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CHAPTER I

INTRODUCTION

In measuring the level of dependence between two random variables, since it largely

depends on a given circumstance, measures of dependence are needed for consistency. Un-

surprisingly, measures of dependence have been extensively studied. Their simple prop-

erties are ability to detect independence and complete dependence and invariance under

certain types of transformations. Many dependence measures have been proposed and

investigated via bivariate copulas owing to Sklar’s theorem [10]. It says that copulas

are functions describing the dependence structure of two random variables regardless of

their marginal distributions. Such dependence measures are called copula-based mea-

sures of dependence. Via many copula-based measures of dependence, e.g. Siburg and

Stoimenov’s ω1 (see [15]) and Trutschnig’s ζ1 (see [16]), it has become more transparent

that dependence information is encoded in the first order partial derivatives of copulas.

Also Darsow, Nguyen and Olsen [2] have shown that the first order partial derivatives

of copulas coincide with the conditional distributions of one random variable given the

other. From experiments, the first digit distribution yields some information about the

function and is computationally robust for most copulas. This motivates us to propose a

new dependence indicator based on the first digit distributions of the partial derivatives

of copulas.

For i = 1, 2, we define functions FDd (∂iC) and MFi (C) to introduce a dependence

indicator µi(C) of copula C as follows:

FDd(∂iC) =
λ2

({
(u, v) ∈ [0, 1]2 : the first digit of ∂iC(u, v) is d

})
λ2 ({(u, v) ∈ [0, 1]2 : ∂iC(u, v) > 0})

∈ [0, 1],

MFi(C) = max
d=1,...,9

FDd(∂iC) ∈
[
1

9
, 1

]
and µi(C) =

√
9MFi(C)− 1

8
∈ [0, 1],

where λ2 denotes Lebesgue measure on [0, 1]2. We shall only investigate µ1 as µ2 can be

studied in a completely similar manner. We show that although µ1 lacks the ability to

totally detect independence and complete dependence, it yields levels of dependence as
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well as ω1 and ζ1 for certain parametric classes of copulas.

In Chapter II, we give a brief introduction to copulas and selected tools for proving

the main results. Chapter III covers two sections. In the first section, theoretical facts of

the upper level sets are proved. After all the prerequisites for FDd,MF1 and µ1 are ready,

we prove the main results in the second section. The last chapter is devoted to numerical

computation of µ1, examples and comparisons.



CHAPTER II

PRELIMINARIES

First we introduce some notations used throughout this thesis. Let I denote the

closed unit interval [0, 1], B (I) the Borel σ-algebra on I, λ and λ2 the Lebesgue measures

on I and I2, respectively. We may simply write
∫
A dx for the Lebesgue integral on a subset

A of I. For any set S, 1S denotes a characteristic function of S. As usual, N, Z and R

denote the sets of natural, integer and real numbers, respectively. Let us start with a

definition of copulas.

Definition 2.1. A bivariate copula is a function C from I2 to I with the following prop-

erties.

I. (Boundary conditions) For every u, v in I, C(u, 0) = 0 = C(0, v), C(u, 1) = u and

C(1, v) = v.

II. (2-increasing property) For each rectangle R := (u1, u2]× (v1, v2] ⊆ I2,

VC(R) := C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Each copula C induces a unique measure µC on I2 via µC (R) := VC(R) for any

rectangle R ⊆ I2 and a standard extension to all Borel subsets of I2 using Carathéodory-

Hahn extension theorem. The support of C is defined as the support of its induced

measure µC , i.e. it is the complement of the union of all open subsets of I2 that are

µC-null sets. Moreover, the induced measure µC is a doubly stochastic measure, as for

every Borel subset B of I,

µC(I×B) = λ(B) = µC(B × I).

Conversely, for each doubly stochastic measure µ, the copula corresponding to that mea-

sure µ is obtained by C(u, v) = µ ([0, u]× [0, v]). In fact, this is a one-to-one correspon-
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dence between the set of copulas and the set of doubly stochastic measures.

The joint continuity of copulas can be obtained from a simple fact that every copula

C is Lipschitz, i.e. for every u1, u2, v1, v2 ∈ I,

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1| .

As a consequence, C is absolutely continuous in each argument, or, for all u, v ∈ I, t 7→

C(u, t) and t 7→ C(t, v) are absolutely continuous on I. Another important property of

copulas is the non-decreasing property in each argument being a virtue of the 2-increasing

property. By the Lebesgue Differentiation Theorem, this implies that for any v ∈ I, the

first order partial derivative ∂1C(u, v) := ∂
∂uC(u, v) exists for almost all u ∈ I and for

any u ∈ I, the first order partial derivative ∂2C(u, v) := ∂
∂vC(u, v) exists for almost all

v ∈ I and the derivatives ∂iC (i = 1, 2) are measurable. For u, v ∈ I such that ∂iC(u, v)

exists, 0 ≤ ∂iC(u, v) ≤ 1 (i = 1, 2). This is again a result of the Lipschitz condition.

Moreover, using the 2-increasing property, it is straightforward to show that the partial

derivatives of copulas are non-decreasing almost everywhere in the sense that for every

u, v ∈ I, the functions t 7→ ∂1C(u, t) and t 7→ ∂2C(t, v) are non-decreasing on a subset of

I of full measure.

Owing to Sklar’s theorem, see [10], copulas become very useful.

Theorem 2.2 (Sklar’s theorem). Let X and Y be random variables with distribution

functions F and G, respectively, and joint distribution function H. Then there exists a

(unique on RanF × RanG) copula C such that for all x, y ∈ R,

H(x, y) = C(F (x), G(y)). (2.1)

Conversely, if C is a copula, F and G are distribution functions, then the function H

defined by (2.1) is a joint distribution function with the margins F and G, respectively.

Additionally, the uniqueness of the copula of random variables immediately follows



5

when the marginal distribution functions are continuous. Because of this, we will assume

that every random variable in this thesis has continuous distribution function. Here,

under this assumption, we denote by CX,Y (called the copula of X and Y ) the unique

copula of random variables X and Y satisfying (2.1). When the random variables X and

Y are understood, we may simply write C.

Surprisingly, the first order partial derivatives of copulas of random variables are

related to the conditional probabilities of those random variables. We recall some basic

facts on conditional probabilities.

For a random variable X, we denote by σ(X) the σ-algebra generated by all inverse

images of Borel sets under X, that is σ(X) :=
{
X−1(B) : B ∈ B (R)

}
, where B (R) is the

Borel σ-algebra on R.

Definition 2.3. Let X and Y be random variables on a probability space (Ω,F ,P) with

E [|X|] < ∞. Then the conditional expectation of X with respect to Y is a random variable

Z on a measurable space (Ω, σ(Y )) satisfying

∫
A
X dP =

∫
A
Z dP for all A ∈ σ(Y ). (2.2)

It is straightforward to show that set function on σ(Y ) defined by the left hand side

of identity (2.2) is absolutely continuous with respect to P. Hence, by Radon-Nikodym

Theorem, see [11], the conditional expectation is in fact the Radon-Nikodym derivative

and it is unique up to a set of measure zero and we then denote by E [X|Y ] the conditional

expectation of X with respect to Y . Naturally, we define the conditional probability of

B ∈ F given Y by P (B|Y ) := E [1B|Y ]. One can see that P(B|Y ) is the unique (a.e.)

σ(Y )-measurable function such that

P(A ∩B) =

∫
A
1B dP =

∫
A

P(B|Y ) dP for all A ∈ σ(Y ).

Let us summarize essential properties of the conditional expectation. For more details,

see [4, 11, 13, 18].
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Theorem 2.4. Let X and Y be random variables on a common probability space. Suppose

that E [|X|] < ∞.

I. E [E [X|Y ]] = E [X]

II. If Y = c a.s. (c ∈ R), then E [X|Y ] = E [X] a.s.

III. If X and Y are independent, then E [X|Y ] = E [X] a.s.

IV. If Z is σ(Y )-measurable and bounded, then E [ZX|Y ] = Z E [X|Y ] a.s.

We are now ready to prove a surprising result.

Theorem 2.5. Let C be the copula of random variables X and Y whose continuous

marginal distributions are F and G, respectively. Then for all x, y ∈ R,

I. P (Y ≤ y|X) (ω) = E
[
1{Y≤y}|X

]
(ω) = ∂1C (F (X(ω)), G(y)) a.e. ω ∈ Ω; and

II. P (X ≤ x|Y ) (ω) = E
[
1{X≤x}|Y

]
(ω) = ∂2C (F (x), G(Y (ω))) a.e. ω ∈ Ω.

Proof. Since P (X ≤ x|Y ) = E
[
1{X≤x}|Y

]
is the unique a.e. σ(Y )-measurable function

such that

∫
A
1{X≤x}(ω) dP(ω) =

∫
A

E
[
1{X≤x}|Y

]
(ω) dP(ω)

for all A ∈ σ(Y ). Note that ∂2C (F (x), G(Y (·))) is σ(Y )-measurable. It suffices to show

that

∫
A
1{X≤x}(ω) dP(ω) =

∫
A
∂2C (F (x), G(Y (ω))) dP(ω)

for A = Y −1 ((−∞, a]) , a ∈ R. By making changes of variables,

∫
Y −1((−∞,a])

∂2C (F (x), G(Y (ω))) dP(ω) =
∫ a

−∞
∂2C (F (x), G(y)) dG(y)

=

∫ G(a)

0
∂2C (F (x), v) dv
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= C(F (x), G(a))− C(F (x), 0)

= C(F (x), G(a)) = P(X ≤ x, Y ≤ a)

=

∫
Ω
1{X≤x}(ω) · 1{Y≤a}(ω) dP(ω)

=

∫
{Y≤a}

1{X≤x}(ω) dP(ω)

=

∫
Y −1((−∞,a])

1{X≤x}(ω) dP(ω),

where we have applied the fundamental theorem of calculus and the Sklar’s theorem.

