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CHAPTER I

INTRODUCTION

Data mining or knowledge discovery in databases (KDD) is a process of

finding or extracting useful information from a large database and transforms it

into a meaningful structure for further use. Data mining tasks can be divided

into six different categories: classification, regression, clustering, summarization,

dependency modeling, and deviation detection. [11]

Figure 1.1: Knowledge discovery in databases process [11]

Anomaly detection or outlier detection is one of the data mining tasks in

deviation detection category. It is defined as a problem of finding an individ-

ual object that behaves very differently from normal (majority) objects. This

anomalous might be an interesting data point or an error that requires further

investigation by an expert.

In many domains, the data tend to be collected with time stamps, such as

heartbeat pulse from the electrocardiogram data, patient’s respiration, number of
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tweets per second of Twitter, CPU usages of the computer servers, ocean tides, the

daily closing values of the stock markets and the flight data collected in the form

of sequences of observations from various aircraft sensors during the flight. This

specific kind of data is classified as the time series data. One important property

that all time series data share in common is that it is ordered. If a user swaps

a data point from one location to another, then the interpretation may change.

This property makes time series differ from the ordinary static data.

Figure 1.2: Monthly average of relative sunspot numbers from 1749 to 1983. The data
is collected by Swiss Federal Observatory and Tokyo Astronomical Observatory. [2]

The applications of anomaly detection appear in various fields such as detect-

ing anomalous heartbeat pulse from the electrocardiogram data [12], detecting the

number of unusual tweets per second of Twitter [21], detecting anomalous CPU us-

ages of the computer servers, detecting anomalous patient’s respiration [17]. The

purpose of anomaly detection has two aspects. First, anomaly detection can warn

a responsible person of the abnormal behavior, for example, detecting anomalous

heart beat pulse could early warn a doctor about patient’s heart disease. Second,

it is used for identifying a data point that is needed to be cleaned which alleviates

a predictive model to perform better especially the method that is vulnerable to
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anomalous data such as regression.

A primary goal of time series analysis is forecasting. Many techniques on

time series analysis such as ARIMA, VAR [22] involve building a model for fore-

casting which is vulnerable to anomalous data. So, detecting anomalous data and

managing it before performing any time series analysis will help make the result

more reliable.

This thesis proposes an automatic anomaly detection in time series, the

Furthest Neighbor Window Subseries (FNWS). The algorithm requires two pa-

rameters n and k where n represents the size of the window subseries where each

window subseries is called an element. The distribution for each element is rep-

resented by three numbers, the lower quartile, the median and the upper quartile

subtracting the first data point in the window. The Euclidean distances among

all elements of three numbers are computed, and the k-nearest neighbor distance

of each element is extracted to represent the score. The anomaly criterion was

adapted from adjusted boxplot [16] to identify anomalous data points.

1.1 Objectives

The objective of this thesis is to propose a novel method for detecting con-

textual anomaly on time series data and compare with other methods and analyze

it based on synthesized datasets and benchmark datasets.

1.2 Scope of Work

The Furthest Neighbor Window Subseries is an unsupervised algorithm which

needs no label of data. The considered data are real-valued univariate time se-

ries data. The method requires a measure of dissimilarity which is evaluated via

the distance metric. All implementation and empirical experiments are performed
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on Python programming environment using Jupyter notebook. The results of

detection are evaluated using three measurement metrics: precision, recall, and

F-measure.

1.3 Expected Outcome

The 100 time series data from Yahoo with various trends and seasons are

used in the experiments to test FNWS. The results from the FNWS method is

expected to achieve the best or higher score on most time series data on precision,

recall, and F-measure metric comparing with other methods.

1.4 Thesis Overview

This thesis is organized as follows. Difference technique for preprocessing

time series and existing method for anomaly detection are presented in Chapter

2. The new method proposed in this thesis and its implementation are introduced

in Chapter 3. The empirical experiments and results are analyzed in Chapter 4.

Lastly, the conclusion and discussion are drawn in Chapter 5.



CHAPTER II

BACKGROUND KNOWLEDGE

This chapter introduces the preliminary knowledge of this work. There are

two main sections in this chapter: basic statistical knowledge and anomaly detec-

tion on time series. Prior work on anomaly detection method for univariate time

series will also be discussed in this chapter.

2.1 Statistics

Statistics is a subset of mathematics used to describe a behavior and rela-

tionships of data. This section describes a basic statistical method that is used

in defining central tendency and dispersion of data. Different ways of displaying

data are also explained in this section.

2.1.1 Measures of Center

A measure of center or average is a number expressing the central of data.

The simplest and the most widely used in measuring central tendency is the arith-

metic mean which will be described in this section. Other popular types of average

are median and harmonic mean.

2.1.1.1 Mean

The mean (sometimes can be called average), or the arithmetic mean, is the

quantity that commonly used to describe central tendency of a set of real values.

