MSANNNUIEMNYBINENABINATNAN TR S:
Nugudmsussuumszndsayecatiiasmu ng

4
e NN waliew

%

a a yrj 1 § % a a a
Inotnusiiudiunilwesmsanmauvangasliyanlimnssumansgufiada
a1y i madxieanssu i
AUZIAINTTUANAAT PWAINTAI UM AN

Umsdnun 2546
ISBN 974-17-4171-5
AvANTY0IYNAINTAI NI INY



AN ACOUSTIC STUDY OF SYLLABLE RHYMES:
A BASIS FOR THAI CONTINUOUS SPEECH RECOGNITION SYSTEM

Mr. Ekkarit Maneenoi

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in Electrical Engineering
Department of Electrical Engineering
Faculty of Engineering
Chulalongkorn University
Academic year 2003
ISBN 974-17-4171-5



Thesis Title

An Acoustic Study of Syllable Rhymes: A Basis for Thai

Continuous Speech Recognition System

By Mr. Ekkarit Maneenoi
Field of Study Electrical Engineering
Thesis Advisor Associate Professor Somchai Jitapunkul, Dr.Ing.

Thesis Co-advisor Assistant Professor Sudaporn Luksaneeyanawin, Ph.D.

Chularat Tanprasert, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in

Partial Fulfillment of the Requirements for the Doctor’s Degree

............................................... Dean of Faculty of Engineering

(Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

...................................................... Chairman

(Professor Prasit Prapinmongkolkarn, D.Eng.)

...................................................... Thesis Advisor

(Associate Professor Somchai Jitapunkul, Dr.Ing.)

...................................................... Thesis Co-advisor

(Assistant Professor Sudaporn ‘Luksaneeyanawin, Ph.D.)

...................................................... Thesis Co-advisor

...................................................... Member

(Associate Professor Watit Benjapolakul, D.Eng.)

(Assistant Professor Boonserm Kijsirikul, D.Eng.)



iv

angns udiion, Wiy : MsAnEMIsauTaINgIREINaFNmEas: ﬁugmﬁ’m%m:uumiﬁ']
Laﬂdﬁ@@imﬁa\‘mﬂﬂ’ﬂﬂﬂ. (AN ACOUSTIC STUDY OF SYLLABLE RHYMES: A BASIS FOR THAI
CONTINUOUS SPEECH RECOGNITION SYSTEM) 8. it$n®1 © 503/180319138 3. aaw1y
Faziuina, o. fAUsneasaw HE10a180319178 @3, ga1wT ansdourin, a3 3wiian

auiaziady 250 wil. ISBN 974-17-4171-5

emmﬁwuﬁdufzﬁi'ﬂqﬂs:mﬁmawm%%’mﬁaﬁwm%mrJL%mLfﬁaﬂa@%‘ﬂmam'?ém%'uLL‘uuﬁmaa
WUBAUNANE INe amﬁél"ui{ﬁwmiﬁnmqm&nwm:maawmoﬁ'l,umm"lﬂﬂﬁal,%anaé'ﬂmamim:
FTUULRBINEN Iﬂsaa%wmwmwﬂummvlmuﬁamé’nwmﬂm%maé’wmam‘ﬁas:ﬁwaﬂi:wuashamn@ia
ANMNINMITBINTYTUEAIRENA AMAFNANEG IN Iz AaT usznigIzURT NS T IFEN AN §I%
anupTeINgYTUzdwaz lfinannuangs: ngaansnzainaanInailldihwiyuzdiaznadl
ANMUFUNBINHALNININ 1m%<rs:mn§mnm’1wmaﬁﬂizﬂauﬁm@l‘mamul’am’%'mwsm@i’l,l,awmgmwwzmﬁ
I@ﬂﬁwmﬂﬁf;\IWmoﬁﬂszﬂauﬁwwﬁ'tymmﬁmm:muﬁm&"UumnwEl‘ty"ﬁu:vl,ﬂf,jas: FIUAUILANUNLIIA
Usznaudisas: Wi TusiIaEnauazIsTmynd wu',::UL’émwmaﬂ‘ua:%mummwmaﬁuanmnazﬁ’ﬁagaL%a
Wsunvasarzudassiinssnendan s Wlussdunensdandas doiunssuunnensdesnilusasdivie
W BINEIS LAz R IR DRI A NIz AR E RS U 37 Ine Lﬁaamnmu‘i”Uf‘:ﬁi‘mqﬂszawﬂu
maSoufisudssintanassunuitaaimiandesdssiandisg aeiuaudseiala V@l wszuu3En

asimqnﬁﬁm

' a Q P vo A Y A = a [ ' a A o

%mmamﬂszm‘nmaqwlﬁ’lm:uugmLamw“ﬂgﬂmmﬂs:muwmﬂm‘umwﬂwmmamwmtaua
‘me"ﬁﬂﬁﬁmimaaaﬁ'lmumﬂLﬁaﬁazﬁmmmm%'smﬁmmsm‘i’maaqm&nﬂmm’mﬂaﬁﬂma@ﬂﬁmmz

v 2o Aad Yo A ' a ' ° at a
ammﬂ%wamsgmm'ﬂqﬂimﬂwamsgmLamaw”@aﬁn%uamamﬂs:m‘nma6] argnihwakeuazilIsuoY
pudayaFoawadnivlsdndulunuddsdouiinnngwamwamodiuim 9 auuazinangisiuan 11 au

e ¥ o e r—y ) o o e e o
na;u%wg@ﬁaxuuﬁﬂL?zmw“@ﬂ@aammwunugw‘]mﬁﬂmsJ a’mmL‘émﬁ@maauLmuvl,umuﬂuwmz‘l@mﬂ

o o o A o ' A Y [% '
MITUNNESINATBILNALNATIETINIU 5 AULAZINARITIIIUIN 5 audnnaunits JudayaiFoayadind

ﬁ“’[ﬁ%‘um‘saammﬂﬁmamqwumﬁuw HIALASAUILANUNDWANINUAN T D gﬂummvlw ]

NNNANINARIUFAI AU U IR0 IR IS HN IR LA AT NN IR T sz AN nwian
%mm%mﬂszmﬂﬁuﬂ é’@mmﬁﬁiwamumﬁaaw.u'nsJL'%uwmaﬁua:vxuwmuwmaﬁﬁﬂ‘s:ﬁw%mw"ﬁaﬂiw
LLUUﬂoﬂﬂaﬁﬁug’]% monophone, inter-syllable triphone LLa¢ context-dependent Initial-Final Jouaz 26.2, 6.4
Uaz 4.2 c%m%’m:uufaﬁwLLUU%uﬁ'qu”@I@ﬂl"ﬁmizﬁwaau%maé‘wmamfwhﬁ?u UazIanaz 29.7, 6.0 WAz 4.2
z%m%’m:uum%ﬁmuwfuﬁ'uQw“ﬂimU’L"ﬁmsa‘haaaL%aﬂaé‘ﬂma@]ﬁm:msﬁmaaL%\‘im‘m MIENTINa0 918
ﬂﬂﬂﬂﬁﬂlﬁﬁ@li’lﬂﬁii’tﬁ’]ﬂﬂﬁ%ﬁ?UL%NQG%%U?:NWM%/BUaz 16-21 ﬁm%’m:uujﬁ’umuﬁuﬁu;Mmm:uuu"[&i%u
ﬁug&’ma uanmnﬁé’mwmsfﬁwamu’nmmuwmaﬁgnﬂ%uﬂga%ua:mmnﬂs:mm%azm: 45-47 §MMIUITUY
j}"«ﬁ%mu"fuﬁ'u;Emmm:uuuhiﬁuﬁ'mjwﬂmﬁaﬁm‘s’lﬁmﬁmaaﬁomm NANINARBILEAS IAARILLL a0
WU UNENISUAZ WA IN IR T BasNNTFNAigenn wenanfluuudiaasnsiedosasnanndadls:

U U

a a aa @ v o A _ o
a‘ﬂﬁﬂ']W"(l@]‘Lu@’mﬂ'J’]&Jsﬁ‘ueﬁauaﬂ(ﬂ?EJ

AT Feaanysn i A DT RO e

121370 Faanssn i AT TINUSAW .

Ynsdnm 2546 AT TINUITNEII e
A oA &a

AT TINUITNEITIN e



##4271830521 : MAJOR ELECTRICAL ENGINEERING

KEYWORD: ONSETS / RHYMES / CONTINUOUS SPEECH RECOGNITION/ THAI

SPEECH ANALYSIS / ACOUSTIC MODELING / TONAL LANGUAGE
EKKARIT MANEENOI : THESIS TITLE (AN ACOUSTIC STUDY OF SYLLABLE
RHYMES: A BASIS FOR THAI CONTINUOUS SPEECH RECOGNITION
SYSTEM) THESIS ADVISOR: ASSOC. PROF. SOMCHAI JITAPUNKUL,
Dr.Ing., THESIS COADVISOR: ASST. PROF. SUDAPORN
LUKSANEEYANAWIN, Ph.D., CHULARAT TANPRASERT, Ph.D., 250 pp. ISBN
974-17-4171-5.

The objective of this dissertation is to develop a new speech unit on acoustic
modeling of the Thai language. The Thai syllables were studied in both acoustical
and phonological properties. From the acoustical point of view, in the syllable
structure, the final consonant is strongly influenced by the vowel duration. This
relationship occurs only between the vowel and the final consonant. In contrast, the
initial consonant is not affected by the duration of the vowel. Hence, the vowel and
the final consonant are tightly tied while an initial consonant is loosely tied with the
vowel in the syllable. From a phonological point of view, a syllable is composed of a
pair of an onset and a rhyme unit. The onset consists of an initial consonant and its
transition towards the following vowel. Along with the onset, the rhyme is composed
of a vowel, a final consonant, and a tone. The onset-rhyme not only includes its
contextual information, but also embeds the language modeling at the syllable level.
Consequently, the decomposition of the syllable into an onset and rhyme is
appropriate to the Thai language. The whole set of Thai syllables can be recognized
by identifying onsets and rhymes. This research has the objective to compare the
efficiency of the units. Therefore, a tone recognition system is not implemented in
this research.

To evaluate the effectiveness of the proposed acoustic model, various
conventional speech units used in speech recognition systems have been
investigated. Several experiments have been carried out to find the proper speech
unit that can accurately create acoustic model and give a higher recognition rate.
Results of recognition rates under different acoustic models are given and compared.
The speech corpus used for training in this experiment was recorded from 9 male
and 11 female speakers. This group of speakers also produced the speaker-
dependent test set. In addition, the speaker-independent test set was produced from
other 5 male and 5 female speakers. This speech corpus was designed to cover all
onset-rhyme units in the Thai language.

Experimental results show that the onset-rhyme model improves on the
efficiency of other speech units. The onset-rhyme model improves on the accuracy of
the baseline monophone model, the inter-syllable triphone model, and the context-
dependent Initial-Final model by nearly 26.2 %, 6.4%, and 4.2 % for the speaker-
dependent systems using only an acoustic model,-and 29.7 %, 6.0 %, and 4.2 % for
the speaker-dependent systems -using both —acoustic and' language model
respectively. Using the language model, the onset accuracy is increased by around
16-21 % for both SD and SI systems. In addition, the accuracy of the rhyme is
substantially improved by nearly 45-47 % for the SD and SI systems when the
language model is applied. The results show that the onset-rhyme models attain a
high recognition rate. Moreover, they also give more efficiency in terms of system
complexity.
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Chapter 1

Introduction

Speech is one of the most natural ways for human communication. This has
motivated many researchers to develop machines that can accept the human
speech and respond properly. Spoken language processing research intends
to develop and implement algorithms for a machine to be able to generate,
recognize, and understand a spoken language. In order to implement such a
machine, speech analysis, speech synthesis, speech recognition, natural
language processing, and human interface technology are incorporated in
spoken language processing system. The spoken language systems have
been developed for a wide variety of applications, ranging from a small set of
vocabulary to a large set of vocabulary. Applications of human-machine
interaction involve in many tasks for example, voice dialing in mobile
phones, aviation information retrieval, weather information retrieval,
automated reservation, dictation and editing, transcription of broadcast
data, etc.

The research of speech recognition has been continuously developed
for the last half century. A number of significant advances in the past two
decades including signal processing, computational architectures, computer
hardware, and programming techniques have contributed to rapid
development of speech technology. Development of speech recognition
system requires not only knowledge from the computer field, but also from
other related fields. Multidisciplinary approaches have been applied in
speech recognition research to make the system works effectively, such as,
signal processing, linguistics, acoustic, physics, psychology, physiology,
pattern recognition, computer science, communication, and information
technology (Rabiner and Juang, 1993).

Primarily, the speech recognizer processes the input utterance in
bottom-up direction. According to the hierarchical model of speech
recognition, acoustic features are extracted in acoustic processor from input
speech and converted into a phoneme sequence by means of segmentation

and pattern recognition (Furui, 2001). In the acoustic matching unit,



performance of the phone recognition relied on selecting types of speech
unit. Choice of speech units depends on the type of recognition and on the
size of the vocabulary.

Initially, speech recognition system utilized a simple pattern matching
technique to recognize isolated utterances. The reference templates were
created based upon the word model. Although the word-based approach can
handle coarticulatory effect in the model by treating each utterance as a
whole, segment boundaries between words in fluent speech are difficult to
detect. Moreover, the recognition systems have reached their limitations on
the number of words in the vocabulary to be modeled individually, which
training data could not be shared between words (Huang, et al., 2001).
Speech recognition system using word-based approach is not productive
because it is impossible to implement such a recognizer that covers the
whole language.

Presently, most recognition systems use acoustic units corresponding
to phonemic units. Compared to word models, subword units reduce the
number of parameters, enable cross-word modeling, and facilitate adding
new vocabulary. Various types of phone models have been investigated from
an independent phone context, a single phone context (left or right context),
left and right context (triphones), and generalized triphones. The choice of
speech unit is dependent on language structure and the availability of
sufficient training data for constructing effective reference models. Since
each language has its own attribute, choosing suitable speech units leads to
effective utilization of the training data and a good performance of speech
recognizer. In spite of using traditional context-dependent units such as
diphone or triphone employed in the English speech recognizer, Initials and
Finals are utilized as a fundamental unit in a Mandarin Chinese dictation
machine (Lee, et al., 1997). The Initial comprises the initial consonant of the
syllable while the Final consists of the vowel part including possible medial
or nasal ending (Lee, et al., 1993). Different syllable structures of English
and Chinese Mandarin will result in using different speech units. Thai
syllable structure is different from the others, and therefore, it is vital to
figure out the proper speech units used in speech recognition for Thai

language.



1.1 Continuous Speech Recognition System

The beginning speech recognition system was based on template matching.
The simple pattern matching techniques are not applicable to recognition of
fluent speech because segment boundaries are difficult to detect. In normal
speech, word boundaries are not affected by any adjacent words, and
therefore the utterance can be segmented into words with a short period of
silence between words. Then each word is compared with the reference
templates to produce isolated word recognition. Since a limited number of
the reference templates are used in the recognizer, this method is suitable
for a small vocabulary speech recognition application.

Word reference template techniques are limited by the number of
templates and by capability of handling variability of speech. Changing from
using the whole word unit to the subword unit and exploiting statistical
technique can overcome disadvantages resulting from a simple matching
technique. One of the stochastic processes, hidden Markov model (HMM),
has been widely employed in the speech recognition system (Lee and Hon,
1989; Young, 1992; Ganpathiraju, et al,. 2001; Lee, 1997). This process
estimates the parameters of a probabilistic model of the data to produce the
representation of speech, which is robust to the variation in the natural
speech. Each acoustic model can be concatenated in a series to generate a
composite model of a continuous speech utterance. A small number of
acoustic models and a dictionary are used to construct a compound model
for the word. This approach reduces the number of data required to cover a
vocabulary set by using a dictionary.

In large-vocabulary continuous speech recognition, input utterance is
processed with many kinds of information including lexicon, syntax,
semantics, pragmatics, context, and prosodic (Furui, 2001). The lexicon
indicates the phoneme structure of words, syntax expresses the grammatical
structure, semantics defines the relationship between words as well as the
attributes of each word, pragmatics expresses general knowledge concerning
the current topics of conversation, context concerns the contextual
information, and prosodic represents accent and intonation. These
knowledge sources are combined together as shown in Figure 1.1 (Deller, et
al., 1993). The system performance depends on what kinds of these
knowledge sources are used and how these knowledge sources are rapidly

combined to produce the most probable recognition.



The structure of a typical large-vocabulary continuous speech
recognition system is shown in Figure 1.2. Initially, a speech signal is
converted into a time series of feature parameters in the spectral analysis
part. The system predicts a sentence hypothesis based on the current topic,
the meaning of words, and the language grammar, and represents a
sentence as a sequence of words. This word sequence is then converted into
phoneme sequence models, which were typically represented by HMM
models. The likelihood or probability of producing the time series of feature
parameters from the sequence of phoneme models is computed. Combined
with the linguistic likelihood of the hypothesized sequence, the overall
likelihood of the uttered sentence was calculated. The likelihood is computed
for the other sentence hypotheses, and the sentence with the highest
likelihood score is selected as the recognition sentence.

Many state-of-the-art speech recognizers make use of continuous
density HMM with Gaussian mixtures for acoustic modeling (Picone, 1996).
Other approaches include segmental-based models and neural networks to
estimate the acoustic observation likelihoods (Glass, et al., 1999; Hochberg,
et al., 1994). The main advantage of continuous density modeling over
observation density is that the number of parameters used to model an
observation distribution can easily be adapted to the number of available
training data (Gauvain and Lamel, 1998). Another disadvantage of discrete
and semi-continuous hidden Markov models is that both systems still
employ vector quantization technique, which produces the quantization

error (Huang, et al., 2001).

1.2 Researches in Thai Speech Recognition

Speech recognition research in Thailand has been conducted for a
decade. These works are based on word-based approach and phoneme-
based  approach. Various techniques, distinctive feature, dynamic time
warping, hidden Markov model, neural network, and fuzzy-neural network,
were utilized in the researches. A wide variety of vocabulary sets, isolated
Thai numerals, isolated Thai words, and polysyllabic Thai words were

recognized with these techniques.
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Recognizing unit smaller than word, phoneme-based speech
recognition classifies consonants and vowels using acoustic-phonetic
features. A study of acoustic characteristics of the vowels /i,a,u/ in Thai and
its use in speaker identification (Leelasiriwong, 1991), a Thai speech
recognition system based on phonemic distinctive features (Thubthong,
1995), speaker-independent isolated Thai spoken vowel recognition by using
spectrum  distance measurement and dynamic time  warping
(Phatrapornnant, 1995), and Thai vowel phoneme recognition using artificial
neural networks and hidden Markov models (Maneenoi, 1998; Maneenoi, et
al., 1998; Maneenoi, et al., 1999; Maneenoi, et al., 2000) are phoneme-based
speech recognition systems. Leelasiriwong (1991) used the first three
formant frequencies and the fundamental frequency of the vowels /i,a,u/ for
speaker identification. These frequencies, measured from power spectrum,
were statistically modeled. The experimental results showed that the
fundamental frequency and the formant frequencies are significantly
dependent on the sex of speakers. Thubthong (1995) employed the phonemic
distinctive feature technique to classify Thai phonemes by their acoustic-
phonetic features. Three sets of hypothetical words created from a selected
set of phonemes were used in the research. This system is a speaker-
dependent system, which was not tested with another group of speakers
other than the training speakers. Hence, higher recognition accuracy was
obtained by using the same set of training and testing speakers. However,
this technique is not practically implemented as a recognition engine
because of its inability to cope with varying patterns of speech utterances.
Then, it should be used as a post-processing of a recognition system in order
to improve the recognition performance. Phatrapornnant (1995) used
spectrum distance measurement computed from fast Fourier transform
together with dynamic time warping technique to classify 24 Thai vowels
uttered in isolated manner. In addition, this system can discriminate 5 Thai
tones from 3 Thai vowels /a:/, /i:/, and /u:/ by calculating mean square
error with tone's reference formula. Maneenoi (1998) utilized artificial neural
networks to classify Thai monophthongs. Nine Thai vowel phonemes are
recognized using various feature for example, linear prediction coefficient,
LPC derived cepstral coefficient, formant frequency, and spectral intensity.
Fundamental frequency and energy were used as feature for extracting a

stable voiced portion in the central region of syllable from the entire speech



waveform at which vowel is located. Moreover, spectral characteristics of
vowels and vowel durations were study in this research.

Word-based speech recognition models whole word as a single
reference template. Thai speech recognition using syllable units is a speaker-
dependent system, which was not tested with another group of speakers
other than the training speakers (Prathumthan, 1986). Hence, higher
recognition accuracy was obtained by using the same set of training and
testing speakers. Contrary to the speaker-dependent system, the speaker-
independent system is tested with different group of speakers other than
group of training speakers. The researches, multispeaker speech recognition
system (Thumpothong, 1989) and speaker-independent Thai numeral voice
recognition by using dynamic time warping (Pensiri, 1995) employed the
dynamic time warping technique. A powerful statistical technique, hidden
Markov model, was used in a speaker-independent Thai numeral speech
recognition system by hidden Markov model and vector quantization
(Areepongsa, 1995) and speaker-independent Thai polysyllabic word
recognition system using hidden Markov model (Ahkuputra, 1996). A highly
parallel computational technique, neural network, was utilized in speaker-
independent Thai numeral speech recognition using LPC and the back
propagation neural network (Pornsukjantra, 1996), a modified back
propagation algorithm for neural networks (Maneenoi, et al., 1997), and
speaker independent Thai polysyllabic word recognition using fuzzy-
technique and neural network (Wutiwiwatchai, 1997). All of these researches
are speaker-independent system.

Thumpothong (1989) exploited the dynamic programming technique
for computing the distance between the test and the reference patterns and
employed the K-nearest neighbour (KNN) technique for decision rules in the
recognition stage. Pensiri (1995) employed dynamic time warping technique
to recognize Thai numeral. Speech parameters were obtained from applying
discrete Hartley transform to every frame of voice. The experimental result
showed that the recognition accuracy drops when the classified patterns
increase. Thus, this technique is inappropriate for recognition a large set of
vocabulary. Areepongsa (1995) proposed to use hidden Markov model (HMM)
and vector quantization to recognize Thai numeral. This research studied the
relationship between the accuracy of speech recognition versus the number

of training sets. From the experimental result, the accuracy rate increases



along with the increment of the training data. Ahkuputra (1996) developed
an algorithm for speaker independent Thai polysyllabic word recognition by
using the hidden Markov model in conjunction with the vector quantization
algorithm and the endpoint detection algorithm for syllable endpoint
detection and separation. The 70-word vocabulary set including Thai
numeral was recognized by these algorithms. Pornsukjantra (1996)
conducted a research on recognition of Thai numeral using LPC and the
back propagation neural network. A set of single syllable Thai numeral from
O to 9 and a set of two and three numeral syllables were classified. Time
normalization algorithm is required to adjust unequal duration of input data
to fit an input of neural network. Wutiwiwatchai (1997) integrated the fuzzy-
technique into the conventional neural network to enhance training data.
Instead of using fuzzy membership input data and class membership
desired-output data during training, the fuzzy membership input data and
binary desired-output were used in this research. The syllable detection and
tone detection algorithms are used for vocabulary pre-classification in order
to reduce the number of vocabularies to be fed to the neural network. The
recognition accuracy of the modified input data was improved compared to
the recognition using only LPC input data.

The syllable segmentation algorithm was used for segmenting a Thai
spoken sentence into a set of syllables. Syllable segmentation algorithm for
Thai connected speech employed the energy, band crossing rate,
fundamental frequency, and duration of speech signal to detect the syllable
boundary (Jittiwarangkul, 1998). The average accuracy of the algorithm is
90 percent tested on a set of ambiguous syllable boundaries. This technique
could be applied to a syllable-based speech recognition system.

According to the researches described above, Thai researchers have
been - accumulated - a - lot. of expertise from  isolated word recognition
technique, and they can implement some simple speech  recognition
applications. Voiced astronomical encyclopedia retrieval, BTS sky-train
ticketing system (Charnvivit, et al., 1999), and voice-activated web browser
(Udompisit and Sothipunchai, 2000) are speech recognition systems based
on isolated word model.

Designed for the specific task as described above, the prototype
speech recognition systems get speech signal directly from microphone,

process the input speech by signal processing algorithm, employ pattern



recognition technique to acoustic features, and respond the result back to
users. However, there are still many major drawbacks in these systems that
cause unsatisfactory recognition accuracy. Confusing words may produce
irresolvable error, which deteriorate the system efficiency. Containing a
small number of vocabularies, the isolated speech recognition has a limited
capability to deal only with some particular applications. Another problem is
that an enormous resource is required for storing and processing the
isolated word models when vocabulary size becomes large. In addition,
utterance in isolated manner is unsuitable for a wide variety of applications,
for example, a friendly user interface in spoken dialogue application. Thus,
continuous speech recognition seems to be a good solution for resolving the
disadvantages of an isolated word speech recognition system.

The acoustic modeling of onsets was proposed as an acoustic unit for
Thai continuous speech recognition (Ahkuputra, 2002). The onset is a
subsyllable unit comprising the initial consonant and its transition to the
following vowel. To implement a complete large vocabulary speech
recognition system for continuous speech, the subsyllable rhyme unit is
proposed in this research. The rhyme is composed of the vowel and the
optional final consonant. These two subsyllable units make a complete
syllable in the speech recogntion system. To evaluate the efficiency of the
proposed speech unit, various speech units will be utilized in the continuous
speech recognition system. The criteria used to evaluate performance of a

speech unit will be elaborated in the next section.

1.3 Selection of Speech Unit

One important issue in developing a speech recognition system is the
selection of the speech unit. The choice of speech unit usually is dependent
on the size of vocabulary to be recognized and the availability of sufficient
training data for constructing effective reference models. Furthermore,
efficiency of speech recognition system is relied on the number of speech
units. Three criteria, accurate, trainable, and generalized, must be
considered in choosing appropriate speech units (Huang, et al., 2001).
Firstly, the speech unit should be accurate to represent the acoustic
realization that appears in different contexts. Secondly, the unit should be
trainable to estimate the parameters of the unit with sufficient data. Thirdly,

the unit should be generalized, so that any new word can be derived from a
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predefined unit inventory for task-independent speech recognition. A
practical challenge is how to select a speech unit, which meets these criteria.
Therefore, it is important to select an appropriate speech unit for the Thai

language.

1.4 Scope of the Dissertation

In order to develop appropriate recognition units for Thai continuous speech
recognition, acoustical properties of the Thai continuous speech have been
thoroughly analyzed. This research focuses on the modeling of syllable
rhymes consisting of the vowel and the final consonant or the codas.
Followings are scopes and goals of this dissertation

» To model acoustic characteristics of Thai syllable rhymes for Thai
speech recognition.

» To develop more appropriate recognition units for the modeling of
Thai speech recognition in terms of accuracy, trainability, and
generalization.

» To provide basic acoustic knowledge for Thai continuous speech

recognition.

1.5 Dissertation Outline

Chapter 2 provides a concise introduction to the theory and application of
fundamental techniques for speech recognition. In chapter 3, phonological
properties and acoustic analysis of the Thai language are described in
details to provide basic knowledge of the Thai language. Chapter 4 describes
the proposed onset-rhyme model. The acoustic modeling of various speech
units with hidden Markov models is also explained in this chapter.
Moreover, the construction of the Thai continuous speech recognition
system is presented. In chapter 5, system configurations and experimental
results are elaborated. In addition, performance comparison between the
proposed onset-rhyme model and other speech units in terms of accuracy
and complexity is described in this chapter. Finally, chapter 6 discusses and
concludes all experimental results. Contributions and suggestions of future
works on Thai continuous speech recognition are also detailed in this

chapter.



Chapter 2

Fundamental Techniques for Speech
Recognition

This chapter provides a concise introduction to the theory and application of
fundamental techniques for speech recognition. Signal processing for speech
recognition will be described to understand the characteristics of speech
signals. Then, theory of the hidden Markov model will be elaborated. Finally,
details of the large vocabulary continuous speech recognition system will be

explained.

2.1 Signal Processing for Speech Recognition

Signal processing is vitally important for optimal speech recognition. The
purpose of signal processing is to derive a set of parameters to represent
speech signals in form, which is suitable for consequential processing.
Various techniques of signal processing and feature extraction for speech

recognition have been reported.

2.1.1 Short-Time Fourier Analysis of Speech Signals

There are two important reasons for analyzing speech signal in the frequency
domain (Furui, 2001). The first reason is that speech wave is considered to
be reproducible by summing the sinusoidal waves, the amplitude, and phase
of which change slowly. The other reason is that the critical features for
perceiving speech by the human ears are mainly relied on the spectral
information, with the phase information does not usually play a key role.

In order to study spectral properties of speech signal, the concept of
short-time Fourier analysis of a signal will be introduced. The standard
Fourier representation that is appropriate for periodic, transient, or
stationary random signal, is not applicable to the representation of speech
signal, whose properties change markedly as a function of time (Rabiner and
Schafer, 1978). However, the short-time analysis principle is a valid

approach to speech processing. A time interval on the order of 10 to 30
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millisecond, which is assumed to change relatively slowly with time, is
suitable for applying the short-time analysis. Furthermore, short-time
Fourier analysis depends on windowing of speech waveform and the results
depend on the properties of the specific window function. With a window of
finite time duration, the window can move progressively along the speech

signal to select short sections for analysis.

2.1.2 LPC Analysis for Speech Signals
Linear Predictive Coding (LPC) can provide a complete description for a
speech prediction model at the vocal tract level. The basic idea underlying

LPC is that each speech sample, x

., can be represented as a linear
combination of previous samples, and prediction error can be minimized

according to the mean-square value of the prediction error, e,, which is

defined by
'4
e, =X, —Zaixt_i (2.1)
i=l1

where p is the order of LPC analysis, and «, are LPC coefficients.

The LPC coefficients, which minimize the mean-square prediction
error, can be obtained by setting the partial derivative of the mean-square

prediction error, with respect to each «;, equal to zero. By minimizing the

prediction error, the LPC technique models the spectrum as a smooth
spectrum of an order-p all-pole filter (Rabiner and Schafer, 1978). The value
of p required for adequate modeling of vocal tract depends on the sampling
frequency. The LPC coefficients can be obtained by solving the Yule-Walker
equation. The solution of this equation can be achieved with various
algorithms (Rabiner and Schafer, 1978; Deller, et al., 1993). However, three
different approaches, the covariance method and the autocorrelation
method, have been mainly used for this task (Rabiner and Juang, 1993;
Huang, et al., 2001).

2.1.3 Cepstral Analysis for Speech Signals
The basic model of speech production can be considered as a vocal tract
filter excited by a periodic excitation function for voiced speech or white

noise for unvoiced speech (Vuuren, 1998). The observed speech sequence is
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a convolution of the excitation and the vocal tract filter impulse response in
the time domain or the product of the excitation and the filter spectra in the
frequency domain. Short-time spectra comprise a slowly varying envelope
corresponding to the vocal tract filter and a rapidly varying fine structure
corresponding to the periodic excitation frequency and its harmonics
(Rabiner and Schafer, 1978). In the frequency domain, the product of the
excitation and filter spectra is transformed to the summation of these two
spectra by logarithmic operation. Then, the transformation from the
frequency domain back to the time domain results in the “cepstrum”, which
has a number of properties suitable to the deconvolution of speech (Rabiner
and Schafer, 1978).

Cepstral coefficients, which can also be obtained from LPC analysis
(Rabiner and Schafer, 1978; Rabiner and Juang, 1993), have been widely

used in speech recognition. The cepstral coefficients, c¢,, obtained from LPC

n’

analysis, can be computed recursively from the LPC coefficients, «,, as

n-1 _k
¢, =—a, _zn ac,, nz1 (2.2)
k=1 N

where a, =0 when k> p

A major advantage of the cepstral analysis is that correlation between
coefficients is extremely small such that simplified modeling assumption can

be applied.

