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CHAPTER I

INTRODUCTION

In ring theory, there is one special kind of ideals which is quite important called

prime ideals. A proper ideal P of a commutative ring R with nonzero identity is

called a prime ideal if whenever a, b ∈ R, ab ∈ P implies a ∈ P or b ∈ P . A 2-

absorbing ideal P of a commutative ring R with nonzero identity was introduced

by Badawi [1] in 2007 and was defined to be a proper ideal of R and if whenever

a, b, c ∈ R, abc ∈ P implies ab ∈ P or bc ∈ P or ac ∈ P . He also proved that

every prime ideal of a commutative ring with nonzero identity is a 2-absorbing

ideal but its converse does not hold. As a result, the notion of 2-absorbing ideals

are a generalization of prime ideals.

It is known that rings and modules over rings are related algebraic structures.

In fact, every ring is a module over itself and for this case any left ideal of this

ring is also a submodule of that module. So, it is natural that many research

works related to prime ideals and 2-absorbing ideals of rings are extended to prime

submodules and 2-absorbing submodules of modules over rings. In 2011, Darani

and Soheilnia [3] introduced the concept of 2-absorbing submodules of unitary

modules over commutative rings with identities. A proper submodule N of a

unitary module M over a commutative ring R with identity is said to be a 2-

absorbing submodule of M if whenever a, b ∈ R and m ∈ M,abm ∈ N implies

abM ⊆ N or am ∈ N or bm ∈ N . Moreover, every prime submodule of a

unitary module over a commutative ring with identity is a 2-absorbing submodule

but not vice versa. Hence 2-absorbing submodules are a generalization of prime

submodules. In addition, it is obvious that 2-absorbing ideals are a special case of

2-absorbing submodules.

In 1905, Dickson [4] showed that there exists a near field which is an algebraic
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structure similar to a field except that its multiplication is not necessarily commu-

tative and at least one distributive law holds. Some years later, the notion of near

rings was introduced. Many research have been carried out on this structure, for

examples, the works of Gunter Pilz, Yuen Fong, Alan Oswald and K.C. Smith. In

this thesis, many of the definitions we refer to are from Gunter Pilz’s book [10].

There are four chapters in this thesis. In Chapter I, we collect definitions

of near rings and modules over near rings as well as present some results which

are used in this thesis. In Chapter II, we study some properties of prime R-

ideals and 2-absorbing R-ideals of modules over near rings. Besides, we introduce

strongly 2-absorbing R-ideals of modules over near rings and strongly 2-absorbing

ideals of near rings and discuss some properties. Moreover, in Chapter III, we

investigate some properties of prime R-ideals and 2-absorbing R-ideals of modules

over decomposable near rings as well as prime ideals and 2-absorbing ideals of

decomposable near rings. This thesis is completed by Chapter IV which is the

conclusion of our work.

1.1 Near Rings

A near ring is a generalization of a ring whose two axioms are omitted, namely,

the addition is not necessarily abelian and the multiplication distributes over the

addition is applied either on left or right side.

Definition 1.1. [10] A near ring is a set R together with two operations, called

the addition + and the multiplication ·, satisfying the following conditions:

(i) (R,+) is a group where the additive identity of (R,+) is denoted by 0,

(ii) (R, ·) is a semigroup, and

(iii) the right distributive law holds, i.e., (a + b) · c = a · c+ b · c for all a, b, c ∈ R.

This near ring is also called a right near ring. If the condition (iii) is replaced

by the “left distributive law”, then this is called a left near-ring.
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From here on, all near rings are right near rings. Moreover, for any a, b in a

near ring R, we may write ab instead of a · b and −a means the additive inverse

of a.

Example 1.2. [10] Let G be a group and M(G) = {f : f is a function from G

into G} with addition + and multiplication ◦ on M(G) given by

(f + g)(x) = f(x) + g(x) and (f ◦ g)(x) = f(g(x))

for all f, g ∈ M(G) and all x ∈ G. Then (M(G),+) is a group. It is easy to see

that (M(G), ◦) is a semigroup and (f + g)◦h = f ◦h+g ◦h for all f, g, h ∈M(G).

Hence (M(G),+, ◦) is a near ring which is not a ring because h ◦ (f + g) is not

necessary equal to h ◦ f + h ◦ g. For example, consider the group (R+, ·), let

f, g, h : R+ → R+ be defined by f(x) = 2x, g(x) = x and h(x) =
√
x for all

x ∈ R+. Then (h◦ (f + g))(x) =
√

3x and (h◦f +h◦g)(x) =
√

2x+
√
x. If x = 1,

then (h ◦ (f + g))(1) =
√

3 6=
√

2 + 1 = (h ◦ f)(1) + (h ◦ g)(1).

Definition 1.3. [10] A near ring R is called a near ring with identity if there

is an element b ∈ R such that ab = a = ba for all a ∈ R; we say that b is the

(multiplicative) identity of the near ring R.

Example 1.4. Let R = {0, 1, a, b} be the set with addition + and multiplication ·

on R given by the following tables:

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

· 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a a b

b 0 b 0 0

Then (R,+, ·) is a near ring with identity 1 which is not a ring because b(a+ b) =

b(1) = b 6= 0 = 0 + 0 = ba + bb.

If R is a near ring, then it is always true that 0r = 0 for all r ∈ R because
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0r = (r− r)r = rr− rr = 0 for each r ∈ R. However, the following example shows

that r0 is not necessarily equal to 0.

Example 1.5. Let R = {0, 1} be the set with addition + and multiplication ·

given by the following tables:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 1 1

Then (R,+, ·) is a near ring without identity and 1 · 0 = 1 6= 0. Note also that

(R,+, ·) is not a ring.

Definition 1.6. [10] A near ring R is called a zero symmetric near ring if

r0 = 0 for all r ∈ R.

The near ring given in Example 1.4 is a zero symmetric near ring with identity 1.

While, the near ring given in Example 1.5 is not a zero symmetric near ring because

1 · 0 = 1 6= 0.

It is known that the multiplication of nonempty subsets A and B of a ring is

defined as AB = {
n∑

i=1

aibi : ai ∈ A and bi ∈ B for all i}. But, in near ring, if we

defined AB in the same way, then there would have been a problem that (AB)C is

not necessary equal to A(BC) because the distributive property of near rings may

not be applied on the left side and the addition is not necessarily commutative.

Example 1.7. Let R be the near ring given in Example 1.4. Moreover, for any

nonempty subsets X and Y of R, assume that XY = {
n∑

i=1

xiyi : xi ∈ X and

yi ∈ Y for all i}. Next, let A = {b}, B = {a, b} and C = {1}. Since 1 /∈ B, it

follows that AB = {0} and then (AB)C = {0}. However, a1 + b1 ∈ BC so that

b(a1 + b1) ∈ A(BC) with b(a1 + b1) = b(a + b) = b1 = b 6= 0. This shows that

(AB)C 6= A(BC).

Consequently, in our work, for any nonempty subsets A and B of a near ring,

the set AB has to be defined as follows.
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Definition 1.8. [10] Let A and B be nonempty subsets of a near ring R. Then

the set AB is defined to be {ab : a ∈ A and b ∈ B}. For any nonempty subset A

of a near ring R and r ∈ R, we write Ar instead of A{r} and rA instead of {r}A.

Proposition 1.9. If A,B and C are nonempty subsets of a near ring, then

(AB)C = A(BC).

Proof. This is clear from the definition.

In ring theory, ideals are special subsets of a ring. It is natural to extend ideals

of a ring to ideals of a near ring. It turns out that there are two types of such

those special subset objects in a near ring which are closed to ideals of rings, called

R-subgroups and ideals of near rings.

Definition 1.10. [10] A subset H of a near ring R is called an R-subgroup of R

if

(i) (H,+) is a subgroup of (R,+),

(ii) HR ⊆ H, and

(iii) RH ⊆ H.

However, if the conditions (i) and (ii) are satisfied, then H is called a right

R-subgroup. If the conditions (i) and (iii) are satisfied, then H is called a left

R-subgroup.

If we consider rings as near rings, then every ideal of rings is an R-subgroup of

near rings.

Example 1.11. Let R be the near ring given in Example 1.5. It is easy to check

that R is the only one R-subgroup of R. Note that {0} is a right R-subgroup

but not an R-subgroup of R because {0}R ⊆ {0} but 1 = 1 · 0 ∈ R{0}, i.e.,

R{0} * {0}.

Example 1.12. Let R be the near ring given in Example 1.4. Then all R-

subgroups of R are {0}, {0, b} and R. Moreover, {0, a} is a left R-subgroup but

not an R-subgroup of R because b = ab ∈ {0, a}R, i.e., {0, a}R * {0, a}.
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Proposition 1.13. Let R be a near ring. If a ∈ R, then Ra is a left R-subgroup

of R.

Proof. Let r1a, r2a ∈ Ra where r1, r2 ∈ R. We obtain that r1a−r2a = (r1−r2)a ∈

Ra. Moreover, R(Ra) = (RR)a ⊆ Ra. Therefore, Ra is a left R-subgroup of R.

Let consider the near ring R = {0, 1, a, b} given in Example 1.4. Notice that

Ra = {0, a}. However, (Ra)R = {0, a, b} * Ra. Then Ra is not a right R-

subgroup of R. This shows that, in general, Ra is not necessarily a right R-

subgroup of R. Moreover, aR is not necessarily a right R-subgroup of R. For

example, aR = {0, a, b} but a+b = 1 /∈ aR. Then aR is not closed under addition.