The mean of a data set can be calculated by adding up all values in the data set

and dividing it by the number of values in that data set. Mathematically, the
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arithmetic mean of the real number x1, x2, . . . , xn, is defined to be

x̄ =

∑n
i=1 xi

n
. (2.1)

Example 2.1. Consider the following set of values: A1 = {1, 2, 3, 4, 5}. The

arithmetic mean of this set would be:

x̄ =
1 + 2 + 3 + 4 + 5

5
= 3.

Another example with one value deviates from the others: A2 = {1, 2, 3, 4, 100}.

The arithmetic mean of this set would be:

x̄ =
1 + 2 + 3 + 4 + 100

5
= 22.

We can see that the arithmetic mean is sensitive to outliers in the data.

2.1.1.2 Median

The median is the middle value in a real-valued data set. It is the value in

the center if a data set has been ordered. Given ordered set A of real numbers

x1, x2, . . . , xn, the median of set A is defined by

medA =


x(n+1)/2 if n is odd

xn/2+xn/2+1

2
if n is even

. (2.2)

Example 2.2. With the same set of examples as above. Since both set A1 and

A2 are already ordered, the median of both sets are

medA1 = medA2 = x3 = 3.
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In contrast with mean, median seems not to be effected from outliers in the

data.

2.1.1.3 Harmonic Mean

The Harmonic mean is a special type of mean. It usually used to average

the particular type of values like speed, rate, and ratio. For example, a car is

driven from town A to town B, which is 120 km away, with the speed of 40 km

per hour and is returned with the speed of 120 km per hour. If the average speed

is normally calculated, it would be 40+120
2

= 80 km per hour which may not true

capture the time spend on each trip. Thus, the appropriate average should be

the total distance divided by total time: 2∗120
4

= 60 km per hour. Note that, the

harmonic mean can be used to calculate this kind of mean. For the real numbers

x1, x2, . . . , xn, the harmonic mean can be defined by

H =
n∑n
i=1

1
xi

. (2.3)

Example 2.3. Averaging speed of 2 trips, 40 and 120 km per hour, with the same

distance can be calculated as

H =
2

1
40

+ 1
120

= 60.

2.1.2 Measures of dispersion

Measuring a dispersion is used to show how much a data spread. It can help

to express the approximate distribution of the data.
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2.1.2.1 Range of the Data

The range of the data can be interpreted as the maximum possible difference

in the data. Given a set of real values X, the range is simply defined by

range(X) = maxX − minX. (2.4)

Example 2.4. Let X be a set of values, X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, the

range of set X can be calculated as

range(X) = 11− 1 = 10.

2.1.2.2 Standard Deviation

The Standard Deviation (SD) is a value that is used to determine the spread

of a distribution of data respect to the mean. A low value of standard deviation

(close to zero) shows that the data tend to stay close to the mean. In contrast, a

high value of standard deviation shows that the data deviate far from the mean.

The standard deviation is defined to be

s =

(∑n
i=1(xi − x̄)2

n− 1

) 1
2

. (2.5)

Example 2.5. Let X be the same set as in example 2.4, standard deviation of set

X can be calculated as

x̄ =
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11

11
= 6

s =

(∑11
i=1(i− 6)2

11− 1

) 1
2

=
√
11 ≈ 3.32.
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2.1.2.3 Quartiles and Interquartile Range

The quartiles are the values that divide data set into four equal-sized subsets,

and each subset contains a quarter of the data set: the lowest 25% of numbers,

the next lowest 25% of numbers (up to the median), the second highest 25% of

numbers (above the median), and the highest 25% of numbers. The values that

divide these part are denoted by Q1 (the lower quartile), Q2 (the median), and Q3

(the upper quartile) respectively.

The interquartile range (IQR), or sometimes called midspread, is the measure

of dispersion that evaluates the range of middle 50% of the data set. The formula

of IQR is defined to be

IQR = Q3 −Q1. (2.6)

Example 2.6. Let X be the same set as in example 2.4, the IQR of set X can be

calculated as

IQR = 8.5− 3.5 = 5.

2.1.3 Measure of Skewness

The measure of skewness explains asymmetry of the data. The value can be

positive or negative, or even undefined. This work uses medcouple [5] as a measure

of skewness.

2.1.3.1 Medcouple

The medcouple is one of robust skewness measures operating on univariate

data. It is used in adjusted box plot which performs very well when data have

outliers.

Given an ordered set of real values X = {x1, x2, . . . , xn}, that is x1 ≤ x2 ≤
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· · · ≤ xn, the medcouple of X is defined by:

MC(X) = med
xi≤Q2≤xj

h(xi, xj) (2.7)

where Q2 is the median of X and function h is given by:

h(xi, xj) =
(xj −Q2)− (Q2 − xi)

xj − xi

. (2.8)

The special case xi = Q2 = xj takes the value of the from sgn(n− 1− i− j)

instead, where sgn is the sign function.

Example 2.7. Example of different sets and their medcouples:

• A1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, MC = 0

• A2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100}, MC = 0

• A3 = {1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10}, MC = 0.5

• A4 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 10, 10}, MC = −0.375

(a) The positive skew distribution with
MC = 0.2189

(b) The negative skew distribution with
MC = −0.1232

Figure 2.1: Examples of skew distrubutions with MC values
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2.1.4 Visualizing Data

2.1.4.1 Scatter Plot

The scatter plot is a graph to visualize of two or three variables along two or

three axes, respectively. The pattern of the resulting points reveals a correlation

in the data set. It is the simplest way to visualize a data set having small number

of dimensions.

