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CHAPTER 1

INTRODUCTION

In measuring the level of dependence between two random variables, since it largely
depends on a given circumstance, measures of dependence are needed for consistency. Un-
surprisingly, measures of dependence have been extensively studied. Their simple prop-
erties are ability to detect independence and complete dependence and invariance under
certain types of transformations. Many dependence measures have been proposed and
investigated via bivariate copulas owing to Sklar’s theorem [10]. It says that copulas
are functions describing the dependence structure of two random variables regardless of
their marginal distributions. Such dependence measures are called copula-based mea-
sures of dependence. Via many copula-based measures of dependence, e.g. Siburg and
Stoimenov’s wy (see [15]) and Trutschnig’s ¢ (see [16]), it has become more transparent
that dependence information is encoded in the first order partial derivatives of copulas.
Also Darsow, Nguyen and Olsen [2] have shown that the first order partial derivatives
of copulas coincide with the conditional distributions of one random variable given the
other. From experiments, the first digit distribution yields some information about the
function and is computationally robust for most copulas. This motivates us to propose a
new dependence indicator based on the first digit distributions of the partial derivatives
of copulas.

For ¢ = 1,2, we define functions FD, (9;C) and MF; (C) to introduce a dependence

indicator y;(C) of copula C as follows:

A2 ({(u,v) €[0,1]%: the first digit of ;C(u,v) is d})
Ao ({(u,v) € [0,1]2: 9;C(u,v) > 0})

FD4(8C) = e [0,1],

MF;(C) = max FD4(9;C) € [;,1] and p;(C) = QMFI(SC)_l € [0,1],

where Ay denotes Lebesgue measure on [0, 1]2. We shall only investigate p; as pg can be
studied in a completely similar manner. We show that although g lacks the ability to

totally detect independence and complete dependence, it yields levels of dependence as



well as wy and (3 for certain parametric classes of copulas.

In Chapter II, we give a brief introduction to copulas and selected tools for proving
the main results. Chapter III covers two sections. In the first section, theoretical facts of
the upper level sets are proved. After all the prerequisites for FD4, MF; and uq are ready,
we prove the main results in the second section. The last chapter is devoted to numerical

computation of uq, examples and comparisons.



CHAPTER II

PRELIMINARIES

First we introduce some notations used throughout this thesis. Let I denote the
closed unit interval [0, 1], B (I) the Borel o-algebra on I, A and A2 the Lebesgue measures
on I and I?, respectively. We may simply write / 4 dz for the Lebesgue integral on a subset
A of I. For any set S, 1g denotes a characteristic function of S. As usual, N, Z and R
denote the sets of natural, integer and real numbers, respectively. Let us start with a

definition of copulas.

Definition 2.1. A bivariate copula is a function C from I? to I with the following prop-

erties.

I. (Boundary conditions) For every w, v in I, C'(u,0) = 0 = C(0,v), C(u,1) = u and
C(1,v) =v.

I1. (2-increasing property) For each rectangle R := (ug,us] x (v, ve] C I2,

Vo(R) := C(ug,v2) — C(ug,v1) — C(ug,v2) + C(uz,v1) > 0.

Each copula C' induces a unique measure pc on I? via pc (R) := Vg(R) for any
rectangle R C I? and a standard extension to all Borel subsets of I? using Carathéodory-
Hahn extension theorem. The support of C' is defined as the support of its induced
measure fic, i.e. it is the complement of the union of all open subsets of I? that are
pe-null sets. Moreover, the induced measure pc is a doubly stochastic measure, as for

every Borel subset B of I,

ne(I x B) = X(B) = uc(B x I).

Conversely, for each doubly stochastic measure pu, the copula corresponding to that mea-

sure p is obtained by C'(u,v) = p ([0, u] x [0,v]). In fact, this is a one-to-one correspon-



dence between the set of copulas and the set of doubly stochastic measures.

The joint continuity of copulas can be obtained from a simple fact that every copula

(' is Lipschitz, i.e. for every ui, us, vy, ve € I,

|C (ug,v2) — C(ur,v1)| < |ug — ur| + |va — v1].

As a consequence, C' is absolutely continuous in each argument, or, for all u,v € I, t —
C(u,t) and t — C(t,v) are absolutely continuous on I. Another important property of
copulas is the non-decreasing property in each argument being a virtue of the 2-increasing
property. By the Lebesgue Differentiation Theorem, this implies that for any v € I, the
first order partial derivative 01C(u,v) = %C(u,v) exists for almost all v € I and for
any u € I the first order partial derivative 0,C(u,v) := %C(u,v) exists for almost all
v € I and the derivatives 9;C (i = 1,2) are measurable. For u,v € I such that 9;,C(u,v)
exists, 0 < 0;C(u,v) <1 (¢ = 1,2). This is again a result of the Lipschitz condition.
Moreover, using the 2-increasing property, it is straightforward to show that the partial
derivatives of copulas are non-decreasing almost everywhere in the sense that for every
u,v € I the functions ¢t — 0,C(u,t) and t — 02C(t,v) are non-decreasing on a subset of

I of full measure.

Owing to Sklar’s theorem, see [10], copulas become very useful.

Theorem 2.2 (Sklar’s theorem). Let X and Y be random wvariables with distribution
functions F' and G, respectively, and joint distribution function H. Then there exists a

(unique on Ran F' x Ran G) copula C' such that for all x,y € R,
H(z,y) = C(F(z),G(y)). (2.1)

Conversely, if C is a copula, F' and G are distribution functions, then the function H

defined by (2.1) is a joint distribution function with the margins F and G, respectively.

Additionally, the uniqueness of the copula of random variables immediately follows



when the marginal distribution functions are continuous. Because of this, we will assume
that every random variable in this thesis has continuous distribution function. Here,
under this assumption, we denote by Cx y (called the copula of X and Y') the unique
copula of random variables X and Y satisfying (2.1). When the random variables X and

Y are understood, we may simply write C'.

Surprisingly, the first order partial derivatives of copulas of random variables are
related to the conditional probabilities of those random variables. We recall some basic

facts on conditional probabilities.

For a random variable X, we denote by o(X) the o-algebra generated by all inverse
images of Borel sets under X, that is o(X) := {X~!1(B) : B € B(R)}, where B (R) is the

Borel o-algebra on R.

Definition 2.3. Let X and Y be random variables on a probability space (€2, F, P) with
E[|X]] < co. Then the conditional expectation of X with respect to'Y is a random variable

Z on a measurable space (2, 0(Y)) satisfying

/ XdP = / ZdP forall Aeco(Y). (2.2)
A A

It is straightforward to show that set function on o(Y") defined by the left hand side
of identity (2.2) is absolutely continuous with respect to P. Hence, by Radon-Nikodym
Theorem, see [11], the conditional expectation is in fact the Radon-Nikodym derivative
and it is unique up to a set of measure zero and we then denote by E [X|Y] the conditional
expectation of X with respect to Y. Naturally, we define the conditional probability of
B € F given' Y by P(B|Y) := E[1g|Y]. One can see that P(B|Y) is the unique (a.e.)

o(Y)-measurable function such that
P(ANnB) = / 1pdP = / P(B|Y)dP forall A€ o(Y).
A A

Let us summarize essential properties of the conditional expectation. For more details,

see [4, 11, 13, 18].



Theorem 2.4. Let X and Y be random variables on a common probability space. Suppose

that E[| X]] < oco.

I. E[EX|Y]]=E[X]
II. If Y = c as. (c € R), then E[X|Y] =E[X] a.s.
II. If X and Y are independent, then E[X|Y] = E[X] a.s.

IV. If Z is o(Y')-measurable and bounded, then E[ZX|Y]|=Z E[X|Y] a.s.

We are now ready to prove a surprising result.

