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CHAPTER 1
INTRODUCTION

In ring theory, there is one special kind of ideals which is quite important called
prime ideals. A proper ideal P of a commutative ring R with nonzero identity is
called a prime ideal if whenever a,b € R,ab € P implies a € P or b € P. A 2-
absorbing ideal P of a commutative ring R with nonzero identity was introduced
by Badawi [1] in 2007 and was defined to be a proper ideal of R and if whenever
a,b,c € R,abc € P implies ab € P or bc € P or ac € P. He also proved that
every prime ideal of a commutative ring with nonzero identity is a 2-absorbing
ideal but its converse does not hold. As a result, the notion of 2-absorbing ideals
are a generalization of prime ideals.

It is known that rings and modules over rings are related algebraic structures.
In fact, every ring is a module over itself and for this case any left ideal of this
ring is also a submodule of that module. So, it is natural that many research
works related to prime ideals and 2-absorbing ideals of rings are extended to prime
submodules and 2-absorbing submodules of modules over rings. In 2011, Darani
and Soheilnia [3] introduced the concept of 2-absorbing submodules of unitary
modules over commutative rings with identities. A proper submodule N of a
unitary module M over a commutative ring R with identity is said to be a 2-
absorbing submodule of M if whenever a,b € R and m € M,abm € N implies
abM C N or am € N or bm € N. Moreover, every prime submodule of a
unitary module over a commutative ring with identity is a 2-absorbing submodule
but not vice versa. Hence 2-absorbing submodules are a generalization of prime
submodules. In addition, it is obvious that 2-absorbing ideals are a special case of
2-absorbing submodules.

In 1905, Dickson [4] showed that there exists a near field which is an algebraic



structure similar to a field except that its multiplication is not necessarily commu-
tative and at least one distributive law holds. Some years later, the notion of near
rings was introduced. Many research have been carried out on this structure, for
examples, the works of Gunter Pilz, Yuen Fong, Alan Oswald and K.C. Smith. In
this thesis, many of the definitions we refer to are from Gunter Pilz’s book [10].
There are four chapters in this thesis. In Chapter I, we collect definitions
of near rings and modules over near rings as well as present some results which
are used in this thesis. In Chapter II, we study some properties of prime R-
ideals and 2-absorbing R-ideals of modules over near rings. Besides, we introduce
strongly 2-absorbing R-ideals of modules over near rings and strongly 2-absorbing
ideals of near rings and discuss some properties. Moreover, in Chapter III, we
investigate some properties of prime R-ideals and 2-absorbing R-ideals of modules
over decomposable near rings as well as prime ideals and 2-absorbing ideals of
decomposable near rings. This thesis is completed by Chapter IV which is the

conclusion of our work.

1.1 Near Rings

A near ring is a generalization of a ring whose two axioms are omitted, namely,
the addition is not necessarily abelian and the multiplication distributes over the

addition is applied either on left or right side.

Definition 1.1. [10] A near ring is a set R together with two operations, called

the addition + and the multiplication -, satisfying the following conditions:
(i) (R,+) is a group where the additive identity of (R, +) is denoted by 0,
(ii) (R,-) is a semigroup, and
(iii) the right distributive law holds, i.e., (a +b)-c=a-c+b-cfor all a,b,c € R.

This near ring is also called a right near ring. If the condition (iii) is replaced

by the “left distributive law”, then this is called a left near-ring.



From here on, all near rings are right near rings. Moreover, for any a,b in a
near ring R, we may write ab instead of a - b and —a means the additive inverse

of a.

Example 1.2. [10] Let G be a group and M(G) = {f : f is a function from G
into G} with addition + and multiplication o on M (G) given by

(f +9)(x) = fx) +g(z) and (fog)(x)= flg(z))

for all f,g € M(G) and all x € G. Then (M(G),+) is a group. It is easy to see
that (M(G), o) is a semigroup and (f + g)oh = foh+goh for all f,g,h € M(G).
Hence (M(G),+,0) is a near ring which is not a ring because h o (f 4 ¢) is not
necessary equal to h o f + h o g. For example, consider the group (RT,-), let
f,9,h : Rt — R* be defined by f(x) = 2x,9(x) = x and h(x) = /z for all
z € RT. Then (ho(f +¢))(z) = 3z and (ho f +hog)(z) = V2x ++/z. If 2 = 1,
then (ho (f +9))(1) = V3 # vV2+1= (ho f)(1) + (hog)(1).

Definition 1.3. [10] A near ring R is called a near ring with identity if there
is an element b € R such that ab = a = ba for all a € R; we say that b is the

(multiplicative) identity of the near ring R.

Example 1.4. Let R = {0, 1, a,b} be the set with addition + and multiplication -

on R given by the following tables:

+(0 1 a b 0 1 a b
0(0 1 a b 00 0 0 O
111 0 b a 110 1 a b
ala b 0 1 a0 a a b
b b a 1 0 b0 b 0 0

Then (R, +, ) is a near ring with identity 1 which is not a ring because b(a + b) =
b(1) =b#0=0+0 = ba + bb.

If R is a near ring, then it is always true that Or = 0 for all » € R because



Or = (r—r)r =rr—rr =0 for each r € R. However, the following example shows

that r0 is not necessarily equal to 0.

Example 1.5. Let R = {0,1} be the set with addition + and multiplication -

given by the following tables:

+10 1 -0 1
00 1 00 O
111 0 111 1

Then (R, +,-) is a near ring without identity and 1-0 = 1 # 0. Note also that

(R,+,-) is not a ring.

Definition 1.6. [10] A near ring R is called a zero symmetric near ring if

r0 =0 for all » € R.

The near ring given in Example 1.4 is a zero symmetric near ring with identity 1.
While, the near ring given in Example 1.5 is not a zero symmetric near ring because
1-0=1#0.

It is known that the multiplication of nonempty subsets A and B of a ring is
defined as AB = {Zn: a;b; : a; € A and b; € B for all i}. But, in near ring, if we
defined AB in the s:rlne way, then there would have been a problem that (AB)C' is

not necessary equal to A(BC') because the distributive property of near rings may

not be applied on the left side and the addition is not necessarily commutative.

Example 1.7. Let R be the near ring given in Example 1.4. Moreover, for any
nonempty subsets X and Y of R, assume that XY = {zn: xy; - v, € X and
y; € Y for all i}. Next, let A = {b}, B = {a,b} and C :Z:{ll}. Since 1 ¢ B, it
follows that AB = {0} and then (AB)C = {0}. However, al + bl € BC so that
b(al + bl) € A(BC) with b(al 4+ b1) = b(a +b) = bl = b # 0. This shows that
(AB)C # A(BC).

Consequently, in our work, for any nonempty subsets A and B of a near ring,

the set AB has to be defined as follows.



Definition 1.8. [10] Let A and B be nonempty subsets of a near ring R. Then
the set AB is defined to be {ab: a € A and b € B}. For any nonempty subset A
of a near ring R and r € R, we write Ar instead of A{r} and rA instead of {r}A.

Proposition 1.9. If A, B and C are nonempty subsets of a near ring, then
(AB)C = A(BC).

Proof. This is clear from the definition. O]

In ring theory, ideals are special subsets of a ring. It is natural to extend ideals
of a ring to ideals of a near ring. It turns out that there are two types of such
those special subset objects in a near ring which are closed to ideals of rings, called

R-subgroups and ideals of near rings.
Definition 1.10. [10] A subset H of a near ring R is called an R-subgroup of R
if
(i) (H,+) is a subgroup of (R, +),
(i) HR C H, and
(i) RH C H.

However, if the conditions (i) and (ii) are satisfied, then H is called a right
R-subgroup. If the conditions (i) and (iii) are satisfied, then H is called a left
R-subgroup.

If we consider rings as near rings, then every ideal of rings is an R-subgroup of

near rings.

Example 1.11. Let R be the near ring given in Example 1.5. It is easy to check
that R is the only one R-subgroup of R. Note that {0} is a right R-subgroup
but not an R-subgroup of R because {0}R C {0} but 1 = 1-0 € R{0}, i.e.,

R{0} £ {0}.
Example 1.12. Let R be the near ring given in Example 1.4. Then all R-

subgroups of R are {0}, {0,b} and R. Moreover, {0,a} is a left R-subgroup but
not an R-subgroup of R because b = ab € {0, a}R, i.e., {0,a}R ¢ {0,a}.



Proposition 1.13. Let R be a near ring. If a € R, then Ra is a left R-subgroup
of R.

Proof. Let ra,rya € Ra where 11,79 € R. We obtain that ria —rya = (ry —rg)a €

Ra. Moreover, R(Ra) = (RR)a C Ra. Therefore, Ra is a left R-subgroup of R. [

Let consider the near ring R = {0,1,a, b} given in Example 1.4. Notice that
Ra = {0,a}. However, (Ra)R = {0,a,b} ¢ Ra. Then Ra is not a right R-
subgroup of R. This shows that, in general, Ra is not necessarily a right R-
subgroup of R. Moreover, aR is not necessarily a right R-subgroup of R. For

example, aR = {0,a,b} but a+b =1 ¢ aR. Then aR is not closed under addition.
Definition 1.14. [10] A subset I of a near ring R is called an ideal of R if
(i) (I,+) is a normal subgroup of (R, +),
(i) IR C I, and
(iii) v (ro + k) —rro € I for all 1,79 € R and k € 1.

