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CHAPTER 1

INTRODUCTION

For a fixed positive real number k, the call function is given by
Cr(z) = (z — k)7,

where 7 = max{z, 0}. It is an effective function for computing a payoff in finance.
An interesting example of using the call function is appeared in collateralized debt
obligation (CDO) tranche pricing.

CDO, which played a leading role in the financial crisis in the United State of
America, is a type of financial instrument. The CDO is split into different risk
classes known as tranche. Each tranche is assigned a different payment priority
and interest rate. Investors can choose to invest on each tranche according to their
risk aversion. In the standard CDO tranche pricing with underlying n assets, the
th

1" asset is assumed to have a recovery rate R;. We can obtain the percentage loss

at the time T by the total loss on the portfolio,

n

1
L) =Y 30 R,
where 7; is the default time of the i*" asset and I4 is an indicator function of A.

The key of investing in CDO is to compute
E(L(T) — k)",

which is a call function on the percentage loss L(T'), where k is the attachment
or the detachment point of the tranche. As a result, many methods are proposed

to approximate this call function such as the analytic method by Hull and White



([7]) in 2004 and the Monte Carlo method by Cao et al. ([1]) in 2008. Our method
used in this approximation problem is the Stein’s method.

Let Z be the standard normal random variable. The main tool of the Stein’s
method for normal approximation is the Stein’s equation, for a given function h,
namely

vf(x) = f'(x) = h(z) — EW(Z), (1.1)
where f is a continuous and piecewise continuously differentiable function. Ob-
serve that the Stein’s equation is a differential equation, so we are going to solve

this equation and use the properties of its solution. If we apply the Stein’s equa-

tion with h(z) = (x — k)™, then (1.1) becomes
vf(z) = fi(x) = (& - k)" = E(Z - k)" (1.2)

Denoted the solution of (1.2) by f.
Let X, X5, X3,..., X, be independent random variables with zero means and

n
finite variances 0?,032,0%,...,02 such that g o? = 1. Define
i=1

In 2011, Chen et al. ([5], pp. 46) gave a bound on normal approximation for the

Lipschitz function. The following is their result.

Theorem 1.1. ([5]) Let h be a Lipschitz function. If E|Xi|3 < 00 fori =
1,2,3,...,n, then

[EWW) — ER(Z)] <33 E|Xf.
=1

It is obvious that the bound in Theorem 1.1 is a uniform bound. In this work,
we are attentive to the case h(z) = (x—k)", which is a Lipschitz function. We give
a non-uniform bound on normal approximation for the call function. Theorem 1.2

is our result.



Theorem 1.2. Assume that EX} exists for i =1,2,3,...,n. Then

|E(W — k)t — E(Z — k)7

1
_25262E|X\ + (ZEX4+1> > EXx! 2
=1 i=1

Notice that the rate of convergence of Theorem 1.1 and Theorem 1.2 is of

N

1
order —. However, Karoui and Jiao ([8]) improved the rate of convergence of

vn

1
the bound by adding a correction term which made the bound to be of order —
n

in 2009. Theorem 1.3 is their result.

Theorem 1.3. (/8]) Assume that EX} exists fori=1,2,3,...,n. Then

6, < (60.68 + 3k + 4.8E(Z — k)™ (ZE|X|3> (Var ( (ZU)

+ (16.65 + 1.34k + 3.2E(Z — k)* ZEX4
n n n 2

+Y EX)P[4) ol +25 (ZO—;‘) +160; | |
i=1 j=1 j=1

where 6, := |E(W — k)" — E(Z — k)*

3
Nord ZEX

There are unknown constants in Theorem 1.3, i.e., E(Z—k)" and Var (f/(W)).

In this work, we give bounds of these two terms and improve the constants in The-

orem 1.3. Theorem 1.4 is the result.

Theorem 1.4. Assume that EX} exists for i =1,2,3,...,n. Then

1
0, < (18.46 + 2k) (Z E|X; \3> +2 <Z a§> +(9.38 4 1.34k) Y EX.
=1

i=1

The bound in Theorem 1.4 is not satisfactory in a case of large k. We improve
this weak point by giving a uniform bound in Theorem 1.5. The bound in Theorem
1.5 does not depend on k. We also provide non-uniform bounds which is great for

large k in Theorem 1.6 and Theorem 1.8.



Theorem 1.5 (Uniform bound). Assume that EX? exists for i = 1,2,3,...,n.

Then for k < 1, we have

5, < 20.46 (Z E|Xi|3> +2 <Z a§> 2 +10.72) EX},

i=1 =1 i=1

and for k > 1, we have

1
6, < 13.76 <§ E|Xi|3> +2<§ a§> + %<§ EX]‘.*+1> +1
i=1 j=1

i=1

=1 =1 =1

x |11.97 (zn: EXf) 2 +15.45 an E|X;)? (zn: EX;> 2 +6.25 zn:Exg*.
j=1

Theorem 1.6 (Polynomial Non-uniform). Assume that EX¢ erists for i = 1,2,

3,...,n. Then for k > 4, we have

5n§[4.k724 28594] (ZE|X|> [316 }ZE#

e 4

n n n n %
+% ZEX§+ZEX§‘+<ZE|Xj|3> Y EXj+1
j=1 j=1 j=1 j=1
1 1
x 130,90 | > EIXP| | Y EX] 2 +23.94 |y EX/ 2
=1 =1 =1

) 4 2
+ = Za, [1432 [EXG] + 31. 56ZE|X| [EX}]? [E?j; +a§r

(2 (5)




Corollary 1.7. If X;’s are independent and identically distributed random vari-

able for i =1,2,3,...,n, then for k > 4, we have

474 285.04] (E1X°) 3.6  1.36] X! 1 /064 16\?
o < |—3 + 5 + ==+ 1 ==t 13
eT kf on er k' an n e s kf

1

NI

1 1

+ E \/5
. [30.90E|X1|3 (BX1)? L 2304 (EXS)?

2 2
EX{  EX}  (E|IX| EX}
Gé_i_ 41+(‘61‘)+1 +|:4z+1:|
ain an an on

o o

L] 14.32(EX§)%+31.56E|X1|3(EX%)%
kn~/n 3 7

Exi 17

{ : +1} _

g7 g1

Theorem 1.8 (Exponential Non-uniform). Assume that |X;| < B for i = 1,2,

4
307

3,...,n and for some B > 0. Then

1
7.90 109.67 » C 2.86 4e’\?
Op < k?ﬁz"' E e2<€ﬁ+1)62+ i62+<3k2+_’“) F
eT es 2e2 e s ez
1 : 16.23
+ == (17.346ng¥ + 2€§+§> B2 4 0832,
es es

where Cp = 4.45 + 2.21e28+872(¢*7-1-28) i 9 — B2 (ef —1-p).

Observe that if 8 — 0 we have ¢’ — /e and Cz — 20.78. Hence §,, — 0.