Definition 1.14. [10] A subset I of a near ring R is called an ideal of R if

(i) (I,+) is a normal subgroup of (R,+),

(ii) IR ⊆ I, and

(iii) r1 (r2 + k)− r1r2 ∈ I for all r1, r2 ∈ R and k ∈ I.

However, if I satisfies the conditions (i) and (ii), then I is called a right ideal

of R, while I is called a left ideal of R if the conditions (i) and (iii) are satisfied.

In the same way as R-subgroups, if rings are considered as near rings, then

every ideal of rings is an ideal of near rings.

Example 1.15. (i) Let R be the near ring given in Example 1.5. Then all ideals

of R are {0} and R.

(ii) Let R be the near ring given in Example 1.4. Then all ideals of R are {0},

{0, b} and R. Note that {0, a} is not an ideal because a(b + a)− ab = a(1)− b =

a + b = 1 /∈ {0, a} (in fact, {0, a} is not a left ideal; moreover, {0, a} is not a right

ideal because b = ab ∈ {0, a}R).

In general, R-subgroups and ideals of near rings may not be related. However, if

(R,+) is an abelian group, then left R-subgroups and left ideals of R are identical.

Although R is a near ring such that (R,+) is an abelian group, right R-subgroups



7

are not necessary right ideals and vice versa. This is because the near ring R may

satisfy only one distributive law. For example, {0} is always an ideal of any near

ring R so that {0} is a right ideal of R but {0} may not be a right R-subgroup

of R, see Example 1.11.

The next proposition provides the condition that makes each ideal an R-

subgroup.

Proposition 1.16. Let R be a zero symmetric near ring and I be an ideal of R.

Then

(1) RI ⊆ I; and

(2) I is an R-subgroup of R.

Proof. Assume that R is a zero symmetric near ring. Let I be an ideal of R. Since

I is an ideal of R, it follows that (I,+) is a normal subgroup of (R,+) and IR ⊆ I.

Next, we show that rk ∈ I for all r ∈ R and k ∈ I. Let r ∈ R and k ∈ I. Since R

is a zero symmetric near ring, r0 = 0. And we have rk = r(0+k)−r0 ∈ I because

I is an ideal of R and k ∈ I. Therefore, RI ⊆ I and then I is an R-subgroup

of R.

However, even a near ring is a zero symmetric near ring, an R-subgroup may

not be an ideal.

Example 1.17. Let K = {e, a, b, c} be the Klein-4-group. Define the multiplica-

tion · on K by r · c = r and r · y = e for all r ∈ K and y ∈ {e, a, b}. We illustrate

these in the following tables:

+ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

· e a b c

e e e e e

a e e e a

b e e e b

c e e e c
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Then K is a zero symmetric near ring, {e} is the only one ideal of K and {e, b} is

an R-subgroup of K, see [9]. Therefore, {e, b} is an R-subgroup of K but is not

an ideal of K even K is a zero symmetric near ring.

The last result is another advantage of being a zero symmetric near ring.

Proposition 1.18. Let R be a zero symmetric near ring and I1, I2, . . . , In be ideals

of R. Then I1I2 · · · In ⊆ I1 ∩ I2 ∩ · · · ∩ In.

Proof. Let x1x2 · · · xn ∈ I1I2 · · · In where xi ∈ Ii for all i. Since each Ii is an ideal

of R and R is a zero symmetric near ring, RIi ⊆ Ii and IiR ⊆ Ii for all i so that

x1x2 . . . xi . . . xn ∈ Ii for all i. Therefore, I1I2 · · · In ⊆ I1 ∩ I2 ∩ · · · ∩ In.

1.2 Modules over Near Rings

Now, it is time to introduce modules over near rings which are a generalization of

near rings. In fact, modules over near rings also are a generalization of modules

over rings.

Definition 1.19. [10] Let R be a near ring and (M,+) a group. Then M is

called a module over near ring R (or an R-module) if there exists a scalar

multiplication · : R×M →M such that for all r1, r2 ∈ R and m ∈M ,

(i) (r1 + r2) ·m = r1 ·m + r2 ·m, and

(ii) (r1r2) ·m = r1 (r2 ·m).

For any r ∈ R and m ∈ M , we may write rm instead of r ·m. It is obvious

that every near ring is a module over itself and every module over a ring R is a

module over R where R is considered as a near ring.

Example 1.20. Let (R = {0, 1},+, ·) be the near ring which is not a ring given

in Example 1.5 and M = {0, a}. Define the addition + on M and the scalar

multiplication � : R×M →M by the following tables:
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+ 0 a

0 0 a

a a 0

� 0 a

0 0 a

1 0 a

Then M is a module over the near ring R.

Definition 1.21. [10] Let R be a near ring with identity 1. An R-module M is

called a unitary R-module if 1m = m for all m ∈M .

Example 1.22. Let R be the near ring with identity 1 given in Example 1.4. Then

R is an R-module. We can see that 1m = m for all m ∈ R. Then R is a unitary

R-module.

Definition 1.23. [10] Let A be a nonempty subset of a near ring R and N be a

nonempty subset of an R-module. Then define the set AN as AN = {an : a ∈ A

and n ∈ N}.

Proposition 1.24. If A,B are nonempty subsets of a near ring R and N is a

nonempty subset of an R-module, then (AB)N = A(BN).

Proof. Assume that A,B are nonempty subsets of a near ring R and N is a

nonempty subset of an R-module M . First, let (ab)n ∈ (AB)N where a ∈ A,

b ∈ B and n ∈ N . Since M is an R-module, (ab)n = a(bn) ∈ A(BN). Then

(AB)N ⊆ A(BN). Similarly, A(BN) ⊆ (AB)N is obtained. Therefore, (AB)N =

A(BN).

Submodules of modules over rings are naturally extended to submodules of

modules over near rings. Since some axioms of modules over rings are omitted,

there are at least two types of such those special subset objects called R-submodules

and R-ideals of modules over near rings.

Definition 1.25. [10] Let R be a near ring. A subgroup N of an R-module M is

called an R-submodule of M if rn ∈ N for all r ∈ R and n ∈ N .

Definition 1.26. [10] Let R be a near ring. A normal subgroup N of an R-

module M is called an R-ideal of M if r (m + n)− rm ∈ N for all r ∈ R, m ∈M

and n ∈ N .
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Let R be a near ring. Then R is also an R-module. Thus R-ideals of the

R-module R are the same as left ideals of the near ring R and R-submodules of

the R-module R are left R-subgroups of the near ring R. The following examples

show that R-submodules and R-ideals do not imply each other.

Example 1.27. Let R be the near ring given in Example 1.5. Then {0} is an

R-ideal of the R-module R but {0} is not an R-submodule of the R-module R

because 1 · 0 = 1 /∈ {0}.

Example 1.28. Let R be the near ring given in Example 1.4. Then all R-

submodules of the R-module R are {0}, {0, a}, {0, b} and R. Moreover, all R-ideals

of the R-module R are {0}, {0, b} and R. Note that {0, a} is not an R-ideal because

{0, a} is not a left ideal of the near ring R (see Example 1.15 (ii)). Thus {0, a} is

an R-submodule but not an R-ideal of the R-module R.

The next proposition yields that Rm is an R-submodule of an R-module M for

any m ∈M .

Proposition 1.29. Let M be an R-module. If m ∈ M , then Rm is an R-

submodule of M .

Proof. This is similar to the proof of Proposition 1.13.

Next, a condition that makes each R-ideal an R-submodule is given.

Proposition 1.30. Let R be a zero symmetric near ring and N be an R-ideal of

an R-module M . Then

(1) RN ⊆ N ; and

(2) N is an R-submodule of M .

Proof. This is similar to the proof of Proposition 1.16.

Notation 1.31. Let N and K be nonempty subsets of an R-module. Set (N : K)

= {r ∈ R : rK ⊆ N}.
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In module theory, for a submodule N of a module M over a ring R, (N : M)

is an ideal of R. We also obtain this similar result.

Proposition 1.32. Let N be an R-ideal of an R-module M and K be an R-

submodule of M . Then (N : K) is an ideal of R.

Proof. First, we show that (N : K) is a normal subgroup of R. Since 0K ⊆ N , it

follows that 0 ∈ (N : K). Let x, y ∈ (N : K). That is xK ⊆ N and yK ⊆ N . Let

k ∈ K. Then (x− y) k = xk−yk ∈ N . Thus (x−y)K ⊆ N so that x−y ∈ (N : K).

Moreover, let r ∈ R. We show that r + x− r ∈ (N : K). Since xk ∈ xK ⊆ N and

(N,+) is a normal subgroup of (M,+), it follows that (r + x− r) k = rk+xk−rk ∈

N . That is (r + x − r)K ⊆ N . So r + x − r ∈ (N : K). Hence (N : K) is a

normal subgroup of R. Next, we obtain that xrK ⊆ xRK ⊆ xK ⊆ N because

K is an R-submodule of M and xK ⊆ N . This means that xr ∈ (N : K).

Hence (N : K)R ⊆ (N : K). To show the rest, let r1 ∈ R and verify that

r(r1 + x)− rr1 ∈ (N : K). Note that (r (r1 + x)− rr1) k = r (r1 + x) k − (rr1)k =

r (r1k + xk)− r (r1k) ∈ N because xk ∈ N and N is an R-ideal of M . This shows

that (r (r1 + x)− rr1)K ⊆ N . That is (r (r1 + x)− rr1) ∈ (N : K). Therefore,

(N : K) is an ideal of R.

Proposition 1.33. Let N and K be R-submodules of an R-module M . Then

(N : K) is an R-subgroup of R.