However, if I satisfies the conditions (i) and (ii), then [ is called a right ideal
of R, while I is called a left ideal of R if the conditions (i) and (iii) are satisfied.
In the same way as R-subgroups, if rings are considered as near rings, then

every ideal of rings is an ideal of near rings.

Example 1.15. (i) Let R be the near ring given in Example 1.5. Then all ideals
of R are {0} and R.

(ii) Let R be the near ring given in Example 1.4. Then all ideals of R are {0},
{0,b} and R. Note that {0,a} is not an ideal because a(b+ a) —ab =a(1) — b =
a+b=1¢{0,a} (in fact, {0,a} is not a left ideal; moreover, {0, a} is not a right
ideal because b = ab € {0,a}R).

In general, R-subgroups and ideals of near rings may not be related. However, if
(R,+) is an abelian group, then left R-subgroups and left ideals of R are identical.
Although R is a near ring such that (R, +) is an abelian group, right R-subgroups



are not necessary right ideals and vice versa. This is because the near ring R may
satisfy only one distributive law. For example, {0} is always an ideal of any near
ring R so that {0} is a right ideal of R but {0} may not be a right R-subgroup
of R, see Example 1.11.

The next proposition provides the condition that makes each ideal an R-

subgroup.

Proposition 1.16. Let R be a zero symmetric near ring and I be an ideal of R.

Then
(1) RI CI; and
(2) I is an R-subgroup of R.

Proof. Assume that R is a zero symmetric near ring. Let I be an ideal of R. Since
I is an ideal of R, it follows that (I, +) is a normal subgroup of (R,+) and IR C I.
Next, we show that rk € [ forallr € Rand k € [. Let r € R and k € I. Since R
is a zero symmetric near ring, 70 = 0. And we have rk = r(0+ k) —r0 € I because
I is an ideal of R and k& € I. Therefore, RI C I and then I is an R-subgroup
of R. O

However, even a near ring is a zero symmetric near ring, an R-subgroup may

not be an ideal.

Example 1.17. Let K = {e,a, b, c} be the Klein-4-group. Define the multiplica-
tion -on K by r-c=randr-y=eforallr € K and y € {e,a,b}. We illustrate

these in the following tables:

+1le a b c -le a b ¢
e le a b c ele e e e
ala e ¢ b ale e e a
blb ¢ e a ble e e b
clc b a e cle e e c




Then K is a zero symmetric near ring, {e} is the only one ideal of K and {e, b} is
an R-subgroup of K, see [9]. Therefore, {e,b} is an R-subgroup of K but is not

an ideal of K even K is a zero symmetric near ring.
The last result is another advantage of being a zero symmetric near ring.

Proposition 1.18. Let R be a zero symmetric near ring and Iy, I, ..., I, be ideals

OfR Then[lfgfngflﬂfgﬁﬂ[n

Proof. Let x1x9---x, € I115--- 1, where x; € I; for all 7. Since each I; is an ideal
of R and R is a zero symmetric near ring, RI; C I; and I;R C I; for all ¢ so that
1T ... T;... Ty € ]z for all 7. Therefore, III2In Q Il OIQ - ﬂ]n ]

1.2 Modules over Near Rings

Now, it is time to introduce modules over near rings which are a generalization of
near rings. In fact, modules over near rings also are a generalization of modules

over rings.

Definition 1.19. [10] Let R be a near ring and (M,+) a group. Then M is

called a module over near ring R (or an R-module) if there exists a scalar

multiplication - : R x M — M such that for all 1,79 € R and m € M,
(i) (r1+7re)-m=1mr-m+ry-m, and
(ii) (rire) -m =1y (ry - m).

For any r € R and m € M, we may write rm instead of r - m. It is obvious
that every near ring is a module over itself and every module over a ring R is a

module over R where R is considered as a near ring.

Example 1.20. Let (R = {0,1},+,-) be the near ring which is not a ring given
in Example 1.5 and M = {0,a}. Define the addition + on M and the scalar
multiplication ® : R x M — M by the following tables:



+10 a ®10 a
010 a 010 a
a |la 0 110 a

Then M is a module over the near ring R.

Definition 1.21. [10] Let R be a near ring with identity 1. An R-module M is

called a unitary R-module if 1m = m for all m € M.

Example 1.22. Let R be the near ring with identity 1 given in Example 1.4. Then
R is an R-module. We can see that 1m = m for all m € R. Then R is a unitary

R-module.

Definition 1.23. [10] Let A be a nonempty subset of a near ring R and N be a
nonempty subset of an R-module. Then define the set AN as AN = {an:a € A
and n € N}.

Proposition 1.24. If A, B are nonempty subsets of a near ring R and N 1is a
nonempty subset of an R-module, then (AB)N = A(BN).

Proof. Assume that A, B are nonempty subsets of a near ring R and N is a
nonempty subset of an R-module M. First, let (ab)n € (AB)N where a € A,
b€ Bandn € N. Since M is an R-module, (ab)n = a(bn) € A(BN). Then
(AB)N C A(BN). Similarly, A(BN) C (AB)N is obtained. Therefore, (AB)N =
A(BN). O

Submodules of modules over rings are naturally extended to submodules of
modules over near rings. Since some axioms of modules over rings are omitted,
there are at least two types of such those special subset objects called R-submodules

and R-ideals of modules over near rings.

Definition 1.25. [10] Let R be a near ring. A subgroup N of an R-module M is
called an R-submodule of M if rn € N for allr € Rand n € N.

Definition 1.26. [10] Let R be a near ring. A normal subgroup N of an R-
module M is called an R-ideal of M if r(m +n) —rm € N for allr € R, m € M

and n € N.
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Let R be a near ring. Then R is also an R-module. Thus R-ideals of the
R-module R are the same as left ideals of the near ring R and R-submodules of
the R-module R are left R-subgroups of the near ring R. The following examples
show that R-submodules and R-ideals do not imply each other.

Example 1.27. Let R be the near ring given in Example 1.5. Then {0} is an
R-ideal of the R-module R but {0} is not an R-submodule of the R-module R
because 1-0 =1 ¢ {0}.

Example 1.28. Let R be the near ring given in Example 1.4. Then all R-
submodules of the R-module R are {0}, {0, a},{0,b} and R. Moreover, all R-ideals
of the R-module R are {0}, {0,b} and R. Note that {0, a} is not an R-ideal because
{0,a} is not a left ideal of the near ring R (see Example 1.15 (ii)). Thus {0,a} is
an R-submodule but not an R-ideal of the R-module R.

The next proposition yields that Rm is an R-submodule of an R-module M for

any m € M.

Proposition 1.29. Let M be an R-module. If m € M, then Rm is an R-
submodule of M .

Proof. This is similar to the proof of Proposition 1.13. O]
Next, a condition that makes each R-ideal an R-submodule is given.

Proposition 1.30. Let R be a zero symmetric near ring and N be an R-ideal of

an R-module M. Then
(1) RN C N; and
(2) N is an R-submodule of M.
Proof. This is similar to the proof of Proposition 1.16. ]

Notation 1.31. Let N and K be nonempty subsets of an R-module. Set (N : K)
={re R:rK C N}.
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In module theory, for a submodule N of a module M over a ring R, (N : M)

is an ideal of R. We also obtain this similar result.

Proposition 1.32. Let N be an R-ideal of an R-module M and K be an R-
submodule of M. Then (N : K) is an ideal of R.

Proof. First, we show that (N : K) is a normal subgroup of R. Since 0K C N, it
follows that 0 € (N : K). Let z,y € (N : K). That is xtK C N and yK C N. Let
k€ K. Then (x —y) k = zk—yk € N. Thus (x—y)K C N sothat z—y € (N : K).
Moreover, let r € R. We show that r +xz —r € (N : K). Since zk € xK C N and
(N, +) is a normal subgroup of (M, +), it follows that (r +  —r) k = rk+axk—rk €
N. Thatis (r+«—r)K C N. Sor+az—r € (N:K). Hence (N:K) is a
normal subgroup of R. Next, we obtain that zrK C tRK C xK C N because
K is an R-submodule of M and xK C N. This means that xr € (N : K).
Hence (N : K)R C (N : K). To show the rest, let r; € R and verify that
r(ri+x)—rry € (N : K). Note that (r (r +z) —rr)k=r(ri +x)k— (rr)k =
r(rik + xk) —r (r1k) € N because xk € N and N is an R-ideal of M. This shows
that (r (ry +x) —rry) K € N. That is (r (ry +2) —rr) € (N : K). Therefore,
(N : K) is an ideal of R. O

Proposition 1.33. Let N and K be R-submodules of an R-module M. Then
(N : K) is an R-subgroup of R.