Theorem 2.5. Let C be the copula of random wvariables X and Y whose continuous

marginal distributions are F' and G, respectively. Then for all z,y € R,

L P(Y <y|X) (w) = E [Lyy<y|X] (w) = 0:C (F(X(w)),G(y)) a.e. weQ; and

II. P(X <zlY) (w) = E[Lix<p|Y] (w) = 8:C (F(z), G(Y (w))) a.e. we Q.

Proof. Since P (X < z|Y) = E [I{x<,3|Y] is the unique a.e. ¢(Y)-measurable function

such that

[ tixen@) P = [ B [1xenl¥] @) aP()

for all A € o(Y). Note that 02C (F(x),G(Y(+))) is o(Y')-measurable. It suffices to show

that
[ tiren@)dP) = [ 0.0 (F@), 61y (@) dPlw)
for A=Y ((—00,a]),a € R. By making changes of variables,

/ 02C (F(x), G(Y () dP(w) = / " 00 (F(@), G(y)) dG(y)
Y =1((~o0,a)) oo
)

G(a
_ /O 0,C (F(z),v) dv



C(F(z), G(a)) = C(F(x),0)

z),G(a)) = P(X <,V < a)

C(F
/ ]1{X<:c} ]1{Y<a}( w) dP(w)

= /{Yga} Tix<zy(w)dP(w)

- / 1<) (@) dP(w),
Y1 ((—o0,a))

where we have applied the fundamental theorem of calculus and the Sklar’s theorem.
Using the uniqueness of the conditional expectation, II. immediately follows. I. can be

proved in a similar way. O

Next, we give important examples of copulas of random variables and their prob-
abilistic meanings. First, the product copula II(u,v) := uwv is sometimes called the

independence copula II because it is the copula of independent random variables.

Theorem 2.6. For random variables X and Y with continuous distribution functions,

Cxy =1l if and only if X and Y are independent.

Its proof directly follows from Sklar’s theorem and will be omitted. We then give

the copulas of completely dependent random variables in the sense defined as follows.

Definition 2.7. Let X and Y be random variables. Y is said to be completely dependent
on X if there exists a Borel measurable function f such that P(Y = f(X)) = 1. The
copula Cxy of X and Y is called a complete dependence copula. In the case that the
function f is strictly monotonic, Y is said to be monotonically dependent on X and Cxy
is said to be a monotonic dependence copula. Moreover, X and Y are said to be mutually
completely dependent if Y is completely dependent on X and X is completely dependent
on Y or if there is an invertible Borel measurable function f with P(Y = f(X)) = 1.

Surely, such C'x y is said to be a mutual complete dependence copula.

The copulas W (u,v) := max(u + v — 1,0) and M (u,v) := min(u,v) are the most

important examples of complete dependence copulas, as they are the two monotonic



dependence copulas. The following theorem was given in Schweizer and Wolff (see [14]).

Theorem 2.8. Let X and Y be random variables with continuous distribution functions.

I. Cxy =W if and only if Y is strictly decreasingly dependent on X.

II. Cxy = M if and only if Y is strictly increasingly dependent on X .

So, by Theorem 2.8, W and M are often called the countermonotonic and comono-
tonic copulas, respectively. Furthermore, W and M are pointwise lower and upper

bounds, respectively, of copulas, i.e. W < C < M for all copulas C.

The following theorem is given by Darsow, Nguyen and Olsen (see [2]). They gave

equivalent forms of complete dependence for random variables.

Theorem 2.9. Let C' be the copula of random variables X and Y having continuous

marginal distributions. Then the following statements are equivalent.

I 'Y is completely dependent on X. (X is completely dependent on Y".)
II. ForyeR, P(Y <y|X)€{0,1} as (ForzecR, P(X <z|Y) € {0,1} as.)

III. Forv €1, 0:C(u,v) € {0,1} almost every u € 1. (For u € I, 92C(u,v) € {0,1}

almost every v € 1)

Moreover, by virtue of Theorem 2.9, one obtains the following corollary.

Corollary 2.10. Let C be the copula of random wariables X and Y having continuous

marginal distributions. Then the following statements are equivalent.

I. X and'Y are mutually completely dependent.

II. Foru,vel, 1C(-,v),02C(u,-) € {0,1} almost everywhere.



Next, we present methods for constructing copulas used in this thesis. The first one
is a method for constructing patched copulas introduced by Zheng, Yang and Huang (see
[19]). Recall from the identity (2.1) that a copula is the joint distribution function of two
uniform random variables on I. So, given a sample space €} with probability measure P,
let C be a copula, it is indeed a joint distribution function, of random variables U and V'

that are uniformly distributed on I. Fix m,n € N, let {¢;};2; and {d;}]_; be such that
O=cp<cg<-<ep=1 and 0=dy<di1 <---<d,=1.

Let Iy = [co, 1) and I; = (¢i, ¢iqa) for i = 1,2,...,m—1, Jy = [do, d1] and J; = (dj, d;+1]
for j =1,2,...,n— 1. Then {I; X Jj : i € Npy_1,j € Ny_1} is a partition of 12, where
N ={0,1,...,k}. Fori € Ny—1,j € Np—1,set Ajj ={w e Q: (U(w),V(w)) € I; x J;}
then {A;; i € Njp—1,5 € Np—1} is a partition of 2. Using the law of total probability,

one can derive that

m—1n—1
Clu,0) =PU <u,V <v)=> > P(Ay)PU <,V < v|Ay). (2.3)

=0 j=0
One can show that each P(U < u,V < v|A;;) is a joint distribution function on I; x J;
whose continuous marginal distributions are Fj;(u) := P(U < u|A;;) and Gyj(v) =
P(V < v|A;;). Here, the continuities of Fj; and G;; follow from the continuity of C.

According to Sklar’s theorem, there is a unique corresponding copula Cj; such that
P(U < u, \% < ’U’Aij) = CZ(FZ(U), GZJ(’U)) (2.4)

Plugging (2.4) into (2.3), we have

m—1n—1

Clu,v) = > > P(Ay)Cij(Fij(u), Gij(v)). (2.5)

i=0 j—0
Note that [P(A;j)]mxn is a doubly stochastic matrix. The decomposition in (2.5) is
called the ({cl-}?il,{dj}?zl)—patched decomposition of C or just patched decomposition

of C if {¢;};2; and {d;}}_; are understood. This is in fact a generalization of patched
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copulas, which was introduced by Zheng, Yang and Huang [19], in the sense that the
unit square is partitioned into unequal-sized sub-rectangles. Any given copula C' can be
decomposed in the form of (2.5). On the whole, the converse is not true. However, we
obtain the following characterization on some assumptions of the coefficients and marginal
distributions. Indeed, the following theorem is a generalization of the case that n = m
and ¢; = d; = % for all ¢ = 0,1,...,n, which was given by Chaidee, Santiwipanont and

Sumetkijakan (see [1]).

Theorem 2.11. For each i = 0,1,...,m —1 and j = 0,1,...,n — 1, let H;; and L;;
denote distribution functions over I; and Jj, respectively, let D;; be a copula and a;; > 0.

The function D defined by

—1n—

m—1
v):Z
=0

1
aij Dij(Hij(u), Lij(v)),  u,v €1,
j=0
is a copula if and only if
L fOT each h = 07 17 cee, MM — 17 Zah]HhJ(u) = U — Cp fOT' all u & Ih,' and

m—1
1. for each k=0,1,...,n—1, Zaszzk =v —dy for all v € Jg.
=0

Proof. (=) We prove L., the proof of II. is similar. Fix h =0,1,...,m— 1. Since for each

Jj >0, Hij(cphy1) =1 for all i < h and H;j(cpy1) =0 for all ¢ > h and D is a copula,

m—1n—1 h n—1
Ch+1 = D(Ch+1> Z Z a’L]D’Lj ij Ch-i—l) L; (1)) = Z Ajj
i=0 j=0 i=0 j=0
which implies in particular that Z;L;Ol ajj = cig1 — ¢ forall i = 0,1,...,m — 1. We

are now ready to show I. Let u € Ij,. So for each j > 0, H;j(u) = 1 for all i < h and

H;j(u) =0 for all i > h. Then

m—1ln—

1 1
az]Dz] zg sz(l))
=0 j=0
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m—1n—1 m—1n—1
= Z Zaiij(Hw ai;Hij(u)
=0 j=0 =0 j5=0
h—1n—1 n—1
= Z Q5 + Z ahJth (2 6)
=0 5=0 7=0
h—1 n—1
= (Cz—H + Zah]Hh] )
=0 j=0
n—1
=cn+ Y aniHp;(u)
§=0

Thus I. follows because D is a copula.

(<) The statement D(u,0) = 0 = D(0,v) for u,v € I follows directly from the
condition H;;(0) = 0 = L;;(0) and D;; is a copula for all 4,j. Moreover, it is also
straightforward to prove that D is 2-increasing by using the assumption that H;; and L;;
are distribution functions, that D;; is 2-increasing and that a;; > 0. It remains to show

that D(u,1) =wu and D(1,v) =v. For each h =0,1,...,m — 1, let u € Ij,. Then

h—1n—1

Z Z aij + Z anjHpj(u

=0 5=0

follows from equation (2.6), which is not a consequence of condition that D is a copula.