2.1.4 Filterbank Analysis for Speech Signals

Alternatively, the spectral features can be obtained by passing the speech
signal through a bank of bandpass filters. One of the main advantages of
this approach is that the bandpass can be placed along perceptual frequency
scales. such as ecritical-band. (Dautrich, -et-al.; 1983), bark-scale (Ali, et al.,
2002), or mel scale (Bu and Church, 2000). The filterbanks are generally
triangular, and they are equally spaced along the mel scale, which is defined
by

f
Mel =25951 1+—— 2.3
el(f) ogm( + 700} (2.3)

Obviously, the mel scale is linear below and logarithmic above 1 kHz. This
scale is known to be a good scale for approximating the ability of human

auditory system to discriminate frequencies.
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To implement the filterbank, each segment of speech data is
transformed using a Fourier transform and the magnitude is taken. Each
FFT magnitude coefficient is multiplied by the corresponding filter gain and
the results are accumulated. If the cepstral parameters are computed from
the log filterbank amplitude using the Discrete Cosine Transform as shown

in eq. 2.4 , then, the mel-frequency ceptral coefficients (MFCCs) are

¢, = \/%;ml cos(%(j—O.S)) (2.4)

where N is the number of filterbank channels and m; is the log filterbank

obtained.

amplitude. Since MFCCs give good discrimination, they have been widely
used in many speech recognition applications (Mokbel and Chollet, 1995;

Vergin, O'Shaughnessy, and Farhat, 1999).

2.1.5 Coefficient Weighting

The lower cepstrum coefficients have been found to be strongly affected by
speaker-specific characteristics because the low-order cepstral coefficients
are sensitive to overall spectral slopes (Juang, et al., 1987). This speaker-
dependent effect on the cepstrum coefficients is undesirable, and needs to be
eliminated for speaker-independent speech recognition. Moreover, The high-
order cepstral coefficients are sensitive to noise and other forms of noiselike
variability. These sensitivities need to be minimized by weighting technique.
Weighting the cepstrum coefficients or less emphasis is given on the lower
cepstrum coefficients. The process of weighting or windowing the cepstrum
coefficients is also known as cepstrum liftering. Several weighting functions
or lifting windows have been proposed for speech recognition (Juang, et al.,
1987; Tokhura, 1987). The raised sine function is one of the liftering

windows, = w(i),. which has been found to work very well in speech

recognition. This window is defined as

w(i)=1+%sin[i§”j i=1..,N (2.5)

where Q is a liftering parameter, which is typically found experimentally.

The new weighted coefficients were obtained as

&i)=c(imli) i=1..,N (2.6)
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2.1.6 Delta Coefficients

The cepstral representation of speech spectrum provides a good
representation of the local spectral properties of the signal for the given
analysis frame (Furui, 1986). These coefficients are considered to be static or
instantaneous coefficients, which are computed without taking into account
past or future spectrum information. Spectral changes, such as formant
transitions, play an important role in speech perception. Therefore, it seems
reasonable to incorporate such spectral changes in the features to enhance
speech recognition extending the analysis to include information about the

temporal cepstral derivative. To introduce the cepstral order into the cepstral
representation, the m” cepstral coefficient at time ¢ is denoted by ¢, (t) The

time derivative of the log magnitude spectrum has a Fourier series

representation of the form

gt—[log’S(ej‘”,t}]= i ac—gt(t—)ej” (2.7)

It is well known that ¢, (t) is a discrete time representation, where ¢

is a frame index, simply using a first or second-order difference is

inappropriate to approximate the derivative. Hence, a better method to
approximate oc,, (% is using an orthogonal polynomial fit over a finite

length window; that is

K
e, (e) _ Ac,(t)= 1Y ke, (t+k) (2.8)
ot k=K
where u is an- appropriate normalization constant- and (2K +1) is the

number of frames over which the computation is performed (Rabiner and
Juang, 1993).

Based on the computation described above, for each frame 7, the
results of O, is a vector of N weighted MFCC and an appended vector of N
time derivative MFCC; that is

0, =(&,(t),6,(t),... & (£), Ac, (£ ), Ac, (t),.... Ay (¢)) (2.9)

where O, is a vector of ¢, (t) and Ac; (t) with N components.
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2.2 Hidden Markov Model

The hidden Markov model is a powerful statistical approach for the study of
time series modeling with many of the classical probability distributions. The
HMM approach provides a framework, which includes an automatic
supervised training algorithm with mathematically proven convergence, the
Baum-Welch algorithm. In addition, an efficient decoding scheme, the
Viterbi algorithm, is incorporated in the HMM. The underlying assumption of
the HMM is that the data samples can be well characterized as a parametric
random process, and the parameters of the stochastic process can be
estimated in a precise and well-defined framework. Speech observation
sequences corresponding to an acoustic event can be modeled by traversing
an underlying sequence of connected states, each associated with an output
distribution. The output distribution and the relative likelihood moving
between states are estimated from a number of observation sequences of
particular speech unit to be modeled. This is necessary to make speech
recognition computationally tractable, and eases the task of decoding a
continuous waveform into a discrete set of symbols. The HMM has become
one of the most successful statistical methods used in speech recognition,
because of few assumptions need to be built into the models, and all model
parameters can be efficiently estimated from the training data. Many
successful speech recognition systems have employed the HMM approach as
a major recognition part. Not only can the HMM be used in speech
recognition, but it also can be applied in statistical language modeling,
spoken language understanding, machine translation, and so on.

This section briefly outlines the theoretical framework of the HMM by
explaining the definition of HMM. Then the essential algorithms needed to
estimate the model parameters. and decoding are described. All initial
discussions are based on the discrete HMM. However, most of the discrete
HMM . concepts can be extended to the continuous HMM as described
succeeding the discrete HMM. This chapter also introduces the terminology,

which will be used throughout this thesis.
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2.2.1 Definition of the Hidden Markov Model

A natural extension to the Markov chain introduces a non-deterministic
process that generates output observation symbols in any given state. Thus,
the observation is a probabilistic function of the state. This new model is
known as a hidden Markov model, which can be viewed as a double-
embedded stochastic process with an underlying stochastic process or the
state sequence not directly observable. The state sequence is hidden, and
can only be observed through another set of observable stochastic processes.
A hidden Markov model is basically a Markov chain, where the output
observation is a random variable generated according to the output
probabilistic function associated with each state. A set of output probability
distributions of each hidden state can be either discrete probability
distributions or continuous probability density functions. To describe the
HMM characteristics, the following HMM elements are defined.
1) The number of states in the model, N. Generally, the states are
interconnected in such a way that any state can be reached from any

other state. The individual states and the state at time ¢ are denoted
as S ={Sl,52,...,SN} and g, respectively.

2) The number of distinct observation symbols per state, M . The
observation symbols correspond to the physical output of the system

being modeled. The individual symbols is denoted as V = {Vl,Vz,...,VM }
3) The state transition probability distribution, A = {aij} where

a,=Plg,, =S| =S| ~1<ij<N. (2.10)

4) The observation symbol probability distribution in state j, B = {b i (k)}
where
b(k)=PlV, atdq=S,], 1<jisNI<sk<M. (2.11)
5) -The initial state distribution, 7 = {7[1} where
7. =Plg, =S.] 1<i<N. (2.12)
Since a;, b, (k), and 7, are all probabilities, they must satisfy the following
properties:
a; 20, b,(k)20, 7,20 forall i, j, k
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Given appropriate value of N, M, A, B, and n, the HMM can

generate an observation sequence O =0,,0,,...,0,, where each observation
O, is one of the symbols from V, and 7 is the number of observations in

the sequence. A complete specification of an HMM requires two constant

parameters, N and M , representing the total number of states and the size

of observation symbols, and three sets of probability measures, A, B, and

nt . For convenience, the compact notation is used to represent the complete
parameter set of the model

x=(A,B,n) (2.16)

In the first-order hidden Markov model, there are two assumptions.

The first is the Markov assumption for the Markov chain.
Plajai )= Plaja.a) (2.17)

where qf_l represents the state sequence ¢,,q,,...,q, ;. At each observation

time 7, a new state is entered based on the transitional probability, which
only depends on the previous state. The transition may allow the process to
remain in the previous state. The second is the output-independence

assumption.
P00} 4!)= PO |g) (2.18)
The output-independence states that the probability that a particular

symbol " is emitted at time ¢ depended only on the state ¢, and is

conditionally independent of the past observations. Although these
assumptions severely limit the memory of the first-order HMM and may lead
to model deficiency, in practice, they reduce the number of free parameters
need to be estimated. Furthermore, these assumptions make evaluation,
decoding, and learning feasible and efficient without significantly affecting

the modeling capability.



19

2.2.2 Observation Density Functions

The observation density functions have to model the distribution of the
feature vector for the different parts in data. These distributions are
estimated from large amounts of training data. The most frequently

distributions are listed below.

2.2.2.1 Discrete Density Functions

This type of density modeling requires that the multidimensional continuous
observations be quantized into a number of symbols. Each state now has a
discrete distribution that gives the probability of each symbol for that state.
The discrete symbols are normally generated by a vector quantizer, which
assigns a discrete symbol to each observation vector by choosing the nearest
example from a small codebook of reference vector. This is implicitly dealt
with the choice of distance metric for the clustering procedure in the vector
quantization. The Euclidian distance measure, for instance, is used in the
k -means clustering algorithm. In order to reduce the quantization distortion
for large observation vectors, the multiple independent codebooks for vector
quantization were introduced. All components were assumed independent
and their probabilities were simply multiplied to give the probability of the

component vector.

2.2.2.2 Continuous Density Functions

In this case, the observation probability distribution in state j, b, (Ot), is a

general parametric distribution of a predetermined form. The generalized
method to continuous output density functions requires that the probability
density functions be strictly log concave. The re-estimation algorithm can be
extended to various types of elliptically symmetric density functions. The
rationale of continuous density function is that the continuous observations
can be directly modeled without quantization. However, the choice of
different density functions to model a given observation largely depends on
the characteristics of observations. In addition, a single continuous
probability density function associated with each state is usually inadequate
to model complicated observations, then, finite mixture components are

required.
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2.2.3 The Three Basic Problems of HMM

Given the definition of HMM, there are three basic problems of interest that

must be solved for the model to be useful. These problems are the following:

2.2.3.1 The Evaluation Problem
Given the observation sequence O0=0,,0,,...,0,, and the model A = (A,B,n),

how to compute P(OM), the probability that the observation sequence was

produced by the model. This problem can be also viewed as given several
competing models and a sequence of observations, how to choose the model
which best matches the observations for the purpose of classification or

recognition.

2.2.3.2 The Decoding Problem
Given the observation sequence O =0,,0,,...,0,, and the model A = (A,B,n),

what the most likely state sequence O =g,.q,,...,q, according to some

optimality criteria is. This problem is the one to uncover the hidden part of
the model to find the correct state sequence. Apart from the degenerate
model, there is no correct state sequence to be found. Hence for practical
situations, an optimality criterion is employed to solve this problem as best
as possible. Unfortunately, there are several reasonable optimality criteria
that can be imposed, and therefore, the choice of criterion is a strong
function for the uncovered state sequence. Typical uses might be to learn
about the structure of the model, to find the optimal state sequences for

specific task, or to get average statistics of individual states.

2.2.3.3 The Estimation Problem

Given the observation sequence 0=0,,0,,...,0,, how to adjust the model
parameters A = (A,B,n) to maximize P(O|/1). The problem concerns how to

optimize the model parameters so as to best describe how a give observation
sequence comes about. The observation sequence used to adjust the model
parameters is called a training sequence. The estimation problem is the
crucial one for most applications of HMM, since the model parameters can

be optimally adapted to observed data for real phenomena.
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Formal mathematical solutions to these problems will be presented in the
followings sections. The three problems are closely related under the same

probabilistic framework.

2.2.4 Solutions to the Three Basic Problems of HMM
2.2.4.1 Solution to the Evaluation Problem

To calculate the probability of an observation sequence O=0,,0,,...,0;
given the model A, P(O|/”t), the most straightforward way is to enumerate

every possible state sequence of length 7" (the number of observations). For

every fixed state sequence
0=4,,49,----9r (2.19)
where ¢, is the initial state. The probability of the observation sequence O

for this state sequence is
T
P(0jo,2)=T1P0)4.4) (2.20)
t=1
From the output-independent assumption, the observations are

assumed statistically independent. This probability can be written as
P(OlQ’ﬁ“):bql (Ol)bqZ(OZ)“'qu(OT) (221)
By applying Markov assumption, the probability of the state sequence
0 is

T

P(g2)= P(a|A)[ T Pla.lq. - 4) (2.22)
t=2

= 7[111 al]l‘]z a‘]z‘]z — a‘]rflqr (2°23)

I al]o‘]l al]l‘]z » aﬂrflqr (224)

where a, , denotes 7z, for simplicity.
The joint probability: of O and @, which O and Q occur
simultaneously, is simply the product of the above two terms
P(0,0]2)= P(0|0, 2)P(0, 2) (2.25)
The probability P(OM) is obtained by summing this joint probability
over all possible state sequences g giving

P(0]2)= > P(0,02)P(0. 1) (2.26)

all Q
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T
= > I1e,.,.b,0,) (2.27)
al Q 1=1

The interpretation of the computation in the above equation is the

following. A transition starts from an initial state g, with probability a, .
and generates the symbol O, in this state with probability b, (01). Then, a

transition is made from the initial state g,to state ¢, with transition

probability a and generates the symbol O, with output probability

U

b, (02) attached to the corresponding state ¢,. This process continues in
this manner until the last transition from state ¢, , to state ¢, with

transition probability ¢, ., and output probability b, (OT) generating

197
symbol O, is reached.

The computation of P(OM), according to its direct definition ()

involves on the order of O(N T) calculations. At every time t=1,2,...,T , there

are N possible states with can be reached. Therefore there are N’ possible
state sequences. This calculation is computationally unfeasible, even for
small values of N and T .

Clearly, a more efficient procedure is required to solve the Estimation
Problem. Fortunately, such a procedure exists and is called the forward-

backward procedure.

2.2.4.1.1 The Forward Procedure

Consider the forward variable «; (t) defined as
a,(t)=P(0,,0,.-,0,,q, = 5,|2) (2.28)
This is the probability of the partial observation sequence to time ¢ and state

S. given the model A. This probability can be inductively calculated as

follows:
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Forward algorithm

Initialization:
a,(1)=7b,0,), 1<i<N (2.29)

Induction:

Termination:

In the first step, the forward probabilities are initiated as the joint

probability of state S, and initial observation O,. The induction step, which

is the most important forward calculation, is illustrated in Figure 2.1. This

figure shows how state §, can be reached at time 7+1 from the N possible
states, §;,, 1<i< N, at time 7. Since ¢, (t) is the probability of joint event
that 0,,0,,---,0, are observed, and the state at time ¢ is S,, the product
ai(t)aij is then the probability of joint event that 0,,0,,---,0, are observed,
and state §; is reached at time 7+1 via state §, at time 7. Summing this
product over all the N possible states S;,, 1<i< /N at time ¢ results in the
probability of §; at time 7+1 through all the previous partial observations.
By multiplying the summed quantity by the probability b, (OHI), a; (t + 1), the

probability of the new observation sequence 0,,0,,---,0,,0,.,, is obtained in

t+1°

state j . The computation of the induction step is performed for all state j,

1< j<N, for a given ¢. This computation is then iterated for 7 =1,2,...,7 1.
Finally, the termination step gives the desired calculation of P(O|/”L) as the sum of
the terminal forward variables «; (T)

The computation in the calculation of «; (t) requires only on the order

of O(N 2) rather than O(N T) as required by direct calculation. The forward

probability calculation is based on the lattice (trellis) structure depicted in
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Figure 2.2. Since there are only N states (nodes) at each time slot in the
lattice, all possible state sequences will remerge in these N nodes, no
matter how long the observation sequence. At time ¢ =1, the first time slot in

the lattice, the value of «; (1) 1<i< N, is calculated. At time r=2,3,...,T, the
only values of o j(t), 1< j< N, are needed to compute. Each calculation of
a j(t) involves only N previous values of a,(r—1), because each of N grid

point is reached from the same N grid points at the previous time slot.

t t+1
a.(t) at+1)
Figure 2.1. The sequence of operations required for the computation

of the forward variable «; (t + 1)

_/7?

2
4

3
OBSERVATION, t
Figure 2.2. Implementation of the computation of ¢, (t) in terms of a lattice

of observations ¢ and state i
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2.2.4.1.2 The Backward Procedure

In the similar way, a backward variable S, (t) can be defined as
ﬁi(t)zP(Ot+l’0t+2""’OT|qt =Si’/1) (232)

which is the probability of the partial observation sequence from #+1 to the

end, given state §, at time ¢ and the model A. This backward variable can

be also solved inductively in the manner similar to the forward variable as

follows:

The initialization arbitrarily defines S, (T) to be 1 for all i. In order to
be in state §; at time 7, and to account for the rest observation sequence, a
transition from state S, to every one of the possible states at time #+1 must
be made (the ¢; term), which accounts for the observation symbol O,,, in

state S i (the bj(O ) term), and then accounts for the remaining partial

t+1

observation sequence from state S ; (the p ] (t + 1) term).

Backward algorithm

Initialization:
AT 1<i<N (2.33)

Induction:
N
:Bj(t):Zaijbj(om)ﬂj(t"'l)’
t=T-1T-2,....1, 1<j<N (2.34)

The computational complexity of ,Bj(t) is “similar to that of ai(t),

which also produces a lattice with observation length and state number. The
induction step is illustrated in Figure 2.3.

As mentioned above, both the forward and backward procedures can

be applied to compute P(OM) for the evaluation problem. They can also be

used together to formulate a solution to the problem of model parameter

estimation as discussed in the next section.
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t t+1

Bl B,.,,)

Figure 2.3. The sequence of operations required for the computation

of the backward variable ¢, (t)

2.2.4.2 Solution to the Decoding Problem

The hidden part of HMM, which is the state sequence, cannot be uncovered,
but can be interpreted in some meaningful ways. A typical use of the
recovered state sequence is to learn about the structure of the model, and to
get average statistics within individual states. There are several possible
ways to find the optimal state sequence associated with the given
observation sequence. One possible optimality criterion is to choose the

states ¢g,, which are in the best path with the highest probability. A formal

technique for finding this single best state sequence is called the Viterbi

algorithm, which is very similar to the DTW algorithm.
Firstly, the variable y, (t) the probability of being in state §; at time

t, given the model A and the observation sequence, is defined as
y,(t)=Plg, = 5]0,2) (2.35)
This variable can be simply expressed in terms of the forward-

backward variables as

POM) _ﬁa, t)ﬂ,

7, (l‘) — a; (t):Bi (t) «; (t)ﬂl (t) (2.36)

a, (t) accounts for the partial observation sequence 0,,0,,--,0, and the state

S, at time ¢, while ,Bl(t) accounts for the remainder of the observation
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()

sequence O 2

s .,O0, and the state §, at time 7. The normalization

factor, P(OM), makesy, (t) a probability measure so that

>r(t)=1. (2.37)

i=1
Using y, (t) the individually most likely state ¢, at time ¢ can be

solved as

g, =argmaxly, ()] 1<e<T (2.39

I<i<N

Although the above equation maximizes the expected number of
correct states by choosing the most likely state for each ¢, there could be
some problems with the resulting state sequence. For example, when the
HMM has state transitions, which have zero probability, the optimal state
sequence may not even be a valid state sequence. This problem occurs
because the solution in Eq. (2.38) simply determines the most likely state at
every instant, without regard to the probability of occurrence of sequences of
states.

One solution to the above problem is to modify the optimal criterion.

The most widely used criterion is to find the single best state sequence to
maximize P(Q|O,i), which is equivalent to maximizing P(Q, OM). A formal

technique for finding this single best state sequence is called the Viterbi

algorithm.

2.2.4.2.1 The Viterbi Algorithm

To find the single best state sequence, Q={ql,q2,...,qr}, for the given
observation sequence O={Ol,02,...,0T}, the quantity é‘,(z) is needed to
define

5t)= max Plg,,qpinq, =0,0,,0,,...,0,|2) (2.39)

! 915925411
where 0, (z) is the best score along a single path at time 7, which accounts
for the first ¢ observations and end in state S,. By induction, the Eq. (2.39)

becomes

S,(t+1)=|max5,(t)a, | b,(0,.,) (2.40)
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Initialization:
5.(1)=7b.(0,), 1<i<N (2.41)
Wi(l)_o (2.42)
Induction:
5. ={£12<11>6(5i(t—1)aij)bj(0t), 2<t<T
I<Sj<N (2.43)
t//j(t):argmax(é‘i(t—l)aij), 2<t<T
1<i<N
I<j<N (2.44)
Termination:
P = {Ei‘;‘[@ (1)) (2.45)
q; =arg max[é'l. (T)] (2.46)
1<i<N
Path (state sequence) backtracking:
q =w..la.) t=T-1T-2,...1 (2.47)

To actually retrieve the state sequence, the array v/, (t) is required to keep
track of the argument, which maximizes Eq. (2.40) for each ¢t and j. The

complete procedure for finding the best state sequence can be started as
follows:

The Viterbi algorithm (except for the backtracking step) is similar in
implementation to the forward calculation. The major difference is the
maximization over the previous states in Eq. (2.43), which is used instead of
the summing procedure of the forward variable calculation. Moreover, a
lattice or trellis structure efficiently implements the computation of the

Viterbi procedure.

2.2.4.3 Solution to the Estimation Problem

The most difficult problem in HMM is to determine a method to adjust the
model parameters A = (A,B,n) to maximize the probability of the observation
sequence given the model. There is no known way to analytically solve for
the model, which maximizes the probability of the observation sequence.
Actually, given any finite observation sequence, there is no optimal method

of estimating the model parameters. However, by choosing A = (A,B,n) that
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P(OM) is locally maximized, an iterative algorithm or gradient technique for

optimization is used. In this section, one iterative algorithm known as

Baum-Welch algorithm is described.

A. Baum-Welch Re-estimation Algorithm
The mathematical foundations of the Baum-Welch algorithm for the
maximum likelihood estimation were established by Baum. An iterative

method for monotonically increasing value of an arbitrary homogeneous

polynomial ?(X ) with non-negative coefficients of degree d in variables x,,

i=12,...,p, j=L12,...,q;, defined over a stochastic domain D:x; 2 0,
q
Zx.. =1, through a series of transformations performed on {x} was firstly

i
] ]
j=l

purposed. The transformation is defined as

oP(X)
T(x, )= P AN (2.48)
& oP(X)

=40

J=l i

and is often referred to a growth transformation of ?(X). A special case of

the resstimation procedure for probabilistic functions of Markov chains with
discrete observations was described. Later, the method was generalized to
functions of Markov chains with continuously distributed observations.
Recently, an analysis, which extends the algorithm to accommodate a large
class of distributions and mixture distributions, was presented. For the
discrete output distribution, transition and observation parameters are both
reestimated according to Eq. (2.48) in the following. However, the re-
estimation formulas for the parameters of a continuous density HMM will be
described later.

The purpose of the solution to the estimation problem is to obtain the
model from observations. If the model parameters are known, the forward-
backward algorithm can be used to evaluate probabilities produced by given
model parameters for given observations.

In order to describe the procedure for re-estimation of HMM parameters,

i (t) the probability of being in state S, at time 7 and state §; at time 7+1,

given the model and observation sequence, is introduced.



30

£,(0)=Plg,=S.q,.=5,0.2) (2.49)

The sequence of events leading to the conditions required by Eq.

(2.49) is illustrated in Figure 2.4. From the definition of the forward and
backward variables, &, (t) can be written in the form

( )= a; (t)aijbj (Om )ﬂm (J)
P(0]2)

_ Q, (t)aijbj (0t+1 )ﬂ, (t + 1) (2.51)

>3 0 0)a 50,8, +1)

i=l j=1

(2.50)

i

where the numerator term is just P(q, =S.9..=S j‘O,i) and the division by
P(O|/1) gives the desired probability measure.

Since y;, (t) the probability of being in state §, at time r, given the
observation sequence and the model, is previously defined, cfl.j(t) can be
related to y, (t) by summing over j, giving

7,(i)= ﬁéj (t) (2.52)

g

If yi(t) is summed over the time index 7, a quantity, which can be
interpreted as the expected number of times that state S, is visited, or
equivalently the expected number of transitions made from state §,, is
obtained. Similarly, summation of &; (r) over ¢ from =1 to =T -1 can be
interpreted as the expected number of transitions from state S, to state §,.

That is

~

2 (t)= expected number of transitions from S, (2.53)

1|
—_

t

~

-1
;‘ij (t): expected number of transitions from S, to state § i (2.54)

Il
—_

t
Using the above formulas and the concept of counting event
occurrences, a method for re-estimation of the HMM parameters is given. A

set of re-estimation formulas for A, B, and © are

7, = expected frequency in state S, at time y, (1) (2.55)
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_ expected number of transitions from state S, to state S ; 2.56)
a. = .
expected number of transitions from state S,

&(1)
= (2.57)
7,(t)
=1
— expected number of timesin state S . and observing symbol v
b (k)= j SO (2.58)

expected number of times in state S ;

T
>r.()
=1
_ oy (2.59)

i‘m(f)

From Eq. (2.55) to (2.59), it can be proven that either:
1) The initial model A defines a critical point of likelihood function,

where new estimates equal old ones, or

2) Model A is more likely than model A in the sense that
P(0[7)> P(0]2).

Thus, if 4 is iteratively used to replace A and repeats until the above re-
estimation calculation, P(O|/1) can be improved until some limiting point is
reached. The final result of this re-estimation procedure is call a maximum
likelihood estimation of the HMM. It should be pointed out that the forward-
backward algorithm leads to local minima only, and that in the most

problems of interest, the optimization surface is very complex and has many

local minima.

t—1 T t+1 t+2

a,(t-1) a(t) B,0) B(t+1)
Figure 2.4. The sequence of operations required for the computation of the

joint event that the system is in state §; at time 7 and state §; at time 7+1
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B. Multiple Observation Sequence

Note that a single observation sequence is not enough for re-estimation of
the HMM parameters. Hence, in order to have sufficient data to make
reliable estimates of all model parameters, multiple observation sequences
are used. The re-estimation formulas can be easily extended to such
multiple observation sequences. Let a set of K observation sequences

denoted as
=[0",0%.....0¥] (2.60)
where 0% = {OI(k),ng),...,Og‘ ) } is the k" observation sequence. Assuming that

observation sequences are independent of each other, the parameter

estimations of HMM is then based on the maximization of

P(o]2)= ﬁP(O‘”|/1) (2.61)
k=1
e ﬁ P (2.62)

k=1
Since the re-estimation formulas are based on frequencies of
occurrence of various events, the re-estimation formulas are modified by

adding together the individual frequencies of occurrence of each sequence.

Thus, the re-estimation formula for the transition probability, «;, can be
computed:

ST LS a0y, (085 e 1)

a, =Lk (2.63)

Similarly, the re-estimation formula for the  observation symbol

probability distribution in state j, b, (l ) can be computed:

b, (1)= ——o (2.64)

-~

2.2.5 Continuous Density Hidden Markov Model

If the observation does not come from a finite set, but from a continuous

space, the discrete output distribution discuss in the previous sections can
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be extended to the continuous output probability density function. This
implies that the vector quantization technique, which maps observation
vectors from the continuous space to the discrete space, is no longer
necessary. Consequently, the inherent error can be eliminated.

The Baum-Welch re-estimation algorithm discussed in section 3.4.3.1
can be extended to estimate continuous probability density function with the

auxiliary @ function. The generalized method to continuous output density

functions can be applicable to the Gaussian, Poisson, and Gamma
distributions but not to the Cauchy distribution. Furthermore, the
estimation algorithm was expanded to cope with finite mixtures of strictly log
concave and elliptically symmetric density functions. This section will
discuss general re-estimation formulas for the continuous HMM, which is

applicable to a wide variety of elliptically symmetric density functions.

2.2.5.1 Continuous Parameter Re-estimation
Using continuous probability density functions, the first candidate for a type
of output distributions is the multivariate Gaussian, since

1) Gaussian mixture density functions can be used to approximate any
continuous probability density functions in the sense of minimizing
the error between two density functions.

2) By the central limit theorem, the distribution of the sum of a large
number of independent random variables tends towards a Gaussian
distribution.

3) The Gaussian distribution has the greatest entropy of any
distribution with a given variance.

The most commonly used distribution is the continuous Gaussian

density function defined as

1 Ty £ (5
(05 B)= T (2.65)
(27[)" Z|

where n is the dimensionality of the observation vector O, ¢ and X are the

mean vector and the covariance matrix respectively. The advantage of
normal distributions is that the parameters of Gaussain can be easily and
reliably estimated from a large number of data. In order to obtain more
accurate approximations, Gaussian mixtures were used. With enough

components, such mixtures can approximate any density function with an
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arbitrary precision. The probability density of the multiple Gaussian

mixtures is defined as

b,(0,)= icjmm[(ot;yjm,zjm) (2.66)

m=1
where M is the number of mixture components and m is the mixture

weight for the mixture component in state j.The mixture weights satisfy the

stochastic constraint
M
e | I<j<N (2.67)

o ISjSN,1<sm<M (2.68)

For the continuous probability density functions, the likelihood of an

input observation is expressed as

P(0j2)= P(0.0/4) (2.69)
all O

=" P(04)P(0]0. 2) (2.70)
all 0

An information-theoretic QO -function, which is considered a function

of A in the maximization procedure, is applied to derive the re-estimation

formulas as

oz ):H&DZP(O,QM)Iog P0,0/%) (2.71)

all §

The mathematical derivation of the re-estimation algorithm of the
continuous probability density functions is described in Appendix . By using

an auxiliary @ -function, reestimated HMM parameters for the multimodal

Gaussian distributions are

S F-0—i0t (2.72)

B, = (2.73)
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X

é?’jm(t)-(O, —,uijQ —H ),
gm(t)

where prime denotes vector transpose and y,, (t) is the probability of being

(2.74)

jm

in state j at time ¢ with the m" mixture component for O,

a,()B,() | c,N0:pE)
z}a.i(t)ﬂj(t) ;ijN(O;,u,E)

¥ inlt)= (2.75)

The re-estimation formula for a; is identical to the one used for discrete

observation densities.

There are two possible options in the design of the mixtures. Either
the Gaussian mixtures are state specific or they are shared (tied) between
different states of the HMM. HMM with state specific Gaussian mixtures is
called continuous density HMM. HMM that shares Gaussian mixtures

among different states is called semi-continuous HMM or tied mixture HMM.

2.2.6 Hidden Markov Model for Speech Recognition

2.2.6.1 Composite Models for Continuous Speech Recognition

The parameter estimation and decoding techniques in the previous section
are defined to apply to a single HMM mapped onto an isolated word. One of
the advantages of the HMM approach is the ease with which it can be
adapted to a continuous recognition environment. In order to extend to the
continuous model, two modifications are made to the HMM structure. The
first modification was already discussed in section 2.2.4.1; the addition of
the entry and exit states to each model. The entry and exit states are defined
as non-emitting states, which take Ar time to traverse, where Ar is
negligibly small. Thus, the forward and backward probabilities that
correspond to the entry and exit states are those at r—Ar and ¢+ Ar, where
t is the time value at the immediately following or preceding state
respectively. Therefore, the constraints are

a,=0and a,, =0 Vi (2.76)

which simply ensure that the entry and exit states can only be occupied for

one transition. The other structural change is the addition of glue models.
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These models have only one emitting state, plus the entry and exit state,
along with a non-zero entry to exit transition probability. These glue models
are often call null or tee models (Young, et al., 1999.). A model with entry
and exit states is depicted in Figure 2.5 and a tee model is shown in Figure
2.6. Using tee models and non-emitting entry and exit states, a series of
HMMs, with tee model between word, may be linearly combined into a single
HMM for training purpose.

The modification required for the training formulas can be generated

in a straightforward manner. The notation, a superscript ¢ in parentheses
representing the current model, is used as the notation that a training
sentence model is represented by O HMMs placed in sequence. The
resulting forward and backward recurrent algorithms can be rewritten

directly from the earlier definitions and new model structure. The forward

equations are:

Initialization:
1 =1
(1) = 1 2.77
(1) {al(")(l)afqu) otherwise ( )
o)1)= a0 .78
N,-1
a(1)= > a(Uall (2.79)
=)
Recursion:

) 0 q=1 (2.80)
1 az(vq:)(t - 1)+ al(qfl)(t)a fqil) otherwise .