Using the uniqueness of the conditional expectation, II. immediately follows. I. can be

proved in a similar way.

Next, we give important examples of copulas of random variables and their prob-

abilistic meanings. First, the product copula Π(u, v) := uv is sometimes called the

independence copula Π because it is the copula of independent random variables.

Theorem 2.6. For random variables X and Y with continuous distribution functions,

CX,Y = Π if and only if X and Y are independent.

Its proof directly follows from Sklar’s theorem and will be omitted. We then give

the copulas of completely dependent random variables in the sense defined as follows.

Definition 2.7. Let X and Y be random variables. Y is said to be completely dependent

on X if there exists a Borel measurable function f such that P(Y = f(X)) = 1. The

copula CX,Y of X and Y is called a complete dependence copula. In the case that the

function f is strictly monotonic, Y is said to be monotonically dependent on X and CX,Y

is said to be a monotonic dependence copula. Moreover, X and Y are said to be mutually

completely dependent if Y is completely dependent on X and X is completely dependent

on Y or if there is an invertible Borel measurable function f with P(Y = f(X)) = 1.

Surely, such CX,Y is said to be a mutual complete dependence copula.

The copulas W (u, v) := max(u + v − 1, 0) and M(u, v) := min(u, v) are the most

important examples of complete dependence copulas, as they are the two monotonic



8

dependence copulas. The following theorem was given in Schweizer and Wolff (see [14]).

Theorem 2.8. Let X and Y be random variables with continuous distribution functions.

I. CX,Y = W if and only if Y is strictly decreasingly dependent on X.

II. CX,Y = M if and only if Y is strictly increasingly dependent on X.

So, by Theorem 2.8, W and M are often called the countermonotonic and comono-

tonic copulas, respectively. Furthermore, W and M are pointwise lower and upper

bounds, respectively, of copulas, i.e. W ≤ C ≤ M for all copulas C.

The following theorem is given by Darsow, Nguyen and Olsen (see [2]). They gave

equivalent forms of complete dependence for random variables.

Theorem 2.9. Let C be the copula of random variables X and Y having continuous

marginal distributions. Then the following statements are equivalent.

I. Y is completely dependent on X. (X is completely dependent on Y .)

II. For y ∈ R, P(Y ≤ y|X) ∈ {0, 1} a.s. (For x ∈ R, P(X ≤ x|Y ) ∈ {0, 1} a.s.)

III. For v ∈ I, ∂1C(u, v) ∈ {0, 1} almost every u ∈ I. (For u ∈ I, ∂2C(u, v) ∈ {0, 1}

almost every v ∈ I.)

Moreover, by virtue of Theorem 2.9, one obtains the following corollary.

Corollary 2.10. Let C be the copula of random variables X and Y having continuous

marginal distributions. Then the following statements are equivalent.

I. X and Y are mutually completely dependent.

II. For u, v ∈ I, ∂1C(·, v), ∂2C(u, ·) ∈ {0, 1} almost everywhere.
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Next, we present methods for constructing copulas used in this thesis. The first one

is a method for constructing patched copulas introduced by Zheng, Yang and Huang (see

[19]). Recall from the identity (2.1) that a copula is the joint distribution function of two

uniform random variables on I. So, given a sample space Ω with probability measure P,

let C be a copula, it is indeed a joint distribution function, of random variables U and V

that are uniformly distributed on I. Fix m,n ∈ N, let {ci}mi=1 and {dj}nj=1 be such that

0 = c0 < c1 < · · · < cm = 1 and 0 = d0 < d1 < · · · < dn = 1.

Let I0 = [c0, c1] and Ii = (ci, ci+1] for i = 1, 2, . . . ,m−1, J0 = [d0, d1] and Jj = (dj , dj+1]

for j = 1, 2, . . . , n − 1. Then {Ii × Jj : i ∈ Nm−1, j ∈ Nn−1} is a partition of I2, where

Nk = {0, 1, . . . , k}. For i ∈ Nm−1, j ∈ Nn−1, set Aij = {ω ∈ Ω : (U(ω), V (ω)) ∈ Ii × Jj}

then {Aij : i ∈ Nm−1, j ∈ Nn−1} is a partition of Ω. Using the law of total probability,

one can derive that

C(u, v) = P(U ≤ u, V ≤ v) =

m−1∑
i=0

n−1∑
j=0

P(Aij)P(U ≤ u, V ≤ v|Aij). (2.3)

One can show that each P(U ≤ u, V ≤ v|Aij) is a joint distribution function on Ii × Jj

whose continuous marginal distributions are Fij(u) := P(U ≤ u|Aij) and Gij(v) :=

P(V ≤ v|Aij). Here, the continuities of Fij and Gij follow from the continuity of C.

According to Sklar’s theorem, there is a unique corresponding copula Cij such that

P(U ≤ u, V ≤ v|Aij) = Cij(Fij(u), Gij(v)). (2.4)

Plugging (2.4) into (2.3), we have

C(u, v) =

m−1∑
i=0

n−1∑
j=0

P(Aij)Cij(Fij(u), Gij(v)). (2.5)

Note that [P(Aij)]m×n is a doubly stochastic matrix. The decomposition in (2.5) is

called the ({ci}mi=1 , {dj}
n
j=1)-patched decomposition of C or just patched decomposition

of C if {ci}mi=1 and {dj}nj=1 are understood. This is in fact a generalization of patched
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copulas, which was introduced by Zheng, Yang and Huang [19], in the sense that the

unit square is partitioned into unequal-sized sub-rectangles. Any given copula C can be

decomposed in the form of (2.5). On the whole, the converse is not true. However, we

obtain the following characterization on some assumptions of the coefficients and marginal

distributions. Indeed, the following theorem is a generalization of the case that n = m

and ci = di =
i
n for all i = 0, 1, . . . , n, which was given by Chaidee, Santiwipanont and

Sumetkijakan (see [1]).

Theorem 2.11. For each i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1, let Hij and Lij

denote distribution functions over Ii and Jj, respectively, let Dij be a copula and aij ≥ 0.

The function D defined by

D(u, v) =

m−1∑
i=0

n−1∑
j=0

aijDij(Hij(u), Lij(v)), u, v ∈ I,

is a copula if and only if

I. for each h = 0, 1, . . . ,m− 1,
n−1∑
j=0

ahjHhj(u) = u− ch for all u ∈ Ih; and

II. for each k = 0, 1, . . . , n− 1,
m−1∑
i=0

aikLik(v) = v − dk for all v ∈ Jk.

Proof. (⇒) We prove I., the proof of II. is similar. Fix h = 0, 1, . . . ,m−1. Since for each

j ≥ 0, Hij(ch+1) = 1 for all i ≤ h and Hij(ch+1) = 0 for all i > h and D is a copula,

ch+1 = D(ch+1, 1) =

m−1∑
i=0

n−1∑
j=0

aijDij(Hij(ch+1), Lij(1)) =

h∑
i=0

n−1∑
j=0

aij

which implies in particular that
∑n−1

j=0 aij = ci+1 − ci for all i = 0, 1, . . . ,m − 1. We

are now ready to show I. Let u ∈ Ih. So for each j ≥ 0, Hij(u) = 1 for all i < h and

Hij(u) = 0 for all i > h. Then

D(u, 1) =

m−1∑
i=0

n−1∑
j=0

aijDij(Hij(u), Lij(1))
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=

m−1∑
i=0

n−1∑
j=0

aijDij(Hij(u), 1) =

m−1∑
i=0

n−1∑
j=0

aijHij(u)

=

h−1∑
i=0

n−1∑
j=0

aij +

n−1∑
j=0

ahjHhj(u) (2.6)

=

h−1∑
i=0

(ci+1 − ci) +

n−1∑
j=0

ahjHhj(u)

= ch +

n−1∑
j=0

ahjHhj(u).

Thus I. follows because D is a copula.

(⇐) The statement D(u, 0) = 0 = D(0, v) for u, v ∈ I follows directly from the

condition Hij(0) = 0 = Lij(0) and Dij is a copula for all i, j. Moreover, it is also

straightforward to prove that D is 2-increasing by using the assumption that Hij and Lij

are distribution functions, that Dij is 2-increasing and that aij ≥ 0. It remains to show

that D(u, 1) = u and D(1, v) = v. For each h = 0, 1, . . . ,m− 1, let u ∈ Ih. Then

D(u, 1) =

h−1∑
i=0

n−1∑
j=0

aij +

n−1∑
j=0

ahjHhj(u)

follows from equation (2.6), which is not a consequence of condition that D is a copula.

Then the condition I. particularly gives
∑n−1

j=0 aij = ci+1 − ci for i = 0, 1, . . . ,m− 1 and

yields

D(u, 1) =

h−1∑
i=0

(ci+1 − ci) +

n−1∑
j=0

ahjHhj(u) = ch + u− ch = u.

The last property required for definition of copulas is D(1, v) = v for all v ∈ I. It can be

proved in a similar manner using II.

One can obtain a new copula from old by the following binary operation on the

space of all copulas, denoted by C. A binary operation ∗ on C is defined as

C ∗D(u, v) =

∫
I
∂2C(u, t)∂1D(t, v) dt for C,D ∈ C and u, v ∈ I.
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This was introduced by Darsow, Nguyen and Olsen [2], they proved that ∗ is a binary

operation on C and (C, ∗) is a monoid with null element Π and identity M .

In the following theorem, they also proved that for any random variables X,Y and

Z, the copula CX,Z can be decomposed into ∗-product of the copulas CX,Y and CY,Z

where some conditions on three random variables are assumed.

Theorem 2.12. Let X,Y and Z be random variables having continuous marginal distri-

butions on a common probability space such that

E
[
1{X∈B1} · 1{Z∈B2}|Y

]
= E

[
1{X∈B1}|Y

]
· E
[
1{Z∈B2}|Y

]
a.s.

for any Borel sets B1, B2, one indeed says that X and Z are conditionally independent

given Y . Then CX,Z = CX,Y ∗ CY,Z .