Then the condition I. particularly gives Z?:_& a;j; = ciy1 —¢; for i =0,1,...,m —1 and
yields
h—1
D(u,1) :Z Cit1 — Ci) Zah]th =cp+u—cp =u.
i=0

The last property required for definition of copulas is D(1,v) = v for all v € I. It can be

proved in a similar manner using II. O

One can obtain a new copula from old by the following binary operation on the

space of all copulas, denoted by C. A binary operation x on C is defined as

C * D(u,v) = /820(u,t)61D(t,v) dt for C,D € C and u,v € L.
I
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This was introduced by Darsow, Nguyen and Olsen [2], they proved that * is a binary

operation on C and (C, %) is a monoid with null element II and identity M.

In the following theorem, they also proved that for any random variables X,Y and
Z, the copula Cx z can be decomposed into x-product of the copulas Cxy and Cy,z

where some conditions on three random variables are assumed.

Theorem 2.12. Let X,Y and Z be random variables having continuous marginal distri-

butions on a common probability space such that

E [ﬂ{XeBl} . B{Z6B2}|Y:| = E []I{XEBl}D/] . E [1{Z632}|Y] a.s.

for any Borel sets By, Ba, one indeed says that X and Z are conditionally independent

givenY. Then Cx z = Cxy * Cy 7.

Proof. Let (Q, F,P) be a probability space and Fx, Fy and Fyz continuous distribution
functions of X,Y and Z, respectively. Let u,v € I. If u or v are in {0,1}, it is obvious
that Cx z(u,v) = Cxy * Cy z(u,v). Suppose that u,v ¢ {0,1}. Since Fx and Fy are
continuous, by applying Intermediate Value Theorem, there exist real numbers x and z

such that F'x(x) = v and Fz(z) = v. Then

Cxy * Cy,z(u,v)

_ /]I 9Cx v (u, )01 Cy (1, v) dt

- / ‘: hCix.y (Fx (@), Fy ()01 Cr.z2(Fy (y), F2(2)) dFy ()

- /Q 02Cx v (Fx (), Fy (Y (€)1 Cy,z(Fy (Y (w)), Fz(2)) dP(w)

= [ EltixenlV] @) B [LgzealV] ()P

= [ Ellxentizenlv] @)aPE) = | BlLirenzealV] () dP)

Q

= COx.z (Fx(),Fz(2)) = Cx.z(u,v),
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where we have used changes of variables theorem in the second and third equalities,
Theorem 2.5 in the fourth equality, the assumption that X and Z are conditionally
independent given Y in the fifth equality, the definition of the conditional expectation in

the seventh equality and Sklar’s theorem in the next to last equality. O

Moreover, Ruankong, Santiwipanont and Sumetkijakan (see [12]) gave the following

special case frequently seen.

Corollary 2.13. Let X and Y be random variables having continuous marginal distribu-

tions and f a Borel measurable function. Then Cyx)y = Cyx)x * Cxy-

They proved that f(X) and Y are conditionally independent given X and then the

corollary above immediately follows from Theorem 2.12.

Moreover, Darsow and Olsen [3] showed that the *-product on C is jointly continuous

with respect to the Sobolev norm.

Let p € N. The Sobolev norm || - [ of a copula C' is defined by

IClp) = ( | [1arcu o + ..o du dv)l/p.

Theorem 2.14. The x-product on C is jointly continuous with respect to the Sobolev
norm. Formally, let p € N and for any n € N, let Cy,, Dy, C and D be copulas such that
nll_}ngo |Cn — Cll(p) =0 and nh—>Holo | Dy, — Dl|(p) = 0. Then nh_>n;o |Cp % Dy — C % Dl = 0.

Since the Sobolev norm of a copula is defined in term of its derivatives, the following

results are easily obtained.

Theorem 2.15. Let (Cp)nen be a sequence of copulas and C be a copula such that
(0;Cp)nen converges to 0;C almost everywhere for i = 1,2, and let p € N. Then
[Cn = Cllp) = 0.

lim
n—oo
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Proof. By the assumption, we have, for almost every (u,v) € 12
lim |0;Cy(u,v) — 8;C(u,v)| =0, i=1,2.
n—oo

Therefore,

nh_>nolo HCn - CH(p)
1/p
= lim (//(yal(on —O)P £ |95(Cr — O)P) dudv)

1/p
— lim (//(yalcn—aloMM|320n—820)|f?)dudv>
IJI

n—oo

1/p
( lim (//(mlcn _ )P + |0:C — 0 P) dudv))

</ﬂ/]1 lim ((|01C, — 01C)F + [0:Cy — 02C)[7)) du dv>1/p

n—0o0

0,

where we have used the Dominated Convergence Theorem in the next to last equality. [

Moreover, we will show that convergence of copulas in Sobolev norm || - ||,y implies
the existence of a subsequence whose first order partial derivatives converge pointwise

almost everywhere.

Theorem 2.16. Let p € N and (Cp)nen a sequence of copulas and C' a copula such that
lim [|C, — Cl|p) = 0. Then there exists a subsequence (Cp, )ken such that (9;Cn, )ren
n—oo

converges to 0;C almost everywhere for i =1, 2.

Proof. Since lim [|C;, — C||(;,y = 0, we can find a strictly increasing sequence of positive
n—oo

integers (nj)ken such that [} [1(|81Cn, — O C|P 4 82Cn, — 02C|P) dudv < 5. And then

//Z (101Cr. — DLCIP + 102Cin, — DoCP) dudlv
T =1

o0 [o¢] 1
=> (101Cn, = O1CPP +102Cn, — D2CPP) dudo <Y~ = < o0.
k=171/1 k=1 2k
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Consequently,

NE

(|810nk — 61C|p + |320nk — 82C|p) < o0 a.e.

B
Il

1

In particular,

Z |01Cy,, — 01C)P < 00 and Z |02Cy,, — RCIP < 0o ae.
k=1 k=1

Thus, klim |0;Cp, — 01C| =0 a.e. foralli=1,2. O
—00

Another interesting method for constructing copulas is according to the following

procedure.

I. Place the support for M on I2.
II. Cut I? into a finite number of strips vertically.

III. Shuffle the strips (some of them can be flipped around their vertical axes of sym-

metry).

IV. Put them together again to form the square.

A copula whose support is obtained by the above method is called a shuffle of Min. The

formal definition is given by Mikusinski, Sherwood and Taylor [9].

Definition 2.17. Let n e N, 0 =59 <s1 < <sp=land 0=t <t1 < ---<tp, =1
two partitions of I and o a permutation on {1,2,...,n}. A copula C is called the shuffle
of Min generated by (n,{s;},{t},o) if each [s;_1, ;] X [ty(s)—1,t0(;)] i @ square in which
C puts a probability mass s; — s;—1 spread uniformly on one of the diagonals. For each
i €{1,2,...,n}, let m(i) denote the slope of the diagonal of [s;_1,si] X [t,(i)—1,ts(;)] On
which the probability mass in that square is distributed. We also say that C' is the shuffle

of Min generated by (n,{s;},{t:},o,m).

Mikusinski, Sherwood and Taylor (see [9]) also gave a probabilistic meaning of

shuffles of Min.
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Theorem 2.18. Let X and Y be random variables with continuous distribution functions.
Then Cxy is a shuffle of Min if and only if there exists an invertible Borel measurable

function with finitely many discontinuity points f such that Y = f(X) a.s.

Durante, Sarkoci and Sempi [5] characterize shuffles of Min in terms of push-forward
measures, let us recall the definition of push-forwards. Let (€2, F, 1) be a measure space
and (91, F1) a measurable space. For each measurable function f : Q@ — Qi, a push-
forward of p under f is a set function f*p on (Qq, F1) defined by fxu(A) = p (f_l(A))
for every A € Fi. One can obtain that the push-forward f % p is a measure on Fji.
Moreover, if g is a measurable function from €; to another measurable space (Qg, F2),

then

(go f)*u=gx(fxp). (2.7)

Before characterizing shuffles of Min, the notions of shufflings and measure-preserving

functions are needed. A shuffling St : 1> — I? is defined by

Sr(u,v) = (T(u),v), (2.8)

where T : T — I. Note that Sp~! = Sp-1. A Borel measurable function f : I — T is
measure-preserving if for any B € B (I), A\(f~1(B)) = A(B). Borel measurability of the
inverse of a Borel measurable injection yields the measure-preserving of the inverse of a

measure-preserving bijection. Moreover, the following result is also needed.