In this thesis, we organize as follows. Chapter I is used to describe Introduction
and main results. A background of the Stein’s method, some useful properties of
the Stein’s solution and the zero bias transformation are presented in Chapter II.
Uniform and non-uniform bounds on normal approximation for the call function
without correction term are obtained in Chapter III. Improvement of the constant
in Theorem 1.3, uniform bound, polynomial and exponential non-uniform bounds

on normal approximation for the call function with a correction term are presented

in Chapter IV.



CHAPTER II

STEIN’S METHOD FOR NORMAL APPROXIMATION

In this chapter, the idea of the Stein’s method for normal approximation is
presented in Section 2.1. We also give some properties of the Stein’s solution
which are useful facts for obtaining a bound in this section. The definition of zero

bias transformation is shown in Section 2.2.

2.1 Stein’s Method for Normal Approximation

In this section, we introduce a brilliant method provided by Stein ([12]) in
1972. Let Z be the standard normal random variable with distribution function
®, Cpq the set of continuous and piecewise continuously differentiable function
f R — R with E|f(Z)] < oo. The Stein’s method begins with the Stein’s

equation for normal approximation

vf(z) — f'(x) = h(z) — Eh(Z), (2.1)

for a given function h and f € Cpy.
In this work, we apply the Stein’s equation (2.1) with h(z) = (x — k)" and

k> 0. By (2.1), we have
vf(z) = f(2) = (x = k)" = E(Z - k)". (2.2)
Denoted the solution of (2.2) by fi. From (2.2), we have

EW fi(W) = Eff(W) = E(W — k)" — E(Z — k)"



for any random variable W. Thus, we can bound |EW f,(W) — E f,(W)] instead
of |[E(W — k)" — E(Z — k)*|. This technique is called the Stein’s method.

The next proposition shows an explicit form of E(Z — k)T and its bound.
Proposition 2.1.

12

(1) E(Z— k)" =S 2 _kd(—k).

V21
(2) E(Z—-k)*< i/;_ﬁmm{1%}

Proof.

(1) By the definition of an expectation and the call function, we obtain

E(Z—k)+:/oo(x—k)+ - dx

®

([3], pp. 252) and

- — forx >0
1422 2z 23 ’



we have

S _T% 7
~ 14+a2?2r
2
1 1\e >
> ( - + E) T for x < 0. (2.3)
From (2.3) and (1), we obtain
k2 k2
ez 1 1\e =
E(Z — k)"t < Y (R
( )= V2T (k k’?’) V2
e
C Vork?

This implies that

[
In order to bound |EW f,(W) — E f.(W)| for any random variable W, we need

some properties of f. In 1986, Stein ([11], pp. 25) showed that for an absolutely

continuous function h, if A’ exists and bounded on R, then f; exists and

LA < 2[R, (2.4)

where ||f|| = sup|f(z)|] and f, is the solution of (2.1). In fact, we can apply
zeR

his proof to show that for an absolutely continuous function h, if ' exists and
bounded on a subset B of R, then

Ifills < 2[k]|B, (2.5)

where || f||p = sup |f(z)|. In the case of the call function, which is an absolutely
z€B

continuous function, we have h'(x) = C}(x)

I(z>k) ([8], pp. 161), where



I(A) =14 is an indicator function of a set A. This implies that ||#'|] < 1. By (2.4),
we obtain

IFEI < 2. (2.6)

In our work, we need other properties of f;, which are shown in the following

propositions.

Proposition 2.2.

1.43
i@ <—z  foraz<
e s

o |

Proof. To bound f}/, we first give an explicit form of f;. Stein ([11], pp. 15)
showed that the unique solution f} is given by

2 2

fulx) =7 /Oo e T[(t—k)" = E(Z—k)"dt. (2.7)

From (2.7) and the fact that [~ e [(t—k)" —E(Z—k)*]dt =0, we have

z 2

g

o) = €% / et — k) — B(Z — k)t

:e“”z/ te—édt—e””z[k+E(Z—k)+]/ e 7 dt

— ST —omeT [k + E(Z — k)] ®(~x)

for x > k. Thus



10

o E(Z k)" (1+ \/2m¢(:p)e§> itz < ks
E\T) =
i+ B(Z - k)4 (1- \/_27rx<1>(—x)e§> it x> k.

We can see that the derivative of f; does not exist only at the point k. Then, for

making the Stein’s equation (2.2) holds, we let
2
fi(k) = E(Z — k)* (1 + \/2wq>(k)e%) .

Hence,

) E(Z—-k)* (1 + \/27T1‘CI)(I‘)6§) if x < k;
k\T) =
[k + E(Z — k)] (1 — \rad(—a)e *) if 2 > k.

It follows that

(o) E(Z — k)" (x+\/%<1>(x) 7 (a2 +1)) if 2 < k:

(k+ E(Z — k)Y (x 2 (—x)eT (2% + 1)) it x> k.

Again, f/(z) is not differentiable at x = k. For convenience, we assume that
2
(k) = B(Z — k)* (k V2D (k)e’s (K + 1)) .

Hence,

E(Z — k) (1‘ +V2D(2)e T (22 + 1)) it o < k;

(a) = 2

(k+ E(Z — k)" <x —V2rd(—a)e (2 + 1)) it x> k.
Now, we find a bound of f{(z) for z < £.

If —% < x < 0, then ®(x) < =. This implies that

<1
2°

z2 2 1 1
—%<x+\/ 70(r)e (22 + 1) V;eg (ZH) <1.78.

Hence,

1
@] <1T8E(Z - k)" for —5 <2 <0, (2.8)



11

In the case of < —3, from (2.3) and the fact that

22

e 2

O(x) < — for x <0 (2.9)

2mx

([11], pp. 23), we have
o2 1
T+ V2r0(x)eT (22 +1) < - <2,

and

2

t+V2r0(2)eT (a2 + 1) > o + Vord(a)e T 2 ziz—z
Hence, |z + \/ﬂ@(x)eé(ﬁ + 1)| < 2. Consequently,
\fi(x)] <2E(Z — k)* for x < —%. (2.10)
From (2.8), (2.10) and the fact that

k > (K
0% 0 < Bz 4" |54Vt (Fa)] rro<as

Do |

we have
2E(Z — k)t for x < 0;

|13 ()] < B(Z— k)" { vﬁks( +Q} for 0 < <

o |

Since 27‘(’6% (% + 1) > 27 > 2,
4 + |k 2 (k2
\fi(x)| < E(Z—k) §+v27re8 Z-i—l

k2

_67 [ +\/_es(_ )}min{l,%} for x
If £ > 1, then

IN

k
2

12

2
e T [k 2 [ k2 1 7 [k 2 (k2 1
— +V2re® | —+1 i 1, —» = —+V2tes [ —+1])| —
’_27T|:2+ 7T68(4+):|m1n{,k2} ,—27{2+ 7Te8(4+>]k2

_2\/%1@ 4 + k?
a2 —% 1 1
g (2 SIS P )

1.43



12

k2
where we use the fact that ; \/ﬁk —|— + 1z L has the maximum value at k£ = 1 in the

last inequality:.