Ng-1

Ny
al ()= {al(")(t)al(j) +> a1l p90,) (@81

a ()= 12 )l (2.82)

The corresponding backward equations are:

Initialization:

1 1
q
ﬂ,%q)(T)={ () () (2.83)

otherwise

BINT) = BT ) (2.84)
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N, -1
pr)= 2B (This)0,) (2.85)
p
Recursion:
pe)= " a=! (2.86)
VT AN+ )+ B N)a otherwise
Ny
ﬂi(q)(t)=ﬂlgi)(t)al([33 n ﬂ](‘Q)(t‘Hhi(jq)qu)(OHl) (2.87)
=2
Nq-l
BNe)= Y B0t (0,) (2.88)
=2

The Baum-Welch re-estimation equations for transition probabilities will
now be split into four categories:

1. internal transitions between emitting states,

2. transitions from the entry state into emitting states,

3. transition from emitting states into the exit state,

4. tee transitions from the entry state directly to the exit state, generally

zero for non-tee models.

The equations are all similar to the original transition re-estimation

formulas, with some primary differences above. The resulting formulas are:

A B0,0)8 1)
a1 ==l (2.89)

a\) = 2 (2.90)

(2.91)

ajy) =+ : +a,(t)afy) p(e) (2.92)

It can also be seen from examination of the last equation that the last

model g=0Q in the state sequence cannot have a non-zero tee probability
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from the entry to exit state. This restriction is generally enforced for the

initial model g=1 as well, so that neither the beginning nor end of an

utterance sequence can be a tee model.
The underlying Baum-Welch equations for estimating output
distributions from Eq. (2.72)-(2.75) do not change once the modifications

have been made to the forward and backward probabilities.

Figure 2.6. Tee model HMM



39

2.2.6.2 Multiple Observation Sequence

In a complex large vocabulary speech recognition system, there may be
literally thousands of models representing context-dependent subword units
or segmental subword units. One problem that arises when performing
training operation is that the Baum-Welch equations discussed so far are
designed to be computed on one training sentence at a time, which is likely
to use only a handful of different models just once or twice each, resulting in
a very small quantity of training data for each iteration and corresponding
poor re-estimation.

A simple and accurate approach to solving is to treat the training
sentences as a concatenated series of observation sequences assumed to be
independent of each other. This concept leads to updating the parameters
for each model only one time over the entire training set, where the new
parameters are given by continuously summing the numerator and

denominator terms of the re-estimation equations throughout training. In

1
the transition probability re-estimations, a — term, where P is the P(O|/”t)

r
r

for the rth sentence, is added to the numerator and denominator. The full
set of re-estimation equations for the Gaussian mixture distributions with
multiple observation sequences, including entry and exit states and tee

models, is given below

R | T
3 LS lt9(0,, )5 +1)
ai'j(q): r=1 L, t:]R 1 - (293)
3 L)
=gl ol

alrﬁq) £) 1r=1T : 2on
Y, 2l A+ ol ealt A
r=l & r 1=1
R 1 T, ( ) ( ) ( )
25 2!ty Aile)
=T (2.95)
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a]’](\;?) _r=l a +al(q)(t)al(zl)qﬂl(q+l)(t) (2.96)

() (9) (9)
751)0):{“; (t)IBj (t):||:cjmbjm (Ot):l (2.97)

C'-(q) —_r=l t=1 (298)

W) =gt (2.99)

2’-(q) — r=l =1 (2.100)

The implementation of these equations can be made with attention to
some cancellations within the terms. In particular, the recursion for aﬁ.")(t)

contains the term b;")(Ot) within it, which is also in the denominator of the

formula for y(Q)(t). The variable U j")(t) is defined as

jm

. a," (t)a I

U“(t)= Arap 2.101

{ () al(q)(t)al(j) + Zal(" )(t)al%)q ,Bl(”)(t) otherwise ( )
i=2

to represent aEQ)(t) without b;‘”(O,) term. The computation of this latter term

is cancelled entirely, giving

1
7= U0 (e, 0,) (2.102)

Similar modifications may be made to the distribution re-estimation
equations for discrete probability densities so that composite models and

multiple observation sequences can be considered, resulting in the equation
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b,. (Ot ) _ t. s jemits O, (2 103)

It is should be noted that this formula has an identical form to the re-
estimation equation for mixture weights of Gaussian mixture distributions, if
the mixture number m is treated as the index of the emitted observation.
Thus, there is a direct correspondence between an M -mixture Gaussian

distribution and a discrete distribution of M observation symbols.

2.3 Large Vocabulary Continuous Speech

Recognition
The performance of a speech recognition system depends on the system’s
ability to reduce uncertainty about the identity of a spoken word using
information from the acoustic signal and past word sequences.

The speech recognition problem can be view as a problem in
communication theory (Shannon, 1948). A spoken of words of known
identity w is viewed as passing through an acoustic channel model, which
produces a sequence of acoustic observation symbols a (Valtchev, 1995). An
acoustic observation a is a sequence feature vector extracted from the
acoustic signal generated by the speaker while uttering w. The joint

probability of words w and acoustics a is
P(w, a) = P(a|w)P(w) = P(w|a)P(a) (2.104)
The language model component, P(w), provides information about the
word sequence in w. The conditional distribution P(a|w) of acoustic given
words ‘describes the  acoustic =~ channel 'model, ' and - the ' conditional

distribution P(w|a) defines a probabilistic decoder. For a known sequence of

observations, the marginal distribution P(a) is assumed to be constant since
it does not depend on the model (Valtchev, 1995). The structure of speech
recognition system, according to information transmission theory, is

depicted in Figure 2.7 (Furui, 2001).
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Transmizsszion Theory

Inrs;T::]fn Channel Decodar
Speech Recognilion System
Acoustic Channal
I I f
Texl Speach Acoustic a Linguslic w
Ganeration ‘ Production Processing Decoding

Speeach Recogniticn Process

Figure 2.7. Structure of speech recognition according to information theory

The above definition of the speech recognition problem can be viewed
as the following practical considerations (Valtchev, 1995):

Acoustic model structure — The acoustic model is a probabilistic
function, which models the phonological and acoustic-phonetic variations in
the speech signal. It is extremely difficult for a human expert to devise an
accurate and complete acoustic model due to partial knowledge and inability
such knowledge in an algorithmic form. For this reason, an acoustic model
is defined as a family of parametric distributions with parameter A. The
chosen family of distributions should be based on true assumptions about
speech and have a relatively small number of free parameters. The value of
A identifies a unique acoustic model from the family and is usually
estimated from a large sample of speech data.

Parameter estimation - The ultimate goal in parameter estimation is
to find a parameter vector A, which produces a decoder with the lowest
possible recognition error rate. To achieve the lowest error rate, some

objective function F (/1) which relates to the decoder’s performance, has to
be optimized. The objective function should be such that when F (/i)> F (/1)

then A will produce a better decoder than A. Once F (Z) has been chosen,

the second problem is to find the parameter set A, which maximizes it.

Complex acoustic models typically employ a large number of parameters,



43

which makes it very unlikely that a globally optimal A4 will be found. This
means that even with a good function, it is possible to obtain unsatisfactory
results if the estimation procedure converges to a bad local maximum.
Probabilistic decoder — A speech decoder is a device, which attempts
to find the identity of a word from its acoustic representation. Since the
chosen identity w is different from the actual identity of the spoken word w
then there is a decoding error. The probability of making an error is the most
important factor in choosing the decoder. The optimal decoder with regard to
minimizing the probability of error is the maximum a posteriori (MAP)

decoder, where w is chosen such that

W= arg max P(w]a) = arg max P(a|w) P(W) (2.105)

P(a)

2.3.1 Search Algorithm

The two main schemes of decoding most commonly used today are Viterbi
decoding using the beam search heuristic and stack decoding (Ravishankar,
1996; Steinbiss, et al., 1995; Robinson, 2002; Renals and Hochberg, 1995;
Ortmanns and Ney, 2000; Luk and Damper, 1998; Lleida and Rose, 2000;
Deshmukh, et al., 1999). Since the work reported in this research is based
on the former, the basic principle of Viterbi decoding is reviewed here.
According to the MAP rule, the decoder computes the likelihood of the
unknown observation sequence given each acoustic model and choosing the

one with the highest likelihood. In general, it is possible to use the forward

probability calculation to compute the overall likelihood P(O|/”t), and to

identify the utterance based on these quantities. However, in practice, the
most likely state sequence, which generates the sequence O, is interested
in. In addition, in many cases, the decision of choosing w is implicitly
incorporated in the model by combining several models in parallel with
common initial and final states and, in such case, the maximum likelihood
path is an essential outcome of recognition. The Viterbi algorithm is a
general dynamic programming technique used to find the most likely path in
a trellis of nodes. The likelihood of the path is computed according to Eq.
(2.43).

Continuous speech recognition is normally performed as a time-

synchronous Viterbi search in a state space. The search produces the most
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likely word sequence by matching each frame from the unknown utterance
to a network of HMM instances (Valtchev, 1995). The network is compiled
corresponding to the grammar of the language. The search itself is the
computationally most expensive part of the recognition system due to the
huge number of possible paths. This is a result of the vocabulary size and
inherent acoustic ambiguities. In order to reduce the search space, it is
customary to limit the scores generated by the acoustic models. Multi-pass
recognition systems are another way of making the recognition task more
manageable (Hajime, 1998; Wakita, et al.,, 1999; Junqua, et al., 1995;
Richardson, et al., 1995; Deshmukh, et al., 1999; Kenny, et. al, 1994). A
typical example is a two-pass system, where the first pass generates a list of
the N most probable sequence using simplified acoustic models (Austin, et
al., 1991; Wilcox and Bush, 1992; Huang, et al., 1994). The second-pass re-
scores the list using detailed acoustic models and a language model (Mohri
et al., 2002; Sato, et. al, 2002; Johnsen, 1989; Junqua, 1990; Matsunaga
and Sakamoto, 1996; Tran, et al., 1996). A Japanese speech recognition
system, for example, utilizes a two-pass search algorithm as shown in Figure
2.8 (Furui, 2001). However, a fundamental problem of the multi-pass
decoding system is that search errors introduced in early passes are
impossible to correct. Therefore, these errors result in degraded

performance.
Acoustic Madel Training
Speech Copus —— Phone Models

|

N-Bast

Speach Beam-Search Results
T Atk | Miendgye [ Hpdhess | oRgecoing
Analysis ity ) wilh-Acouslic [Second-Pass)
(Firsl-Pass)
Saore
Text Corpus ————— Bigram
Trigram

L;_lnuu{lql_: Mesidal |r{||||n;;

Figure 2.8. Two-pass search structure used in the Japanese broadcast-

news transcription system
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2.3.2 Language Modeling

The language model is a natural component in the information-theoretic
formulation of the speech recognition problem. It is required in a large
vocabulary speech recognition system for disambiguating between the large
set of alternative confusable words that might be hypothesized during the
search (Ravishankar, 1996). The language model defines the priori

probability of a sequence of a word sequence W . The probability of a
sentence, a sequence of words w;,w,,...,w, , provided by the language model,
is given by

P(W) = P(w1 )P<W2|w1 )P(w3|w1 W, )P(W4|w1 JWy, Wy ) . P(w Wisens w,H)

=T TPl ) (2.106)
i=1
where P(wi|w1,...,wi_l) indicates the probability that the word w, was spoken

given that the word sequence w;,w,,..,w, was said. It is practically

impossible to obtain reliable estimations given arbitrarily long histories of all
the words in a given language since that would require enormous amount of
training data (Ravishankar, 1996; Loizou, 1995). Instead, the language

model probability is approximated in the following ways:

2.3.2.1 N-gram Language Models
For a vocabulary of size v , there are V' different histories of words to specify

P(wi|wl,...,wi_1) completely, so v' values would have to be estimated. In
reality, the probabilities P(wi|wl,...,wi71) are impossible to estimate for even

moderate values of i, since most histories w,,w,,...,w; are unique or have
occurred only a few times. A practical solution to the above problems is that
the probability P(wi|wl,...,wi71) is'assumed depends only on some equivalence

classes. The equivalence class can be simply based on the several previous

words W, .., W;_y.os---» W, . This leads to an n— gram language model.
The bigram models approximate the probability of a word depends

only on the identity of immediately preceding word. To estimate P(wl.|wl._l),

the frequency with which the word w, occurs given that the last word is w, |,
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simply count how often the sequence (wi,wH) occurs in some text and

normalize the count by the number of times w, , occurs.

For a trigram model, the probability of a word depends on the two
preceding words. The trigram can be estimated by observing the frequencies

or counts of word pair C (WH,WH) and triplet C (wl.fz, wH,wi) as follows:

C(W'—z Wi Wi )

1

(2.107)
C(Wi—Z Wi )

P(Wi |Wi—2 s Wil ) =

In principle, estimates for these probabilities can be directly
calculated from text data by a simple frequency count. The estimates can be
stored in a look-up table. This type of language model can be easily
integrated with the recognition algorithm, and can be implemented as finite

state networks. Therefore, the n—gram is the most popular type of

stochastic language model (Duchateau, 1998; Potamianos and Jelinek,
1998; Ng, et al., 2000; Clarkson and Robinson, 2001; O'Boyle, et al., 1994;
Niesler and Woodland, 1999; Iyer and Ostendorf, 1999).

Deriving trigram and even bigram probabilities is still a sparse
estimation, even with very large corpora. Even among the observed trigrams,
the vast majority occurred only once. Therefore, straightforward maximum-
likelihood estimation of n—gram from counts is not advisable. Instead,
various smoothing techniques have been developed. These include
discounting the ML estimations (Witten and Bell, 1991), recursively backing
off to lower-order n—gram (Katz, 1987; Ney, et al., 1994; Kneser and Ney,
1995), and linearly interpolating n-—gram of different order (Jelinek and
Mercer, 1980). The variable-length n— gram, language model with a longer

span larger than n, can be estimated with the same amount of text data.
The span varies depending on the word context, the previous words. A longer
or shorter context can be preferable as there can be more or less examples
for that context in the text data, or as the context is more or less relevant to
predict the next world. Long distance grammars are primarily used to
rescore n-best hypothesis lists from previous decoding (Rosenfeld, 1994;
Blasig, 1999).

Another way to overcome sparseness is by vocabulary clustering. For

any given assignment of a word w, to class c,, there may be many-to-many

mappings. For instance, a word w, may belong to more than one class, and
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a class ¢, may contain more than one word. For simplicity, a word w, is
assumed to be uniquely mapped to only one class c¢;. The n— gram model
can be computed based on the previous n—1 classes:

( |cl il ci_l):P(wl.|ci) ( |cl il Ci—l) (2.108)
where P(wl.|cl.) denotes the probability of word w, given class ¢, in the

current position, and P( |cl il CH) denotes the probability of class c;

given the class history. With such a model, the class mapping w — ¢ can be
learned from either text or task knowledge. In general, the class trigram can

be express as:

Z HP( Je Plele, ¢, ) (2.109)

If the classes are nonoverlapping, a word may belong to only one

class, then Eq. (2.109) can be simplified as:
i H P(Wi|ci )P(cilci—Z ’Ci—l) (2.110)

As a typical example, the bigram probability of a word given the prior

word (class) can be estimated as

P(wl.|wl.,1)= P(Wi|cH)
= P(wle, )Plc]e..,) (2.111)
Class-based language models have been shown to be effective for
rapid adaptation, training on small data sets, and reduced memory

requirement for real-time speech application. For general-purpose large

vocabulary dictation application, class-based n— gram have not significantly

improved recognition accuracy. They are mainly used as a back-off model to

complement the lower-order n— gram for better smoothing. Nevertheless, for
limited domain speech recognition, the class-based n—gram is very helpful

as the class can efficiently encode semantic information for improving
keyword spotting and speech understanding accuracy. (Wakita, et al., 1996;
Deligne and Sagisaka, 2000; Dagan, et al., 1995; Riccardi, et al., 1996; Gao
and Chen, 1997; Ward and Issar, 1996; Palmer, et al., 2000; Whittaker and
Woodland, 2001; Yokoyama, et al., 2003; Ueberla, 1995)
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2.3.2.2 Decision Tree Models
Decision trees and classification and regression trees algorithms were first
applied to language modeling by Bahl and et al (Bahl, et al., 1989). A

decision tree can arbitrarily partition the space of histories of words by

asking arbitrary questions about the history w, ., ,,W, y.,,....,w,, at each of

1

the internal nodes. The training data at each leaf are then used to construct

a probability distribution P(wl.|w1,...,wH) over the next word. To reduce the

variance of the estimate, this leaf distribution id interpolated with internal-
node distributions found along the path to the root. Usually, trees are grown
by greedily selecting, at each node, the most informative question, as judged
by reduction in entropy. Pruning and cross validation are used.

Applying this language model is quite a challenge. The space of

histories of words is very large, for example, 10'”for a 20-word sequence

over a 100,000 word vocabulary, and the space of possible questions is even
larger (210100). Even if questions are restricted to individual words in the

histories, there are still 20-2' such questions.

Theoretically, decision trees represent the ultimate in partition-based
models. It is likely that trees exist that significantly outperforms n-grams.
But finding them seems difficult for both computational and data sparseness
reasons. Therefore, this approach was largely abandoned (Nadas, et al.,

1991)

2.3.2.3 Linguistically Motivated Models
While all statistical language models get some inspirations from an intuitive
view of language, in most models, actual linguistic content is quite
negligible. Several language models, however, are directly derived from
grammars commonly used by linguists.
A. Context-free grammar (CFG)
A CFG is a crude-well understood model of natural language. It is defined
by a vocabulary, a set of non-terminal symbols, and a set of production of
transition rules. Sentences are generated, starting with an initial non-
terminal. By repeated application of the transition rules, which transform
a non-terminal into a sequence of terminals (words) and non-terminals,

until a terminals-only sequence is achieved (Huang, et al., 2001).
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A probabilistic context-free grammar puts the probability distribution
on the transitions producing from each terminal, thereby inducing a
distribution over the set of all sentences. These transition probabilities
can be estimated from annotated corpora using various algorithms such
as the inside-outside algorithm and the expectation-maximization
algorithm (Baker, 1976). However, the likelihood surfaces of these models
tend to contain many local maxima. In addition, even if global ML
estimation were feasible, it is generally believed that context-sensitive
transition probabilities are needed to adequately account for actual
behavior of language. Unfortunately, there is still no efficient algorithm
for this situation.

Moreover, it is assumed that the expansion of any one non-terminal is
dependent of the expansion of other non-terminals. Thus each
probabilistic context-free grammar rule probability is multiplied together
without considering the location of the node in the parse tree. This is
against the intuition of  since there is a strong tendency toward the
context-dependent expansion. Another problem is the lack of sensitivity
to words. The lexical information can only be represented via the
probability of pre-terminal nodes, such as verb or noun, to be expanded
lexically (Huang, et al., 2001).

B. Link grammar

Link grammar is a lexical grammar proposed by (Sleator and Temperly,
1991). Each word is associated with one or more ordered sets of typed
links. Each such link must be connected to a similarly typed link of
another word in the sentence. A legal parse consists of satisfying all links
in the sentence via ‘a planar graph. Link grammar has the same
expressive power as a CFG, but arguably conforms better to human

linguistic intuition (Sleator and Temperly, 1991).

2.3.2.4 Adaptive Models

Dynamic adjusting of the language model parameter, such as n-grams
probabilities, vocabulary size, and the choice of word in vocabulary, is
important since the topic of conversation is highly nonstationary (Iyer, et al.,
1994; Jardino, 1996; Mahajan, et al., 1992). For example, in the dictation
application, a particular set of words in vocabulary may suddenly burst forth

and then become dormant later, based on the current conversation. Because
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the topic of conversation may change from time to time, the language model
should be dramatically different based on the topic of conversation. The
adaptive model approach is introduced that can improve the quality of the
language model based on the real usage of the application.
A. Cache language models
To adjust word frequencies observed in the current conversation, a
dynamic cache language model is introduced. The basic idea of this
technique is to accumulate word n -grams dictated so far in the current
document and use these data to create a local dynamic n-grams model.

The static n-grams model is used to adapt the probability as
R(Wi|wi—n+1""’wi—l)' The interpolation weight, 4, can be made to vary with

the size of the cache.

Padaptive (W) 7 /’{’P

waie W)+ (1= 2)P, (W) (2.112)
The cache model is desirable in practice because of its impressive
empirical performance improvement. In a dictation system, new words
that are not in the static vocabulary have often occurred. The same
words also tend to be repeated in the same article. The cache model can
address this problem effectively by adjusting the parameters continually
as recognition and correction proceed for incrementally improved
performance (Huang, et al., 2001).
B. Topic-adaptive models
The topic can change over the time. Such topic or style information plays
a critical role in improving the quality of the static language model. For
example, the prediction of weather the word following the phrase “a
bright” is “green” or “idea” can be improved substantially by knowing
weather the topic of discussion is related to “color” or “cleverness”.
Domain or topic-clustered language models split the language model
training data according to topic. The training data may be divided using
the known category information or using the automatic clustering (Ney,
et al., 1994; Popovici and Baggia, 1997; Ney and Essen, 1991). In
addition, a given segment of data may be assigned to multiple topics. A
topic dependent language model is then built from each cluster of the
training data. Topic language models are combined using linear
interpolation or maximum entropy as discussed in the next section

(Kalai, et al., 1999).



51

C. Maximum entropy models
The language models as discussed above combine different n-grams
models via linear interpolation. A different way to combine sources is the
maximum entropy approach. It constructs a single model that attempts
to capture all the information provided by the various knowledge sources.
Each such knowledge source is reformulated as a set of constraints that
the desired distribution should satisfy. These constraints can be, for
example, marginal distributions of the combined model. Their
intersection, if not empty, should contain a set of probability functions
that are consistent with these separate knowledge sources. The
maximum entropy principle can be stated as follows:
» Reformulate different information sources as constraints to be
satisfied by the target estimate
» Among all probability distributions that satisfy these
constraints, choose the one that has the highest entropy
One of the most effective applications of the maximum entropy model is
to integrate the cache constraints into the language model directly, instead
of interpolating the cache n-grams with the static n-grams. The new
constraint is that the marginal distribution of the adapted model is the same
as the lower-order n-grams in the cache (Rosenfeld, 1994; Wu and
Khudanpur, 2002; Khudanpur and Wu, 1999; Martin, et al., 1999;
Rosenfeld, 1996; Zhang, et al., 2000; Martin, et al., 2000; Chen and
Rosenfeld, 2000; Rosenfeld, 1997; Wang, et al., 2001; Chen, et al., 1998). In
practice, the maximum entropy method has not offered any significant

improvement in comparison to the linear interpolation (Huang, et al., 2001).

2.3.2.5 Complexity Measures of Language Models

The choice of the language model in a large vocabulary recognition system
heavily influences the ' difficulty of the recognition task and then the
recognition performance. In the construction of the word sequence during
recognition, if the language model can easily predict each next word, giving
high probabilities for some words and low probabilities for the other words,
then the recognition task is easy. Sentences from the text data on which the
language model is based are more easily recognized with only little

discounting than with more discounting of the probabilities. Conclusively, it
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becomes very difficult to recognize a sentence that does not resemble enough
the text data on which the language model is based.

The most common metric for evaluating a language model is the word
recognition error rate, which requires the participation of a speech
recognition system. Alternatively, the probability that the language model
assigns to the test word strings can be measured without involving speech
recognition systems. This is the derivative measure of cross-entropy known
as a test-set perplexity (Huang, et al., 2001). This perplexity is related to the
entropy H of the information source that produces the sequence of words of

which consists the text data.

Given a language model that assigns probability P(W) to a word
sequence W, a compression algorithm that encodes the text W wusing

—log, P(W) bits can be derived. The cross-entropy H(W) of a model
P(Wi|wi—n+1""’wi—l) on data W, with a sufficient long word sequence, can be

simply approximated as

H(W):—Nilog2 P(w) (2.113)

w

where N, is the word length of the text W .

The perplexity of a language model P(W) is defined as the reciprocal

of the geometric average probability assigned by the model to each word in
the test set W . This is a measure, related to cross-entropy, known as test
set perplexity:
Perplexity = 2HW) (2.114)
The perplexity can be roughly interpreted as the geometric mean of
branching factor of the text when presented to the language model (Huang,
et al., 2001). The perplexity defined in Eq. (2.114) has two key parameters, a
language model and a word sequence. The test-set perplexity evaluates the
generalization capability of the language model, whereas the training-set
perplexity measures how the language model fits the training data, like the
likelihood. Lower perplexity correlates with better recognition performance.
This is because the perplexity is a statistically weighted word branching
measured on the test set. The higher the perplexity, the more branches the
speech recognizer needs to consider statistically. The SPHINX, for example,

on the 997-word resource management task, SPHINX attained a word
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accuracy of 96% with a grammar (perplexity 60), and 82% without grammar
(perplexity 997) (Lee, et al., 1989).

A language with higher perplexity means that the number of word
branching from a previous word is larger on average. In this case, the
perplexity is an indication of the complexity of the language. The perplexity
of a particular language model can change dramatically in terms of
vocabulary size, the number of states of grammar rules, and the estimated
probabilities (Huang, et al., 2001). A language model with perplexity of X
has roughly the same difficulty as another language model in which every
word can be followed by X different words with equal probabilities. In the

task of connected digit recognition, for example, the perplexity is 10.

2.4 Summary

This chapter reviewed fundamental techniques used in speech recognition.
The important issue in speech recognition is acoustic pattern matching,
which has a close relation with signal processing and language modeling.
Selection of signal processing methods depends on the subsequent distortion
measures or probability density function. Cepstral-based analysis is widely
used due to its low correlation property. In acoustic pattern matching,
hidden Markov model is the currently technique of state-of-the art speech
recognition. Language modeling assists acoustic pattern matching since it
can be used to impose constraints in acoustic search space. In the large
vocabulary speech recognition system section, it should be note that hidden
Markov model and language modeling are usually combined in the same

computational framework in practical speech recognition system design.



Chapter 3

Phonological and Acoustical Analysis
of Thai Language

This chapter is intended to provide the essential knowledge of the Thai
language. Since the syllable is principally considered a fundamental unit for
acoustic-phonetic analysis, it is important to have a good understanding
about Thai syllables. The basic Thai phonetic units will be described. Since
Thai language is known of being a tonal language, the five lexical tones and
their distinctive linguistic features will be elaborated. Also, major
constraints, which combine these phonemic units into syllable, will be
explained. In the acoustical point of view, four acoustic parameters,
fundamental frequency, formant frequency, intensity, and duration, of Thai
syllable will be examined. Furthermore, spectral feature of Thai syllable will
be discussed. At the end of this chapter, the acoustic feature extraction
techniques will be described. A good understanding on phonological and
acoustical properties of Thai language paves the way for creating the

appropriate speech unit for Thai speech recognition in subsequent chapters.

3.1 Phonology of Thai Language

This section gives details of Thai language in phonological point of view.
Basic phonetic units, consisting of initial consonant, final consonant, and
vowel, will be introduced first. Then, details of Thai tone system will be
described. Finally, Thai syllable. structure and the rule, which combine

phonetic units into syllable, will be explained.

3.1.1 Basic Phonetic Units

There are 21 consonantal phonemes, 12 consonant clusters, 18
monophthongs, 6 diphthongs, and 5 tones in Thai language. These
phonemic units form totally 26,928 grammatically admissible syllables
(Luksaneeyanawin, 1992; Luksaneeyanawin, 1993). Details of each sound

unit are described below.
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A. Initial Consonant

The Thai language has a total of 33 initial consonants consisting of 21
consonantal phonemes and 12 consonant clusters. A set of 21 consonantal
phonemes is categorized by place of articulation and manner of articulation.
The place of articulation can be labial, alveolar, palatal, velar, and glottal
respectively. The manner of articulation is classified into two major groups,
stops and non-stops. The stops are subcategorized into voiceless
unaspirated stops, voiceless aspirated stops, and voiced stops. The non-
stops are subcategorized into nasals, fricatives, a trill, a lateral, and
approximants. The details of Thai consonantal phonemes and consonant
clusters are illustrated in Tables 8.1 and 3.2 respectively. The other set of
initial consonants comprises consonant clusters composed of two co-

articulated consonants.

B. Final Consonant

There are eight different final consonants in the Thai language. The three
stops, [pl, [tl, and [k], appearing at the final position are acoustically
different from the initial consonant, that is, they are not audibly released.
Also, two approximants, [j] and [w], can occur at the final position of a
syllable. Instead of considering a vowel ending with [j] or [w] as a diphthong,
they are treated as a vowel and a final consonant separately, though they
have vowel-like spectral features. Finally, a group of nasals, [m], [n], and

[ng], can be final consonants.

C. Vowel

The Thai language has a complex vowel system. It consists of 18
monophthongs and 6 diphthongs. The monophthongs are qualitatively 9
different vowels, each of which has two members, short and long. Thai
monophthongs are categorized according to the tongue position, tongue
advancement and tongue height. Tongue advancement relating to the second
formant frequency is subdivided into front, central, and back. Tongue height
corresponding to the first formant frequency is subdivided into high, middle,
and low. The relationship between tongue position and vowels is shown in
Table 3.3. Obviously, Thai vowels completely span tongue advancement and

tongue height combinations.
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Table 3.1 Thai consonantal phonemes

Place of Articulation
Sy
T 2| | 58| B
2 o = C) 1
= = A > T
& Voiceless Unaspirated /p/* Jt/* /c/ /Kk/* /?/
S Voiceless Aspirated /ph/ | /th/ | /ch/ | /kh/
58 ® Voiced /b/ | /d/
E % Nasal /m/* | /n/* /ng/*
g8 & Fricative 151 | Is/ /h/
£ w -
= 2 . Trill /r/
z° Lateral /1/
Approximant /w/* /il*

* These consonants are both releasing consonants and arresting consonants

Table 3.2 Thai consonant clusters

C:
C. P t k ph th kh
r  /pr/ /t/ /kr/ /phr/ /thr/ /khr/
/pl/ /Kl/  /phl/ /khl/
w /kw/ /khw/
Table 3.3 Thai vowel phonemes
Tongue Advancement
Front Central Back
™)
.'go High /i,1:/ /v, v/ /u, u:/
3)
=
g Medium fee: / /9, q:/ /o, o0:/
o)
E Low /X, x:/ /a, a:/ /@, @:/
Diphthongs /ia, i:a/ /va, v:a/ /ua, u:a/

3.1.2 Thai Tones

Basically, a tone is a feature of pitch movement within a syllable. Syllables
or words having the same sequence of consonants and vowels but different

pitch contours are different lexical entries. In addition to Thai, some
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European, African, and Oriental languages are tonal languages. There are 5
tones in the Thai language that are divided into 2 groups corresponding to
the change of pitch pattern, static and dynamic tones. The former have
either a flat or slightly falling pitch, including the high tone, the mid tone,
and the low tone while the latter, characterized by a significant pitch
movement during the syllable, consist of the falling tone and the rising tone.
Five tonal patterns are depicted in Figure 3.1. Furthermore, Thai syllables

are governed by the rules of tone assignments as shown in Table 3.4.

190+ Falling
1807
1707 High
N 160-
1:’ 150+
g g Mid
o 130
(0]
1204 Low
1107 -
W . Rising \
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Duration (%)
Figure 3.1 Five Thai tones
Table 3.4 Thai tone assignments
Thai syllable Syllable structure Possible tone
1 Open syllable
1.1 Open long syllable C (V:or V:V) ML F, H R
1.2 Open short syllable C (V or VV) L, F, H
2 Sonorant ending syllable
2.1 Short syllable ending
with sonorant consonant C (Vor vv) G L F, H R
2.2 Long syllable ending . .
with sonorant consonant ¥ 15917 ¥ M, L, F, H, R
3 Obstruent ending syllable
3.1 Short syllable ending
with obstruent consonant AR EAG L F. H
3.2 Long syllable ending C (V: or V2V) € L. F. H

with obstruent consonant

3.1.3 Thai Syllable Structure

Thai syllables are composed of three sound systems, namely consonants,
vowels, and tones. The smallest construction of sounds or a syllable in Thai
is composed of one monophthong unit or one diphthong, one, two, or three
consonants, and a tone (Luksaneeyanawin, 1992; Luksaneeyanawin, 1993).

The construction can be represented with the structure illustrated in Figure
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3.2. Combinations of these sound units are restricted by the rules shown in

Table 3.5.