Lemma 2.19. Let T : 1 — 1 be a Borel measurable, St a shuffling and p a doubly

stochastic measure. Then the following statements are equivalent.

I St p is doubly stochastic measure.

1. T is a measure-preserving transformation.

Proof. Using doubly stochastic property of u, one can directly show that for every Borel
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set B C1,
Sy p(Ix B) = pu (S (Ix B)) =pu(Ilx B) = X(B),
Srxp(BxI)=p(SpH(Bx1) =p (T HB)x1I) =X(T"1B)).

Then the lemma immediately follows. O

Theorem 2.20 (The characterization of shuffles of Min). A copula C' is a shuffle of Min
if and only if there exists a piecewise-continuous measure-preserving bijection T : T — 1

such that po = St * par.

Proof. (<) Let V be a uniform (0, 1) random variable. Then (V,V) is distributed ac-
cording to M, i.e. the copula of V and V is M, and so (V, V) x P = ups. Equations (2.7)

and (2.8) yield, for all measurable transformation 7" of I,

(TOV,V)*PZ (STO(MV))*P:ST*((V,V)*P) :ST*MM~ (29)

Note that T is piecewise-continuous measure-preserving bijection by assumption and gz is
doubly stochastic. Then by Lemma 2.19, S7* s is doubly stochastic and so corresponds
to a copula C. By equation (2.9), joint distribution function of 7o V and V is the
connecting copula C. Thus, according to Theorem 2.18, C' is a shuffle of Min.

(=) Let C be a shuffle of Min. Then there exist uniform (0, 1) random variables U and
V' whose connecting copula is C. So (U,V) x P = uc. Furthermore, by Theorem 2.18,

there exists a piecewise-continuous bijection 7" on I for which U = T'(V') a.s. Then

(ToV,V)«P=(UV)*P = pc.

Using (2.9), which is not a consequence of condition that T is measure-preserving, we

obtain puc = St x ppr. Finally, Lemma 2.19 yields the measure-preserving of T'. O

The characterization of shuffles of Min leads Durante, Sarkoci and Sempi [5] to

generalize the concept of shuffle of Min by dropping piecewise-continuous of 7.
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Definition 2.21. A generalized shuffle of Min is a copula C' whose induced measure is

Mo = ST*/LM (2.10)

for some measure-preserving bijection 7" : I — I (not necessary to be piecewise-continuous).
Replacing M by a given copula D in (2.10), C is called a generalized shuffle of D. If the

measure-preserving bijection T is piecewise-continuous, then C'is called a shuffle of D.

The most useful properties used in the next chapter are listed in the following

theorem. They are given by Ruankong, Santiwipanont and Sumetkijakan (see [12]).

Theorem 2.22. Let C' and D be copulas. Then

1. C is a T-shuffle of D if and only if there exists a shuffle of Min A, defined by
A = St pn, such that C = Ax D.

2. C is a generalized T-shuffle of D if and only if there exists a generalized shuffle of
Min A, defined by ppa = St * ppr, such that C = Ax D.



CHAPTER III

DEPENDENCE INDICATORS

FROM FIRST DIGIT DISTRIBUTIONS

We divide this chapter into two sections. The first section covers theoretical facts
of the upper level sets needed to prove main properties of the first digit distributions of
partial derivatives of copulas. As a result, we obtain an indicator of dependence p7 in the

second section.
3.1 Upper level functions

Let £(I?) be the space of Lebesgue measurable subsets of I2. The function
p(A, B) := \y(AAB), for A, B € L(I?),

is a pseudometric on £(1?) where AAB := (A\ B)U(B\ A). p becomes a metric if £(I1?)

is considered modulo the equivalence relation ~: A ~ B if and only if A\o(AAB) = 0.

Definition 3.1. For a copula C, let ®p, ¢ be a function on I defined by
Py, c(a) =[01C]a == {(u,v) € I? : 9,C(u,v) exists and 9;C(u,v) > al.

[01C)q are called upper a-level-sets, introduced by Ferndndez-Sdnchez and Trutschnig
[6]. We may sometimes write {(u,v) € I* : 91C(u,v) > a} or just {0,C > o} instead of

[01C]q-

With respect to the metric p, we obtain the following theorems.

Theorem 3.2. For every copula C the upper level fuction ®5,c has at most countably

many discontinuities.



20

Proof. Let C be a copula and J¢ a function on I defined by

Jo(a) = Xa([01Ca)

for all o in I. Let D, denote the set of all discontinuities of Jo. Since J¢ is decreasing,

Dy

. is countable. To show that every continuous point of Jc is a continuous point of

s, ¢, let o € 1. Suppose that Jeo is continuous at a. Let (an)nen be a sequence of real
numbers in I such that (o, )nen converges to a and € > 0. Then there exists an N € N
such that for all n > IV,

|Jo(am) — Jo(a)| < e.

Fix n > N, then

p(@a,c(an), Po,c(a)) = p([01Cla,, [01Cla)

= X2(([01C]a, \ [01Ca) U ([01Ca \ [01C]a,.))-

Case 1: a, < «

Then [0,C]q C [01C]a, and so

p(Pa,c(an), Po,c(@)) = A2([01Cla, \ [01C]a) = A2([01Cla,.) — A2([01C]a)

= Jo(an) — Jo(a) = |Jo(an) — Jo(a)] < e

Case 2: a, > «

Then [01Ca, C [01C]q and so

p(Pa,c(an), Po,c(@)) = A2([01Ca \ [01C]a,) = A2([01Ca) — A2([01Ca,,)

= Jo(a) — Jo(an) = |Jo(an) — Jo(a)] < e

We conclude that p(®s, (o), Po,c(a)) < € for all n > N. This shows that ®y ¢ is
continuous at a. Hence, the set of all discontinuities of ®5,¢ is a subset of D ., which is

countable. Therefore, ®5, - has at most countably many discontinuities. O
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Theorem 3.3. Let (Cp)nen be a sequence of copulas and C' a copula such that (01Ch)nen

converges to 01C almost everywhere. If o € I is a continuity point of ®p,c, then

nh_ggo P([alcn]aa [81C]a) =0.

Proof. To prove this, Egorov’s Theorem is needed. Let us state here for convenience.

Egorov’s Theorem. Let (2, F,u) be a measure space, E € F with p(E) < oo and let
(fn)nen be a sequence of real-valued measurable functions on E that converges pointwise
to a real-valued measurable function f almost everywhere on E. Then for any € > 0, there
exists a measurable set A contained in E such that u(E \ A) < € and (fp)nen converges

to f uniformly on A.
Let € > 0. Since @y, ¢ is continuous at «, there exists 6 € (0, €) such that for all 5 € I,

if | — B] < & then Ao ([01C]aA[D1C)5) < (3.1)

IS Ne)

Since (01Cp)nen converges to 91C almost everywhere, by Egorov’s Theorem, there exists
a measurable set Z C I? such that A\y(Z) < i and (01Cp,)nen converges uniformly to 0;C

on I?\ Z. Thus there exists an N € N such that for every n > N,
sup  |01Ch(u,v) — HC(u,v)| < 0. (3.2)
(u,v)€l?P\Z
We want to show that for every n > N,
p([alcn]a, [810]a) < €.

Fix n > N, then

P([alcn]ow [alc]a) = >‘2([alcn]aA[aIC]Oc) = /\2(([310”]& \ [alC]a) U ([alc]a \ [8ICn]a))

= )\2([31071]@ \ [810}04) + )‘2([810]04 \ [alcn]a)- (3~3)
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It suffices to show that

(3.3.1) AQ([alcn]a\[alc]a)<gand (3.3.2) Ao([01Ca \ [01Cnla) <

N

If we obtain (3.3.1) and (3.3.2) then p([01Ch]a, [01C]a) < € by (3.3).
Next, we prove the above two inequalities.