For k < 1, by the fact that k; \/E —|— ® 1+ 1 has the maximum value at k = 1,

we have
e Tk > (2 1) e [k 2 (2
k k
Y VomeS (i) mind 1, = b= |5 ames (B4
m[z* " (4 ' )}m{ k} m[f - (4 " )}
2, w2
ke~ z +ke 2 L _3k2
— e
2v2m 4
(ke B
— —_— —_—
2421 4
1.43
<=2 (2.13)
e’ s
By (2.11), (2.12) and (2.13), we have Proposition 2.2. O

Proposition 2.3. For k > 4, let W be a random variable with EW? = 1. Then

0.64 16
E( ,Q’(W))Z <=zt e
e’ s

Proof. From (2.6), (2.11) and k > 4, we have

Blf! [ |]I(W< ’“)} +E[|f,;’(W)yH<W>§>] (2.14)

WJ i () (-2
e [”_”<_ )FSEW

<

L2
k2
31;2 e s + 1 + 1 + 8
=e —.
24/ 27k k?

From this fact and (2.6), we have

E(ff(W))? < 2E|f/(W)]

e[S 1 2] 16
- V2rk 2 k? k2

0.64 16
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k2

where we use the fact that f(k) = %—i—%—kk% has the maximum value f(4) < 0.64
at k= 4. O

In the next proposition, we give an exponential bound of E (f/(W))*. To do

this, we use the following Bennett-Hoeffding inequality.

Lemma 2.4 ([4], pp. 40). Let X1, X5, X3,..., X, be independent random vari-
ables with EX; < 0,X; < B fort1 = 1,2,3,...,n, for some real number 3 and

Y EX?< Bl PutW=>_ X Then
=1 i=1
EetW < eﬁ_2<ew—1_tﬁ)3% fort > 0.

Proposition 2.5. Let X1, X5, X3,..., X, be independent random variables with

n
zero means and finite variances o,05,0%,...,0% such that E o? = 1. Assume

i=1
that | X;| < 8 fori=1,2,3,...,n and for some 5 > 0. Let W = ZXi' Then for

i=1
k> 1, we have

2.86  4ef
E(fil(W))* < = =
e 8 €2

where = 372 (eﬁ—l—ﬁ).

Proof. By Lemma 2.4 with B2 =1 and ¢ = 1, we have

gy

(2.15)

N

k k
€2 €2 €

w
p(ws )< B L L)
where 6 = 572 (¢/ — 1 — ) . From (2.6), (2.14) and (2.15), we obtain

E(ff(W))? <2E|f/(W)]

2.86 k
< 2 + 4P (W > 5)

e 8

2.86  4¢f
—  3k2 k-

e 8 €2
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In the next proposition, we give bounds of G” where G(z) = z f(x). Note that

G'(z) = xfi(x) + fu(x) (2.16)
and
G"(x) = zfi(2) + 2fi(2)
E(Z — k)" (x2 424 V2rd(a)es (28 + 3x)> it < k;

2

(k+ E(Z — k)Y <a;2 12— 2mD(—a)e (48 + 3z)) if 2> k.

Proposition 2.6.

2.37
(1) HG”H( g] 2 for k> 1.
e
3e’§
2) |G” k> 0.
2) |1G"|| < Ner for
Proof.

(1) Let 2 < £ and k > 1.

If x > 0, then by Proposition 2.1 (2), we obtain

k2

k? E 3k
0 < G//( ) \/_k2 ( —+ 2 + \/ e 8 <— 7))
6_7 26_% e‘%k’ Se—%

= + 2.17
44/ 27T V 27rk:2 8 2k ( )

Suppose that < 0. By (2.9), we have

z2 T2

®(z)ez (2°+3z) >

and by (2.3), we have

22 1 1\e 2 .2
P 5 3 <= . S (3
(z)e (x —|—3x)_< x+x3) \/%62<ZE + 3z)
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This implies that

2

—1 <2242+ V210(x)e (z° +3z) < for x < 0. (2.18)

3
2
Hence,

V2 5 (2% < ’ <1 2 k
2’ +2+V2rd(z)e? (z —|—3x))_max 112 +ﬁ or r < —k.

From this fact and Proposition 2.1 (2), we have

k2 k K2

ez 2 ez 2e” 2
') < — |1+ —) = + for z < —k. 2.19
)l = V2T ( k2 Vor  \2mk? ( )

Let —k <z < 0. By (2.18) and the fact that

2

22 +2+V210(x)e? (2° +32) <2’ +2  fora <O, (2.20)

2

we obtain |22+ 2 + V27 ®(z)er (23 + Sx)’ < k? + 2. Thus, by Proposition 2.1

(2), we obtain

k2 k2 k2

26_7
" < 2 —k < . 2.21
|G" ()] \/%k@(k +2) = \/_ T for =k <z <0 (2.21)

It follows from (2.17), (2.19) and (2.21) that
K2 k2 3k2 3k2
e 2 2e” 7 e" sk 3e s k

" < f <_—-and k>1. (222
Gl \/27r+\/27rk‘2+ T oresgadkzl. (222)

Hence,

1 e_% 26_% e_%k; 36_%
G"(x)] < — + + +
(@)l < o' (\/271’ vV 2mk? 8 2k )

2.37

k2
e4

IN

for:vggandkzl,

K2 k2 K2 K2

where we use the fact that € \/i + \eﬁw + ¢ 4 3= has the maximum value

at £k = 1 in the second inequality.
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(2) We divide the proof into 2 cases.
Case 1. k£ > 1.

Let k> 1. If g < x < k, then by Proposition 2.1 (2), we have

12

0< G () <~ (B +24+ V2re™ (K +3))

v 2mk?
K2 k2
ez 2e” 7 3

= k+ —. 2.2
V2r " V2rk? TR (2.23)

Suppose that x > k. By (2.9), we have

O(—z)e? (2° +3z) < ¢ e (2% 4 37)
2rx
—(* +3)
=—(x
V2T

and by (2.3), we have

3 ) 27
_ L (x Lo i)
2w 2
Hence
1 <2 +2—V2rd é?’3<3<3<12 f k
-1 <242 —-V21d(—x)e (]J—Fx)—ﬁ—ﬁ— +ﬁ or x > k.
(2.24)
From this fact and Proposition 2.1 (2), we have
G" <(k+EZ-kK")|(1 2
@) < (k+ EEZ - 1)) (14 5
<(k+ % (1 + 2)
- v 2 k2
2 2
2 e T 2e 2
=—+k+ + for x > k. 2.25
k Vor  \2mk2 ( )
Hence, by (2.23) and (2.25), we obtain
2 k2
3 e 2e7 7 k
G2 < =+k+ + for x > —. 2.26
6 )| < 3k + St T . (2.20
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Thus, by (2.22), (2.26) and the fact that

_sk? _ k2
e 8 k e 8
we have
—% 2e” 72 3
1
|G ||_\/_ \/_k2+k+_

3_7

<2 2 k43 fork>1

Case 2. 0 < k < 1.