T
S = c(c)V(V)(C)

Figure 3.2 Thai syllable structure

Table 3.5 Combinations of Thai sound units

Thai Syllable Ci \% C T S S+T

1 Open syllable

1.1 Open long syllable 33 12 5 396 1,980
Inadmissible co-occurrences

Labial consonant clusters /kw, khw/ and 4 round vowels 2, 4 -8 -40

1.2 Open short syllable 33 12 396 1,188
Inadmissible co-occurrences

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 3 -8 -24

2 Sonorant ending syllable

2.1 Short syllable ending with sonorant consonant 33 12 5 5 1,980 9,900
Inadmissible co-occurrences

Round vowel unit preceding a labialized consonant 33 1 5 -132 -660

Front vowel unit preceding a palatalized consonant 38 1 5 -132 -660

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 5 -32 -160

2.2 Long syllable ending with sonorant consonant 33 12 5 5 1,980 9,900
Inadmissible co-occurrences

Round vowel unit preceding a labialized consonant 33 1 5 -132 -660

Front vowel unit preceding a palatalized consonant 33 -132 -660

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 -32 -160

3 Obstruent ending syllable

3.1 Short syllable ending with obstruent consonant 33 12 3 3 1,188 3,564
Inadmissible co-occurrences

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 -24 -72

3.2 Long syllable ending with obstruent consonant 33 12 1,188 3,564
Inadmissible co-occurrences

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 3 3 -24 -72

Total 6,472 26,928

The syllable is principally considered a primitive unit for analysis with

several reasons. First, the language model originates from this unit. A

syllable is composed of sounds, which depends upon the phonological rules

of each language. Second, the syllable is an acoustic unit, which is closely
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connected with human speech perception and articulation. Especially in
connected speech, three linguistic factors, stress, tone, and intonation, are
influential in an utterance. The syllable integrates some co-articulation
phenomena and represents conversational speech compactly. Therefore,
using the syllable as the primitive unit is appropriate and has benefits for
prosodic study. Furthermore, a syllable embraces both spectral and
temporal dependencies due to its size, which makes the syllable a more
stable acoustic unit. The syllable is seemingly good for modeling as an
acoustic unit. However, there are too many syllable units in Thai language,
26,928 units (Luksaneeyanawin, 1993). Thus, the use of syllables as
acoustic units for speech recognition in the Thai language is not practicable.

As an alternative, the sub-syllable units have to be taken into account.

3.2 Acoustical Analysis of Thai Language

3.2.1 Acoustic Features

The acoustic-phonetic study has produced an extensive understanding of
properties of sound. A spoken language is decomposed into elements of
linguistically distinctive sounds called phonemes. The continuous sound
wave is segmented into discrete regions corresponding to its acoustic
properties. Properties of sounds referred to acoustic-phonetic features are
employed to classify these phonemes systematically according to their
articulatory configurations. Hence, a suitable method of representing the
time-varying characteristics of speech signal is via a parameterization of the
spectral properties based on the model of speech production. Four acoustic
features based on the speech production model, fundamental frequency,
formant frequency, energy, and duration, are employed for analysis and
recognition. These acoustic features containing crucial information of speech

signal are the important cues for distinguishing phoneme units.

A. Formant Frequency

Since the vocal tract is an air tube acting as a resonator, it has certain
natural frequencies of vibration. The natural frequencies of the vocal tract
are excited by a source or sources located either at the glottis or at some
points along the length of the tract (Stevens, 1999). The natural frequencies

or resonant frequencies of the vocal tract tube are called formant frequencies
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and the resonances are simply called formants (Rabiner and Schafer, 1978).
When a speech signal is modified in the vocal tract, and is transmitted
toward the lips, the spectrum of the sound emerging from the lips has the
peak at the natural frequency of the vocal tract (Denes and Pinson, 1963).
Dependent upon the shape and dimensions of the vocal tract, different
formant frequencies are formed by varying the shape of the vocal tract. The
lowest formant frequency is called the first formant. The next highest
frequency is called the second formant, and so forth.

The formant frequencies are estimated from the short time spectrum
by the Fourier transform. A general procedure for formant trajectory
estimation is based upon linear prediction analysis, with two formant-
tracking techniques, solving the roots of the LP polynomial and spectral peak
picking (Markel and Gray, Jr., 1980). Solving for the roots assures that the
accurate formant frequency and bandwidth will be extracted. Required
highly computational expense in solving the roots, the former method is not
favorable technique. The spectral peak picking seems to be a practical
procedure for formant estimation due to its low computation. Nevertheless,
the major disadvantage of the latter method is that closed formant related to
closed complex pole pairs may not be extracted from the spectrum.

With a compact representation of the time-varying of speech signal,
the formant frequencies have been employed as an acoustic feature for
phoneme classification. The first, the second, and the third formant
frequency are adequately exploited to identify vowel phonemes. According to
vocal tract shape, the formant frequencies are dependent on three factors:
the position of the point of maximum constriction in the vocal tract
controlled by the backward and forward movement of tongue, the size or
cross-sectional area of the maximum constriction controlled by the
movements of tongue towards and away from the roof of the mouth and the
back of the throat, and the position of lips (Ladefoged, 1962). The first
formant associated with tongue height in the second factor is used for
classifying vowels into the high, the middle, and the low group. The second
formant correlated to tongue advancement in the first factor is utilized to
categorize vowels into the front, the central, and the back group. Finally, the
third formant, which is dependent on the shape of lips, is employed to define

roundness of vowels.
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B. Fundamental Frequency

The basic property of a vocal cord sound source is its periodicity expressed
by the duration of a complete voice period or by the inverse value of the voice
fundamental frequency (Fant, 1970). Related to the number of times the
vocal folds open and close per second, the frequency of vocal fold vibration
directly determines the lowest frequency of the sound, which is produced
(Borden and Harris, 1980). The duration of pitch cycle can always varies
from one period to the other. This changing of pitch period perceived as pitch
pattern or intonation contour of phrase or sentence is particularly effective
in expressing differences in attitude and differences in meaning. The
intonation can be imposed on a sentence, a phrase, or a word. English
sentences are often characterized by a rising-falling intonation curve (Borden
and Harris, 1980). The pitch rises at the first part and falls at the end of a
declarative sentence or a question sentence impossible to answer yes or no.
Another pattern in English is the end-of-utterance pitch rise appearing in a
question sentence to be answered yes or no. Fundamental frequency is an
important acoustic feature especially in tonal languages. Different
fundamental frequency contours indicate different lexical meanings of the
syllable. Another important exploiting of fundamental frequency is
voiced /unvoiced classification. According to a speech production model, a
periodic glottal excitation waveform is originated from the periodic opening
and closure of the vocal cords in the glottis. Air is forced through the glottis
from the lung resulting in a train of alternating high and low pressure pulses
in vocal tracts (Vuuren, 1998). Only voiced sounds have periodic opening
and closure. On the. other hand, the air passes through the glottis
unrestricted in unvoiced sounds. Various fundamental frequency extraction
techniques are generally grouped into three major categories according to
their principal features (Furui, 2001). Firstly, the waveform processing
consists of methods for detecting the periodicity peaks in the waveform.
Secondly, the correlation processing is composed of methods widely used in
digital signal processing of speech. Lastly, spectrum processing comprises
the methods for tracking pitch in spectral domain. The modified correlation
method and simplified inverse filter tracking (SIFT) algorithm in correlation
processing category and the cepstral method in spectrum processing
category are the most efficient techniques since they explicitly remove the

vocal tract effects (Furui, 2001).



62

C. Energy

Energy together with other cues, formant and duration, is used to classify
both Thai consonants and vowels (Trongdee, 1987; Tarnsakun, 1988;
Maneenoi, 1998). In addition, energy, one of the prominent acoustic
parameters, is used to detect syllable boundary in Thai connected speech
especially in sequence of two consonantal segments and in sequence of two
vocalic segments (Sriraksa, 1995; Jittiwarangkul, 1998). Acoustic
characteristics of each non-stop consonant are acoustically different both in
place of articulation and in manner of articulation. From the acoustic study,
the nasals have low second formant energy whereas trill and lateral have
high first and second formant energy (Trongdee, 1987). In classification of
stops, energy was also employed to distinguish each stop both in place of
articulation and in manner of articulation. The classification results show
that energy of aspirated stops is higher than unaspirated stops as well as

voiced stops and voiceless stops (Tharnsakun, 1988).

D. Duration

One of the important acoustic cues used in classification of Thai phonemes
is duration. This acoustic feature was employed to classify both consonants
and vowels (Trongdee, 1987; Tarnsakun, 1988; Thubthong, 1995; Maneenoi,
1998). Each non-stop consonant in the same manner of articulation has
different durations depended on its structural context (Trongdee, 1987). For
stop consonants, the voiceless stops have longer durations than voiced
stops. Between voiceless stops, voiceless aspirated stops have longer
durations than voiceless unaspirated stops (Tarnsakun, 1988). Two of
duration features, noise duration and burst duration, accompanied by other
acoustic features were used in categorization of Thai initial consonants
(Thubthong, 1995). Since short and long vowels are quantitatively different
and Thai vowels appear in both short and long pairs, duration is a
predominant acoustic cue used for classification them. Hence, classification
of Thai vowels entails duration to distinguish short and long vowels
(Thubthong, 1995; Maneenoi, 1998). Additionally, the duration rather than
the intensity of the vowel segments can determine which syllable is stress
(Denes and Pinson, 1963).
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These four acoustic features are the important cues for both speech
analysis and speech recognition. Many researches on Thai language have
used these acoustical features in their works. Abramson (1960) employed
acoustical measurements on the study of the vowels and tones of standard
Thai. Trongdee (1987) and Tharnsakun (1988) worked on the analyses of
non-stop consonants and stop consonants in Thai respectively. The two
works have studied the acoustical characteristics of Thai consonants
occurring in monosyllabic words. These studies utilized formant frequency,
duration, and intensity of 10 non-stops and 11 stops in Thai with 3 different
vowel contexts. Leelasiriwong (1991) studied acoustic characteristics of Thai
vowels, /i:, a:, u:/. The first three-formant frequencies and the fundamental
frequency of these vowels were statistically modeled used in speaker
identification. Thubthong (1995) used the pre-consonantal second formant
transition and the other acoustic features for consonantal phoneme
classification. Six Thai vowels were classified using two formants and
duration as well. Maneenoi (1998) applied the artificial neural network
together with the first three-formant frequencies and their energy as an
acoustic feature for vowel phoneme recognition. Instead of using linear
frequency scale, the non-linear frequency scales, Bark and Mel scale, were
applied to the classification of the nine Thai spreading vowels (Ahkuputra, et
al., 2003).

3.2.2 Acoustic Feature Extraction for Speech Analysis

A. Formant Frequency Tracking

On the formant frequency estimation, a spectrum envelope of a speech
signal is tracked to find a spectral peak as shown in Figure 3.3. The lowest

spectral peak is picked and marked as the first formant or F,. The following
spectral peaks are marked as the second F,, the third F,, and the forth F,,

respectively.
In order to obtain a spectrum envelope of the power spectrum, the
linear predictive coding (LPC) coefficients are analyzed on the speech

segment using the Levinson-Durbin recursive algorithm (Rabiner and Juang,

1993; Deller, et al., 1993; Furui, 2001). The LPC coefficients, Ay, a;s..., A, 1S

the coefficients of the all-pole filter with the form in Eq. (3.1) , where p is
the order of the LPC coefficients.
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H(z):; (3.1)

k=0
The spectrum envelope could be obtained by taking the discrete Fourier

transform to evaluate H (ej’”).

3500 4000 4500 5000 S500Hz

........

Figure 3.3 Formant frequency

Another method to obtain the formant frequency is the root-solving
technique. The complex poles, derived from a set of p-order linear prediction
coefficientsaq,, are computed by solving roots of a polynomial in Eq. (3.1)
(Furui, 2001). Due to a stable all-pole filter model of a linear prediction, the
poles solved from roots of the transfer function are located inside a unit
circle. Let z=Re(z)+ jIm(z) be aroot of a linear prediction polynomial, the
formant frequency value, which related to an angle of the complex pole, can
be computed as shown in Eq. (3.2). Since the poles occur in complex
conjugate pairs then only the upper half of a unit circle is considered to
compute their corresponding formant frequencies. In addition, the
bandwidth information is estimated from a magnitude of the complex pole as
shown in Eq. (3.3), where n is a formant number and f, is the sampling
frequency in Hz. The bandwidth information is additionally considered in

order to exclude the undesired frequencies. This root-solving method gives
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out much more precise and accurate formant frequency value than the peak

picking technique, which depends on resolution of the DFT.

F = /, }arctan{ Im(z)} (3.2)
27 Re(z)

B, = L}log|z| (3.3)
L T

B. Fundamental Frequency
For the automatic pitch extraction, properties of cepstrum have been utilized
to reveal the signal periodicity. The cepstrum is the Fourier transform of the
logarithm of the amplitude spectrum of a signal. The resulting independent
variable, which is reciprocal frequency, or time, is called “quefrency”
(Flanagan, 1972).

The cepstrum is defined as the inverse Fourier transform of a short-
time logarithmic amplitude spectrum. The cepstrum analysis is illustrated in
Figure 3.4. The quefrency, the independent parameter for the cepstrum, is

the time domain parameter resulting from the inverse transform of the
frequency domain function (Furui, 2001). Let x(t) is the voiced speech,
which is the response of the vocal tract articulation equivalent filter driven

by a pseudo-periodic source g(t). Then, x(t) could be given by the

convolution of g(t) and the vocal tract impulse response h(t) as follows

x(r)= jot g(ohlr—7)dr (3.4)

X(@)=G(w)H (o) (3.5)

where X (), G(®), and H(w) are the Fourier transform of x(¢), g(t), and
h(r), respectively. By taking the logarithm function and the inverse Fourier

transform, the cepstrum c(r) is obtained as follows

log|X(a)] = 10g|G(a)] + 10g|H(a))| (3.6)
c(r)=F" (10g|X(a))|) (3.7)
=F"" (10g|G(a)j)+ F’1(10g|H(a))|) (3.8)

From the right side of Eq. (3.6), the first term represents the spectral
fine structure or the periodic pattern and the second term represents the

spectrum envelope or the global pattern along the frequency axis. The
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fundamental period of the source g(t) could be extracted from the peak at

the high quefrency region, that is, the first term indicates the formation of

the peak in the high frequency region (Furui, 2001).

¢(n)

&(n)

Discrets Inverse
5 - scrate
Time Fourier Time Fourier
Transform
Transform

Voiced

Cepstrum
Speech

Figure 3.4 Cepstrim analysis

In Figure 3.5, a voiced and unvoiced speech segment are analyzed
using spectrum and cepstrum analysis. In voiced speech, the sharp peak
occurs in the cepstra plot, which corresponds to the period of pitch. Unlike
voiced speech, unvoiced speech has no peak, which results in no
fundamental frequency. The example of short-time spectra and cepstra is
shown in Figure 3.6. During the voiced speech, a sharp peak occurs in the
quefrency domain of the corresponding spectra in the period. The sharp
peak disappears in the unvoiced speech portion. The fundamental frequency
is directly computed from the location of the peak, which is the reciprocal of

the period. The pitch period tracking is shown in Figures 3.5-3.6.

AMALYSIS FOR VOICED SPEECH

INPUT SFEECH SEGMEMT CEPS TR SPECTRA
T A PARMING WD ] 1LOG MAGNITUDE B 0B}

Ty e

I 0 W0 0 o 2 " [ T 0 ] 1 r s
TiME (wW&EC) TIME (i) FREQUENT Y {mEFS)

ANALYSIS FOR UNVDICED SPEECH

IHPUT IPEECH SEGWENT CLPS T SLCTRA

ANCREALITOD AND WEIGHTED
TR |

BY A HAMMING W LOG MAGMTUDE e DR)

3 ]

o ] ) T W0 O O ] 5] T 20 0 F ¥ i 3
TIME (M3EE) TIME [W3EE] FREGUERCY (RCPEN

Figure 3.5 Spectrum and cepstrum analysis of voiced

and unvoiced speeh sounds (Flanagan, 1972)
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Figure 3.6 Short-time spectra and cepstra for male voice (Furui, 2001)

C. Energy

Amplitude of a speech wave is a peak of a speech waveform. In other words,
an amplitude is a maximum displacement of a vibration of a mass, which is
displaced from its rest position and moving back and forth between two
position that mark the extreme limits of its motion (Denes and Pinson,
1963). In speech recognition, an absolute acoustic energy contour could be

directly computed from a speech wave using the following relation as shown

in Eq. (3.9). In Eq. (3.9), E(m) is an absolute energy value of the m™ frame,

s(n) is an amplitude of the n” sample, and N is the total samples,

E(m)z Z|s(nl (3.9)
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3.2.3 Acoustical Properties of Thai Phonemic Units

A. Vowel

Formant structure is an important indicator to describe vowel sounds in
acoustic analysis. It refers to specific resonant frequencies of the vocal tract,
which have the greatest energy concentration. Each of the Thai vowels is
acoustically analyzed to explore the acoustic characteristics. Spectrums and
spectrograms of each vowel are illustrated in Figure 3.7. In Figure 3.7, each
Thai vowel shows its unique acoustic characteristics in terms of formants.
According to the tongue position, the vowel advancement is represented by
the second formant frequency, F,, whereas the vowel height is represented
by the first formant frequency, F,. The front vowels have the highest F,
followed by the central and the back vowels, respectively. The low vowels
have the highest F, followed by the mid and the high vowels, respectively.
The vowel triangle, /ii/, /aa/, and /uu/, show distinct characteristics
between each other. The vowel triangle is the common set of the vowels
existed in every language in the world.

From the acoustic characteristics described above, the Thai vowel
distribution in F, and F, plane is shown in Figure 3.8. Three classification
schemes namely, classification by vowel height, classification by vowel
advancement, and classification by combined vowel height and
advancement, were proposed to classify nine Thai monophthongs using
Bayesian classifier (Ahkuputra, et al., 2003). The results show that the use

of acoustic features, F, and F,, gives the high accuracy in vowel
identification. In addition to the first-two formants, the third formant, F,,

represents the degree of roundness in lip opening. The three dimensional

distribution of Thai monophthongs inF,, F,and F, plane, is depicted in

Figure 3.9. Obviously, Thai vowels completely span tongue advancement and
tongue height combinations. From the acoustic analysis, it is generally
agreed that the first three formant frequencies are the most informative for
vowel perception and discrimination (Maneenoi, 1998; Ahkuputra, 2002;
Ahkuputra, et al., 2003).

In addition to acoustic characteristics of the Thai vowels, the duration
is one of the acoustic cues used to identify the short and long vowels. The

durations of the short and long vowels are shown in Figure 3.10.
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(d) Short-time spectrum of vowels

Figure 3.7 Spectrogram and spectrum of nine Thai vowels
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short-long vowel pairs /i/-/ii/, /a/-/aa/, and /u/-/uu/

B. Consonant

Acoustically, marginal sounds or consonants can be attached along both
sides of the syllable nucleus or the vowel. Considering the Thai syllable
structure, the left marginal sound is an initial or a releasing consonant and
the right marginal sound is a final or an arresting consonant. Examples of
releasing consonants are shown in Figure 3.11.

In Figure 3.11, spectrographic information of the syllables
/?aaOpaa0/, /?aaOtaa0/, /?aaOkaa0/, and /?aa0Ocaa0/ are illustrated.
These releasing consonants are in the same manners of articulation but
different places of articulation. The transitional periods between the
releasing consonant and its following vowel are clearly different, according to
its locus of each consonant. Thus the transitional period contains the crucial
acoustic cues for identification of the releasing consonants.

In  Figure « 3.12, spectrographic information of the syllables
/?aa0paa0/, /?aaOphaaO/, and /?aa0Obaa0O/ are shown. These releasing
consonants are in the same places of articulation but different manners of
articulation. The transitional periods between the releasing consonant and
its following vowel are evidently comparable. The phonemes /p/ and /ph/
are unaspirated and aspirated voiceless stops while the phoneme /b/ is

voiced stop.
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Figure 3.11 Spectrographic information of releasing consonants in the

same manners of articulation but in thedifferent places of articulation
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In Figure 3.13, spectrographic information of the syllables /?ii0diiO/,
/?aa0daa0/, and /?uu0duuO/ are depicted. These syllables have the same
releasing consonants but different vowel context. The transitional periods
between the releasing consonant and its following vowel are obviously

different, since the formant is moving towards the different vowel from the

same locus of the releasing consonant.
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Apart from the releasing consonant, the three stops, [pl], [t], and [K],
appearing at the final position are acoustically different from the releasing
consonant, that is, they are not audibly released. The spectrograms of these
arresting consonants are illustrated in Figure 3.14. In consequence, the
transitional period between the marginal sounds and the nucleus provides

crucial acoustic information to identify consonants.
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Figure 3.14 Spectrographic information of the arresting consonants

3.3 Summary

In this chapter, the Thai spoken language is described in terms of acoustic-
phonetic. Acoustic-phonetic analysis is conducted on the Thai utterances to
provide understanding of the Thai spoken language. Several acoustic
features and feature extraction techniques are described to study the
acoustic features of the Thai utterances. The analysis provides basic
acoustic knowledge and solid background of the Thai spoken language. Deep
understanding of the characteristics of Thai spoken language leads to the
appropriate acoustic modeling of the speech unit, which is described in

details in the following chapter.



Chapter 4

The Onset-Rhyme Acoustic Models

This chapter discusses properties of several speech units used in speech
recognition. The strength and weakness of speech units according to the
criteria of a good speech unit will be pointed out. From the previous chapter,
the acoustic-phonetic analysis on the Thai language was conducted. The
characteristics of vowels and consonants were thoroughly explored. Not only
does the acoustic-phonetic analysis contribute strong knowledge, but it also
provides acoustic cues for modeling the appropriate speech unit for the Thai
language. The onset-rhyme units are proposed for use as a speech unit in
speech recognition of the Thai language. Details of the onset-rhyme will be
explained in this chapter. Finally, construction of the Thai continuous

speech recognition system will be described.

4.1 General Speech Units

Several different approaches have been proposed for recognition of Western
alphabetic languages with very large vocabularies. Based on these
approaches, many successful prototype systems gave satisfactory
performance (Lee, et al., 1990; Lee, et al., 1993; Lee, et al., 1997; Zue, et al.,
1989; Rabiner, et al., 1989). One of the important issues in developing a
successful speech recognition system is the selection of the appropriate
speech unit. Selection of a set of speech units, usually including phonemes,
phone-like-units (PLUs), syllables, subword units, or even smaller or larger
units, is dependent on the target language. Apart from the issue of language
dependence, the choice of speech units is usually dependent on the size of
vocabulary to be recognized and the availability of sufficient training data for
constructing effective models. Furthermore, the performance of a speech
recognition system depends on the number of speech units. Three criteria,
accuracy, trainability, and generalization must be considered in choosing the
appropriate speech unit (Huang, et al., 2001). First, the speech unit should

accurately represent the acoustic realization that appears in different
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contexts. Second, the unit should be trainable for estimating the parameters
of the unit with sufficient data. Finally, the unit should be generalized, so
that any new word can be derived from a predefined unit inventory for task-
independent speech recognition. A practical challenge is how to select a
speech unit that meets these criteria. In this section, various speech units
are compared, and their strengths and weaknesses in practical applications

are pointed out.

4.1.1 Context-Independent Phone Units

In order to share phones across words, the subword unit has to be used. The
smallest subword, phoneme or monophone, is a single model representing a
phone in all contexts. Since there are merely 57 phonemes in Thai, they can
be adequately trained with a few hundred sentences. However, the
assumption of phoneme models that a phone in any context is identical to
the same phone in any other context is entirely not true. Although each word
is intentionally uttered as a concatenation sequence of phoneme, these
phonemes are not independently produced because the articulator cannot
abruptly move from one position to another. Consequently, the realization of
a phoneme is greatly affected by its adjacent phones. The coarticulatory
effects on phoneme /d/ in three different contexts are illustrated in Figure
3.13.

4.1.2 Context-Dependent Phone Units

Of the context-dependent phones, the diphone and triphone capture each
phone in a particular context. Triphone modeling is much more powerful
and consistent than diphone modeling because it can model the most
important coarticulatory effect from its neighboring phones. However, too
many different . triphones need to be modeled for different context
dependency on both sides.

Although, the triphone seems to be a good speech unit for acoustic
modeling, there are many disadvantages in applying this context-dependent
phone unit. Since the triphone is a phone-derivative unit, it inherits some
limitations of phone-based approaches, namely the lack of an easy and
efficient way for modeling long-term temporal dependencies (Ganapathiraju,
et. at., 2001). Triphone unit spans an extremely short time interval.

Consequently, integration of spectral and temporal dependences is not easy.
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Moreover, since each triphone is modeled with a different context
dependency, a large number of triphone patterns will be generated, leading
to a great memory requirement and numerous models with poorly estimated
parameters. Since the Thai language has a simple syllable structure,
decomposing Thai syllables into triphone units produces an excessive

number of speech units, which is an inefficient approach.

4.1.3 Words

Words are the most natural units of speech because they are exactly the
units to be recognized. By modeling words as fundamental units, the
phonological variations can be assimilated because they are able to capture
contextual effects within words. Therefore, word models will usually achieve
the best performance if there are sufficient training data. Speech recognition
research in Thailand has been conducted with the word-based approach for
a decade. Several vocabulary sets, isolated Thai numerals, isolated Thai
words, and polysyllabic Thai words were recognized with various techniques
(Ahkuputra, et al., 1997; Pornsukchandra, et al., 1997; Wutiwiwatchai, et
al., 1998, Jitapunkul, et al., 1998; Ahkuputra, et al., 1998). Although a
system using a word-based model achieves a high recognition accuracy, the
vocabulary size is very limited (Ahkuputra, et al., 1997; Pornsukchandra, et
al., 1997; Wutiwiwatchai, et al., 1998, Jitapunkul, et al., 1998; Ahkuputra,
et al., 1998). In addition, many ambiguities occurred among the similar
sounds, which resulted in incorrect classification.

Using word models in large vocabulary continuous speech recognition
causes several severe problems. First, since training data cannot be shared
between words, each word has to be trained independently. Many examples
of words are required for adequate training data. Therefore, it is nearly
impossible to get several repetitions of ‘all the words, which is a major
problem in large vocabulary applications. Second, the memory usage
increases linearly with the number of words because of no sharing between
words. Finally, it would be extremely inconvenient to the user when new
words need to be added to the vocabulary, and new words can be easily
generated every day. Hence, using word models for large vocabulary

continuous speech recognition is not practical.
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4.1.4 Syllables

Among the other non-phone-based units, syllables are also used as
fundamental acoustic units for continuous speech recognition.
Ganapathiraja (Ganapathiraja, et al., 2001) proposed the syllable models,
which have many advantages over the phone-based units. First, since a
syllable is perceptually defined, acoustical characteristics of a syllable relate
to articulation and human perception. Second, a syllable acoustic unit
provides compact representation of an utterance. Third, coarticulation
effects are integrated within a syllable unit thus, making the wunit
acoustically stable. Moreover, the longer duration of a syllable
simultaneously combines both temporal and spectral variations. These
variations are then utilized during recognition. For these reasons, the
syllables satisfy the consistency criterion. However, large numbers of
syllables are required to cover the whole speech corpus or even the whole
language. For the Thai language, the number of syllables that could be
grammatically generated from combinations of consonants, vowels, and
tones, is 26,928 units (Luksaneeyanawin, 1993). Therefore, the syllable

units do not satisfy both trainability and generalization criteria.

4.1.5 Initials and Finals

According to the Mandarin Chinese syllable structure, every syllable is a
morpheme, which has its own meaning, and each syllable is an open syllabic
structure ending with a vowel or nasal /n/ or /ng/ (Lee, et al., 1993; Lee, et
al., 1997; Chen and Liao, 1998; Chen, et al., 1998). Therefore, an Initial
followed by a Final is used as the basic acoustic unit in Mandarin speech
recognition. The Initial comprises the initial consonant of the syllable while
the Final consists of the vowel or diphthong part, including the possible
medial or nasal ending (Lee, et al., 1993). A set of 22 Initials and 38 Finals
forms the number of 408 phonologically allowed different base syllables of
Mandarin Chinese (disregarding tones). In addition, Cantonese is one of the
most popular Chinese spoken languages. Similar to Mandarin, it is a bi-
syllabic language with multiple tones. Cantonese consists of 20 Initials
(including the null initial) and 53 Finals, which form the whole set of 595
syllables (disregarding tones) (Fu, et al., 1996). Because the Initial parts are
usually very short compared to Final parts in base syllables and any

important difference among the Initial parts of different syllables can be
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easily influenced by irrelevant differences among the Final parts of the
syllables during the recognition process, these produce a confusing set of
Initials (Lee, et al., 1993, Wang, et al., 1997). Therefore, a set of context-
dependent Initial models expanded from context-independent Initial models
had been proposed to overcome those problems. The error rate was
dramatically reduced by using context-dependent Initial models (Wang, et
al., 1997). Although the context-dependent Initial is modeled along with its
vowel context, the formant transition portion is not included in the model.
Missing this important acoustic cue makes the acoustic unit imprecisely

modeled.

4.1.6 Whole Word and Sub-word Modeling

Hidden Markov models can be used to model speech at several linguistic
levels, ranging from phone, syllable, word etc. Definition of a good speech
unit was previously elaborated in section 1.3. The previous section has
discussed strength and weakness of the whole-word and the sub-word
models corresponding to definition of a good speech unit.

Accurate acoustic models will improve discrimination and overall
recognition performance. Trainability will guarantee generalization and
better use of model parameters. The accuracy and trainability properties of

speech units are illustrated in Figure 4.1.

Accuracy

Triphones/

Words Sylabbis Subssyilabius Diphones Phones

7 Trainability
Figure 4.1 Trade-off between accuracy and trainability

Various speech units were reviewed and given details of their
advantages and drawbacks for speech recognition. These speech units seem
to be unsuitable for the Thai language. An alternate speech unit has to be
taken into account. In this paper, the concepts of onset and rhyme are
proposed and applied to a Thai speech recognition system. Details of the

onset-rhyme model will be described in the next section.
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4.2 The Onset-Rhyme Acoustic Models
4.2.1 Acoustical Properties

An onset consists of a releasing consonant and its transition towards the
following vowel. Including a transitional portion between consonant and
vowel, this onset model provides consonant-vowel (CV) and consonant
cluster-vowel (CCV) combinations of Thai syllables. The onset model also
provides crucial acoustic cues for classification of each releasing consonant,
particularly for stop consonants. Additionally, the onset can deal with the
intra-word coarticulatory effects better than the phone model. Along with the
onset, a subsyllable rhyme is composed of a steady vowel portion and an
arresting consonant. This model contains a whole vowel portion plus the
arresting consonant if any. Including a vowel and a final consonant, the
rhyme model provides monophthong-consonant (VC) and diphthong-
consonant (VVC) combinations of Thai syllables (Maneenoi, et al., 2002;
Jitapunkul, et al., 2003; Maneenoi, et al., 2004). The onset-rhyme segment
together with other speech units is shown in Figure 4.2. Obviously, the onset
covers the transition towards the vowel, which makes the onset precisely
modeled.

From acoustical point of view, a pair of onset and rhyme contains an
internal syllable juncture within a syllable whereas an external juncture
appears between syllables. The internal juncture, which strongly binds the
onset and rhyme together, can efficiently handle co-articulation within a
syllable. On the other hand, the external juncture provides the crucial
acoustic cues between the rhyme and the following onset of the adjacent
syllable.

Since the realization of a context-independent phone unit is strongly
affected by its neighboring phones, contextual information is needed to
model speech units. The recognition accuracy of the speech recognition
system using context-dependent speech units is significantly improved.
Hence, context-dependent speech units have been widely used for several
large-vocabulary speech recognition systems (Lee, et al., 1989; Zue, et al.,
1989; Rabiner, et al., 1989; Lee, et, al, 1990; Jelinek, et al., 2001; Chow, et
al., 1987). The onset-rhyme is context-dependent modeling. It contains both
a releasing consonant and a vowel in the onset and a vowel plus arresting

consonant in rhyme. The context-dependent units are able to model the
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transitional portion between the releasing consonant and vowel in onset
part. In addition, transitional stage between vowel and arresting consonant
in rhyme part is modeled. Therefore, the onset-rhyme incorporates both left-
context dependent and right-context dependent modeling.