Proof. Let (Ω,F ,P) be a probability space and FX , FY and FZ continuous distribution

functions of X,Y and Z, respectively. Let u, v ∈ I. If u or v are in {0, 1}, it is obvious

that CX,Z(u, v) = CX,Y ∗ CY,Z(u, v). Suppose that u, v ̸∈ {0, 1}. Since FX and FZ are

continuous, by applying Intermediate Value Theorem, there exist real numbers x and z

such that FX(x) = u and FZ(z) = v. Then

CX,Y ∗ CY,Z(u, v)

=

∫
I
∂2CX,Y (u, t)∂1CY,Z(t, v) dt

=

∫ ∞

−∞
∂2CX,Y (FX(x), FY (y))∂1CY,Z(FY (y), FZ(z)) dFY (y)

=

∫
Ω
∂2CX,Y (FX(x), FY (Y (ω)))∂1CY,Z(FY (Y (ω)), FZ(z)) dP(ω)

=

∫
Ω

E
[
1{X≤x}|Y

]
(ω)E

[
1{Z≤z}|Y

]
(ω) dP(ω)

=

∫
Ω

E
[
1{X≤x}1{Z≤z}|Y

]
(ω) dP(ω) =

∫
Ω

E
[
1{X≤x,Z≤z}|Y

]
(ω) dP(ω)

=

∫
Ω
1{X≤x,Z≤z} dP = P (X ≤ x,Z ≤ z)

= CX,Z (FX(x), FZ(z)) = CX,Z(u, v),
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where we have used changes of variables theorem in the second and third equalities,

Theorem 2.5 in the fourth equality, the assumption that X and Z are conditionally

independent given Y in the fifth equality, the definition of the conditional expectation in

the seventh equality and Sklar’s theorem in the next to last equality.

Moreover, Ruankong, Santiwipanont and Sumetkijakan (see [12]) gave the following

special case frequently seen.

Corollary 2.13. Let X and Y be random variables having continuous marginal distribu-

tions and f a Borel measurable function. Then Cf(X),Y = Cf(X),X ∗ CX,Y .

They proved that f(X) and Y are conditionally independent given X and then the

corollary above immediately follows from Theorem 2.12.

Moreover, Darsow and Olsen [3] showed that the ∗-product on C is jointly continuous

with respect to the Sobolev norm.

Let p ∈ N. The Sobolev norm ∥ · ∥(p) of a copula C is defined by

∥C∥(p) =
(∫

I

∫
I
(|∂1C(u, v)|p + |∂2C(u, v)|p) du dv

)1/p

.

Theorem 2.14. The ∗-product on C is jointly continuous with respect to the Sobolev

norm. Formally, let p ∈ N and for any n ∈ N, let Cn, Dn, C and D be copulas such that

lim
n→∞

∥Cn − C∥(p) = 0 and lim
n→∞

∥Dn −D∥(p) = 0. Then lim
n→∞

∥Cn ∗Dn − C ∗D∥(p) = 0.

Since the Sobolev norm of a copula is defined in term of its derivatives, the following

results are easily obtained.

Theorem 2.15. Let (Cn)n∈N be a sequence of copulas and C be a copula such that

(∂iCn)n∈N converges to ∂iC almost everywhere for i = 1, 2, and let p ∈ N. Then

lim
n→∞

∥Cn − C∥(p) = 0.
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Proof. By the assumption, we have, for almost every (u, v) ∈ I2,

lim
n→∞

|∂iCn(u, v)− ∂iC(u, v)| = 0, i = 1, 2.

Therefore,

lim
n→∞

∥Cn − C∥(p)

= lim
n→∞

(∫
I

∫
I
(|∂1(Cn − C)|p + |∂2(Cn − C)|p) du dv

)1/p

= lim
n→∞

(∫
I

∫
I
(|∂1Cn − ∂1C)|p + |∂2Cn − ∂2C)|p) du dv

)1/p

=

(
lim
n→∞

(∫
I

∫
I
(|∂1Cn − ∂1C)|p + |∂2Cn − ∂2C)|p) du dv

))1/p

=

(∫
I

∫
I

lim
n→∞

((|∂1Cn − ∂1C)|p + |∂2Cn − ∂2C)|p)) du dv
)1/p

= 0,

where we have used the Dominated Convergence Theorem in the next to last equality.

Moreover, we will show that convergence of copulas in Sobolev norm ∥ · ∥(p) implies

the existence of a subsequence whose first order partial derivatives converge pointwise

almost everywhere.

Theorem 2.16. Let p ∈ N and (Cn)n∈N a sequence of copulas and C a copula such that

lim
n→∞

∥Cn − C∥(p) = 0. Then there exists a subsequence (Cnk
)k∈N such that (∂iCnk

)k∈N

converges to ∂iC almost everywhere for i = 1, 2.

Proof. Since lim
n→∞

∥Cn − C∥(p) = 0, we can find a strictly increasing sequence of positive

integers (nk)k∈N such that
∫
I
∫
I(|∂1Cnk

− ∂1C|p + |∂2Cnk
− ∂2C|p) du dv ≤ 1

2k . And then

∫
I

∫
I

∞∑
k=1

(|∂1Cnk
− ∂1C|p + |∂2Cnk

− ∂2C|p) du dv

=

∞∑
k=1

∫
I

∫
I
(|∂1Cnk

− ∂1C|p + |∂2Cnk
− ∂2C|p) du dv ≤

∞∑
k=1

1

2k
< ∞.
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Consequently,
∞∑
k=1

(|∂1Cnk
− ∂1C|p + |∂2Cnk

− ∂2C|p) < ∞ a.e.

In particular,

∞∑
k=1

|∂1Cnk
− ∂1C|p < ∞ and

∞∑
k=1

|∂2Cnk
− ∂2C|p < ∞ a.e.

Thus, lim
k→∞

|∂iCnk
− ∂1C| = 0 a.e. for all i = 1, 2.

Another interesting method for constructing copulas is according to the following

procedure.

I. Place the support for M on I2.

II. Cut I2 into a finite number of strips vertically.

III. Shuffle the strips (some of them can be flipped around their vertical axes of sym-

metry).

IV. Put them together again to form the square.

A copula whose support is obtained by the above method is called a shuffle of Min. The

formal definition is given by Mikusiński, Sherwood and Taylor [9].

Definition 2.17. Let n ∈ N, 0 = s0 < s1 < · · · < sn = 1 and 0 = t0 < t1 < · · · < tn = 1

two partitions of I and σ a permutation on {1, 2, . . . , n}. A copula C is called the shuffle

of Min generated by (n, {si}, {ti}, σ) if each [si−1, si]× [tσ(i)−1, tσ(i)] is a square in which

C puts a probability mass si − si−1 spread uniformly on one of the diagonals. For each

i ∈ {1, 2, . . . , n}, let m(i) denote the slope of the diagonal of [si−1, si]× [tσ(i)−1, tσ(i)] on

which the probability mass in that square is distributed. We also say that C is the shuffle

of Min generated by (n, {si}, {ti}, σ,m).

Mikusiński, Sherwood and Taylor (see [9]) also gave a probabilistic meaning of

shuffles of Min.
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Theorem 2.18. Let X and Y be random variables with continuous distribution functions.

Then CX,Y is a shuffle of Min if and only if there exists an invertible Borel measurable

function with finitely many discontinuity points f such that Y = f(X) a.s.

Durante, Sarkoci and Sempi [5] characterize shuffles of Min in terms of push-forward

measures, let us recall the definition of push-forwards. Let (Ω,F , µ) be a measure space

and (Ω1,F1) a measurable space. For each measurable function f : Ω → Ω1, a push-

forward of µ under f is a set function f ⋆µ on (Ω1,F1) defined by f ⋆µ(A) = µ
(
f−1(A)

)
for every A ∈ F1. One can obtain that the push-forward f ⋆ µ is a measure on F1.

Moreover, if g is a measurable function from Ω1 to another measurable space (Ω2,F2),

then

(g ◦ f) ⋆ µ = g ⋆ (f ⋆ µ). (2.7)

Before characterizing shuffles of Min, the notions of shufflings and measure-preserving

functions are needed. A shuffling ST : I2 → I2 is defined by

ST (u, v) = (T (u), v), (2.8)

where T : I → I. Note that ST
−1 = ST−1 . A Borel measurable function f : I → I is

measure-preserving if for any B ∈ B (I) , λ(f−1(B)) = λ(B). Borel measurability of the

inverse of a Borel measurable injection yields the measure-preserving of the inverse of a

measure-preserving bijection. Moreover, the following result is also needed.

Lemma 2.19. Let T : I → I be a Borel measurable, ST a shuffling and µ a doubly

stochastic measure. Then the following statements are equivalent.

I. ST ⋆ µ is doubly stochastic measure.

II. T is a measure-preserving transformation.

Proof. Using doubly stochastic property of µ, one can directly show that for every Borel
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set B ⊆ I,

ST ⋆ µ (I×B) = µ
(
S−1
T (I×B)

)
= µ (I×B) = λ(B),

ST ⋆ µ (B × I) = µ
(
S−1
T (B × I)

)
= µ

(
T−1(B)× I

)
= λ

(
T−1(B)

)
.

Then the lemma immediately follows.

Theorem 2.20 (The characterization of shuffles of Min). A copula C is a shuffle of Min

if and only if there exists a piecewise-continuous measure-preserving bijection T : I → I

such that µC = ST ⋆ µM .

Proof. (⇐) Let V be a uniform (0, 1) random variable. Then (V, V ) is distributed ac-

cording to M , i.e. the copula of V and V is M , and so (V, V ) ⋆ P = µM . Equations (2.7)

and (2.8) yield, for all measurable transformation T of I,

(T ◦ V, V ) ⋆ P = (ST ◦ (V, V )) ⋆ P = ST ⋆ ((V, V ) ⋆ P) = ST ⋆ µM . (2.9)

Note that T is piecewise-continuous measure-preserving bijection by assumption and µM is

doubly stochastic. Then by Lemma 2.19, ST ⋆µM is doubly stochastic and so corresponds

to a copula C. By equation (2.9), joint distribution function of T ◦ V and V is the

connecting copula C. Thus, according to Theorem 2.18, C is a shuffle of Min.