If <0< k<1, then by (2.18) and (2.20), we have
22 3
2%+ 24+ V21d(z)e's (2 —|—3x)’ < min {x2 +2,—2} < 3.
T

From this fact and Proposition 2.1 (2), we have

lo

36_7

V2r

In the case of 0 <z < k < 1, by Proposition 2.1 (2), we have

|G"(z)] <3E(Z — k)" < forz <0<k<l1. (2.27)

0<G'(x) < B(Z— k)" (K +2+ Vard(k)e's (k*+ 3k) )

k2

- \/ 27Tk2
36 7

<k2+\/_62k3>+\/?<2+3\/_e2)

+ 4k

+k+3 for0<z<k<l. (2.28)
Let x > k. By (2.24) and the fact that
22 4+ 2 — V21 ®(—x)e %(:c +37) < 2%+ 2,
we obtain

o2 3
—1 <242 —V21d(—x)e? (2° + 3r) < min {x2—|—2,—2} <3.
x
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This implies that

|G"(x)| <31+ E(Z—-k)T] <3+ for x > k. (2.29)

Hence, by (2.27), (2.28) and (2.29), we obtain

Se_é
+k+3 for k < 1.

V2r

16" <

2.2 Zero Bias Transformation

In this section, we give the definition of the zero bias transformation and an
example. This identity is useful for rewriting EW fi.(W) in a suitable form, where
W is a random variable.

Let X be a zero mean and finite variance o? random variable. Goldstein and
Reinert ([6]) introduced the zero bias transformation in 1997 as follow. We say

that X™* is the X-zero biased distribution if
o’E[f'(X")] = E[X f(X))] (2.30)

for all absolutely continuous function f which these expectations exist. Note that,
the zero bias distribution exists for every random variables having zero mean and
finite variance ([5], pp. 27).

By the definition of the zero bias transformation, for any m € N, if X has an

(m + 2)™® moment, then X* has an m'™ moment and
E|Xx|™*
BIXH " = 6 . 939). 2.31
A= S (6], b 939) (2.31)

Note that, if X is bounded by some constants then X* is also bounded by the

same constant, that is

| X| < C implies |X*<C ([5], pp- 29). (2.32)
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Here is an example of the zero bias transformation.

Example 2.7. ([5], pp. 27) Let £ be a Bernoulli random variable with success

probability p € (0,1). Set X = & — p having variance o2 = p(1 — p). Then
EXf(X)=o’Ef'(U),

where U is a uniformly distributed over [—p, 1 — p|. Thus the zero bias distribution

of X = ¢ — p is a uniform random variable on [—p, 1 — p|.



CHAPTER III
BOUNDS ON NORMAL APPROXIMATION FOR

CALL FUNCTION WITHOUT CORRECTION TERM

In this chapter, uniform and non-uniform bounds on normal approximation for

the call function is presented. The rate of convergence of this bound is of order

1

NG

Let X4, X5, X3,..., X, be independent random variables with zero means and

n
finite variances 0%, 03,03, ..., 02 such that E cr? = 1. Define
i=1

i=1
Let X be the X;-zero biased distribution, I a random variable on {1,2,3,...,n}
with P(I =) = o? for i = 1,2,3,...,n. Assume that X;, X7 and I are indepen-

dent. The W-zero biased distribution W* is given by
W =W - X;+ X; (3.1)

(5], pp- 29).

First, we review a uniform bound on normal approximation for a Lipschitz

function h given by Chen et al. ([5], pp. 46).

Theorem 3.1. ([5]) Let h be a Lipschitz function, i.e., |h(z) — h(y)| < C'|x — y
for all real numbers x,y and for some positive constants C. If E |XZ-|3 exists for

1=1,2,3,...,n, then

EWW) - ER(Z)] <33 EIXf.
=1
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In this work, we pay attention to the case h(x) = (z — k)*, which is a Lip-
schitz function. Thus, by Theorem 3.1, we obtain a uniform bound on normal

approximation for the call function as follow:

Theorem 3.2. Assume that E |Xi|3 exists for1=1,2,3,...,n. Then

|E(W — k)" —E(Z k)| <3) EIXi|’.

i=1
Proof. By Theorem 3.1, it suffices to show that the call function is a Lipschitz
function.

Let z,y € R. Without loss of generality, we assume that = < y.

If x <y <k, then
((y =K —(z—k)F|=0<]y—al.
If k <z <y, then
(y—k) =@k =ly—k—z+kl=|y—=z|.
Suppose that x < k < y. Then
(y—k)t—(@—k)T|=y—k<y—z=|y—al.
These imply that the call function is a Lipschitz function. O]

Next, we give a non-uniform bound on normal approximation for the call

function. Theorem 3.3 is our result.

Theorem 3.3. Assume that EX} exists for i =1,2,3,...,n. Then

|E(W — k)t — E(Z — k)|

2.86 1 -
E|X;|]° + — EX}+1
<20 ix’ fwg(z )

N

zn: EX} 2
=1
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Proof. To prove this theorem, let X; be an independent copy of X; and X; =
X;—X; fori=1,2,3,...,n. We note the useful fact obtained by Karoui and Jiao

that

1 n
EW* W= —— N p|xs5m? 8]. pp. 158

where W* is the W-zero biased distribution given by (3.1) and m € N. By the
fact that

(a+b)" <21 (a™ + ")

for a,b > 0 and n € N, we have

BIX;I" = E|x, - X|" <2mE X", (3.2)
Hence,
EW* —W|"™ < 2 zn:E X[ (3.3)
~ (m+1) — ! ' :

By (2.2) and (2.30), we obtain

EW — k)" — E(Z - k)" = EW fil(W) = Efi (W)

= Efi,(W") = Efi,(W)
_ { /O T s t)dt]

=: Ay + Ay,

where
wW*—-w k
A1=E{/ ,’C'(W—i—t)]I(W—I—tSE)dt}
0

and

W*—-w k
AQZE[/ ,g/(W+t)]I(W+t>§)dt].
0



23

By (3.3), we have

ovWw*—w wW*—Ww 0
EU dt}gE{/ ]I(W*—W>O)dt+/ T(W*—W < 0)dt
0 0

AW*—-W W*—-Ww

—E[(W = W)I(W* =W >0)— (W= W)I(W* =W < 0)]