Proof. Note that (N : K) is a subgroup of R similarly to the proof of Proposition

1.32. Next, let r ∈ R and x ∈ (N : K). Then xK ⊆ N . Since N and K are

R-submodules of M , it follows that xrK ⊆ xRK ⊆ xK ⊆ N and rxK ⊆ rN ⊆ N .

Then (N : K)R ⊆ (N : K) and R(N : K) ⊆ (N : K). Therefore, (N : K) is an

R-subgroup of R.

It is known that intersections of submodules of modules over rings are sub-

modules. In next propositions, we consider intersections of R-ideals, and of R-

submodules of modules over near rings, respectively.
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Proposition 1.34. Let Ni be an R-ideal of an R-module M for all i ∈ I. Then⋂
i∈I

Ni is an R-ideal of M .

Proof. We obtain that Ni is a normal subgroup of M because Ni is an R-ideal

of M for all i ∈ I. Then
⋂
i∈I

Ni is a normal subgroup of M . Let r ∈ R, n ∈
⋂
i∈I

Ni

and m ∈M . Then r(m+ n)− rm ∈ Ni for all i ∈ I because each Ni is an R-ideal

of M . That is r(m + n)− rm ∈
⋂
i∈I

Ni. Therefore,
⋂
i∈I

Ni is an R-ideal of M .

Proposition 1.35. Let Ni be an R-submodule of an R-module M for all i ∈ I.

Then
⋂
i∈I

Ni is an R-submodule of M .

Proof. Since (Ni,+) is a subgroup of (Mi,+) for all i ∈ I, it follows that (
⋂
i∈I

Ni,+)

is a subgroup of (M,+). Next, let r ∈ R and n ∈
⋂
i∈I

Ni. Then rn ∈ RNi ⊆ Ni

for all i ∈ I because each Ni is an R-submodule of M . Thus rn ∈
⋂
i∈I

Ni so that

R(
⋂
i∈I

Ni) ⊆
⋂
i∈I

Ni. Therefore,
⋂
i∈I

Ni is an R-submodule of M .

One can see from the definitions of R-submodules and R-ideals that R-ideals

are normal subgroups but R-submodules are not necessarily. Consequently, these

allow us to define quotient modules over near rings via R-ideals.

Theorem 1.36. Let N be an R-ideal of an R-module M . Moreover, let M/N =

{m+N : m ∈M}. Define the addition + on M/N and the scalar multiplication ·

by

(m + N) + (n + N) = (m + n) + N and r · (m + N) = rm + N

for all r ∈ R and for all m,n ∈M . Then (M/N,+, ·) is an R-module.

Proof. Since N is an R-ideal of M , it follows that (N,+) is a normal subgroup of

(M,+). Thus (M/N,+) is a group. Now, we show that the scalar multiplication

is well-defined. Let x, y ∈ M and r ∈ R. Assume that x + N = y + N . Then

−y + x ∈ N . That is rx − ry = r(y + (−y + x)) − ry ∈ N because N is an

R-ideal of M . Since N is a normal subgroup of M and rx − ry ∈ N , it follows

that −ry + rx = −ry + (rx − ry) + ry ∈ N . Then we can conclude that the

scalar multiplication is well-defined. Next, we show that (r1 + r2) · (x + N) =
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r1 · (x + N)+r2 · (x + N) and (r1r2) · (x + N) = r1 · (r2 · (x + N)) for all r1, r2 ∈ R.

Let r1, r2 ∈ R. Then,

(r1 + r2) · (x + N) = (r1 + r2)x + N

= (r1x + r2x) + N

= (r1x + N) + (r2x + N)

= r1 · (x + N) + r2 · (x + N)

and

(r1r2) · (x + N) = (r1r2)x+N = r1(r2x)+N = r1 · ((r2x)+N) = r1 · (r2 · (x + N)).

Therefore, (M/N,+, ·) is an R-module.

Definition 1.37. Let N be an R-ideal of an R-module M . Then (M/N,+, ·) given

in Theorem 1.36 is called the quotient module over the near ring R.

Proposition 1.38. If N and K are R-ideals of an R-module M with K ⊆ N ,

then N/K is an R-ideal of M/K.

Proof. First, we show that N/K is a normal subgroup of M/K. Since N and K are

R-ideals of M containing K, it follows that N and K are normal subgroups of M

so that K is also a normal subgroup of N and then N/K is a subgroup of M/K.

Let m ∈M and x ∈ N . Then (m + K)+(x + K)−(m + K) = (m + x−m)+K ∈

N/K because x ∈ N and N is a normal subgroup of M . Hence N/K is a normal

subgroup of M/K. Let r ∈ R. Then we obtain that

r · ((m + K) + (x + K))− r · (m + K) = r · ((m + x) + K)− r · (m + K)

= (r (m + x) + K)− (rm + K)

= (r (m + x)− rm) + K ∈ N/K

because N is an R-ideal of M and x ∈ N . Therefore, N/K is an R-ideal of

M/K.

In order to obtain the results of Proposition 1.38, being R-ideals of N and K

is crucial because if N and K were R-submodules of M , then N and K may not

be normal subgroups of M .
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Example 1.39. Let R be the near ring given in Example 1.4. Then R is an R-

module. Next, let N = {0, b} and K = {0}. Then K ⊆ N . Moreover, we obtain

from Example 1.28 that N and K are R-ideals of R. Therefore, N/K is an R-ideal

of M/K.

It is known that a near ring is an algebraic structure similar to a ring. In

1970, Holcombe [8] extended the definition of prime ideals of rings to prime ideals

of near rings. However, in [8], there are three types of such those prime objects,

namely, 0-prime ideals, 1-prime ideals and 2-prime ideals. Moreover, Groenewald

[5] introduced in 1991 two more types of prime ideals of near rings, namely, 3-

prime ideals and completely prime ideals. Recently, in 2010, Groenewald, Juglal

and Lee [7] extended prime ideals of near rings to prime R-ideals of modules over

near rings.

In our work, inspired by the above, we aim to study the notions that generalize

prime ideals of near rings and prime R-ideals of modules over near rings in the

same way as prime ideals of rings and prime submodules of modules over rings

were extended, called 2-absorbing ideals and 2-absorbing R-ideals, respectively.

We investigate properties of prime R-ideals and 2-absorbing R-ideals of modules

over near rings in general. Then we focus on 2-absorbing R-ideals of modules over

decomposable near rings and 2-absorbing ideals of decomposable near rings.



CHAPTER II

PRIME R-IDEALS AND 2-ABSORBING R-IDEALS

OF MODULES OVER NEAR RINGS

As a near ring is an algebraic structure relative to a ring, it is natural to extend

prime ideals of rings to prime ideals of near rings. In 1970, Holcombe [8] extended

the definition of prime ideals of rings to prime ideals of near rings. He introduced

three types of such those prime objects which he called 0-prime ideals, 1-prime

ideals and 2-prime ideals. Moreover, Groenewald [5], in 1991, introduced two more

types of prime ideals of near rings which he called 3-prime ideals and completely

prime ideals.

Definition 2.1. [5, 8] Let P be a proper ideal of a near ring R. Then P is called

(1) a 0-prime ideal of R if for all ideals A and B of R, AB ⊆ P implies A ⊆ P

or B ⊆ P ;

(2) a 1-prime ideal of R if for all left ideals A and B of R, AB ⊆ P implies

A ⊆ P or B ⊆ P ;

(3) a 2-prime ideal of R if for all left R-subgroups A and B of R, AB ⊆ P

implies A ⊆ P or B ⊆ P ;

(4) a 3-prime ideal of R if for all a, b ∈ R, aRb ⊆ P implies a ∈ P or b ∈ P ;

and

(5) a completely prime ideal of R if for all a, b ∈ R, ab ∈ P implies a ∈ P or

b ∈ P .

Next, relationships between these five types of prime ideals of near rings are

given.
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Proposition 2.2. [5] Let P be a proper ideal of a near ring R. Then P is a

completely prime ideal → P is a 3-prime ideal → P is a 2-prime ideal → P is a

1-prime ideal → P is a 0-prime ideal.

Example 2.3. Let K be the near ring given in Example 1.17. Then {e} is a

0-prime ideal but is not 3-prime ideal of K. Note that {e} is a 0-prime ideal

of K because {e} and K are the only ideals of K and KK 6= {e}. Moreover,

aRa = {e, a}a = {e} and a /∈ {e}. Therefore, {e} is not a prime ideal of K.

Recall that modules over near rings are a generalization of near rings. In 2010,

Groenewald, Juglal and Lee [7] extended prime ideals of near rings to prime R-

ideals of modules over near rings.

Definition 2.4. [7] Let N be a proper R-ideal of an R-module M . Then N is

called

(1) a 0-prime R-ideal of M if for all ideal A of R and R-ideal K of M , AK ⊆ N

implies AM ⊆ N or K ⊆ N ;

(2) a 1-prime R-ideal of M if for all left ideal A of R and R-ideal K of M ,

AK ⊆ N implies AM ⊆ N or K ⊆ N ;

(3) a 2-prime R-ideal of M if for all left R-subgroup A of R and R-submodule K

of M , AK ⊆ N implies AM ⊆ N or K ⊆ N ;

(4) a 3-prime R-ideal of M if for all r ∈ R,m ∈M, rRm ⊆ N implies rM ⊆ N

or m ∈ N ; and

(5) a completely prime R-ideal of M if for all r ∈ R,m ∈M, rm ∈ N implies

rM ⊆ N or m ∈ N .

Similary, Groenewald, Juglal and Lee showed relationships between the five

types of prime R-ideals of modules over near rings.

