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Presently, ATM is used to conveniently serve customers in financial banking for multiple
services such as transfer, deposit, and withdrawal. The main concern of ATM is the lack of
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the algorithm process, the ATM data is split into the in-sample data for building the MASA model
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applied using the period of the in-sample data in order to reduce a sway of the time series which is
subdivided into the training and the validating data. Then, subsequence patterns are generated and
fitted using auto.arima function by the library forecast of the R programming language. They are
evaluated using the symmetric mean absolute percentage error (SMAPE) on the validating data.
In order to forecast a value of the next time step, the algorithm identifies the time step aggregate
group and the best fitted ARIMA model from a subsequence containing that group. The algorithm
then disaggregates the forecasted aggregate group value into individual future values using the
ratio from the in-sample data. The MASA model is compared using SMAPE with the SARIMA
and exponential smoothing model. The comparative analysis shows that the SMAPE of the MASA

model is better than both models.

Department : ...... Mathematics and Computer  Student’s Signature .....................
SCIENCES . .. vovv vt
Field of Study : ..... Applied Mathematics and  Advisor’s Signature .....................

Computational Sciences......................

Academic Year ............ 2016............



Acknowledgements

Firstly, I would like to express my sincere thanks to my thesis advisor, Assistant Professor

Krung Sinapiromsaran for his invaluable help and constant encouragement of this research.

I would like to thank Assistant Professor Khamron Mekchay, Jiraphan Suntornchost and

Thidaporn Supapakorn, the committee, for my dissertation defense.

In addition, I am grateful to Ms. Wipa Pimpapan, Mr. Chalee Boonprasop, Miss Keerati
Kaewrak, Miss Watcharaporn Puengpo and AMCS students for suggestions and all their help.
Moreover, I most gratefully acknowledge Science Achievement Scholarship of Thailand (SAST)
for funding this research and the Applied Mathematics and Computational Science, Department of
Mathematics and Computer Science, Faculty of Science, Chulalongkorn University for supporting

the equipment to this work.

Finally, I would like to thank my parents for their increasing encouragement, support and

attention throughout my life.



Contents

Page

Abstract (Thai) . . . . . .. .. .. e iv

Abstract (English) . . . . . .. . . .. ... v

Acknowledgements . . . . . . . ... vi

Contents . . . . . . . . . e vii

Listof Tables . . . . . . . . . . ix

Listof Figures . . . . . . . . . . . . X
Chapter

1 Introduction . . . . . .. .. . . .. 1

L1 Motivation . . . . . . oo e e e 1

1.2 ODbBJeCtiVES . . . . .t v o o e e e e e e e 3

1.3 Structure of thisthesis . . . . . . . . . . ... L 3

2 Background knowledge . . . . . ... ... ... 5

2.1 Stochastic process and time series definition . . . . . ... ... ... .. ... .... 5

2.2 The autocovariance and autocorrelation function . . . . . . ... ... ... ... 7

2.3 The partial autocorrelation function . . . ... ... ... ... ... .......... 8

2.4 WHhite NOISE PrOCESS . . .« v v v vt vt et e e e e e e e e e 9

2.5 Timeseriesmodel . . . . . .. .. ... 10

2.5.1 Autoregressivemodel . . ... ... ... ... 10

2.5.2 Movingaveragemodel . . . . .. ... ... 13

2.5.3 Autoregressive moving averagemodel . . . . . ... ... ... L., 15

2.5.4 Autoregressive integrated moving average model . . . . . ... ... ... L. 18

2.6 Maximum likelihood method . . . . . . . ... ... ... L L 21

2.7 The automatic forecasting algorithm for R programming . . .. ... ... ... ... 22

2.7.1 Identifying the order (p,d,q) of ARIMAmodel . ................ 23

2.7.2 A procedure of the automatic forecasting ARIMA algorithm . . ... ... .. 23

3 Datadescription . . ... ... .. ... ... 25

3.1 Competition NNS . . . . . ... e 25

3.2 Thedescriptionofthe NNSdata . . ... ... ... ... .. ... .. ... .. .... 25

3.3 NNSSUMMATY . . . v v ot e e e e e e e e e e e e e e e e e e e e 26

4 Methodology . . . . . . . . . . . e 28

4.1 Overall MASA algorithm . . . . .. .. ... ... .. 28

4.2 Concepts of the MASA algorithm . . ... ... ... ... .. ... .. ... .. ... 29



viii

Chapter Page
4.2.1 Concept of the MASA model-building algorithm . . . . . ... ... ... ... 29

4.2.2 Concept of the MASA model-forecasting algorithm . . . .. ... ... .. .. 31

4.3 The MASA model-building algorithm . . . . . ... ... ... ............. 33
4.4 The MASA model-forecasting algorithm . . . ... ... .. ... ... ........ 34
4.5 The model measurements . . . . . . . ... ... e 38

4.5.2 Wilcoxson signed-ranktest . . . . ... ... ... ... ... ... 39
4.5.2.1 Assumption of the Wilcoxon signed-rank test . . . . ... ....... 39
4.5.2.2 Procedure of Wilcoxon signed-rank test . . . . ... .......... 39
5 Empirical results and comparative analysis . . . ... ... ... ............. 41
5.1 Empirical results . . . . . .. .. L 41
5.1.1 Casel:in-sample data 95% and out-sample data 5%. . . . ... ... ... .. 42
5.1.2 Case II : in-sample data 90% and out-sample data 10%. . . . .. ... ... .. 49
5.2 Comparative analysiS . . . . . . . . v it e e e e e 56
5.2.1 Casel: in-sample data 95% and out-sample data 5%. . . . ... ... ... .. 56
5.2.2 Case Il : in-sample data 90% and out-sample data 10%. . . . . . .. ... ... 60
6 Conclusion . . . . . .. . 65
References . . . . . . . . . L 66
Appendices . . . ... e 68
Appendix A Comparativemodels. . . . . ... ... ... ... .. ... .. ... ... 69
A.1 Exponential smoothingmodel . . ... .. ... ... ... .. ... .. ..., 69
A.1.1 Basic exponential smoothingmodel . . . .. .. ... ... ......... 69
A.1.2 Double exponential smoothingmodel . . .. .. ... ... ......... 69

A.1.3 Triple exponential smoothingmodel . . .. ... .. ... ... .. .... 70

A.2 Seasonal autoregressive integrated moving average model . . .. .. .. ... .. 71
Appendix B Programming of the MASA model . . . . ... ... ... ......... 73

Biography . . . . . . ... 84



List of Tables

Table Page
2.1 Time series data Z1, 29, ...y 210 « v v v v v e e e e e e e e e e e e e e e e 7
22 ACFand PACFof AR(2): Zy = —Z4 1 —05Zt94as . . o oo i i 11
2.3 ACFand PACF of MA(2): Z; = a; — 0.65a,—1 — 0.24a,—o . . . .. ... ... .... 14
2.4 ACF and PACFof ARMA(1,1): Z; =09Z;_1+a; —0.5a¢—1 . . . .« o oo 16
2.5 ACF and PACF of ARIM A(1,1,1): (1-0.9B)VZ; =(1—-05B)ay . ... ...... 19
5.1 Output from the MASA algorithm for in-sample 95% . . . .. ... ... ... ... .. 48
5.2 Output from the MASA algorithm for in-sample 90% . . . .. ... ... ......... 55
5.3 Comparative result of ATM ID NN5-030 for in-sample 95% . . . ... ... ... .... 57
5.4 Comparative result of ATM ID NN5-030 with 111 time series (in-sample 95%) . . . . . 59
5.5 Wilcoxon signed-rank test of the models for in-sample 95% . . . . .. ... .. ...... 59
5.6 Comparative result of ATM ID NN5-030 for in-sample 90% . . . . ... ... ... ... 61
5.7 Comparative result of ATM ID NN5-030 with 111 time series (in-sample 90%) . . . . . 63

5.8 Wilcoxon signed-rank test of the models for in-sample 90% . . . . ... ... ....... 64



List of Figures

Figure Page
1.1 Time seriesplot of ATM . . . . . . . . . . 2
2.1 Examplesof AR(2) model: Z;, = —Z; 1 — 057y 9o+ ap. « oo oo v i 11
22 ACFof AR(2)model: Z; = —Z; 1 — 057 o+ ar. o o oo oo 12
23 PACFof AR(2)model: Z; = —Z; 1 — 05219+ s . o o o o oo i i 12
2.4 Examples of M A(2) model: Z; = a; — 0.65a4—1 —0.24a¢—9. . . ... ... .. ... 13
2.5 ACFof MA(2) model: Z; = a; — 0.65a4—1 —0.24a4—2. . . . ... ... .. ... 14
2.6 PACF of MA(2) model: Z; = a; — 0.65a;—1 —0.24a;—92.. . . . . . .. oL 15
2.7 Examples of ARMA(1,1) model: Z; = 0.9Z;_1 +a; —0.5ai—1. . . . . ... ..... 16
28 ACFof ARMA(1,1) model: Z; =0.9Z;—14+at —0.5a4—1. . . . . .o oo 17
29 PACFof ARMA(1,1) model: Z; =09Z;_1 +a; —0.5a4—1. . . .. ... ... 17
2.10 Examples of ARIMA(1,1,1) model: (1 -09B)VZ; =(1—-0.5B)a;. . ....... 19
2.11 ACFof ARIMA(1,1) model: (1 —-0.9B)VZ; =(1—-05B)as. . . . ..o ... 20
2.12 PACF of ARIMA(1,1) model: (1 —0.9B)VZ; =(1—-05B)as. . ... ........ 20
3.1 Nine time series ATM data from the NNS dataset. . . ... ................ 26
3.2 Line plot of mean and standard deviation of cash withdrawals . . ... ... ... ... 27
3.3 Boxplot and histogram of mean of cash withdrawals . . . . . ... ... .. ... .... 27
4.1 The overall diagram of the MASA algorithm . . . .. ... ... .. ... ..... ... 28
4.2 The diagram of disaggregate process of Vil oo 32
4.3 The diagram of the MASA model-building algorithm. . . . ... ... .......... 33
4.4 The diagram of the MASA model-forecasting algorithm. . . ... ... ... ...... 35
4.5 The diagram of the forecasting values. . . . . . ... ... ... ... . ... ... ... 36
5.1 Time series plot of ATM ID NN5-030 (1996/03/18 t01998/03/22) . . . ... ... ... 41
5.2 Time series plot of aggregate time from daily to weekly for in-sample 95%(ATM

ID NN5-030, 1996/03/18 to1998/03/22) . . . . . . . . . . . i 42
5.3 Time series plot of aggregate time from daily to weekly for subsequence Y7, Y3,

Y3, Yy, ... (in-sample 95%) . . . . . oo 43
5.4 Time series plot of aggregate time from daily to weekly for subsequence Y7, Y3,

Ys, Yo, ..o (in-sample 95%) . . . . . 43
5.5 Time series plot of aggregate time from daily to weekly for subsequence Yo, Yy,

Yo, Yg, ... (in-sample 95%) . . . . . . ... e 44
5.6 Time series plot of aggregate time from daily to weekly for subsequence Y7, Yy,

Y7, Yig,... (in-sample 95%) . . . . . .. 44



Figure Page
5.7 Time series plot of aggregate time from daily to weekly for subsequence Y3, Y5,

Ys, Yi1,... (in-sample 95%) . . . . . L 45
5.8 Time series plot of aggregate time from daily to weekly for subsequence Y3, Y5,

Yo, Yio,... (in-sample 95%) . . . . . . .. 45
5.9 Time series plot of aggregate time from daily to weekly for subsequence Y7, Y5,

Yo, Y13, ... (in-sample 95%) . . . . . . ... 46
5.10 Time series plot of aggregate time from daily to weekly for subsequence Y5, Y5,

Y10, Yigq,... (in-sample 95%) . . . . . . .. 46
5.11 Time series plot of aggregate time from daily to weekly for subsequence Y3, Y7,