— E|W*—W|
<2 ElX
=1

where a A b = min{a, b} and a V b = max{a,b} for some real numbers a, b. From

this fact, we obtain

oVW*—Ww k
1A1|§E[/ |f,g’(W+t)|]I<W+t§—)dt}
0 w 2

AW*—
ovVW*—w
<ty | [
AW *—
ST (3.4
=1

By Proposition 2.2,

n

2.86
A <=5 EIXP (3.5)
=1

k2
€ 8

The fact (3.3) implies
VW W e
B[ s (e )
OAW*—W 2
W W 2
SE{/ ]I(W—I—t>§)]l(W*—W>0)dt]
0
0 k
+E[/ H(W+t>§)]I(W*—W§O)dt]
W

L w*—Ww
SE[H(W*>— ]I(W*—W>0)/ dt}
0
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<efy (o £ w@+m< 4w
<P(W*>%>T{E<* )] e
Al (=5 < -2 ]

ovVWw*—w k
|A2]§E[/ \fr (W+t)yH<W+t> )dt}
0

AW* —

<15t E[/OE:::*WW]I(W;Lt>§)dt} | |
cun{[p (w5 [ (=) s me]

Since FX; =0fort=1,23,...,n

N

SNXI Y XY XP| <D EX! 41 (3.7)
=1 =1 7j=1 =1
j#i
From (2.31) and (3.7), we have

E(W*)? = EW4 % (Z EX} 4+ 1)

which implies that

P (W* > g) < 4]5(% (Z EX!+ 1) (3.8)

By the fact that

P (W > g) <ET_4 (3.9
(2.6), (3.6) and (3.8), we obtain
n 3 5) g 3
Ao <29 —= ZZIEX;*H +7 §;Exf
1—6]{:{% zn:EXfﬂ 2+1} zn:EXf 2 (3.10)
=1 =1

Combine (3.5) and (3.10), we have Theorem 3.3. O



CHAPTER IV
BOUNDS ON NORMAL APPROXIMATION FOR

CALL FUNCTION WITH A CORRECTION TERM

In this chapter, we are interested in normal approximation for the call function
with a correction term. The Stein’s method and the zero bias transformation are
used to find bounds. We divide this chapter into 4 sections. First, we improve and
find explicit constants of the bound in Theorem 4.1 which is obtained by Karoui
and Jiao. Next, we propose a uniform bound on normal approximation for the
call function. To sharpen the uniform bound, we give polynomial and exponential
non-uniform bounds in the third and forth section, respectively. Notice that, we
use the notation in Chapter III throughout the proof of this Chapter.

In 2009, Karoui and Jiao ([8]) proposed a correction term on normal approxi-

mation for the call function and obtained a bound. Their correction term is

kf/% Z EX?,

so, the purpose of this chapter is finding bounds of

EW -k —E(Z—-k)7 \/_ZEX3 =

The bound given by Karoui and Jiao is shown in Theorem 4.1.
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Theorem 4.1. (/8]) Assume that EX} exists fori=1,2,3,...,n. Then

8, < (60.68 + 3k + 4.85(Z — k)" (ZE|X\3> + (Var ( (Zo—>

+ (16.65 + 1.34k + 3.2E(Z — k)* ZEX4

=

- iE{Xﬁ 4i0? +25 (iaj‘) : + 160;
i=1 j=1 j=1

4.1 Improvement of the Bound Obtained by Karoui and

Jiao

In this section, we improve the constants in Theorem 4.1. The following is our

result.

Theorem 4.2. Assume that EX} exists fori =1,2,3,...,n. Then

8, < (18.46 + 2k) (ZE|X\3> +2 <Za ) + (9.38 + 1.34k) ZEX4
Proof. First, note that Karoui and Jiao ([8], pp. 158, 165-166) showed that
5, < A, + By + Cy + D,
where
IS B e -c@)
i=1
+E(GW") = GW) = G'(W)(X] — X))l

1 n
:§ZE]XZ-|3]P(W§k)—P(Z§k;)\,

Cn < [Var( % (Za ) :

m:ZﬁdW—mm]

i=1
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and D), = E[I[(k—max{X}, X;} <W — X, <k—min{X}, X;}) | X}, X;]. We
use this notation in our proof.

By Proposition 2.6 (2), we have ||G”|| < 4.2+ k. From this fact, P (I = i) = o?

7

and the fact that
1 n n 3 1
1! 3 S * 2
A, < ||G7] [Z;Em\ ;E\Xj| +§E(X, - X)) ]

([8], pp. 165-166), we have

A, < (424 k) ZE|X| ZE}X8| + = ZUQE (X; — )] (4.1)
Note that
1
E|X; —X;|™ = —E\Xs|m+2 (4.2)
2(m + 1)o?

2

for any random variable X;’s with zero means and finite variances o;’s ([8], pp.

155). By (3.2) and (4.2), we have

B E|Xf|m+2 2m+lE|Xi|m+2

E|X—X;|" =
X | 2(m+1)o? =  (m+1)o?

From (3.2), (4.1) and (4.3), we obtain

2
2 n
A, < (8.4 +2k) E|X; =N EXH 4.4
v | (i) 433 e (1)
Siganov ([10], pp. 2546) showed in 1986 that
|P(W<k)—P(Z<k)|<0.7915> E|X;°,

=1

which implies that

B, <04 <iE ]Xi\3> : (4.5)

i=1
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By (2.6), we obtain

-

2

Co < Var (f(W)]? (Z o?)
< [y’ (Z a?)
<2 (Xn: a§> § : (4.6)

To find a bound of D,,, by the concentration inequality

[un

2

Pla<W —X; <b) <V2(b—a)+2(V2 + 1)Zn:E|Xi\3 (4.7)
i=1
for all real number @ < b and i =1,2,3,...,n ([5], pp. 54), we have
D! = E[I(k—max {X}, X;} <W — X; < k — min {X7, X;}) | X7, X]]
= P(k—max{X;,X;} W — X; <k —min {X", X;} | X", X;)  (4.8)
< VBN - X2V 1) S B (19)
j=1

By (4.3) and (4.9), we have

D, < i O’?E
i=1

—V2Y B (X - X)'+2(V2+ 1) Y BIXP Y o2EIX; - X
i=1 j=1 i=1

X7 — X <\/§\X§ — X +2(v2+1) iE |ij3>]

_ %ﬁ iiEXf +4(V2+1) (ilE|Xi|3)

n n 2
<3.78) EX]+9.66 (Z E ]XZ-|3> . (4.10)

i=1 i=1

Combine (4.4), (4.5), (4.6) and (4.10), we have Theorem 4.2. O

4.2 Uniform Bound

Observe that, the bound in Theorem 4.2 is not satisfactory in a case of large

k. In this section, we give a uniform bound on normal approximation for the call
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function. This bound does not depend on k. Theorem 4.3 is our result.