Figure 2.2: An example of a scatter plot of 1,000 sample. Each variable was drawn from
normal distribution with mean 0 and sd 1.

2.1.4.2 Box Plot

The box plot (also called box and whisker diagram) shows the rough distri-

bution of an univariate data. A box plot for a data set can be created based on the

five statistics: minimum, lower quartile (Q1), median (Q2), upper quartile (Q3),

and maximum. The simplest box plot is constructed by two rectangles span from

a median line (usually lay horizontally) to the first quartile and the third quartile,

this box represents the IQR of the data set. Then the box has lines extending

vertically from it (whiskers) covering the data that fall between Q2 − 1.5 ∗ IQR
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to Q3 + 1.5 ∗ IQR. Any data that fall outside this range is plotted as an outlier

with a dot or small circle. Normally, the mean is also computed and places in the

box plot.

Figure 2.3: An example of a box plot of 1,000 sample drawn from normal distribution
with mean 0 and sd 1.

2.2 Time Series

A time series data will be defined as a m-dimensional vector. Since time

series is an ordered set of an infinite horizon, but only a finite number of data

points can be observed, hence it can be defined as a Restricted Time Series as

follow:

Definition 2.1 (Restricted Time Series). A restricted time series T = (t1, t2, . . . , tm)

is an ordered set of m real-valued variables.
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2.2.1 Type of Anomaly on Time Series Data

Anomalous data on time series can be divided into three types [7]: point

anomaly, contextual anomaly, and collective anomaly.

2.2.1.1 Point Anomaly

Point anomaly is the first and obvious type of anomaly. An individual point

is considered to be anomalous if it deviates very far from other points in the rest

of the time series data. An anomaly of this type is the easiest and simplest type

to detect. Many state-of-the-art techniques for static data can be applied, for

example, LOF [4] and OOF [6].

2.2.1.2 Contextual Anomaly

In this type, anomalies are the individual instances of the time series in a

specific context surrounding it, so it is anomalous in that context but it may not

be anomaly with respect to the whole data. In some literature, the contextual

anomaly is also referred to as conditional anomaly.

Figure 2.4: An example of a contextual anomaly in time series data [7]
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Contextual anomalies have been one of the most commonly investigated in

time series data. Figure 2.4 illustrates one such example of a contextual anomaly in

time series data. As the example shows, the temperature at time t1 is equal to that

temperature at time t2 but it occurs in a different context hence the temperature

at time t1 is not considered as an anomaly.

2.2.1.3 Collective Anomaly

Collective anomalies are a collection of contiguous data points that appear

to be anomalous respect to the entire dataset. The individual data point in a

collective anomaly may not be anomalies by itself, but its occurrence together as

a collection is anomalous.

Figure 2.5: An example of a contextual anomaly in a human electrocardiogram data.
Values in the range [5000, 7000] represent a collective outlier because the same low value
exists for an abnormally long time. [7]
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2.2.2 Anomaly Detection Approach

Anomaly detection approach highly depends on the availability of labels in

a training data set. Each data point in a dataset is associated with its label which

describes whether that instance is normal or anomalous.

Based on the extent to which the labels are available, anomaly detection

techniques can operate in one of the following three modes:

2.2.2.1 Supervised Anomaly Detection

The supervised anomaly detection technique builds a model on a dataset

where each instance is labeled as “normal” or “anomalous.” A typical approach

in such cases is to construct a predictive model for normal against anomaly class.

The supervised anomaly detection technique has two main problems. First, the

anomalous instances are far fewer compared to the normal instances in the training

data. This issue is addressed as an imbalance class problem. Second, obtaining

the label for data instance accurately is usually hard; it is essentially done by

human, but if more data are available (in big data problem), this is impractical.

2.2.2.2 Semi-Supervised Anomaly Detection

The semi-supervised anomaly detection technique operates on a dataset

where each instance is labeled only “normal” and builds a model based on the

normal behavior of a dataset. A data point that does not agree with the model

will be identified as an outlier. Since this technique does not require the anomalous

label in training stage, it is more widely applicable than supervised techniques,

especially, in a problem that the behavior of anomalous data is unknown.
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2.2.2.3 Unsupervised Anomaly Detection

The unsupervised anomaly detection technique is the most widely studied

due to the absence of labeled datasets. This technique assumes the majority of

data points in a dataset is normal and an instance that behaves differently from the

majorities will be identified as an outlier. This technique also makes an assumption

that normal instances are far more frequent than anomalies in both the training

and testing data.

For a static dataset, there are many methods and algorithms that work

effectively such as Local Outlier Factor (LOF) [4], Connectivity-based Outlier

Factor (COF) [Tang2002], Histogram-based Outlier Score (HBOS) [13]. While

these methods work quite well with the anomaly of the first type, which is the

point anomaly; they, however, have a hard time extend to detect anomalous data

point in a time series which involves temporal characteristic.