(3.3.1): Note that [01Cp]qa \ [01C]a—s C Z. Indeed, let (u,v) € [01Ch)a \ [01C]a—s-
Then 01Cy,(u,v) > a and (u,v) ¢ [01C]a—s. If (u,v) ¢ Z, then 01C(u,v) < a — 6 and so

0 Ch(u,v) — 1 C(u,v) > 6, this contradicts (3.2). Thus (u,v) € Z. Hence it follows that

A2([01Cn]a \ [01Ca) < A2([01Ch]a \ [01Ca—s) + A2([01Cla—s \ [01C]a)

< A(Z) + A ([01C]a A[01Ca—s)

AN
[NON e NN e

€
by (31
+7 y (3.1)

(3.3.2): Note that [01C]ats \ [01Cnla C Z. Indeed, let (u,v) € [01C]a+s \ [01Ch]a-
Then 01C(u,v) > a+ 9§ and (u,v) ¢ [01Chla. If (u,v) ¢ Z, then 0,Cy,(u,v) < o and so
01C(u,v) — 01Cp(u,v) > 6, this contradicts (3.2). Thus (u,v) € Z. Hence it follows that

)\2([310]& \ [81071]04) < )‘2([810]11 \ [alC]a+5) + )‘2([810]044-6 \ [alcn]a)
< A2 ([01CaA[01Cars) + A2(Z)

€
S+ 5 by (31
< 1 y (3.1)

= o

N

This completes the proof. O

According to Theorems 3.2 and 3.3, point-wise a.e. convergence of a sequence of
first partial derivative of copulas implies the convergence of the corresponding upper a-
level-sets for all but at most countably many o € I. Furthermore, Theorem 3.2 is very

useful in our proof of tranformation invariance Aa([01Cx y]a) = A2([01C(x),v]a) Where
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f is invertible Borel measurable function and « € I is a continuity point of ®p, To

Crxyye

prove this, the following lemma is required.

Lemma 3.4. Let C be a copula and S a generalized shuffie of Min. Then

A2([01(S * O)]a) = A2([01C]a)

for any o € 1.

Proof. According to [17], for each v € I, 91(S * C)(u,v) = 01C(T~ (u),v) for almost
every u € I for some measure-preserving bijection T : I — I. We prove this again. For a

copula A, K4 : I x B(I) — I is defined, for every B € B(I), by

Ky (U(w),B)=E(1poV|U)(w) almost all w € Q,

where U and V' are uniform (0, 1) random variables whose connecting copula is Ay y = A.

Then for every Borel subset G of I? we set Gy, := {v € I : (u,v) € G} and obtain

pa(G)

P((U,V) € G)

Lgy, (V(w)) dP(w)

S— 5—

E(lg, o V|U) (w) dP(w)

E(Le, o V]u) dPy(u)

E(1g, o V|u)du

— 5

I

= /KA (u, Gy) du,
I

where Py(B) := P(U7Y(B)) for any B € B(I). Notice that we have made a change
of variable in the fourth equality and the uniqueness of Lebesgue measure, that it as-
signs to each bounded open interval its length, in the fifth equality. In particular,
Ji Ka(u, F)du = A(F) for every F' € B(I). Next, let T' be a measure-preserving bi-

jection so that pug = St % upr (by Definition 2.21) and ps«c = St * pie (by Theorem
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2.22). This leads to

/Ks*c(tyF)dt—us*c(EXF)
B
:ST*uc(EXF)

= pc ((S)™' (B x F))
(TY(E) x F)

e
= / K¢ (t, F)dt,
T-'(E)

for every E, F € B(I). Set E := [0, u] so that both sides of the above equation are viewed

as increasing functions. Then Kg.c (u, F) = ) Ke (t, F)dt for almost every

% fT*l([O,u]

u € I where the left hand side follows from integrability of Kg.c (-, F'). Moreover, it

follows directly from the measure-preserving of T that

d
Kswo (u, F) = du/l([o ) Ke (t, F)dt
d
= qu J, 1 0ap (O Kc (t, F)dt

d _ _
=4 H]lT o) (T W) Ke (T7H(t), F) dt

d -1

= H]l[om](t)Kc (T7'(t),F)dt
d -1
du Jio,u) (=@, 1)

for almost every u € I where the last equality is obtained by again using integrability
of Ko (T7Y(:), F). In particular, for every v € I, 91(S * C)(u,v) = 01C(T~*(u), v) for
almost every u € I. Using Fubini’s Theorem and measure-preserving property of T', the

following equalities follow,

A2 ([81 S*C //]1{81 SxC')(u,v)>o} dudv

:/H/]I\]]-{alc(Tl(u)m)Za}dudv
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e //]]'{810201} Oz_’_1 dudv
//1{810>a} dudv

= X2([01Cla),

for all a € 1. O

Theorem 3.5. Let X and Y be random variables with continuous distribution functions.

Then

A2 ([01Cx v]a) = A2([01CF(x) v ] )

Jor every invertible Borel measurable function f and every continuity point o of ®o,¢;x, .y -

Proof. Since f is Borel measurable, by Corollary 2.13,

Crxyy =Crox)x *Cxy-

Since f(X) and X are mutually completely dependent, there exists a sequence of shuffles
of Min (S, )nen such that (91 (S, *Cx y))nen converges pointwise to 01 (Cy(x) x *Cxy) =
01C(x),y almost everwhere. To prove this, we quote here without proof Theorem 3.1 in

12].

Theorem 3.1 in Ruankong, Santiwipanont and Sumetkijakan [12]. Let C' be a
mutual complete dependence copula. Then there exists a sequence of shuffles of Min

(Sn)nen that converges to C' in the Sobolev norm || - || (2).

As a virtue of the above theorem, there exists a sequence of shuffles of Min (.Sy,)nen that

converges to Cy(x) x in the Sobolev norm || - ||2). By Theorem 2.14,
nlggo HSn * CX,Y - Cf(X),X * CX7YH(2) =0.

Using Theorem 2.16, we can find a subsequence of (S, *Cx y )nen, which, for convenience,
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will again be denoted by (S, *Cx y )nen, such that (01(Sn*Cx,y))nen converges pointwise
to 01 (Crix),x *Cxy) = 1Cy(x),y almost everwhere. By virtue of Theorem 3.3, for every

a in T which is a continuity point of ®g,¢; .y,

Jim p([01(Sn * Cx y)la: [01C(x),v]a) = 0.

This implies that (A2([01(Sh * Cx,y)]a))nen converges to A2([01Cf(x) y]a). Indeed, let

€ > 0. Then there exists a positive integer N such that for any integer n > N

p([01(Sn * Cxy)]as [01CF(x),v]a) < €.

Then

A2([01(Sn * Cxy)]a) = A2([01(Sn * Cxy)]a \ [01CF(x) v]a)
+ A2([01(Sh * Cx y)]a N [01C(x)y]a)
< A2([01(Sn * Cx v )]a \ [01C(x) v ]a)

+ X2([0:1C(x) y]a)-
So we obtain that

A2([01(Sn * Cxy)]a) — X2([01Cf(x) v]a)
< A2 ([01(Sn * Cx y)la \ [01C ¢ (x),v]a)
< p([01(Sn * Cx v )la, [01C¢(x),v]a)

< €.
Similarly, for n > N, Ag([@le(X)y]a) — X2([01(Sh * Cx,y)]a) < € and so we have
1 X2([01(Sn * Cxy)]a) — X2([01C(x) v]a)| <€

Hence (A2([01(Sn * Cxy)]a))nen converges to A2([01C(x)yla). Since, by Lemma 3.4,
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)\2([81(5‘” * C)Qy)]a) = )\2([610}(73/]04) for all n € N,

A2([01Cx v]a) = X2([01Cf(x) v ]a)- O

3.2 An indicator of dependence

First of all, we give the formal definition of the i" significant digit of non-zero real

numbers.

Definition 3.6. Let m : R\ {0} — [1,10) be defined by
m(z) =r, forxeR\ {0},

where r is the unique number in [1,10) such that |z| = r x 10" for some necessarily
unique n € Z. Following [7], m is called the mantissa function. Let D®(z) denote the i

significant digit (or i digit) of x. Formally, D® : R\ {0} — {0,1,2,...,9} is given by
DD (z) = ((t"'om)(x));, forz € R\ {0},

where (+); is the coordinate projection (c1, ¢, ...); = ¢;, t is the function t(tg, t1,t2,...) =
ZZOZO% for to € {1,2,...,9} and t; € {0,1,2,...,9} for k € N, and t~! is taken
to be the terminating inverse when it is non-unique (e.g., t-1(0.1999...) = t71(0.2) =

(2,0,0,...)). Note that this definition leads the first digit of 0.1999... to be 2.

To ensure the well-defined property of first digit distributions of partial derivatives

of copulas, the following results are useful.

