], \I/R =

(B.20)
Therefore an even dimensional Dirac spinor is a reducible representation
comprised by the two complex Weyl spinors, ¥y, and v, which are inequivalent

and can transform to each other through complex conjugation.

e Majorana spinor

By using the similarity transformation relating v* to their complex conjugation
(v*)* in (B.19), the complex conjugation of the Lorentz generators is given
by

(YoM ()™ = —(M™)", (B.21)
which leads to the reality condition of the Dirac spinor,

U =iyCV. (B.22)

This projection can be used to define the Majorana spinor that is real and
satisfies the condition (7°C)*~°C = 1.

In particular, these two irreducible spinor representations are not equivalent.
While Weyl spinors exist only in even dimensions, Majorana spinor exists if and
only if the condition (7°C)*~+°C = 1 is satisfied. Some possible types of irreducible
spinors in D-dimensional flat spacetime together with their real dimensions are
given in Table B.2.

There exist both Weyl and Majorana spinors in which their real dimensions
are 4 in four-dimensional spactime, as shown in Table B.2. To define Weyl
spinors, Dirac matrices can be expressed by (4 x 4) matrices, namely the Weyl
representation, containing the two (2 x 2) matrices; 0% = (1gx2,0;) and 7% =
(—12x2,0;), where o; are the usual Pauli matrices introduced in (A.19), of the

v = [_O Oa] : (B.23)

form

c® 0
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D  spinor’s dimensions (real) Weyl Majorana

2 1 . °
3 2 .
4 4 ° °
5 8

6 8 .

7 16

8 16 ° °
9 16 °
10 16 ° °
11 32 °

Table B.2: Some types of spinor in D-dimensional Minkowkowski spacetime [34, 37].

Thus the special gamma matrix, which is now called 75, is given by

: lowo 0
Y =5 = ="y = [ 0 1 ] : (B.24)
—AL2x2
such that the Dirac and Weyl spinors can be related to each other as
v |V (B.25)
G

While v, is the left-handed Weyl spinor containing an undotted spinor index,

o = 1,2, the right-handed Weyl spinor is ¢® carrying a dotted spinor index

& = 1,2. Note that these spinor indices are always omitted for convienent.
Besides, a Majorana spinor in four dimensional spacetime can be defined

by setting the charge conjugation matrix to be
C =iy, (B.26)

such that the condition (7°C)*7y°C = 1 satisfies. The similarity transformation
(B.19) is now given by

()" =" (B.27)
which indicates that the gamma matrices are explicitly real. This representation

is called the truely real representation in which all real gamma matrices are given
by

o o 1] oo
’Y - _1 0 ) 7 - O _1 )
- : - : (B.28)
op 0 o3 0

Now, 7° is anti-symmetric while 4¢ are symmetric corresponding to the hermitian

and anti-hermitian properties of 7* from (B.7). Therefore the reality condition



86

(B.22) becomes
=, (B.29)

that implies ¥ is a real spinor called the Majorana spinor consisting of four real

components,

, a, B,7,0 € R. (B.30)

In eleven dimensions, the real representations can be obtained in the same
way as in four-dimensional spacetime. Starting from setting the charge conjugation
matrix C = i7" such that the reality condition in (B.22) takes the same form as
(B.29), ¥* = W. Here, the Majorana spinor W consisting of 32 real components is

the minimal spinor representations in eleven-dimensional spacetime.
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Appendix C Derivation of The Metric Reduction Ansatz

In this appendix, the way to reach the metric reduction ansatz in (3.1.1) is
demonstrated step by step. The first step is the deduction of the two SU(2)
gauge fields in the absence of the axion by the truncation of the previous result in
[14]. Then the axion scalar field will be activated through the truncation of the
full S7 reduction in [17]. Finally, these two steps are combined to obtain the full
metric reduction ansatz in (3.1.1).