The onset-rhyme should be suitable for representing Thai sound units
for several reasons. According to the acoustic properties of Thai syllable, in
the syllable structure, the final consonant is strongly influenced by the vowel
duration. The duration of a final consonant following a short vowel or a weak
vowel is longer than that of a final consonant following a long vowel or a
strong vowel as shown in Figure 4.3. This relationship occurs only between
the vowel and the final consonant. In contrast, the initial consonant is not
affected by the duration of the vowel. Hence, the vowel and the final
consonant are tightly tied while an initial consonant is loosely tied with the
vowel in the syllable. Consequently, the decomposition of the syllable into an
onset and rhyme is appropriate to the Thai language. The whole set of Thai
syllables can be recognized by identifying onsets and rhymes.
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Moreover, unlike other context-dependent phone units, the onset-
rhyme is larger than the diphone and triphone. The onset-rhyme is modeled
with a consonant, including its transitional stage in onset and the entire
vowel along with the final consonant in the rhyme, while the same phone
units in diphones or triphones are differently modeled according to their
contexts. The use of an acoustic unit with a longer duration facilitates
simultaneous exploitation of temporal and spectral variation (Gish and Ng,
1996). Consequently, these onset-rhyme units contain the most variable
contextual effects at the beginning portion of the syllable in the onset and at

the ending portion of the syllable in the rhyme.
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Figure 4.3 Relationship between vowel and final consonant duration

Acoustically, the rhyme contains crucial prosodic information within
the segment. The prosodic features that the rhyme carries are tone, stress,
accent, intonation, etc. (Luksaneeyanawin, 1992; Luksaneeyanawin, 1993;
Thubthong, et al., 2002). The importance of these prosodies varies according
to the language. For instance, the rhyme unit in Thai contains tone and
stress information while only the stress and accent are provided in English.
Tones in Thai are also influenced by the arresting consonant within the

rhyme unit (Thubthong, et al., 2002). Although patterns of the same tone in
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both obstruent and sonorant endings are different (Luksaneeyanawin, 1992;
Luksaneeyanawin, 1993; Thubthong, et al., 2002), their variations are
captured within the whole rhyme unit. These are major advantages of the
onset-rhyme models over the phone-based models. In the phone-based
models, not only the contextual information but also the prosodic
information is lost when breaking up the nucleus and coda in the rhyme
unit.

Not only does the rhyme contain contextual information, but it also
contains prosodic information, including the tone, accent, stress, and
intonation. In the Thai language, tones are governed by a vowel and an
arresting consonant as shown in Table 3.4. These properties of the rhyme
are important in modeling the proper speech units for the tonal languages.
The onset-rhyme models have preserved crucial prosodic information within
the models. Thubthong (Thubthong, et al., 2002) illustrated the use of tone
information within the rhyme unit for tone recognition. The rhyme units
provide better results than using the whole syllable or only the vowel
segment. Therefore, using only tone information within a vowel segment is
not sufficient. Chen (Chen, et al., 2001) used only tone information within a
main vowel for tone recognition, which is not adequate for tone recognition
since arresting consonants also have large effects on tone patterns. Both the
vowel and arresting consonant, making up a rhyme unit, store some
prosodic information that is crucial for tone recognition (Thubthong, et al.,

2002).

4.2.2 Phonological Properties

From a phonological point of view, a syllable is composed of a pair of an
onset and a rhyme unit, where the rhyme comprises a nucleus and coda as
shown in Figure 4.4. An onset consists of an initial consonant and its
transition towards the following vowel. Along with the onset, the rhyme is
composed of a vowel, a final consonant, and a tone. The onset-rhyme not
only includes its context information, but also embeds the language
modeling at the syllable level. Recognition accuracy can be greatly improved
by taking advantage of possible a priori information on the sequences to be
recognized. An automatic speech recognition system can successfully use
language information if such knowledge is embedded in a language model.

Composing the onset and rhyme forms a syllable according to the syllable
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structure. The rhyme must have the same vowel as the preceding onset. This

indicates that language modeling is embedded in the unit of onset and
rhyme.
SYLLABLE

7\

ONSET RHYME

N

NUCLEUS CODA

Figure 4.4 Syllable segment

In Figure 4.5, all of the phones, diphones, triphones, and onset-rhyme
units are illustrated with regard to their physical and logical representation
of speech. A speech signal is assumed to be composed of phone sequences
as shown in Figure 4.5 with their physical speech segment and location in
the phrase /khaw4 svv3 phaanO najO/. Each phone occurs independently
without using any contextual information. Thus, context-dependent phones,
the diphones and the triphones, are physically similar to the phones but
logically differ depending on specific context. For instance, the phone /a/ in
/khaw/ and /naj/ are in different context, which are then separately
modeled as /kh-a+w/ and /n-a+j/, respectively, as shown in Figure 4.5.
However, the contexti-dependent phones still use the same speech segment
as the phones without taking into account on any articulatory effects
between each phone. Consequently, the context-dependent phones do not
effectively handle any coarticulation between speech segments, which
contain crucial acoustic information. Unlike other units, the onset and
rhyme units efficiently model coarticulatory effects both within syllables and
across syllables. The internal syllable junctures reside within a syllable,
tying a pair of onset and rhyme units together and treating coarticulation
between releasing consonant and vowel. Within the rhyme unit, the vowel
and arresting consonant are tightly tied together to preserve their
coarticulation. Also, there are external syllable junctures that consider
coarticulation between syllables, which provide acoustic cues between the
rhyme and the neighboring onset in the following syllable. These external

syllable junctures are syllable boundaries, which are explicitly located and
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combined into the models. Examples of both junctures are depicted in

Figure 4.5.
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Figure 4.5 Representation of various speech units — phones,

initial-final, and onset-rhyme

4.2.3 Types of Onset-Rhyme Models

By considering the duration of the releasing consonant plus its transition
preceding different vowel contexts, the onset-rhyme models are defined into
two types (Ahkuputra, 2002; Jitapunkul, et al., 2003; Maneenoi, et al.,
2004): (1) Phonotactic Onset-Rhyme Model (PORM) and (2) Contextual
Onset-Rhyme Model (CORM). These two models are generated from different
combinations between the releasing consonant and vowel. According to the
duration of the releasing consonant and its transition, the phonotactic onset
is created differently for each releasing consonant and each vowel context,
even for vowels in the same short-long pair. On the other hand, the
contextual onset is modeled similarly for a given releasing consonant an
either member of same short-long vowel pair. The number of phonotactic
onset and contextual onset units are 792 and 297, respectively, while both
models have the same 200 rhyme units as described in Tables 4.1 and 4.2.
Based on the onset-rhyme models, a speech recognition system forms
syllables using the network of onset and rhyme HMMs. The HMM networks
of two onset-rhyme models are depicted in Figures 4.6 and 4.7, respectively.

This research will explore both two types of onset-rhyme models in order to
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determine which type will be more efficient and suitable for Thai speech

recognition systems.

Table 4.1 Number of the rhyme units

Thai Syllable \Y Ct Units
1 Open syllable
1.1 Open long syllable 12 12
1.2 Open short syllable 12 12
2 Sonorant ending syllable
2.1 Short syllable ending with sonorant consonant 12 5 60

Inadmissible co-occurrences
Round vowel unit preceding
a labialized sonorant consonant
Front vowel unit preceding
a palatalized sonorant consonant
2.2 Long syllable ending with sonorant consonants 12 5 60
Inadmissible co-occurrences
Round vowel unit preceding

a labialized sonorant consonant 4 1 4
Front vowel unit preceding

. 4 1 -4
a palatalized sonorant consonant
3 Obstruent ending syllable
3.1 Short syllable ending with obstruent consonant 12 3 36
3.2 Long syllable ending with obstruent consonant 12 3 36

Total 200

Table 4.2 Number of the onset units

Onset Combination Units
Contextual onset 33C;i x 9V 297
Phonotactic onset 33Ci x (18V + 6VV) 792

4.2.3.1 Phonotactic Onset-Rhyme Model (PORM)

The onset units of the PORM are generated from combinations of releasing
consonants in all possible vowel contexts. Each phonotactic onset is created
differently, according to the duration of the releasing consonant and its
transition preceding the vowel, even for following vowels is the same short-
long pair. Except during the transitional period, the patterns of formant
transition of the same releasing consonant with different vowel contexts are
similar as indicated in Figures 4.8 and 4.9. Different combinations of the
releasing consonants and following vowels lead to 792 possible PORM
onsets. Figure 4.10 shows the formant transitions of the releasing consonant
[n] occurring in three different vowel contexts [i, ii, iia]. By considering the
difference of a releasing consonant plus transitional period in each vowel

context, onset units of PORM are individually modeled. For instance, onsets



89

consisting of the releasing consonant [n] occurring before vowels [i, ii, iia] are
separately modeled as [n_i, n_ii, n_iia]. According to their neighboring
vowels, the PORM onsets are thoroughly modeled. Consequently, PORM will
produce the most accurate onset units due to its completely contextual

modeling.

Onset HMMs Rhyme HMMs

Figure 4.6 Network of phonotactic onset HMMs and rhyme HMMs
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Rhyme HMMs

Figure 4.7 Network of contextual onset HMMs and rhyme HMMs
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4.2.3.2 Contextual Onset-Rhyme Model (CORM)

The contextual onset-rhyme models are proposed in this paper along with
the phonotactic onset-rhyme models. Acoustic analyses conducted on Thai
syllables showed similar patterns of formant transitions in particular cases.
Apart from the duration of formant transition of male and female speakers
as indicated in Figures 4.8 and 4.9, the formant patterns are similar in both
short and long vowel contexts for a given releasing consonant. Figure 4.11
shows the formant transitions of the releasing consonant [n] occurring in
three different vowel contexts [i, ii, iia]. By disregarding the duration of the
formant transition, these onset units can share formant-transitional
information. Therefore, combining similar onsets for short-long vowel pairs
with the same releasing consonant substantially reduces the number of
onset units. The number of these so-called contextual onsets is reduced to
297 in comparison with the 792 phonotactic onsets. CORM gives a lower
complexity in terms of search space than PORM, which has a larger number
of units. As a result, with fewer onset candidates, the CORM network
performs faster in the decoding process while it still produces the same
number of syllables as PORM does.

Compared with other context-dependent phone units, the number of
onset-rhyme units in the Thai language is smallest. The numbers of possible
combination units are summarized in Table 4.3. Consequently, with a small
number of onsets and rhymes, a remarkably small database size is required
for modeling of the onset-rhyme, compared with those for diphones and

triphones. This makes a recognition system more manageable.

O Short Vowels
W Long Vowels I §§
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80 - n Hi

60 -

Duration (ms)
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p t k ¢c phth khch b d m nng j w r I f s h ?
Initial Consonant

Figure 4.8 Duration of initial consonant preceding short and long vowels

for 6 male speakers
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Figure 4.9 Duration of initial consonant preceding short and long vowels

for 6 female speakers
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Figure 4.10 Spectrogram of the syllables /nit3/, /niit2/, and /niiat2/

Table 4.3 Numbers of various speech units applying to the Thai language

Speech Unit Possible Speech Unit Possible
monophone 58 CI Initial-Final 33I + 200F
intra-syllable 1,042 (left) / 1,041 CD. Initial-Final 2971 + 200F
inter-syllable 1,913 CORM 2970 + 200R
intra-syllable 7,769 PORM 7920 + 200R
inter-syllable 64,475 syllable 26,928

4.3 Construction of the Thai Continuous Speech
Recognition System
4.3.1 Thai Speech Corpus

One of the important issues on construction of a speech recognition system
is creating a speech corpus. Since there is no Thai continuous speech

corpus available for the research, it is necessary to create the new Thai
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continuous speech corpus. This section describes the procedure in creating
a Thai continuous speech corpus, beginning with design, then recording,

and labeling of the corpus.

4.3.1.1 Design a Thai Continuous Speech Corpus

In this research, the reading speech was selected for less significant
coarticulatory effects and pronunciation variations. A Series of Aesop’s
Fables in Thai was selected because it does not contain any foreign words.
Initially, seven Aesop’s Fables were analyzed on the distribution of phone
and onset-rhyme units. This set of data contains about a hundred
sentences. In order to create an initial acoustic model of onset-rhyme, a
number of training samples must be sufficient. Therefore, a new set of
sentences was composed in order to fulfill the insufficient onset-rhyme
units. The Royal Thai Dictionary was additionally used to find out all
possible onset-rhyme units existing in the Thai language. Finally, a speech
corpus contains a set of 111 sentences from Aesop’s Fables, 550 sentences
from a new composed set, and 420 sentences from reading paragraphs.
There are total 23,790 syllables in the training set.

To evaluate the speech recognition system, a set of test sentences has
to be created. In this research, a set of 100 sentences was excerpted from
five different reading stories — Thai central geography, Encyclopedia of
butterfly, Solar system, Cultivation of rose, and “Doi Suthep” national park.
The sentences, excerpted from those stories, are more natural in reading
than the composed sentences. There are total 4,985 syllables in these test

sentences.

4.3.1.2 Recording of Thai Utterances

Recording of Thai sentences was taken in the quiet laboratory environment.
The speech data were recorded with 16 bit resolution and 16 kHz sampling
frequency. Two different microphones were used to record simultaneously.
The stereo-recorded data were separate into the left and the right channel.
This recording gives two different output utterances from one utterance. A
complete set of training and test sentences was recorded from 9 male and 11
female speakers. The other 5 male and 5 female speakers recorded only a set

of test sentences. The total durations of the speech corpus used in this
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experiment for training and testing are approximately 68 hours and 36

hours, respectively

4.3.1.3 Labeling of the Recorded Thai Utterances

The initial set of sentences was label manually according to their
transcriptions by “Speech Labeler” program developed by the Thai Speech
Processing Research Group, Digital Signal Processing Research Laboratory
(Ahkuputra, 2002). User interface of the program is illustrated in Figure
4.11. The output label transcriptions are in phones and onset-rhyme models
conforming to the Hidden Markov Model Toolkit (HTK) format (Young, et al.,
1999).

The manual label transcriptions were used to create the initial
acoustic models. Then, these acoustic models were used to create the
automatic labeling system. The automatic labeling system aligns the
phonetic transcription of the sentence automatically. The alignment results

needed little correction.

Figure 4.11 “Speech Labeler” program

4.3.2 Speech Signal Processing and Feature Extraction

The speech samples were passed through a signal preprocessing routine
consisting of signal pre-emphasis and a smoothing window. In the signal
pre-emphasis step, the first-order FIR filter is used for flattening the
spectrum (Rabiner and Juang, 1993; Lee, et al., 1989; Lee, et al., 1990;



95

Juang and Furui, 2001; Furui, 2001). The Hamming window was applied in
order to divide the speech signal into frames. Since the MFCCs are the
speech parameterization for many speech recognition systems (Mokbel and
Chollet, 1995; Vergin, et al., 1999), this research employed the MFCC for
representing speech signals. The dynamic feature, the temporal derivative,
contributes significantly to improvement of recognition performance.
Therefore, the MFCCs were applied and the temporal derivatives were
additionally utilized (Maneenoi, et al., 2002; Ahkuputra, 2002; Jitapunkul,
et al., 2003; Maneenoi, et al., 2004).

4.3.3 Acoustic Modeling of Speech Units

This section describes the implementation of acoustic modeling of various
speech units. This research mainly used four speech units. The context-
independent phone, a monophone, was modeled initially, and then this
speech unit was used for building the triphone system. The modeling of
other speech units, Initial-Final and onset-rhyme, depended on their types.
The Initial and the onset were modeled differently, according to their context,
while both of the final and the rhyme were modeled as left context-
independent units.

Model parameters were initiated and re-estimated using the standard
Viterbi alignment process and Baum-Welch algorithm together with the
labeled transcriptions. A set of initial acoustic models was then trained with
the embedded Baum-Welch algorithm in which a composite model for each
complete sentence was used to probabilistically assign observations to states
and then update the model parameters with only the unlabeled
transcriptions.

To achieve a higher performance, an iterative divide-by-two clustering
algorithm was utilized to increase the Gaussian mixture component. The
complexity of the models was increased in this mixture incremental.
Experimental results will be reported benefit in varying the number of
Gaussian mixture components.

The training process of the monophone, Initial-Final, and onset-rhyme
models is generally similar as depicted in Figure 4.12. To the trainability
problem of the triphone models, the training process is more complex than
the others. The acoustic model construction of these speech units will be

described in the following section.
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Figure 4.12 General training process

4.3.3.1 Construction of the Context-Independent Phone Model — the
Monophone Model
The phone models use standard three state left-to-right topologies with no
skip state. Primarily, monophone models were initiated using a single
Gaussian observation distribution from the labeled data. The standard
Viterbi alignment process and Baum-Welch algorithm were applied to obtain
the initial acoustic- models. A set of initial acoustic- models, was then trained
with the embedded Baum-Welch - algorithm. To  achieve a higher
performance, an iterative divide-by-two clustering algorithm was utilized to

increase the Gaussian mixture component.
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4.3.3.2 Construction of the Context-Dependent Phone Model — the
Triphone Model

4.3.3.2.1 Syllable Boundaries
The presence of syllable boundaries in the phone sequences complicates the
use of context-dependent phonetic models and this can be dealt with in one

of two ways.

A. Intra Syllable Context Dependency
Syllable boundaries represent a distinct eontext and further expansion of
the context across syllable boundaries is blocked.
CHAN KIN KHAAW = gil ch+a ch-a+n a-n k+i k-i+n i-n kh+aa

kh-aa+w aa-w sil

B. Inter Syllable Context Dependency
Expansion of context can occur into surrounding syllables. The presence
of syllable boundaries can be either ignored or used as additional
contextual information.
CHAN KIN KHAAW = gil sil-ch+a ch-a+n a-n+k n-k+i k-i+n

i-n+kh n-kh+aa kh-aa+w aa-w+sil sil

In continuous speech, as opposed to isolated word speech with each
word delimited by silence, co-articulatory effects occur across the syllable
boundaries since these often have important acoustic significance. However,
there are several remarks when using the inter syllable triphones and the

intra syllable triphones.

= . Size

The total number of contexts is much smaller than in the inter syllable
case because many contexts will never appear in a corpus. A greater
proportion of contexts will be seen in the training data. Moreover, the
problem of unseen contexts is less important in this case. The total
number of contexts depends on the dictionary but, for modeling the
whole Thai language, an intra syllable triphone system needs models for

7,769 distinct contexts while an inter syllable triphone system requires
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64,775 models. However, only 10,642 of these appear in the training
data.

= Complexity

With an intra syllable triphone system, every realization of a syllable is
the same and can be taken straightforward from a dictionary. With an
inter syllable triphone system, the choice of the first and last models of
each syllable depends on the preceding and following syllables. The
networks for the decoding process of an intra syllable triphone and an
inter syllable triphone systems are shown in Figures 4.13 and 4.14.
Obviously, the inter syllable triphone system greatly complicates the

decoding process.

Figure 4.13 Intra-syllable triphone network
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Figure 4.14 Inter-syllable triphone network
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4.3.3.2.2 Trainability Problems
Due to the fact that the acoustic realization of the phonemes depends
heavily on the phonetic context, it is essential for efficient speech recognition
to model this context dependency (Lee and Hon; Lee, et al., 1990). The most
commonly used context dependent phoneme model is the phoneme model in
a triphone context. Although triphones provide an excellent modeling of
context dependency, their exclusive used as acoustic models is prohibitive
for vocabulary-independent speech recognition because the set of triphones
in the recognition vocabulary often contains triphones that cannot be
observed in the training. Another serious problem is that many triphones
occur very seldom in the training corpus so the estimation of the models
may not be reliable. It is impractical to train a separate model from only a
few occurrences especially if mixture Gaussian distributions are used. Since
there are many triphone contexts, which occur only a few times in the
training corpus and many more than that do not occur at all, special
methods must be made to assure that a triphone system is trainable and its
parameters can be estimated reliably. This trainability problem becomes
even more serious if larger amounts of context are to be taken into account.
There are several ways in which the trainability problem can be relieved
(Odell, 1995):

* Backing-Off
When there is insufficient data to train a given model, it is possible
to back-off and use less specific model for which there is enough
data. For example, a diphone model could substitute for a triphone,
which has‘only a few examples in the training corpus. If there were
few occurrences of that diphone, a monophone model could be used.
This guarantee the model used is well trained but it can mean that
relatively few models will have full triphone context especially if the
training corpus is relatively sparse.

* Smoothing
In order to maintain a greater degree of context dependency, it is
possible to smooth the parameters of more specific model with those
of the less specific model. One way in which this can be
accomplished is to use interpolation between the less and more

specific models with the interpolation weights chosen using deleted
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interpolation (Lee and Hon, 1989). This method preserves the
context dependency of the unsmoothed models but increases their
robustness by effectively sharing training corpus from other
contexts to produce more accurate parameters.
*» Sharing

Another method for increasing the robustness of the system is to
explicitly share models or parts of models between different contexts
(Young, 1992). This method is sensible since the acoustic
realizations of a phone occurring in different contexts are often very
similar. This method also ensures that all the system parameters

are well trained while maintaining the model context dependency.

All these techniques require that a choice is made about which
parameters are backed-off to, smoothing with, or shared with others. For a
simple backing-off strategy, a simple and obvious hierarchy exists; triphones
are more specific and less trainable than biphones, which are more specific
and less trainable than monophones. The weakness of this scheme is big
jumps in specificity. Similarly, smoothing of parameters must occur through
some forms of hierarchy. However, more flexibility is possible since different
parts of a model can be smoothed in variable proportions with different
models. For instance, initial state can be smoothed with a left diphone to
preserve as much left context dependency as possible, while the final state
can be smoothed with the corresponding right diphone.

Finally, sharing presents even more possibilities. Parameter sharing
between models of the same complexity is possible as well as sharing with
models further up the hierarchy. To improve the robustness of the
parameter estimation, the emitting probabilities of the triphone states are
shared between clusters of states, which are similar according to a distance
measure. The training data assigned to the states of one cluster in used to
estimate the shared emitting probability of these states. Sharing schemes

can be divided into two approaches, bottom-up and top-down.

4.3.3.2.3 Bottom-up Approach
Bottom-up approach to the data insufficiency problem starts by assuming
that all contexts are distinct, but to ensure that the parameters of each

model can be reliably estimated, some forms of sharing is required. This
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method can be accomplished by examining the original models and
determining sets that can share parameters. These sets are chosen to ensure
that the resulting models can be robustly estimated, and that members of
the sets are sufficiently similar to ensure that the model will provide

accurate representations.

A. Generalized Triphones

One of the methods to implement parameter sharing is to compare models
from different triphone model contexts and merge those similar models. The
merged models will be estimated from data. If the more realizations of the
triphone in the different contexts are similar, the more accurate models are
obtained. The generalized triphones evolved from the discrete distribution
show better performance than triphones, which were smoothed with less
specific models using deleted interpolation (Lee, et al., 1990; Deng, et al,
1992). However, sharing at the model level may not be appropriate method

for triphone models composed of distinct states (Odell, 1995).

B. State Clustering

Sharing distributions at the state level share the output distributions among
states. This sharing is constrained so that distributions are specific to a
particular state position in a particular phones and they are only shared
among the same state occurring in different contexts. The clustering is

performed on single Gaussian diagonal covariance models in two stages;

* An iterative merging procedure, which merges the most similar
pair of distributions according to the minimum distance between
them. This stage terminates when this minimum distance exceeds
a predetermined threshold.

= A merging procedure ensures the ftrainability of the models by

ensuring that the occupancy y of each tied distribution exceeds

some thresholds. Each distribution with occupation counts below

this threshold is merged with the nearest distribution (with the

minimum value of d (i, j)).

Data-Driven clustering is performed by placing all states in individual

clusters (Anderson, et al., 1994). The pair of the clusters, which when
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combined would form the smallest resulting cluster are merged. This process
repeats until either the size of the largest cluster reaches the threshold or
the total number of clusters has fallen to the specific value. The size of
cluster is defined as the greatest distance between any two states. The
distance metric depends on the type of state distribution. For single
Gaussian distributions, a weighted Euclidean distance between the means is
used, and for tied-mixture systems, a Euclidean distance between mixture
weights is used. For all other cases, the average probability of each
component mean with respect to the other state is used.

The distribution between distributions, which will initially be for a

single context and later for a cluster of contexts, i and j is calculated using

d(l,J)_{lZn:(’u_”"u—ﬂ‘)z}z 4.1

Ri=1 030
where n is the dimension of the data, g, and o, are the mean and

variance of the k” dimension of the Gaussian distribution of state s, either

i or j. The values y, for the untied distributions are calculated during

preceding training and then summed to give the occupation counts after
merging.

This procedure results in a set of models with Gaussian probability
distributions for clusters of contexts with similar acoustic features and
ensures that each distribution has enough training samples to accurately
estimate its parameters. This procedure reduces the total number of
distributions significantly but results in a much smaller reduction in the
number of distinct models because different models may share two state
distributions and only differ in the final one. This preserves a higher degree
of context dependency by allowing for contextual factors that only effect part
of a phone. For instance, models with the same right context but different
left contexts may have different initial state distributions while sharing those
for the final and center states.

The main drawback of the bottom-up approach is that for triphones,
which were not observed in the training corpus, no tied model is available.
These unseen triphones are modeled by so-called backing-off models
(Aubert, et al., 1996). Usually these models are simple generalizations of the

triphones such as diphones or monophones. The training of the backing-off
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models is performed on the data of the triphones, which were not involved in

the clustering process.

4.3.3.2.4 Top-down Approach

The bottom-up approach is limited, as it requires examples of each context
to produce initial estimates of the model parameters used in the clustering
procedure. It is impossible to use such approach to construct models for
contexts that may occur during recognition but do not appear in the training
corpus. It is also unreliable for contexts that only occur a few times, since
the examples may be unrepresentative and so the parameter estimates used
during clustering will be inaccurate.

This problem can be minimized by ensuring that the training data
gives adequate coverage of the models needed for recognition. However, this
solution seems to be possible only for small vocabularies and system using
word-internal context dependency. For large vocabularies and cross-word
context dependent systems, it is virtually impossible to ensure that the
training data will include examples of every possible context.

Using the top-down approach based on the decision trees avoids the
problem of unseen models by using linguistic knowledge together with the
training data to decide which contexts, including the unseen ones, are
acoustically similar (Odell, et al., 1994; Odell, 1995).

A decision tree for each phoneme selects which of a set of models is
used in each context. The model is chosen by traversing the tree, starting
from node then selecting the next node depending on the answer to a simple
question about the current context. For binary decision trees, these
questions will normally be yes/no questions concerning membership of
particular sets of phones.

For example, in the decision tree shown. in Figure 4.15, the root
question is answered by checking if the immediately preceding phone, the
left context, is a nasal - m, n, ng. If the actual context is n-i+t, the next
question to be asked would concern whether the following phone was an
approximant, j and w. Since t is not a member of this set and the answer no
results in a terminal node, the model labeled C would be used in the context.

This procedure has several advantages over bottom-up approach

» The hierarchical structure and the form of the questions mean

that the tree will find an equally context dependent model for every
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context. This method does not require the backing-off technique to
less specific models for contexts that have not occurred in the
training data.

Expert knowledge can be incorporated in the form of set of
questions that are used to split each node of the tree and this will
be used to determine which contexts are similar to any unseen
ones.

The construction procedure can be constrained to ensure that leaf
nodes are only generated for sets of contexts that have sufficient
examples in the training data to reliably train an accurate model.
The clustering does not suffer from the use of under-trained
parameters.

A greater degree of context dependency than triphones can be

implemented by extending the types of questions.
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Figure 4.15 A decision tree
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A. Decision Tree

To exploit the advantages of the top-down decision tree based approach, it is
necessary to be able to automatically construct the trees. The construction
procedure should aim to ensure that the resulting set of models provide an
accurate and robust estimate of the underlying speech. The trees were
constructed in locally optimized fashion starting from a single root node
representing all contexts. As each node is created, an optimal question
chosen from a finite set is selected to maximize the increase in probability at
the resulting terminal nodes generating the training samples. Then the
current set of terminal nodes is searched to find the one, which can be split
using its optimum question to provide the largest increase in the total
probability of the training data. If the increase of probability exceeds a
threshold and the number of training samples associated with the node
exceeds a threshold, the node is divided using the optimum question and
two new terminal nodes were created. When none of the terminal nodes can
be split, the procedure terminates and the tree is finished.

Several experiments suggested that sharing at the state distribution
rather than at the model level led to improved performance (Hwang and
Huang, 1992, Hwang and Huang, 1993). This state-tying approach also has
the benefit of simplicity since the underlying model topology is used while
the additional alignment technique, such as linear or dynamic time warping,
does not need during constructing the trees.

The aim of state-tying is to reduce the number of parameters of the
speech recognition system without a significantly degradation in accuracy.
The states of the triphones used in training, which are similar according to a
distance measure are tied together. ‘First, a suitable triphone list is
assembled according to the training corpus. Because this list has to be quite
large to achieve an accurate modeling of the acoustic context, simple models
are used for emitting probabilities — one Gaussian density with full or
diagonal covariance matrix. Using a segmentation of the training data, the
mean and the variance of the triphone states are estimated. The triphone
states are then subdivided into subsets according to their central phoneme
and their position within the phoneme model. Inside these sets, the states
are tied together according to a distance measure. In addition, it has to be
assured that every model contains a sufficient amount of training data. The

resulting models are then re-estimated.
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B. Decision Tree Construction

There are a number of criteria for decision tree construction procedure;

= Each leaf must have a minimum number of samples, a minimum
occupancy, to ensure that the parameters of the final models can
be accurately estimated.

= A finite set of questions can be used to divide each node. These
questions constrain the way each node may be divided and also
allows the incorporation of expert knowledge needed to predict
contextual similarity when little or no data is available to
determine which contexts are acoustically similar.

* Hidden Markov models should be able to accurately capture the
variability of the terminal nodes. Gaussian mixture probability
distributions should be able to accurately represent the training

samples at each terminal node.

The first criteria can be satisfied by restricting the choice of question
to those models to ensure that any created nodes have a sufficient number
of associated samples in the training data. This restricted set of questions is
searched in order to maximize the accuracy of the resulting hidden Markov
models. Theoretically, this means attempting to minimize the within class
variance while maximizing the between class variance. A simple scheme,
which attempts to maximize the accuracy of the models with respect to their
own class, is a maximum likelihood approach. This approach is very
attractive since it is well matched to the way the parameters of models are

subsequently estimated.

C. Likelihood Based Decision Criteria

Let S be a set of HMM states and let L(S ) be the log likelihood of S
generating the set of training frames F' under the assumption that all states
in § are tied, i.e., they share a common mean ,u(S) and variance Z(S ) and
that transition probabilities can be ignored. Then, assuming that tying states
do not change the frame/state alignment, an approximation for L(S ) is given

by (Young et al., 1994)
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L(S)= Zzlog(P(O.f;ﬂ(S),E(S)))h (Of) (4.2)

feF seS
where y, (of) is a posteriori probability of the observed frame o, being

generated by state s. If the Gaussian probability distribution function is

employed, then

D0 | ) S ACH) (4.3)

seS feF

L(S)= —% (log[(2fr)"

where n is the dimension of the data. Thus, the log likelihood of the whole

data set depends only on the pooled state variance Z(S ) and the total state

occupancy of the pool, ZZ v, (of). The former can be calculated from

seS feF
means and variances of the states in the pool, and the state occupancy
counts can be obtained during the preceding Baum-Welch re-estimation. For

a given node with state S, which is partitioned into two subsets, §| (q) and

Sn(q), by question ¢, the node is split using the question ¢, which
maximizes
AL, = LIS (q)+ (s, (¢))- L(5) (4.4)

provided that both AL{I* and the total pooled state occupation counts for

both §, (q*) and S, (q*) exceeds their associated thresholds.

As a final stage, the decrease in log likelihood is calculated for
merging terminal nodes with differing parents. Any pairs of nodes for which
this decrease is less than the threshold used to stop splitting are then

merged.

4.3.3.2.5 Triphone Model Construction Procedure
The monophone-based  system is used for creating the triphone system

according to the following procedure:

1) Manually labeled monophone training: Initiated from a set of single
Gaussian distributions, monophone models were generated from the
labeled data using the standard Viterbi alignment process. Then,
single Gaussian monophone models were reestimated using the

Baum-Welch algorithm.



108

2) Triphone construction: In order to create a triphone system from a
trained-monophone system, monophone models were copied and their
transition matrices were tied. Then, triphones were initially trained
using a forward-backward algorithm. A tree-based clustering was
applied to cluster data from a phonetic decision tree. The final
processes were state-tying, which merged any identical triphones, and
re-training of state-tied triphones.