(⇒) Let C be a shuffle of Min. Then there exist uniform (0, 1) random variables U and

V whose connecting copula is C. So (U, V ) ⋆ P = µC . Furthermore, by Theorem 2.18,

there exists a piecewise-continuous bijection T on I for which U = T (V ) a.s. Then

(T ◦ V, V ) ⋆ P = (U, V ) ⋆ P = µC .

Using (2.9), which is not a consequence of condition that T is measure-preserving, we

obtain µC = ST ⋆ µM . Finally, Lemma 2.19 yields the measure-preserving of T .

The characterization of shuffles of Min leads Durante, Sarkoci and Sempi [5] to

generalize the concept of shuffle of Min by dropping piecewise-continuous of T .
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Definition 2.21. A generalized shuffle of Min is a copula C whose induced measure is

µC := ST ⋆ µM (2.10)

for some measure-preserving bijection T : I → I (not necessary to be piecewise-continuous).

Replacing M by a given copula D in (2.10), C is called a generalized shuffle of D. If the

measure-preserving bijection T is piecewise-continuous, then C is called a shuffle of D.

The most useful properties used in the next chapter are listed in the following

theorem. They are given by Ruankong, Santiwipanont and Sumetkijakan (see [12]).

Theorem 2.22. Let C and D be copulas. Then

1. C is a T -shuffle of D if and only if there exists a shuffle of Min A, defined by

µA = ST ⋆ µM , such that C = A ∗D.

2. C is a generalized T -shuffle of D if and only if there exists a generalized shuffle of

Min A, defined by µA = ST ⋆ µM , such that C = A ∗D.



CHAPTER III

DEPENDENCE INDICATORS

FROM FIRST DIGIT DISTRIBUTIONS

We divide this chapter into two sections. The first section covers theoretical facts

of the upper level sets needed to prove main properties of the first digit distributions of

partial derivatives of copulas. As a result, we obtain an indicator of dependence µ1 in the

second section.

3.1 Upper level functions

Let L(I2) be the space of Lebesgue measurable subsets of I2. The function

ρ(A,B) := λ2(A△B), forA,B ∈ L(I2),

is a pseudometric on L(I2) where A△B := (A\B)∪(B \A). ρ becomes a metric if L(I2)

is considered modulo the equivalence relation ∼: A ∼ B if and only if λ2(A△B) = 0.

Definition 3.1. For a copula C, let Φ∂1C be a function on I defined by

Φ∂1C(α) = [∂1C]α :=
{
(u, v) ∈ I2 : ∂1C(u, v) exists and ∂1C(u, v) ≥ α

}
.

[∂1C]α are called upper α-level-sets, introduced by Fernández-Sánchez and Trutschnig

[6]. We may sometimes write
{
(u, v) ∈ I2 : ∂1C(u, v) ≥ α

}
or just {∂1C ≥ α} instead of

[∂1C]α.

With respect to the metric ρ, we obtain the following theorems.

Theorem 3.2. For every copula C the upper level fuction Φ∂1C has at most countably

many discontinuities.
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Proof. Let C be a copula and JC a function on I defined by

JC(α) = λ2([∂1C]α)

for all α in I. Let DJC
denote the set of all discontinuities of JC . Since JC is decreasing,

DJC
is countable. To show that every continuous point of JC is a continuous point of

Φ∂1C , let α ∈ I. Suppose that JC is continuous at α. Let (αn)n∈N be a sequence of real

numbers in I such that (αn)n∈N converges to α and ϵ > 0. Then there exists an N ∈ N

such that for all n ≥ N ,

|JC(αn)− JC(α)| < ϵ.

Fix n ≥ N , then

ρ(Φ∂1C(αn),Φ∂1C(α)) = ρ([∂1C]αn
, [∂1C]α)

= λ2(([∂1C]αn
\ [∂1C]α) ∪ ([∂1C]α \ [∂1C]αn

)).

Case 1: αn ≤ α

Then [∂1C]α ⊆ [∂1C]αn
and so

ρ(Φ∂1C(αn),Φ∂1C(α)) = λ2([∂1C]αn
\ [∂1C]α) = λ2([∂1C]αn

)− λ2([∂1C]α)

= JC(αn)− JC(α) = |JC(αn)− JC(α)| < ϵ.

Case 2: αn > α

Then [∂1C]αn
⊆ [∂1C]α and so

ρ(Φ∂1C(αn),Φ∂1C(α)) = λ2([∂1C]α \ [∂1C]αn
) = λ2([∂1C]α)− λ2([∂1C]αn

)

= JC(α)− JC(αn) = |JC(αn)− JC(α)| < ϵ.

We conclude that ρ(Φ∂1C(αn),Φ∂1C(α)) < ϵ for all n ≥ N . This shows that Φ∂1C is

continuous at α. Hence, the set of all discontinuities of Φ∂1C is a subset of DJC
, which is

countable. Therefore, Φ∂1C has at most countably many discontinuities.
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Theorem 3.3. Let (Cn)n∈N be a sequence of copulas and C a copula such that (∂1Cn)n∈N

converges to ∂1C almost everywhere. If α ∈ I is a continuity point of Φ∂1C , then

lim
n→∞

ρ([∂1Cn]α, [∂1C]α) = 0.

Proof. To prove this, Egorov’s Theorem is needed. Let us state here for convenience.

Egorov’s Theorem. Let (Ω,F , µ) be a measure space, E ∈ F with µ(E) < ∞ and let

(fn)n∈N be a sequence of real-valued measurable functions on E that converges pointwise

to a real-valued measurable function f almost everywhere on E. Then for any ϵ > 0, there

exists a measurable set A contained in E such that µ(E \ A) < ϵ and (fn)n∈N converges

to f uniformly on A.

Let ϵ > 0. Since Φ∂1C is continuous at α, there exists δ ∈ (0, ϵ) such that for all β ∈ I,

if |α− β| ≤ δ then λ2([∂1C]α△[∂1C]β) ≤
ϵ

4
. (3.1)

Since (∂1Cn)n∈N converges to ∂1C almost everywhere, by Egorov’s Theorem, there exists

a measurable set Z ⊆ I2 such that λ2(Z) <
ϵ

4
and (∂1Cn)n∈N converges uniformly to ∂1C

on I2 \ Z. Thus there exists an N ∈ N such that for every n ≥ N ,

sup
(u,v)∈I2\Z

|∂1Cn(u, v)− ∂1C(u, v)| ≤ δ. (3.2)

We want to show that for every n ≥ N ,

ρ([∂1Cn]α, [∂1C]α) < ϵ.

Fix n ≥ N , then

ρ([∂1Cn]α, [∂1C]α) = λ2([∂1Cn]α△[∂1C]α) = λ2(([∂1Cn]α \ [∂1C]α) ∪ ([∂1C]α \ [∂1Cn]α))

= λ2([∂1Cn]α \ [∂1C]α) + λ2([∂1C]α \ [∂1Cn]α). (3.3)
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It suffices to show that

(3.3.1) λ2([∂1Cn]α \ [∂1C]α) <
ϵ

2
and (3.3.2) λ2([∂1C]α \ [∂1Cn]α) <

ϵ

2
.

If we obtain (3.3.1) and (3.3.2) then ρ([∂1Cn]α, [∂1C]α) < ϵ by (3.3).

Next, we prove the above two inequalities.

(3.3.1): Note that [∂1Cn]α \ [∂1C]α−δ ⊆ Z. Indeed, let (u, v) ∈ [∂1Cn]α \ [∂1C]α−δ.

Then ∂1Cn(u, v) ≥ α and (u, v) /∈ [∂1C]α−δ. If (u, v) /∈ Z, then ∂1C(u, v) < α− δ and so

∂1Cn(u, v)− ∂1C(u, v) > δ, this contradicts (3.2). Thus (u, v) ∈ Z. Hence it follows that

λ2([∂1Cn]α \ [∂1C]α) ≤ λ2([∂1Cn]α \ [∂1C]α−δ) + λ2([∂1C]α−δ \ [∂1C]α)

≤ λ2(Z) + λ2([∂1C]α△[∂1C]α−δ)

<
ϵ

4
+

ϵ

4
by (3.1)

=
ϵ

2
.

(3.3.2): Note that [∂1C]α+δ \ [∂1Cn]α ⊆ Z. Indeed, let (u, v) ∈ [∂1C]α+δ \ [∂1Cn]α.

Then ∂1C(u, v) ≥ α+ δ and (u, v) /∈ [∂1Cn]α. If (u, v) /∈ Z, then ∂1Cn(u, v) < α and so

∂1C(u, v)− ∂1Cn(u, v) > δ, this contradicts (3.2). Thus (u, v) ∈ Z. Hence it follows that

λ2([∂1C]α \ [∂1Cn]α) ≤ λ2([∂1C]α \ [∂1C]α+δ) + λ2([∂1C]α+δ \ [∂1Cn]α)

≤ λ2([∂1C]α△[∂1C]α+δ) + λ2(Z)

<
ϵ

4
+

ϵ

4
by (3.1)

=
ϵ

2
.

This completes the proof.

According to Theorems 3.2 and 3.3, point-wise a.e. convergence of a sequence of

first partial derivative of copulas implies the convergence of the corresponding upper α-

level-sets for all but at most countably many α ∈ I. Furthermore, Theorem 3.2 is very

useful in our proof of tranformation invariance λ2([∂1CX,Y ]α) = λ2([∂1Cf(X),Y ]α) where
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f is invertible Borel measurable function and α ∈ I is a continuity point of Φ∂1Cf(X),Y
. To

prove this, the following lemma is required.