From [14], the general Kaluza-Klein reduction ansatz for dimensional
reductions of the D-dimensional metric on a unit odd-dimensional sphere S?~1

are expressed of the form

ds% = A%ds? + A~ bZX (dpi + p2(do; + Aly))?), (C.1)
i=1
where p; are the directions of cosine satisfying the constraint X¥_, u? = 1, ¢; are the
azimuthal rotation angles, A(1) are k commuting U(1) gauge 1-forms. The scalar
quantities X; satisfy the following constraint A = X% | X2, and ITF_, X, = 1.
By setting D = 11, d = 4, a = 2/3, b = 1/3, and k = 4 the axion-free
U(1)* reduction ansatz of the eleven-dimensional metric on a seven-dimensional

sphere S” with radius v/2/g is given by

32, = Aids? + 29 2A3 ZX (dp? + 17 (de; + gAly))?). (C.2)

=1
Here the scalar quantities X; are parameterised by three dilaton scalar fields,
which are described as a 3-vector ng of the form X; = exp(——aZ 5) where a; are
four constant 3-vectors. The truncation to U(1)? can be obtained by setting two

dilatons to be zero. The X;’s constraint, X; X, X3X,; = 1, now becomes
a; +ag+ag+ay =0. (C.3)

The four scalar constants are set to be a; = a = —1, and ag = a4 = 1 such that
the scalar quantities X; are set pairwise equal, X; = Xy = X and X3 = X, = 1/X,
where the scalar field X is defined in (2.4.28). Together with setting the four U(1)
gauge 1-forms as A%l) = A?I) = Aq and A‘E’l) = A?l) = Ay, the metric ansatz

(C.2) now reduces to
i3 = Asds? + 29 2Asde?
4 ; “2A"5 X2 <d92 + sin® §dp® + (dyp + cos Odp — gA(1>)2> (C4)

+ %g‘gﬁ—éxf <d92 +sin® §d® + (di + cos §dp — 9;1(1))2)'
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_ 1
Here, A = [(*X? + s%)(s*X 2 + ¢?)]* where ¢ = cos¢ and s = sin&, while the
four directions of cosine are parameterised by

0 0 0 0

1 =ccos g, ugzcsini, py = s OS5, ,u4:ssin§, (C.5)

and the four azimuthal rotation angles ¢; are given by

b=sWte), b=sW-p)., =@+, bi=30-9). (CO)

If the unexcited state of the spacetime is considered by setting ¢ = 0 and
Aqy = 121(1) = 0, the above metric ansatz will be turned into

d6?  dp? Ay 1
3%, = ds? + 29—2{d52 + [+ % + % + 5 cos fdidy)

g  dp?  dy? 1 -
+32[T+%+%+50089d@/}d¢}}.

Here, the last two terms are the metrics on unit three-dimensional spheres S3, dQ32

(C.7)

and dQ3, written in terms of the Euler angles (6,¢,%)) and (6,,1)) respectively [44].
Hence, the unexcited state of the metric ansatz in (3.1.5) is obtained with the two
S3 metrics expressed by the two sets of left-invariant 1-froms, 1 >°.(0;)? = dQ3
and 1 >°,(6,)% = d2. Therefore, the axion-free U(1)? metric ansatz describes
the geometry of eleven-dimensional spacetime as a product space between four-
dimensional spacetime and a foliation of 5% x S3 that contains a U(1) gauge field
in each S%. Furthermore, by using the fact that S is a group manifold of SU(2),
the U(1) gauge field in each S® can be enlarged to SU(2) by turning off the U(1)
gauge fields and replacing all left-invariant 1-froms by the two sets of SU(2)-valued

forms defined in [25, 26] as

h'=o; — gAél), h =6, — g[lél), (C.8)
where Aél) and fll('l) are the two sets of the SU(2) Yang-Mills potential 1-forms
with ¢ = 1,2,3. This enlargment turns the U(1)? metric ansatz (C.4) into the
axion-free version of the metric reduction ansatz (3.1.1),