Y11, Yi5,... (in-sample 95%) . . . . . . . .. 47
5.12 Time series plot of aggregate time from daily to weekly for subsequence Yy, Yg,

Yi2, Yi6,... (in-sample 95%) . . . . . . . . 47
5.13 The empirical result of the MASA model with the out-sample data (in-sample 95%). . 48
5.14 Time series plot of aggregate time from daily to weekly for in-sample 90%(ATM

ID NN5-030, 1996/03/18 t01998/03/22) . . . . . . . . . . i i 49
5.15 Time series plot of aggregate time from daily to weekly for subsequence Y7, Y,

Y3, Yy, ... (in-sample 90%) . . . . .o 50
5.16 Time series plot of aggregate time from daily to weekly for subsequence Y7, Y3,

Y5, Yo, ... (in-sample 90%) . . . . .. 50
5.17 Time series plot of aggregate time from daily to weekly for subsequence Y5, Y,

Y5, Y, ... (in-sample 90%) . . . . . . ... 51
5.18 Time series plot of aggregate time from daily to weekly for subsequence Y7, Yy,

Y7, Yig,... (in-sample 90%) . . . . . .. 51
5.19 Time series plot of aggregate time from daily to weekly for subsequence Y», Y5,

Ys, Yi1,... (in-sample 90%) . . . . . .. 52
5.20 Time series plot of aggregate time from daily to weekly for subsequence Y3, Yg,

Yy, Yio,... (in-sample 90%) . . . . . . .. 52
5.21 Time series plot of aggregate time from daily to weekly for subsequence Y7, Y5,

Yy, Yi3,... (in-sample 90%) . . . . . .. 53
5.22 Time series plot of aggregate time from daily to weekly for subsequence Y5, Yg,

Y10, Yi4,... (in-sample 90%) . . . . . . .. 53
5.23 Time series plot of aggregate time from daily to weekly for subsequence Y3, Y7,

Y11, Yis, ... (in-sample 90%) . . . . . .. 54
5.24 Time series plot of aggregate time from daily to weekly for subsequence Y}, Yz,

Y12, Yi6,... (in-sample 90%) . . . . . . ... 54
5.25 The empirical result of the MASA model with the out-sample data (in-sample 90%). . 55



Figure Page

5.26

5.27

5.28
5.29
5.30
5.31

5.32

5.33

5.34
5.35

Comparative results of the MASA model and the SARIMA model for in-sample

95% (ATM ID NN5-030) . . . . o oot e e e 56
Comparative results of the MASA model and the exponential smoothing model

for in-sample 95% (ATM ID NN5-030) . . . . . ..o oottt 57
ACF of MASA model residuals (in-sample 95%). . . . ... ... ... ... ...... 58
ACF of SARIMA model residuals (in-sample 95%). . . . . . . ... ... ... ..... 58
ACF of exponential smoothing model residuals (in-sample 95%). . . . ... ... ... 59
Comparative results of the MASA model and SARIMA model for in-sample 90%

(ATMID NNS-030) . .. .o e 60
Comparative results of the MASA model and exponential smoothing model for

in-sample 90% (ATM ID NN5-030) . . . . . ..o v i it 61
ACF of MASA model residuals (in-sample 90%). . . . . ... ..... ... ...... 62
ACF of SARIMA model residuals (in-sample 90%). . . . . ... ............. 62

ACF of exponential smoothing models residuals (in-sample 90%) . . .. ... ... .. 63



CHAPTER

INTRODUCTION

1.1 Motivation

Currently, the deposit, withdrawal and other services are offered by the financial institu-
tions for customer convenient, especially, via the automatic teller machine or ATM (Handel et al.
(1998)). Service quality in ATM composes of seven critical dimensions which are reliability, re-
sponsiveness, ease of use, convenience, fulfillment, security, and accuracy (Narteh (2013)). This
research will focus on the fulfillment aspect of the service quality in ATM. The fulfillment of
service quality shows that the ATM must give quality banknotes, provide enough money during
transactions, satisfy most of the customer’s banking needs, have a reasonable charge, provide fast
services, and give instant money all the time. This research concentrates on the ATM forecasting
which is a part of ATM replenishment operations. The ATM replenishment goal is to maintain the
qualities of services of ATM having appropriate amount of banknotes for withdraws while guard-
ing an excessive level of cashes to prevent the opportunity loss of investment. Consequently, the

bank manager needs to forecast cash demand on each ATM as accurate as possible.

At present, the traditional ATM forecast techniques use an autoregressive or AR model
and a moving average or MA model. The improved models are proposed and developed such
as ARIMA, SARIMA by Box et al. (2015), ARCH by Engle (1983) and GARCH model by
Bollerslev (1986). Recent methods use the machine learning algorithms together with the time
series models such as F-ARIMA model by Sadek et al. (2003), the neural networks such as Simutis

et al. (2008) to forecast more accurately.

The F-ARIMA was developed by Sadek et al. (2003) on ATM dynamic bandwidth alloca-
tion problem comparing the result with AR model. Neural networks and support vector regressive
algorithm were used by Simutis et al. (2008) on the daily cash demand for the ATM. The ap-
plication of both models was slightly better and the results could be achieved using a forecasting
method based on the flexible of ANN. The fuzzy neural network was proposed by Darwish (2013)
to forecast cash demand for the ATM. An interval type-2 fuzzy neural network had been applied

to the simulation results for ATM cash forecasting and showed the effectiveness of the model.

The typical example of time series of daily cash in ATM is shown in Figure 1.1. Evidently,

the structure of the time series is sway. As a result, this research aims to reduce the sway that



occurs in the time series by applying the aggregate technique based on the observation that if
the time series data has large sway then the accuracy of forecasting is low. However, if it has
small sway then the fitted model should be more accurate to forecast the future value. Moreover,
the customer cash-spending behavior is embedded in the observed time series values. So this
research proposes the use of different ARIMA models for each subsequence to capture these
hidden patterns. Finally, the future values are forecasted by the best fitted model with a minimum

€ITor1.

Figure 1.1: Time series plot of ATM

A new forecasting model of time series, called the multiple ARIMA subsequences aggre-
gate time series model or the MASA model is proposed and applied with the ATM data on the
daily NN35 datasets which consist of 111 time series. The NN5 dataset is a collection of ATM time
series (Crone (2008)) which is applied with the hybrid models by Wichard (2011). They exhibited
the best performance from the mixture of the neural network ensemble model, the one-year-cycle
model and the nearest trajectory model. In the same year, Andrawis et al. (2011) also forecasted
the weekly values and then converted them to daily values using a simple linear interpolation

scheme.

The aggregation of the time series was presented by many researchers. Amemiya and Wu

(1972) proposed the aggregation effect on the prediction of ARIMA models which were known as



the high frequency ARIMA processes aggregate to low frequency ARIMA processes. Pino et al.
(1987) applied the aggregation to the ARIMA model together with the linear combinations of time

series and special cases of temporal, contemporaneous aggregations and systematic sampling.

This research proposes two algorithms to build the MASA model and to forecast the fu-
ture values. The first algorithm comprises of the aggregate step, the split step, the subsequence
generation step, and the fitted step. Firstly, the aggregate step combines the in-sample data into
groups in order to reduce the sway using the time series period. Secondly, the split step sub-
divides the aggregate groups into the training and the validating time series data. Thirdly, the
subsequence generation step produces a provisional number of subsequence patterns. Lastly, the
fitted step uses the training time series data to determine the best fitted ARIMA models on each

subsequence using the SMAPE.

The second algorithm comprises of the identification step, the forecast step and the disag-
gregate step. Firstly, the identification step pinpoints the aggregate group and its corresponding
subsequence of the particular time. Secondly, the forecast step selects and forecasts the best
ARIMA models of all subsequences that contain this aggregate group. Lastly, the disaggregate
step applies the empirical ratio of each component of the aggregate to generate the forecasted
values. For the result comparisons, SMAPE and Wilcoxon signed-rank test are used with the

SARIMA model and the exponential smoothing model of NN5 111 time series data.

1.2 Objectives

The goals of this research are (1) to construct a new time series model utilizing multiple
ARIMA models on subsequences of aggregate time series or the MASA model and (2) to com-
pare the results by the accuracy of the proposed method with the SARIMA model and the ETS
exponential smoothing model via SMAPE on the ATM dataset.

1.3 Structure of this thesis

This research focuses on the ATM problems dealing with sway and the hidden patterns to

forecast the cash demand.

e This research presents the aggregating technique to reduce the sway in the ATM cash time

series. Then the disaggregating technique is used to generate the value at particular time.

e This research uses the subsequencing technique to determine the best ARIMA model for

each aggregate group.



The remainders of this research are organized as follows. Chapter 2 describes the basic
knowledge and the basic model that use in this research. Chapter 3 introduces the data description.
Chapter 4 introduces the details of the proposed algorithms, the building MASA algorithm, the
forecasting MASA algorithm and the measurement of the model. Chapter 5 shows the empirical
results by testing with NN5 dataset and compares it with the SARIMA model and the exponential

smoothing model. Chapter 6 contains a conclusion.



CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, the necessary background knowledge of time series that requires in this
research is introduced (S.Prasanna, William (1990)). Firstly, the background knowledge of time
series is illustrated in section 2.1 - 2.4. Secondly, The time series models are revealed in section

2.5. Lastly, The automatic forecasting algorithm for R programming is illustrated in section 2.7.
2.1 Stochastic process and time series definition

In this section, the fundamental concepts of time series that are necessary for this research
are introduced. It introduces the stochastic process time series definition, autocorrelation and

partial autocorrelation function, respectively.

Definition 2.1 Let Z(w,t) be a random variable, where w be a sample space and t be an index
set. For a given w and Z(w,t) be a function of t. Z(w,t) can be called a sample function or

realization.

Definition 2.2 A stochastic process is a family of random variable Z(w,t), where w be a sample

space and t be an index set.

Next, the time series is defined by the definition of the stochastic process.

Definition 2.3 A time series is a realization from a certain stochastic process and the population

that consists of all possible realizations.

Definition 2.4 Let the index set be the set of all integers. A finite set of random variables
{Z7,,Z1,,...,Z7,} is considered from a stochastic process {Z(w,t):t = 0,£1,£2,...}. The

n-dimensional distribution function is defined by
Fzp Zgy2r, (1, 7n) = Plw: Zp, < 21,000, 27, < 20}

where x;,1 = 1,...,n are any real numbers.



Definition 2.5 A process is called first-order stationary if Fz, (x1) = Fgz, ., (%1) for any integers
t1 and k.
A process is called second-order stationary if Fyz, 7, (v1,72) = Fz, ., 7, ..(%1,%2) for

any integers ty,to and k.
For nth-order stationary,
Fz, ZeyiZe, (X1,02, 0o s20) = Fz, 7, Ze 0 (T1,T2, 000 Tn)

for any integers t1,ta, ..., t, and k.

Definition 2.6 A process is called strictly stationary if

Fz, Zen, (X1, 02, s2n) = Fz, o7, 70 (01,2, 000, Tn)

is true foranyn =1,2,....

Definition 2.7 For a given real-valued process {Z(w,t) : t = 0,+1,£2, ...}, the mean function
of the process is

e = E(Zt)a

the variance function of the process is
o} = E(Z — )*,
the covariance function between Zy, and Zy, is
V(t1,t2) = E(Zy, — pu,)(Zt, — 1its),

and the correlation function between Z;, and Z, is

Since the distribution function of strictly stationary process is the same for all t, the mean

function ji; = yu is a constant and the variance function o? = o is a constant.

The covariance function is

V(tla t?) = V(t - k7t) = ’Y(t7t + k) = Yk,



and the correlation function is

p(tr;ta) = p(t =k, t) = p(t,t + k) = pr,

where andt1 =t — kand ty = t.