Proposition 2.5. [7] Let N be a proper R-ideal of an R-module M . Then N is a

completely prime R-ideal → N is a 3-prime R-ideal → N is a 2-prime R-ideal →

N is a 1-prime R-ideal → N is a 0-prime R-ideal.
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In 2007, Badawi extended the notion of prime ideals to 2-absorbing ideals of

commutative rings with identities, see [1]. In 2011, Darani and Soheilnia extended

the notion of prime submodules to 2-absorbing submodules of modules over com-

mutative rings with identities, see [3]. In this thesis, we extend the concept of prime

ideals of near rings and prime R-ideals of modules over near rings to 2-absorbing

ideals of near rings and 2-absorbing R-ideals of modules over near rings, respec-

tively. This extension is done in the same way as prime ideals of commutative

rings with identities, and prime submodules of modules over commutative rings

with identities were extended. First, let see how Darani and Soheilnia extended

the definition of prime submodules to 2-absorbing submodules of modules over

commutative rings with identities. Recall that a proper submodule N of a unitary

module M over a commutative ring R with identity is said to be a prime sub-

module of M if for any a ∈ R,m ∈M , am ∈ N implies aM ⊆ N or m ∈ N . And

they extended this to 2-absorbing submodules. A proper submodule N of a unitary

module M over a commutative ring R with identity is said to be a 2-absorbing

submodule of M if for any a, b ∈ R,m ∈ M,abm ∈ N implies abM ⊆ N or

am ∈ N or bm ∈ N .

Similarly, we would like to extend the idea of various prime R-ideals of modules

over near rings to 2-absorbing R-ideals. First, consider 0-prime R-ideals of a

module over a near ring. The definition of a 2-absorbing R-ideal N of a module

M over a near ring R should be defined to be a proper R-ideal of M and for any

ideals A,B of R, any R-ideal C of M,ABC ⊆ N implies ABM ⊆ N or AC ⊆ N

or BC ⊆ N . With this definition, “every 0-prime R-ideal of a module over a near

ring is a 2-absorbing R-ideal” should be obtained. However, this is not the case

because for any ideals A and B of a near ring R, it is not always that AB is an

ideal of R. Besides, for any ideal A of a near ring R and any R-ideal C of a module

M over the near ring R, it is not necessary that AC is an R-ideal of M .

Consequently, 2-absorbing R-ideals should not be extended from 0-prime R-

ideals. Analogously, similar problems would have arisen if we extended 2-absorbing

R-ideals from 1-prime R-ideals or 2-prime R-ideals. However, these does not occur
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with extending 3-prime R-ideals and completely prime R-ideals of modules over

near rings. In this thesis, we define 2-absorbing ideals and 2-absorbing R-ideals

by extending these from 3-prime ideals and 3-prime R-ideals, respectively. As for

this, to be convenient, we call 3-prime ideals and 3-prime R-ideals as prime ideals

and prime R-ideals, respectively. Let us rephrase these as follows.

Definition 2.6. Let R be a near ring and P be a proper ideal of R. Then P is

called a prime ideal of R if for all a, b ∈ R, aRb ⊆ P implies a ∈ P or b ∈ P .

Definition 2.7. Let R be a near ring, M be an R-module and N be a proper

R-ideal of M . Then N is called a prime R-ideal of M , if for all a ∈ R,m ∈ M ,

aRm ⊆ N implies aM ⊆ N or m ∈ N .

Example 2.8. Let R = {0, 1} be the near ring given in Example 1.5 under fol-

lowing operations:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 1 1

Then {0} is the only proper R-ideal of the R-module R, see Example 1.27. And

it is easy to verify that {0} is a prime R-ideal of the R-module R. To check

this, let x, y ∈ R. Assume that xRy = {0}. Then x = 0 because if x = 1,

then xRy = 1Ry = {1} 6= {0}. Therefore, {0} is the only prime R-ideal of the

R-module R.

Example 2.9. Let R = {0, 1, a, b} be the zero symmetric near ring given in Ex-

ample 1.4 under the following operations:

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

· 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a a b

b 0 b 0 0
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Recall from Example 1.28 that {0} and {0, b} are the only proper R-ideals of the R-

module R. One can check that {0, b} is the only prime R-ideal of the R-module R.

However, {0} is not a prime R-ideal of the R-module R because b · b = 0 but

b /∈ {0}.

The following result shows a relationship between prime submodules and prime

R-ideals in some cases.

Proposition 2.10. Let R be a commutative ring with identity 1 and M be a

module over the ring R. We know that the ring R is also a near ring so that M

can be considered as a module over the near ring R. To distinguish between these

structures, we write M ′ to interpret the module M over the near ring R. Then

every prime submodule of M is a prime R-ideal of M ′.

Proof. By definition of R-ideals of modules over near rings, we can conclude that

every submodule of M is an R-ideal of M ′. Next, let N be a prime submodule

of M . To show that N is a prime R-ideal of M ′, let a ∈ R and m ∈ M . Assume

that aRm ⊆ N . Then am = (a1)m ∈ N . Since N is a prime submodule of M , we

obtain that aM ⊆ N or m ∈ N . Therefore, N is a prime R-ideal of M ′.

Example 2.11. Let p be a prime number. Recall that pZ is a prime submodule

of the module Z over the ring Z. Then pZ is a prime R-ideal of the module Z over

the near ring Z by Proposition 2.10.

Now, we are ready to provide the definitions of 2-absorbing ideals of near rings

and 2-absorbing R-ideals of modules over near rings.

Definition 2.12. Let R be a near ring and P be a proper ideal of R. Then P is

called a 2-absorbing ideal of R if for all a, b, c ∈ R, aRbRc ⊆ P implies ab ∈ P

or bc ∈ P or ac ∈ P .

Definition 2.13. Let R be a near ring, M be an R-module and N be a proper

R-ideal of M . Then N is called a 2-absorbing R-ideal of M if for all a, b ∈ R,

m ∈M , aRbRm ⊆ N implies abM ⊆ N or am ∈ N or bm ∈ N .
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Badawi introduced, in [1], 2-absorbing ideals of rings and showed that every

prime ideal of a ring is a 2-absorbing ideal. Later, Darani and Soheilnia provided

the notion of 2-absorbing submodules of modules over rings and proved that every

prime submodule of a module over a ring is a 2-absorbing submodule, see [3].

Consequently, we expect to obtain the similar result in term of 2-absorbing R-

ideals of modules over near rings. Anyhow, the following result is needed.

Proposition 2.14. Let N be a prime R-ideal of an R-module M . For all a, b ∈ R,

m ∈M , if aRbRm ⊆ N and am /∈ N, then bM ⊆ N .

Proof. Let a, b ∈ R and m ∈ M . Assume that aRbRm ⊆ N and am /∈ N . First,

we show that bRm ⊆ N . Let r ∈ R. Then aR(brm) ⊆ aRbRm ⊆ N . Since N is

a prime R-ideal of M , aM ⊆ N or brm ∈ N . Then brm ∈ N because am /∈ N .

That is bRm ⊆ N as desired. Since N is a prime R-ideal of M , it follows that

bM ⊆ N or m ∈ N . Note that am /∈ N so m /∈ N . Therefore, bM ⊆ N .

Proposition 2.15. Let R be a zero symmetric near ring. If N is a prime R-ideal

of an R-module M , then N is a 2-absorbing R-ideal of M .

Proof. Assume that N is a prime R-ideal of an R-module M . Let a, b ∈ R and

m ∈ M . Assume that aRbRm ⊆ N but am /∈ N . Thus bM ⊆ N by Proposition

2.14. Then bm ∈ N and abM ⊆ aN ⊆ RN ⊆ N by Proposition 1.30 (i). Therefore,

N is a 2-absorbing R-ideal of M .

Proposition 2.15 guarantees that every prime R-ideal is a 2-absorbing R-ideal

provide that R is a zero symmetric near ring. But the converse does not necessarily

hold.

Example 2.16. Let R = {0, 1, a, b} be the R-module considered in Example 2.9.

Note also that R is a zero symmetric near ring and {0} is not a prime R-ideal of R.

Moreover, {0} is a 2-absorbing R-ideal of R. To see this, let x, y, z ∈ R. Assume

that xRyRz = {0}. If x = 0 or y = 0 or z = 0, then xy = 0 or xz = 0 or yz = 0

because R is a zero symmetric near ring. Next, suppose that each of x, y and z is

not zero. There are 2 cases to be considered:
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(i) at least two of x, y and z are 1, and

(ii) at most one of x, y and z are 1.

First, we consider Case(i). Without loss of generality, it suffices to assume that x

and y are 1. It follows that 1R1Rz 6= {0} which is a contradiction. Thus Case(i)

does not occur. Next, Case(ii) is considered. Then there is exactly one of x, y

and z such that it is 1. We claim that x = b or y = b or z = b. Suppose not, i.e.,

x 6= b and y 6= b and z 6= b. First, assume that x = 1. This leads to y = z = a.

Thus a = 1 · 1 · a · 1 · a ∈ 1RyRz, i.e. , 1RyRz 6= {0}. Similarly, if y = 1 or z = 1,

then xRyRz 6= {0}. This is a contradiction. Hence the claim is proved. As a

result, there are 3 possible choices of xRyRz, namely, bRyRz, xRbRz, or xRyRb.

We obtain from the table of multiplication in Example 2.9 that xRyRb 6= {0}.

Moreover, if {0} = xRyRz = bRyRz, then by = 0. Or, if {0} = xRyRz = xRbRz,

then bz = 0. This shows that whenever xRyRz = {0}, then xy = 0 or xz = 0 or

yz = 0. Therefore, {0} is a 2-absorbing R-ideal of M .