2 3 2 3

2 A% 49 o2 2, 1 o2 c N2 S 7i\2
dsy; = Asds; +2g “Asd¢ —|—§g As [02X2—+32 Z(h) +52X_—2+C22<h) }
(C.9)

i= i=1

To obtain the missing axion scalar field, the dimensional reduction on full
seven-dimensional sphere S” of eleven-dimensional supergravity giving rise to the
maximal N = 8 SO(8) gauged supergravity in [17] is considered. It is shown in
[17] that the internal space S7’s metric reduction ansatz is given in term of the
inverse metric tensor by

~

AT @ y)g™ (@Y = §(KmUKnKL + KM K™ (" 4 i) (0 g+ 075D,
(C.10)
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where
_ det(gmn(z,y))

A%(z,y) = det(Gmn(y))

Here gn(y) denotes the metric tensor of the undistorted S7 where x and y are

(C.11)

spacetime and internal space coordinates respectively, and m,n = 1,2,...,;7 are

internal space indices. Moreover, K™/ are 28 Killing vectors in this internal

I

space metric, and the tensors u;; 7 and v;;17 are determined in the definition of

the scalar matrix V and its inverse,

7 Y-l — [ ury _UklIJ] ’ (C.12)

IJ
V- Uyqj Vij1J
kLI uleL UKL uleL

where 7,7 =1,2,...8 and I, J = 1,2, ..., 8.

In the N =4 SU(2) x SU(2) gauged theory, the full N =8 SO(8) gauged
one is truncated by splitting the indices ¢ and [ into ¢ = (a,a) and I = (a,a)
where a = 1,2,3,4 and a = 5,6, 7,8 such that these tensors are given by

2 ged

cd __ ogcsd
5 ab? uab = 25(151),

A =
Ugp™ = 2 cosh 55221, ug" = 2 cosh

(C.13)
Vabed = sinh §ew€abcda Vabed = sinh §e_w€(’155§>

where the two scalar fields A and o are related to the dilation ¢ and the axion x

through

1
cosh A = cosh ¢ + §X2€¢,
(C.14)

1
cososinh A = sinh ¢ — §X2€¢,
sin o sinh A\ = ye?.

Substituting these expressions (C.13) into (C.10), the reduction ansatz for the
inverse metric of the internal space in the reduced N = 4 gauged theory are given
by

A 3

- mn mij ponij 1 o goma o 7-mab
A~ a,y)g" (@, y) = DO KUK 4 S(X2 = 1) Y [(Ja K" + (K™Y

ij a=1
1 2 Ja 1-mab\2 Fa 7-mab\2
+ 0 =1 3 (Tl + (Hem
(C.15)
where
J112 - J§4 - J123 = _J224 = J§4 = J§3 =1,
Jr=JL=Jt =—J% =J3=J3 =1,
56 78 57 68 58 67 (C.16)

j112 = _j§4 = j123 = j224 = ji; = _j§3 =1,

j516 = _j718 = j527 = j628 = j538 = _jg7 =1
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By using the fact that a sum of the squares of Killing vectors yields the
bi-invariant inverse metric, it is obviously seen that the first summation term
on the right-hand side of (C.15) just equals to §g""(y), the inverse metric tensor
of the undistorted S7. The 3 Killing vector combinations K™* = J% K™% and
Kme = JoK mab each close on SU(2) and commute with each other such that these
two sets are the left- and right-translation Killing vectors on the ﬁrst S3. Likewise,
both commuting Killing vector combinations K™ = J @ K™mab and Kme = J S mab
are the left- and right-translation Killing vectors on the second S* since each also
close on SU(2). Moreover, the sum of the squares of each S? translation Killing
vectors yields the bi-invariant inverse metric g7 on each S3. Therefore, (C.15)

becomes

AN, y)g™ (x,y) = 5™ (y) + (X2 = Dgg™ + (X = 1)gi™, (C.17)
which expresses the distortion of the round S7 due to the existance of the scalar
fields by the two addition terms on the right hand side together with the scaling
factor A. However, the bi-invariant inverse metrics on each S3 can be written in
terms of the inverse metrics on the round unit three-dimensional spheres dQ2 =
gsijdridz? and dQ3 = g, ;jdav 'dxi, of the forms gy jémén and gy = g”5m5"
where the internal space index is splited into m = (§ ,i,1) where i,j = 1,2,3 and
also i, =1,2,3.