2.2 The autocovariance and autocorrelation function

Definition 2.8 For a stationary process {Z;}, the mean function is E(z;) = p and the variance

Sunction Var(Z;) = o2, where W and o2 are constant. The covariance between Z; and Ziik 1S
Ve = Cov(Zy, Zysi) = E(Ze — 1) (Zirs — 1)

and the correlation between Zy and Z; 1 is

Cov(Zy, Zy 1) Yk

N VVar(Z)\/Var(Ziy,) %

Pk

pr. Is called the autocovariance function and py, is called autocorrelation function(ACF).

Theorem 2.1 For a given observed time series Z1, 4o, . . ., Zy, the sample ACF is defined as
n—k
N (2= Z2)(Zw — Z4)
A~k t=1
Pk = % - n ’
> (- 2)
t=1

>

k=0,1,..., where Z, = =2

is the sample mean of the series.

Example 1 : Let 71, Zs, ..., Z1g be the time series data. It is shown in Table 2.1.

t | 1|23 (4|56 |7 |8]9|10
Zy |13 18154141211 |7 |14 |12

Table 2.1: Time series data Z1, Zs, ..., Z1o

The sample mean of the time series data is



> =1 1B+8+15+4+4+12+11+7+14+12

10.
10 10 0

Consequently, the ACF of the time series data can be computed as

9
> (2~ 2)(Zeir — Zy)
A t=1
pP1 = 10

> (% - 2)

t=1

(13 — 10)(8 — 10) + (8 — 10)(15 — 10) + - - - + (14 — 10)(12 — 10)

B (13 —10)> + (8 = 10)* + -+~ + (12 - 10)? = —0.188
8
Z(Zt - Z)(Zt—i-Q - Zt)
po = =1 n
> (2 - z)?
t=1
_(13-10)15-10) + 8= 10)(4 —10) +--- + (7= 10)(12=10) _
- (13 =10)2 + (8 = 10) + -+ + (12 — 10)? =-U
! = _
Z(Zt — Z)(Ziy3 — Zy)
p3 = =1 n
> (2 - )
t=1
_ (13-10)(4 ~10) + (8 ~ 10)(4 — 10) + -+ (11 ~ 10)(12 - 10) _ o

(13—-10)2+ (8 —=10)2 + - -- + (12 — 10)?

Other py can be calculated correspondingly.
2.3 The partial autocorrelation function

Definition 2.9 For a stationary process {Z,}, let the mean function be ;. = E(z;) and the vari-
ance function Var(Z;) = o, where ji and o are constant. The partial autocorrelation function

o1 between Zi and Zyy, is

¢k = COT"I“(Zt, Zt+k|Zt+1a cey Zt—l—k—l)-

Theorem 2.2 For a given observed time series Z1,Zs, ..., Zy, the sample PACF for lag k is



defined as
k
Pt — Y Okibi1j
~ —1
O X Pk = ? :
1= dribj
=1
and
Prt1,j = Okj — Pkt 1 k+1Pkk+1—5>
forj=1,2,....

From the example 1 in Section 2.2, the PACF of the time series data can be computed as

$11 = p1 = —0.188

~ A2 2
~ p2 —p;  —0.201 — (—0.188)
922 [y 1— (—0.188)2

$o1 = P11 — doap11 = —0.188 — (—0.245)(—0.188) = —0.234

dua = ps — Gmp2 — doapr _ 0181 — (—0.234)(=0.201) — (0.245)(=0.188) _
B L o — daepr 1 (—0.234)(—0.201) — (0.245)(—0.188)

Other ¢y, can be calculated correspondingly.
2.4 White noise process

A sequence {a;} is called a white noise process if the process is a sequence of uncorrelated

random variables from a distribution.

The constant mean F(a;) = 0, the constant variance Var(a;) = o2 and v = Cov(ay, az +

k) for all k # 0.

A white noise process {a;} is stationary with the autocovariance function

02 ifk=0
Tk =
0 ifk=#£0
the autocorrelation function
1 ifk=0
Pk =

0 ifk#0
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and the partial autocorrelation function

1 ifk=0
0 ifk+£0

Ork =

A white noise process is Gausian if it is a normal distribution.

2.5 Time series model

In this section, the basic of the time series models and the model that uses in this research
are introduced. They are the autoregressive model, the moving average model and the autoregres-
sive moving average model and the model that uses in this research is the autoregressive integrated

moving average model. The details are shown as follow.

2.5.1 Autoregressive model

A general autoregressive or AR model of order p representing the time series Z; can be

written as ,
Zt = Z GiZt—i + at
i=1
where, Z, represents the time series data at time ¢, ¢; represents a constant for = 1,2, ..., p and

as represents the white noise terms at time ¢.

Example 2 : To consider an AR(2) model. A series is simulated of 250 values from Z; =
—Z4—1 —0.5Z_o + a4, with the ay is the N (0, 1) white noise. The time series is plotted in Figure
2.1
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Figure 2.1: Examples of AR(2) model: Z; = —Z;_1 — 0.5Z;_2 + a;.

The sample ACF and PACF of the time series are shown in Table 2.2, Figure 2.2 and Figure
2.3.

pr | 0.626 | 0.099 | -0.208 | -0.209 | 0.000 | 0.118 | 0.116 | 0.020 | -0.093 | -0.204
¢;gk 0.626 | -0.480 | 0.001 | 0.067 | 0.139 | -0.118 | 0.069 | -0.055 | -0.051 | -0.194

k 11 12 13 14 15 16 17 18 19 20

pr | -0.262 | -0.179 | -0.017 | 0.127 | 0.170 | 0.036 | -0.110 | -0.138 | -0.060 | 0.048

d);ck -0.066 | 0.039 | 0.026 | 0.032 | 0.058 | -0.132 | 0.021 | 0.011 | -0.017 | -0.034

Table 2.2: ACF and PACF of AR(2): Z, = —Z;_1 —0.5Z_2 + a4



Figure 2.2: ACF of AR(2) model: Z; = —Z;_1 — 0.5Z;_5 + ay.

Figure 2.3: PACF of AR(2) model: Z; = —Z;_1 — 0.5Z;_2 + a;.

12
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2.5.2 Moving average model

A general moving average or MA model of order ¢ representing the time series Z; can be

written as "
Zy = ap + Z O;a—;
i=1
where, Z; represents the time series data at time ¢, 6; represents a constant fori = 1,2, ..., ¢ and

a; represents the white noise terms at time ¢.

Example 3 : To consider an M A(2) model. A series is simulated of 250 values from Z; =
a; — 0.65a;—1 — 0.24ay_o, with the a; is the N (0, 1) white noise. The time series is plotted in
Figure 2.4.

Figure 2.4: Examples of M A(2) model: Z; = a; — 0.65a;—1 — 0.24a;_».

The sample ACF and PACF of the time series are shown in Table 2.3, Figure 2.5 and Figure
2.6.



14

k 1 2 3 4 5 6 7 8 9 10
pr | -0.335 | -0.074 | -0.138 | 0.015 | 0.119 | -0.044 | -0.056 | -0.033 | 0.118 | 0.002
b | -0.335 | -0.210 | -0.281 | -0.215 | -0.038 | -0.080 | -0.125 | -0.131 | 0.017 | 0.010
k 11 12 13 14 15 16 17 18 19 20
pr | -0.018 | -0.114 | 0.024 | 0.040 | -0.018 | 0.030 | -0.070 | -0.018 | 0.118 | -0.079
drr | 0.010 | -0.093 | -0.073 | -0.064 | -0.109 | -0.045 | -0.099 | -0.166 | -0.018 | -0.119

Table 2.3: ACF and PACF of M A(2) : Z, = a; — 0.65a;_1 — 0.24a;_»

Figure 2.5: ACF of M A(2) model: Z; = a; — 0.65a;—1 — 0.24a;_o.
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Figure 2.6: PACF of M A(2) model: Z; = a; — 0.65a;—1 — 0.24a;_.

2.5.3 Autoregressive moving average model

A general autoregressive moving average or ARMA model of order (p, ¢) representing the
time series Z; can be written as
where, Z; represent the time series data at time ¢ and a; represent the white noise terms at time .

B is a lag operator defined by BZ;, = Z;_;.

¢(B) and 0(B) are the autoregressive (AR) and the moving averages (MA) operators of

order p and g respectively. They are defined as

p
$(B)=1-) ¢:B'
=1

q
0(B)=1+> 0,5
j=1

where ¢1, ¢2, . . ., ¢, are the autoregressive coefficients and 01, 0, . . ., 0, are the moving averages

coefficients.

Example 4 : To consider an ARM A(1,1) model. A series is simulated of 250 values from
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Zy = 0.9Z_1 + a; — 0.5a;_1, with the a; is the N (0, 1) white noise. The time series is plotted in
Figure 2.7.

Figure 2.7: Examples of ARM A(1,1) model: Z; =0.9Z;_1 4+ a; — 0.5a;_1.

The sample ACF and PACEF of the time series are shown in Table 2.4, Figure 2.8 and Figure

2.9.
k 1 2 3 4 5 6 7 8 9 10
pr | 0.502 | 0.425 | 0.450 | 0.386 | 0.306 | 0.278 | 0.213 | 0.191 | 0.154 | 0.155
Gk | 0.502 | 0.232 | 0.239 | 0.087 | -0.007 | 0.006 | -0.050 | 0.003 | -0.016 | 0.041
k 11 12 13 14 15 16 17 18 19 20
pr | 0.105 | 0.108 | 0.123 | 0.137 | 0.087 | 0.139 | 0.052 | 0.106 | 0.094 | -0.001
b | -0.027 | 0.023 | 0.046 | 0.062 | -0.032 | 0.068 | -0.111 | 0.065 | -0.006 | -0.115

Table 2.4: ACF and PACF of ARM A(1,1): Z; =0.9Z;_1 + a; — 0.5a;—1



Figure 2.8: ACF of ARM A(1,1) model: Z; = 0.9Z;_1 + a; — 0.5a;_1.

Figure 2.9: PACF of ARM A(1,1) model: Z; = 0.9Z;_1 + a; — 0.5a;_1.

17
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2.5.4 Autoregressive integrated moving average model

A general autoregressive integrated moving average or ARIMA model of order (p,d, q)

representing the time series Z; can be written as
H(B)VeZ = 0(B)ay

where, Z; represents the time series data at time ¢ and a; represents the white noise terms at time

t. B is a lag operator defined by BZ; = Z;_;.
Visdefinedby VZ;=Z; — Z;_1=(1—B)Z;and V = (1 — B).
v? = (1 — B)?, d is the order of differencing.

¢(B) and 0(B) are the autoregressive (AR) and the moving averages (MA) operators of

order p and g, respectively. They are defined as

p
$(B)=1-Y ¢:B'
i=1

q
0(B)=1+> 0;B
7=1

where ¢1, ¢, . . ., ¢pare the autoregressive coefficients and 61, 6, . . . , 0, are the moving average

coefficients.

Example 5 : To consider an ARIM A(1,1,1) model. A series is simulated of 250 values from
(1-0.9B)VZ; = (1 — 0.5B)ay, with the a; is the N (0, 1) white noise. The time series is plotted
in Figure 2.10.



Figure 2.10: Examples of ARTM A(1,1,1) model: (1 —0.9B)VZ; = (1 — 0.5B)a,.

19

The sample ACF and PACF of the time series are shown in Table 2.5, Figure 2.11 and

Figure 2.12.
k 1 2 3 4 5 6 7 8 9 10
pr | 0995 | 0987 | 0977 | 0.963 | 0.948 | 0.932 | 0.914 | 0.896 | 0.878 | 0.860
(b;fk 0.995 | -0.341 | -0.201 | -0.172 | -0.041 | 0.026 | -0.055 | 0.047 | 0.038 | 0.016
k 11 12 13 14 15 16 17 18 19 20
Pr | 0.842 | 0.824 | 0.806 | 0.789 | 0.771 | 0.753 | 0.735 | 0.718 | 0.701 | 0.684
<l5;fk; -0.020 | 0.006 | -0.059 | -0.007 | -0.031 | -0.026 | 0.053 | 0.063 | -0.036 | -0.060

Table 2.5: ACF and PACF of ARIMA(1,1,1): (1 -0.9B)VZ; = (1 —0.5B)a



Figure 2.11: ACF of ARIM A(1,1) model: (1 —0.9B)VZ; = (1 — 0.5B)ay.