In 2011, Darani and Soheilnia showed in [3] that intersections of each pair

of prime submodules of modules over rings are 2-absorbing submodules. It is

reasonable to generalize this result to intersections of each pair of prime R-ideals

of modules over near rings.

Theorem 2.17. Let M be an R-module. Then intersections of each pair of prime

R-ideals of M are 2-absorbing R-ideals of M .

Proof. Let N and K be two prime R-ideals of M . If N = K, then N ∩ K is a

prime R-ideal of M so that N ∩ K is a 2-absorbing R-ideal of M . Assume that

N and K are distinct. Since N and K are proper R-ideals of M , it follows that

N ∩ K is a proper R-ideal of M . Next, let a, b ∈ R and m ∈ M be such that

aRbRm ⊆ N ∩K but am /∈ N ∩K and abM * N ∩K. Then, we can conclude

that (a) am /∈ N or am /∈ K, and (b) abM * N or abM * K. These reach to 4

cases:

(i) am /∈ N and abM * N

(ii) am /∈ N and abM * K
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(iii) am /∈ K and abM * N

(iv) am /∈ K and abM * K.

First, we consider Case(i). Since aRbRm ⊆ N ∩K ⊆ N and am /∈ N , it follows

from Proposition 2.14 that bM ⊆ N . This is a contradiction because abM * N .

Hence Case(i) does not occur. Similarly, Case(iv) is not possible.

Next, Case(ii) is considered. Again, we obtain that bM ⊆ N and then bm ∈ N .

Let r ∈ R. Since aRbRm ⊆ N∩K ⊆ K, it follows that aR(brm) ⊆ aR(bRm) ⊆ K.

Hence aM ⊆ K or brm ∈ K because K is a prime R-ideal of M . If aM ⊆ K,

then abM ⊆ aM ⊆ K contradicts abM * K. Thus brm ∈ K. That is bRm ⊆ K.

Since K is a prime R-ideal, bM ⊆ K or m ∈ K. If bM ⊆ K, then abM ⊆ K

leading to the same contradiction. Hence, m ∈ K and then bm ∈ K. As a result,

bm ∈ N ∩K.

The proof of Case(iii) is similar to that of Case(ii).

Therefore, intersections of each pair of prime R-ideals of M are 2-absorbing

R-ideals of M .

Example 2.18. It follows from Example 2.11 that 2Z and 3Z are prime Z-ideals of

the Z-module Z. Then 6Z = 2Z∩3Z is a 2-absorbing Z-ideal of Z by Theorem 2.17.

Since intersections of each pair of prime R-ideals are 2-absorbing R-ideals and

prime R-ideals are 2-absorbing R-ideals, is it true that intersections of each pair of

2-absorbing R-ideals are 2-absorbing R-ideals? The following example shows that

intersections of each pair of 2-absorbing R-ideals are not necessary 2-absorbing

R-ideals.

Example 2.19. Since 5Z is a prime Z-ideal of the Z-module Z by Example 2.11

so that 5Z is also a 2-absorbing Z-ideal. Moreover, 6Z is a 2-absorbing Z-ideal

of Z from Example 2.18. Note that 6Z ∩ 5Z = 30Z but 30Z is not a 2-absorbing

Z-ideal of Z because 2 · 3 · 5 ∈ 30Z but 2 · 3, 2 · 5, 3 · 5 /∈ 30Z.

The following proposition shows results of intersections of an R-ideal and a

prime (2-absorbing) R-ideal.
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Proposition 2.20. Let N and K be R-ideals of an R-module M with K * N .

(1) If N is a prime R-ideal of M , then K ∩N is a prime R-ideal of K.

(2) If N is a 2-absorbing R-ideal of M , then K ∩ N is a 2-absorbing R-ideal

of K.

Proof. We proof only (2) because the proof of (1) can be obtained similarly. Since

N and K are R-ideals of M and K * N , it follows that K ∩N is a proper R-ideal

of K. Assume that N is a 2-absorbing R-ideal of M . Let a, b ∈ R and x ∈ K

be such that aRbRx ⊆ K ∩ N . Since K ia an R-ideal of M , we obtain that

abK ⊆ K and ax, bx ∈ K. Moreover, since aRbRx ⊆ K ∩ N ⊆ N and N is a

2-absorbing R-ideal of M , it follows that abM ⊆ N or ax ∈ N or bx ∈ N . Thus

abK ⊆ abK ∩ abM ⊆ K ∩N or ax ∈ K ∩N or bx ∈ K ∩N . Therefore, K ∩N is

a 2-absorbing R-ideal of K.

In a module M over a commutative ring with identity, N is a prime (2-

absorbing) submodule of M if and only if N/K is a prime (2-absorbing) submodule

of M/K. Next, we aim to consider prime R-ideals and 2-absorbing R-ideals of quo-

tient modules over near rings.

Theorem 2.21. Let N and K be R-ideals of an R-module M with K ⊆ N . Then

(1) N is a prime R-ideal of M if and only if N/K is a prime R-ideal of M/K;

and

(2) N is a 2-absorbing R-ideal of M if and only if N/K is a 2-absorbing R-ideal

of M/K.

Proof. It suffices to proof only (2). First, assume that N is a 2-absorbing R-ideal

of M . Then N/K is a proper R-ideal of M/K. Let a, b ∈ R and m ∈ M be such

that aRbR · (m + K) ⊆ N/K. Let s, t ∈ R. Then asbtm + K = asbt · (m + K) ∈

aRbR ·(m + K) ⊆ N/K. Thus there exists n ∈ N such that asbtm+K = n+K so

that −n + asbtm ∈ K ⊆ N and then asbtm ∈ N . This shows that aRbRm ⊆ N .

As a result, am ∈ N or bm ∈ N or abM ⊆ N because N is a 2-absorbing R-ideal
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of M . Hence a · (m + K) ∈ N/K or b · (m + K) ∈ N/K or ab · (M/K) ⊆ N/K.

Therefore, N/K is a 2-absorbing R-ideal of M/K.

Conversely, assume that N/K is a 2-absorbing R-ideal of M/K. Then N is a

proper R-ideal of M . Let a, b ∈ R and m ∈ M be such that aRbRm ⊆ N . Then

aRbR · (m + K) ⊆ N/K. Since N/K is a 2-absorbing R-ideal of M/K, we obtain

that a · (m + K) ∈ N/K or b · (m + K) ∈ N/K or ab · (M/K) ⊆ N/K. That is

am ∈ N or bm ∈ N or abM ⊆ N . This implies that N is a 2-absorbing R-ideal

of M .

Now, we know that 2-absorbing ideals (R-ideals) are generalization of prime

ideals (R-ideals) of near rings (modules over near rings). Moreover, in ring theory,

many research work are studied on prime ideals of rings regarding special prop-

erties called a strongly prime ideals. Moreover, strongly prime ideals of rings are

extended to strongly prime submodules of modules over rings. Groenewald and

Juglal extended strongly prime submodules of modules over rings to strongly prime

R-ideals of modules over near rings in 2011, see [6]. At this point, we introduce

the notion of strongly 2-absorbing R-ideals of modules over near rings and strongly

2-absorbing ideals of near rings and study some properties.

Definition 2.22. [6] Let M be an R-module. A proper R-ideal N of M is called a

strongly prime R-ideal of M if for all m ∈M rN , there exists a finite subset F

of R such that for all a ∈ R, aFm ⊆ N implies aM ⊆ N .

Example 2.23. Recall from Example 1.27 that {0} is an R-ideal of the R-module

R = {0, 1}. Now, we show that {0} is a strongly prime R-ideal of the R-module R.

Let F = {0}. Since 0F1 = 0{0}1 = {0} and 1F1 = 1{0}1 = {1}, if for any a ∈ R,

aF1 ⊆ {0}, then a = 0 and so that aR = 0R = {0}. Therefore, {0} is a strongly

prime R-ideal of the R-module R.

Theorem 2.24. [6] If N is a strongly prime R-ideal of an R-module M , then N

is a prime R-ideal of M .

We give the definition of strongly 2-absorbing R-ideals.
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Definition 2.25. Let M be an R-module. A proper R-ideal N of M is called a

strongly 2-absorbing R-ideal of M if for all m ∈ M r N , there exists a finite

subset F of R such that for all a, b ∈ R, aFbFm ⊆ N implies abM ⊆ N .

Theorem 2.26. If N is a strongly 2-absorbing R-ideal of an R-module M , then

N is a 2-absorbing R-ideal of M .

Proof. Assume that N is a strongly 2-absorbing R-ideal of M . Let a, b ∈ R and

m ∈ M . Assume that aRbRm ⊆ N but am /∈ N and bm /∈ N . Since bm /∈ N

and N is a strongly 2-absorbing R-ideal of M , there exists a finite subset F of R

such that for all x, y ∈ R, xFyF (bm) ⊆ N implies xyM ⊆ N . Since aFbF (bm) ⊆

aRbRbm = aRb(Rb)m ⊆ aRb(R)m = aRbRm ⊆ N , we obtain that abM ⊆ N .

Therefore, N is 2-absorbing R-ideal of M .

From the definition of strongly prime R-ideals of modules over near rings, we

define a strongly prime ideal of a near ring by considering a near ring as a module

over itself.

Definition 2.27. Let R be a near ring. A proper ideal P of R is called a strongly

2-absorbing ideal of R if for all r ∈ R r P , there exists a finite subset F of R

such that for all a, b ∈ R, aFbFr ⊆ P implies ab ∈ P .

In modules over rings, there are some interesting results of 2-absorbing sub-

modules of modules over rings. If N is a 2-absorbing submodule of a module M

over a ring R, then (N : M) is a 2-absorbing ideal of R. Now, we provide a condi-

tion that makes (N : M) a 2-absorbing ideal of near rings. Anyhow, the following

result is needed.