In order to find the expression of the metric ansatz for the distorted S7
internal space, all components of the undistorted S metric tensor, g,.,(y), are
needed. From (3.1.5), it is obvious to see that all non-zero components of this

metric tensor are

gee =1,
Gij =93, (C.18)
955 25293,23,

where their inversions are given by

g* =1,

ij 1 ij
9 =395 (C.19)
15
9]28_293]-

Substituting these inverse metric’s components into (C.17) gives all non-zero

components of the metric tensor for the distorted S” internal space,

g (z,y) = A,
ii L CPXE s

9" (w,y) =A(——5—)g5, (C.20)
- X2

g J(x7 y) =A 2 ) 3j7
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that are also easily inverted,

gee(z,y) = A7
2

A C

gij(x,y) =A mg&z‘j, (C.21)
(2, y) _A—lL .

gz] 7y - S2X2 + 0293,ij'

Thus the metric ansatz for the distorted S” internal space can be written as

2 2
c 9 5

2 mg.n _ A—1 2, -
d87 - gmn(x7y>dm dz" = A <d§ + c2X?2 + 52 dQ3 + S2X2 + c2

de). (C.22)
Replacing the round S” metric dQ)2 in (3.1.5) by this ds2 yields the metric reduction
ansatz giving rise to the N = 4 SO(4) gauged theory with vanished gauge fields
of the form

2 3 2 3
2 _ AZ;02 272 ( 42 ¢ 1 2 S 1 ~2
dSH = A5d84 + 29 A3 (df + mz iZIO'i + mz — 0@') (023)
where A = A=3/2 [17]. Here the two round S® metrics are expressed by 1 3 (0;)? =
d03 and 13°.(5,)? = dO2.
Finally, turning all SU(2) gauge fields on via replacing all o; and &; by the
two sets of SU(2)-valued forms defined in (C.8) turns the metric ansatz (C.23)

into the fully decorated metric ansatz in (3.1.1),

2 2

2 2 1 2 C . S ~ .
N . = 2 —2 A= 2 —2 A % 2\ 2 i\ 2
ds}, = Asdss + 29 2 Asde +59 Az[—CQ T E@ (R +—52 o E@ (h')?].

(C.24)
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Appendix D Derivation of 11D Ricci Tensor

In order to check the consistency of the dimensional reduction, components of
the eleven-dimensional Ricci tensor are needed for the substitution in Einstein’s
field equation in (2.4.15). In this appendix, all non-zero components of the Ricci
tensor are thoroughly calculated from the eleven-dimensional metric ansatz (3.1.1)
through the vielbein formalism demonstrated in Section 2.1.1.

For convenience, all coefficients in the reduction ansatz for the eleven-
dimensional metric will be denoted by

o
|
I
—
=
—_
N—

S =A5, &= (ﬂg)’ch%Q’%, ¢l = (\/ig)’lsA%

where
Q=c2X2 482, Q=5"X2+ 2 (D.2)

Thus, the metric ansatz (3.1.1) becomes

dt, = sy + 2972 de” + Y ()P +e ) (W),
—[e28g 4 o212 A AT 25 2 At Ai | datde” + 20—2628 4¢2 (D.3)
- guu e 'g o ,/+e g (V% rhar” + g € 5