2.2.3 Output of Anomaly Detection

One important thing about anomaly detection is how it reports the results.

Typically, the results produced by anomaly detection techniques are one of the

following two types:

2.2.3.1 Labels

Results of this type will label the data as “normal” or “anomalous” to each

data instance.

2.2.3.2 Scores

Results of this type use numerical value to represent the anomaly of each data

instance. The high score is usually interpreted as anomalous while the low score
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is treated as normal. Some approaches report it as a probability of anomaly. This

approach can also be converted to labeling using a cut-off threshold for selecting

top few anomalies for further analysis.

2.2.4 Processing Time series Data

There are many ways to handle time series data. One of the most popular

techniques using for manipulating time series is sliding windows technique.

2.2.4.1 Sliding Window

Sliding window is a technique to process a time series and transforms it into

Window Subseries. A window subseries of a given time series can be defined as

follows:

Definition 2.2 (Window Subseries). Given a time series T of length m, a window

subseries Si of T is a contiguous data points of length n ≤ m from T starting at

index i, that is, Si = (ti, ti+1, . . . , ti+n−1) for 1 ≤ i ≤ m− n+ 1

Figure 2.6: Window Subseries of length 200 starting at index 1

Note that there are many variations of sliding window techniques, some of

them using step_size as a parameter to make the window subseries shift more

than just one time step.
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2.2.4.2 Distance Measure

In this section, three different distance measures will be investigated. They

use for evaluating similarity/dissimilarity of data which are Euclidean distance,

Hamming distance, and Dynamic Time Warping distance.

2.2.4.3 Euclidean Distance

Euclidean distance is the most popular distance measure that has been used

in wide range areas including in time series data.

Definition 2.3 (Euclidean Distance). Given two time series of the same length

T = (t1, t2, . . . , tm) and S = (s1, s2, . . . , sm). The Euclidean distance between T

and S is defined by

EuclideanDist(T, S) =

√√√√ m∑
i=1

(ti − si)2 (2.9)

2.2.4.4 K-Nearest Neighbors Distance

K-nearest neighbors algorithm is best known as a method for classification

[18] and regression [1] in the machine learning field. This work applies k-nearest

neighbors algorithm and uses it as a score for each window subseries.

Definition 2.4 (K-Nearest Neighbors). Let D be a set of vectors. Given a vector

v ∈ D, Kv ⊆ D is the set of k-nearest neighbors of v, if the following conditions

hold:

• There are at least k vectors u′ in set Kv such that d(v, u′) ≤ d(v, u) for all

u in set D \Kv.

• There are at most k vectors u′ in set Kv such that d(v, u′) < d(v, u) for all
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u in set D \Kv.

K-nearest neighbors distance is defined as the largest distance from v to all points

in Kv which can be written as follows:

knnDist(v) = max
u∈Kv

d(v, u) (2.10)

Figure 2.7: Example of calculating knnDist of point v with k = 4.

2.3 Anomaly Detection on Time Series

In this section, the Seasonal Hybrid ESD (S-H-ESD) [15], the anomaly de-

tection method introduced by Twitter, is reviewed.

2.3.1 Seasonal Hybrid ESD

The Seasonal Hybrid ESD is built upon generalized Extreme Studentized

Deviate test (ESD). It utilizes a seasonal-trend decomposition procedure based on

loess (STL) [8] to extract the time series Y = (y1, y2, . . . , yn) into three compo-
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nents: seasonality (si), trend (ti), and remainder (yi)

yi = si + ti + ri.

Figure 2.8: An example of STL performing on a synthetic time series data

To get the residual component, the time series is subtracted by its seasonal

and trend component:

ri = yi − si − ti.

The residual, then, is analyzed to find anomalous data in the time series by ap-

plying generalized extreme Studentized deviate test.

2.3.1.1 Generalized Extreme Studentized Deviate

A generalized Extreme Studentized Deviate (ESD) [20] is a method used to

detect multiple anomalies in a univariate data set. This method requires a value

k, which is the upper bound on the number of anomalies, to be specified as a

parameter. It performs by calculating the test statistic Ci for the k most extreme
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values in the dataset by

C =
maxj |xj − x̄|

s
(2.11)

where s is standard deviation of the dataset.

Initially, C1 is set to C with a complete data set. Then, the value C1 will be

compared against critical value α1 defined by

αi =
(n− i)tp,n−i−1√

(n− i− 1 + t2p,n−i−1)(n− i− 1)

where tp,n−i−1 is the upper critical values of the t-distribution with n− i−1 degree

of freedom and a significance level of p.

If C1 > α1, the value xj corresponding to the equation (2.11) will be masked

as an anomaly and removed from consideration. Otherwise, it stops. Next,

C2, C3, . . . , Ck will be calculated consecutively in the same manner as before with

successively reduced data set.



CHAPTER III

ANOMALY DETECTION ON TIME SERIES

FROM FURTHEST NEIGHBOR WINDOW

SUBSERIES

In this chapter, a novel algorithm for detecting contextual anomalies on

time series data is proposed. It is called Furthest Neighbor Window Subseries

algorithm (FNWS). The motivation, methodology and time complexity analysis

of the algorithm are presented in this chapter.