Theorem 2.28. Let R be a near ring with identity 1. If N is a strongly 2-absorbing

R-ideal of a unitary R-module M , then (N : M) is a strongly 2-absorbing ideal

of R.

Proof. If (N : M) = R, then 1 ∈ (N : M), i.e., M = 1M ⊆ N contradicts the

fact that N is a proper R-ideal of M . Then (N : M) is a proper ideal of R. Let
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r ∈ R r (N : M). Then rM ( N . Thus there exists m ∈ M such that rm /∈ N .

Since rm /∈ N and N is a strongly 2-absorbing R-ideal of M , there exists a finite

subset F of R such that for all x, y ∈ R, xFyFrm ⊆ N implies xyM ⊆ N . Let

a, b ∈ R be such that aFbFrm ⊆ N . Then abM ⊆ N , i.e., ab ∈ (N : M).

Therefore, (N : M) is a strongly 2-absorbing ideal of R.

Corollary 2.29. Let R be a near ring with identity 1. If N is a strongly 2-

absorbing R-ideal of a unitary R-module M , then (N : M) is a 2-absorbing ideal

of R.

Next, we pay attention to the converse of Theorem 2.28. In order to make the

converse of Theorem 2.28 hold, some definitions used for this result are introduced.

Definition 2.30. [6] Let M be an R-module.

(i) A nonempty subset C of M is called a multiplication set if (C : M)M = C.

(ii) An element m ∈M is called a multiplication element if the singleton set

{m} is a multiplication set.

Definition 2.31. [6] An R-module M is called a completely multiplication

module if every m ∈M is a multiplication element.

Theorem 2.32. Let R be a near ring with identity 1 and M be a unitary R-module.

Moreover, assume that M is a completely multiplication module and N is a proper

R-ideal of M . If (N : M) is a strongly 2-absorbing ideal of R, then N is a strongly

2-absorbing R-ideal of M .

As a result, N is a strongly 2-absorbing R-ideal of M if and only if (N : M) is

a strongly 2-absorbing ideal of R.

Proof. Assume that (N : M) is a strongly 2-absorbing ideal of R. Let m ∈MrN .

Since M is completely multiplication module, ({m} : M)M = {m} * N . Then

({m} : M) * (N : M). Thus there exists r ∈ ({m} : M) r (N : M). Since

(N : M) is a strongly 2-absorbing ideal of R and r ∈ ({m} : M) r (N : M),

it follows that there exists a finite subset F of R such that for all x, y ∈ R,
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xFyFr ⊆ (N : M) implies xy ∈ (N : M). Let a, b ∈ R be such that aFbFm ⊆ N .

Since rM ⊆ ({m} : M)M = {m}, we obtain that aFbFrM ⊆ aFbF{m} ⊆ N .

Then aFbFr ⊆ (N : M) implies that ab ∈ (N : M), i.e., abM ⊆ N . Therefore, N

is a strongly 2-absorbing R-ideal of M .

For another result, assume that N is a strongly 2-absorbing R-ideal of M . Then

(N : M) is a strongly 2-absorbing ideal of R by Theorem 2.28.

Theorem 2.33. Let N be an R-ideal of a completely multiplication module M . If

(N : M) is a 2-absorbing ideal of R, then N is a 2-absorbing R-ideal of M .

Proof. Assume that (N : M) is a 2-absorbing ideal of R. Then N is a proper

ideal of M because if N = M , then (N : M) = {r ∈ R : rM ⊆ N = M} = R

contradicts the fact that (N : M) is a proper ideal of R. Let a, b ∈ R and m ∈M

be such that aRbRm ⊆ N . Since m ∈ M and M is a completely multiplication

module, ({m} : M) = {m}. Then aRbR(({m} : M)M) = aRbR{m} ⊆ N .

Then aRbR({m} : M) ⊆ (N : M). Let r ∈ ({m} : M). Then rM = {m} and

aRbRr ⊆ aRbR({m} : M) ⊆ (N : M). Since (N : M) is a 2-absorbing ideal of R,

we obtain that ab ∈ (N : M) or br ∈ (N : M) or ar ∈ (N : M), i.e., abM ⊆ N or

brM ⊆ N or arM ⊆ N . Since rM = {m}, we obtain that abM ⊆ N or b{m} ⊆ N

or a{m} ⊆ N . Therefore, N is a 2-absorbing R-ideal of M .

Finally, in this chapter, we aim to consider module homomorphisms between

modules over the same near rings.

Definition 2.34. Let M and M ′ be R-modules. A function f : M →M ′ is called

a module homomorphism if for all r ∈ R and x, y ∈M .

(i) f(x + y) = f(x) + f(y),

(ii) f(rx) = rf(x).

Module epimorphisms can be defined in a similar way for epimorphisms of

modules over rings.
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Theorem 2.35. Let M,M ′ be R-modules and ϕ : M → M ′ be a module homo-

morphism.

(1) If N ′ is a prime R-ideal of M ′, then ϕ−1(N ′) = M or ϕ−1(N ′) is a prime

R-ideal of M .

(2) If N ′ is a 2-absorbing R-ideal of M ′, then ϕ−1(N ′) = M or ϕ−1(N ′) is a

2-absorbing R-ideal of M .

Proof. We proof only (2). Assume that N ′ is a 2-absorbing R-ideal of M ′ and

ϕ−1(N ′) 6= M . Let a, b ∈ R and m ∈ M . Suppose that aRbRm ⊆ ϕ−1(N ′). Then

ϕ(aRbRm) ⊆ N ′. Thus aRbRϕ(m) = ϕ(aRbRm) ⊆ N ′ because ϕ is a module

homomorphism. Moreover, since N ′ is a 2-absorbing R-ideal of M ′, we obtain that

ϕ(abM) = abϕ(M) ⊆ abM ′ ⊆ N ′ or ϕ(am) = aϕ(m) ∈ N ′ or ϕ(bm) = bϕ(m) ∈

N ′. Hence abM ⊆ ϕ−1(N ′) or am ∈ ϕ−1(N ′) or bm ∈ ϕ−1(N ′). Therefore, ϕ−1(N ′)

is a 2-absorbing R-ideal of M .

Moreover, if ϕ : M → M ′ is a module epimorphism, then the converses of

statements in Theorem 2.35 hold.

Theorem 2.36. Let M,M ′ be R-modules and ϕ : M → M ′ be a module epimor-

phism. Moreover, let N ′ be a proper R-ideal of M ′ such that ϕ−1(N ′) is proper.

(1) N ′ is a prime R-ideal of M ′ if and only if ϕ−1(N ′) is a prime R-ideal of M ;

and

(2) N ′ is a 2-absorbing R-ideal of M ′ if and only if ϕ−1(N ′) is a 2-absorbing

R-ideal of M .

Proof. It suffices to proof only (2). From Theorem 2.35, it is enough to show

the sufficient part. Let a, b ∈ R and m′ ∈ M ′. Suppose that aRbRm′ ⊆ N ′.

Since ϕ is a module epimorphism and m′ ∈ M ′, there exists m ∈ M such that

ϕ(m) = m′. Then ϕ(aRbRm) = aRbRϕ(m) = aRbRm′ ⊆ N ′. It follows that

aRbRm ⊆ ϕ−1(N ′). Since ϕ−1(N ′) is a 2-absorbing R-ideal of M , we obtain

that abM ⊆ ϕ−1(N ′) or am ∈ ϕ−1(N ′) or bm ∈ ϕ−1(N ′). Since ϕ is a module
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epimorphism, abM ′ = abϕ(M) = ϕ(abM) ⊆ N ′ or am′ = aϕ(m) = ϕ(am) ∈ N ′ or

bm′ = bϕ(m) = ϕ(bm) ∈ N ′. Therefore, N ′ is a 2-absorbing ideal of M ′.

Theorem 2.37. Let M,M ′ be R-modules and ϕ : M → M ′ be a module epimor-

phism. Moreover, let N be an R-ideal of M with Kerϕ ⊆ N .

(1) If N is a prime R-ideal of M , then ϕ(N) is a prime R-ideal of M ′.

(2) If N is a 2-absorbing R-ideal of M , then ϕ(N) is a 2-absorbing R-ideal of M ′.

Proof. The proof of (1) and (2) are similar so we proof only (2). First, assume

that N is a 2-absorbing R-ideal of M . Let a, b ∈ R and m′ ∈ M ′. Assume that

aRbRm′ ⊆ ϕ(N). Since ϕ is a module epimorphism and m′ ∈ M ′, there exists

m ∈M such that ϕ(m) = m′. Then ϕ(aRbRm) = aRbRϕ(m) = aRbRm′ ⊆ ϕ(N).

Let s, t ∈ R be such that asbtm ∈ aRbRm. Then there exists x ∈ N such

that ϕ(asbtm) = ϕ(x). Thus ϕ(asbtm − x) = ϕ(asbtm) − ϕ(x) = 0. That is

asbtm − x ∈ Kerϕ ⊆ N so that asbtm ∈ N . Thus aRbRm ⊆ N . Since N is

a 2-absorbing R-ideal of M , we obtain that abM ⊆ N or am ∈ N or bm ∈ N .

Then abM ′ = abϕ(M) = ϕ(abM) ⊆ ϕ(N) or am′ = aϕ(m) = ϕ(am) ∈ ϕ(N) or

bm′ = bϕ(m) = ϕ(bm) ∈ ϕ(N). Therefore, ϕ(N) is a 2-absorbing R-ideal of M ′.