2

- 262“’gALJidx“ - 262“7g/i;6idx“ +e¥o? + 57,
Here, the second line can be obtained by expressing of the four-dimensional metric
as dsi = g, dxtdz”, the four-dimensional line element equation in (2.1.29), and
using the definitions of two SU(2)-valued forms in (C.8). Making a comparison
between this form of the metric ansatz in (D.3) and the general eleven-dimensional
line element equation, ds?, = gyndrMdx?, in which the eleven-dimensional
spacetime indices are splitted to be M, N = (u,&,i,1) with p a four-dimensional
spacetime index, £ a &-coordinate index, i and ¢ coordinate indices on each S3,

gives all non vanishing components of the metric tensor,

G =€ gu, + g AL AL + P g? AL AL

~ -2 2

dee = 297" (D.4)
gi,u, - _627914;7 Q;N = _26279"4;7
Gij = €0y, G5 = €055

By using the relation between metric tensor and the Minkowski metric in the
Lorentz frames defined in (2.1.56),

guN = €N Ny en (D.5)

where 7,5 is the eleven-dimensional Minkowski metric defined in the same way
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as (2.1.8) and can be written in the block-diagonal form as

N 0 0 0
0 1 0 0
Ao , D.6
TN 0 6, 0 (D-6)
0 0 0 o5
the eleven-dimensional non-coordinate orthogonal bases can be obtained*,
ev =cPer, &0 =2¢7tePde, & =N, ¢l = eTn, (D.7)

where e® refers to the vielbein 1-form in four-dimensional spacetime. Then,
all non-zero higher-dimensional spin connections can be determined through the
vielbein postulate in (2.1.79) as follow

d)ab _ wab + (abﬂea _ aaﬁeb) + ge—2ﬁ(e2’yFiabhi + e2’yﬁviabili)’
a0 = TS (et — 20700 B),

0% — —eB) (i — gFmbeb),
2% = —-P (3R — gﬁ;“eb),
W = —gy'e0 N,
& = —g7' e Ph,

]
W = —§5z‘jk(hk+291‘1]&))7

W = —%eijk(iﬁ +29Af),
where w® is a four-dimensional spin connection. Here, 3, 7/, and 4" denote their
derivatives with respect to &.

Some useful identities of these [, 7, and & functions are needed for
calculation of the eleven-dimensional Ricci tensor. From (D.1), it is easy to
exhibit the derivatives of each function with respect to the vielbein components
of four-dimensional spacetime and the coordinate £ in the following forms

1,c29,X%  s%9,X2
%uf _6< a T g )
20,X?

— — D.10
Ouy = 0uf = —5— (D.10)
s29,X?
8a~ = 8(1 - = )
Y B 55

*This 0 index, which is always used for a timelike coordinate index, now refers to the flat space index
corresponding to the spatial coordinate £ and all the four-dimensional equations of motion should be independent
of this & for consistency of the dimensional reduction.
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, oser(1—X?)  (X?2-1)

5_3[ Q ]
sc(l — X?)
Q
se(£2 - 1)

v =8 - — tan¢, (D.11)

/6_

Two useful identities are obviously obtained from these derivatives,

—cot&.

8aﬁ + 8a’7 + aa’s/ =0, (D12)

B 4+ +7 =2cot 2. (D.13)

Finally, all components of the eleven-dimensional Ricci tensor can be
computed using (2.1.85),

~ 2 1

Rop = A73 [ — OB+ 59°(=48" = 37" = 37" + 38"y + 387 — 3¢ — 3&’2)] ,
3 .2 , o,

i [(@aﬂ = V) + 0uB = 0uF)A ] :

ROi = 07 RO; = 07

By = A3 | Ry = 3(0480,8 + 071047 + 0:A0,7) — Oy

ROa =

1 T P |
= COTFLEE - 18O L - g (8" + 68 cot 26,

. 1 j

Ry = ——=cA3Q7% [ DF® — 2(88 — ) F|.
2\/50 [ b 2(0yB hY) a]

5 1 —28-107 Fib _ g =\ b

Rai_ 2\/§8A 302 [DbFa Q(abﬁ ab/Y)Fa]7
271

; 1 o
By =aw [592(_7” — 69" cot 26 + 2Qc™?)dy; — Dydy; + §C2Q_1FébF]ab} :

~ 1 ~ 1 .=~ ~ o~
Ry = A‘% [592(—’/’ — 67" cot 26 + 2Q2s™2)d;; — 09035 + gSQQ‘lF;bF”b} :

(D.9)

where Ry, is the Ricci tensor for the four-dimensional spacetime.
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