3.1 Definitions

This section discusses necessary definitions that will be used in the FNWS

algorithm.

3.1.1 Representative Vector

For any given window subseries Si, there are two main features of each

window subseries to be considered as a representation. The first feature is the

representation of the distribution. If a window subseries has a different distri-

bution, it is an evidence that there is anomaly occur in that window subseries.

The second feature shows the perspective of that window subseries according to

the first instance so that each window subseries will be observed from the same

perspective. This feature does not effect by a linear trend in time series.

To achieve that effect, this research uses the subtraction of each window
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subseries by its first value which makes all windows start at 0. The first feature is

trickier to achieve since there are a lot of options that can represent the distribution

of each window subseries. This research chooses a representation as a vector of

three values: the lower quartile, the median, and the upper quartile of that window

subseries.

Definition 3.1 (Representative Vector). Given a time series T of length m and

window subseries Si of length n is defined by Si = (ti, ti+1, . . . , ti+n−1) where

i ∈ {1, 2, . . . ,m−n+1}. A representative vector rvi for Si is a vector of the lower

quartile (Q1), the median (Q2), and the upper quartile (Q3) of Si subtracting the

first data point ti of Si.

rvi = (Q1 − ti, Q2 − ti, Q3 − ti) (3.1)

The representative vector has many benefits. First, it reduces the data in

window subseries to just three values, hence, it can be efficiently computed and

manipulated. Another benefit is that it can be efficiently extracted when a sliding

window technique is applied. Calculating the representative of the first window

subseries of a time series requires O(n logn) time complexity, because it has to be

sorted first for computing the lower quartile, the median, and the upper quartile.

But for the next window subseries, it only requires O(n) time complexity because

there is n−1 sorted value, and only inserts a new value to the appropriate location

and recomputing those three values.

3.2 Furthest Neighbor Window Subseries Search Algorithm

The FNWS algorithm composes of three main steps: 1) extracting the char-

acteristic vector, 2) calculating scores, and 3) identifying anomalous data points.
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Initialization: Given the window subseries size n.

1. For each window subseries Si = (ti, ti+1, . . . , ti+n−1) in a time series dataset,

compute the lower quartile Q1, the median Q2, the upper quartile Q3. Then

generate the representative vector rvi = (Q1 − ti, Q2 − ti, Q3 − ti). This

representative vector captures the distribution from the viewpoint of ti.

Figure 3.1: Example of a time series with anomalies going in the same direction (top)
plot alongside with representative vector of each window subseries (bottom).

Figure 3.2: Example of a time series with anomalies go in opposite direction (top) plot
alongside with representative vector of each window subseries (bottom).
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(a) The first example (b) The second example

Figure 3.3: A 3-dimensional representation of the representative vectors of both exam-
ples.

2. Determine the k-nearest neighbor distance for each rvi. Then compute

knnDist(rvi). This value is a score for the window subseries.

Figure 3.4: Example of a time series (top) with knnDist of each window subseries
(bottom).

Figure 3.4 exhibits a very high score for each anomalous data point while

normal data points stay close to zero.

3. Calculate anomalous data points using interquartile range rule from the
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adjusted boxplot for skew distributions.

anom_cri = Q3 + 1.5e3MCIQR (3.2)

where Q3 is the upper quartile of scores and IQR is interquartile range of

these scores and MC is medcouple which is defined by equation (2.7).

Figure 3.5: knnDist values of each window subseries with anom_cri line and points
which are marked as anomalies.

Figure 3.5 shows data points above the anomaly criteria line which are iden-

tified as outliers.

3.3 Time Complexity Analysis

In this section, the time complexity of the FNWS algorithm is analyzed. The

algorithm composes of three main steps:

1. extracting the characteristic vector,

2. calculating score, and

3. identifying anomalous data points.

3.3.1 Extracting the characteristic vector

In the first step, quartiles are extracted from the sorted window subseries of

fixed size n having m− n + 1 elements. The algorithm performs O(mn) running

time.
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3.3.2 Calculating score

In the process of calculating k-nearest neighbor distance, the nearest neigh-

bor search in a K-D tree data structure [3] will be used which can compute the

k-nearest neighbor distance much more efficient than the brute-force approach.

K-D Tree algorithm constructs tree-based data structure for keeping the data to

reduce the required number of distance calculations by efficiently encoding aggre-

gate distance information for each data. The fundamental idea of this algorithm is

that if point A is very far from point B, and point B is very close to point C, then

A and C will be far away to each other, without having to explicitly calculate their

distances. By using this algorithm the computational cost of the nearest search

of each element can be reduced to O(m log(m)) which is better than O(m2) in

brute-force search.

3.3.3 Identifying anomalous data points

The last step of the algorithm is done by looping through all data points

comparing it with the criteria in equation (3.2) which takes O(m) time complexity.

So overall time complexity is O(m) +O(m logm) +O(m) = O(m logm).