Figure 2.12: PACF of ARIM A(1,1) model: (1 —0.9B)VZ; = (1 — 0.5B)ay.

20
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2.6 Maximum likelihood method

The maximum likelihood method is used for finding estimator of an unknown parameter.

Next, the methods are described below.

Let z1, 22, . . ., 2; be independent random samples from a population Z which belongs to a
family of distribution functions governing by the unknown parameter 6 of the form f(z; 6) where
6 € Q. The likelihood function, L(0; 21, 22, ..., 2¢) or written shortly as L(#), is the distribution

of the sample. That is

The 6 is called the maximum likelihood estimator and denoted by 4. Hence,
0 = Argsup L(0)
e

where (2 is the parameter space of 6 thus L(0) is the joint density of the sample.

Example 6 Let 21, 22, . . ., 2; be random samples from a normal population with mean (u) and

variance (2). The maximum likelihood estimator of . and o can be shown as follow:

Since Z ~ N(u,o?), the probability density function of Z is given by

L _le=w?
f(z:p,0?) = e 2 o2
(z:p0%) = 7=
The likelihood function of the sample is given by
t 1 1 (2 — p)?
L(p,0?) = e 2 o2
( ) 1:11 V2mo?

1

Hence, the logarithm of this likelihood function is given by
t

t 1
In L(p, 0%) = —3 In(27) — tln(o) — 252 X:(zZ — )2
i=1

The maximum likelihood function can be calculated by taking the partial derivatives with
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respect to 4 and o2, then

B} 1 < 1 <
alnL(Ma T 92 ; = Z(zi — 1)

=1
and .
0 t 1
—1InL —— 4+ = i — )2
5y L, 0%) =——+ — iE_l(zz 1)
.0 2 0 2 .
Setting 0 In L(p,0°) = 0 and e In L(p,07) = 0, and solving for the unknown p and
w o
o2, thus

t

t
%Z Zzi—t,u:>,u:;2

=1

Thus the maximum likelihood estimator of p is

u==z.

Similarly, thus

implies

2.7 The automatic forecasting algorithm for R programming

In this section, the automatic forecasting algorithm for R programming that uses in this
research is illustrated. The idea of the algorithm is discussed by Hyndman et al. (2007). The

forecasting algorithm is implemented in the forecast package for R using ARIMA models.
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2.7.1 Identifying the order (p, d, q) of ARIMA model
A general ARIMA (p, d, q) process is given by
(1—=B)"Z; = c+ ¢(B)y: + 0(B)ay

where, Z; represents the time series data and a; represents the white noise terms at time t. B is a

lag operator. ¢(B) and 6(B) are the polynomials of order p and ¢, respectively.

To guarantee the stationary of the time series, it is assumed that ¢(B) and 6(B) have roots

for |B| > 1 (William (1990)). If ¢ # 0, a polynomial of order d is implied in the forecast function.

The concept of automatic ARIMA forecasting is choosing an appropriate order (p, d, q) of

the model. If differencing d is known, the order (p, ¢) are chosen by a criterion AIC:
AIC = —2log(L) +2(p+q+ k)

where k = 1, if ¢ # 0 and k = 0 if otherwise, and L is the maximum likelihood of the model that
fitted with the (1 — B)?Z;.

Akaike Information Criterion (AIC) is useful in selecting predictors for determining the

order of an ARIMA model. The good models are obtained by minimizing the AIC.

For the general ARIMA (p, d, q) model, the differencing d is selected by using successive
KPSS unit-root tests (Kwiatkowski et al. (1992)). The data is tested for a unit root, if the test
result is significant then the next differenced data is tested for a unit root. When the procedure

obtains the first insignificant result, it stops.
2.7.2 A procedure of the automatic forecasting ARIMA algorithm

Suppose the general ARIMA (p, d, ¢) models are considered, where p and ¢ can be vary
from O to m, and my, respectively. Note that m,, is the maximum value of p and m, is the
maximum value of q. Consequently, a way of selecting models efficiently is needed to find the

model that has the lowest AIC value.
Steps of the algorithm are proposed as follows:

Step 1: Four possible models are considered.

- ARIMA(1,d, 1).
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- ARIMA(0, d, 0).

- ARIMA(1, d, 0).

- ARIMA(0, d, 1).

If d < 1, these models are fitted with ¢ # 0. Otherwise, set ¢ = 0. From the four possible

models, one of these is selected with the smallest AIC values, called the current model.

Step 2: The variations are considered up on the current model.

- One of p and q is allowed to vary by +1 from the current model.

- Both of p and ¢ vary by &1 from the current model.

- The constant c is added, if the current model has ¢ = 0 or removed if the current model

has ¢ # 0.

When a model with lower AIC is found, it becomes the new current model and the proce-
dure is repeated on step 2 to all models for determining the current model with the lowest AIC.

The algorithm is confirmed to return a model because the number of the models is finite.

After, the necessary background knowledge and the fundamental concepts of time series
are introduced. The research will use this knowledge to build a new model for forecasting cash
in ATM. The main model used in this research is autoregressive integrated moving average or
ARIMA model. Then, the automatic forecasting algorithm for R programming is used to identify
the various parameters and all coefficients in the ARIMA model. The details of the new model

are described in the chapter 4.



CHAPTER III

DATA DESCRIPTION

3.1 Competition NN5

The NN5 competition is the international competition to recruit participants to predict the
amount of cash in ATMs. The purpose of the forecasting time series data of cash withdrawals
from ATMs is to accurate predict cash using the computational intelligence methods. The ATM
data includes the amount of cash withdrawals in each day from many ATMs in different locations

in England for a period of two years.

The cash machines operate as scaled-down retail outlets that provide cash banknotes to the
customers. The ATM data contains a number of time series patterns including multiple season-
ality, local trends, structural breaks, outliers, zero and missing values etc. These are driven by
a combination of unknown and unobserved causal such as seasonal periods, bank holidays, or

special events.

3.2 The description of the NN5 data

The NNS5 dataset is comprised of two datasets of different size but similar complexity. The
dataset A is a complete dataset of 111 daily time series data from the homogeneous population of
the empirical business time series. The dataset B is a sub-sample of 11 time series data from the
111 time series. This research uses all 111 time series from the NN5 dataset. Both datasets can

be downloaded from http://www.neural-forecasting-competition.com/NNS5.

The time series data is provided from the different cash machines at different, randomly
selected locations within England. The time series data is collected staring on March 18, 1996
to March 22, 1998. It contains both observations of 0 withdrawals, which indicate that cash
withdrawal does not occur in that day, and missing observations which are blank without any

values.

The data includes 112 columns. The first column shows the dates while the other columns
show the cash usage of each ATM. The first row shows the name ID of each ATM, the second row
shows the starting year, the third row shows the starting date and the fourth row shows the status

of the dataset. The examples of NN5 data are shown in Figure 3.1. For the cash withdrawals in
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NNS5 dataset, the decimal separator uses the period (.), for example, 1.000 dollars means 1,000

dollars.

Figure 3.1: Nine time series ATM data from the NN5 dataset.

3.3 NNS summary

In this section, the statistical descriptions of cash withdrawals of all 111 ATM time series
are shown in Figure 3.2 and 3.3. The descriptive statistics are computed which comprise of mean

and standard deviation appearing in line plot, boxplot and histogram.

The means and the standard deviation of all ATM time series are plotted in Figure 3.2.
It shows that the behavior of the means of cash withdrawals on each ATM is different and has
high variance which the range of the means of cash withdrawals is approximately between 7,000
dollars and 40,000 dollars. The boxplot and the histogram of the means are shown in Figure 3.3.

They show that the behavior of the data is relatively symmetric and has one outlier.



Figure 3.2: Line plot of mean and standard deviation of cash withdrawals

Figure 3.3: Boxplot and histogram of mean of cash withdrawals

27



CHAPTER IV

METHODOLOGY

In this chapter, the methodology of this research is introduced. This research proposes
a new forecasting model to forecast cash in ATM, called the multiple ARIMA subsequences
aggregate time series model or the MASA model. The algorithm description is illustrated in

section 4.1, called the MASA algorithm.

The concept of the MASA algorithm is illustrated in section 4.2 and the details of the
MASA model-building algorithm and the MASA model-forecasting algorithm are illustrated in

section 4.3 and 4.4, respectively.
4.1 Overall MASA algorithm

The time series data is divided into the in-sample data and the out-sample data. First, the
MASA algorithm builds the model using the in-sample data and then forecast its aggregate future
values. Second, the MASA algorithm uses the out-sample data for evaluating the accuracy by the

SMAPE. The overall diagram of the MASA algorithm is shown in Figure 4.1.

Figure 4.1: The overall diagram of the MASA algorithm

The notation X and Y are used as forecast values. Let X 1, X2, ..., Xy be the in-sample

data and X1, Xn42, - .., Xas be the out-sample data, where N is the number of the in-sample
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data that is the multiple of the number of periods and M is the total number of the time series
data. Note that, the future values are X N+1s X N2y v s X M- The details of the MASA algorithm

are described in section 4.3 and 4.4.
4.2 Concepts of the MASA algorithm

This section will illustrate the concepts of the MASA algorithm by examples.
4.2.1 Concept of the MASA model-building algorithm

Let X3, Xo, ..., Xy be the in-sample data.

- First step: The in-sample data are aggregated.

For the example, the period of aggregate is assumed to be 4. Thus, that the aggregate of

in-sample data Y7, Y5, ..., Yq¢ is defined as follow:
4

io= ) Xowaysi
i=1
4

Yo = ZX(1><4)+1‘
i=1
4

Y3 = ZX(2><4)+1'
i=1
4

Yip = ZX(9><4)+1‘
i=1

- Second step: The data is divided into the training data and the validating data.

For the example, The data Y7, Y5, . . ., Y1g can be divided into the training data Y7, Ys, ..., Y5
and the validating data Y7, Yg, Yy, Y1g.
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- Third step: The subsequences are generated.

For the example, the maximum common difference is assumed to be 2. Thus, the subse-

quences are generated as follow:

Vio= ) Xoxay
i=1
4

Y, = ZX(IX4)+i

- Fourth step: The best ARIMA model is fitted and the ratio of each subsequence is gen-

erated.

In this step, the ARIMA model is fitted by each subsequences in the training data and then
the SMAPE is calculated from each model.
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From this step, the MASA model consists of ARIMA model, and SMAPE of each subse-

quence.
4.2.2 Concept of the MASA model-forecasting algorithm

In this example, let the future values be X41, X42, R X4g.

- First step: The aggregate forecasted value is identified from each future value.

From calculation X417, X492, X43, X44 are from Y71 and Xy5, X4g, X47, X4g are from Yio.

Then all subsequences containing Y11 and Y75 are identified. For example, the subsequence
Y1, Y, ..., Yo can be used to forecast Yn, Ylg and the subsequence Y7, Y3, ..., Yy can forecast

}711, and the subsequence Y5, Yy, ..., Y1g can forecast 1712 which are shown next.
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- Second step: The aggregate values are forecasted. From the first step, each of subse-
quence has its ARIMA model and SMAPE. The forecasting values YH and Ylg are generated by

considering the minimum SMAPE of each subsequence (the details are shown in section 4.4).

- Third step: The aggregate forecasted values are disaggregated. After, Y11 and Vi are

forecasted, they disaggregate to the original unit by multiplying with their corresponding ratios.