3) Mixture incrementing: A single Gaussian mixture was split to attain a
higher recognition performance. Finally, the splitting mixture models

were re-estimated using the forward-backward algorithm.

In order to construct context-dependent triphones, context-independent
monophones were cloned and their transition matrices were tied to obtain a
much more reliable estimation. Then four passes of the Baum-Welch
algorithm were applied to a set of triphones to obtain the triphone
parameters. After the initial training of triphones, state-clustering is an
efficient technique to form the robust estimation of parameters of mixture
distributions. To avoid the unseen triphone problem, a tree-based clustering
technique is selected. This technique utilizes a log likelihood criterion and
only supports a single-Gaussian continuous density output distribution. The
objective of state-tying is to group triphone states into a number of
equivalence classes using various linguistic questions concerning the
identity of the base phone and the triphone context (Woodland, et al., 1994).
Therefore, the total number of mixtures was reduced during the state-tying
process. Iterative re-estimation by four passes of the Baum-Welch algorithm
and incrementing of mixture components by a mixture-splitting procedure
were applied to the tied-state triphones. Finally, the number of Gaussian

distributions was increased to sixteen components per state.

4.3.3.3 Construction of the Initial-Final Model

The Initial-Final labels were generated from manual labeling. The Initial
segment comprises the initial consonant only while the final consists of the
rest of syllable. However, the Initial is contextually modeled in two ways, the
context-independent Initial and the context-dependent Initial. The context-
independent Initial modeling is independent of its vowel context whereas, the

context-dependent Initial is modeled according to its vowel context. The
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duration of the Final is longer than that of phone unit. Then the number of
HMM states used to model the Final is more than that for a phone. A three
state HMM was used for modeling the Initial, whereas the Final is modeled
with a six state HMM. The training of the Initial-Final model is started from
a single Gaussian observation distribution from the Initial-Final labeled data
with the standard Viterbi alignment process and Baum-Welch algorithm.
Then the labeled trained models are iteratively re-estimated with the
embedded Baum-Welch algorithm. Finally, the number of Gaussian mixture

components is increased up to sixteen mixtures per state.

4.3.3.4 Construction of the Onset-Rhyme Model

Initially, onset-rhyme labels were generated from manual labeling. The initial
consonant segment and its transition towards the vowel were then converted
to the onset segment, corresponding to two types of onset-rhyme models,
CORM and PORM. The rhyme segment is converted from the steady vowel
portion and the optional final consonant. Since the rhyme consists of the
vowel including the optional final consonant, this implies that the rhyme can
comprise two connected phones. Therefore, the duration of the rhyme is
longer than that for the phone unit. Then the number of HMM states used to
model the rhyme is more than that of phone. A three state HMM was used
for modeling onset, whereas the rhyme is modeled with a six state of HMM.
The onset-rhyme models were initiated starting from a single Gaussian
observation distribution from the onset-rhyme labeled data. The standard
Viterbi alignment process and Baum-Welch algorithm were applied to obtain
the initial acoustic models. A set of initial acoustic models, was then trained
with the embedded Baum-Welch algorithm. Iterative re-estimation by four
passes of the Baum-Welch algorithm and incrementing of mixture
components by a mixture-splitting procedure were employed to train the
models. To achieve a higher performance, an iterative divide-by-two
clustering algorithm was utilized to increase the number of Gaussian

mixture components up to sixteen mixtures per state.

4.3.4 Mixture Component Incrementing
Mixture component incrementing provides an iterative mechanism for
building a multiple mixture component system from a single Gaussian

system. An output distribution of M mixture components is converted to an



110

M +1 component mixture distribution by cloning the mixture component
with the largest weight and then perturbing the mean vectors of the two
identical distributions by adding and subtracting 0.2 time of standard
deviations respectively (Valtchev, 1995). The new mixture system is then
trained using the Baum-Welch algorithm.

Traditionally, mixture densities of HMMs are built using the
segmental k-means procedure to initialize the required number of mixture
components and then retraining the models using the Baum-Welch
algorithm. However, this approach requires exact the number of mixture
components prior to building and assessing the performance of the system.
The mixture component incrementing approach has been produced the
similar results to the k-means clustering procedure, while, at the same time,
the advantage of the former is that the number of mixture components can
be continuously increased to obtain any desired balance between

performance and model complexity (Young and Woodland, 1994).

4.3.5 Architecture of the Recognition System

All recognition systems were based on hidden Markov models using
continuous density diagonal covariance mixture Gaussian output probability
distributions. The output probability distributions could be shared at the
state level but there was no sharing of mixture components that is the
models were continuous density rather than tied-mixture or semi-

continuous.

4.3.5.1 Word Network

A word network is defined using HTK Standard Lattice Format (SLF) (Young,
et al., 1999). The SLF file contains a list of nodes representing syllables and
a list of arc representing the transition between syllables. The transition can
have probabilities attached to them and these can be used to indicate
preferences in a grammar network. The construction of a word level SLF
network can be specified by the grammar in form of regular expression. The
expressions are constructed from sequences of syllables and metacharacters

(Young, et al., 1999). Examples of word networks are shown in Figure 4.16.
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Figure 4.16 Word network for connected digit recognition

4.3.5.2 Language Modeling
In the recognition, two types of models, a no-language model and a bigram
language model, are applied. In no-language model, each syllable can
connect to all other word with optional silence. This no-language model is
employed in order to evaluate the actual performance of acoustic models.
The perplexity of the no-language model is equal to the number of words.
For a bigram language model, a word can only connect to words that
can legally follow it. This bigram language model is used to evaluate the
performance of the recognition system, which is composed of an acoustic
model and grammar. A number of text corpus excerpted from various
reading paragraphs were used to create a bigram language model. The
language model is used to perform the linguistic post-processing and
determine the optimal syllable sequence. Building a complex language model
would required more study on the syntactic and semantic rules of Thai

continuous speech.

4.3.5.3 Vocabulary and Dictionary

The Thai language is found to be relatively discrete in comparison with
Western languages. Therefore, recognition of syllable sequences in the
utterance is more reasonable than word sequence. The Royal Thai Dictionary

is used as the reference to produce an inventory of syllables.

4.3.5.4 Decoding Process

In a continuous speech recognition system, decoding process is controlled by
a recognition network compiled from a word-level network, a dictionary, and
a set of HMM models. A recognition network ultimately consists of HMM

states connected by transitions. However, it can be viewed at three different
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levels: word, model, and state as illustrated in Figure 4.17 (Young, et al.,
1999).

Figure 4.17 Recognition network level

A network describes the sequence of words that can be recognized
while a dictionary describes the sequence of HMM models that constitute
each word. A word level network will typically represent either a task
grammar, which defines all of legal word sequences explicitly or a word loop,
which simply puts all words of vocabulary in a loop and allows any word to
follow any other word. Word-loop networks are obtained from stochastic
language modeling. When a word network is loaded into a recognizer, a
dictionary is used to convert each word in the network into a sequence of
acoustic units represented by HMM models. Then, a word network is
expanded into a HMM level network. Once the HMM network is constructed,
it can be input to the decoder module and used to recognize speech input
(Young, et al., 1999).

The task of the decoder is to find the paths through the network,
which have the highest log probability. A log probability of each path is
computed by summing the log probability of each individual transition in the
path and the log probability of each emitting state generating the
corresponding observation. Within-HMM transitions are determined from the
HMM Parameters, between-model transitions are constant, and word-end

transitions are determined by the language model likelihood attached to the
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word level network. The most likely state sequence through a network can be
found using the token passing implementation of the Viterbi algorithm. A
token represents a partial path through the network extending from the
beginning to the present time. At the end of the utterance, the most likely
sequence of words is recovered by trace back through the decisions made
about transitions between words. The recognition process is depicted in

Figure 4.18.
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Figure 4.18 Recognition process

4.3.5.4 Evaluating Recognition Results

After the recognizer has processed the test data, the next step is to analyze
the results. The transcription output from the recognizer is compared with
the original transcription. Using dynamic programming, an optimal string
match is obtained from mateching each of the recognized and reference label
sequences. The optimal string match is label alignment, which has the
lowest possible score.

One of the criteria used for evaluating the efficiency of speech units is
accuracy. The accuracy of speech units is computed from 2 formulas called
“Percentage Correction” and “Percentage Correction” (Young, et al., 1999).

When the optimal alignment has been found, the number of
substitution errors (S ), deletion errors (D), and insertion errors (/) can be

calculated. Then, the percentage correct is
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Percentage Correct = N_TD_S x100% 4.4)

where N is the total number of labels in the reference transcriptions. For
many purposes, the percentage accuracy defined as

Percentage Accuracy = % x100% (4.5)

is a more representative figure of recognizer performance. An example of

labeled transcription and recognition sentence is shown in Figure 4.19.

[H= 23,D= 1, S= 2, I= 1, N= 26]

phlaa/nin a j r aa kh aa s aa m ph a n b(aa|t sil
thiaal lInajraakhaasaamphanbla |tsil
Deletion Substitution

Substitution

LAB: silkhaw s vv
REC: silkhawsvv

Insertion

Figure 4.19 Evaluation of recognized sentence

4.4 Summary

This chapter has reviewed general speech units used in speech recognition
to find the appropriate speech unit for the Thai language. However, the
existing speech units seem to be inappropriate when applying to the Thai
language according to the criteria of a good speech unit.

The onset-rhyme model is proposed in this chapter. The model
comprises a pair of onset and rhyme units, which makes up a syllable. The
onset comprises an initial consonant and its transition towards the following
vowel. Together with the onset, the rhyme consists of a steady vowel segment
and a final consonant. Two types of the onset-rhyme models, contextual
onset-rhyme model (CORM) and phonotactic onset-rhyme model (PORM), are
differently modeled according to their contexts.

The construction of the Thai continuous speech recognition system
begins from speech corpus design, speech recording, and speech labeling.
Then the HMM acoustic modeling is applied to speech units. The triphones
have the trainability problem so the additional techniques, model clustering

and state-tying, are required to overcome this problem.



Chapter 5

Experimental Results

This chapter describes the configurations of the Thai continuous speech
recognition system used in this research. Details of recognition results
performed with the Hidden Markov Model Toolkit (HTK) will be elaborated.
The experiments were conducted for two main schemes, a recognition
system using acoustic modeling only and a recognition system using both
acoustic modeling and language modeling. In order to obtain an actual
efficiency of the acoustic model, a language model should not be applied. On
the other hand, incorporating the language model can boost the performance
of a speech recognition system.

The experiment on gender effect will be conducted to study the effect
of gender-dependent and gender-independent modeling. In the next
experiment, mixture incrementing will be performed on the acoustic models.
The objective of this experiment is to observe the improvement of the
acoustic model by mixture incrementing technique. The first two
experiments are conducted on the least complex acoustic unit, the
monophone. The parameters obtained from these experiments will be used
throughout the experiments in this dissertation. The other experiments will
be carried on the triphone, Initial-Final, and onset-rhyme acoustic units.
The final experiment incorporates the language model to the recognition
system. This experiment will be conducted on the monophone, triphone,
Initial-Final, and onset-rhyme respectively.

Recognition results of the system using the acoustic units—
monophone triphone, Initial-Final, and onset-rhyme—are shown and in
terms of syllable correction and accuracy. Apart from the syllable accuracy,
the recognition results of phone, Initial-Final, and onset-rhyme acoustic
units were analyzed. The analysis of the recognition results at the bottom
level of the system, the acoustic level, reveals the actual efficiency of the

speech unit.
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5.1 Thai Continuous Speech Recognition System

This section described the configurations of the Thai continuous speech

recognition system used in this research.

5.1.1 Speech Signal Processing and Feature Extraction

The speech samples were passed through a signal preprocessing routine
consisting of signal pre-emphasis with a coefficient of 0.97 (Rabiner and
Juang, 1993; Lee, et al., 1989; Lee, et al., 1990; Juang and Furui, 2001;
Furui, 2001). The 25 ms Hamming window was applied every 10 ms in order
to divide the speech signal into frames. This research employed a 12-order
MFCC together its temporal derivatives for speech signal representation.
(Maneenoi, et al., 2002; Ahkuputra, 2002; Jitapunkul, et al., 2003).

5.1.2 Language Modeling

In the recognition, two types of models, a no-language model and a bigram
language model, are applied. The perplexity of the no-language model is
3200. A number of text corpus excerpted from various reading paragraphs,
approximately 800,000 syllables, were used to create a bigram language

model. The perplexity of this bigram language model is 252.08.

5.1.3 Vocabulary

The pronunciation dictionary is a syllable dictionary composed from
monophones, Initial-Final units, or onset-rhyme units. In addition, the
triphone network can be generated from the simple monophone dictionary
(Young, et al., 1999). This dictionary consists of 3,200 syllables excluding
tones, which covers almost 33,000 vocabulary words in the Royal Thai

Dictionary.

5.2 Experiments on Gender Effect

Generally, there are different characteristics between male and female
speech indicated in the frequency domain. The distinction can be
represented by the location of the first three formants for vowels and the
fundamental frequency, since men and women have different size of

articulatory organ. This experiment intends to study the characteristics of
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gender effect. Therefore, the experiment will be performed using systems
that were gender-independent and gender-dependent. The monophone
model was used in the experiment. For the gender-dependent system, the
acoustic models were separately trained for male and female speakers. On
the other hands, the acoustic models for the gender-independent system
were conjointly trained on male and female speakers.
The experiments will be conducted in 3 schemes:
1. Recognition of male and female speakers on gender-dependent
modeling
2. Recognition of male and female speakers on gender-independent
modeling
3. Recognition of male speakers with the acoustic model created from
female speakers, and recognition of female speakers with the
acoustic model created from male speakers
The system configuration is set as follows:
* The standard 3-state left-to-right HMM with no skip state
» 12 order MFCCs with delta coefficients
* A single Gaussian output distribution
* 58 monophone models
» Training speakers — 9 male speaker and 11 female speakers
» Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent

females and 5 speaker-independent females

5.2.1 Experimental Results
A. Recognition of male and female speakers on gender-dependent
modeling

The syllable recognition results of gender-dependent modeling are shown in
Tables 5.2.1 and 5.2.2. The speaker-dependent system of both male and
female speakers gives higher recognition results than the speaker-
independent system. The results show the correction at 15.6% and 15.9%
for the male and female speaker-dependent systems. For the speaker-
independent systems, the correction of male and female speakers is 12.2%
and 12.7%.

Due to the high insertion rate of the phone model, the accuracy is

very low compared to the correction. The accuracy of male and female
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speakers in the speaker-dependent system is 4.5% and 5.4%, while the
speaker-independent system gives 0.7% and 2.0% of the accuracy for male

and female speakers respectively.

Table 5.2.1 Syllable recognition results of male speakers on the system

trained with male speakers

System Correction Accuracy
Speaker-dependent 15.6% 4.5%
Speaker-independent 12.2% 0.7%

Table 5.2.2 Syllable recognition results of female speakers on the system

trained with female speakers

System Correction Accuracy
Speaker-dependent 15.9% 5.4%
Speaker-independent 12.7% 2.0%

B. Recognition of male and female speakers on gender-independent
modeling

The syllable recognition results of gender-independent modeling are shown
in Tables 5.2.3 and 5.2.4. The results show the correction at 13.0% and
13.2% for the male and female speaker-dependent systems. For the speaker-
independent systems, the correction of male and female speakers is 10.3%
and 11.0%. The accuracy of male and female speakers in the speaker-
dependent system is 2.7% and 3.2%, while the speaker-independent system
gives 0.1% and 0.6% of the accuracy for male and female speakers
respectively.

Comparing the syllable recognition results to gender-dependent
modeling, gender-independent modeling gives lower correction and accuracy
of both speaker-dependent and speaker-independent system. The correction
and accuracy of gender-independent modeling for male and female SD
system is lower than gender-dependent modeling around 2.7% and 2.0%.
For the male and female SI system, the performance of gender-independent
modeling is worse than the performance of gender-dependent modeling

around 1.8% of correction and 1.0% of accuracy respectively.
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Table 5.2.3 Syllable recognition results of male speakers on the system

trained with male and female speakers

System Correction Accuracy
Speaker-dependent 13.0% 2.7%
Speaker-independent 10.3% 0.1%

Table 5.2.4 Syllable recognition results of female speakers on the system

trained with male and female speakers

System Correction Accuracy
Speaker-dependent 13.2% 3.2%
Speaker-independent 11.0% 0.6%

C. Recognition of male speakers with the acoustic model created
from female speakers, and recognition of female speakers with the
acoustic model created from male speakers

When using the automatic gender classification, the misclassification may be

occurred. In this severe condition, the speakers are tested with the acoustic

model created from a different gender. The recognition results show very
poor performance in this case. The syllable recognition results of gender-

independent modeling are shown in Tables 5.2.5 and 5.2.6.

Comparing the syllable recognition results to gender-dependent and
gender-independent modeling, the correction and accuracy of male and
female SD system is lower than gender-dependent modeling around 10.6%
and 17.7%, and around 8.0% and 15.7% for gender-independent modeling.
For the male and female SI system, the performance also degrades from
gender-dependent - and gender-independent modeling around 9.7% of
correction and 15.1% of accuracy, and around 7.9% of correction and 14.1%

of accuracy respectively.
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Table 5.2.5 Syllable recognition results of male speakers on the system

trained with female speakers

System Correction Accuracy
Speaker-dependent 4.8% -10.8%
Speaker-independent 2.7% -14.7%

Table 5.2.6 Syllable recognition results of female speakers on the system

trained with male speakers

System Correction Accuracy
Speaker-dependent 5.5% -8.5%
Speaker-independent 2.9% -12.7%

5.2.2 Discussion

Most parametric representations of speech are highly dependent on a group
of speakers, and probability distributions suitable for a certain group of
speakers may not be suitable for other group of speakers. Speaker attributed
variability is undesirable in speaker-independent speech recognition system.
Especially, the gender of the speaker is one of the influential sources of this
variability. The recognition results the system based on gender-dependent
modeling are higher than those of gender-independent modeling. When the
speakers are tested with the acoustic model created from a different gender,
the performance of the system would be highly degraded. These
experimental results support the use of the gender specific model

throughout this dissertation.

5.3 Experiments on Mixture Incrementing

To improve the accuracy of the recognizer, the number of Gausian mixture
components per state was increased. Increasing the number of Gaussian
mixture components per state can improve the recognizer’s performance up
to a point where not enough information is available to fit the actual shape
of the probability contour.

Though initialization of the output distribution can start from any
number of mixtures, it has been found to be more effective to train mixtures

incrementally. We first create one mixture component per state, train it and
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then build two mixture components per state, etc. This process can be
continued until the required number of mixture components is trained. The
number of re-estimations to perform before incrementing mixtures is usually

chosen to be four or more. This process is shown in Figure 5.3.1.

Transcription

Increment
Mixtures

Single Mixture | AL
- ['rasmin
Muodels | &

!
|

Figure 5.3.1 The process of mixture incrementing and training

In order to determine the improvement of the acoustic models by
incrementing the number of mixtures, the experiments are performed
beginning at one mixture. As already mentioned, in the training iterations,
the number of Gaussian mixture components was increased at a time up to
the number of 256, with 2n at a time thereafter.

The system configuration is set as follows:

» The standard 3-state left-to-right HMM with no skip state

= 12 order MFCCs with delta coefficients

= 58 monophone models

» Training speakers — 9 male speaker and 11 female speakers

» Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11, speaker-dependent

females and 5 speaker-independent females

5.3.1 Experimental Results

Figures 5.3.2-5.3.9 illustrate the correction and the accuracy, as the number
of mixtures is increased. As evident from Figures 5.3.2-5.3.5, the syllable
recognition rates were increased when the number of mixture components
was increased. The syllable recognition results of speaker-dependent
systems tend to continually increase when the number of mixture

components was increased. On the other hands, the syllable recognition



122

results of speaker-independent systems tend to be gradually increased. At
256 mixture components per state, male and female SD systems produce
46.1 % and 44.3 % of syllable correction, and 37.2 % and 38.3 % of syllable
accuracy. For male and female SI systems, the syllable correction rates are

20.7 % and 25.6 %, and the syllable accuracy rates are 8.8 % and 15.3 %.
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Figure 5.3.2 Syllable recognition results of male SD system
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Figure 5.3.3 Syllable recognition results of female SD system



123

1

== Coamocon
== ALELTREY

1 7 a 0 " = ] F ] ot
Mo, of mixtures poe alaie

Figure 5.3.4 Syllable recognition results of male SI system
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Figure 5.3.5 Syllable recognition results of female SI system

Recognition rate of phone unit in SD and SI systems exhibit the
similar way to the syllable recognition results. Phone correction and
accuracy rates at 256 mixture components per state are 69.5 % and 59.0 %,

and 69.3 % and 61.1 % for male and female SD systems respectively. The
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male and female SI systems give the syllable correction rates at 42.5 % and

51.4 %, and the syllable accuracy rates at 28.6 % and 39.5 % respectively.

The phone recognition results are shown in Figures 5.3.6-5.3.9.

i

== Coamochon
== ALELTREY

n " -] e L] b1
Mo, of miviurgs pee slsie

Figure 5.3.6 Phone recognition results of male SD system

i

Mo, of mixtures pos slate

Figure 5.3.7 Phone recognition results of female SD system
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== Coatocton
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Mo, of mixtures poe alaie

Figure 5.3.8 Phone recognition results of male SI system

== Coatocton
== ALELTREY

1 H i n L 7 ] LF ] ot
Mo, of mixtures pos slats

Figure 5.3.9 Phone recognition results of female SI system

5.3.2 Discussion
Mixture component incrementing provides an iterative mechanism for
building a multiple mixture component system from a single Gaussian

system. The number of mixture components can be continuously increased
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to obtain any desired balance between performance and model complexity.
The recognition results show that both SD and SI systems achieve a higher
performance when the number of mixture components is increased.
However, the recognition results of SD systems is likely to rise continually,
while the recognition results of SI systems tend to be saturated at a high
number of mixture components. In the SD system, incrementing the large
number mixture components yields the tightly fit acoustic model. This fitting
acoustic model gives out a high recognition result for the SD system. On the
contrary to the SD system, the recognition results of the SI system rise
slightly when then number of mixture components is increased. The
acoustic model trained with a large number of mixture components is very
fit to the group of training speakers. When employing this fitting acoustic
model to another group of speakers or the SI system, the recognition results
increase in dissimilar way compared with those of the SD system. The
acoustic model trained with a large number mixture components is not
suitable for using in the SI system. Moreover, the acoustic model with a
large number mixture components requires extensive computation.
Therefore, choosing a suitable number of mixtures for the acoustic model

yields a good efficiency in terms of performance and complexity.

5.4 Experiments on Tied-State Triphone Modeling

This experiment creates the acoustic models of the intra and inter syllable
triphones and evaluates their performance. There are 2 main steps for
creating the triphones.

1. Creating triphones from monophones. In order to create a triphone
system from a trained-monophone system, monophone models were
copied and their transition matrices were tied. Then; triphones were
initially trained using a forward-backward algorithm.

2. State clustering and parameter tying: After the initial training of
triphones, a tree-based clustering technique is employed to form the
robust estimation of parameters of mixture distributions by utilizing a
log likelihood criterion. The final process was state-tying, which
merged any identical triphone states into a number of equivalence
classes using various linguistic questions concerning the identity of

the base phone and the triphone context (Woodland, et al., 1994).
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Consequently, the total number of mixtures was reduced during the

state-tying process.

Since the performance of the triphones usually varies depending on
the size of the tree, it is necessary to control the size of the decision tree. The
number of leaf nodes or tied-states was controlled by the log likelihood
criterion. Several numbers of tied-states that were made, when the triphone
models were created by tree-based clustering, were tested to obtain the
suitable parameters for the model. The suitable parameters of the triphones
from state tying process will be used throughout all experiments in this
dissertation.

After state tying process, the tied-state triphones will be trained using
the Baum-Welch algorithm. Then, the mixture incrementing will be applied
to increase the number of mixture components until it reaches the required

number.
5.4.1 Experimental Results on Creating the Tied State
Triphones

The trainability problem becomes more serious when larger amounts of
context are to be taken into account. There are many triphone contexts,
which occur only a few times in the training corpus and many more than
that do not occur at all. State tying is one of the methods to overcome this
trainability problem and ensure the triphone parameters can be estimated
reliably.

The first step of this experiment is to vary the log likelihood to control
the size of the decision tree. The log likelihood is adjusted to obtain the
desired number of tied state triphones. The relation between the log
likelihood and the number of tied state triphones is shown in Figures 5.4.1
to 5.4.4.

The system configuration is set as follows:

» The standard 3-state left-to-right HMM with no skip state

* A single component of Gaussian distribution

= 12 order MFCCs with delta coefficients

» 7,769 logical intra-syllable triphone models and 23,307 states

* 64,775 logical inter-syllable triphone models and 193,425
states

» Training speakers — 9 male speaker and 11 female speakers
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» Evaluation speakers - 3 speaker-dependent males and 3
speaker-dependent females

Any pairs of nodes for which the decrease in log likelihood is less than

the threshold used to stop splitting are then merged at the final stage of the
state tying. According to the log likelihood based decision criteria in eq (4.2)-
(4.4), the number of tied-state triphones is dropped when the log likelihood
is raised. Increasing the log likelihood threshold results in reduction of the
number of physical triphone models as well. Both numbers of tied-state

triphones and physical triphone models decline exponentially.
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Figure 5.4.4 Relation between log likelihood and the number of tied state

inter-syllable triphones of female speakers

Since the decoding process of a triphone system is very complex and
it takes much time in the recognition stage, only 3 male and 3 female
speakers were selected to evaluate the efficiency of the acoustic models. The
triphone parameters of a triphone system, which has the minimum word
error rate (WER), will be used in the further experiment. The syllable
recognition results of both intra and inter syllable triphone systems are
shown in Figures 5.4.5-5.4.8.

Syllable correction rates decrease continually if the number of tied
states is dropped. Substitution and deletion errors become higher when the
number of tied states is declined. On the contrary, insertion error decreases
in the same way as the number of tied states is lessening. Since the inter-
syllable triphones provide cross-context acoustic modeling, the correction
rates of the inter-syllable triphone system are better than those of the intra-
syllable triphone system. The male and female intra-syllable triphone system
produces the highest syllable correction rates at 44.4 % and 38.1 %. The

highest syllable correction rates of the male and female inter-syllable

triphone system are 49.6 % and 48.5 % respectively.
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The highest syllable accuracy is used to determine the suitable
triphone parameters. The male and female intra-syllable triphone system
produces the highest syllable accuracy rates at 20.2 % and 22.1 %. The
highest syllable accuracy rates of the male and female inter-syllable triphone
system are 25.4 % and 26.1 % respectively. Obviously, the number of states
at the highest accuracy is different from he number of states that produces
the highest correction. The numbers of tied states, which give the highest
accuracy, are summarized in Table 5.4.1.

Phone recognition results with disregarding contexts are illustrated in
Figures 5.4.9-5.4.12. The triphone systems show correction and accuracy

rates of phone in the similar way to those of the syllable.
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Table 5.4.1 The number of tied states that produces the highest accuracy

Triphone system No. of tied states Correction  Accuracy
Intra- male 4,455 42.7 20.2
syllable female 4,011 41.0 22.1
Inter- male 15,949 47.1 25.4
syllable female 12,718 45.2 26.1

5.4.2 Experimental Results on Mixture Incrementing

The next step after achieving the suitable tied state triphone parameters is to

increase the number of Gaussian mixture components. The number of

Gaussian mixture components was increased, starting from a single

component of Gaussain distribution per state, up to 8 mixture components

per state.

The system configuration is set as follows:

The standard 3-state left-to-right HMM with no skip state
12 order MFCCs with delta coefficients
4,642 logical intra-syllable triphone models and 4,455 states

for male system
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* 4,510 logical intra-syllable triphone models and 4,011 states
for female system
= 25,776 logical inter-syllable triphone models and 15,949 states
for male system
= 23,388 logical inter-syllable triphone models and 12,718 states
for female system
» Training speakers — 9 male speaker and 11 female speakers
» Evaluation speakers — 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent
females and 5 speaker-independent females
The syllable recognition results of both intra and inter syllable
triphone systems are shown in Tables 5.4.2-5.4.9. Furthermore, phone
recognition results with disregarding contexts are shown in Tables 5.4.10-
5.4.17. From the experimental results, the performance is boosted when the
number of mixture components is increased. The inter-syllable triphone
systems have higher syllable accuracy than the intra-syllable triphone
systems. At eight mixture components per states, the inter-syllable triphone
system gives out the syllable accuracy at 35.5 % and 36.4 %, while the intra-
syllable triphone system produces the syllable accuracy at 28.0 % and 30.4
% for male and female SD systems. For the male and female SI systems, the
syllable accuracy of the inter-syllable triphone system is 22.3 % and 23.4 %,
while the syllable accuracy of the inter-syllable triphone system is 18.7 %
and 18.9.

Table 5.4.2 Syllable recognition results of intra-syllable triphone

(male speaker-dependent system)

No. of mixtures per state Correction  Accuracy
1 30.9 12.7
2 34.5 17.8
4 39.4 22.1
8 43.3 28.0
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Table 5.4.3 Syllable recognition results of intra-syllable triphone

(female speaker-dependent system)

No. of mixtures per state Correction  Accuracy
1 31.5 14.6
2 35.9 21.3
4 40.2 24.5
8 44.4 30.4

Table 5.4.4 Syllable recognition results of intra-syllable triphone

(male speaker-independent system)

No. of mixtures per state Correction  Accuracy
1 29.7 14.2
2 31.3 16.0
4 34.1 18.5
8 34.5 18.7

Table 5.4.5 Syllable recognition results of intra-syllable triphone

(female speaker-independent system)

No. of mixtures per state Correction  Accuracy
1 29.0 14.4
2 32.9 16.5
& 35.9 17.2
8 36.3 18.9

Table 5.4.6 Syllable recognition results of inter-syllable triphone

(male speaker-dependent system)

No. of mixtures per state Correction  Accuracy
1 37.4 17.5
2 40.2 24.6
4 43.9 30.1
8

47.3 35.5
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Table 5.4.7 Syllable recognition results of inter-syllable triphone

(female speaker-dependent system)

No. of mixtures per state Correction  Accuracy
1 36.6 18.9
2 41.4 25.2
4 44.1 29.7
8 48.2 36.4

Table 5.4.8 Syllable recognition results of inter-syllable triphone

(male speaker-independent system)

No. of mixtures per state Correction  Accuracy
! 33.4 15.7
2 35.8 18.0
4 37.2 21.5
8 39.7 22.3

Table 5.4.9 Syllable recognition results of inter-syllable triphone

(female speaker-independent system)

No. of mixtures per state Correction  Accuracy
1 33.6 15.3
2 35.4 17.8
4 36.9 21.0
8 39.9 23.4

The inter-syllable -triphone  systems also ‘have the higher phone
accuracy than the intra-syllable triphone systems. The phone accuracy of
the inter-syllable triphone system is 49.6 % and 50.5 % for male and female
SD systems, better than 44.0 % and 47.3 % of the intra-syllable triphone
system. The inter-syllable triphone surpass the intra-syllable triphone for
the SI systems as well. The phone accuracy of the male and female SI inter-
syllable triphone system is 41.7 % and 43.8 %, and 34.4 % and 34.8 % of

the intra-syllable triphone system.
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Table 5.4.10 Phone recognition results of intra-syllable triphone

(male speaker-dependent system)

No. of mixtures per state Correction  Accuracy
1 56.6 28.6
2 61.2 33.9
4 64.7 38.6
8 67.8 44.0

Table 5.4.11 Phone recognition results of intra-syllable triphone

(female speaker-dependent system)

No. of mixtures per state Correction  Accuracy
1 56.3 29.4
2 61.2 34.3
4 65.1 40.9
8 68.9 47.3

Table 5.4.12 Phone recognition results of intra-syllable triphone

(male speaker-independent system)

No. of mixtures per state Correction  Accuracy
1 52.5 30.6
2 53.9 32.7
4 54.0 33.2
8 54.8 34.4

Table 5.4.13 Phone recognition results of intra-syllable triphone

(female speaker-independent system)

No. of mixtures per state Correction  Accuracy
1 49.8 28.9
2 53.8 30.0
4 56.1 31.9
8

58.5 34.8
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Table 5.4.14 Phone recognition results of inter-syllable triphone

(male speaker-dependent system)

No. of mixtures per state Correction  Accuracy
1 60.0 33.7
2 64.2 38.3
4 68.8 43.7
8 72.4 49.6

Table 5.4.15 Phone recognition results of inter-syllable triphone

(female speaker-dependent system)

No. of mixtures per state Correction  Accuracy
1 61.9 41.3
2 65.1 44.6
4 69.8 46.2
8 73.3 50.5

Table 5.4.16 Phone recognition results of inter-syllable triphone

(male speaker-independent system)

No. of mixtures per state Correction  Accuracy
1 56.2 36.1
2 57.4 38.3
4 60.9 39.8
8 62.2 41.7

Table 5.4.17 Phone recognition results of inter-syllable triphone

(female speaker-independent system)

No. of mixtures per state Correction  Accuracy
1 58.6 38.9
2 60.4 40.2
4 62.7 41.5
8 63.0 43.8
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5.4.3 Discussion

There are several steps in building a triphone system as described in
Chapter 4. State tying is the important technique used to overcome the
trainability problem of the triphones. The log likelihood threshold in the
state tying process controls the number of tied state triphones, which relates
to the performance of a triphone system. It is necessary to determine the
suitable number of tied state triphones, which give the highest accuracy.
This step takes time to adjust the log likelihood threshold, train the models,
and evaluate the results, especially for the inter-syllable triphone system,
which has a complex decoding process.