Theorem 4.3 (Uniform bound). Assume that EX? exists for i = 1,2,3,...,n.
Then for k < 1, we have
b, < 20.46 (Z E|X,-|3> +2 <Z a?) +10.72) EX},
i=1 i=1 i=1
and for k > 1, we have

5, < 13.76 (ZE |Xi\3> +2 <Z a§> +
=1

i=1

1
(Z EX!+ 1) +1
j=1

Sl

3

n % n
x [11.97 (ZEX?) +15.45ZE|XZ-|3<

=1 i=1

2 n
EXj) +6.25) EX}.
1

j= i=1

Proof. For k < 1, by Theorem 4.2, we have

b, < 20.46 (Z E|X,-|3> +2 <Z a?) 2 +10.72) EX}.
=1

i=1 i=1
Suppose that k& > 1. Let A,, B,,C, and D, be defined as in the proof of

Theorem 4.2. From (4.5), (4.6) and (4.10), we have

B, + C, + D, <10.06 (Z E |Xz-\3> +2 (Z a§> +378) EX]. (4.11)
=1 ;

i=1 =1

Now, it suffices to obtain a bound for A, without k. Let
1 3
A, == E|X;|7 A, Anal, 4.12
2;1 [ X" [Ana| + [Anz| (4.12)
where

Ay =E(G(W)-G(2))),

Ay 1= E(GW?) = G(W) = G'(W)(X] — X))
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To find a bound of A,;, let g be the solution of the Stein’s equation (2.1) for

h(xz) = G'(x), which is defined in (2.16). By (2.1) and (2.30), we obtain

Ap = EWg(W) — Eg'(W)
= Eg'(W") — Eg'(W)

_B UOW*_W 7' (W +1) dt}

= T1 +T2, (413)

where
W*—W k
T1=E{/ g"(W—l—t)]I(WthSE) dt}
0

and

W*—-w k
e[ w0 5) ]
0

Replacing f; in (3.4) with ¢” and using (2.5), we have
T < 20" D0 EIXP
i=1
<SG Nty D E I (4.14)
i=1

It follows from Proposition 2.6 (1) and (4.14) that

9.48
7| <= > ElIX| (4.15)

€1 =1
<7.39) EX|’. (4.16)

=1

Replacing f; in (3.6) with ¢” and using (2.4), we obtain

Tl < 9" { (> g)}i e (- g)” EZIEX
<aon{ [ (w> )]+ [ (w=5)] S

1
2

1
2

D=

(4.17)
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By Proposition 2.6 (2), we have

o _ s L3
ko~ \/27rk k
< 4.73, (4.18)
k2
3e_ 2

where we use the fact that N + 1+ % has the maximum value at & = 1.

By (3.8), (3.9), (4.17) and (4.18), we have

2 - 2
" 4 = 4
]T2| < 2||G || _\/§k (E_ EXJ + 1) 2 E EX;

_ 1667 | 1 . N
EX}+1 +1 EX;
i |5 Z Z

1 n 5 n %
< 30.90 | — (Z EX}+ 1) > EX! (4.19)
V3 j=1 i=1

Combine (4.16) and (4.19), we obtain

1
1 n 2

Aq] <3090 | — EX4+1] +1
4 ﬁ(z )

+739) E|X;.

=1

1
> EX}
=1

(4.20)
Next, consider
W*—W W*—W
Ap—E [/ G(W +t)df — G”(W)/ dt}
0 0
W*—W ot
_ B [/ / G (W + u)du dt}
0 0
= T3 + T4, (421)
where
W*—W L
T3:E/ /G"(W+U)H<W+u§§)dudt
0 0
and

W*—-Ww t k
T4:E/ /G"(W+U)H<W+u>§) du dt.
0

0
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Note that

oVW*—-Ww ovt
E {/ / du dt}
OAW* — 0Nt
W* 0
<E[/ / W>O)dudt+/ /H(W*—Wgo)dudt]
t
0

E{(W* W>O)/ tdt—]I(W*—WgO)/ tdt}
:%E LW — W > 0) (W* — W)2 + T(W* — W < 0) (W* — W)?]
:%E(W*—W)z

<= ZEw

where we have used (3.3) in the last inequality. This implies that

ovVW*-Ww oVt k
\T3|gEU / yG"<W+u>y11<W+u< )dudt}
0 0

AW*—-W Nt

OVW*—W  pOVE
< HG””( E] |:/ / du dt}
2 OAW*—W JOAt

||G”|| i ZEX4 (4.22)

2

By Proposition 2.6 (1) and (4.22), we have

3.16
T3 < =5 > EX} (4.23)
€4 =1
<247) EX}. (4.24)

=1

The fact (3.3) implies

([ [y

<E{/W* / (W+u> >]I(W*—W>O)dudt}
+EU / (W+u>k>11(w*—W§0)dudt]

cel(wo B w0 [ [ wal
cefi(w= By weo [ [aval
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k W*—-W
SE[]I(W*>§>]I(W*—W>O)/ tdt}
0

—E[]I(W>g)H(W*—Wgo)/O*_Wtdt}

g%E :11 (W*>§) (W*—W)Q] +%E {]1 (W>§) (W*—W)Q]
g%{:P(W*>§):é[E(W*—W)4}§+{P<W>§)r[E(W*—W)ﬂé}
S%{:P(W*>§):é+[P(W>§) é} %éEXf % (4.25)

Hence, by (3.8), (3.9), (4.18) and (4.25), we obtain

ovW*—-Ww ovt k
|T4|gEU / |G”(W—I—u)|]1<W+u> >dudt]
0 0

AW*—W Nt

ovWw*—-w ovt kf
<|¢|E U / ]I(W+u> _) du dt]
OANW*—W ONt 2

< ”C;”“ {[P <W* > g) : [P <W > >] } [32 ZEXG (4.26)
< 11.97 { <Z EX}+ 1) 1] iEX? 2 (4.27)

By (4.21), (4.24) and (4.27), we have
| Ao <247ZEX4+11 97{ (ZEX4+1> 1] Zn:EXiG : (4.28)

Combine (4.12), (4.20) and (4.28), we obtain
n 2
A, <3.70 <ZE |Xi\3> +11.97 [ (Z EX!+ 1) +1
=1
1 n 5 n %
— ZEX‘*H) +1| > EX}
\/§ <j:1 ’ i=1

+247Y EX]. (4.29)

i=1

1
> EX? 2
=1

+1545)  E|X)|
=1

From (4.11) and (4.29), we have Theorem 4.3. O



34
4.3 Polynomial Non-uniform Bound

In this section, we improve the bound in Theorem 4.3 by proposing a poly-
nomial non-uniform bound on normal approximation for the call function. To do
this, we give a polynomial non-uniform concentration inequality as shown in the

next proposition.

Proposition 4.4 (Polynomial Non-uniform Concentration Inequality). For i =

1,2,3,...,n, we have

5.264 7.018  80(1+a)] — 3
Pla<W—-X,<b) < b— E1X;|7,
W< < P00+ [ + B3 e

where 3 < a < b < 00.