The Figure 4.2 shows the ratio r1, ra, r3, r4. Example, the forecasting data X41, X42, X43,

X44 can be calculated by applying 71, 72, 73, 74.

Figure 4.2: The diagram of disaggregate process of Vi1

Resultantly, X5, Xu6, Xa7, Xug can be calculated similarly. The ratios of disaggregation
are calculated by the average of the values in the empirical study which the details are shown in

section 4.4.
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4.3 The MASA model-building algorithm

The MASA model-building algorithm consists of four main parts. The first part is the
aggregate of the in-sample data of time series. The second part is to divide the aggregate in-sample
data into the training data and the validating data. The third part is to generate the subsequences.
The fourth part is to fit the best ARIMA model and calculate SMAPE of each subsequence. The
diagram of the MASA model-building algorithm is shown in Figure 4.3.

Figure 4.3: The diagram of the MASA model-building algorithm.

The step of the MASA model-building algorithm

- First step: The in-sample data is aggregated. Let Y7, Yo, ..., Y be the aggregate in-
sample data, [ be a period of the time series data and T" be a number of aggregate groups on the

in-sample data. The aggregation of the time series data is defined as follow:

fork=1,2,...,T where N = T1.

- Second step: The data is partitioned. The aggregate in-sample data is subdivided into the

training and the validating time series data.

Let the training time series data be Y7,Y5, ..., Y where T” is the number of the training

time series data (7" is less than 7T") and the validating time series data is Y771, Ypr40,..., Y7.
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- Third step: The subsequences of the data are generated. The arithmetic subsequences are

generated starting at various initial values.

Let m be the maximum common difference. Thus, a number of arithmetic subsequence

m
1
patterns is Z d= m(mQ—i—)
d=1

Each subsequence of the aggregate in-sample data is generated as follow:

Common difference d = 1 : the arithmetic subsequence is (Y,)Erf2 g

Common difference d = 2 : the arithmetic subsequences are (Y2;_1 )12:1 1;2 and (}/21)12517; 4
Common difference d = m: there are m arithmetic subsequences with the following form

(sz_j):;tl_éth forj =1,2,...,m — 1, respectively.

To generate subsequences of the training time series data, the index of the subsequences

start at 1 to 7" and the validating time series data starts at 7" + 1 to 7.

- Fourth step: The best ARIMA model is fitted. The ARIMA models are fitted from the

subsequences of the training time series data and SMAPEs of the validating portion are calculated.

Let S(,,q4) be a subsequence of the aggregate in-sample data with the starting index v and

the common difference d.

Let ARIM A, g and SM APE, 4 be the best fitted ARIMA model of S(, 4y and SMAPE
of S, q), respectively. This ARIM A, q4) will be used for forecasting the future values in the

second part of the algorithm.
4.4 The MASA model-forecasting algorithm

The MASA model-forecasting algorithm consists of three main parts. The first part is to
identify the aggregate group of future time and the subsequence of the aggregate group. The
second part is to forecast the aggregate values. The third part is to disaggregate the forecasting

values. The diagram of the MASA model-forecasting algorithm is shown in Figure 4.4.
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Figure 4.4: The diagram of the MASA model-forecasting algorithm.

The step of the MASA forecasting algorithm

Let ?T+1a )A/T+2, ..., Y be the aggregate forecasted values where 7" is a number of ag-

gregate groups on the time series data and M = T"1.

~

From N = T, the forecasted future values can be written as XTZ+1, XTl+2, oo X (T+1)l»

X(T+1)l+1a s X

- First step: The aggregate forecasted values are identified from each future value.

Xrier o Xsy Xeants - Xason 0 X—ist - X
identifyﬂ identify ﬂ e identifyﬂ
Vi Vo e Yoo

Then the subsequences of the aggregate in-sample data S, 4) are identified by ?T+1, YT+2,

el YTH follow.
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Identify to
. t+T<T”
(Y%+T> —— == S,
R 2 iT<T"
<Y2i—1+T>i_1 , = S1,2)
. 2A+TLT"
<Y2i+T> L = S2,2)
. mt—(m—1)+T<T"
(sz—(m—l)—i—T)i_l = S(l,m)
. mt—(m—2)+T<T"
<szf(m72)+T> =1t = S(Q,m)
. mt+T<T"
(YmiJrT) i1t = S(m,m)

- Second step: The aggregate values are forecasted.

The subsequences that contain the index of the aggregate forecasted values are selected.
The corresponding ARIMA models and SMAPEs are extracted. The minimum SMAPEs among
all ARIMA models of this index is selected to forecast YT-H, YT+2, R YT The diagram of

this step is shown in Figure 4.5.

Figure 4.5: The diagram of the forecasting values.

- Third step: The aggregate forecasted values are disaggregated.

In this step, the aggregate forecasted values ?T+1, f/TJrg, ..., Ypu are disaggregated to

XN+1, X’N+2, Cel, XM by the following method.
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From Y, for ¢ € {T + 1,T +2,...,T"}, it is forecasted by the subsequence, Sud) =

(le_j)fztl_éth forsome j € {0,1,...,m —1}andw € {1,2,...,m}.

S(u,q) can be disaggregated follow:

Yw—j Y2w—j )/iw—j
Xw—j1)i4+15 " s X(w—i)l  X@w—j—1)i+1: " s X@uw—j) Xiw—j—1)i41s " s X(iw—j)i

Next, the ratios that are used to disaggregate the aggregate forecasted values YTH, YT+2’
..., Yo to the original unit are calculated. Firstly, the ratios of disaggregate from each column

rank are defined as the average column ranks which are shown in the following figure.

Hence, the average ratio can be written as

5]
Z X(iw—j—l)l—i—a
Y;w—j

i=1
T+j
w

T
fora =1,2,...,1,7 € {0,1,....m—1},w € {1,2,...,m} and {HJ is the length of the
w

Tq =

value X in the rank a.
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Finally, the average ratios are weighted by the summation of all average ratios.

Let 7, be a weighted average ratio of value of rank a,

fora=1,2,...,1

Therefore, Y, can be disaggregated to X(C,WH, X(c71)1+27 ooy X(c—1)i141 USINg
X(c—l)l—i—a = 'Faffc
fora=1,2,...,landce {T+1,T+2,...,T"}.

4.5 The model measurements

This section introduces the measurement of the model that uses in this research. It com-
prises of two parts. The first part is the mean absolute percentage error and the symmetric mean

absolute percentage error. The second part is the Wilcoxson signed-rank test.
4.5.1 Mean absolute percentage error and symmetric mean absolute percentage error

The general measurement used in the time series is the mean absolute percentage error or

MAPE. Let N be the number of forecast data. It is defined by

X; — A,

The symmetric mean absolute percentage error or SMAPE, it is defined by

SMAPE = Z [Xi = Xi|
|1 Xi| + | X

2

where and X;, X; are the out-sample data and forecast data, respectively.

This research uses only SMAPE because the data come from the NN5 dataset. The NN5

dataset uses only SMAPE to measure the accuracy.
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4.5.2 Wilcoxson signed-rank test

In this research, the Wilcoxon signed-rank test is used for measuring the relation between
the data. This section introduces the basic of the Wilcoxon signed-rank test. It is introduced by
Wilcoxon (1945).The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test. It

is used for comparing two relations of samples or match of samples.
4.5.2.1 Assumption of the Wilcoxon signed-rank test

1. The data is paired and it comes from the same population.
2. The pair of the data is chosen randomly and independently.

3. The data is an ordinal scale.

4.5.2.2 Procedure of Wilcoxon signed-rank test
The hypothesis test can be defined as follow :
Hy: difference between the pairs follows a symmetric distribution around zero.
H,: difference between the pairs does not follow a symmetric distribution around zero.

Let N be the sample size. Thus, there are a total of 2/V values. For each pair¢ = 1,2,... N,

let z1; and w2 ; be the data.

Step 1) Calculate |z ; — x1 |, fori =1, 2, ... N, and then calculate sgn(z2; — 1), where sgn is

the sign function.
Step 2) Remove pairs with |x2; — x1 ;| = 0 and let IV, be the sample size that is reduced .

Step 3) Order the N, pairs from the smallest absolute difference to the largest absolute difference,

|T2,i — 214].
Step 4) Rank the pairs by starting the smallest as 1 where R; be the rank.

Step 5) Calculate the test statistic W which is the sum of the signed ranks as

=

r

W = [sgn(xgﬂ- — .%'172‘)RZ']
1

<.
I

Step 6) W is compared to a critical value from a reference table in Lowry (2014). The two-sided test
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consists in rejecting Ho, if |W| < Wepitica,n, - P-value can also be calculated. If p-value <

0.05 then reject Hy by significant level 0.05.

After, the methodology of this research is introduced. The research uses this methodol-
ogy to generate the MASA model. The NN5 dataset is applied to the MASA model. Next, the

empirical results and the comparative analysis are illustrated in chapter 5.



CHAPTER V

EMPIRICAL RESULTS AND COMPARATIVE ANALYSIS

To measure the performance of this approach, the MASA algorithm will be tested on the
NNS5 dataset. The NN5 collection consists of 111 daily time series data. R programming language
is used for implementing the MASA algorithm. This chapter contains the empirical results and

the comparative analysis on train:test ratios as 95:5 and 90:10.

5.1 Empirical results

Figure 5.1 shows the time series plot of cash in ATM ID NN5-030 which is one of 111
time series data. It starts from 1996/03/18 to 1998/03/22 having the number of observations equal
to 735. From the Figure 5.1, the structure of the time series is sway thus the time series data is
reduced the sway by aggregate technique in the MASA algorithm. In this research, the daily time

series data is aggregated to weekly time series data therefore the period of aggregate is set to 7.

Figure 5.1: Time series plot of ATM ID NN5-030 (1996/03/18 t01998/03/22)
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5.1.1 CaseI: in-sample data 95% and out-sample data 5%.

This section, the data is set to 95% for the in-sample data and 5% for the out-sample data.
A period of aggregate is also set to 7 (weekly). The aggregate time series data from daily to
weekly is shown in Figure 5.2. The maximum common difference is set to 4 thus the number
of subsequences equals to 10. The time series plots of each aggregate subsequence are shown in
Figure 5.3 - 5.12. The parameters and the SMAPE of the MASA model are given in Table 5.1.
The subsequence column in Table 5.1 comes from the original sequence Y; based on the arithmetic
formula and the parameter column refers to the ARIMA parameters (p, d, ¢) of the best ARIMA
model to fit the corresponding subsequence where p is the order of autoregressive model, d is the
order of differences of the series, and g is the order of the moving average model. The last column
keeps the SMAPE of the best ARIMA model on the validating data. The order of SMAPE from
the lowest to the highest SMAPEs are 6th, 8th, 2nd, 1st, 4th, 9th, 3rd, 7th, 10th, and 5th which

are shown in Table 5.1.

Figure 5.2: Time series plot of aggregate time from daily to weekly for in-sample 95%(ATM ID NN5-030,
1996/03/18 t01998/03/22)
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Figure 5.3: Time series plot of aggregate time from daily to weekly for subsequence Y7, Ys, Y3, Yy, ...

(in-sample 95%)

Figure 5.4: Time series plot of aggregate time from daily to weekly for subsequence Y7, Y3, Y5, Y7, ...

(in-sample 95%)
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Figure 5.5: Time series plot of aggregate time from daily to weekly for subsequence Y5, Yy, Ys, Ys, ...

(in-sample 95%)

Figure 5.6: Time series plot of aggregate time from daily to weekly for subsequence Y7, Yy, Y7, Yio,...

(in-sample 95%)
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Figure 5.7: Time series plot of aggregate time from daily to weekly for subsequence Y5, Y5, Ys, Yi1,...

(in-sample 95%)

Figure 5.8: Time series plot of aggregate time from daily to weekly for subsequence Y3, Yg, Yo, Yio, ...

(in-sample 95%)
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Figure 5.9: Time series plot of aggregate time from daily to weekly for subsequence Y7, Y5, Yy, Y13, ...