Proof. Note that (N : K) is a subgroup of R similarly to the proof of Proposition
1.32. Next, let r € R and x € (N : K). Then 2K C N. Since N and K are
R-submodules of M, it follows that xrK C xRK C 2K C N and re K CrN C N.
Then (N : K)R C (N : K) and R(N : K) C (N : K). Therefore, (N : K) is an
R-subgroup of R. m

It is known that intersections of submodules of modules over rings are sub-
modules. In next propositions, we consider intersections of R-ideals, and of R-

submodules of modules over near rings, respectively.
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Proposition 1.34. Let N; be an R-ideal of an R-module M for alli € I. Then
(\ N; is an R-ideal of M.

iel

Proof. We obtain that N; is a normal subgroup of M because N; is an R-ideal

of M for all i € I. Then () NN; is a normal subgroup of M. Let r € R, n € [\ N;
i€l iel

and m € M. Then r(m+n) —rm € N; for all i € I because each N; is an R-ideal

of M. That is r(m 4+ n) —rm € (| N;. Therefore, (| N; is an R-ideal of M. [

iel iel
Proposition 1.35. Let N; be an R-submodule of an R-module M for all i € I.
Then [ N; is an R-submodule of M.

iel
Proof. Since (Nj, +) is a subgroup of (M;, +) for all 7 € I, it follows that ({7 IV;, +)
is a subgroup of (M, +). Next, let r € R and n € ﬂ N;. Then rn € Rz%Z C N;
for all 7 € I because each N, is an R-submodule of Z]e\} . Thus rn € ﬂ N; so that
R( N;) € () N;. Therefore, (] N; is an R-submodule of M. “ O
iel iel iel
One can see from the definitions of R-submodules and R-ideals that R-ideals
are normal subgroups but R-submodules are not necessarily. Consequently, these

allow us to define quotient modules over near rings via R-ideals.

Theorem 1.36. Let N be an R-ideal of an R-module M. Moreover, let M/N =
{m+ N :m € M}. Define the addition + on M/N and the scalar multiplication -
by

(m+N)+(n+N)=(m+n)+N and r-(m+N)=rm+ N

for allr € R and for all m,n € M. Then (M/N,+,-) is an R-module.

Proof. Since N is an R-ideal of M, it follows that (N, +) is a normal subgroup of
(M,+). Thus (M/N,+) is a group. Now, we show that the scalar multiplication
is well-defined. Let x,y € M and r € R. Assume that t + N = y + N. Then
—y+x € N. That is re —ry = r(y + (—y + z)) — ry € N because N is an
R-ideal of M. Since N is a normal subgroup of M and rz — ry € N, it follows
that —ry + rex = —ry + (re — ry) + ry € N. Then we can conclude that the
scalar multiplication is well-defined. Next, we show that (r; +79) - (z+ N) =
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ri-(@+ N)+ry-(x+ N)and (rir2)- (x + N) =r1-(ra- (x + N)) for all vy, 75 € R.

Let r1,79 € R. Then,
(ri+re) - (x+N) =(1+m)z+N

= (rix+rex)+ N

= (rz+ N) + (rqz + N)

=r-(x+N)+ry-(z+N)

and
(rire) - (x + N) = (rra)x+ N =ri(rax) + N =11 ((rex) + N) = ry - (ro - (x + N)).

Therefore, (M/N,+,-) is an R-module. O

Definition 1.37. Let N be an R-ideal of an R-module M. Then (M /N, +,-) given

in Theorem 1.36 is called the quotient module over the near ring R.

Proposition 1.38. If N and K are R-ideals of an R-module M with K C N,
then N/K is an R-ideal of M /K.

Proof. First, we show that N/K is a normal subgroup of M /K. Since N and K are
R-ideals of M containing K, it follows that N and K are normal subgroups of M
so that K is also a normal subgroup of N and then N/K is a subgroup of M /K.
Letme M andz € N. Then (m+ K)+(z+ K)—(m+ K)=(m+z—m)+K €
N/K because z € N and N is a normal subgroup of M. Hence N/K is a normal
subgroup of M /K. Let r € R. Then we obtain that
r-(m+K)+@+K)—r-(m+K) =r-(m+2)+K)—r-(m+ K)
=(r(m+z)+K)—(rm+K)
=(r(m+z)—rm)+ K € N/K
because N is an R-ideal of M and x € N. Therefore, N/K is an R-ideal of
M/K. O

In order to obtain the results of Proposition 1.38, being R-ideals of N and K
is crucial because if N and K were R-submodules of M, then N and K may not

be normal subgroups of M.



14

Example 1.39. Let R be the near ring given in Example 1.4. Then R is an R-
module. Next, let N = {0,b} and K = {0}. Then K C N. Moreover, we obtain
from Example 1.28 that N and K are R-ideals of R. Therefore, N/K is an R-ideal
of M/K.

It is known that a near ring is an algebraic structure similar to a ring. In
1970, Holcombe [8] extended the definition of prime ideals of rings to prime ideals
of near rings. However, in [8], there are three types of such those prime objects,
namely, O-prime ideals, 1-prime ideals and 2-prime ideals. Moreover, Groenewald
[5] introduced in 1991 two more types of prime ideals of near rings, namely, 3-
prime ideals and completely prime ideals. Recently, in 2010, Groenewald, Juglal
and Lee [7] extended prime ideals of near rings to prime R-ideals of modules over
near rings.

In our work, inspired by the above, we aim to study the notions that generalize
prime ideals of near rings and prime R-ideals of modules over near rings in the
same way as prime ideals of rings and prime submodules of modules over rings
were extended, called 2-absorbing ideals and 2-absorbing R-ideals, respectively.
We investigate properties of prime R-ideals and 2-absorbing R-ideals of modules
over near rings in general. Then we focus on 2-absorbing R-ideals of modules over

decomposable near rings and 2-absorbing ideals of decomposable near rings.



CHAPTER II
PRIME R-IDEALS AND 2-ABSORBING R-IDEALS
OF MODULES OVER NEAR RINGS

As a near ring is an algebraic structure relative to a ring, it is natural to extend
prime ideals of rings to prime ideals of near rings. In 1970, Holcombe [8] extended
the definition of prime ideals of rings to prime ideals of near rings. He introduced
three types of such those prime objects which he called O-prime ideals, 1-prime
ideals and 2-prime ideals. Moreover, Groenewald [5], in 1991, introduced two more
types of prime ideals of near rings which he called 3-prime ideals and completely

prime ideals.
Definition 2.1. [5, 8] Let P be a proper ideal of a near ring R. Then P is called

(1) a O-prime ideal of R if for all ideals A and B of R, AB C P implies A C P
or B C P;

(2) a 1-prime ideal of R if for all left ideals A and B of R, AB C P implies
ACPor BCP,

(3) a 2-prime ideal of R if for all left R-subgroups A and B of R, AB C P
implies A C P or B C P;

(4) a 3-prime ideal of R if for all a,b € R, aRb C P implies a € P or b € P;

and

(5) a completely prime ideal of R if for all a,b € R, ab € P implies a € P or
be P.

Next, relationships between these five types of prime ideals of near rings are

given.
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Proposition 2.2. [5] Let P be a proper ideal of a near ring R. Then P is a
completely prime ideal — P is a 3-prime ideal — P is a 2-prime ideal — P is a

1-prime ideal — P is a 0-prime ideal.

Example 2.3. Let K be the near ring given in Example 1.17. Then {e} is a
O-prime ideal but is not 3-prime ideal of K. Note that {e} is a O-prime ideal
of K because {e} and K are the only ideals of K and KK # {e}. Moreover,
aRa = {e,a}a = {e} and a ¢ {e}. Therefore, {e} is not a prime ideal of K.

Recall that modules over near rings are a generalization of near rings. In 2010,
Groenewald, Juglal and Lee [7] extended prime ideals of near rings to prime R-

ideals of modules over near rings.

Definition 2.4. [7] Let N be a proper R-ideal of an R-module M. Then N is
called

(1) a 0-prime R-ideal of M if for all ideal A of R and R-ideal K of M, AK C N
implies AM C N or K C N;

(2) a 1-prime R-ideal of M if for all left ideal A of R and R-ideal K of M,
AK C N implies AM C N or K C N;

(3) a2-prime R-ideal of M if for all left R-subgroup A of R and R-submodule K
of M, AK C N implies AM C N or K C N;

(4) a 3-prime R-ideal of M if for all» € R,m € M,rRm C N implies rM C N

or m € N; and

(5) a completely prime R-ideal of M if for all r € R,m € M,rm € N implies
rM C N orme N.

Similary, Groenewald, Juglal and Lee showed relationships between the five

types of prime R-ideals of modules over near rings.

Proposition 2.5. [7] Let N be a proper R-ideal of an R-module M. Then N is a
completely prime R-ideal — N 1is a 3-prime R-ideal — N 1is a 2-prime R-ideal —

N is a I-prime R-ideal — N 1is a 0-prime R-ideal.
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In 2007, Badawi extended the notion of prime ideals to 2-absorbing ideals of
commutative rings with identities, see [1]. In 2011, Darani and Soheilnia extended
the notion of prime submodules to 2-absorbing submodules of modules over com-
mutative rings with identities, see [3]. In this thesis, we extend the concept of prime
ideals of near rings and prime R-ideals of modules over near rings to 2-absorbing
ideals of near rings and 2-absorbing R-ideals of modules over near rings, respec-
tively. This extension is done in the same way as prime ideals of commutative
rings with identities, and prime submodules of modules over commutative rings
with identities were extended. First, let see how Darani and Soheilnia extended
the definition of prime submodules to 2-absorbing submodules of modules over
commutative rings with identities. Recall that a proper submodule N of a unitary
module M over a commutative ring R with identity is said to be a prime sub-
module of M if for any a € R,m € M, am € N implies aM C N or m € N. And
they extended this to 2-absorbing submodules. A proper submodule N of a unitary
module M over a commutative ring R with identity is said to be a 2-absorbing
submodule of M if for any a,b € R,m € M,abm € N implies abM C N or
am € N or bm € N.