Lemma 3.4. Let C be a copula and S a generalized shuffle of Min. Then

λ2([∂1(S ∗ C)]α) = λ2([∂1C]α)

for any α ∈ I.

Proof. According to [17], for each v ∈ I, ∂1(S ∗ C)(u, v) = ∂1C(T−1(u), v) for almost

every u ∈ I for some measure-preserving bijection T : I → I. We prove this again. For a

copula A, KA : I× B (I) → I is defined, for every B ∈ B (I), by

KA(U(ω), B) = E (1B ◦ V |U) (ω) almost all ω ∈ Ω,

where U and V are uniform (0, 1) random variables whose connecting copula is AU,V = A.

Then for every Borel subset G of I2 we set Gu := {v ∈ I : (u, v) ∈ G} and obtain

µA(G) = P((U, V ) ∈ G)

=

∫
Ω
1GU(ω)

(V (ω)) dP(ω)

=

∫
Ω

E (1GU
◦ V |U) (ω) dP(ω)

=

∫
I
E (1Gu

◦ V |u) dPU (u)

=

∫
I
E (1Gu

◦ V |u) du

=

∫
I
KA (u,Gu) du,

where PU (B) := P(U−1(B)) for any B ∈ B (I). Notice that we have made a change

of variable in the fourth equality and the uniqueness of Lebesgue measure, that it as-

signs to each bounded open interval its length, in the fifth equality. In particular,∫
IKA (u, F ) du = λ(F ) for every F ∈ B(I). Next, let T be a measure-preserving bi-

jection so that µS = ST ⋆ µM (by Definition 2.21) and µS∗C = ST ⋆ µC (by Theorem
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2.22). This leads to

∫
E
KS∗C (t, F ) dt = µS∗C (E × F )

= ST ⋆ µC (E × F )

= µC

(
(ST )

−1 (E × F )
)

= µC

(
T−1(E)× F

)
=

∫
T−1(E)

KC (t, F ) dt,

for every E,F ∈ B(I). Set E := [0, u] so that both sides of the above equation are viewed

as increasing functions. Then KS∗C (u, F ) = d
du
∫
T−1([0,u])KC (t, F ) dt for almost every

u ∈ I where the left hand side follows from integrability of KS∗C (·, F ). Moreover, it

follows directly from the measure-preserving of T that

KS∗C (u, F ) =
d

du

∫
T−1([0,u])

KC (t, F ) dt

=
d

du

∫
I
1T−1([0,u])(t)KC (t, F ) dt

=
d

du

∫
I
1T−1([0,u])(T

−1(t))KC

(
T−1(t), F

)
dt

=
d

du

∫
I
1[0,u](t)KC

(
T−1(t), F

)
dt

=
d

du

∫
[0,u]

KC

(
T−1(t), F

)
dt

= KC

(
T−1(u), F

)
,

for almost every u ∈ I where the last equality is obtained by again using integrability

of KC

(
T−1(·), F

)
. In particular, for every v ∈ I, ∂1(S ∗ C)(u, v) = ∂1C(T−1(u), v) for

almost every u ∈ I. Using Fubini’s Theorem and measure-preserving property of T , the

following equalities follow,

λ2([∂1(S ∗ C)]α) =

∫
I

∫
I
1{∂1(S∗C)(u,v)≥α} du dv

=

∫
I

∫
I
1{∂1C(T−1(u),v)≥α} du dv
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=

∫
I

∫
I
1{∂1C≥α} ◦ T−1 du dv

=

∫
I

∫
I
1{∂1C≥α} du dv

= λ2([∂1C]α),

for all α ∈ I.

Theorem 3.5. Let X and Y be random variables with continuous distribution functions.

Then

λ2([∂1CX,Y ]α) = λ2([∂1Cf(X),Y ]α)

for every invertible Borel measurable function f and every continuity point α of Φ∂1Cf(X),Y
.

Proof. Since f is Borel measurable, by Corollary 2.13,

Cf(X),Y = Cf(X),X ∗ CX,Y .

Since f(X) and X are mutually completely dependent, there exists a sequence of shuffles

of Min (Sn)n∈N such that (∂1(Sn∗CX,Y ))n∈N converges pointwise to ∂1(Cf(X),X ∗CX,Y ) =

∂1Cf(X),Y almost everwhere. To prove this, we quote here without proof Theorem 3.1 in

[12].

Theorem 3.1 in Ruankong, Santiwipanont and Sumetkijakan [12]. Let C be a

mutual complete dependence copula. Then there exists a sequence of shuffles of Min

(Sn)n∈N that converges to C in the Sobolev norm ∥ · ∥(2).

As a virtue of the above theorem, there exists a sequence of shuffles of Min (Sn)n∈N that

converges to Cf(X),X in the Sobolev norm ∥ · ∥(2). By Theorem 2.14,

lim
n→∞

∥Sn ∗ CX,Y − Cf(X),X ∗ CX,Y ∥(2) = 0.

Using Theorem 2.16, we can find a subsequence of (Sn∗CX,Y )n∈N, which, for convenience,
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will again be denoted by (Sn∗CX,Y )n∈N, such that (∂1(Sn∗CX,Y ))n∈N converges pointwise

to ∂1(Cf(X),X ∗CX,Y ) = ∂1Cf(X),Y almost everwhere. By virtue of Theorem 3.3, for every

α in I which is a continuity point of Φ∂1Cf(X),Y
,

lim
n→∞

ρ([∂1(Sn ∗ CX,Y )]α, [∂1Cf(X),Y ]α) = 0.

This implies that (λ2([∂1(Sn ∗ CX,Y )]α))n∈N converges to λ2([∂1Cf(X),Y ]α). Indeed, let

ϵ > 0. Then there exists a positive integer N such that for any integer n ≥ N

ρ([∂1(Sn ∗ CX,Y )]α, [∂1Cf(X),Y ]α) < ϵ.

Then

λ2([∂1(Sn ∗ CX,Y )]α) = λ2([∂1(Sn ∗ CX,Y )]α \ [∂1Cf(X),Y ]α)

+ λ2([∂1(Sn ∗ CX,Y )]α ∩ [∂1Cf(X),Y ]α)

≤ λ2([∂1(Sn ∗ CX,Y )]α \ [∂1Cf(X),Y ]α)

+ λ2([∂1Cf(X),Y ]α).

So we obtain that

λ2([∂1(Sn ∗ CX,Y )]α)− λ2([∂1Cf(X),Y ]α)

≤ λ2([∂1(Sn ∗ CX,Y )]α \ [∂1Cf(X),Y ]α)

≤ ρ([∂1(Sn ∗ CX,Y )]α, [∂1Cf(X),Y ]α)

< ϵ.

Similarly, for n ≥ N , λ2([∂1Cf(X),Y ]α)− λ2([∂1(Sn ∗ CX,Y )]α) < ϵ and so we have

∣∣λ2([∂1(Sn ∗ CX,Y )]α)− λ2([∂1Cf(X),Y ]α)
∣∣ < ϵ.

Hence (λ2([∂1(Sn ∗ CX,Y )]α))n∈N converges to λ2([∂1Cf(X),Y ]α). Since, by Lemma 3.4,
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λ2([∂1(Sn ∗ CX,Y )]α) = λ2([∂1CX,Y ]α) for all n ∈ N,

λ2([∂1CX,Y ]α) = λ2([∂1Cf(X),Y ]α).

3.2 An indicator of dependence

First of all, we give the formal definition of the i
th significant digit of non-zero real

numbers.

Definition 3.6. Let m : R \ {0} → [1, 10) be defined by

m(x) = r, for x ∈ R \ {0},

where r is the unique number in [1, 10) such that |x| = r × 10n for some necessarily

unique n ∈ Z. Following [7], m is called the mantissa function. Let D(i)(x) denote the i
th

significant digit (or i
th digit) of x. Formally, D(i) : R \ {0} → {0, 1, 2, . . . , 9} is given by

D(i)(x) = ((t−1 ◦m)(x))i, for x ∈ R \ {0},

where (·)i is the coordinate projection (c1, c2, . . .)i = ci, t is the function t(t0, t1, t2, . . .) =∑∞
k=0

tk
10k for t0 ∈ {1, 2, . . . , 9} and tk ∈ {0, 1, 2, . . . , 9} for k ∈ N, and t−1 is taken

to be the terminating inverse when it is non-unique (e.g., t−1(0.1999 . . .) = t−1(0.2) =

(2, 0, 0, . . .)). Note that this definition leads the first digit of 0.1999 . . . to be 2.

To ensure the well-defined property of first digit distributions of partial derivatives

of copulas, the following results are useful.

Lemma 3.7. For every copula C and for d = 1, 2, . . . , 9,

∞∑
k=0

λ2

(
[∂1C] d

10k
\ [∂1C] d+1

10k

)

is finite.
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Proof. Since
{
[∂1C] d

10k
\ [∂1C] d+1

10k

}∞

k=0
is a countable collection of pairwise disjoint sets,

∞∑
k=0

λ2

(
[∂1C] d

10k
\ [∂1C] d+1

10k

)
= λ2

( ∞∪
k=0

(
[∂1C] d

10k
\ [∂1C] d+1

10k

))

≤ λ2

(
I2
)
= 1.

Lemma 3.8. For every copula C, λ2

({
(u, v) ∈ I2 : ∂1C(u, v) > 0

})
̸= 0.

Proof. Suppose that λ2

({
(u, v) ∈ I2 : ∂1C(u, v) > 0

})
= 0. So ∂1C(u, v) = 0 for almost

every v in I almost every u in I. Then for almost every v in I,

v = C(1, v)− C(0, v) =

∫
I
∂1C(u, v) du = 0,

where the next to last equality follows from the absolute continuity of C in each argument.

This is a contradiction and so λ2

({
(u, v) ∈ I2 : ∂1C(u, v) > 0

})
̸= 0.