(in-sample 95%)

Figure 5.10: Time series plot of aggregate time from daily to weekly for subsequence Y5, Yg, Y10, Y14, ...

(in-sample 95%)
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Figure 5.11: Time series plot of aggregate time from daily to weekly for subsequence Y3, Y7, Y11, Y15, ...

(in-sample 95%)

Figure 5.12: Time series plot of aggregate time from daily to weekly for subsequence Yy, Yg, Y12, Y6, . ..

(in-sample 95%)
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Figure 5.13 shows the empirical results of the MASA model with the out-sample data.

There are discrepancies between the results of the MASA model and the out-sample data. The

SMAPE of the MASA model from the result is 15.26072.

No. Subsequence Parameters(p, d,q) | SMAPE
1 Y1,Y5, Y3, Yy, ... (2,1,3) 7.940902
2 Y1, Y3, Y5, Yo, .. (0,1,1) 7.749427
3 Yo, Y4, Ys, Y, ... (1,1,0) 11.749961
4 | Y1,Yy, Yy, Yo, .. (0,0,0) 11.502862
5 Yo, Y5, Yg, Y11,... (0,1,0) 36.407923
6 Y3, Ys, Yo, Yio, ... (0,1,1) 4.492906
7 Y1, Vs, Yo, Yis, ... (1,1,0) 15.608287
8 | Y, Ys, Y10, Yi4, .- (1,0,0) 5.126374
9 | Y3, Yy, Y1y, Y5, ... (0,0,1) 11.727266
10 | Yy, Yg, Y19, Y6, - - - (0,1,0) 29.215386

Table 5.1: Output from the MASA algorithm for in-sample 95%

Figure 5.13: The empirical result of the MASA model with the out-sample data (in-sample 95%).
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5.1.2 Case II : in-sample data 90% and out-sample data 10%.

This section, the data is set to 90% for the in-sample data and 10% for the out-sample data.
A period of aggregate is set to 7 (weekly). The aggregate time series data from daily to weekly
is shown in Figure 5.14. The sway of time series is reduced. The maximum common difference
is set to 4 thus the number of subsequences equals to 10. The time series plots of each aggregate
subsequence are shown in Figure 5.15 - 5.24. The parameters and the SMAPE of the MASA
model are given in Table 5.2. The subsequence column in Table 5.2 comes from the original
sequence Y; based on the arithmetic formula and the parameter column refers to the ARIMA
parameters (p, d, q) of the best ARIMA model to fit the corresponding subsequence where p is
the order of autoregressive model, d is the order of differences of the series, and ¢ is the order of
the moving average model. The last column keeps the SMAPE of the best ARIMA model on the
validating data. The order from the lowest SMAPE to the highest SMAPE are 8th, 6th, 1st, 4th,
3rd, 9th, 2nd, 7th, 10th and 5th which are shown in Table 5.2.

Figure 5.14: Time series plot of aggregate time from daily to weekly for in-sample 90%(ATM ID NN5-030,
1996/03/18 t01998/03/22)
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Figure 5.15: Time series plot of aggregate time from daily to weekly for subsequence Y7, Ys, Y3, Yy, ...

(in-sample 90%)

Figure 5.16: Time series plot of aggregate time from daily to weekly for subsequence Y7, Y3, Y5, Y7, ...

(in-sample 90%)
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Figure 5.17: Time series plot of aggregate time from daily to weekly for subsequence Y5, Yy, Ys, Ys, ...

(in-sample 90%)

Figure 5.18: Time series plot of aggregate time from daily to weekly for subsequence Y7, Yy, Y7, Yio, ...

(in-sample 90%)
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Figure 5.19: Time series plot of aggregate time from daily to weekly for subsequence Y5, Y5, Ys, Y11, ...

(in-sample 90%)

Figure 5.20: Time series plot of aggregate time from daily to weekly for subsequence Y3, Yg, Yo, Yio, ...

(in-sample 90%)
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Figure 5.21: Time series plot of aggregate time from daily to weekly for subsequence Y7, Y5, Yo, Y13, ...

(in-sample 90%)

Figure 5.22: Time series plot of aggregate time from daily to weekly for subsequence Y5, Yg, Y10, Y14, ...

(in-sample 90%)
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Figure 5.23: Time series plot of aggregate time from daily to weekly for subsequence Y3, Y7, Y11, Y15, ...

(in-sample 90%)

Figure 5.24: Time series plot of aggregate time from daily to weekly for subsequence Yy, Yg, Y12, Y6, . ..

(in-sample 90%)
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Figure 5.25 shows the empirical results of the MASA model with the out-sample data hav-
ing the similar distribution. The SMAPE of the MASA model from the result is 14.93942.

No. Subsequences Parameters (p,d,q) | SMAPE
1 Y1, Y5, Ys, Yy, ... (1,1,4) 8.896227
2 Y1.Ys, Y5, Yo, oo (0,0,0) 13.240900
3 Yo, Yy, Y, Vs, ... (2,1,0) 11.116658
4 Y1. Yy, Y7, Yig, ... (0,0,0) 10.229235
5 Yo, Y5, Y, Y1, ... (1,0,0) 27.547931
6 Ys, Y5, Yo, Yo, ... (1,1,0) 8.401077
7 Y1, Y5, Yo, Yis, ... (0,0,0) 14.687281
8 | Y3, Ys, Yig, Yig, ... (1,0,0) 7.195037
9 | Ys, Yy, Yi1, Yis, .. (0,0,0) 11.313391
10 | Yy, Yg, Yo, Yig, . .. (0,0,0) 24.584056

Table 5.2: Output from the MASA algorithm for in-sample 90%

Figure 5.25: The empirical result of the MASA model with the out-sample data (in-sample 90%).
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5.2 Comparative analysis

This research focuses on the accuracy of the forecasting model with respect to the out-
sample data by using the SMAPE. The performance of this approach is demonstrated by com-
paring it with the SARIMA (Seasonal Autoregressive Integrated Moving Average) model and the

exponential smoothing model.

5.2.1 Casel: in-sample data 95% and out-sample data 5%.

Figure 5.26 and 5.27 show the comparative models of the ATM ID NN5-030 time series
data. The forcasted data of the SARIMA model is not much different from that of the MASA
model. Moreover, the forecasted values of the SARIMA model converge to a single value. How-
ever, the behavior of the forecast data from the MASA model and the exponential smoothing

model is quite similar.

Figure 5.26: Comparative results of the MASA model and the SARIMA model for in-sample 95% (ATM
ID NN5-030)
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Figure 5.27: Comparative results of the MASA model and the exponential smoothing model for in-sample
95% (ATM ID NN5-030)

MASA model SARIMA model Exponential smoothing model
Parameters Table 5.2 p=1,d=1,q=2, a = 0.0286,5 =0,
of the model P=2D=0,QQ=0 ~ = 0.0001
s=14
SMAPE 15.26072 19.81673 16.879

Table 5.3: Comparative result of ATM ID NN5-030 for in-sample 95%

The SMAPEs of the MASA, SARIMA and exponential smoothing models and all parame-

ters are shown in Table 5.3. Figure 5.28 - 5.30 show the residuals of the ACF of each model. The

ACF of the MASA model, the SARIMA model and the exponential smoothing model are simi-

lar. Correspondingly, the residuals of the MASA model, the SARIMA model and the exponential

smoothing model are independent. Table 5.4 shows the comparative analysis of 111 ATM time

series data using SMAPE. The MASA model wins 68 time series from 111 time series and has

the best average SMAPE. Note: the period of s = 14 is applied to SARIMA.



Figure 5.28: ACF of MASA model residuals (in-sample 95%)

Figure 5.29: ACF of SARIMA model residuals (in-sample 95%)
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Figure 5.30: ACF of exponential smoothing model residuals (in-sample 95%)

MASA model | SARIMA model | Exponential smoothing model

Number of best SMAPE

68 2

41

Averagre SMAPE

19.74685 27.04075 21.15076

Table 5.4: Comparative result of ATM ID NN5-030 with 111 time series (in-sample 95%)

Table 5.5 shows the hypothesis testing of the models. The p-values in Table 5.5 are very

small which are significant at « < 0.05. As a result, the hypothesis Hy is rejected. It can be

concluded that the set of the SMAPE of the MASA model is different from the SARIMA model

and the exponential smoothing model by the significant level 0.05.

Significant level & = 0.05 | MASA and SARIMA | MASA and Exponential smoothing
W-value 38 2206
p-value 0.0000 0.00799
Length of data 111 111

Table 5.5: Wilcoxon signed-rank test of the models for in-sample 95%
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5.2.2 Case Il : in-sample data 90% and out-sample data 10%.

Figure 5.31 and 5.32 show the comparative models of the ATM ID NN5-030 time series
data. The forecast data of the SARIMA model is very different with the forecast data of the MASA
model and the out-sample data which the forecast data of the SARIMA model converges to one
value. Moreover, the behavior of the forecast data from the MASA model and the exponential

smoothing model is quite similar.

Figure 5.31: Comparative results of the MASA model and SARIMA model for in-sample 90% (ATM ID
NN5-030)
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Figure 5.32: Comparative results of the MASA model and exponential smoothing model for in-sample 90%
(ATM ID NN5-030)

MASA model SARIMA model Exponential smoothing model
Parameters Table 5.1 p=1d=1,q=2, a=0.0274,3=0
of the model P=2D=0,QQ=0 ~ = 0.0001
s=14
SMAPE 14.93942 37.76245 15.82657

Table 5.6: Comparative result of ATM ID NN5-030 for in-sample 90%

The SMAPESs of the MASA, SARIMA and exponential smoothing models and all param-
eters are shown in Table 5.6. The Figure 5.33 - 5.35 show the residuals of ACF of each model.
The ACF of the MASA model shows the best performance, and the ACF of the SARIMA model
shows the worst. Thus, the residuals of the MASA model and the exponential smoothing model
are independent but the residuals of the SARIMA model are not independent. Table 5.7 shows
the comparative analysis of 111 ATM time series data using SMAPE. The MASA model wins 76

time series from 111 time series and has the best average SMAPE.



Figure 5.33: ACF of MASA model residuals (in-sample 90%)

Figure 5.34: ACF of SARIMA model residuals (in-sample 90%)
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Figure 5.35: ACF of exponential smoothing model residuals (in-sample 90%)

MASA model | SARIMA model | Exponential smoothing model
Number of best SMAPE 76 1 34
Averagre SMAPE 21.20529 40.20777 26.30625

Table 5.7: Comparative result of ATM ID NN5-030 with 111 time series (in-sample 90%)

Table 5.8 shows the hypothesis model testing. In this research, the Wilcoxon signed-rank

test is used for comparing two related sets of the SMAPESs of the models. The hypothesis testing

of the model is defined by Hy: difference between the pairs of models follows a symmetric distri-

bution around zero and H;: difference between the pairs of models does not follow a symmetric

distribution around zero.

The p-values in Table 5.8 are small which are significant at @ < 0.05. As a result, the

hypothesis Hj is rejected. It can be concluded that the set of the SMAPESs of the MASA model is

different from the SARIMA model and the exponential smoothing model by the significant level

0.05.




Significant level & = 0.05 | MASA and SARIMA | MASA and Exponential smoothing
W-value 3 1694
p-value 0.0000 0.00003198
Length of data 111 111

Table 5.8: Wilcoxon signed-rank test of the models for in-sample 90%
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CHAPTER VI

CONCLUSION

This research proposes the MASA model to forecast the cash withdrawals of ATM time
series. The process consists of two algorithms. The first algorithm is the MASA model-building
algorithm. It is used for generating the MASA model. The second algorithm is the MASA model-
forecasting algorithm. It is used for predicting the future value using the MASA model. Both
algorithms are based on the aggregate and the disaggregate techniques on the subsequences of the

time series.