Similarly, we would like to extend the idea of various prime R-ideals of modules
over near rings to 2-absorbing R-ideals. First, consider O-prime R-ideals of a
module over a near ring. The definition of a 2-absorbing R-ideal N of a module
M over a near ring R should be defined to be a proper R-ideal of M and for any
ideals A, B of R, any R-ideal C of M, ABC C N implies ABM C N or AC C N
or BC C N. With this definition, “every 0-prime R-ideal of a module over a near
ring is a 2-absorbing R-ideal” should be obtained. However, this is not the case
because for any ideals A and B of a near ring R, it is not always that AB is an
ideal of R. Besides, for any ideal A of a near ring R and any R-ideal C' of a module
M over the near ring R, it is not necessary that AC' is an R-ideal of M.

Consequently, 2-absorbing R-ideals should not be extended from O-prime R-
ideals. Analogously, similar problems would have arisen if we extended 2-absorbing

R-ideals from 1-prime R-ideals or 2-prime R-ideals. However, these does not occur
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with extending 3-prime R-ideals and completely prime R-ideals of modules over
near rings. In this thesis, we define 2-absorbing ideals and 2-absorbing R-ideals
by extending these from 3-prime ideals and 3-prime R-ideals, respectively. As for
this, to be convenient, we call 3-prime ideals and 3-prime R-ideals as prime ideals

and prime R-ideals, respectively. Let us rephrase these as follows.

Definition 2.6. Let R be a near ring and P be a proper ideal of R. Then P is
called a prime ideal of R if for all a,b € R,aRb C P impliesa € P or b € P.

Definition 2.7. Let R be a near ring, M be an R-module and N be a proper
R-ideal of M. Then N is called a prime R-ideal of M, if for all a € R,m € M,

aRm C N implies aM C N or m € N.

Example 2.8. Let R = {0,1} be the near ring given in Example 1.5 under fol-

lowing operations:

+10 1 -0 1
00 1 0(0 O
111 0 111 1

Then {0} is the only proper R-ideal of the R-module R, see Example 1.27. And
it is easy to verify that {0} is a prime R-ideal of the R-module R. To check
this, let z,y € R. Assume that Ry = {0}. Then z = 0 because if x = 1,
then xRy = 1Ry = {1} # {0}. Therefore, {0} is the only prime R-ideal of the
R-module R.

Example 2.9. Let R = {0,1,a,b} be the zero symmetric near ring given in Ex-

ample 1.4 under the following operations:

+(0 1 a b 0 1 a b
0(0 1 a b 00 0 0 O
111 0 b a 110 1 a b
ala b 0 1 a|l0 a a b
b b a 1 0 b0 b 0 0
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Recall from Example 1.28 that {0} and {0, b} are the only proper R-ideals of the R-
module R. One can check that {0, b} is the only prime R-ideal of the R-module R.
However, {0} is not a prime R-ideal of the R-module R because b-b = 0 but

b {0},

The following result shows a relationship between prime submodules and prime

R-ideals in some cases.

Proposition 2.10. Let R be a commutative ring with identity 1 and M be a
module over the ring R. We know that the ring R is also a near ring so that M
can be considered as a module over the near ring R. To distinguish between these
structures, we write M’ to interpret the module M over the near ring R. Then

every prime submodule of M is a prime R-ideal of M'.

Proof. By definition of R-ideals of modules over near rings, we can conclude that
every submodule of M is an R-ideal of M’. Next, let N be a prime submodule
of M. To show that N is a prime R-ideal of M’, let « € R and m € M. Assume
that aRm C N. Then am = (al)m € N. Since N is a prime submodule of M, we
obtain that aM C N or m € N. Therefore, N is a prime R-ideal of M’. O

Example 2.11. Let p be a prime number. Recall that pZ is a prime submodule
of the module Z over the ring Z. Then pZ is a prime R-ideal of the module Z over
the near ring Z by Proposition 2.10.

Now, we are ready to provide the definitions of 2-absorbing ideals of near rings

and 2-absorbing R-ideals of modules over near rings.

Definition 2.12. Let R be a near ring and P be a proper ideal of R. Then P is
called a 2-absorbing ideal of R if for all a,b,c € R,aRbRc C P implies ab € P

or bc € Por ac € P.

Definition 2.13. Let R be a near ring, M be an R-module and N be a proper
R-ideal of M. Then N is called a 2-absorbing R-ideal of M if for all a,b € R,
m € M, aRbRm C N implies abM C N or am € N or bm € N.
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Badawi introduced, in [1], 2-absorbing ideals of rings and showed that every
prime ideal of a ring is a 2-absorbing ideal. Later, Darani and Soheilnia provided
the notion of 2-absorbing submodules of modules over rings and proved that every
prime submodule of a module over a ring is a 2-absorbing submodule, see [3].
Consequently, we expect to obtain the similar result in term of 2-absorbing R-

ideals of modules over near rings. Anyhow, the following result is needed.

Proposition 2.14. Let N be a prime R-ideal of an R-module M. For all a,b € R,
m € M, if aRbRm C N and am ¢ N, then bM C N.

Proof. Let a,b € R and m € M. Assume that aRbRm C N and am ¢ N. First,
we show that bRm C N. Let r € R. Then aR(brm) C aRbRm C N. Since N is
a prime R-ideal of M, aM C N or brm € N. Then brm € N because am ¢ N.
That is bRm C N as desired. Since N is a prime R-ideal of M, it follows that
bM C N or m € N. Note that am ¢ N so m ¢ N. Therefore, bM C N. O

Proposition 2.15. Let R be a zero symmetric near ring. If N is a prime R-ideal

of an R-module M, then N is a 2-absorbing R-ideal of M.

Proof. Assume that N is a prime R-ideal of an R-module M. Let a,b € R and
m € M. Assume that aRbRm C N but am ¢ N. Thus bM C N by Proposition
2.14. Then bm € N and abM C aN C RN C N by Proposition 1.30 (i). Therefore,
N is a 2-absorbing R-ideal of M. [

Proposition 2.15 guarantees that every prime R-ideal is a 2-absorbing R-ideal

provide that R is a zero symmetric near ring. But the converse does not necessarily

hold.

Example 2.16. Let R = {0, 1,a,b} be the R-module considered in Example 2.9.
Note also that R is a zero symmetric near ring and {0} is not a prime R-ideal of R.
Moreover, {0} is a 2-absorbing R-ideal of R. To see this, let z,y,z € R. Assume
that tRyRz = {0}. If t =0ory=0o0r 2z =0, then zy =0 or zz =0 or yz =0
because R is a zero symmetric near ring. Next, suppose that each of x,y and z is

not zero. There are 2 cases to be considered:
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(i) at least two of x,y and z are 1, and

(ii) at most one of z,y and z are 1.
First, we consider Case(i). Without loss of generality, it suffices to assume that x
and y are 1. It follows that 1R1Rz # {0} which is a contradiction. Thus Case(i)
does not occur. Next, Case(ii) is considered. Then there is exactly one of x,y
and z such that it is 1. We claim that x = b or y = b or z = b. Suppose not, i.e.,
x #band y # b and z # b. First, assume that x = 1. This leads to y = 2z = a.
Thusa=1-1-a-1-a € 1RyRz, i.e. , IRyRz # {0}. Similarly, if y = 1 or z =1,
then xRyRz # {0}. This is a contradiction. Hence the claim is proved. As a
result, there are 3 possible choices of x RyRz, namely, bRyRz, t RbRz, or x RyRb.
We obtain from the table of multiplication in Example 2.9 that xRyRb # {0}.
Moreover, if {0} = xRyRz = bRyRz, then by = 0. Or, if {0} = xRyRz = xRbRz,
then bz = 0. This shows that whenever xRyRz = {0}, then zy = 0 or zz = 0 or
yz = 0. Therefore, {0} is a 2-absorbing R-ideal of M.

In 2011, Darani and Soheilnia showed in [3] that intersections of each pair
of prime submodules of modules over rings are 2-absorbing submodules. It is
reasonable to generalize this result to intersections of each pair of prime R-ideals

of modules over near rings.

Theorem 2.17. Let M be an R-module. Then intersections of each pair of prime

R-ideals of M are 2-absorbing R-ideals of M.