Lemma 3.7. For every copula C' and ford=1,2,...,9,

i/\g <[61C]mik \ ch]%)

k=0

is finite.
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o0
Proof. Since {[010] 2\ [01C] asa } is a countable collection of pairwise disjoint sets,
10 10k

iAQ (01C)s \[01C sz ) = Ao (G (192€7 5, \ [alC]r;;,g)>
k=0

k=0

< )Ag (]12) =1. O

Lemma 3.8. For every copula C, Ao ({(u,v) cI?:0,C(u,v) > 0}) #£0

Proof. Suppose that Ay ({(u,v) € I* : 91C(u,v) > 0}) = 0. So 8;C(u,v) = 0 for almost

every v in I almost every w in I. Then for almost every v in I,
=C(1,v) = C(0,v) = /8lC(u,v) du =0,
I

where the next to last equality follows from the absolute continuity of C' in each argument.

This is a contradiction and so Ay ({(u,v) € I* : 9;C(u,v) > 0}) # 0. O

Definition 3.9. For a copula C, let FD4(0:C) be the first digit distribution of 9;C' defined
by

A2 ({(u,v) € I? : the first digit of 91C(u,v) is d})
Ao ({(u,v) € I2: 8,C(u,v) > 0})

S0 ([01C] 4 \ [01C)y )

ey ({(u,v) € I2: 0,C(u,v) > 0})

FDy(8,C) =

(3.4)

ford=1,2,...,9. Since 0;C exists a.e. and 0 < 9;C < 1 a.e., FD4 can be computed via

upper a-level sets as (3.4).

Remark 3.10. By Lemmas 3.7 and 3.8, the first digit distributions of 9, C are well-defined.
9

Moreover, ZFDd(&lC’) =1.
d=1

Proof. Since {[81C]L \ [01C] ﬁ} is a countable collection of pairwise dis-
10k 10k J k>0,d=1,2,...,.9

joint sets,

9 Do ([810} a \[alC]dH)

9
;FDd(&C Zl Ao ({(u,v) € 12 : 0:C(u,v) > 0})
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& (U (910) 4\ 0101 )
Z Ao ({(u,v) € 12 : 9;C(u,v) > 0})

A2 (Ud:l Urzo <[810]w% \ [810]%))
R {(wv) €R:0iC(u,v) > 0})
~de ({(w,0) €12 : 0,0(u,0) > 0})
~ X ({(w,v) € 01C(u,v) > 0})

= 1. ]

Definition 3.11. For a copula C, denote MF;(C) = | max FD4(0:C). To rescale so

— L4y

that it takes value in I, let us define function p; on the space of all copulas C by

9IMF;(C) — 1

i (C) = g

1
Remark 3.12. For a copula C, g <MF;(C) <landso0<pu(C)<L1.

9
Proof. Suppose that MF;(C) Z FDy(01C) < 1, which is a contradiction.
d=1

@M—l

9
1
Clearly, for d =1,2,...,9, FDg(1C) < > FDu(0,C) = 1. Then o < MFy(C) <1. O
d=1

Theorem 3.13. Let X and Y be random variables with continuous distribution functions.

If Y is completely dependent on X, then MF1(Cxy) =1 and so y1(Cxy) = 1.

Proof. Since Y is completely dependent on X, 0,C € {0,1} almost everywhere. So for

any k€ Nand d =1,2,...,9, up to subsets of measure zero
[01C] o = {(u,v) € I? : 0,C(u,v) = 1} ={(u,v) € I? : 0,C(u,v) > 0}.

Then

X (11CH) + 252 de (011, \ [0:C) 2, )
A2 ({(u,v) € 12 : 9;C(u,v) > 0})

~ A([01Ch) + 5252, 0
A2([01C1)

FD;(8,C) =

= 1.

This implies that MF;(C) = 1. O
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The converse is not true, that is, if MF1(C) = 1 then the copula C' is not neces-
sarily a complete dependence copula. A counterexample can be constructed via patching
method. Let Jy = [0, %], Jp = (%,1], ag = %0 and a1 = 1%. And for each j = 0,1, let

L; be the uniform distribution function on J;. Then, by Theorem 2.11, the function C

defined by
- 1 9
C(u,v) = zajM(u,Lj(v)) = EM(U,LQ(U)) + EM(U, Li(v)), foru,vel, (3.5)
=0

is a copula.

1

O
0
0 1

Figure 3.1: Support of the copula defined in (3.5)

To show that MF(C) = 1, let (u,v) € I x Jy. Then Ly(v) = 10v and L;i(v) = 0.
So C(u,v) = 75 min{u, 10v}. Consequently, 0;C(u,v) = 0 for all (u,v) € I x Jy such
that v < &% and 8;C(u,v) = {5 for all (u,v) € I x Jy such that v > 4.

Next, let (u,v) € I x Ji. Then Lo(v) = 1 and Ly(v) = $(10v — 1). Consequently,
C(u,v) = {5u + 55 min{u, §(10v — 1)}. Therefore, 0,C(u,v) = ;5 for all (u,v) € I x J;
such that v < 5u + 15 and 0,C(u,v) = 1 for all (u,v) € I x J; such that v > ffu + 15.

Then

Sk (11C) 2\ 101C) 2, )
Ao ({(u,v) € 12 : 9;C(u,v) > 0})

FD;(8,C) =



- Ao ({(u,v) el?: 0 C(u,v) = 1}) + Ao ({(u,v) el?: 0 C(u,v) = %})
X ({(u,v) €12:0:C(u,v) = 1) + X ({(u,0) € 2: 01C(u,v) = 15})
=1,

1

where the second equality is obtained by using 9,C € {0, o

1} almost everywhere. This

implies MF;(C) = 1.

Theorem 3.14. MF;(II) = 1/9, i.e. p;(IT) = 0.

Proof. Note that

Ao ([811_[]1) =X\ ({(u, ’U) € ]12 : 81H(’LL, U) = 1})
=X ({(u,v) € I?:v= 1})

=X (Ix{1})=0.
Moreover,
Ao({(u,v) € P - 1w, v) > 0}) = Ao ({(u,v) €I* 10> 0}) = g (I x (0,1]) = 1.

Then for any d =1,2,...,9,

oo

k=1

> d d+1
_ 2
= E Ao {(u,v)e]l T0F <wv< o })

This implies that MF;(IT) = § and so 4 (II) = 0. O

However, we found a copula C # II whose p1(C) = 0. Let Iy = [0,15] and
I = (35,55 for i = 1,2,...,9. Foreach i € {0,1,...,9} and j € {1,2,...,9}, let F;
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be the uniform distribution function on I;, Cjo = II and C;; = M. Then Theorem 2.11

implies that the function C' defined by

9 9

Clo,0) =303 1 Cy(Flw), Fi(w), wvel (3.6)
i—0 j=0

is a copula.

0 02 04 06 0.8 1

Figure 3.2: Support of the copula in (3.6)

To show that MF;(C) = é, for each h,k € {0,1,...,9}, let (u,v) € I, X Ix. Then
Fi(u) =1 for all i < h, Fy(u) =0 for all i > h, Fj(v) =1 for all j < k and Fj(v) =0 for

all j > k. Consequently,

hok
1
Gl w) = 30D T Cy(Filw), Fy(v)
i=0 j=0
h—1k—1 h—1 k—1
1 10v -k 10u —h
22700 " 2~ "100 T2 100 +100h’“(“ 100 — k)
=0 j=0 =0 7=0
hk h k
2 (100 — k) + — (100 — h) + —— Ci(1 100 — k).
=100 + 100( Ov—k)+ 100( Ou—h) + 1OOC’hk( Ou — h,10v — k)

k
Therefore, 0:C(u,v) = — + 610hk(10u h,10v — k) for almost every (u,v) € Ip, X Ij.