From the empirical results, the aggregate and disaggregate technique can reduce the sway
that occurs in the time series. The generated subsequences can filter the patterns and construct

appropriate models that hid in the time series.

The results in the section 5.1 show the MASA model can forecast the future values close
to the out-sample data. In the section 5.2, the MASA model can forecast more accurate than the

SARIMA model and the exponential smoothing model based on SMAPE.

In this research, the algorithm uses the fixed number of the subsequences which the fixed
number may be not appropriate with the time series. Therefore, the technique of the selecting

number of the subsequences should be employed.

Moreover, the disaggregation technique uses only the average of the values in the empirical

study which the new disaggregate technique should be investigated.



References

Takeshi Amemiya and Roland Y Wu. 1972. The effect of aggregation on prediction in the

autoregressive model. Journal of the American Statistical Association 67,339:628-632.

Robert R Andrawis, Amir F Atiya, and Hisham El-Shishiny. 2011. Forecast combinations of com-
putational intelligence and linear models for the nn5 time series forecasting competition.

International Journal of Forecasting 27,3:672—688.

Tim Bollerslev. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of

econometrics 31,3:307-327.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015. Time series

analysis: forecasting and control. John Wiley & Sons.

S. Crone. 2008. Time series forecasting competition for computational intelligence.

http://www.neural-forecasting competition.com, 2008 .

Saad M Darwish. 2013. A methodology to improve cash demand forecasting for atm network.

International journal of Computer and electrical engineering 5,4:405.

Robert F Engle. 1983. Estimates of the variance of us inflation based upon the arch model. Journal

of Money, Credit and Banking 15,3:286-301.

Rainer Handel, Manfred N Huber, and Stefan Schroder. 1998. ATM networks: concepts,

protocols, applications. Addison-Wesley Longman Ltd.

Rob J Hyndman, Yeasmin Khandakar, et al. 2007. Automatic time series for forecasting: the fore-
cast package for r. Technical report, Monash University, Department of Econometrics

and Business Statistics.

Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. 1992. Testing the
null hypothesis of stationarity against the alternative of a unit root: How sure are we that

economic time series have a unit root? Journal of econometrics 54,1-3:159-178.

Richard Lowry. 2014. Concepts and applications of inferential statistics.

Bedman Narteh. 2013. Service quality in automated teller machines: an empirical investigation.

Managing Service Quality: An International Journal 23,1:62-89.

Francisco A Pino, Pedro A Morettin, and Radl P Mentz. 1987. Modelling and forecasting linear

combinations of time series. International Statistical Review/Revue Internationale de

Statistique pp. 295-313.



67

Nayera Sadek, Alireza Khotanzad, and Thomas Chen. 2003. Atm dynamic bandwidth allocation
using f-arima prediction model. In Computer Communications and Networks, 2003.

ICCCN 2003. Proceedings. The 12th International Conference on, pp. 359-363. IEEE.

Rimvydas Simutis, Darius Dilijonas, and Lidija Bastina. 2008. Cash demand forecasting for atm

using neural networks and support vector regression algorithms. In 20th International

Conference, EURO Mini Conference, Continuous Optimization and Knowledge-Based

Technologies(EurOPT-2008), Selected Papers, Vilnius, pp. 416—421.

S.Prasanna. Probability and mathematical statistics. University of Louisville, KV 40292 USA
http://www.math.louisville.edu/ pksaho0O1/teaching/Math662TB-09S.pdf.

Jorg D Wichard. 2011. Forecasting the nn5 time series with hybrid models. International Journal

of Forecasting 27,3:700-707.

Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics bulletin 1,6:

80-83.

WS Wei William. 1990. Time series analysis. Univariate and Multivariate Methods, New York .




APPENDICES



APPENDIX A

COMPARATIVE MODELS

This section introduces the comparative models that uses to evaluate the accuracy of the
MASA model. The comparative models comprise of two models. The first model is the expo-
nential smoothing model and the second model is the seasonal autoregressive integrated moving

average model.
A.1 Exponential smoothing model

In this section, the exponential smoothing model is introduced. It is divided into three parts.
The first part is the basic exponential smoothing model. The second part is the double exponential

smoothing. And the third part is triple exponential smoothing.
A.1.1 Basic exponential smoothing model

Let { X, } be the time series data (starting at time ¢ = 0), and the exponential smoothing be
the {l;}, which it is a estimate of the next value of X. The simple of exponential smoothing is

given by the formula:

lo = XO
lt = OéXt + (1 — Oé)lt_l,

t > 0 ,where [ is the smoothing factor, and 0 < a < 1.

Xt can be forecasted as follow

X, =1.

A.1.2 Double exponential smoothing model

Let {X;} be the time series data (starting at time ¢ = 0) and {b;} be the estimate of the

trend at time ¢. The double exponential smoothing is given by the formulas:
lo = Xo

h=X3
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b1 =101 —1

and fort =1,2,... by

lt = OéXt -+ (1 - Oé)(lt_l + bt—l)
by = Bl — li—1) + (1 = B)bs—1

where « is the data smoothing factor, 0 < a < 1, and f is the trend smoothing factor, 0 < 5 < 1.
Let Xt+h be the forecasted data where h > 0. Xt+h can be forecasted as follow

Xopn =l + hiy

. X, — X
The initial value by can be set as 2n 7 20 for some n > 1.
n

A.1.3 Triple exponential smoothing model

Let { X, } be the time series data (starting at time ¢ = 0) with a seasonal change of length L

and {c;} be the estimate of seasonal. The triple exponential smoothing is given by the formulas:
lo = Xo

lh=X
bi=0L—1
andfort =1,2,... by
X
lh=a—"+(1—a)(l1+bi1)
Ct—L
by = B(ly — li—1) + (1 = B)bs—1
X
= WTt + (1 =71
t
Let Xt+h be the forecasted data where i > 0. Xt+h can be forecasted as follow

Xern = (I + hbe)es 1114 (m—1)modr

where « is the data smoothing factor, 0 < o < 1, 3 is the trend smoothing factor, 0 < 5 < 1, and
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~ is the seasonal change smoothing factor, 0 < v < 1.

The initial trend by can be calculated by

b :l(XL—&—l_Xl +XL+2_X2 XL+L_XL)
°T L L L L
The initial seasonal c; for¢ = 1,2, ..., L can be calculated by

N
1 Xrg-1)+i
=N A
J=1

forall: =1,2,..., L, where

forallj =1,2,..., N
Note that, A; is the average value of X in the j th cycle of the data.
A.2 Seasonal autoregressive integrated moving average model

A general seasonal autoregressive integrated moving average or SARIMA model of order

(p,d,q) x (P, D, Q)s representing the time series Z; can be written as

¢(B)p(B°)v'v" Z; = 6(B)s(B*)a;
where, Z,; represent the time series data at time ¢ and a; represent the white noise terms at time ¢.
B? is a lag operator defined by B°Z;, = Z,_.
VisdefinedbyVZ, =2, —Z;1=(1—B)Z;andV = (1 — B) .

¢(B) and 0(B) are the autoregressive (AR) and the moving averages (MA) operators of

order and respectively. They are defined as

p
$(B)=1-Y ¢:B'
=1



72

q
0(B)=1-> 0;B
j=1

where ¢1, ¢2, . . ., ¢, are the autoregressive coefficients and 61, 0, . . . , 0, are the moving averages

coefficients.

©(B?) and ¢(B?) are the seasonal autoregressive (AR) and the seasonal moving averages

(MA) operators of order and respectively. They are defined as

P
P(B) =1-3 @uB"
=1

Q
S(B*)=1-) B
j=1

where 1, 2, ..., pp are the autoregressive coefficients and <1, <2, ..., g are the moving aver-

ages coefficients.



APPENDIX B

PROGRAMMING OF THE MASA MODEL

In this section, the programming of the MASA model is introduced. This research uses R

programming to solve this problem. The MASA model in R programming consists of the eight

steps as follow:

Step 1: The time series data is called by library xIsx.

Step 2: The MASA model is generated by the building MASA algorithm.

Step 3: The future values are forecasted by the forecasting MASA algorithm.

Step 4: The SMAPE of the MASA model is calculated.

Step 5: The comparative models are generated. They are called the SARIMA model and

the exponential smoothing model.

>
>
>
>
>
>

Step 6: The graphs of the empirical result are plotted

Step 7: The graphs of comparative analysis are plotted.

Step 8: The Wilcoxon signed-rank test is applied and the SMAPEs of the models are shown.

The details are shown below.

Step 1 : The time series data is called by library “xlsx ”.

library (xIsx)

library (forecast)

getwd ()

setwd (”C:\\ Users\\ Administrator\\Desktop\\ Thesis”)
filename <— ”"NN5_COMPLETE. x1s”

nn_gcl_ B <— read.xlsx(filename , sheetlndex=1, startRow=18,

collndex =107, endRow =752 , header=FALSE)

>

>

>

>

for (i in 1l:length(nn_gcl B[,1])){
if (is.na(nn_gcl B[i,1])){
nn_gcl_B[i,l1]<— nn_gcl_B[i—-1,1]
}
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}

>
> nn_gcl_B <— nn_gcl_B[!is.na(nn_gcl_B)]

> tsl<—ts ((nn_gcl_B),frequency=4)

> plot(tsl ,col="blue”,main = “Cash of AIM time series”,

ylab = expression (” Dollar”), xlab =expression (”daily ”))

Step 2 : The MASA model is generated by the building MASA algorithm.

### The data are divided into in sample data and out sample data
and then the in sample data are divided into training data and
validating data.

1 =7 # Period of aggregate group

N_of_Data <— floor(length(nn_gcl1_B)*0.95)

N_of_test <— length(nn_gcl_B)—N_of_Data

N_of_Data <— floor(length(nn_gcl1_B)*0.95)

N_of_test <— length(nn_gcl_B)—N_of_Data

N_of_Datal <— N_of_Datax0.95

N_of_Datal <— floor(N_of_Datal)

N_of_Datal <— 1xfloor(N_of_Datal/1l)

N_of_Data2 <— N_of_Data—N_of_Datal

N_of_Data2 <— lxfloor(N_of_Data2/1)

N_of_Data <— N_of_Datal+N_of_Data2

N_of_test <— (floor(length(nn_gcl_B)/1)*x1)—N_of_Data

vV V. V. V V V V V V V V V V

write.csv(nn_gcl_B[((N_of_Datal+N_of_Data2)+1)
:(floor(length (nn_gcl_B)/1)x1)],” test.csv”)

> write.csv(nn_gcl_B[1:(N_of_-Datal+N_of_Data2)],” Data.csv”)
> write.csv(nn_gcl _B[1:N_of_Datal],” Datal.csv”™)

> write.csv(nn_gcl _B[(N_of_Datal +1):(N_of_Datal+N_of_Data2)]

”Data2.csv”)

-

Datal <— read.csv(”Datal.csv”) # Training data

Data2 <— read.csv(”Data2.csv”) # Validating data
Data <— read.csv(”Data.csv”) # in sample data
test <— read.csv(”test.csv”) # Out sample data

plot(ts(Datal[,2]),col="blue”) #Graph of Training data
plot(ts(Data2[,2]), col="blue”) #Graph of Validating data
plot(ts(Data[,2]),col="blue”) #Graph of in sample data

vV V. V. V V V V V

plot(ts(test[,2]),col="blue™) #Graph of out sample data
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###The training data are aggregated.

> ADatal <— 1:(N_of_Datal/l) #Aggregate training data
> for(i in 1:length (ADatal)){

> sum <— 0

> for(j in (1+(1x(i—=1))):(1+(1x(i—1)))) {
> sum <— sum + Datal[j,2]
> )

> ADatal[i] <— sum
> sum <— 0

>

>

}

plot (ts (ADatal, frequency =4))

###The validating data are aggregated.