Proof. Let N and K be two prime R-ideals of M. If N = K, then NN K is a
prime R-ideal of M so that N N K is a 2-absorbing R-ideal of M. Assume that
N and K are distinct. Since N and K are proper R-ideals of M, it follows that
N N K is a proper R-ideal of M. Next, let a,b € R and m € M be such that
aRbRm C NN K but am ¢ NN K and abM ¢ N N K. Then, we can conclude
that (a) am ¢ N or am ¢ K, and (b) abM ¢ N or abM ¢ K. These reach to 4
cases:

(i) am ¢ N and abM ¢ N

(ii) am ¢ N and abM ¢ K
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(iii) am ¢ K and abM ¢ N

(iv) am ¢ K and abM ¢ K.

First, we consider Case(i). Since aRbRm C NN K C N and am ¢ N, it follows
from Proposition 2.14 that bM C N. This is a contradiction because abM ¢ N.
Hence Case(i) does not occur. Similarly, Case(iv) is not possible.

Next, Case(ii) is considered. Again, we obtain that bA/ C N and then bm € N.
Let r € R. Since aRbRm C NNK C K, it follows that aR(brm) C aR(bRm) C K.
Hence aM C K or brm € K because K is a prime R-ideal of M. If aM C K,
then abM C aM C K contradicts abM z K. Thus brm € K. That is bRm C K.
Since K is a prime R-ideal, bM C K or m € K. If bM C K, then abM C K
leading to the same contradiction. Hence, m € K and then bm € K. As a result,
bme NNK.

The proof of Case(iii) is similar to that of Case(ii).

Therefore, intersections of each pair of prime R-ideals of M are 2-absorbing

R-ideals of M. O

Example 2.18. It follows from Example 2.11 that 2Z and 37Z are prime Z-ideals of
the Z-module Z. Then 6Z = 27ZN3Z is a 2-absorbing Z-ideal of Z by Theorem 2.17.

Since intersections of each pair of prime R-ideals are 2-absorbing R-ideals and
prime R-ideals are 2-absorbing R-ideals, is it true that intersections of each pair of
2-absorbing R-ideals are 2-absorbing R-ideals? The following example shows that
intersections of each pair of 2-absorbing R-ideals are not necessary 2-absorbing

R-ideals.

Example 2.19. Since 5Z is a prime Z-ideal of the Z-module Z by Example 2.11
so that 5Z is also a 2-absorbing Z-ideal. Moreover, 6Z is a 2-absorbing Z-ideal
of Z from Example 2.18. Note that 6Z N 5Z = 30Z but 30Z is not a 2-absorbing
Z-ideal of Z because 2-3 -5 € 30Z but 2-3,2-5,3-5 ¢ 30Z.

The following proposition shows results of intersections of an R-ideal and a

prime (2-absorbing) R-ideal.
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Proposition 2.20. Let N and K be R-ideals of an R-module M with K ¢ N.
(1) If N is a prime R-ideal of M, then K N N is a prime R-ideal of K.

(2) If N is a 2-absorbing R-ideal of M, then K N N is a 2-absorbing R-ideal
of K.

Proof. We proof only (2) because the proof of (1) can be obtained similarly. Since
N and K are R-ideals of M and K ¢ N, it follows that K NN is a proper R-ideal
of K. Assume that N is a 2-absorbing R-ideal of M. Let a,b € R and x € K
be such that aRbRx C K N N. Since K ia an R-ideal of M, we obtain that
abK C K and ax,br € K. Moreover, since aRbRx C KN N C N and N is a
2-absorbing R-ideal of M, it follows that abM C N or ax € N or bx € N. Thus
abK C abK NabM C KN N oraxr € KNN or bx € KN N. Therefore, K N N is
a 2-absorbing R-ideal of K. [

In a module M over a commutative ring with identity, N is a prime (2-
absorbing) submodule of M if and only if N/K is a prime (2-absorbing) submodule
of M/K. Next, we aim to consider prime R-ideals and 2-absorbing R-ideals of quo-

tient modules over near rings.
Theorem 2.21. Let N and K be R-ideals of an R-module M with K C N. Then

(1) N is a prime R-ideal of M if and only if N/K is a prime R-ideal of M/K;

and

(2) N is a 2-absorbing R-ideal of M if and only if N/K is a 2-absorbing R-ideal
of M/K.

Proof. Tt suffices to proof only (2). First, assume that N is a 2-absorbing R-ideal
of M. Then N/K is a proper R-ideal of M/K. Let a,b € R and m € M be such
that aROR - (m+ K) C N/K. Let s,t € R. Then asbtm + K = asbt - (m+ K) €
aRbR-(m + K) C N/K. Thus there exists n € N such that asbtm+ K = n+ K so
that —n + asbtm € K C N and then asbtm € N. This shows that aRbRm C N.

As a result, am € N or bm € N or abM C N because N is a 2-absorbing R-ideal
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of M. Hence a- (m+ K) € N/JKorb-(m+ K) € N/K orab- (M/K) C N/K.
Therefore, N/K is a 2-absorbing R-ideal of M/K.

Conversely, assume that N/K is a 2-absorbing R-ideal of M /K. Then N is a
proper R-ideal of M. Let a,b € R and m € M be such that aRbRm C N. Then
aRbR - (m+ K) C N/K. Since N/K is a 2-absorbing R-ideal of M /K, we obtain
that a- (m+ K) € N/JKorb- (m+ K) € N/Korab- (M/K) C N/K. That is
am € N or bm € N or abM C N. This implies that N is a 2-absorbing R-ideal
of M. ]

Now, we know that 2-absorbing ideals (R-ideals) are generalization of prime
ideals (R-ideals) of near rings (modules over near rings). Moreover, in ring theory,
many research work are studied on prime ideals of rings regarding special prop-
erties called a strongly prime ideals. Moreover, strongly prime ideals of rings are
extended to strongly prime submodules of modules over rings. Groenewald and
Juglal extended strongly prime submodules of modules over rings to strongly prime
R-ideals of modules over near rings in 2011, see [6]. At this point, we introduce
the notion of strongly 2-absorbing R-ideals of modules over near rings and strongly

2-absorbing ideals of near rings and study some properties.

Definition 2.22. [6] Let M be an R-module. A proper R-ideal N of M is called a
strongly prime R-ideal of M if for all m € M ~ N, there exists a finite subset F
of R such that for all a € R,aF'm C N implies aM C N.

Example 2.23. Recall from Example 1.27 that {0} is an R-ideal of the R-module
R ={0,1}. Now, we show that {0} is a strongly prime R-ideal of the R-module R.
Let F' = {0}. Since 0F'1 = 0{0}1 = {0} and 1F'1 = 1{0}1 = {1}, if for any a € R,
aF'1 C {0}, then a = 0 and so that aR = OR = {0}. Therefore, {0} is a strongly
prime R-ideal of the R-module R.

Theorem 2.24. [6] If N is a strongly prime R-ideal of an R-module M, then N
1s a prime R-ideal of M.

We give the definition of strongly 2-absorbing R-ideals.
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Definition 2.25. Let M be an R-module. A proper R-ideal N of M is called a
strongly 2-absorbing R-ideal of M if for all m € M ~ N, there exists a finite
subset I’ of R such that for all a,b € R,aFbFm C N implies abM C N.

Theorem 2.26. If N is a strongly 2-absorbing R-ideal of an R-module M, then
N is a 2-absorbing R-ideal of M.

Proof. Assume that N is a strongly 2-absorbing R-ideal of M. Let a,b € R and
m € M. Assume that aRbRm C N but am ¢ N and bm ¢ N. Since bm ¢ N
and N is a strongly 2-absorbing R-ideal of M, there exists a finite subset F' of R
such that for all z,y € R, xFyF(bm) C N implies xyM C N. Since aFbF (bm) C
aRbRbm = aRb(Rb)m C aRb(R)m = aRbRm C N, we obtain that abM C N.
Therefore, N is 2-absorbing R-ideal of M. [

From the definition of strongly prime R-ideals of modules over near rings, we
define a strongly prime ideal of a near ring by considering a near ring as a module

over itself.

Definition 2.27. Let R be a near ring. A proper ideal P of R is called a strongly
2-absorbing ideal of R if for all » € R~ P, there exists a finite subset F' of R
such that for all a,b € R, aF'bFr C P implies ab € P.

In modules over rings, there are some interesting results of 2-absorbing sub-
modules of modules over rings. If N is a 2-absorbing submodule of a module M
over a ring R, then (N : M) is a 2-absorbing ideal of R. Now, we provide a condi-
tion that makes (N : M) a 2-absorbing ideal of near rings. Anyhow, the following

result is needed.

Theorem 2.28. Let R be a near ring with identity 1. If N is a strongly 2-absorbing
R-ideal of a unitary R-module M, then (N : M) is a strongly 2-absorbing ideal
of R.

Proof. If (N : M) = R, then 1 € (N : M), i.e., M = 1M C N contradicts the
fact that N is a proper R-ideal of M. Then (N : M) is a proper ideal of R. Let
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r€ R~ (N :M). Then rM C N. Thus there exists m € M such that rm ¢ N.
Since rm ¢ N and N is a strongly 2-absorbing R-ideal of M, there exists a finite
subset F' of R such that for all x,y € R,2FyFrm C N implies zyM C N. Let
a,b € R be such that aFOFrm C N. Then abM C N, ie., ab € (N : M).
Therefore, (N : M) is a strongly 2-absorbing ideal of R. O

Corollary 2.29. Let R be a near ring with identity 1. If N is a strongly 2-
absorbing R-ideal of a unitary R-module M, then (N : M) is a 2-absorbing ideal
of R.