Though the process in building a triphone system is quite complex,
the performance of a triphone system is much better than the monophone
system. The triphones were modeled according their contexts resulting in the
accurate acoustic model, comparing to the monophones. The inter-syllable
triphone system outperforms the intra-syllable triphone system because the
speech units were modeled the co-articulation across the syllable.

The inter-syllable triphone seems to be better than the intra-syllable
triphone. However, the numbers of tied states of the inter-syllable triphone
system is more than that of the intra-syllable triphone system. The inter-
syllable triphone system consumes greater memory than the intra-syllable
triphone system. Moreover, the decoding process of the inter-syllable
triphone system is much more complex than the intra-syllable triphone
system as depicted in Figures 4.13 and 4.14. Recognition of the inter-
syllable triphone system takes much more time in the decoding process than
the intra-syllable triphone system. This is the weak point of the inter-syllable
triphone system.

In the recognition result analysis, the triphone systems have a high
correction rate. However, the accuracy is considerable lower than the
correction. There are many deletions in the triphone system due to the short
duration of the units. The alternative acoustic model will be figured out to

overcome the problem of the triphones.
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5.5 Experiments on Onset-Rhyme Modeling

This experiment contains three studies on onset-rhyme modeling. The first
study will focus on determining the suitable number of states for modeling
the onset-rhyme acoustic units. The number of states, tightly linked to the
acoustical properties of the speech units, has affected to the performance of
the onset-rhyme models. The second study will examine the efficiency of the
two onset-rhyme models, CORM and PORM. These two models are generated
from different combinations between the releasing consonant and vowel. The
number of phonotactic onset and contextual onset units are different, while
both models have the same number rhyme units. The syllable recognition
results of CORM and PORM will be compared. Apart from the syllable level,
the analysis is carried on the acoustic level, the onset-rhyme units. Analysis
of recognition results at the bottom level of the system reveals the actual
efficiency of the speech unit. The final study will investigate the performance

of the system when the number of mixture components is increased.

5.5.1Experimental Results on Determining the Number of
States

In order to determine the appropriate number of states for acoustic modeling
of the onset-rhyme models, the number of states should be initially set equal
to that of the phone unit. The syllable recognition results will be compared to
the phone units and the error will be analyzed. Then, the number of states
will be adjusted, corresponding to the acoustical properties of the onset-
rhyme models, relating to hidden Markov models.

In this experiment, a smaller amount of onset-rhyme models, CORM,
will be deployed to determine the number of states. The smaller number of
units, the faster computation required. The standard 3-state left-to-right
HMM with no skip state is used for both onset and rhyme modeling. The
system configuration is set as follows:

= 12 order MFCCs with delta coefficients
* A single component of Gaussian distribution
*» 275 onset models and 159 rhyme models

» Training speakers — 9 male speaker and 11 female speakers
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» Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent

females and 5 speaker-independent females

Table 5.5.1 Syllable recognition results of speech units modeling with 3-

state HMM for male speaker-dependent system

Speech unit Correction  Accuracy

monophone 15.6 4.5
intra-syllable triphone 30.9 12.7
inter-syllable triphone 37.4 17.5

CORM (03r3) 22.4 8.0

Table 5.5.2 Syllable recognition results of speech units modeling with 3-

state HMM for female speaker-dependent system

Speech unit Correction  Accuracy

monophone 15.9 5.4
intra-syllable triphone 31.5 14.6
inter-syllable triphone 36.6 18.9

CORM (0313) 21.9 7.7

Table 5.5.3 Syllable recognition results of speech units modeling with 3-

state HMM for male speaker-independent system

Speech unit Correction  Accuracy

monophone 12.2 0.7
intra-syllable triphone 29.7 14.2
inter-syllable triphone 33.4 15.7

CORM (03r3) 19.7 6.8

Table 5.5.4 Syllable recognition results of speech units modeling with 3-

state HMM for female speaker-independent system

Speech unit Correction  Accuracy

monophone 12.7 2.0
intra-syllable triphone 29.0 14.4
inter-syllable triphone 33.6 15.3

CORM (03r3) 19.4 7.1
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Table 5.5.5 Onset - rhyme recognition results of CORM for speaker-
dependent system modeling onset and rhyme with 3-state HMM

onset rhyme
Gender
Correction Accuracy Correction Accuracy
male 43.4 31.1 27.1 17.4
female 42.9 30.0 26.1 16.6

Table 5.5.6 Onset - rhyme recognition results of CORM for speaker-
independent system modeling onset and rhyme with 3-state HMM

onset rhyme
Gender
Correction Accuracy Correction Accuracy
male 41.1 25.5 24.7 11.0
female 39.4 22.3 23.5 10.2

The initial experiment, modeling of each onset-rhyme, using the
number of states equivalent to the phone models, shows the efficiency of the
onset-rhyme models worse than the phone models. From the experimental
results shown in Tables 5.5.1-5.5.6, the syllable recognition rates of CORM,
modeling with a 3-state HMM, are lower than those of the triphone models.
Recognition result of rhyme units is deteriorated compared to onset units.
Modeling the rhyme unit with a 3-state HMM cannot capture acoustic
information containing in the unit sufficiently. From the acoustic analysis,
the duration of rhymes is longer than onsets. A longer state HMM should be
employed for modeling the rhyme units. Since rhyme unit appears to be a
concatenation of two acoustic units, a vowel and a final consonant, a 6-state

is chosen to model the rhyme units.

Table 5.5.7 Syllable recognition results for male SD system

Speech unit Correction  Accuracy
CORM (03r3) 22.4 8.0
CORM (03r6) 32.6 21.5
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Table 5.5.8 Syllable recognition results for female SD system

Speech unit Correction  Accuracy
CORM (03r3) 21.9 7.7
CORM (03r6) 31.9 24.0

Table 5.5.9 Syllable recognition results for male SI system

Speech unit Correction  Accuracy
CORM (03r3) 19.7 6.8
CORM (03r6) 28.4 18.2

Table 5.5.10 Syllable recognition results for female SI system

Speech unit Correction  Accuracy
CORM (03r3) 19.4 7.1
CORM (03r6) 27.7 16.9

Table 5.5.11 Onset-rhyme recognition results of CORM for male SD system

onset rhyme
CORM
Correction Accuracy Correction Accuracy
03r3 43.4 31.1 27.1 17.4
0316 50.1 43.9 41.8 31.6

Table 5.5.12 Onset-rhyme recognition results of CORM
for female SD system

onset rhyme
CORM
Correction  Accuracy —Correction Accuracy
03r3 42.9 30.0 26.1 16.6
03r6 52.4 45:1 40.0 32.7

Table 5.5.13 Onset-rhyme recognition results of CORM for male SI system

onset rhyme
CORM ym

Correction Accuracy Correction Accuracy

03r3 41.1 25.5 24.7 11.0
03r6 47.2 40.6 38.0 31.4
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Table 5.5.14 Onset-rhyme recognition results of CORM

for female SI system

onset rhyme
CORM
Correction Accuracy Correction Accuracy
o3r3 39.4 22.3 23.5 10.2
0316 46.8 39.8 37.6 32.2

Recognition results of both syllable and onset-rhyme levels were
significantly improved when modeling the rhyme units with a 6-state HMM
(03r6) as shown in Tables 5.5.7-5.5.14. Syllable accuracy rates increase
around 13.5 % and 16.3 % for male and female SD system, and 11.4 % and
9.8 % for male and female SI system. In the acoustic unit level, the system
modeling rhyme units with a 6-state HMM (03r6) provides a better
percentage correction and accuracy of the onset-rhyme units compared to
the system modeling rhyme units with a 3-state HMM (03r3). A substantial
improvement of the rhyme units for male and female SD system is 14.2 %
and 16.1 %, and 20.4 % and 20.0 % for male and female SI system.
Conclusively, a 3-state HMM and 6-state HMM seems to be appropriate for
acoustic modeling of onset and rhyme and will be used throughout the

dissertation.

5.5.2Experimental Results on Types of Onset-Rhyme Models

By considering the combination between the releasing consonant and vowel,
there are two types of the onset-rhyme models, Phonotactic Onset-Rhyme
Model (PORM) and Contextual Onset-Rhyme Model (CORM). These two types
of onset-rhyme models have different onsets while their rhymes are still
identical. The phonotactic onset is created differently for each releasing
consonant and each vowel context, even for vowels in the same short-long
pair. On the contrary, the contextual onset is modeled similarly for a given
releasing consonant an either member of same short-long vowel pair. This
experiment will explore both two types of onset-rhyme models in order to
determine which type will be more efficient and suitable for Thai speech
recognition systems. The system configuration is set as follows:
* 12 order MFCCs with delta coefficients

» A single component of Gaussian distribution
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» The standard 3-state left-to-right HMM with no skip state for
onset modeling

» The standard 6-state left-to-right HMM with no skip state for
rhyme modeling

* CORM 275 onset models and 159 rhyme models

* PORM 621 onset models and 159 rhyme models

» Training speakers — 9 male speaker and 11 female speakers

» Evaluation speakers — 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent

females and 5 speaker-independent females

Table 5.5.15 Syllable recognition results for male SD system

Speech unit Correction  Accuracy
CORM (031r6) 32.6 21.5
PORM (03r6) 34.1 24.3

Table 5.5.16 Syllable recognition results for female SD system

Speech unit Correction  Accuracy
CORM (03r6) 31.9 24.0
PORM (0316) 33.7 26.1

Table 5.5.17 Syllable recognition results for male SI system

Speech unit Correction  Accuracy
CORM (03r6) 28.4 18.2
PORM (03r6) 30.3 19.6

Table 5.5.18 Syllable recognition results for female SI system

Speech unit Correction = Accuracy
CORM (03r6) 27.7 16.9
PORM (03r6) 29.8 17.5

Recognition results gave accuracies at 22.8 % and 17.6 % for SD and
SI systems using the CORM and at 25.2 % and 18.6 % for SD and SI
systems using the PORM.
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Table 5.5.19 Onset-rhyme recognition results for male SD system

onset rhyme

Speech unit
Correction Accuracy Correction Accuracy

CORM (03r6) 50.1 39.9 41.8 31.6
PORM (03r6) 54.7 43.0 42.4 31.8

Table 5.5.20 Onset-rhyme recognition results for female SD system

onset rhyme
Speech unit e

Correction Accuracy Correction Accuracy

CORM (03r6) 52.4 45,1 40.0 32.7
PORM (03r6) 55.3 48.2 41.7 33.6

Table 5.5.21 Onset-rhyme recognition results for male SI system

onset rhyme
Speech unit ym

Correction Accuracy Correction Accuracy

CORM (03r6) 47.2 40.6 38.0 31.4
PORM (03r6) 499 43.5 39.8 33.1

Table 5.5.22 Onset-rhyme recognition results for female SI system

onset rhyme
Speech unit e

Correction Accuracy Correction Accuracy

CORM (03r6) 46.8 39.8 37.6 32.2
PORM (03r6) 49.4 49.7 39.1 32.9

On the result analysis of the onset-rhyme units, the correction and
accuracy of the phonotactic onset are better than the contextual onset as
shown in Tables 5.5.19-5.5.22. The accuracy of the PORM onset shows a
modest improvement 7.4 % and 7.2 % over the CORM onset for speaker-
dependent and speaker-independent systems. Since the rhyme units of both
CORM and PORM are identical, the recognition results of the rhyme units
are slightly different.
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5.5.3Experimental Results on Mixture Incrementing

To achieve higher performance, similar to the previous experiments, mixture

incrementing is applied. The number of Gaussian mixture components was

increased up to 8 mixture components per state.

The system configuration is set as follows:

12 order MFCCs with delta coefficients

The standard 3-state left-to-right HMM with no skip state for
onset modeling

The standard 6-state left-to-right HMM with no skip state for
rhyme modeling

CORM 275 onset models and 159 rhyme models

PORM 621 onset models and 159 rhyme models

Training speakers — 9 male speaker and 11 female speakers
Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent

females and 5 speaker-independent females

At higher mixture components, the recognition results are improved
as shown in Tables 5.5.23-5.5.38. The PORM improves the syllable accuracy
of the CORM by nearly 2.2 % and 1.9 % for SD and SI systems at eight

mixture components per state. At the acoustic unit level, the PORM onset is

better than the CORM onset in terms of accuracy. The improvement nearly

3.0 % and 4.1 % for SD and SI systems over the CORM onset shows the

advantages of the PORM onset. However, the performance of the CORM and

the PORM rhymes is insignificantly different.

Table 5.5.23 Syllable recognition results of CORM male SD system

No. of mixtures per state Correction  Accuracy
1 32.6 21.5
2 38.9 27.6
4 42.7 33.2
8

47.8 38.9
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Table 5.5.24 Syllable recognition results of CORM female SD system

No. of mixtures per state Correction  Accuracy
1 31.9 24.0
2 36.6 29.5
4 42.1 35.4
8 49.1 42.5

Table 5.5.25 Syllable recognition results of CORM male SI system

No. of mixtures per state Correction  Accuracy
1 28.4 18.2
2 33.5 22.7
P 37.5 26.1
8 41.3 29.8

Table 5.5.26 Syllable recognition results of CORM female SI system

No. of mixtures per state Correction  Accuracy
1 27.7 16.9
2 32.6 23.5
4 38.7 26.8
8 43.4 31.2

Table 5.5.27 Syllable recognition results of PORM male SD system

No. of mixtures per state Correction  Accuracy
1 34.1 24.3
2 41.9 30.4
4 44.8 36.0
8 50.5 41.7

Table 5.5.28 Syllable recognition results of PORM female SD system

No. of mixtures per state Correction  Accuracy
1 33.7 26.1
2 40.4 33.3
4 46.2 38.6
8 52.7 44.0




Table 5.5.29 Syllable recognition results of PORM male SI system

No. of mixtures per state Correction  Accuracy
1 30.3 19.6
2 34.4 24.1
4 38.0 27.9
8 42.9 31.3

Table 5.5.30 Syllable recognition results of PORM female SI system

No. of mixtures per state Correction  Accuracy
1 29.8 17.5
2 34.7 25.6
4 39.6 29.3
8 45.3 33.5
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Table 5.5.31 Onset-rhyme recognition results of CORM male SD system

No. of mixtures

onset

rhyme

per state Correction Accuracy Correction Accuracy
1 50.1 39.9 41.8 31.6
2 55.5 46.2 46.2 36.9
4 60.9 52.4 49.7 41.2
8 66.0 58.3 53.6 45.9

Table 5.5.32 Onset-rhyme recognition results of CORM female SD system

No. of mixtures

onset

rhyme

per state Correction Accuracy Correction Accuracy
1 52.4 45.1 40.0 32.7
2 58.3 51.9 44.5 38.1
4 62.8 57.0 47.5 41.7
8 69.4 66.3 52.6 49.6
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Table 5.5.33 Onset-rhyme recognition results of CORM male SI system

No. of mixtures onset rhyme
per state Correction Accuracy Correction Accuracy
1 47.2 40.6 38.0 31.4
2 51.2 44.2 42.1 35.2
4 54.0 47.4 45.0 39.4
8 59.6 52.0 48.6 43.0

Table 5.5.34 Onset-rhyme recognition results of CORM female SI system

No. of mixtures

onset

rhyme

per state Correction Accuracy Correction Accuracy
1 46.8 39.8 37.6 32.2
2 52.2 44.8 42.9 34.5
4 56.8 48.7 46.9 39.8
8 60.5 53.1 49.4 44.4

Table 5.5.35 Onset-rhyme recognition results of PORM male SD system

No. of mixtures

onset

rhyme

per state Correction Accuracy Correction Accuracy
1 54.7 43.0 42.4 31.8
2 59.9 49.3 47.6 37.7
4 65.6 55.4 51.3 42.8
8 o 60.7 54.3 47.2

Table 5.5.36 Onset-rhyme recognition results of PORM female SD system

No. of mixtures

per state

onset

0 AN

55.3
62.1
67.3
74.7

rhyme
Correction . Accuracy .. Correction. Accuracy
48.2 41.7 33.6
56.9 45.6 39.8
63.4 49.1 42.0
69.8 54.0 51.5
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Table 5.5.37 Onset-rhyme recognition results of PORM male SI system

No. of mixtures onset rhyme
per state Correction Accuracy Correction Accuracy
1 49.9 43.5 39.8 33.1
2 54.3 47.0 43.6 36.0
4 58.5 49.8 46.3 40.2
8 63.7 54.9 49.4 43.5

Table 5.5.38 Onset-rhyme recognition results of PORM female SI system

No. of mixtures onset rhyme
per state Correction Accuracy Correction Accuracy
1 49.4 42.7 39.1 32.9
2 ‘557 | 47.3 44.3 34.9
4 F P27 52.5 50.6 45.1
8 658 583 53.9 45.2

5.5.4 Discussion

The number of HMM states has an effect on the performance of the acoustic
model. The onset-rhyme system using a 3-state HMM for modeling both
onset and rhyme has a very low recognition results, comparing to the
triphone systems. Recognition results in the acoustic level show that
accuracy of the rhyme units is deteriorated compared to the onset units.
Acoustic analysis reveals that the duration of rhymes is longer than onsets.
A longer state HMM should be employed for modeling the rhyme units. The
rhyme unit appears to be a concatenation of two acoustic units, a vowel and
a final consonant. Therefore, a 6-state HMM is chosen to model the rhyme
units. The recognition results of the rhyme units were substantially
improved around 15.0 % and 20.2 % for SD. and SI systems. Hence, a 3-
state HMM and 6-state HMM seems to be appropriate for acoustic modeling
of onset and rhyme.

The phonotactic onset units of the PORM model each releasing
consonant in every possible vowel context in Thai syllables. The contextual
onset units of the CORM treat a given releasing consonant the same way in
contexts of vowels belonging to the same short-long pair. From speech signal

characteristics, formant transition patterns of the same releasing consonant
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are comparable within a short and long monophthong pair, including
diphthongs.

The CORM then has a smaller number of onset units than the PORM.
Both PORM and CORM share the same rhyme units, which cover every
possible combination of a vowel and arresting consonant in Thai syllables.
Since the onset of PORM completely models the initial consonant along with
its transitional portion towards the vowel in every context, the PORM is more
accurate than the CORM. Though the PORM has a higher accuracy than the
CORM, the PORM system is more complex than the CORM due to the larger
units of the PORM.

5.6 Experiments on Initial-Final Modeling

In phonological point of view, the context-dependent Initial-Final model is
similar to the CORM. However, The difference between the CORM and the
context-dependent Initial-Final model is the segmentation. The Initial-Final
models are investigated the effect of the difference in this segmentation. The
Initial followed by a Final has been used as the basic acoustic unit in
Chinese speech recognition. There are two types of the Initial-Final models,
context-independent Initial-Final and context-dependent Initial-Final. For
the context-independent Initial-Final, the Initial comprises an initial
consonant of the syllable while the Final consists of a vowel or diphthong
part, including a possible medial or nasal ending. On the other hands,
context-dependent Initial models are expanded from context-independent
Initial models according to its following Final. The two types of Initial-Final
models will be applied to the Thai language and its results will be analyzed.
Finally, the number of Gaussian mixture components is increased up to

eight mixtures per state.

5.6.1 Experimental Results on Types of Initial-Final Models

In this section, the first experiment is conducted to compare the
performance of the context-independent Initial-Final and the context-
dependent Initial-Final. The Initial-Final models are comparable to the
onset-rhyme models in both acoustical and phonological points of views. To
compare the Initial-Final models with the onset-rhyme models, the same

parameters would be applied to both models. From the previous section, the
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appropriate number of HMM states for onset-rhyme modeling was

determined. This parameter is applied to Initial-Final modeling as well.

The system configuration is set as follows:

12 order MFCCs with delta coefficients

A single component of Gaussian distribution

The standard 3-state left-to-right HMM with no skip state for
Initial modeling

The standard 6-state left-to-right HMM with no skip state for
Final modeling

33 context-independent Initial models and 159 Final models
279 context-dependent Initial models and 159 Final models
Training speakers — 9 male speaker and 11 female speakers
Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent

females and 5 speaker-independent females

The initial experiment was conducted to compare the efficiency the context-

independent Initial-Final model and the context-independent Initial-Final

model. The recognition results show clearly that the context-dependent

Initial-Final model outperforms the context-independent Initial-Final model

as indicated in Tables 5.6.1-5.6.4. The acoustic model incorporating

contextual information improves the syllable accuracy approximately % and

% for SD and SI systems.

Table 5.6.1 Syllable recognition results for male SD system

Initial-Final Correction - Accuracy
Context-independent 24.6 15.6
Context-dependent 299 18.5

Table 5.6.2 Syllable recognition results for female SD system

Initial-Final Correction  Accuracy

Context-independent 24.3 16.5

Context-dependent 29.7 19.4
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Table 5.6.3 Syllable recognition results for male SI system

Initial-Final Correction  Accuracy
Context-independent 21.7 11.2
Context-dependent 25.4 15.9

Table 5.6.4 Syllable recognition results for female SI system

Initial-Final Correction  Accuracy
Context-independent 20.9 11.8
Context-dependent 25.0 15.6

The recognition results of acoustic units are shown in Tables 5.6.5-
5.6.8. The context-dependent Initial shows better results in both SD and SI
systems. A substantial improvement of the context-dependent Initial is 7.1 %
and 8.7 % for SD and SI systems. On the other hands, the Final of the two
models are identical. Exploiting contextual information in the context-
dependent Initial does not affect the efficiency of the Final. The results show

a slightly different accuracy of the Final model.

Table 5.6.5 Initial-Final recognition results for male SD system

Initial Final

Initial-Final

Correction Accuracy Correction Accuracy

Context-independent 38.8 32.4 36.3 27.5
Context-dependent 45.3 39.1 38.2 29.0

Table 5.6.6 Initial-Final recognition results for female SD system

Initial Final
Initial-Final

Correction Accuracy Correction Accuracy

Context-independent 41.2 36.8 35.6 30.9

Context-dependent 49 5 44.3 37.8 31.6

Table 5.6.7 Initial-Final recognition results for male SI system

Initial Final
Initial-Final

Correction Accuracy Correction Accuracy

Context-independent 35.7 29.2 34.9 29.5
Context-dependent 44.3 39.1 35.9 30.7
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Table 5.6.8 Initial-Final recognition results for female SI system

Initial-Final

Initial Final

Correction Accuracy Correction Accuracy

Context-independent 34.4 928.7 32.2 27.5
Context-dependent 42.6 36.1 33.1 28.6

5.6.2 Experimental Results on Mixture Incrementing

A single Gaussian mixture was split to attain a higher recognition

performance. The splitting mixture models were re-estimated using the

forward-backward algorithm. Finally, the number of Gaussian distributions

was increased to eight mixture components per state.

The system configuration is set as follows:

12 order MFCCs with delta coefficients

The standard 3-state left-to-right HMM with no skip state for
Initial modeling

The standard 6-state left-to-right HMM with no skip state for
Final modeling

33 context-independent Initial models and 159 Final models
279 context-dependent Initial models and 159 Final models
Training speakers — 9 male speaker and 11 female speakers
Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent

females and 5 speaker-independent females

The recognition results show the improvement when the number of

mixture components is increased. The context-dependent Initial-Final model

highly surpasses the context-independent Initial-Final model in terms of

recognition rates. From the syllable recognition results in Tables 5.6.9-

5.6.16, the context-dependent Initial-Final model outperforms the context-

independent Initial-Final model by 5.0 % and 4.7 % for SD and SI systems at

eight mixture components per state.
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Table 5.6.9 Syllable recognition results of context-independent

Initial-Final (male SD system)

No. of mixtures per state Correction  Accuracy
1 24.6 15.6
2 30.2 21.6
4 34.4 26.7
8 39.4 31.8

Table 5.6.10 Syllable recognition results of context-independent
Initial-Final (female SD system)

No. of mixtures per state Correction  Accuracy
1 24.3 16.5
2 31.2 25.1
4 35.2 29.4
8 39.6 34.0

Table 5.6.11 Syllable recognition results of context-independent

Initial-Final (male SI system)

No. of mixtures per state Correction  Accuracy
1 21.7 11.2
2 23.5 14.4
4 ol 18.0
8 27.7 21.2

Table 5.6.12 Syllable recognition results of context-independent
Initial-Final (female SI system)

No. of mixtures per state Correction  Accuracy
1 20.9 11.8
2 25.7 17.0
4 28.6 20.2
8

31.7 24.4
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Table 5.6.13 Syllable recognition results of context-dependent

Initial-Final (male SD system)

No. of mixtures per state Correction  Accuracy
1 29.2 18.5
2 33.4 24.0
4 39.9 30.1
8 45.5 36.4

Table 5.6.14 Syllable recognition results of context-dependent
(female SD system)

No. of mixtures per state Correction  Accuracy
1 29.7 19.4
2 34.5 24.6
4 39.4 31.2
8 46.8 39.3

Table 5.6.15 Syllable recognition results of context-dependent

Initial-Final (male SI system)

No. of mixtures per state Correction  Accuracy
1 25.4 15.9
2 31.7 19.3
4 34.6 22.8
8 38.4 26.5

Table 5.6.16 Syllable recognition results of context-dependent
Initial-Final (female SI system)

No. of mixtures per state Correction  Accuracy
1 25.0 15.6
2 30.3 19.7
4 34.9 23.8
8 41.8 28.4

Analysis of recognition results at the acoustic unit level reveals the
actual efficiency of the units clearly. The recognition results of the Initial-

Final model are shown in Tables 5.6.17-5.6.24. Using the context-dependent
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Initial model can improve the accuracy by 5.4 % and 4.6 % over the context-
independent Initial model for SD and SI systems at eight mixture

components per state.

Table 5.6.17 Context-independent Initial-Final recognition results

of male SD system

No. of mixtures Initial Final
per state Correction Accuracy Correction Accuracy
1 38.8 82.4 36.3 27.5
2 446 386 41.0 33.1
4 496 445 44.1 39.3
8 55.4 506 48.4 42.7

Table 5.6.18 Context-independent Initial-Final recognition results

of female SD system

No. of mixtures Initial Final
per state Correction Accuracy Correction Accuracy
1 41.2 36.8 35.6 30.9
2 47.6 44.0 39.9 35.3
4 53.0 50.7 43.2 38.9
8 604 i 56.3 48.9 44.8

Table 5.6.19 Context-independent Initial-Final recognition results

of male SI system

No. of mixtures Initial Final
per state Correction ' Accuracy Correction Accuracy
1 35.7 29.2 34.9 29.5
2 41.4 34.6 37.5 32.7
4 47.0 40.4 40.9 35.3
8

52.1 46.4 43.4 39.7
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Table 5.6.20 Context-independent Initial-Final recognition results

of female SI system

No. of mixtures Initial Final
per state Correction Accuracy Correction Accuracy
1 34.4 28.7 32.2 27.5
2 39.4 35.2 35.0 32.9
4 44.7 39.0 39.9 35.1
8 50.4 45.7 42.3 38.6

Table 5.6.21 Context-dependent Initial-Final recognition results

of male SD system

No. of mixtures Initial Final
per state Correction Accuracy Correction Accuracy
1 45.3 39.1 38.2 29.0
2 51.9 42.5 43.4 35.8
4 F J57. 79 405 47.9 40.6
8 634 55.7 52.5 45.1

Table 5.6.22 Context-dependent Initial-Final recognition results

of female SD system

No. of mixtures Initial Final
per state Correction Accuracy Correction Accuracy
1 49.5 44.3 37.8 31.6
2 56.7 49.5 41.2 36.9
4  59.8 54.4 45.7 39.3
8 Les& ¥V 61.9 51.0 47.7

Table 5.6.23 Context-dependent Initial-Final recognition results

of male SI system

No. of mixtures Initial Final
per state Correction Accuracy Correction Accuracy
1 44.3 39.1 35.9 30.7
2 48.8 42.7 40.3 33.9
4 52.6 45.9 43.8 37.6
8 57.4 50.5 46.2 42.1




162

Table 5.6.24 Context-dependent Initial-Final recognition results

of female SI system

No. of mixtures Initial Final
per state Correction Accuracy Correction Accuracy
1 42.6 36.1 33.1 28.6
2 47.3 40.4 38.2 33.7
4 53.7 45.6 43.9 37.5
8 58.4 . 50.7 47.8 42.9

5.6.3 Discussion

Like a phone unit, context-dependent acoustic modeling provides a better
result than context-independent acoustic modeling. The context-dependent
Initial-Final yields a superior accuracy over the context-independent Initial-
Final. This indicates that context-dependent acoustic modeling contributes
an accurate acoustic unit. At eight mixture components per state, the
accuracy of the context-dependent Initial is better than that of the context-
independent Initial around 5.4 % and 4.6 %, while the Final of the context-
dependent Initial-Final provides a higher accuracy around 2.7 % and 3.4 %
for the SD and SI systems, respectively.

The context-dependent Initial-Final seems to be similar to the CORM.
The number of units of these two models is identical. However, The
difference between the CORM and the context-dependent Initial-Final model
is the segmentation. The CORM onset consists of the releasing consonant
and the transitional stage to its following vowel, whereas the context-
dependent Initial contains the releasing consonant only. The recognition
results show that the accuracy of the CORM onset is higher than the
context-dependent Initial. However, in the other part of the syllable, the
Final and the rhyme are comparable. The recognition results of the Final

and the rhyme are insignificant different.
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5.7 Experiments on Speech Recognition System

using Acoustic Modeling Only

In order to obtain the actual efficiency of an acoustic model, a language
model should not be applied. All kinds of speech units will be evaluated and
compared their efficiency. The efficiency of all speech units will be compared
by syllable recognition results since each speech unit has the equal number
of syllables. On the other hands, the numbers of acoustic units of the phone,
monophone and triphone, and the subsyllable, Initial-Final and onset-
rhyme, are different. The results of acoustic unit will be analyzed and
compared within the groups of phone and subsyllable units.

All speech units were trained and increased their mixture components
up to 16 mixture components per state. Some speech units cannot be
increased their mixture components over 16 mixture components per state
because there are a few samples of those units, especially the triphones. A
large number of mixtures cannot be fit to the model. The system
configuration is set as follows:

= 12 order MECCs with delta coefficients

* 16 Gaussian mixture components per state

» Training speakers — 9 male speaker and 11 female speakers

» Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent

females and 5 speaker-independent females

5.7.1 Experimental Results

Syllable recognition rates for-each speech unit are shown in Tables 5.7.1-
5.7.4. Recognition results show that the accuracy of monophones and
triphones, are lower than those for speech units larger than phones due to
the high insertion. The inter-syllable triphones performs better accuracy
than monophones and intra-syllable triphones. The inter-syllable triphone
system performs at 39.0 % and 24.8 % accuracy for male SD and SI
systems, and 41.7 %, and 28.8 % accuracy for female SD and SI systems.
The PORM gives the highest accuracy at 45.4 % for male SD system and
48.1 % for female SD system. For the SI systems, the PORM also gives the
highest accuracy. The accuracy of the CD Initial-Final is 40.9 % and 29.3 %
for male SD and SI systems and 44.2 % and 30.4 % for female SD and SI
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systems. This is better than that for phone modeling units and the CI Initial-
Final model, and worse than those for either PORM or CORM.