10
1
In particular, for each h > 0, 1f k =0 then 0,C(u, v) = —81H(10u — h,10v) = v for all
k k+1
(u,v) € TyxTp and it b > 0 then &1 C(u, v) = 1+ 61M(10u h, 10v—k) = "% forall

10
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Eo1
T + 1—0811\/1(10u— h,10v — k)

k
=10 for all (u,v) € Iy x I such that v < u — % + 1—]‘6. This formula implies that

(u,v) € Ip, x Ij, such that v > u — %+T% and 0,C(u,v) =

01C(u,v) € |0, 110} for all (u,v) € IxIyand 01C(u,v) € %07 %, 1%, 14—0, %, 107 ﬁ, 1—0, ﬁ, 1}

for almost every (u,v) ¢ I x Iy. Next, fix d = 1,2,...,9. First of all, notice that
A2 ({(u,v) €12 : 0,C(u,v) > 0}) = A (Ix (0,1]) = 1. If d = 1, then
FD1(8,C) = ZAQ (alo [alc]ﬁ)

= e ([1C) + X ([ \ 2101 )

Z (alc [alc]ﬁ) . (3.7)
k=

We consider the first, second and last terms of the above equation. Firstly,

)\2 ([310]1) = )\2 ({(u,v) € ]12 : 810(u,v) = 1})

h 9
(u,v) € Ip, x Iy : v>u—10+10}>

{
=29:A2 <{<“ v) €Iy x Iy ”>“‘1ho+190}>

Secondly,

1

h
I I - —
(u,v) €I x I :v<u 10+10}>

9
h
= A\ U{(U,U)EIhXIl ’U<U—1O+1O})

O i et 01 1
— ldvdu=5"— = —.
/h / v 200 20

h=0



34

And the last term is

i@ (11 \ 161C s, ) = ZAQ <{ (u,0) €12 : 1(1)k < 010(u,v) < 1&})
S )

=1 1
:ZW:%.

k=2

Therefore, by (3.7), FD1(0:C) = 5
Ford > 1

ok

FDy(8,C) = ZAQ (alc \ [010] )

:AQ([alc]%\[alc )+ng(alc] \[alcq%). (3.8)

k=2

Similarly, we consider two terms of equation (3.8). Firstly,

Yo ([01C) \ [1Clasa ) = Ao <{(W) et <o < d1+01}>

o ({0 - ;g 1)

U(D{(uv)efhxld v<u1}g+1d}>>

0
h=0
9
h d—1
:ZAQ({(U,U}EIhXId 1 v>u10+10})
h=0
- h d
A I x 1. -
*};} 2<{(uv)€ nxAdir s 10*10})

h+1 d h+1 + r1

9 ht1
:Z/ v /m 1dvdu+2/ / 1dvdu
B w— b d=1

0" 1 10 10 10



Secondly,

> % (11C) s,
k=2

Thus, by (3.8), FD4(0:C) =

d
alcd+1> Z/\2<{uv 6]12 10k<8lC(uv)<

d d+1
-3 (1[50 )
k=2

o0

1 1
=Y =

k=2

. This shows that MF(C) = 3.

d+1

10~

)
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Naturally, under certain transformations of random variables, dependence level

should not vary when random variables are transformed. In lieu of Theorems 3.2 and

3.5, we have to restrict such transformations to injective transformations with finitely

many discontinuity points.

Theorem 3.15. Let X andY be random variables with continuous marginal distributions.

If f is an invertible Borel measurable function with finitely many discontinuity points, then

MF;(Cxy)

= MF]_(Cf(XLY); i.e. ,ul(CX7y)

=111 (Crx)y)-

Proof. Its proof follows from Theorem 2.18 and Lemma 3.4.



CHAPTER IV

NUMERICAL COMPUTATION

In this chapter, we investigate a procedure for approximating first digit distri-
butions of partial derivatives of copulas. Moreover, comparisons between p; and other

measures of dependence are included.
4.1 Numerical computation

Definition 4.1. Let a,b € I and the functions fo, and fi 3 be defined, for u in I, by

foa(u) =inf{v € 1:0,C(u,v) > a} and

frp(u) =sup{v € I: 5;C(u,v) < b}.

Lemma 4.2. Fora,b €, fo, and f1; are measurable.

Proof. Let I C T be the set of full measure of w’s such that 01C(u,v) exists for almost
every v € I. And for every u € I, since we can redefine 9,C(u,v) on a subset of I of
measure zero, we may assume that 9,C(u,v) exists and is nondecreasing for all v € L.
We also extend C' in such a way that C(u,v) = 0 if u or v is negative; C'(u,v) = 1 if
u>1landv>1; C(u,v) =u for v > 1; and C(u,v) = v for u > 1. Let ¢ € I. Using the

nondecreasing property of 9;C(u, -), we obtain

{u el: Joa(u) < c} = {u el: 3 <c,dC(u,v) > a}

= U {ueﬁzﬁlc(u,c—l)Za}, and
n

n=1

{u el: fip(u) > c} = {u el:3v>c,dC(u,v) < b}

- U {ueﬁzﬁlc(u,c+i)<b}.

n=1

They are measurable sets because any 0,1C|(+, c— %) and 01C(-,c+ %) are measurable. [
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Lemma 4.3. Fora,b e,

A2 ({(u,0) €T* 1 a < O C(u,v) < b and 8;C(u,v) exists})

=X ({(w,0) € : foa(u) <v < fip(u)}).
Proof. This follows from

{(u,v) €I : a < 0,C(u,v) < b and 0,C(u,v)exists}

C {(u,v) €I?: fou(u) <v < frp(u)},

{(u,0) €T : foolu) <v < frp(u)}

C {(u,v) €*:a < 8:C(u,v) < band 0,C(u,v) exists}

U {(u,v) € I? : 9;C(u, v) does not exist},
and the fact that the graph of a measurable function has Lebesgue measure zero. O

Then, for n € N, we also define functions Fp 4, and Fyp, on I for approximat-
ing A2 ({(u,v) € I?: foa(u) <v < fip(u)}). It is indeed a way to numerically compute
A2 ({(u,v) €2 :a < 0,C(u,v) < band 0,C(u,v)exists}). As a result, we obtain nu-

merical computation of the first digit distributions of partial derivatives of copulas.

Theorem 4.4. Denote the set of odd numbers by O. Let a,b € 1. For each n € N, let

Jr = [ﬂ l) fori=1,2....n—1and J} = [”Tfl, 1] and define measurable functions

7 n ’'n

FO,a,n(u) = n/n f07a(t) dt and

Fipn(u) =n 71 frp(t) dt,

J

n

3

[

forue Jt (j=1,2,...,n). Then

i # (@20 {(wn) € Fan(w) <v < Frpa()}) N 0%)

n—o00 1’L2

=X ({(u,v) €*:a < 01C(u,v) < b and d1C(u,v) exists})
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where, for any subset B of 12 and c € R, ¢B := {(cu,cv) : (u,v) € B} and, for any finite

set A, #(A) is the number of elements in A.

Before proving this theorem, the following definition and theorem are needed. For

more details, see [13].

Nicely Shrinking Sets. Let x € R. A sequence (By,)nen of Borel subsets of R is said
to shrink to x nicely if there exists an s > 0 and there is a sequence (B(z,7y,))nen, with

lim r, = 0, such that B,, C B(x,r,) and A\(By) > s- A(B(z,r,)) for all n € N, where

n—oo

B(z,r):={y € R: |z —y| <r} and X is the Lebesgue measure on R.

Lebesgue Point Theorem. Let R be the extended real line [—oo, 0] and let f : R — R
be an integrable function. For each x € R, a sequence (By(x))nen of Borel subsets of R

shrinks to x nicely. Then for almost every r € R,

1

Proof of Theorem 4.4. There are two technical functions which are useful in proving this

theorem. Define measurable functions, for every u € I,

foan(@) = Mgt (zecs s () (u)

0,a,n 2n 7 2n

k=0 j—1
n n k
25—1
from() = 3237 Ty (e ) (B 1),
k=0 j=1

The functions fy, and f1p may not exist at % To get around this technicality, we

have to use their average functions over the interval J]”, i.e. Foqan and Fiy,,. Note that
fo,a and f1 are integrable and for each u € I, there exists ju, = 1,2,...,n such that

u € erim for every n € N. Moreover, for each u € I, the sequence (Jﬂn)neN shrinks

to w nicely with r, = % and s = % Then, by Lebesgue Point Theorem, (Fpqn)nen

and (Fpn)nen converge a.e. to fo, and fip, respectively. Next, we will show that

(fo,a,n)nen converges a.e. to fo.. Let w € I be such that (Fpqn(u))nen converges to

fo,a(u) and let € > 0. Then there exists an N7 € N such that N% < e. Since (Fp,qn(0))nen
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converges to foq(u), there exists an Ny € N such that |Fyqn(u) — fou(u)] < § for
every n > Ny. Let n > max (Nj, N2). Then u € Ji for some j = 1,2,...,n. Thus
Foam (%) = Foan(u) and so % < Foan(u) < 2’;—# for some k£ = 0,1,2,...,n.