Next, we pay attention to the converse of Theorem 2.28. In order to make the

converse of Theorem 2.28 hold, some definitions used for this result are introduced.
Definition 2.30. [6] Let M be an R-module.

(i) A nonempty subset C of M is called a multiplication set if (C': M )M = C.

(ii) An element m € M is called a multiplication element if the singleton set

{m} is a multiplication set.

Definition 2.31. [6] An R-module M is called a completely multiplication

module if every m € M is a multiplication element.

Theorem 2.32. Let R be a near ring with identity 1 and M be a unitary R-module.
Moreover, assume that M is a completely multiplication module and N is a proper
R-ideal of M. If (N : M) is a strongly 2-absorbing ideal of R, then N is a strongly
2-absorbing R-ideal of M.

As a result, N is a strongly 2-absorbing R-ideal of M if and only if (N : M) is
a strongly 2-absorbing ideal of R.

Proof. Assume that (N : M) is a strongly 2-absorbing ideal of R. Let m € M~ N.
Since M is completely multiplication module, ({m} : M)M = {m} € N. Then
({m}: M) € (N : M). Thus there exists r € ({m} : M)~ (N : M). Since
(N : M) is a strongly 2-absorbing ideal of R and r € ({m} : M) ~ (N : M),
it follows that there exists a finite subset F' of R such that for all z,y € R,
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xFyFr C (N : M) implies zy € (N : M). Let a,b € R be such that aF’'bFm C N.
Since rM C ({m} : M)M = {m}, we obtain that aF'bFrM C aFbF{m} C N.
Then aFoFr C (N : M) implies that ab € (N : M), i.e., abM C N. Therefore, N
is a strongly 2-absorbing R-ideal of M.

For another result, assume that N is a strongly 2-absorbing R-ideal of M. Then
(N : M) is a strongly 2-absorbing ideal of R by Theorem 2.28. O]

Theorem 2.33. Let N be an R-ideal of a completely multiplication module M. If
(N : M) is a 2-absorbing ideal of R, then N is a 2-absorbing R-ideal of M.

Proof. Assume that (N : M) is a 2-absorbing ideal of R. Then N is a proper
ideal of M because if N = M, then (N : M) ={re R:rM C N =M} =R
contradicts the fact that (N : M) is a proper ideal of R. Let a,b € R and m € M
be such that aRbRm C N. Since m € M and M is a completely multiplication
module, ({m} : M) = {m}. Then aRbR(({m} : M)M) = aRbR{m} C N.
Then aRbR({m} : M) C (N : M). Let r € ({m} : M). Then rM = {m} and
aRbRr C aRbR({m} : M) C (N : M). Since (N : M) is a 2-absorbing ideal of R,
we obtain that ab € (N : M) or br € (N : M) or ar € (N : M), i.e., abM C N or
brM C N or arM C N. Since rM = {m}, we obtain that abM C N or b{m} C N
or a{m} C N. Therefore, N is a 2-absorbing R-ideal of M. O

Finally, in this chapter, we aim to consider module homomorphisms between

modules over the same near rings.

Definition 2.34. Let M and M’ be R-modules. A function f : M — M’ is called

a module homomorphism if for all » € R and x,y € M.
(i) flz+y) = flx)+ [(y),
(i) f(rz) =rf(z).

Module epimorphisms can be defined in a similar way for epimorphisms of

modules over rings.
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Theorem 2.35. Let M, M’ be R-modules and ¢ : M — M’ be a module homo-

morphism.

(1) If N' is a prime R-ideal of M', then ¢ *(N') = M or ¢='(N') is a prime
R-ideal of M.

(2) If N’ is a 2-absorbing R-ideal of M', then ¢ '(N') = M or ¢ *(N') is a
2-absorbing R-ideal of M.

Proof. We proof only (2). Assume that N’ is a 2-absorbing R-ideal of M’ and
@ '(N") # M. Let a,b € R and m € M. Suppose that aRbRm C ¢~ '(N’). Then
w(aRbRm) C N'. Thus aRbRp(m) = ¢(aRbRm) C N’ because ¢ is a module
homomorphism. Moreover, since N’ is a 2-absorbing R-ideal of M’, we obtain that
w(abM) = abp(M) C abM’' C N’ or p(am) = ap(m) € N' or p(bm) = bp(m) €
N’. Hence abM C o Y(N") or am € ¢~ *(N') or bm € ' (N’). Therefore, o' (N)
is a 2-absorbing R-ideal of M. O

Moreover, if ¢ : M — M’ is a module epimorphism, then the converses of

statements in Theorem 2.35 hold.

Theorem 2.36. Let M, M' be R-modules and ¢ : M — M’ be a module epimor-
phism. Moreover, let N' be a proper R-ideal of M’ such that ¢='(N') is proper.

(1) N’ is a prime R-ideal of M' if and only if o~ (N') is a prime R-ideal of M;

and

(2) N' is a 2-absorbing R-ideal of M' if and only if o= *(N') is a 2-absorbing
R-ideal of M.

Proof. Tt suffices to proof only (2). From Theorem 2.35, it is enough to show
the sufficient part. Let a,b € R and m’ € M’. Suppose that aRbRm' C N'.
Since ¢ is a module epimorphism and m’ € M’, there exists m € M such that
w(m) = m’. Then p(aRbRmM) = aRbRp(m) = aRbRm’ C N’. It follows that
aRbRm C o '(N'). Since ¢ !'(N’) is a 2-absorbing R-ideal of M, we obtain
that abM C ¢ '(N’) or am € o (N') or bm € ¢ '(N’). Since ¢ is a module
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epimorphism, abM' = abp(M) = @(abM) C N’ or am’ = ap(m) = p(am) € N’ or
bm’ = bp(m) = p(bm) € N'. Therefore, N’ is a 2-absorbing ideal of M’. O

Theorem 2.37. Let M, M’ be R-modules and ¢ : M — M’ be a module epimor-
phism. Moreover, let N be an R-ideal of M with Keryp C N.

(1) If N is a prime R-ideal of M, then o(N) is a prime R-ideal of M'.
(2) If N is a 2-absorbing R-ideal of M, then o(N) is a 2-absorbing R-ideal of M.

Proof. The proof of (1) and (2) are similar so we proof only (2). First, assume
that N is a 2-absorbing R-ideal of M. Let a,b € R and m’ € M’. Assume that
aRbRm' C ¢(N). Since ¢ is a module epimorphism and m’ € M’, there exists
m € M such that ¢(m) = m/. Then ¢(aRbRm) = aRbRp(m) = aRbRm' C ¢(N).
Let s,t € R be such that asbtm € aRbRm. Then there exists x € N such
that ¢(asbtm) = p(x). Thus p(asbtm — x) = p(asbtm) — p(x) = 0. That is
asbtm — x € Keryp C N so that asbtm € N. Thus aRbRm C N. Since N is
a 2-absorbing R-ideal of M, we obtain that abM C N or am € N or bm € N.
Then abM' = abp(M) = @(abM) C o(N) or am’ = ap(m) = ¢(am) € p(N) or
bm’ = bp(m) = p(bm) € p(N). Therefore, ¢(N) is a 2-absorbing R-ideal of M’.
[

Since a near ring R is also an R-module, 2-absorbing ideals of a near ring R
are special cases of 2-absorbing R-ideals of the R-module R. Then all properties
of 2-absorbing R-ideals of R-modules in this chapter can be applied to 2-absorbing
R-ideals of the near ring R. For example, we also obtain that “intersections of each
pair of prime ideals of a near ring R are 2-absorbing ideals of R” as a corollary of

Theorem 2.17.



CHAPTER I11
2-ABSORBING R-IDEALS OF MODULES OVER
DECOMPOSABLE NEAR RINGS

In 2015, Chinwarakorn and Pianskool [2] introduced almost generalized 2-absorbing
ideals of commutative rings with identities which are a generalization of 2-absorbing
ideals of commutative rings with identities and investigated some of their properties
on decomposable rings. A commutative ring R is said to be a decomposable
commutative ring if it can be written as a product of commutative nonzero rings,
ie., R=R; X Ry X --- x R, for some commutative nonzero rings Ry, Ro, ..., R,.
This leads us to study some properties of 2-absorbing R-ideals of modules over

decomposable near rings and 2-absorbing ideals of decomposable near rings.

Definition 3.1. A near ring R is said to be a decomposable near ring if it is
a product of nonzero near rings equipped by componentwise on both addition and

multiplication.

Example 3.2. Let R; = ({0,1,a,b},+, ) and Ry = ({0,1},+,) be the near
rings given in Example 1.4 and Example 1.5, respectively. Then R; X Ry is a

decomposable near ring which is not zero symmetric.

Let R = Ry X Ry X --- X Ry be a decomposable near ring and let M; be an
R;-module for all © = 1,2, ... k. It is clear that the product of My, Ms, ..., M} is

an R-module, i.e., My x My X --- x M, is an R-module.