- 1
Proof. Case 1. (1 +a) ZE 1Xi° < 30 Let

=1

where

Qo= EXJTI(X;|>14a) and Bo=> EIX,PI(X;]<1+a).

i=1 =1
Thongtha and Neammanee ([13], pp. 5) showed in 2007 that

0.264

Pla< - X; < <
(@SW XS0 S 7

(b— a) + 7.0185,
for a > 3 and (14 a)?c, + (1 + a)B, < 4. Note that
(1+a)aq + (1 +a)B,

=(1+a)*Y EXI(X)|>14+a)+ (1+a)) EX['I(X)]| <1+a)

i=1 i=1

<(1+a)) EIXPI(X| > 1+a)+ (1+a)) EXI(X]| <1+a)

=1 =1
=(1+a)> E|X,
=1

1

<
— 80
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and
1 < 3
d, < E|IXPT(X;| > 1 —_— E|X:|"T(X; <1
<1+ Z LG > 14 0) + s SN T S 1+ 0
=—— Y E|X].
(1+ a)3 ; Xl
Hence,
5.264 7.018 & 5
Pla<W-X,;<b) < b— — ) F|X; fi > 3.
<“ DS O g N o
(4.30)
Case 2. (1+a) ZE|X| > — !
80
Since £ X; = 0 for all i,
E(W - X;)? = EW? - 2E (WX,) + EX}
=1-2|> E(X;X))+EX} | +07
=
i
=1-o}
<1
This implies that
Pla<W-X,<b)<P(W-X,; >a)
1
< SE(W - X;)’
1
=z
80(1 + a)
< TZE|X,-|3. (4.31)
Combine (4.30) and (4.31), we have Proposition 4.4. O

The following theorem is the polynomial non-uniform bound on normal ap-

proximation for the call function.
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Theorem 4.5 (Polynomial Non-uniform). Assume that EX? exists for i = 1,2,

3,...,n. Then for k > 4, we have

%S{% 28594] (ZE|X|) +[316 }ZE#

€4
% ZEX6+ZEX4 (imxjﬁ) zn:EXfH 2
j=1 j=1
X 30.90 i E|X;) i EX} 2 +23.94 i EXS 2
=1 =1 =1

EX:  ,]®
352 + o;

)

+ = Za, [1432 [EXS] +31. 56ZE|X| (EX)?

7j=1
1
0.64 16 S
+<W+ﬁ> <Z%>
€8 i=1

Proof. Asuume that k > 4. Let A,,, B,,, C,, and D,, be definded as in the proof of

N

Theorem 4.3. First, we find a bound of A,. From (4.12), (4.13) and (4.21), we
note that
1 n
— EZE|XZ-|3 Ty + To| + |T5 + Ty, (4.32)
i=1
where T, T5, T3 and T} are definded as in the proof of Theorem 4.3. So, it suffices
to bound T17 TQ, T3 and T4.

By (4.15), we have

9.48 &
T <= > EIX) (4.33)
€1 =1
and by (4.23), we have
3.16
T3] < =% ) EX}. (4.34)

€T =1
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To bound Ty and Ty, from (2.31) and (3.7), we note that

k
P(w> -

16E(W*)*
< —~ 7
16
— _—EWS
5k4 W
(S EY e S P+ 33 Y
i=1 j=1 i=1 j=1 z—ljlll
J#i J#t j#i 1#1
I#5
6 4 3
< ZEXi+ZEXi+<ZE|Xi|) +1 (4.35)
=1 =1 =1
and
k 6EW* 16 [
P -] < < = EX}+1]. 4.
<W>2>_ i _k4<; Z+> (4.36)

From these facts and (4.17), we have
n n n 2
3
SEUES ST Ty
j=1 j=1 Jj=1
1 1
n 2 8 n 2
4 4
Y EX}+1 }[§ZEXi
j=1 i=1
2 1
_ 6180 &
{ ZEX6+ZEX4 (ZE|Xj|3)
j=1
n 3 n 3
Y EX!+1 } Y EX]
j=1 i=1

2
where we use (4.18) in the last inequality. Similarly to (4.37), by (4.18), (4.26),

[SIE

T3] < 2IIG”I|{

4
V/5k?

. (4.37)

(4.35) and (4.36), we obtain

n 2

+ (éEX‘*H) }

(4.38)

Z EX6




38

Combine (4.32), (4.33), (4.34), (4.37) and (4.38), we obtain

2

_ 4T 1
7 Z ! L3 6
=1
2 1 1
1 n n n 2 n 2
+ 1 ZEX§+ZEX§+<ZE1X]-\3> + 1Y Ex)+1
j=1 j=1 j=1 j=1
n n % n %
x 130.90 > EIXPP| | Y EX}| +23.94|) EX? (4.39)
=1 =1 =1
Next, we will bound B,,. To do this, we note that
_ 31935
P(WW <k)—P(Z< . 455).
|P(W < k)— P( 1+k3 (19], pp. 455)

Then, by the fact that 1 + k% > 16k, we have
15 97

E|X; <

2 5 (S i)

From Proposition 2.3, we have

(zn: E |XZ-|3> : (4.40)

el

1

. 1
0.64 16\? [« ’
Cn < <63,§2 + ﬁ> (Z o?) . (4.41)
=1

To find a bound of D,,, by (4.8), note that

Dn:ZU?E[’X;—XJD;}

=1

. ZafEUXi* ~ X Dm] + ZafE[\X; — X Dn2],

i=1 =1

where

Dy =1 [P(k: —max {X5, X;} <W — X, <k — min {X7, X;} | X;‘,XZ-)},

Do = e [P(k —max {X", X;} W — X, < k — min {X7, X;} | XZ.*,XZ-)},

k k k k
Ip =1 (\XZ| < AIXI < 4> and  Ipe =1 (|XZ] > T VIX| 2 4)



39

Observe that, in the case of | X;| < £ and | X;| < £, we have

3k

k —max {X], X;} > vy > 3, (4.42)
thus,
1+ k—max {X], X;} > 4—23k and 2+ k—max {X/, X;} > S—ng.
Proposition 4.4 implies that
Dy < I %y Xi|+{(§ﬁféllgg+1280 BQO}ZE’X‘ ]
< o i [t o+ 2] S v |

4 142.4
<£|X* Xi| + 7ZE X3,

where we use the fact that (4 + 3k)® > 1008k, (8 + 3k)® > 1872k and 9k* > 36k
in the last inequality. Hence, by (4.3), we obtain
> olE(IX] — Xi| D)

=1

0.34 —

. 142.47 & & .
OPE (X — X;)* + - ZEX?ZU?EDQ — X

=1 j =1
_ 136 284 94
Z EX!+ (Z E|X| ) (4.43)

From (4.7), we have

Dy < Ipe <\/§ X7 — Xi| +2(V2+1) i E \ij?’) . (4.44)

j=1

By (4.3), we have

D=

B (X; = X0 Ipe < (B (X] - X)")* (P(B)?