> AData2 <— 1:(N_of_Data2/1) #Aggregate validating data
> for(i in 1l:length (AData2)){

> sum <— 0

> for(j in (14+(1x(i—=1))):(1+(1*(i—1)))) {
> sum <— sum + Data2[j,2]
>}

> AData2[1] <— sum
> sum <— 0

>

>

}
plot (ts (AData2, frequency=4))

### The subsequence of aggregate training are generated.
m=3 # The maximum common difference
list_ADatal <— list ()
list_ADatal <—1list ()
list_.Seq_1 <—1list ()
k <— 1
for (i in 1:m) {
for (j in 1:1) {
s <— seq(from=j,to=Ilength (ADatal),by=1)
u <— seq(from=j,to=length (ADatal),by=i)
for (t in 1l:length(s)){

vV V. V. V V V V V V V
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s[tl<—ADatal[s[t]]
}
list_ADatal [[k]]<—s
list_.Seq_1[[k]]<—u
k<—k+1

13

vV V. V V V V

### The subsequence of aggregate validating are generated.
> list_AData2 <—1list ()

> list_Seq_2 <—list ()

> k <~ 1

> for (i in 1:m) {

> for (j in 1:i) {

> s <— seq(from=j,to=length (AData2),by=i)
> u <— seq(from=j,to=length(AData2),by=i)
> for (t in 1l:length(s)){
> s[t]l<—AData2[s[t]]
> )

> list_AData2 [[k]]<—s
> list_.Seq_2 [[k]]<—u
> k<—k+1

>

>

13

k<—k—1

### The best ARIMA model is fitted and SMAPE of each subsequence
is calculated.

> list_forecast_arima <— list ()

> SMAPE_arima <— c ()

> Detail _Modell <—1list ()

##ARIMA

> for (i in 1:k){

ADatalts <— ts(list_ADatal [[i]], frequency =1)

AData2ts <— ts(list_AData2[[i]],frequency =1)

fit <— auto.arima(ADatalts, max.p=7, max.q=7, seasonal=FALSE)
Detail _Modell [[i]]<—fit

vV V. V VvV

f<—forecast(fit , h=length (AData2ts))
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> list_forecast_arima [[i]] <— f$mean

> Forecast <— list_forecast_arima [[1]]

> A<—abs(Forecast[1l:length (AData2ts)]—AData2ts[1:length
( AData2ts)])

> B<—(abs(Forecast[1l:length (AData2ts)])+abs(AData2ts[1:
length (AData2ts )]))/2

> SMAPE_arima[i] <—sum(A/B)*100/length (AData2ts)

>}

Step 3 : The future values are forecasted by the forecasting MASA algorithm.

### The aggregate forecasted value and its subsequence are
identified from each future value.
list_forecast_NewModel <— list () # List of forecasted values
MAPE_NewModel <— c ()
Using _Model <— c ()
for (i in 1:k){
list_forecast_NewModel [[i]]<—1list_forecast_arima [[1]]
MAPE_NewModel [ i ][<—SMAPE _arima[ i ]
Using_Model[i] <— "arima”
h
N_of_Data
AData <— 1:(N_of_Data/l)
for(i in 1:length (AData)){
sum <— 0
for(j in (14+(1x(i—=1))):(1+(l*(i—1)))) {
sum <— sum + Datal[j,2]
}
AData[1] <— sum
sum <— 0
}
plot (ts (AData, frequency =4))
Atest <— 1:(N_of_test/1)
for(i in 1l:length (Atest)){
sum <— 0
for(j in (14(1x(i—=1))):(1+(l*(i—1)))) {

sum <— sum + test[]j,2]

vV V. V. V V V V V V V V V V V V V V V V V V V V V
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}
Atest[1] <— sum
sum <— 0
}
list_AData <— list ()
list_AData<—1list ()
list_Seq-In<—list ()
k <— 1
for (i in 1:m) {
for (j in 1:i) {
s <— seq(from=j,to=length (AData),by=i)
u <— seq(from=j,to=length (AData),by=1)
for (t in 1:length(s)){
s[t]<—AData[s[t]]
}
list_AData[[k]]<—s
list_Seq_In [[k]I<—u
k<—k+1
b
k<—k—1
list_Atest <— list ()
list_Atest<—1list ()
list_.Seq-Out<—list ()
k <— 1
for (i in 1:m) {
for (j in 1:i) {
s <— seq(from=j,to=length(Atest),by=i)
u <— seq(from=j,to=length(Atest),by=i)
for (t in 1:length(s)){
s[t]l<—Atest[s[t]]
}
list_Atest [[k]]<—s
list_Seq-Out [[k]]<—u
k<—k+1

13
k<—k—1
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> list_forecast_NewModel <— list ()

> Detail _Model2<—1ist ()

> for (i in 1:k){

> print (i)

> ADatats <— ts(list_AData[[i]],frequency = 1)

> fit <— arima(ADatats, order=c(Detail_Modell [[i]] $arma[1l]
,Detail_Modell [[i]]$arma[6], Detail _Modell [[i]]$arma[2]),
seasonal=c(Detail_Modell [[i]]$arma[3], Detail _Modell [[i]]
$arma[7],Detail_Modell [[i]]$arma[4]))

> f<—forecast(fit, h=(length(test[,2])/1))

> list_forecast_NewModel[[1]] <— f$mean

> Detail_Model2 [[i]]<—fit

>

### The aggregate values are forecasted by considering the

minimum SMAPE of subsequences.

> OrderOfsequence <— c ()

> SortMAPE_NewModel <— sort (MAPE_NewModel)

> for (i in 1:k){

> for (j in 1:k){

> if (SortMAPE_NewModel[ i [==MAPE _NewModel[ j ]) {

> OrderOfsequence[il<—j}

>}

>}

> Forecast_NewModel <— 1:(length(test[,2])/1) ;Forecast_.NewModel

[1:(length(test[,2])/1)]<—NaN

> Forecast_NewModelfull <— Forecast_.NewModel

[!is .na(Forecast_NewModel)]

> NumberofForecast<—0

> NumberofSequence <— 1:(length(test[,2])/1);Forecast NewModel
[1:(length(test[,2])/1)]<—NaN

> t<—1

> while (length (Forecast_NewModelfull )!=(length (test[,2])/1)){
> OrderOfsequence[t]

> ts<—list_forecast_NewModel [[ OrderOfsequence[t]]]

> N <—list_Seq_Out [[ OrderOfsequence[t]]]
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for(i in 1:length(N)){
if (is.na(Forecast_ NewModel [N[i]])){
Forecast_NewModel [N[i]]<—ts[1]
NumberofSequence [N[i]]<—OrderOfsequence[t]

vV V. V V V V

}

Forecast_NewModelfull <— Forecast_NewModel

[!is .na(Forecast_NewModel )]
t<—t+1

}

t<—t—1

Using_seq <— list ()

Detail_Final _Model <—1list ()

Using_Final _Model <— c()

for(i in 1:length (NumberofSequence)){
Using_seq[[i]]<—1list_Seq_In [[ NumberofSequence[i ]]]
Using_Final _Model[i]<—Using_Model [ NumberofSequence[i]]
Detail_Final _Model [[i]]<—> Detail_-Modell [[NumberofSequence[i]]]

vV V.V V V V V V V V V

### The aggregate forecasted values are disaggregated.
> ratiol <—c () #Average ratios
> ratio2 <—c () #Weighted average ratios
> Forecast_Data<—c ()
> for(r in 1l:length (Forecast_.NewModel)){
> Seqln <— list_Seq_In[[ NumberofSequence[r]]]
ADataln <— list_AData[[ NumberofSequence[r ]]]
k<—(SeqIn[2]—Seqln[1])
j<—(k—Seqln[1])
n<—length (AData)
sum<—0
for(t in 1:1){
i<—1
while (((kxi)—j)<= n){
sum<—sum+(Data [ (((kxi)—j—1)x1+t) ,2]/AData[(ixk)—j])

vV V.V V V V V V V V

i<—i+l1}
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> sum<—sum/length (ADataln)
> ratiol [ t]<—sum
> )
> sumOfratiol <—sum(ratiol)
> for(t in 1:1){
> ratio2 [t]<—ratiol [t]/sumOfratiol
>}
> for(t in 1:1){
> Forecast_Data[l*(r—1)+t]<—Forecast_NewModel[r]*xratio2[t]
>}
>}
Step 4 : SMAPE of the MASA model is calculated.
> tsnewmodel<—ts (Forecast_Data , frequency = 7) #The forecasted values

of the MASA model

> tstest<—ts(test[,2],frequency = 7 ) #The out sample data
> A<—abs(Forecast_Data—test[,2])

> B<—(abs(Forecast_Data)+abs(test[,2]))/2

> SMAPNewModel <—sum(A/B)*100/1length (Forecast_Data) #SMAPE of
MASA model

Step 5 : The comparative models are generated. There are the SARIMA model and

the exponential smoothing model.

### SARIMA

> tsData<—ts (Data[,2],frequency = 1)

> fitSarima <— auto.arima(tsData, max.p=25, max.q=25)

> fSarima<—forecast(fitSarima , h=length(tstest))

> tsSarima<—ts (fSarima$mean , frequency=7) # The forecasted values

of the SARIMA model

> A<—abs(tsSarima—test[,2])

> B<—(abs(tsSarima)+abs(test[,2]))/2

> SMAPESArima <—sum(A/B)*100/length (tsSarima) #SMAPE of SARIMA model

### Exponential Smoothing (ets)
> tsDatal <—ts (Data[,2],frequency = 1)
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> fitexpo3 <— ets(tsDatal ,model="7Z7ZZ")

> fexpo3<—forecast(fitexpo3 , h=length(test[,2]))

> tsexpo3<—ts (fexpo3$mean, frequency=7) # The forecasted values of
the exponential smoothing model

> A<—abs(tsexpo3—test[,2])

> B<—(abs(tsexpo3)+abs(test[,2]))/2

> SMAPEexpo3 <—sum(A/B)+*100/length (tsexpo3) #SMAPE of the

exponential smoothing model

Step 6 : The graph of the empirical result are plotted.

> plot(tstest ,col="black”,main = "Empirical result of the MASA model”
, ylab = expression(”Dollar”), xlab =expression (”daily”))

> points(tstest , pch=0,col="black”)

> lines (tsnewmodel ,col="red”)

> points (tsnewmodel , pch=1,col="red”)

> categoriesl <— c(”Out—sample data”, "MASA”)

> colorsl <— c(”black”, "red”)

> legend (”topright”, col=colorsl, categoriesl ,pch=c(0,1), bg="white”

, lwd=1)
> acf(tstest —tsnewmodel)

> Pacf(tstest —tsnewmodel)

Step 7 : The graph of comparative analysis are plotted.

> plot(tstest ,col="black”,main = “Comparative models on the
AIM ID NN5—-106",ylab = expression (” Dollar”), xlab =
expression (” daily”), pch = 10)

> points(tstest , pch=0,col="black”)

lines (tsnewmodel ,col="red”)

points (tsnewmodel, pch=1,col="red”)

lines (tsSarima ,pch=".",col="green”)

points (tsSarima , pch=2,col="green”)

lines (tsexpo3 ,col="blue”)

points (tsexpo3, pch=3,col="blue”)

categories <— c(”Out—sample data”, "MASA”, "SARIMA” ,”ETS”)

vV V. V V V V V V

colors <— c(”black”, ”red”, “green”, "blue”)
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> legend (”topright”, col=colors, categories ,pch=c(0,1,2,3)
, bg="white”, Ilwd=1)

Step 8 : Willcoxon signed-rank test is applied and the SMAPEs of the models are

shown.

> BJ<—Box.test(tstest —tsnewmodel ,type="Ljung—Box”,
lag=floor (log(length(tstest))))

> print ("red”); SMAPNewModel #SMAPE of MASA model
> print (" blue ”); SMAPESArima #SMAPE of SARIMA model
> print (" yellow ”); SMAPEexpo3 #SMAPE of the exponential

smoothing model
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