Proposition 3.3. Let N; be an R;-ideal of an R;-module M; for allt=1,2,... k.
Then Ny X Ny X --- X Ny 1s an R-ideal of M where R = Ry X Ry X -+ X Ry and
M =M; x My x -+ x M.

Proof. For each 1, since N; is an R;-ideal of M;, it follows that NV; is a normal

subgroup of M; and then Ny x Ny X --- X Nj is a normal subgroup of M. Let
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(r1i,re, ..., %) € R, (my,ma,...,my) € M and (ny,na,...,n;) € Ny X NyX- X Np.
Then

(r1,79, ..y re)[(ma, may oo ymyg) —(ny,na, oo ng)|— (11, re, ooy k) (Mg, Mgy oo )
=(ri,ro,...,7%) (Mg — Ny, Mg — g, ..., my — ng) — (rymy, rama, ..., remg)
= (ri(my —ny),re(me — ng), ..., r(mg — ng)) — (rima, roma, ..., rgmy,)
= (ri(mq —ny) — rymy, ro(mg — ng) — roma, ..., ri(My — ng) — rEMy)

€N1><N2X"'XNk
because each N; is an R;-ideal of M;. Therefore, Ny X Ny X - -+ X Ny is an R-ideal
of M. O]

Some properties of 2-absorbing R-ideals of modules over decomposable near

rings are studied.

Lemma 3.4. Let My be an Ri-module, My be an Ry-module, R = R1 X Ry and
M = M, x My. Then

(1) Ny is a 2-absorbing (prime) Ri-ideal of M, if and only if Ny x M;y is a
2-absorbing (prime) R-ideal of M; and

(2) Ny is a 2-absorbing (prime) Rs-ideal of My if and only if My x Ny is a
2-absorbing (prime) R-ideal of M.

Proof. 1t suffices to prove only (1). First, assume that N; is a 2-absorbing R;-ideal
of M. Suppose that (a,b)R(c,d)R(mqi,my) C Ny X My where (a,b),(c,d) € R
and (mq,mg) € M. Then (aRicRymy,bRedRoms) = (a,b)R(c,d)R(my,mq) C
N1 X My, ie., aRicRym; C Ny and bRydRoamy C Ms. Since Ny is a 2-absorbing
Ri-ideal of M, it follows that acM; C N; or am; € Ny or cmqy € N;. That is
(a,b)(c,d)M = (acMy, bdMs) C Ny x My or (a,b)(mq, ms) = (amy,bmsy) € Ny x My
or (¢, d)(my,mg) = (emq,dms) € Ny X My. Therefore, Ny x My is a 2-absorbing
R-ideal of M.

Conversely, assume that N; x M is a 2-absorbing R-ideal of M. Let a,b € R;
and m; € M;. Assume that aR1bRym; C Nyi. Let x,y € Ry and my € M;. Then
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(a,z)R(b,y)R(my, my) = (aR1bRymy, x ReyRoams) C Ny x M. Since Ny x My is a 2-
absorbing R-ideal of M, it follows that (a, x)(b,y)M C Ny X Ms or (a,z)(my, ms) €
Ny x My or (b,y)(mq,mae) € Ny x My. Then (abMy, xyMy) = (a,x)(b,y)M C Ny x
M, or (amy,xms) = (a,x)(my,ma) € Ny X My or (bmy,yms) = (b,y)(my, ms) €
N1 X My, i.e., abM; C Ny or am; € Ny or bmy € Ny. Therefore, N, is a 2-absorbing
R;-ideal of M. O

Theorem 3.5. Let R = Ry X Ry X --- X R, be a decomposable near ring and N;
be an R;-ideal of an R;-module M; for alli=1,2,..., k. Then N; is a 2-absorbing
(prime) R;-ideal of M; if and only if My X -+ X M;_1 X N; X M; 1 X -+ X My, is
a 2-absorbing (prime) R-ideal of My x My X --- x My, for eachi=1,2,... k.

Proof. The result follows by applying Lemma 3.4. m

The above theorem shows that the product N; x Ny X --- X N is a 2-absorbing
R-ideal if and only if there is one of N/s such that N; is a 2-absorbing R;-ideal of
M; and the other components must be the whole R;-module M;.

Recall that a near ring R is a module over itself. Moreover, if I is a 2-absorbing
(prime) ideal of a near ring R, then [ is a 2-absorbing (prime) R-ideal of the R-
module R and vice versa. Then the result of 2-absorbing (prime) R-ideal of the
R-module M in Theorem 3.5 can be rephrased in term of 2-absorbing (prime)

ideals of a near ring.

Corollary 3.6. Let R = Ry X Ry X --- X Ry, be a decomposable near ring and I; be
an ideal of R; for alli =1,2,...,k. Then I; is a 2-absorbing (prime) ideal of R;
if and only if Ry X +++ X Ri_1 X I; X Riyq X -+ X Ry, is a 2-absorbing (prime) ideal
of R for eachi=1,2,... k.

Next theorem provides conditions that make Ny x Ny a 2-absorbing (R X Ry)-
ideal of an (R; X Ry)-module M; x My where each Nj; is a proper R;-ideal of
M;.

Theorem 3.7. Let Ry and Ry be zero symmetric near rings. If Ny is a prime

Ry-ideal of an Ri-module M, and N, is a prime Ry-ideal of an Rs-module My,
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then Ny X Ny is a 2-absorbing R-ideal of the R-module M where R = Ry X Ry and
M = My x M.

Proof. Assume that N; is a prime Rj-ideal of an R;-module M; and N, is a
prime Rs-ideal of an Ro-module Ms. Then N; x N, is a proper R-ideal of M. Let
(a,b), (c,d) € Ry xRy and (my, mg) € M;xMs. Assume that (a,b)R(c,d)R(mq, ms)
C N; x N, but (a,b)(c,d)M ¢ Ny x Ny and (a,b)(m1,ms) ¢ Ny x No. We claim
(c,d)(my, my) € Ny X Ny. Note that we can conclude from (a, b)(mq, ma) ¢ Ny X Ny
that (a) amy ¢ Ny or ama € Ny, and (b) acM; € Ny or bdMy ¢ N. There are 4
cases to be considered:

(i) amy ¢ Ny and acMy € N,

(ii) amg ¢ Ny and bdMy € Ny

(iii) amq ¢ Ny and bdMy € Ny

(iv) amg ¢ N and acM; € Ny.

First, we consider Case(i). Note that aRicRym; C Ny and bRydRoms C Ny be-
cause (aRycRymy,bRodRoms) = (a,b)R(c,d)R(my,ms) C Ny x Ny. Since N is
a prime Rj-ideal of M; and am; ¢ N;, we obtain from Proposition 2.14 that
cMy € N;. Thus acM; C aN; € N; because R; is a zero symmetric near ring
which is a contradiction. Then Case(i) is not possible. In addition, Case(ii) is
absurd.

Next, Case (iii) is considered. Similarly, cM; C N;. Thus emy € N;. Moreover,
bRodRyms C Ny. Let r € Ry. Then bRodrms C Ns. Since N, is a prime Rap-ideal
of My, we have bMy C Ny or drmo € Ny. If bMy; C No, then bdMy; C bMy C Ny
contradicts bd M, gZ Ny. Then drmsy € Ny. That is dRyms C No. And again, since
Ny is a prime Rs-ideal of My and bdM, Q N,, we obtain that my € N; so that
dms € Ny. Therefore, (c,d)(my, mg) = (cmy,dms) € Ny X Ns.

The proof of Case(iv) is similar to that of Case(iii).

Therefore, N; x Ny is a 2-absorbing R-ideal of M. O

However, it is not necessary true that products of prime R-ideals are prime

R-ideals. For example, let N; = {0} be the prime R;-ideal of M; = {0,1} and
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Ny = {0,b} be the prime Ry-ideal of My = {0,1,a,b} given in Example 2.8 and
Example 2.9, respectively. Let R = Ry X Ry. Then Ny x Ny = {(0,0), (0,b)} is not
a prime R-ideal of M; x M; because (0,a)R(1,b) C {(0,0),(0,b)} = N; x Ny but
(0,a),(1,b) ¢ Ny x Ns.

As a special case of Theorem 3.7, we obtain that I; x I is a 2-absorbing ideal of
Ry X Ry where I and I are prime ideals of the near rings Ry and R,, respectively.
In fact, if R; and Ry are zero symmetric near rings with identities, then the converse

of Theorem 3.7 for this special case is true.

Theorem 3.8. Let Ry and Ry be zero symmetric near rings with identities, I, and
15 be proper ideals of Ry and R, respectively. Then Iy is a prime ideal of Ry and
15 is a prime ideal of Ry if and only if I; X Iy is a 2-absorbing ideal of Ry X Rs.