Definition 3.9. For a copula C, let FDd(∂1C) be the first digit distribution of ∂1C defined

by

FDd(∂1C) =
λ2

({
(u, v) ∈ I2 : the first digit of ∂1C(u, v) is d

})
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) > 0})

=

∑∞
k=0 λ2

(
[∂1C] d

10k
\ [∂1C] d+1

10k

)
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) > 0})

(3.4)

for d = 1, 2, . . . , 9. Since ∂1C exists a.e. and 0 ≤ ∂1C ≤ 1 a.e., FDd can be computed via

upper α-level sets as (3.4).

Remark 3.10. By Lemmas 3.7 and 3.8, the first digit distributions of ∂1C are well-defined.

Moreover,
9∑

d=1

FDd(∂1C) = 1.

Proof. Since
{
[∂1C] d

10k
\ [∂1C] d+1

10k

}
k≥0,d=1,2,...,9

is a countable collection of pairwise dis-

joint sets,

9∑
d=1

FDd(∂1C) =

9∑
d=1

∑∞
k=0 λ2

(
[∂1C] d

10k
\ [∂1C] d+1

10k

)
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) > 0})
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=

9∑
d=1

λ2

(∪∞
k=0

(
[∂1C] d

10k
\ [∂1C] d+1

10k

))
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) > 0})

=
λ2

(∪9
d=1

∪∞
k=0

(
[∂1C] d

10k
\ [∂1C] d+1

10k

))
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) > 0})

=
λ2

({
(u, v) ∈ I2 : ∂1C(u, v) > 0

})
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) > 0})

= 1.

Definition 3.11. For a copula C, denote MF1(C) = max
d=1,2,··· ,9

FDd(∂1C). To rescale so

that it takes value in I, let us define function µ1 on the space of all copulas C by

µ1(C) =

√
9MF1(C)− 1

8
.

Remark 3.12. For a copula C, 1

9
≤ MF1(C) ≤ 1 and so 0 ≤ µ1(C) ≤ 1.

Proof. Suppose that MF1(C) <
1

9
. So

9∑
d=1

FDd(∂1C) < 1, which is a contradiction.

Clearly, for d = 1, 2, . . . , 9, FDd(∂1C) ≤
9∑

d=1

FDd(∂1C) = 1. Then 1

9
≤ MF1(C) ≤ 1.

Theorem 3.13. Let X and Y be random variables with continuous distribution functions.

If Y is completely dependent on X, then MF1(CX,Y ) = 1 and so µ1(CX,Y ) = 1.

Proof. Since Y is completely dependent on X, ∂1C ∈ {0, 1} almost everywhere. So for

any k ∈ N and d = 1, 2, . . . , 9, up to subsets of measure zero

[∂1C] d

10k
=
{
(u, v) ∈ I2 : ∂1C(u, v) = 1

}
=
{
(u, v) ∈ I2 : ∂1C(u, v) > 0

}
.

Then

FD1(∂1C) =
λ2 ([∂1C]1) +

∑∞
k=1 λ2

(
[∂1C] 1

10k
\ [∂1C] 2

10k

)
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) > 0})

=
λ2([∂1C]1) +

∑∞
k=1 0

λ2([∂1C]1)
= 1.

This implies that MF1(C) = 1.
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The converse is not true, that is, if MF1(C) = 1 then the copula C is not neces-

sarily a complete dependence copula. A counterexample can be constructed via patching

method. Let J0 = [0, 1
10 ], J1 = ( 1

10 , 1], a0 = 1
10 and a1 = 9

10 . And for each j = 0, 1, let

Lj be the uniform distribution function on Jj . Then, by Theorem 2.11, the function C

defined by

C(u, v) =

1∑
j=0

ajM(u, Lj(v)) =
1

10
M(u,L0(v)) +

9

10
M(u, L1(v)), foru, v ∈ I, (3.5)

is a copula.

0 1
0

0.1

1

Figure 3.1: Support of the copula defined in (3.5)

To show that MF1(C) = 1, let (u, v) ∈ I × J0. Then L0(v) = 10v and L1(v) = 0.

So C(u, v) = 1
10 min{u, 10v}. Consequently, ∂1C(u, v) = 0 for all (u, v) ∈ I × J0 such

that v < u
10 and ∂1C(u, v) = 1

10 for all (u, v) ∈ I× J0 such that v > u
10 .

Next, let (u, v) ∈ I × J1. Then L0(v) = 1 and L1(v) =
1
9(10v − 1). Consequently,

C(u, v) = 1
10u+ 9

10 min{u, 19(10v − 1)}. Therefore, ∂1C(u, v) = 1
10 for all (u, v) ∈ I× J1

such that v < 9
10u+ 1

10 and ∂1C(u, v) = 1 for all (u, v) ∈ I× J1 such that v > 9
10u+ 1

10 .

Then

FD1(∂1C) =

∑∞
k=0 λ2

(
[∂1C] 1

10k
\ [∂1C] 2

10k

)
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) > 0})
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=
λ2

({
(u, v) ∈ I2 : ∂1C(u, v) = 1

})
+ λ2

({
(u, v) ∈ I2 : ∂1C(u, v) = 1

10

})
λ2 ({(u, v) ∈ I2 : ∂1C(u, v) = 1}) + λ2

({
(u, v) ∈ I2 : ∂1C(u, v) = 1

10

})
= 1,

where the second equality is obtained by using ∂1C ∈
{
0, 1

10 , 1
}

almost everywhere. This

implies MF1(C) = 1.

Theorem 3.14. MF1(Π) = 1/9, i.e. µ1(Π) = 0.

Proof. Note that

λ2 ([∂1Π]1) = λ2

({
(u, v) ∈ I2 : ∂1Π(u, v) = 1

})
= λ2

({
(u, v) ∈ I2 : v = 1

})
= λ2 (I× {1}) = 0.

Moreover,

λ2(
{
(u, v) ∈ I2 : ∂1Π(u, v) > 0

}
) = λ2(

{
(u, v) ∈ I2 : v > 0

}
) = λ2 (I× (0, 1]) = 1.

Then for any d = 1, 2, . . . , 9,

FDd(∂1Π) =

∞∑
k=1

λ2

(
[∂1Π] d

10k
\ [∂1Π] d+1

10k

)
=

∞∑
k=1

λ2

({
(u, v) ∈ I2 :

d

10k
≤ ∂1Π(u, v) <

d+ 1

10k

})

=

∞∑
k=1

λ2

({
(u, v) ∈ I2 :

d

10k
≤ v <

d+ 1

10k

})

=

∞∑
k=1

λ2

(
I×

[
d

10k
,
d+ 1

10k

))
=

∞∑
k=1

1

10k
=

1

9
.

This implies that MF1(Π) =
1
9 and so µ1(Π) = 0.

However, we found a copula C ̸= Π whose µ1(C) = 0. Let I0 = [0, 1
10 ] and

Ii = ( i
10 ,

i+1
10 ] for i = 1, 2, . . . , 9. For each i ∈ {0, 1, . . . , 9} and j ∈ {1, 2, . . . , 9}, let Fi
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be the uniform distribution function on Ii, Ci0 = Π and Cij = M . Then Theorem 2.11

implies that the function C defined by

C(u, v) =

9∑
i=0

9∑
j=0

1

100
Cij(Fi(u), Fj(v)), u, v ∈ I, (3.6)

is a copula.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.2: Support of the copula in (3.6)

To show that MF1(C) = 1
9 , for each h, k ∈ {0, 1, . . . , 9}, let (u, v) ∈ Ih × Ik. Then

Fi(u) = 1 for all i < h, Fi(u) = 0 for all i > h, Fj(v) = 1 for all j < k and Fj(v) = 0 for

all j > k. Consequently,

C(u, v) =

h∑
i=0

k∑
j=0

1

100
Cij(Fi(u), Fj(v))

=

h−1∑
i=0

k−1∑
j=0

1

100
+

h−1∑
i=0

10v − k

100
+

k−1∑
j=0

10u− h

100
+

1

100
Chk(10u− h, 10v − k)

=
hk

100
+

h

100
(10v − k) +

k

100
(10u− h) +

1

100
Chk(10u− h, 10v − k).

Therefore, ∂1C(u, v) =
k

10
+

1

10
∂1Chk(10u−h, 10v− k) for almost every (u, v) ∈ Ih× Ik.

In particular, for each h ≥ 0, if k = 0 then ∂1C(u, v) =
1

10
∂1Π(10u− h, 10v) = v for all

(u, v) ∈ Ih×I0 and if k > 0 then ∂1C(u, v) =
k

10
+

1

10
∂1M(10u−h, 10v−k) =

k + 1

10
for all
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(u, v) ∈ Ih× Ik such that v > u− h
10 +

k
10 and ∂1C(u, v) =

k

10
+

1

10
∂1M(10u−h, 10v−k)

=
k

10
for all (u, v) ∈ Ih × Ik such that v < u − h

10 + k
10 . This formula implies that

∂1C(u, v) ∈ [0, 1
10 ] for all (u, v) ∈ I×I0 and ∂1C(u, v) ∈

{
1
10 ,

2
10 ,

3
10 ,

4
10 ,

5
10 ,

6
10 ,

7
10 ,

8
10 ,

9
10 , 1

}
for almost every (u, v) /∈ I × I0. Next, fix d = 1, 2, . . . , 9. First of all, notice that

λ2

({
(u, v) ∈ I2 : ∂1C(u, v) > 0

})
= λ2 (I× (0, 1]) = 1. If d = 1, then

FD1(∂1C) =

∞∑
k=0

λ2

(
[∂1C] 1

10k
\ [∂1C] 2

10k

)
= λ2 ([∂1C]1) + λ2

(
[∂1C] 1

10
\ [∂1C] 2

10

)
+

∞∑
k=2

λ2

(
[∂1C] 1

10k
\ [∂1C] 2

10k

)
. (3.7)

We consider the first, second and last terms of the above equation. Firstly,

λ2 ([∂1C]1) = λ2

({
(u, v) ∈ I2 : ∂1C(u, v) = 1

})
= λ2

(
9∪

h=0

{
(u, v) ∈ Ih × I9 : v > u− h

10
+

9

10

})

=

9∑
h=0

λ2

({
(u, v) ∈ Ih × I9 : v > u− h

10
+

9

10

})

=

9∑
h=0

∫ h+1

10

h

10

∫ 1

u− h

10
+ 9

10

1 dv du =

9∑
h=0

1

200
=

1

20
.