Since a near ring R is also an R-module, 2-absorbing ideals of a near ring R

are special cases of 2-absorbing R-ideals of the R-module R. Then all properties

of 2-absorbing R-ideals of R-modules in this chapter can be applied to 2-absorbing

R-ideals of the near ring R. For example, we also obtain that “intersections of each

pair of prime ideals of a near ring R are 2-absorbing ideals of R” as a corollary of

Theorem 2.17.



CHAPTER III

2-ABSORBING R-IDEALS OF MODULES OVER

DECOMPOSABLE NEAR RINGS

In 2015, Chinwarakorn and Pianskool [2] introduced almost generalized 2-absorbing

ideals of commutative rings with identities which are a generalization of 2-absorbing

ideals of commutative rings with identities and investigated some of their properties

on decomposable rings. A commutative ring R is said to be a decomposable

commutative ring if it can be written as a product of commutative nonzero rings,

i.e., R = R1 × R2 × · · · × Rn for some commutative nonzero rings R1, R2, . . . , Rn.

This leads us to study some properties of 2-absorbing R-ideals of modules over

decomposable near rings and 2-absorbing ideals of decomposable near rings.

Definition 3.1. A near ring R is said to be a decomposable near ring if it is

a product of nonzero near rings equipped by componentwise on both addition and

multiplication.

Example 3.2. Let R1 = ({0, 1, a, b},+, ·) and R2 = ({0, 1},+, ·) be the near

rings given in Example 1.4 and Example 1.5, respectively. Then R1 × R2 is a

decomposable near ring which is not zero symmetric.

Let R = R1 × R2 × · · · × Rk be a decomposable near ring and let Mi be an

Ri-module for all i = 1, 2, . . . , k. It is clear that the product of M1,M2, . . . ,Mk is

an R-module, i.e., M1 ×M2 × · · · ×Mk is an R-module.

Proposition 3.3. Let Ni be an Ri-ideal of an Ri-module Mi for all i = 1, 2, . . . , k.

Then N1 ×N2 × · · · ×Nk is an R-ideal of M where R = R1 × R2 × · · · × Rk and

M = M1 ×M2 × · · · ×Mk.

Proof. For each i, since Ni is an Ri-ideal of Mi, it follows that Ni is a normal

subgroup of Mi and then N1 × N2 × · · · × Nk is a normal subgroup of M . Let
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(r1, r2, . . . , rk) ∈ R, (m1,m2, . . . ,mk) ∈M and (n1, n2, . . . , nk) ∈ N1×N2×· · ·×Nk.

Then

(r1, r2, . . . , rk)[(m1,m2, . . . ,mk)−(n1, n2, . . . , nk)]−(r1, r2, . . . , rk)(m1,m2, . . . ,mk)

= (r1, r2, . . . , rk) (m1 − n1,m2 − n2, . . . ,mk − nk)− (r1m1, r2m2, . . . , rkmk)

= (r1(m1 − n1), r2(m2 − n2), . . . , rk(mk − nk))− (r1m1, r2m2, . . . , rkmk)

= (r1(m1 − n1)− r1m1, r2(m2 − n2)− r2m2, . . . , rk(mk − nk)− rkmk)

∈ N1 ×N2 × · · · ×Nk

because each Ni is an Ri-ideal of Mi. Therefore, N1 ×N2 × · · · ×Nk is an R-ideal

of M .

Some properties of 2-absorbing R-ideals of modules over decomposable near

rings are studied.

Lemma 3.4. Let M1 be an R1-module, M2 be an R2-module, R = R1 × R2 and

M = M1 ×M2. Then

(1) N1 is a 2-absorbing (prime) R1-ideal of M1 if and only if N1 × M2 is a

2-absorbing (prime) R-ideal of M ; and

(2) N2 is a 2-absorbing (prime) R2-ideal of M2 if and only if M1 × N2 is a

2-absorbing (prime) R-ideal of M .

Proof. It suffices to prove only (1). First, assume that N1 is a 2-absorbing R1-ideal

of M1. Suppose that (a, b)R(c, d)R(m1,m2) ⊆ N1 ×M2 where (a, b), (c, d) ∈ R

and (m1,m2) ∈ M . Then (aR1cR1m1, bR2dR2m2) = (a, b)R(c, d)R(m1,m2) ⊆

N1 ×M2, i.e., aR1cR1m1 ⊆ N1 and bR2dR2m2 ⊆ M2. Since N1 is a 2-absorbing

R1-ideal of M1, it follows that acM1 ⊆ N1 or am1 ∈ N1 or cm1 ∈ N1. That is

(a, b)(c, d)M = (acM1, bdM2) ⊆ N1×M2 or (a, b)(m1,m2) = (am1, bm2) ∈ N1×M2

or (c, d)(m1,m2) = (cm1, dm2) ∈ N1 ×M2. Therefore, N1 ×M2 is a 2-absorbing

R-ideal of M .

Conversely, assume that N1 ×M2 is a 2-absorbing R-ideal of M . Let a, b ∈ R1

and m1 ∈ M1. Assume that aR1bR1m1 ⊆ N1. Let x, y ∈ R2 and m2 ∈ M2. Then
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(a, x)R(b, y)R(m1,m2) = (aR1bR1m1, xR2yR2m2) ⊆ N1×M2. Since N1×M2 is a 2-

absorbing R-ideal of M , it follows that (a, x)(b, y)M ⊆ N1×M2 or (a, x)(m1,m2) ∈

N1×M2 or (b, y)(m1,m2) ∈ N1×M2. Then (abM1, xyM1) = (a, x)(b, y)M ⊆ N1×

M2 or (am1, xm2) = (a, x)(m1,m2) ∈ N1 ×M2 or (bm1, ym2) = (b, y)(m1,m2) ∈

N1×M2, i.e., abM1 ⊆ N1 or am1 ∈ N1 or bm1 ∈ N1. Therefore, N1 is a 2-absorbing

R1-ideal of M1.

Theorem 3.5. Let R = R1 × R2 × · · · × Rn be a decomposable near ring and Ni

be an Ri-ideal of an Ri-module Mi for all i = 1, 2, . . . , k. Then Ni is a 2-absorbing

(prime) Ri-ideal of Mi if and only if M1 × · · · ×Mi−1 ×Ni ×Mi+1 × · · · ×Mk is

a 2-absorbing (prime) R-ideal of M1 ×M2 × · · · ×Mk for each i = 1, 2, . . . , k.

Proof. The result follows by applying Lemma 3.4.

The above theorem shows that the product N1×N2×· · ·×Nk is a 2-absorbing

R-ideal if and only if there is one of N ′is such that Ni is a 2-absorbing Ri-ideal of

Mi and the other components must be the whole Ri-module Mi.

Recall that a near ring R is a module over itself. Moreover, if I is a 2-absorbing

(prime) ideal of a near ring R, then I is a 2-absorbing (prime) R-ideal of the R-

module R and vice versa. Then the result of 2-absorbing (prime) R-ideal of the

R-module M in Theorem 3.5 can be rephrased in term of 2-absorbing (prime)

ideals of a near ring.

Corollary 3.6. Let R = R1×R2×· · ·×Rk be a decomposable near ring and Ii be

an ideal of Ri for all i = 1, 2, . . . , k. Then Ii is a 2-absorbing (prime) ideal of Ri

if and only if R1× · · · ×Ri−1× Ii×Ri+1× · · · ×Rk is a 2-absorbing (prime) ideal

of R for each i = 1, 2, . . . , k.

Next theorem provides conditions that make N1×N2 a 2-absorbing (R1×R2)-

ideal of an (R1 × R2)-module M1 × M2 where each Ni is a proper Ri-ideal of

Mi.

Theorem 3.7. Let R1 and R2 be zero symmetric near rings. If N1 is a prime

R1-ideal of an R1-module M1 and N2 is a prime R2-ideal of an R2-module M2,
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then N1×N2 is a 2-absorbing R-ideal of the R-module M where R = R1×R2 and

M = M1 ×M2.

Proof. Assume that N1 is a prime R1-ideal of an R1-module M1 and N2 is a

prime R2-ideal of an R2-module M2. Then N1 ×N2 is a proper R-ideal of M . Let

(a, b), (c, d) ∈ R1×R2 and (m1,m2) ∈M1×M2. Assume that (a, b)R(c, d)R(m1,m2)

⊆ N1 × N2 but (a, b)(c, d)M * N1 × N2 and (a, b)(m1,m2) /∈ N1 × N2. We claim

(c, d)(m1,m2) ∈ N1×N2. Note that we can conclude from (a, b)(m1,m2) /∈ N1×N2

that (a) am1 /∈ N1 or am2 /∈ N2, and (b) acM1 * N1 or bdM2 * N2. There are 4

cases to be considered:

(i) am1 /∈ N1 and acM1 * N1

(ii) am2 /∈ N2 and bdM2 * N2

(iii) am1 /∈ N1 and bdM2 * N2

(iv) am2 /∈ N2 and acM1 * N1.

First, we consider Case(i). Note that aR1cR1m1 ⊆ N1 and bR2dR2m2 ⊆ N2 be-

cause (aR1cR1m1, bR2dR2m2) = (a, b)R(c, d)R(m1,m2) ⊆ N1 × N2. Since N1 is

a prime R1-ideal of M1 and am1 /∈ N1, we obtain from Proposition 2.14 that

cM1 ⊆ N1. Thus acM1 ⊆ aN1 ⊆ N1 because R1 is a zero symmetric near ring

which is a contradiction. Then Case(i) is not possible. In addition, Case(ii) is

absurd.