CHAPTER IV

EXPERIMENTATION

In this chapter, the performance of the FNWS algorithm is tested and com-

pared with S-H-ESD by using benchmark dataset from Yahoo. The FNWS al-

gorithm is also tested on two different kinds of random data: white noise and

random walk. All experiments and details are explained in this chapter.

4.1 Accuracy Measurement

In this section, three accuracy measurements, which is precision, recall, and

F-measure, are used to evaluate the performance of the FNWS algorithm. These

measurements can be derived easily from a confusion matrix.

4.1.1 Confusion Matrix

The confusion matrix, also known as an error matrix, is a table that is often

used to describe the performance of a classification model. Each column of the

matrix represents the class of data instances from the model prediction while each

row represents the actual class instances.

Prediction

Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 4.1: Confusion matrix
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• True positive (TP): the number of instances correctly labeled as belonging

to the positive class

• True negative (TN): the number of instances correctly labeled as belonging

to the negative class

• False negative (FP): the number of instances incorrectly labeled as belonging

to the positive class

• False negative (FN): the number of instances incorrectly labeled as belonging

to the negative class

For the anomaly detection work, the positive class is the anomalous class

and the negative class is the normal class.

4.1.2 Precision

The precision, also known as the positive predictive value, is the ratio be-

tween the number of the predicted instances as anomalies that are actual anomalies

and the number of all data instances that are predicted as anomalies.

Precision =
TP

TP + FP
(4.1)

4.1.3 Recall

The recall, also known as the true positive rate or sensitivity, is the ra-

tio between the number of the predicted instances as anomalies that are actual

anomalies and the number of all anomalous instances in the dataset.

Recall =
TP

TP + FN
(4.2)
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4.1.4 F-measure

F-measure is the harmonic mean of the precision and recall.

F -measure =
2 · Precision ·Recall

Precision+Recall
(4.3)

4.2 Parameter Setting

There are only two parameters in the FNWS algorithm. The first parameter

is the length of a window subseries n and another parameter is the number of the

nearest neighbors k. The experiments vary n from 15 to 300. For the parameter

k, the experiments set this value to the the length of the window subseries.

The S-H-ESD algorithm is also required two parameters. The first parameter

is max_anoms; it is the maximum number of anomalies that S-H-ESD will detect

as a percentage of the data. The max_anoms parameter is always set to 0.2.

Another parameter is period that is used to define the number of observations

in a single period, and is used during seasonal decomposition. This parameter is

varied from 15 to 300.

4.3 FNWS on Synthetic Dataset

In this section, the FNWS algorithm is tested on benchmark datasets from

a collection of Yahoo! Webscope datasets [23]. This collection consists of 100

synthetic time series data with varying trends, noises, and seasonality. All time

series datasets are of length 1421 with the anomaly tag labels. The accuracy of the

FNWS algorithm is measured by three metrics: precision, recall, and F-measure.
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n, k Precision Recall F-measure

5 0.8950 ± 0.1720 0.9858 ± 0.0682 0.9252 ± 0.1369

10 0.9852 ± 0.0949 0.9975 ± 0.0249 0.9876 ± 0.0755

15 0.9925 ± 0.0746 0.9942 ± 0.0412 0.9906 ± 0.0641

20 0.9848 ± 0.1075 0.9800 ± 0.0891 0.9748 ± 0.1045

25 0.9728 ± 0.1441 0.9656 ± 0.1356 0.9614 ± 0.1424

Table 4.2: Average ± standard deviation of precision, recall, and F-measure of the
FNWS algorithm on 100 synthetic datasets with varying parameter from 5 to 25

4.4 Result of S-H-ESD Algorithm

Figure 4.1: Precision, Recall and F-measure (solid line) of the S-H-ESD

While the results of the FNWS algorithm are quite stable and reach its best

setting around n = k = 10 and 15 with precision, recall, and F-measure equal

to 0.9925, 0.99416667 and 0.99057143, respectively, the S-H-ESD fails on other

parameter settings and get only achieve its best performance when the period

equal to 230, 235, 240, and 245 with precision, recall, and F-measure scores are all

1 but it fails with other parameter settings. This means that the S-H-ESD is very

sensitive to its parameters.
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4.5 Test on Random Data

In this section, the FNWS algorithm is tested on two different datasets. The

first one is white noise. The second is a random walk. Each dataset is generated

from a uniform distribution and Gaussian distribution.

4.5.1 White Noise

White Noise process is a random process having equal intensity at different

frequencies. A white noise can be seen as a sequence of random variables that

have zero mean and finite variance and are statistically uncorrelated. Formally,

X(t) is a white noise process if

1. E[X(t)] = 0

2. E[X2(t)] = s2 for some s ∈ R

3. E[X(t1)X(t2)] = 0 for t1 ̸= t2

Examples of the simplest representatives of the white noise are independent

and identically distributed (i.i.d.) random variables. In this work, white noises

generated from Gaussian and uniform distribution will be used to test a behavior

of the FNWS algorithm.

4.5.1.1 Uniform Distribution

This experiment tests FNWS algorithm on 1,000 white noises generated from

a uniform distribution with minimum and maximum are equal to 0 and 1 respec-

tively.