502

2

< |Zxy * (s (4.45)
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and

E|X; — Xi|Ige < (E(X; — X;)?)? (P(B°))?

< x| Pt (4.46)
Note by (2.31) that

P <p(ixiz4)+p (12 )

16E (X;)? N 16EX?

=R 2
16 [EX!
<5 [—303 + ai] (4.47)
Hence, (4.44), (4.45), (4.46) and (4.47) imply
Y G (IX] = Xi| Do)
=1
<V2Y 0TE (X — Xi)?Ipe +2(V2+1) ) JEIX;P) B |X] — Xi|Ipe
i=1 j=1 i=1
EXS EX: 1
< 3.58 i 7803 E|X P(B%))? 4.48
Za[( )+;r\(o_l)<<>> (1.49

<lza» 14.32 [EX5}§+31562”:E|X»|3 [EX.ﬂé_ E—X14+a?% (4.49)
= ki:1 ? . % . — J 1 30_12 7 . .

By (4.43) and (4.49), we can conclude that

=1

n 4 %
Z [1432 [EX?]? +31.56 Y E|X,[° [EX1]* [%Jraf]

2
30;

J=1

—32EX4 284 o <ZE!X| > (4.50)

Combine (4.39)-(4.41) and (4.50), we have Theorem 4.5. O
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4.4 Exponential Non-uniform Bound

In this section, we consider bounded random variables. We give an exponential
non-uniform bound on normal approximation for the call function. Before proving
the result, we give an exponential non-uniform concentration inequality. We follow

the proof in [4] to prove this proposition.

Proposition 4.6 (Exponential Non-uniform Concentration Inequality). Assume

that | X;| < B fori=1,2,3,...,n and for some real number > 0. Then
Pla<W <b)<e$ [2(b —a)es*i 4 (e% + 2e%+§) 5]
where 0 = 372 (eﬁ —1- ﬂ) )

Proof. By following the proof of Proposition 6.1 in [4] (pp. 33,41 — 43), we have

EWf(W) Z 67% (Hg’l — HQ’Q) 3 H272 S 5(2% and ¢ Z 05, (451)
where
p
0 if w<a-—09;
flw)=9Set (w—a+6) ifa—6<w<b+s:

Le%(b—oH—Qé) if w>b+9,

Hyy = E[ﬂ(agvvgb)e%t, Hyy = E[e%w—t@,
Y o= > X, min{6, | X;l}, t = > EIX;|min{s|X;|} and
j=1 j=1

1 — 3
5 = =Y E|XP.
Q;H

Hence,

Hyy > 0.5e2P(a <W <b). (4.52)



42

By Holder’s inequality and the fact that f is increasing, we have
EWFW) < (b—a+20)E (W&)
< (b—a+28) (EW?)? (Be")?
< (b—a+26)e. (4.53)
By (4.51)-(4.53), we obtain

Pa<W <b) <2 2Hy,

where v = 3" B[ X% O
The next theorem is an exponential non-uniform bound on normal approxi-

mation for the call function.

Theorem 4.7 (Exponential Non-uniform). Assume that |X;| < [ for i =

1,2,3,...,nand k > 1. Then

7.90 109.67 o C 2.86 4e’\?
Op < k262+ & ef(eﬁ—l—l),82+ i62+<3k2+_’“) F
eT es 2e2 e’s ez
1 16.23
+ = (17.34ngr¥ + 26§+§> B2 4 0832,
es es

where Cly = 4.45 + 2212707 (71728) g g — g2 (ef — 1 — ) |
Observe that if 8 — 0 we have ¢/ — /e and Cz — 20.78. Hence §,, — 0.

Proof. Assume that k > 1. To prove the theorem, we use the same notation with

the proof of Theorem 4.5. First, we will bound A,,. By (4.33), we have

0.48 — . 0.48
T < =7 > EXiP < =58 (4.54)
€4 ;=1 e 4
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By Lemma 2.4 and (2.32), we have

BV — BeW-Xi+Xp < E6W+\X,|+\X,*| < FeWH28 < 0+28

Then
k EeV* 0+2p
P <W* > —) <=f <t (4.55)
2 €2 ez2
and
k EeWv 0
P (W > —) <= < (4.56)
2 €2 ez
Note that, by (4.18) and the fact that - < £, we obtain
e8
" "
IS BIET 57 64 (4.57)
ex k

Thus, (4.17), (4.55), (4.56) and (4.57) imply

miswen (5575} o]

8"5_";4 ooy
\/_68 ||G;|| (" +1) 8
< 125’,559 (P +1) 8. (4.58)
By (4.23), we have
1) < 3105 pxa < 316 (4.59)
€4 =1 €4

From (4.26), (4.55), (4.56) and (4.57), we have

n

HG”H es | |32 6|
ITy| < e% +€—§ EZEXi

0
4”GW||62 ZEX(S
val 64

< ——ez (e’ +1) 8% (4.60)
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Combine (4.54), (4.58), (4.59) and (4.60), we obtain

109.67
< B+ er (8 +1) B2 (4.61)

e 4 e

A < 7.90

&
8
By [2] (pp. 75), we have

|P(W <k)—P(Z<k)|<Cse 28,

where Cg = 4.45 + 2.2162B+ﬁ_2(62ﬁ_1_2ﬁ>. Then

k

Csf 2
B, < ﬁf Y EIX| < Csb (4.62)
2e2 T 2ez

To bound C,,, by Proposition 2.5, we obtain
286 4e”\ 2
C, < (T + —k> B2 (4.63)
e 8 €2

By Proposition 4.6, we have

Pla<W - X, <h)<Pa-B<W<btp)

a—8
2

<e

Hence, by (4.42), we have
Dy <e s [2 | X7 — Xil 3T 4+ (€g+§ +6eg+¥> 5] '

From this fact and (4.3), we have

=1
2 = 1 =
<Y B (X - X) 4 (375 6tV ) Y 02X - X
es i=1 es i=1
16 o, 38 - 4, 2 (.8 0,38 - 3
< — et TS BX 4 (62 2+ Ges 4>ﬁZE|XZ|
3es =1 8 =1
< SRy o (o5 et ) g2
des es
1
— i (17348+% 42345 52, (4.64)



45

Note that, by (2.32), we have

k k
P(B) <P (IXZ“I > Z) +P (le-\ > Z)
<

e'X:‘ e'Xz|

k
e e
2¢P

e

w~l

EES

From this fact and (4.48), we have

> 0IE(1X] = Xi| Dpo)

=1

Sl (5w ()] 2

j=1 ! el
1
< (3.584% + 7.895%) Z (26 )
B =1 Z e%
<102 s (4.65)
es

By (4.64) and (4.65), we have

1 16.23
Dy < = (17.34(3%*% + 2e%+§> 8+ e3 3. (4.66)
es

es

Combine (4.61), (4.62), (4.63) and (4.66), we have Theorem 4.7.
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