Secondly,

λ2

(
[∂1C] 1

10
\ [∂1C] 2

10

)
= λ2

({
(u, v) ∈ I2 :

1

10
≤ ∂1C(u, v) <

2

10

})
= λ2

({
(u, v) ∈ I2 : ∂1C(u, v) =

1

10

})
= λ2

(
9∪

h=0

{
(u, v) ∈ Ih × I1 : v < u− h

10
+

1

10

})

=

9∑
h=0

λ2

({
(u, v) ∈ Ih × I1 : v < u− h

10
+

1

10

})

=

9∑
h=0

∫ h+1

10

h

10

∫ u− h

10
+ 1

10

1

10

1 dv du =

9∑
h=0

1

200
=

1

20
.
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And the last term is

∞∑
k=2

λ2

(
[∂1C] 1

10k
\ [∂1C] 2

10k

)
=

∞∑
k=2

λ2

({
(u, v) ∈ I2 :

1

10k
≤ ∂1C(u, v) <

2

10k

})

=

∞∑
k=2

λ2

(
I×

[
1

10k
,

2

10k

))

=

∞∑
k=2

1

10k
=

1

90
.

Therefore, by (3.7), FD1(∂1C) = 1
9 .

For d > 1

FDd(∂1C) =

∞∑
k=0

λ2

(
[∂1C] d

10k
\ [∂1C] d+1

10k

)
= λ2

(
[∂1C] d

10
\ [∂1C] d+1

10

)
+

∞∑
k=2

λ2

(
[∂1C] d

10k
\ [∂1C] d+1

10k

)
. (3.8)

Similarly, we consider two terms of equation (3.8). Firstly,

λ2

(
[∂1C] d

10
\ [∂1C] d+1

10

)
= λ2

({
(u, v) ∈ I2 :

d

10
≤ ∂1C(u, v) <

d+ 1

10

})
= λ2

({
(u, v) ∈ I2 : ∂1C(u, v) =

d

10

})
= λ2

((
9∪

h=0

{
(u, v) ∈ Ih × Id−1 : v > u− h

10
+

d− 1

10

})
∪(

9∪
h=0

{
(u, v) ∈ Ih × Id : v < u− h

10
+

d

10

}))

=

9∑
h=0

λ2

({
(u, v) ∈ Ih × Id−1 : v > u− h

10
+

d− 1

10

})

+

9∑
h=0

λ2

({
(u, v) ∈ Ih × Id : v < u− h

10
+

d

10

})

=

9∑
h=0

∫ h+1

10

h

10

∫ d

10

u− h

10
+ d−1

10

1 dv du+

9∑
h=0

∫ h+1

10

h

10

∫ u− h

10
+ d

10

d

10

1 dv du

=

9∑
h=0

1

200
+

9∑
h=0

1

200
=

1

20
+

1

20
=

1

10
.
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Secondly,

∞∑
k=2

λ2

(
[∂1C] d

10k
\ [∂1C] d+1

10k

)
=

∞∑
k=2

λ2

({
(u, v) ∈ I2 :

d

10k
≤ ∂1C(u, v) <

d+ 1

10k

})

=

∞∑
k=2

λ2

(
I×

[
d

10k
,
d+ 1

10k

))

=

∞∑
k=2

1

10k
=

1

90
.

Thus, by (3.8), FDd(∂1C) = 1
9 . This shows that MF1(C) = 1

9 .

Naturally, under certain transformations of random variables, dependence level

should not vary when random variables are transformed. In lieu of Theorems 3.2 and

3.5, we have to restrict such transformations to injective transformations with finitely

many discontinuity points.

Theorem 3.15. Let X and Y be random variables with continuous marginal distributions.

If f is an invertible Borel measurable function with finitely many discontinuity points, then

MF1(CX,Y ) = MF1(Cf(X),Y ), i.e. µ1(CX,Y ) = µ1(Cf(X),Y ).

Proof. Its proof follows from Theorem 2.18 and Lemma 3.4.



CHAPTER IV

NUMERICAL COMPUTATION

In this chapter, we investigate a procedure for approximating first digit distri-

butions of partial derivatives of copulas. Moreover, comparisons between µ1 and other

measures of dependence are included.

4.1 Numerical computation

Definition 4.1. Let a, b ∈ I and the functions f0,a and f1,b be defined, for u in I, by

f0,a(u) = inf {v ∈ I : ∂1C(u, v) ≥ a} and

f1,b(u) = sup {v ∈ I : ∂1C(u, v) < b} .

Lemma 4.2. For a, b ∈ I, f0,a and f1,b are measurable.

Proof. Let Î ⊆ I be the set of full measure of u’s such that ∂1C(u, v) exists for almost

every v ∈ I. And for every u ∈ Î, since we can redefine ∂1C(u, v) on a subset of I of

measure zero, we may assume that ∂1C(u, v) exists and is nondecreasing for all v ∈ I.

We also extend C in such a way that C(u, v) = 0 if u or v is negative; C(u, v) = 1 if

u > 1 and v > 1; C(u, v) = u for v > 1; and C(u, v) = v for u > 1. Let c ∈ I. Using the

nondecreasing property of ∂1C(u, ·), we obtain

{
u ∈ Î : f0,a(u) < c

}
=
{
u ∈ Î : ∃v < c, ∂1C(u, v) ≥ a

}
=

∞∪
n=1

{
u ∈ Î : ∂1C(u, c− 1

n
) ≥ a

}
, and

{
u ∈ Î : f1,b(u) > c

}
=
{
u ∈ Î : ∃v > c, ∂1C(u, v) < b

}
=

∞∪
n=1

{
u ∈ Î : ∂1C(u, c+

1

n
) < b

}
.

They are measurable sets because any ∂1C(·, c− 1
n) and ∂1C(·, c+ 1

n) are measurable.
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Lemma 4.3. For a, b ∈ I,

λ2

({
(u, v) ∈ I2 : a ≤ ∂1C(u, v) < b and ∂1C(u, v) exists

})
= λ2

({
(u, v) ∈ I2 : f0,a(u) ≤ v < f1,b(u)

})
.

Proof. This follows from

{
(u, v) ∈ I2 : a ≤ ∂1C(u, v) < b and ∂1C(u, v) exists

}
⊆
{
(u, v) ∈ I2 : f0,a(u) ≤ v ≤ f1,b(u)

}
,{

(u, v) ∈ I2 : f0,a(u) < v < f1,b(u)
}

⊆
{
(u, v) ∈ I2 : a ≤ ∂1C(u, v) < b and ∂1C(u, v) exists

}
∪
{
(u, v) ∈ I2 : ∂1C(u, v) does not exist

}
,

and the fact that the graph of a measurable function has Lebesgue measure zero.

Then, for n ∈ N, we also define functions F0,a,n and F1,b,n on I for approximat-

ing λ2

({
(u, v) ∈ I2 : f0,a(u) ≤ v < f1,b(u)

})
. It is indeed a way to numerically compute

λ2

({
(u, v) ∈ I2 : a ≤ ∂1C(u, v) < b and ∂1C(u, v) exists

})
. As a result, we obtain nu-

merical computation of the first digit distributions of partial derivatives of copulas.

Theorem 4.4. Denote the set of odd numbers by O. Let a, b ∈ I. For each n ∈ N, let

Jn
j =

[
j−1
n , j

n

)
for j = 1, 2, . . . , n− 1 and Jn

n =
[
n−1
n , 1

]
and define measurable functions

F0,a,n(u) = n

∫ j

n

j−1

n

f0,a(t) dt and

F1,b,n(u) = n

∫ j

n

j−1

n

f1,b(t) dt,

for u ∈ Jn
j (j = 1, 2, . . . , n). Then

lim
n→∞

#
((
2n
{
(u, v) ∈ I2 : F0,a,n(u) ≤ v < F1,b,n(u)

})∩
O2
)

n2

= λ2

({
(u, v) ∈ I2 : a ≤ ∂1C(u, v) < b and ∂1C(u, v) exists

})
,
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where, for any subset B of I2 and c ∈ R, cB := {(cu, cv) : (u, v) ∈ B} and, for any finite

set A, #(A) is the number of elements in A.

Before proving this theorem, the following definition and theorem are needed. For

more details, see [13].

Nicely Shrinking Sets. Let x ∈ R. A sequence (Bn)n∈N of Borel subsets of R is said

to shrink to x nicely if there exists an s > 0 and there is a sequence (B(x, rn))n∈N, with

lim
n→∞

rn = 0, such that Bn ⊆ B(x, rn) and λ(Bn) ≥ s · λ(B(x, rn)) for all n ∈ N, where

B(x, r) := {y ∈ R : |x− y| < r} and λ is the Lebesgue measure on R.

Lebesgue Point Theorem. Let R be the extended real line [−∞,∞] and let f : R → R

be an integrable function. For each x ∈ R, a sequence (Bn(x))n∈N of Borel subsets of R

shrinks to x nicely. Then for almost every x ∈ R,

f(x) = lim
n→∞

1

λ(Bn(x))

∫
Bn(x)

f dλ.

Proof of Theorem 4.4. There are two technical functions which are useful in proving this

theorem. Define measurable functions, for every u ∈ I,

f0,a,n(u) =

n∑
k=0

n∑
j=1

k

n
1F−1

0,a,n( 2k−1

2n
, 2k+1

2n ](
2j−1
2n )1Jn

j
(u)

f1,b,n(u) =

n∑
k=0

n∑
j=1

k

n
1F−1

1,b,n( 2k−1

2n
, 2k+1

2n ](
2j−1
2n )1Jn

j
(u).