On average, the FNWS algorithm detects 17.24 points as anomalies with

standard deviation equal to 3.13.
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Figure 4.2: Examples of the FNWS algorithm performs on white noises generated from
uniform distribution.

4.5.1.2 Gaussian Distribution

This experiment tests FNWS algorithm on 1,000 white noises generated from

a Gaussian distribution with mean equal to 0 and standard deviation equal to 1.

On average, the FNWS algorithm detects 16.57 points as anomalies with

standard deviation equal to 3.74.

Figure 4.3: Examples of the FNWS algorithm performs on white noises generated from
Gaussian distribution.
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4.5.2 Random Walk

A random walk can be described as a path that consists of a sequence of

random discrete steps. It can be interpreted as a sequence of the cumulative sum

of random variables. [14]

Definition 4.1 (Random Walk). Let (Xn)n∈N be a sequence of independent and

identically distributed random variables. Let S0 = 0 and for each k ∈ N, Sk is

defined to be

Sk =
k∑

i=1

Xi.

The sequence (Sn)n∈N is called a random walk.

This work is interested in two types of univariate random walk that each

step size and direction (Xi) are generated according to a Gaussian distribution

and a uniform distribution.

4.5.2.1 Uniform Distribution

A thousand random walk is synthesized to test the FNWS algorithm. Each

step of random walk is generated from a uniform distribution with maximum and

minimum equal to -0.5 and 0.5 respectively.

On average, the FNWS algorithm detects 19.51 points as anomalies with

standard deviation equal to 3.70.
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Figure 4.4: Examples of the FNWS algorithm performs on random walk generated from
uniform distribution.

4.5.2.2 Gaussian Distribution

A thousand random walk is synthesized to test the FNWS algorithm. Each

step of random walk is generated from a Gaussian distribution with mean equal

to 0 and standard deviation equal to 1.

On average, the FNWS algorithm detects 19.97 points as anomalies with

standard deviation equal to 3.95.

Figure 4.5: Examples of the FNWS algorithm performs on random walk generated from
Gaussian distribution.



CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This research begins with a review of the concept of anomaly detection in

data mining in order to grasp and accumulate basic necessary information and

various approaches for the solution of this problem. In particular, the literatures

about processing time series data and the behavior and categories of anomalies in

this type of data are examined. In this thesis, the new method, Furthest Neighbor

Window Subseries (FNWS) algorithm, is proposed and demonstrated for detecting

anomalies on time series of type one and of type two which are point anomaly and

contextual anomaly.

The method is tested against the benchmark time series datasets provided

by Yahoo! Webscope datasets and is compared the results with Seasonal Hybrid

ESD (S-H-ESD), the method proposed by Twitter for detecting anomalies. The

performance is evaluated with various metrics, namely, precision, recall and F-

measure.

From the experiments, the S-H-ESD performs very well with the appropriate

parameter setting but it failed in other situations, that is, when the parameter

periods do not match the season of that time series while the FNWS algorithm

shows the accuracy within [0.8-1] on all parameter settings.
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5.2 Future work

In a future study, this method can be improved by investigating the two

parameters being used in the algorithm. For the algorithm to work, it requires a

setting of a window subseries size n which depends on a dataset. In addition, the

number of the nearest neighborhoods, k, is needed to generate the appropriate

score. In the future, these two parameters could be automated based on a given

time series dataset.



References

[1] Naomi S Altman. “An introduction to kernel and nearest-neighbor nonpara-

metric regression”. In: The American Statistician 46.3 (1992), pp. 175–185.

[2] David F Andrews and Agnes M Herzberg. Data: a collection of problems

from many fields for the student and research worker. Springer Science &

Business Media, 2012.

[3] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Asso-

ciative Searching”. In: Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn:

0001-0782. doi: 10.1145/361002.361007. url: http://doi.acm.org/10.

1145/361002.361007.

[4] Markus M. Breunig et al. “LOF: Identifying Density-based Local Outliers”.

In: SIGMOD Rec. 29.2 (May 2000), pp. 93–104. issn: 0163-5808. doi: 10.

1145/335191.335388. url: http://doi.acm.org/10.1145/335191.

335388.

[5] G Brys, M Hubert, and A Struyf. “A Robust Measure of Skewness”. In:

Journal of Computational and Graphical Statistics 13.4 (2004), pp. 996–1017.

doi: 10.1198/106186004X12632. eprint: http://dx.doi.org/10.1198/

106186004X12632. url: http://dx.doi.org/10.1198/106186004X12632.

[6] N. Buthong, A. Luangsodsai, and K. Sinapiromsaran. “Outlier detection

score based on ordered distance difference”. In: 2013 International Computer

Science and Engineering Conference (ICSEC). Sept. 2013, pp. 157–162. doi:

10.1109/ICSEC.2013.6694771.



REFERENCES 39

[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detec-

tion: A Survey”. In: ACM Comput. Surv. 41.3 (July 2009), 15:1–15:58. issn:

0360-0300. doi: 10.1145/1541880.1541882. url: http://doi.acm.org/

10.1145/1541880.1541882.