Next, Case (iii) is considered. Similarly, cM1 ⊆ N1. Thus cm1 ∈ N1. Moreover,

bR2dR2m2 ⊆ N2. Let r ∈ R2. Then bR2drm2 ⊆ N2. Since N2 is a prime R2-ideal

of M2, we have bM2 ⊆ N2 or drm2 ∈ N2. If bM2 ⊆ N2, then bdM2 ⊆ bM2 ⊆ N2

contradicts bdM2 * N2. Then drm2 ∈ N2. That is dR2m2 ⊆ N2. And again, since

N2 is a prime R2-ideal of M2 and bdM2 * N2, we obtain that m2 ∈ N2 so that

dm2 ∈ N2. Therefore, (c, d)(m1,m2) = (cm1, dm2) ∈ N1 ×N2.

The proof of Case(iv) is similar to that of Case(iii).

Therefore, N1 ×N2 is a 2-absorbing R-ideal of M .

However, it is not necessary true that products of prime R-ideals are prime

R-ideals. For example, let N1 = {0} be the prime R1-ideal of M1 = {0, 1} and
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N2 = {0, b} be the prime R2-ideal of M2 = {0, 1, a, b} given in Example 2.8 and

Example 2.9, respectively. Let R = R1×R2. Then N1×N2 = {(0, 0), (0, b)} is not

a prime R-ideal of M1 ×M2 because (0, a)R(1, b) ⊆ {(0, 0), (0, b)} = N1 ×N2 but

(0, a), (1, b) /∈ N1 ×N2.

As a special case of Theorem 3.7, we obtain that I1×I2 is a 2-absorbing ideal of

R1×R2 where I1 and I2 are prime ideals of the near rings R1 and R2, respectively.

In fact, if R1 and R2 are zero symmetric near rings with identities, then the converse

of Theorem 3.7 for this special case is true.

Theorem 3.8. Let R1 and R2 be zero symmetric near rings with identities, I1 and

I2 be proper ideals of R1 and R2, respectively. Then I1 is a prime ideal of R1 and

I2 is a prime ideal of R2 if and only if I1 × I2 is a 2-absorbing ideal of R1 ×R2.

Proof. To prove the sufficient part, assume that I1 × I2 is a 2-absorbing ideal of

R1×R2. Let a, b ∈ R1 and x, y ∈ R2. Suppose that aR1b ⊆ I1 and xR2y ⊆ I2. Then

aR11R1b ⊆ I1 and xy = x1y ∈ xR2y ⊆ I2. Since I2 is an ideal of R2 and xy ∈ I2,

we obtain that xyR2 ⊆ I2. Moreover, R2xyR2 ⊆ R2I2 ⊆ I2 because R2 is a zero

symmetric near ring. Note that (a, 1)R(1, xy)R(b, 1) = (aR11R1b, 1R2xyR21) ⊆

I1×I2. Since I1×I2 is a 2-absorbing ideal of R1×R2, it follows that (a, 1)(1, xy) ∈

I1 × I2 or (1, xy)(b, 1) ∈ I1 × I2 or (a, 1)(b, 1) ∈ I1 × I2, i.e., (a, xy) ∈ I1 × I2 or

(b, xy) ∈ I1 × I2 or (ab, 12) ∈ I1 × I2. But I2 is a proper ideal of R2 so that

(ab, 1) ∈ I1 × I2 is not possible. Hence (a, xy) ∈ I1 × I2 or (b, xy) ∈ I1 × I2. Thus

a ∈ I1 or b ∈ I1. Therefore, I1 is a 2-absorbing ideal of R1. Similarly, we obtain

that I2 is a 2-absorbing ideal of R2.

The last result provides a characterization of being a 2-absorbing ideal of the

ideal I1 × I2 × I3 of a decomposable near ring where I1 is proper.

Theorem 3.9. Let R = R1 × R2 × R3 where R1, R2 and R3 are zero symmetric

near rings with identities, I1 be a proper ideal of R1, I2 and I3 be ideals of R2 and

R3, respectively. Then the following statements are equivalent.

(1) I1 × I2 × I3 is a 2-absorbing ideal of R.
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(2) I1 is 2-absorbing ideal of R1, I2 = R2 and I3 = R3 or

I1, I2 are prime ideals and I3 = R3 or

I1, I3 are prime ideals and I2 = R2.

Proof. First, assume that I := I1 × I2 × I3 is a 2-absorbing ideal of R. Then I is

a nonempty subset of R. Let (a, b, c) ∈ I. Note that (a, 1, 1)R(1, b, 1)R(1, 1, c) =

(aR1, R2bR2, R3c) ⊆ I1 × I2 × I3 = I because I1, I2 and I3 are ideals of zero

symmetric near rings. Since I is a 2-absorbing ideal of R, (a, 1, 1)(1, b, 1) ∈ I

or (1, b, 1)(1, 1, c) ∈ I or (a, 1, 1)(1, 1, c) ∈ I, i.e., (a, b, 1) ∈ I or (1, b, c) ∈ I or

(a, 1, c) ∈ I. Then I3 = R3 or I1 = R1 or I2 = R2. But I1 is a proper ideal of R1,

it follows that I3 = R3 or I2 = R2. This reaches to 3 cases:

(i) I2 = R2 and I3 = R3,

(ii) I2 6= R2 or I3 = R3,

(iii) I2 = R2 or I3 6= R3.

The first case leads to the result that I = I1×(R2×R3) where I1 is 2-absorbing ideal

of R1 by Corollary 3.6. Next, we proof the second case by showing that I1 and I2 are

prime ideals. Let a, b ∈ R1 and x, y ∈ R2. Assume that aR1b ⊆ I1 and xR2y ⊆ I2.

Then (a, 1, 1)R(1, xy, 1)R(b, 1, 1) = (aR1b, R2xyR2, R3) ⊆ I1× I2× I3 = I because

I2 is an ideal of the zero symmetric near ring R2. Since I ia a 2-absorbing ideal

of R, (a, 1, 1)(1, xy, 1) ∈ I or (1, xy, 1)(b, 1, 1) ∈ I or (a, 1, 1)(b, 1, 1) ∈ I, i.e.,

(a, xy, 1) ∈ I or (b, xy, 1) ∈ I or (ab, 1, 1) ∈ I. Since I2 6= R2, it follows that

(a, xy, 1) ∈ I or (b, xy, 1) ∈ I. That is a ∈ I1 or b ∈ I1. Therefore, I1 is a prime

ideal of R1. Similarly, we obtain that I2 is a prime ideal of R2. The proof of

Case(iii) is similar to that of Case(ii).

Conversely, if I = I1 ×R2 ×R3 and I1 is a 2-absorbing ideal of R1, then I is a

2-absorbing ideal of R by Corollary 3.6 because R2 × R3 is a near ring. Consider

Case(ii), since I1 and I2 are prime ideals, I1× I2 is a 2-absorbing ideal by Theorem

3.7. It is easy to verify that I is a 2-absorbing ideal of R by Corollary 3.6 again.

The last case is similar to the previous case.

By the results of Theorem 3.8 and Theorem 3.9, we can see that, in order to
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obtain these results, being zero symmetric near rings with identities is crucial.



CHAPTER IV

CONCLUSION

By definition of R-subgroups and ideals of near rings, if rings are considered as near

rings, then ideals of rings are both R-subgroups and ideals of near rings. Similarly,

submodules of modules over rings are both R-submodules and R-ideals of modules

over near rings when those modules over rings are considered as modules over near

rings. So many results in rings (modules over rings) are extended to those in near

rings (modules over near rings). Recall that prime ideals (submodules) of rings

(modules over rings) are extended to many types of prime ideals (R-ideals) of near

rings (modules over near rings). So far, there have been five types of such those

prime objects (0-prime, 1-prime, 2-prime, 3-prime and completely prime). We can

see that the definition of 0-prime, 1-prime, 2-prime and 3-prime are equivalent

when rings are considered as near rings. Moreover, all of them are equivalent if

near rings are commutative.

In this thesis, we introduce and investigate 2-absorbing ideals and 2-absorbing

R-ideals which are extended from 3-prime ideals and 3-prime R-ideals, respectively.

We obtain that intersections of two prime R-ideals are 2-absorbing R-ideals. Al-

though prime R-ideals are 2-absorbing R-ideals, intersections of two 2-absorbing

R-ideals with at least one of them being 2-absorbing but not prime R-ideal may no

longer be 2-absorbing R-ideals. For example, 5Z∩ 6Z is not a 2-absorbing Z-ideal

of the Z-module Z (see Example 2.19).

Moreover, we introduce the concept of strongly 2-absorbing R-ideals in order

to extend some results. In modules over rings, if N is a 2-absorbing submodule of

an R-module M , then (N : M) is a 2-absorbing ideal of R. In case of near rings,

if N is a 2-absorbing R-ideal of an R-module M , then “(N : M) is a 2-absorbing

ideal of R” may not hold. However, we show in Chapter II that (N : M) is a
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2-absorbing ideal of a near ring R provided that N should be a strongly prime R-

ideal of that R-module M . The converse is valid provided that M is a completely

multiplication module.

Finally, we focus on decomposable near rings. We prove that products of two

prime R-ideals are 2-absorbing R-ideals. Nevertheless, if a product N ×K of R-

ideals is a 2-absorbing R-ideal, then it is not necessary that both of N and K are

prime R-ideals. However, if we consider the special case of those modules, say the

module R over a zero symmetric near ring R with identity, then we can conclude

the following: if a product of I × J of ideals of R is a 2-absorbing ideal, then both

of I and J are prime ideals of R. Nevertheless, we obtain that a characterization

of being a 2-absorbing ideal of I1 × I2 × I3 where I1, I2 and I3 are ideals of near

rings R1, R2 and R3, respectively.
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