This implies that |Foqn(u) — fo,an(u)] < ﬁ because foqn(u) = % Therefore,

1

‘fO,a,n(U’) - fO,a(u)‘ S ’fO,a,n(u) - FO,a,n(u)| + |F0,a,n(u) - fO,a(u)‘ S % + % < €.

This shows that (fo.q.n)nen converges a.e. to foq. In a similar way, (f1p.n)nen converges
a.e. to f1p. Then, because for any n € N, |f1 p.n, — fo,a,n] is dominated by an integrable
function on I, 1y, and (fipn — fo,a,n)nen converges a.e. to fip — foa, we have, by the

Dominated Convergence Theorem,

n—o0

i [ Frn () = foan(u)du = [ o) = foalu) du.
I I
But, by Lemma 4.3,

A2 ({(u,v) € I?:a < 0,C(u,v) < band 8,C(u,v) exists })
=\ ({(u,v) cl?: foa(u) <v< be(u)})
= [ fip(w) = fou(u)du,

I

and

Fuon(w) = foan(u)du= 33" 5 (Upey (sos s =~ ger (s s)) (350)

1,b 2n 7 2n

0yJ "
((2n {(u,v) €I?: Fyan(u) <v < Fpu(u)})NO?)

n2

This shows that

i # ((2n{(u,v) €T?: Foan(u) <v < Fipn(w)}) NO?)

n—o00 n2

=X ({(u,v) € I?:a < 8,C(u,v) < band d,C(u,v) exists}) . O
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4.2 Examples and comparisons

In previous section, let us observe that we use measurable functions Fp,, and
F1pp as technical tools for proving Theorem 4.4. Nevertheless, we can unquestionably
use smooth level curves of partial derivatives of copulas to approximate their first digit

distributions. In this section, we numerically compute w1 of some classes of copulas.

Example 4.1. A pair of random variables X and Y has the standard bivariate normal dis-
tribution with correlation coefficient p € (—1, 1) if their joint probability density function

is given by

o ) 1 ( m2—2pxy—|—y2>
TYip) = —F—=XP| 57 o
27\/1 — p? 2(1—p?)

for z,y € R. One can show that the marginal distributions of X and Y are standard
normal, denoted as ®. Then let N,(z,y) denote the standard bivariate normal joint
distribution function with correlation coefficient p € (—1,1) so that C),, the Gaussian

copula, is defined by Sklar’s theorem

Cp(q)(x)7q)(y)) :Np(xvy) (x,y € R)
One can show that Cy = II. Moreover, we can extend continuously for p € {—1,1}:

C_1(u,v) := limle(u, v) = max(u + v — 1,0),

p—=
Cii(u,v) := lim Cp(u,v) = min(u,v),
p—+1
for every u, v € I, so that C, approaches W and M as p approaches —1 and 1, respectively.

Then partial derivatives of Gaussian copulas are

1—p?
02C (0, 0) = B ((I)l(u) —p@l(v)> '

0,C(u0) — <<I>_1(v) —p<1>—1<u)> |

1 — p?
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We then numerically compute p1 of Cyg, the Gaussian copula with p = 0.8. Let us begin

by considering level curves of 9;Cpg. By Theorem 4.4, to approximate FD1(01Cpg) we

Figure 4.1: Level curves of Gaussian copula 01Cy.g

firstly count grid points which lie above or on level curve {9,C(u,v) = 1}. Similarly, we

find the number of grid points lying above or on level curve {9;C(u,v) = 15} and below
{01C(u,v) = 1(2),;} for every ¢ = 1,2,...,n. The quotient of total of such grid points

and the number of grid points such that 9;Cpg > 0 is an approximation of FD1(09:Cp ).
Thus, in a similar manner, an approximation of MF;(Cp g) is obtained and an approximate
value of u1(Cpg) follows. In Figure 4.2, uy of Gaussian copulas are graphed where the

parameter p vary.

w(Cy)
02 0.4 06 08
u1(Co)
0.1 0.2 0.3 0.4 05 0.6
Ml(c B)
02 03 04 05 06

0.0
0.0
0.1

10 0.5 00 05 10 [) 2 4 [ ) i 0 20 do 6 1 20

0 i
Figure 4.2: 1 of Gaussian C, (Left), Clayton Cy (Center) and Frank Cjz (Right)
copulas

For various classes, we also numerically compute p1 of Clayton and Frank copulas
whose graphs are shown in Figure 4.2. Next, let us recall the definitions of some copula-

based measures of dependence to compare their values with pq:
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w(C,)
0.1 0.2 0.3 0.4 05 0.6
u1(Co)
0.1 0.2 0.3 0.4 0.5 0.6
wi(Cyp)
0.4 0.6 0.8

0.2

0.0
0.0

0.0 0.2 0.4 0.6 0.8 .70.0 0.2 04 0.6 0.8 0.1 0.2 03 04 05 0.6
o1(Cp) 01(Co) 01(Cy)

Figure 4.3: Graphs of ;1 (C) against wq (C) for Gaussian C), (Left), Clayton Cy (Center)
and Frank C3 (Right) copulas

0.6

0.8
05
0.8

w(C,)
0.2 0.4 0.6
u1(Co)
0.1 0.2 0.3 0.4
wi(Cp)
0.4 0.6

0.2

0.0
0.0

u(c,) ©(Co) u(Cy)
Figure 4.4: Graphs of ;11(C) against (;(C) for Gaussian C), (Left), Clayton Cy (Center)

and Frank Cj3 (Right) copulas

I. (Siburg and Stoimenov [15])
1/2
wi(C) = (6//|3¢C(u,v) - 8iH(u,v)|2dudv> , i=1,2
1J1
II. (Trutschnig [16])

G(O) = B/H/HmiC(u, v) — Oill(u,v)|dudv, i=1,2.

In the Figures 4.3 and 4.4, numerical values p; of Gaussian, Clayton and Frank
copulas are plotted against wy and (1, respectively. One can see that for all three classes
considered, the values of p1 vary quite proportional to both w; and ;. This means that
w1 could be a good indicator of dependence. For finer detection, one can investigate in
a future exploration dependence indicators based on the first two, three or more digit

distributions of the partial derivatives of copulas.
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APPENDIX : Examples of R code for calculating and plotting

In calculating, by applying Theorem 4.4, the approximate values p; of each example
in this thesis, we use R code to compute that robust results. Let us give the code for MFy

and, as a result, u; used in Example 4.1.

n = 6000

#Define grid points used in calculating

m <- matrix(rep(seq(l, 2*n-1, by = 2),n),nrow=n)

mt <- t(m)

x <- m/(2*n)

y <- mt/(2%n)

#Use parameter 0.5 in this example

r <- 0.5

#Define first derivative of Gaussian copula (parameter=r)

dG <- function(r) pnorm((gnorm(y)-(r*qnorm(x)))/sqrt(1-(r~2)))

#Calculate first digit distribution

FG = matrix(nrow=1,ncol=9)

Z <- sum(dG>0)

for(d in 1:9)

{s=0;

for(i in 0:100) {s=s+sum(dG>=d/(1071i))-sum(dG>=(d+1)/(107i))};
FG[1,d]l=s/Z}

#Set approximate value of MF_1 and mu_1
MF1 <- max(FG)
mul <- ((MF1-(1/9))%(9/8))70.5

For plotting u1 against wi and (1, the following R code is needed to calculate w;:

library (rmutil) #Load the package "rmutil"

Omegal <- function(r){

#Define first derivative of Gaussian copula

dG<- function(x,y) pnorm((qnorm(y)-(r*gqnorm(x)))/sqrt(1-(r~2)))
#Define first derivative of Product copula

dPi<-function(x,y) y

integrand <- function(x,y) (dG(x,y)-dPi(x,y))" 2
int<-int2(integrand, a=c(0,0), b=c(1,1))

return(int)}
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library(rmutil) #Load the package "rmutil"

Zetal <- function(xr){

#Define first derivative of Gaussian copula

dG<- function(x,y) pnorm((gnorm(y)-(r*qnorm(x)))/sqrt(1-(r~2)))
#Define first derivative of Product copula

dPi<-function(x,y) y

integrand <- function(x,y) abs(dG(x,y)-dPi(x,y))
int<-int2(integrand, a=c(0,0), b=c(1,1))

return(int)}
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