The functions f0,a and f1,b may not exist at 2j−1
2n . To get around this technicality, we

have to use their average functions over the interval Jn
j , i.e. F0,a,n and F1,b,n. Note that

f0,a and f1,b are integrable and for each u ∈ I, there exists ju,n = 1, 2, . . . , n such that

u ∈ Jn
ju,n

for every n ∈ N. Moreover, for each u ∈ I, the sequence (Jn
ju,n

)n∈N shrinks

to u nicely with rn = 1
n and s = 1

2 . Then, by Lebesgue Point Theorem, (F0,a,n)n∈N

and (F1,b,n)n∈N converge a.e. to f0,a and f1,b, respectively. Next, we will show that

(f0,a,n)n∈N converges a.e. to f0,a. Let u ∈ I be such that (F0,a,n(u))n∈N converges to

f0,a(u) and let ϵ > 0. Then there exists an N1 ∈ N such that 1
N1

< ϵ. Since (F0,a,n(u))n∈N
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converges to f0,a(u), there exists an N2 ∈ N such that |F0,a,n(u)− f0,a(u)| < ϵ
2 for

every n ≥ N2. Let n ≥ max (N1, N2). Then u ∈ Jn
j for some j = 1, 2, . . . , n. Thus

F0,a,n

(
2j−1
2n

)
= F0,a,n(u) and so 2k−1

2n < F0,a,n(u) ≤ 2k+1
2n for some k = 0, 1, 2, . . . , n.

This implies that |F0,a,n(u)− f0,a,n(u)| ≤ 1
2n because f0,a,n(u) =

k
n . Therefore,

|f0,a,n(u)− f0,a(u)| ≤ |f0,a,n(u)− F0,a,n(u)|+ |F0,a,n(u)− f0,a(u)| ≤
1

2n
+

ϵ

2
< ϵ.

This shows that (f0,a,n)n∈N converges a.e. to f0,a. In a similar way, (f1,b,n)n∈N converges

a.e. to f1,b. Then, because for any n ∈ N, |f1,b,n − f0,a,n| is dominated by an integrable

function on I, 1I, and (f1,b,n − f0,a,n)n∈N converges a.e. to f1,b − f0,a, we have, by the

Dominated Convergence Theorem,

lim
n→∞

∫
I
f1,b,n(u)− f0,a,n(u) du =

∫
I
f1,b(u)− f0,a(u) du.

But, by Lemma 4.3,

λ2

({
(u, v) ∈ I2 : a ≤ ∂1C(u, v) < b and ∂1C(u, v) exists

})
= λ2

({
(u, v) ∈ I2 : f0,a(u) ≤ v < f1,b(u)

})
=

∫
I
f1,b(u)− f0,a(u) du,

and

∫
I
f1,b,n(u)− f0,a,n(u) du =

n∑
k=0

n∑
j=1

k

n2

(
1F−1

1,b,n( 2k−1

2n
, 2k+1

2n ] − 1F−1
0,a,n( 2k−1

2n
, 2k+1

2n ]

)(
2j−1
2n

)
=

#
((
2n
{
(u, v) ∈ I2 : F0,a,n(u) ≤ v < F1,b,n(u)

})∩
O2
)

n2
.

This shows that

lim
n→∞

#
((
2n
{
(u, v) ∈ I2 : F0,a,n(u) ≤ v < F1,b,n(u)

})∩
O2
)

n2

= λ2

({
(u, v) ∈ I2 : a ≤ ∂1C(u, v) < b and ∂1C(u, v) exists

})
.
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4.2 Examples and comparisons

In previous section, let us observe that we use measurable functions F0,a,n and

F1,b,n as technical tools for proving Theorem 4.4. Nevertheless, we can unquestionably

use smooth level curves of partial derivatives of copulas to approximate their first digit

distributions. In this section, we numerically compute µ1 of some classes of copulas.

Example 4.1. A pair of random variables X and Y has the standard bivariate normal dis-

tribution with correlation coefficient ρ ∈ (−1, 1) if their joint probability density function

is given by

ϕ(x, y; ρ) =
1

2π
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)

for x, y ∈ R. One can show that the marginal distributions of X and Y are standard

normal, denoted as Φ. Then let Nρ(x, y) denote the standard bivariate normal joint

distribution function with correlation coefficient ρ ∈ (−1, 1) so that Cρ, the Gaussian

copula, is defined by Sklar’s theorem

Cρ(Φ(x),Φ(y)) = Nρ(x, y) (x, y ∈ R) .

One can show that C0 = Π. Moreover, we can extend continuously for ρ ∈ {−1, 1}:

C−1(u, v) := lim
ρ→−1

Cρ(u, v) = max(u+ v − 1, 0),

C+1(u, v) := lim
ρ→+1

Cρ(u, v) = min(u, v),

for every u, v ∈ I, so that Cρ approaches W and M as ρ approaches −1 and 1, respectively.

Then partial derivatives of Gaussian copulas are

∂1Cρ(u, v) = Φ

(
Φ−1(v)− ρΦ−1(u)√

1− ρ2

)
,

∂2Cρ(u, v) = Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

)
.
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We then numerically compute µ1 of C0.8, the Gaussian copula with ρ = 0.8. Let us begin

by considering level curves of ∂1C0.8. By Theorem 4.4, to approximate FD1(∂1C0.8) we

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

y

Figure 4.1: Level curves of Gaussian copula ∂1C0.8

firstly count grid points which lie above or on level curve {∂1C(u, v) = 1}. Similarly, we

find the number of grid points lying above or on level curve {∂1C(u, v) = 1
10i } and below

{∂1C(u, v) = 2
10i } for every i = 1, 2, . . . , n. The quotient of total of such grid points

and the number of grid points such that ∂1C0.8 > 0 is an approximation of FD1(∂1C0.8).

Thus, in a similar manner, an approximation of MF1(C0.8) is obtained and an approximate

value of µ1(C0.8) follows. In Figure 4.2, µ1 of Gaussian copulas are graphed where the

parameter ρ vary.
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Figure 4.2: µ1 of Gaussian Cρ (Left), Clayton Cθ (Center) and Frank Cβ (Right)
copulas

For various classes, we also numerically compute µ1 of Clayton and Frank copulas

whose graphs are shown in Figure 4.2. Next, let us recall the definitions of some copula-

based measures of dependence to compare their values with µ1:
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Figure 4.3: Graphs of µ1(C) against ω1(C) for Gaussian Cρ (Left), Clayton Cθ (Center)
and Frank Cβ (Right) copulas
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Figure 4.4: Graphs of µ1(C) against ζ1(C) for Gaussian Cρ (Left), Clayton Cθ (Center)
and Frank Cβ (Right) copulas

I. (Siburg and Stoimenov [15])

ωi(C) =

(
6

∫
I

∫
I
|∂iC(u, v)− ∂iΠ(u, v)|2 du dv

)1/2

, i = 1, 2;

II. (Trutschnig [16])

ζi(C) = 3

∫
I

∫
I
|∂iC(u, v)− ∂iΠ(u, v)| du dv, i = 1, 2.

In the Figures 4.3 and 4.4, numerical values µ1 of Gaussian, Clayton and Frank

copulas are plotted against ω1 and ζ1, respectively. One can see that for all three classes

considered, the values of µ1 vary quite proportional to both ω1 and ζ1. This means that

µ1 could be a good indicator of dependence. For finer detection, one can investigate in

a future exploration dependence indicators based on the first two, three or more digit

distributions of the partial derivatives of copulas.
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APPENDIX : Examples of R code for calculating and plotting µ1

In calculating, by applying Theorem 4.4, the approximate values µ1 of each example
in this thesis, we use R code to compute that robust results. Let us give the code for MF1

and, as a result, µ1 used in Example 4.1.

1 n = 6000
2 #Define grid points used in calculating
3 m <- matrix(rep(seq(1, 2*n-1, by = 2),n),nrow=n)
4 mt <- t(m)
5 x <- m/(2*n)
6 y <- mt/(2*n)
7
8 #Use parameter 0.5 in this example
9 r <- 0.5

10 #Define first derivative of Gaussian copula (parameter=r)
11 dG <- function(r) pnorm((qnorm(y)-(r*qnorm(x)))/sqrt(1-(r^2)))
12
13 #Calculate first digit distribution
14 FG = matrix(nrow=1,ncol=9)
15 Z <- sum(dG>0)
16 for(d in 1:9)
17 {s=0;
18 for(i in 0:100){s=s+sum(dG>=d/(10^i))-sum(dG>=(d+1)/(10^i))};
19 FG[1,d]=s/Z}
20
21 #Set approximate value of MF_1 and mu_1
22 MF1 <- max(FG)
23 mu1 <- ((MF1-(1/9))*(9/8))^0.5

For plotting µ1 against ω1 and ζ1, the following R code is needed to calculate ω1:

1 library(rmutil) #Load the package "rmutil"
2 Omega1 <- function(r){
3 #Define first derivative of Gaussian copula
4 dG<- function(x,y) pnorm((qnorm(y)-(r*qnorm(x)))/sqrt(1-(r^2)))
5 #Define first derivative of Product copula
6 dPi<-function(x,y) y
7 integrand <- function(x,y) (dG(x,y)-dPi(x,y))^2
8 int<-int2(integrand, a=c(0,0), b=c(1,1))
9 return(int)}



47

while ζ1 use:

1 library(rmutil) #Load the package "rmutil"
2 Zeta1 <- function(r){
3 #Define first derivative of Gaussian copula
4 dG<- function(x,y) pnorm((qnorm(y)-(r*qnorm(x)))/sqrt(1-(r^2)))
5 #Define first derivative of Product copula
6 dPi<-function(x,y) y
7 integrand <- function(x,y) abs(dG(x,y)-dPi(x,y))
8 int<-int2(integrand, a=c(0,0), b=c(1,1))
9 return(int)}
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