Proof. To prove the sufficient part, assume that I; x I is a 2-absorbing ideal of
RixXR,y. Leta,b € Ry and z,y € Ry. Suppose that aR1b C I; and xRoyy C I,. Then
aR11Rb C I and xy = xly € xRoy C I,. Since I is an ideal of Ry and zy € I,
we obtain that xyRs C I,. Moreover, RoxyRs C Rols C I, because Ry is a zero
symmetric near ring. Note that (a,1)R(1,2y)R(b,1) = (aR11R1b, 1RyxyRy1) C
Iy x I5. Since I x I is a 2-absorbing ideal of Ry x Ry, it follows that (a,1)(1,zy) €
I x Iy or (1,zy)(b,1) € I} x Iy or (a,1)(b,1) € I} X I, i.e., (a,zy) € I} X I or
(b,xy) € Iy x Iy or (ab,15) € I} x I,. But Iy is a proper ideal of Ry so that
(ab,1) € I x I is not possible. Hence (a,zy) € I) x Iy or (b,xy) € I x I5. Thus
a € I or b € I;. Therefore, I is a 2-absorbing ideal of R;. Similarly, we obtain
that I is a 2-absorbing ideal of R,. ]

The last result provides a characterization of being a 2-absorbing ideal of the

ideal Iy x Iy x I3 of a decomposable near ring where [I; is proper.

Theorem 3.9. Let R = R; X Ry X Rz where Ry, Ry and R3 are zero symmetric
near rings with identities, I be a proper ideal of Ry, Iy and I3 be ideals of Ry and

Rs3, respectively. Then the following statements are equivalent.

(1) Iy x Iy x I3 is a 2-absorbing ideal of R.
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(2) I is 2-absorbing ideal of Ry, Iy = Ry and Is = R3 or
I, Iy are prime ideals and I3 = R3 or

1y, I3 are prime ideals and Iy = Rs.

Proof. First, assume that [ := [} x [y X I3 is a 2-absorbing ideal of R. Then I is
a nonempty subset of R. Let (a,b,c) € I. Note that (a,1,1)R(1,b,1)R(1,1,¢) =
(aRy, RybRy, R3c) C I x Iy x I3 = I because Iy, I, and I3 are ideals of zero
symmetric near rings. Since [ is a 2-absorbing ideal of R, (a,1,1)(1,b,1) € I
or (1,b,1)(1,1,¢) € I or (a,1,1)(1,1,¢) € I, ie., (a,b,1) € I or (1,b,¢c) € I or
(a,1,¢) € I. Then I3 = R3 or I} = Ry or I = Ry. But I is a proper ideal of Ry,
it follows that I3 = Rz or Iy = R,. This reaches to 3 cases:

(i) I = Ry and I3 = R3,

(i) Iy # Ro or I3 = Rj,

(iii) Io = Ry or I3 # Rs.

The first case leads to the result that I = I X (Ry x R3) where [; is 2-absorbing ideal
of Ry by Corollary 3.6. Next, we proof the second case by showing that I; and I, are
prime ideals. Let a,b € Ry and x,y € Ry. Assume that aR1b C I; and zRsy C I>.
Then (a,1,1)R(1,zy, 1)R(b,1,1) = (aR1b, RoxyRs, R3) C I1 X I X I3 = I because
I is an ideal of the zero symmetric near ring R,. Since [ ia a 2-absorbing ideal
of R, (a,1,1)(1,zy,1) € I or (1,zy,1)(b,1,1) € I or (a,1,1)(b,1,1) € I, i.e.,
(a,zy,1) € I or (b,xy,1) € I or (ab,1,1) € I. Since Iy # Ry, it follows that
(a,zy,1) € I or (b,xzy,1) € I. That is a € I; or b € I;. Therefore, [ is a prime
ideal of R;. Similarly, we obtain that I is a prime ideal of Ry. The proof of
Case(iii) is similar to that of Case(ii).

Conversely, if I = I1 X Ry X R3 and I is a 2-absorbing ideal of Ry, then [ is a
2-absorbing ideal of R by Corollary 3.6 because Ry X R3 is a near ring. Consider
Case(ii), since I; and Iy are prime ideals, I X I5 is a 2-absorbing ideal by Theorem
3.7. It is easy to verify that [ is a 2-absorbing ideal of R by Corollary 3.6 again.

The last case is similar to the previous case. O

By the results of Theorem 3.8 and Theorem 3.9, we can see that, in order to
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CHAPTER IV
CONCLUSION

By definition of R-subgroups and ideals of near rings, if rings are considered as near
rings, then ideals of rings are both R-subgroups and ideals of near rings. Similarly,
submodules of modules over rings are both R-submodules and R-ideals of modules
over near rings when those modules over rings are considered as modules over near
rings. So many results in rings (modules over rings) are extended to those in near
rings (modules over near rings). Recall that prime ideals (submodules) of rings
(modules over rings) are extended to many types of prime ideals (R-ideals) of near
rings (modules over near rings). So far, there have been five types of such those
prime objects (0-prime, 1-prime, 2-prime, 3-prime and completely prime). We can
see that the definition of O-prime, 1-prime, 2-prime and 3-prime are equivalent
when rings are considered as near rings. Moreover, all of them are equivalent if
near rings are commutative.

In this thesis, we introduce and investigate 2-absorbing ideals and 2-absorbing
R-ideals which are extended from 3-prime ideals and 3-prime R-ideals, respectively.
We obtain that intersections of two prime R-ideals are 2-absorbing R-ideals. Al-
though prime R-ideals are 2-absorbing R-ideals, intersections of two 2-absorbing
R-ideals with at least one of them being 2-absorbing but not prime R-ideal may no
longer be 2-absorbing R-ideals. For example, 5Z M 6Z is not a 2-absorbing Z-ideal
of the Z-module Z (see Example 2.19).

Moreover, we introduce the concept of strongly 2-absorbing R-ideals in order
to extend some results. In modules over rings, if /V is a 2-absorbing submodule of
an R-module M, then (N : M) is a 2-absorbing ideal of R. In case of near rings,
if NV is a 2-absorbing R-ideal of an R-module M, then “(N : M) is a 2-absorbing
ideal of R” may not hold. However, we show in Chapter II that (N : M) is a
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2-absorbing ideal of a near ring R provided that N should be a strongly prime R-
ideal of that R-module M. The converse is valid provided that M is a completely
multiplication module.

Finally, we focus on decomposable near rings. We prove that products of two
prime R-ideals are 2-absorbing R-ideals. Nevertheless, if a product N x K of R-
ideals is a 2-absorbing R-ideal, then it is not necessary that both of N and K are
prime R-ideals. However, if we consider the special case of those modules, say the
module R over a zero symmetric near ring R with identity, then we can conclude
the following: if a product of I x J of ideals of R is a 2-absorbing ideal, then both
of I and J are prime ideals of R. Nevertheless, we obtain that a characterization
of being a 2-absorbing ideal of Iy x Iy x I3 where I, [5 and I3 are ideals of near

rings R, Ry and Rj3, respectively.



REFERENCES

Badawi, A.: On 2-absorbing ideals of commutative rings, Bull. Austral. Math.
Soc. 75, 417-429 (2007).

Chinwarakorn, S., Pianskool, S.: On almost generalized 2-absorbing and
weakly almost generalized 2-absorbing structures, ScienceAsia 41, 64-72
(2015).

Darani, A., Soheilnia, F.: 2-absorbing and weakly 2absorbing submodules,
Thai J. Math. 9, 577-584 (2011).

Dickson, L.E.: Definitions of a group and a field by independent pustulates,
Amer. Math. 6, 198-204 (1905).

Groenewald, N.J.: Different prime ideals in near rings, Comm. in Algebra 19,

26672675 (1991).

Groenewald, N.J., Juglal, S.: Strongly prime near ring modules, Arab. J. Sci.
Eng. 36, 985-995 (2011).

Groenewald, N.J., Juglal, S., Lee, K.S.E.: Different prime R-ideals, Algebra
Collog. 17, 887904 (2010).

Holcombe, W.L.M.: Primitive Near-Rings, Ph.D. Thesis, University of Leeds,
1970.

Juglal, S.: Prime near ring modules and their link with the generalized group
near ring, Ph.D. Thesis, Nelson Mandela Metropolitan University., 2007.

Pilz, G.: Near Ring, North Holland, Oxford, 1983.



Name
Date of Birth
Place of Birth

Education

Scholarship

Conference

40

VITA

Miss Sutida Patlertsin
20 December 1991
Bangkok, Thailand

B.Sc. (Mathematics),

Srinakrinwirot University, 2014

Science Achievement Scholarship of Thailand

(SAST)

Presenter

1 2-Absorbing R-ideals of Modules over Near Rings,

at the 22°¢ Annual Meeting in Mathematics (AMM 2017),

2-4 June 2017 at Lotus Pang Suan Kaew Hotel, Chiang Mai

1 Some Properties of 2-Absorbing R-ideals of Modules
over Near Rings, at the Annual Pure and Applied Mathematics
Conference 2017 (APAM 2017), 28-30 June 2017 at Chulalongkorn
University, Bangkok



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Near Rings
	1.2 Modules over Near Rings

	CHAPTER II PRIME R-IDEALS AND 2-ABSORBING R-IDEALSOF MODULES OVER NEAR RINGS
	CHAPTER III 2-ABSORBING R-IDEALS OF MODULES OVERDECOMPOSABLE NEAR RINGS
	CHAPTER IV CONCLUSION
	REFERENCES
	VITA