[8] Robert B Cleveland, William S Cleveland, and Irma Terpenning. “STL:

A seasonal-trend decomposition procedure based on loess”. In: Journal of

Official Statistics 6.1 (1990), p. 3.

[9] Dipankar Dasgupta and Stephanie Forrest. “Novelty Detection in Time Se-

ries Data using Ideas from Immunology”. In: In Proceedings of The Interna-

tional Conference on Intelligent Systems. 1995.

[10] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition

Letters 27.8 (2006), pp. 861–874. issn: 01678655. doi: 10.1016/j.patrec.

2005.10.010.

[11] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “Ad-

vances in Knowledge Discovery and Data Mining”. In: ed. by Usama M.

Fayyad et al. Menlo Park, CA, USA: American Association for Artificial

Intelligence, 1996. Chap. From Data Mining to Knowledge Discovery: An

Overview, pp. 1–34. isbn: 0-262-56097-6. url: http : / / dl . acm . org /

citation.cfm?id=257938.257942.

[12] Ary L. Goldberger et al. “PhysioBank, PhysioToolkit, and PhysioNet”. In:

Circulation 101.23 (2000), e215–e220. issn: 0009-7322. doi: 10.1161/01.

CIR.101.23.e215. eprint: http://circ.ahajournals.org/content/101/

23/e215.full.pdf. url: http://circ.ahajournals.org/content/101/

23/e215.

[13] Markus Goldstein and Andreas Dengel. “Histogram-based outlier score (hbos):

A fast unsupervised anomaly detection algorithm”. In: KI-2012: Poster and

Demo Track (2012), pp. 59–63.



REFERENCES 40

[14] Charles Miller Grinstead and James Laurie Snell. Introduction to probability.

American Mathematical Soc., 2012.

[15] Jordan Hochenbaum, Owen S. Vallis, and Arun Kejariwal. “Automatic Anomaly

Detection in the Cloud Via Statistical Learning”. In: CoRR abs/1704.07706

(2017). url: http://arxiv.org/abs/1704.07706.

[16] M. Hubert and E. Vandervieren. “An adjusted boxplot for skewed distribu-

tions”. In: Computational Statistics & Data Analysis 52.12 (2008), pp. 5186–

5201. issn: 0167-9473. doi: http://doi.org/10.1016/j.csda.2007.

11.008. url: http://www.sciencedirect.com/science/article/pii/

S0167947307004434.

[17] Eamonn Keogh, Jessica Lin, and Ada Fu. “HOT SAX: Efficiently Finding

the Most Unusual Time Series Subsequence”. In: Proceedings of the Fifth

IEEE International Conference on Data Mining. ICDM ’05. Washington,

DC, USA: IEEE Computer Society, 2005, pp. 226–233. isbn: 0-7695-2278-5.

doi: 10.1109/ICDM.2005.79. url: http://dx.doi.org/10.1109/ICDM.

2005.79.

[18] L. E. Peterson. “K-nearest neighbor”. In: Scholarpedia 4.2 (2009). revision

#136646, p. 1883. doi: 10.4249/scholarpedia.1883.

[19] David M W Powers. “Evaluation: From Precision, Recall and F-Measure

to ROC, Informedness, Markedness & Correlation”. In: Journal of Machine

Learning Technologies 2.1 (2011), pp. 37–63.

[20] Bernard Rosner. “Percentage points for a generalized ESD many-outlier pro-

cedure”. In: Technometrics 25.2 (1983), pp. 165–172.

[21] Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. “A Novel Tech-

nique for Long-term Anomaly Detection in the Cloud”. In: Proceedings of

the 6th USENIX Conference on Hot Topics in Cloud Computing. Hot-



REFERENCES 41

Cloud’14. Philadelphia, PA: USENIX Association, 2014, pp. 15–15. url:

http://dl.acm.org/citation.cfm?id=2696535.2696550.

[22] William Wu-Shyong Wei. Time series analysis. Addison-Wesley publ Read-

ing, 1994.

[23] Yahoo. A Labeled Anomaly Detection Dataset, version 1.0. url: https:

//webscope.sandbox.yahoo.com/catalog.php?datatype=s%7B%5C&

%7Ddid=70 (visited on 02/08/2016).



REFERENCES 42

Biography

Name Mr. Senee Kitimoon

Date of Birth 22 April 1992

Place of Birth Chiang Mai, Thailand

Education B.S. (Mathematics) (First Class Honours),

Chiang Mai University, 2013

Scolarship Development and Promotion for Science and

Technology talent (DPST)


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Objectives
	1.2 Scope of Work
	1.3 Expected Outcome
	1.4 Thesis Overview

	CHAPTER II BACKGROUND KNOWLEDGE
	2.1 Statistics
	2.2 Time Series
	2.3 Anomaly Detection on Time Series

	CHAPTER III ANOMALY DETECTION ON TIME SERIESFROM FURTHEST NEIGHBOR WINDOWSUBSERIES
	CHAPTER IV EXPERIMENTATION
	CHAPTER V CONCLUSION AND FUTURE WORK
	References
	Biography