Table 5.7.1 Syllable recognition results for male SD system

using acoustic modeling only

Speech unit Correction  Accuracy
monophone 29.4 17.3
Intra-syllable triphone wo 318 .........................
Tnter-syliable Giphone 4 0o 390 .........................

TR ’ _44:8 .......................... 377 .........................
C— . 09
CORM - 528 42.9
PORM 55.3 45.4

Table 5.7.2 Syllable recognition results for female SD system

using acoustic modeling only

Speech unit Correction  Accuracy

monophone 30.1 21.8

sy b B ethone 4’;._7 .......................... 377 .........................

R p— a1 4 17 .........................
CI Initial-Final 44.4 39.0
CD Initial-Final 50.8  44.2
CORM 546  46.3

SORM 61 S 4 81 ..........................

Table 5.7.3 Syllable recognition results for male SI system

using acoustic modeling only

Speech unit Correction | Accuracy
monophone oo —
Intra-syllable triphone aso oy
Inter-syllable triphone il S
CI Initial-Final a17 256 _________________________
CD Initial-Final 415 i

CORM was 327 _________________________

PORM 45.9 34.1
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Table 5.7.4 Syllable recognition results for female SI system

using acoustic modeling only

Speech unit Correction  Accuracy
monophone 22.3
Intra-syllable triphone 39.2
Inter-syllable triphone 43.8
CI Initial-Final 32.9
CD Initial-Final 45.8
CORM 473
PORM 495

Apart from the syllable accuracy, the recognition results of Initial-
Final and onset-rhyme acoustic units were analyzed. The analysis of the
recognition results at the bottom level of the system, the acoustic level,
reveals the actual efficiency of the speech unit. Since the context-dependent
Initials and the onsets of PORM and CORM are context-dependent, they give
better accuracy than the context-independent Initial as shown in Tables
5.7.9-5.7.12. Although the context-dependent Initial and the onset are the
right context-dependent units, the onset outperforms the context-dependent
Initial. The transitional portion towards the vowel, included in the onset, has
contributed substantially to the precise modeling of the initial consonant
segment. The accuracy of the onset in CORM is higher than the accuracy of
the context-dependent Initial by 2.5 % and 2.1 % for male SD and SI
systems, and 3.2 % and 3.0 % for female SD and SI systems. The onset of
PORM provides better accuracy than the onset of CORM nearly 3.8 % and
4.2 % for SD and SI systems, and achieves the highest accuracy at 67.3 %
and 59.4 % for male SD and SI systems, and 74.4 % and 62.7 % for female
SD and SI systems. At the other part of the syllable, the accuracies of the
Final and the rhyme are slightly different as shown in Tables 5.7.9-5.7.12.
The Final and rhyme units give comparable accuracies due to the similar
modeling of these units. The examples of aligned transcription of the

recognized result and the reference label are shown in Figures 5.7.1-5.7.4.



Table 5.7.5 Phone recognition results of monophone and triphone

for male SD system using acoustic modeling only

Speech unit Correction  Accuracy

monophone 53.7 39.9
Intra-syllable triphone 69.5 47.4
Inter-syllable triphone 76.3 54.7

Table 5.7.6 Phone recognition results of monophone and triphone

for female SD system using acoustic modeling only

Speech unit Correction  Accuracy

monophone 56.1 45.5
Intra-syllable triphone 71.0 53.4
Inter-syllable triphone 77.8 59.8

Table 5.7.7 Phone recognition results of monophone and triphone

for male SI system using acoustic modeling only

Speech unit Correction  Accuracy

monophone 41.3 29.1
Intra-syllable triphone 56.2 36.1
Inter-syllable triphone 66.2 45.4

Table 5.7.8 Phone recognition results of monophone and triphone

for female SI system using acoustic modeling only

Speech unit Correction  Accuracy
monophone 45.3 31.8
Intra-syllable triphone 60.5 37.8

Inter-syllable triphone 66.0 47.9

166
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Table 5.7.9 Recognition results of Initial-Final and Onset-Rhyme units

for male SD system using acoustic modeling only

Speech Initial/Onset Final/Rhyme
unit Correction Accuracy Correction Accuracy
CI Initial-
. 59.3 54.6 52.9 45.4
Final
CD Initial-
. 67.8 61.7 55.8 49.7
Final
CORM 70.9 64.2 57.9 51.2
PORM 74.1 67.3 59.4 51.8

Table 5.7.10 Recognition results of Initial-Final and Onset-Rhyme units

for female SD system using acoustic modeling only

Speech Initial/Onset Final/Rhyme
unit Correction Accuracy Correction Accuracy
ClI Initial-
. 64.9 60.7 54.4 50.2
Final
CD Initial-
. 70.8 65.9 56.0 53.0
Final
CORM 73.5 69.1 57.3 55.9
PORM 78.3 74.4 58.7 55.6

Table 5.7.11 Recognition results of INTIAL-Final and Onset-Rhyme units for

male SI system using acoustic modeling only

Speech Initial/Onset Final/Rhyme
unit Correction Accuracy Correction Accuracy
CI Initial-
; 56.8 50.2 45.8 42.2
Final
CD Initial-
61.5 54.9 49.3 45.1
Final
CORM 64.5 57.0 51.9 47.4

PORM 66.7 59.4 52.6 47.6
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Table 5.7.12 Recognition results of Initial-Final and Onset-Rhyme units

for female SI system using acoustic modeling only

Speech Initial/Onset Final/Rhyme

unit Correction Accuracy Correction Accuracy

CI Initial-

. 55.3 48.6 46.2 41.5
Final

CD Initial-

. 60.2 54.5 51.5 45.7
Final

CORM 64.9 57.5 53.6 46.2

PORM 68.3 62.7 57.4 47.8

Aligned transesiption: ../unlaballed/testsestences0Z_006a_phv lab

Munophone | 65.98( 49.48) [H= 64, D= 0, §= 33, I= 16, W= ¥7)
Intca-syllable triphooe: | 74.23('57.73) [H- 72, D= O, 5= 25, I= 16, W= 97]
Intec-syllable tciphone: S0,41( 68.04) [H= T8, D= O, 8= 19, I= 12, K= 7]

LAN: ail & wus no8il & & By sdl ¥ & EoRLD B 44 adl jum il t4E el oh sn § eil thos mEl 1 s mil

BEC: wil » wos n #il C & reg @11 w & B 81l ER 4§ il 3 um sl k1 ®il ch & 3 wil Eh & wil 1 & &k sil

BEC: ®ll » vusa n #il o & ») #il » & ¢ s10 th Lk #Ad & 1% #il J wo t sil £ 1 £ 80l oh sa § #il Eh & #1]1 1 &= #il

MEC: @il & wos n il & & oy eil af e e adl en dd @il B4 #dl J um mil B4 e mdl oh &a § 84l ER & il 1 s E adl

LAR: ®il & @@ w1l th & = =il k s& n #il pr & Bl ma ng #il I ® sil n a8 =il kl wws wil
REC: wil k1 B9 sil th § = #11 k =xom sil pr @ Bil mooo ng 841 £ F ®il 1 ® sil n oax & skl kI vea B ail
BEC: #il K §8 #il th & = #11 k a n #il pr & #il = §§ WAl om0 Ny #ll 1 % sil n & b #81 K @9 @il ¢ wva #il
BEC: il k §F sill thamsll ks neil p ameill amsllmo ng @il 1 % ail 0 &a all &k a n &l £ vva g all
LAN: ¢ vus m owil poa § wil th v og #il = as - wil ch di p edl r s poail

BEC; s vuamwil €t a J il th vog adl n @ wil sxn . pil ghi di wil d v il phl o sil ¢ 8 p sl

REC: r uma m sil p a 3 sil s v ng Eid Ean 4 sil whoid sil r a wall 2 a mil

REC: £ s m o sil p oA ) sil th v ng ail B an 3 aal BR 4 om oasl . s Bl a pail & & ail

LAN: &£ a& ng ail A & j ail P oo ng ST Hg &4 f B1) P W E adl 8 &M sil B A sdl Kk

HEC! #il ng & @il § &8 mil F oo =il ny s silnw il & il poas mal k

BEC: t & g #il noa ) #il ¥ o0omg Ak N s n wil rwu. il 8 &t sil Bhoa k sl &

BEC: th aa ng 81l n & j #il ¢ ooy 8010 s 1l 0 &k B SEl % aa il moae @il X

EAB: kK it ailea @il k &a & sil ph aa Ml al t mll ® a&a pall z aa ¢t all ch a mll k aa n ail

RECZ: Eh i okl o @ k #il k &8 m ail ph ks il Bk #i1 & o @1l r & p eil proaq sil b aqq sil B vva mil
BEC: th il sil ce kwil Xk an sil ph e Rslle & sl twsil cap @milpra #il ch o 3 #il k& 0 owid
BEC. th il sl ce ksil Kasmeil phaamail m il ¢ @il £ & p #all e s / silchaj sll k aa o omil

EAB; 1 = sil &g aa o =1l hoa mil th & ail & L f ®il E 11K sil B Gk k'sid m aa j sil

PEC: 1l x pil pg wva 0 mil Wa k wil thgg sl s i nwil kdi wilmes K'eil m as j sil

PBEC: 1l x sil nig aa numil kh a m wilk & wil e dinwil th il wil s ss k sil = sa 5 #il

PEC: 1l m mil mg a8 nwil Xhosa wil s a o sil cha m il w i n wil th il mil = as & 5il m as 7 wil

Figure 4.7.1 Alignment of reference vs recognition transcription

(monophone, intra-syllable triphone, and inter-syllable triphone)
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Aligned transcription: ../unlabelled/testsentences0Z_001_spk. lab
CI Initial-Final: 54,.26( 50,00} [H= 51, D= 0, 3= 43, I= 4, H=34]
C0 Initisl-Final: 65,960 63.83) [H= 62, D= 0, 8= 32, I= 2, WN=@d]

o Indeial-rinal
LAm: il ph vv 5 =& ii ph sa k kl aa egpra k ) p A uss j Jiisiprat cangwat®ls
i ALUKN wR BN AL r oAk ML MOeg kT AR K| £ ua BAL AL EAROANT HAK K

Ct! Tnlt{ll-llnll
LAB: sil ph v we n th i Li ph & sa k &l & &8 g pr_s & d#_u wus_§ j_!
L

REZ: @il phw vw o th i L8 £ a &k ki s aa_ng pr_s &k U wua_

O Initial-Final
LAR: 5 v ng kh & t

REL llfl'-q'l:'h'l-lt

 t koo k khr @

an n p ok khr B8_ng
-

Wluulli‘m
LARM: B ¥ ¥ Bg kb & &8 £ k & AR B P & &
mnvvnq IHl-ruT tpon

P i L s e ea £ d s s kX £ 8ABTWAATE
F:_tl-ilﬂ I‘llij k::r.:k-uiqu

c1 1ME!.H l'l.u.l.l.

LAR: & A& A 2 & na b rii ehachgyngsaw ch &y B BAE

MEC: k& k £ 88 thxe whou £ r il kol v £h g Og 8 AA w k U £ A ) B AA K

S0 Initial-Final

LA k a same aas maabuu riili chasechgagngsaaw ch_a &_3 n_a aa_u
REC: & & 28 e ndnabouonee il £elnseh qqyng s 8 sawvwuoeeh aajnaank

£1 Initial-Final
LAB: moa  Wh §F_nonoas
REC: makk B naa

@ np a thombon tha { E il ®il
p-l-tLhulnwlthuvnuutl.ul'huu_;ul

CD Indtial-Final

LAR: m_a & kh_§ B0_n n_a aa & B npa a

HEC: m & & kb | B m naujj o knaskkhwasanm prasat

a Buu riai mil
s w b ououu b or_ i 8i_n osil

Figure 4.7.2 Alignment of reference vs recognition transcription

(CI Initial-Final and CD Initial-Final)

Aligned transcription: ..funlabelled/testsent m 00€a_htr.lab
=11 B BE.21( B4.14) [H= 128, D= 13, E= 17, I= 3§, H-:Lll]
PoEM: BA.ZA( BE.21) (M= 128, D= 0, £= 17, I= 3, H=148]

OORM
LAB: 3@l #_u use_m sil c & & _ng Bhl » @ &t #il th L i1 sil 3w ve #il & 4 Lt sk
BEC: sil a_u usa s #i1 c_a & og shl ww sa b sil thoi 41 wil Tw uw edl

PR

LAB: mil w_uea wua_n sil o_a a_ng sdl w a a_t sil ohodd &
REC! sil = _uua wua_n sil e s a_ng sil w & &t sil th i

#L1 th s & 81l 1 e ee skl
#i1 1w we il

)

i
&
L]
E

aa_3 mil th_a a sil 1_we es mil
an_3 mil th a & mil 1_ss s sil

-
N
-
i
§
R
e
o
w
EE
BB
EE

Il.l!.liwi’ill.ul.mll

Eiifﬁ.‘éi

i

FE

POEM

LAB: #El £_oo oo _ng eil ey as ee_m sl
REC: =il ¢ oo oo ng il og es ap eil
[t ]

LAl A& 84l B 4 4 F §dl F A AP sil
HEC: aa #il n i ik ail proa a_p eil
o=

LAR; il s a_p wdl
REC il pr_a ap mil
RN

LAB: sil r_a as_t sil as_7 sil

BEC: #il pIs en  #il s & am_j sl

v ]

LAB: mil r_as as_t ail 84 k= an as_j sil

MEC: sil ¢ & aa | sdd A&k B AN &E_j sdl

Figure 4.7.3 Alignment of reference vs recognition transcription
(CORM and PORM)
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Aligoed Lransceipbion: ../ unlabelled/testsenteccesli 00la eks.zwc:

LAB: FAUSE FEAE PAUSE THII PADSE PHARE PADSE FLAANG PAUSE FRA FAUSE EFEF PADSE DUTIAT PAUSE JII PAUSE SIF PARSE EET PAUSE
PIC: PAUSE PNOVVH PAUSE THII PAUSE PHNARK PAUSE KLAANG PAUSE PRA PAUSE KEEP PAUSE DIFUAS PAUSE JII PAUST $IF PAUSE IET PAUSE

LAB: CANG PAUEE WAT PAUSE LX PAUSE HVNG PALGE KHEET PAUSE KAMM PAUSE fOR DPAUSE EHEFRRG PAUSE PHI PAUEE SEET PAUSE DAAS PFAUSE
REC: CANG PAUSE WAT PAULE LI PAUSE HVNG PAUSE KHEET PAUSE KAAM PAUSE UK PAUSE ENEFERG PAUSE PHI PAUSE SEET PAUSE DART FAUSE

LAR: OO0 PAIPSE CANG PATISE WAT PAUST WAAH PAYEE CA PAUSE MA PAMST B PADSE RIT PAUMSE CHA PAUSE CHOONG PADSE SAN CHAT FADSE MAAT
PEC: 1000 PAUSE CANG PAUSE WAT PAUST WARN PAUSE CA PAUSE NAK PADET WII DATSE CHA PAUST CHOONG PADST EAW CHAT PADEE BAXN

LAR: FAUSE WA FAUSE NHFEE FAUSE NAR FAUSE JOR PADSE MA PADSE KHGEN PADSE PA FADSE THOM PAUSE EON PADSE THA PAUNE 0O FAUNE RIT
EEC: FAUSE WA FAUSE WE§HE FAUSE AR FAUSE JON PADSE HA PADSE KHG§N FADSE PA PADNSE THOM PAUSE BN PADSE TAM FALSE PHOAN PAUSE LTI

Alignad transeription: .. /unlaballed/tastasntence ||.I:|2_Ii|:|2._li! LEmE

LAR: PA PAUSE THUM PADSE THAK PAPST MIT PADSE FAA PAUSE CUUAF PAUSE MNIT PADSE RII PAUSE KEAMN PADSE PRAL PATME CITH PATUSE B0 RIT
FEC: PAUSE P& FAUSE THUM PADSE THAR PAUST MIT PADEE FRA PAUSE CUUAF PAUSE KNII PADSE RIDI PACISE FMAN PADSE FRAR PAUSE CIIN DO RIT

LAR: FALISE PEMA PAUSE HA PAUSE KIBER PADGE SIE PAUSE ZA PAUSE JUT PAUSE THA PAUSE JAA PAUSE PHEET PAULCE BU PADESE RII PAUSE
FEC: FAUSE HAAN PADSE HA PADSE ENSEN PAUSE SIX FALLSE JUT PALIIGH JAA FALLSE PEET PAUSE DU PAIRSE HID PAUNE

BAAT Bl PACSEE RIT LOP PAIME BU FAUST AII PAUSE SA PADSE MUT PAUSE PPAR PAUSE FRAAN FAUST $A PAUSE WUT PAUSE SOIC FMBAMM
LAKT DU PAUSE RII LOP PAUSE BU PAUST RII PAUSE SR PAUEE WUT PACISE FRAR PAUSE KAAN PAUSE Sh PAUSE MUT PAUEE SONG FMPARM

BE

FAUSE A MIT PAUPSE SAA PADSE ENGEN PADSE SA PADSE EXXW FAUSE SA FAUSE RA PADSE W PAISE RIT PAOSE SING PADRSE WU PADSE RIT
FAITGE 94 MIT PAUFEE FhA PADSE KHRFW PADRSE §A PADEE KXNW FAISE S, FMPT LAF FPADSE B PADGE RIT PATNIE 3TN0 PADGE WP PADSE RIT

E

E B

¢ 80 FAUBE FEAH PADEE BU PADEE RII FAUEE LX PFAOEE IAMHC FAUGE THEAAED PAUSE
B FAUSE PEAN PAUSE bBU PAUSE RIT PAUSE AX FAUBE ZAMNG FAUGE Thaans PAIEE

B

Figure 4.7.4 Alignment of reference vs recognition transcription

in the syllable level

5.7.2 Discussion

Considering the training data, the onset-rhyme units seem to have a poorer
scalability for the small amount of training data. The triphone system has
the additional techniques to overcome the trainability problem. However,
when the training data are large enough, the complexity of the onset-rhyme
system is lower than the comparable triphone system when state-tying and
context-clustering are not employed. Additionally, decoding process of the
context-dependent phone model, especially inter-syllable triphone, is much
more complex than the onset-rhyme models.

Compared with the context-independent Initial-Final model, the
onset-rhyme models provide better modeling of speech segments as follows.
The onset explicitly models internal coarticulatory effects within a syllable
while the context-independent Initial implies a single model of a given initial
consonant occurring in every vowel context. This makes the onset more
precisely modeled than the context-independent Initial. In addition, a
language model is embedded into the onset-rhyme model by means of
phonological rules of composing this model into a syllable. Although the
context-dependent Initial models the initial consonant differently depending
on its following vowel, it cannot capture contextual information adequately.
The Initial does not include the transitional portion towards the vowel within
the model, which is an important acoustic cue. As a result, the onset-rhyme

model gives a better accuracy than context-dependent Initial-Final model.
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The recognition results indicated that the onset-rhyme outperforms the

context-dependent Initial-Final model.

The phonotactic onset units of the PORM model each releasing
consonant in every possible vowel context in Thai syllables. The contextual
onset units of the CORM treat a given releasing consonant the same way in
contexts of vowels belonging to the same short-long pair. From speech signal
characteristics, formant transition patterns of the same releasing consonant
are comparable within a short and long monophthong pair, including
diphthongs. Both PORM and CORM share the same rhyme units, which
cover every possible combination of a vowel and arresting consonant in Thai
syllables. Since the onset of PORM completely models the initial consonant
along with its transitional portion towards the vowel in every context, the
PORM is more accurate than the CORM. However, The PORM improves the
syllable accuracy of the CORM only 2.2 % and 2.0 % for the SD and SI
system. Moreover, the CORM then has a smaller number of onset units than
the PORM. From the experimental results, the CORM has the efficiency in
terms of accuracy and complexity. Therefore, should be appropriate for

acoustic modeling of the Thai language.

5.8 Experiments on Speech Recognition System

using Acoustic Modeling and Language Modeling

Incorporating the language model can boost the performance of a speech
recognition system. A bigram language model model is selected in this
research while a complex language model would require more study on the
syntactic and semantic rules. For a bigram language model, a syllable can
only connect to syllables that can legally follow it. This bigram language
model is used to evaluate the performance of the recognition system, which
is composed of an acoustic model and grammar. The perplexity of this
bigram language model is 252.03. The language model is used to perform
the linguistic post-processing and determine the optimal syllable sequence.
The system configuration is set as follows:
= 12 order MFCCs with delta coefficients
* 16 Gaussian mixture components per state

» Training speakers — 9 male speaker and 11 female speakers
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» Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent

females and 5 speaker-independent females

5.8.1 Experimental Results

The recognition results of systems using both acoustic modeling and
language modeling are shown in Tables 5.8.1-5.8.4. As was the case for the
systems using acoustic modeling only, the PORM attains the highest syllable
accuracy at 75.2 % for male SD and 75.6 % for female SD systems. For the
SI systems, the PORM also achieves the highest syllable accuracy at 62.8 %
for male speakers and 64.8 % for female speakers. The system using a CD
phone unit, inter-syllable triphone, performs at 68.8 % and 53.7 % accuracy
for male SD and SI systems, and 70.1 % and 54.9 % accuracy for female SD
and SI systems, better than the system with monophone and intra-syllable
triphone units, and worse than the systems utilizing speech units larger
than phones. It is noticeable that the language modeling, incorporated in
speech recognition system, increases the performance of the system. The
accuracy of PORM is boosted from 45.4 % to 75.2 % for male SD system and
from 48.1 % to 75.6 % for female SD system, compared with a system using
acoustic modeling only. The accuracy of PORM in the SI systems, as well as
in the SD systems, is increased from 34.1 % to 62.8 % for male speakers
and from 36.7 % to 64.8 % for female speakers. Figures 5.8.1-5.8.4 show the
comparison of the syllable accuracy between the system using acoustic
model only and the system using both acoustic model and language model.
Table 5.8.1 Syllable recognition results for male SD system

using acoustic modeling and language modeling

Speech unit Correction  Accuracy
monophone 50.1 429
Intra-syllable triphone _ 6_7._7_ i 62.6
inter_syllable triphone aa 688 .........................
ol it Final o 641 ..........................
oD Initial Final oo 710 .........................
CORM o 733 .........................

PORM 77.4 75.2
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Table 5.8.2 Syllable recognition results for female SD system

using acoustic modeling and language modeling

Speech unit Correction  Accuracy
monophone 51.7
Intra-syllable triphone 68.1
Inter-syllable triphone 74.7
CI Initial-Final 67.9
CD Initial-Final 73.6
CORM - 76.1
PORM 785

Table 5.8.3 Syllable recognition results for male SI system

using acoustic modeling and language modeling

Speech unit Correction  Accuracy
monophone 42.3 35.8
T alldiiond A § 5_3 | i_ __________________________ 4 63 _________________________
ooy bbb ibene 1_5, 8% A 537 _________________________
7 AT AR 45 4_ __________________________ 4 76 _________________________
o5 e . B s g
R 37 617 _________________________
PORM 64.4 62.8

Table 5.8.4 Syllable recognition results for female SI system

using acoustic modeling and language modeling

Speech unit Correction ... Accuracy
monophone 44.3 38.2
intra-syllabis tiphone 55.,7 .......................... 4 90 .........................

Inter-syllable triphone 6_0.4_ V 54.9
Ol it Final 0 4 77 .........................
oD Initial Final o1 563 .........................
CORM i 619 .........................

PORM 66.5 64.8
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Figure 5.8.1 Syllable accuracy of the male SD system using acoustic model

only and the male SD system using acoustic model and language model
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Figure 5.8.2 Syllable accuracy of the female SD system using acoustic
model only and the female SD system using acoustic model and language

model
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Figure 5.8.3 Syllable accuracy of the male SI system using acoustic model

only and the male SI system using acoustic model and language model
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Figure 5.8.4 Syllable accuracy of the female SI system using acoustic model

only and the female SI system using acoustic model and language model

As in the previous experiment, the recognition results of acoustic
units of Initial-Final and onset-rhyme models were also analyzed. These
results are shown in Tables 5.8.9-5.8.12. In this language model-combined
system, the accuracies of onsets of both PORM and CORM still exceed that
for the context-dependent Initial, and the accuracy of the PORM onset is
higher than that of the CORM onset. Using the language model, the Initial

and the onset accuracies are increased by around 18-25 % and 16-21 % for
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both SD and SI systems. In addition, the accuracies of the Final and the
rhyme are substantially improved by nearly 43-46 % and 45-47 % for both
SD and SI systems when the language model is applied. Figures 5.8.5-5.8.12
show the comparison of the syllable accuracy between the system using
acoustic model only and the system using both acoustic model and language
model. The examples of aligned transcription of the recognized result and
the reference label are shown in Figures 5.8.13-5.8.14.
Table 5.8.5 Phone recognition results of monophone and triphone

for male SD system using acoustic modeling and language modeling

Speech unit Correction  Accuracy

monophone 68.7 57.4
Intra-syllable triphone 72.9 63.7
Inter-syllable triphone 83.6 72.1

Table 5.8.6 Phone recognition results of monophone and triphone

for female SD system using acoustic modeling and language modeling

Speech unit Correction  Accuracy

monophone 69.4 62.5
Intra-syllable triphone 75.2 64.1
Inter-syllable triphone 84.6 73.2

Table 5.8.7 Phone recognition results of monophone and triphone

for male SI system using acoustic modeling and language modeling

Speech unit Correction  Accuracy

monophone 50.9 42.6
Intra-syllable triphone 62.6 58.2
Inter-syllable triphone 70.7 64.4

Table 5.8.8 Phone recognition results of monophone and triphone

for female SI system using acoustic modeling and language modeling

Speech unit Correction  Accuracy
monophone 54.8 47.5
Intra-syllable triphone 64.2 57.8

Inter-syllable triphone 71.3 65.3
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Table 5.8.9 Recognition results of Initial-Final and Onset-Rhyme units

for male SD system using acoustic modeling and language modeling

Speech Initial/Onset Final/Rhyme
unit Correction Accuracy Correction Accuracy
CI Initial-
. 69.4 67.2 68.6 66.3
Final
CD Initial-
. 75.9 74.5 74.5 73.1
Final
CORM 79.0 77.8 79.5 77.3
PORM 82.1 79.7 80.9 78.2

Table 5.8.10 Recognition results of Initial-Final and Onset-Rhyme units

for female SD system using acoustic modeling and language modeling

Speech Initial/Onset Final/Rhyme
unit Correction Accuracy Correction Accuracy
ClI Initial-
. 71.4 68.0 72.5 69.3
Final
CD Initial-
. 77.8 752k 76.3 73.7
Final
CORM 81.9 78.7 80.5 77.2
PORM 83.5 80.6 80.7 78.1

Table 5.8.11 Recognition results of Initial-Final and Onset-Rhyme units

for male SI system using acoustic modeling and language modeling

Speech Initial/Onset Final/Rhyme
unit Correction Accuracy Correction Accuracy
CI Initial-
: 64.2 61.2 63.7 61.7
Final
CD Initial-
. 69.1 67.5 67.6 65.3
Final
CORM 72.5 69.8 70.4 68.6

PORM 73.4 70.3 71.8 69.5
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Table 5.8.12 Recognition results of Initial-Final and Onset-Rhyme units

for female SI system using acoustic modeling and language modeling

Speech Initial/Onset Final/Rhyme
unit Correction Accuracy Correction Accuracy
CI Initial-
. 67.2 64.0 65.1 61.9
Final
CD Initial-
. 70.7 68.0 68.6 65.9
Final
CORM 74.5 71.6 71.6 69.7
PORM 76.3 73.8 72.8 70.2
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Cl Initial CD Initial CORM onset PORM onset
Speech Unit

Figure 5.8.5 Initial/Onset accuracy of the male SD system using
acoustic model only and the male SD system using

acoustic model and language model
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Figure 5.8.6 Initial/Onset accuracy of the female SD system using
acoustic model only and the female SD system using

acoustic model and language model
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Figure 5.8.7 Initial/Onset accuracy of the male SI system using
acoustic model only and the male SI system using

acoustic model and language model
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Figure 5.8.8 Initial/Onset accuracy of the female SI system using
acoustic model only and the female SI system using

acoustic model and language model
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Figure 5.8.9 Final/Rhyme accuracy of the male SD system using
acoustic model only and the male SD system using

acoustic model and language model
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Figure 5.8.10 Final/Rhyme accuracy of the female SD system using
acoustic model only and the female SD system using

acoustic model and language model
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Figure 5.8.11 Final/Rhyme accuracy of the male SI system using
acoustic model only and the male SI system using

acoustic model and language model
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Figure 5.8.12 Final/Rhyme accuracy of the female SI system using
acoustic model only and the female SI system using

acoustic model and language model

Aligned transcription: ../unlabelled/testsentencesf2a 005 _htr.lab
AM: 73.79( 69.86) [BE= 107, D= 3, E= 35, I= &, H-il.i]
AM4+IM: 93.10( 93.10) [H= 135, D= 3, 5= 7, I= 0, H=145]

LAB; pil pr_a & wil ch s sa wil k 8 Pl powil s o ues moeil 3 8 & g sil pra & wbl & B BB p wil z_a sa sil ch_ i il p wil
REC: il kr_s & wil s 3 a k wil k_F B8 wil s = uss m sil j:l 83 mil khi_m a Xk wil k_F #8_ng wil m_a & sl ch_t ii_p il
REC: mil pr_a & mil ch_a a3 wil k_# B8 n sil s s uss mosil 78 a3 sdl por_a a sil k_# BE p mil w_a aa sil eh_i ii_p sil
kB sil ks & sil s o we G mil craa  mil kasowontl thoa am sdl na a8 sil pl_w us k sil kb s as_w sil m_i &i wil

BEC: mil h_a & mil s_m o T mil 3 ok il e @ #m mil 'm_:l_-.tullnl.u:l pluu i sil kh_a aw sil m i ki mil

BEC: il b & & 5il a @ ea & 8il tr 8@ S8l 3 & m mil vh 3 A m mil A an skl pl W us k osil kh s aa w mil m o4 84 mil

LAR: 8 @ ouss & sil ph oo on il 1 A&  mil m s aa ) 8i] v ox sdl th e & m B8l £ e s g eal n @ @Ok sil & & ma_k 1l n_d i4
BEC: s wouas & sil ph oo @ eil I a s meil moa s ] sil I wx sil thos amaeil r & s 3 #ilnf @0 eil o s as k sil = 4 ils w
EEC: #_u uus_n sl £_e @ skl om e oes ) ﬂlb&amm-a-m:am\_j ®il n_@ PO_k wil o s ma_k sil n_i id
TAR: mil J & & ng wil m 1 20 =il k¥ i 1 F eil o & & il k& sa n sil pa & sdl = unosil s s 8 € eil B 1 dia ng mil kh_o oo
BEC: #il om i Gd mil k4 1k wil o e et sil k8 aamosll t e s eil s unosil 8 @@ skl I_i ils_ng sil kh_o oo
REC wil m 1 A1 #i1 K L it eil o @ skl k& sam sil [ s s sil o_uwu sil s_s o8 t sil 1_L ils_ng =il kh o o p
LAb;: pil pha & mosil g v va sil phs s e il noom pil m i b2 wil £ a ma muwil k m a § wil 1l x=m
BEC: pil phim a il m v v ong sil s s s p sil ph s o 5 sil n o o m eil phoo o p sil m_d b2 wil £ 0 =il k aoas dwillxzan
REC: il w_v vva il phoas  mil noom il m_i ki wil £ 8 sa_m wil k_a aa_3 wil 1 x &8
Lam: mil 1 4 Gis ngosil pl s as sil

BEC: mil L 4 dia ng mdl 1§ #E all

BEC: mil 1 4 bkia ng edl pl & as ail

Figure 5.8.13 Alignment of reference vs recognition transcription

(acoustic modeling only and acoustic modeling +language modeling)
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Aligned tranacription: .. /unlabelled/testssntences0?_005a_htr.rec:
FU 92.16( 6B .04) ([Hm 70, Dm 2, 5w 25, Im 4, Hw 57]
B L - G0, 72( 90.72) [Am 88, Dm 2 5= 7, Im 0O, Hm 57]

PAUSE FRA PAULSE CHAA FARSE KEAN PAUSE SUUAN PAUSE JAd FAUSE PG FAUSE KA PFAUSE ZAK PAUSE CHIDP EA PAUSE SEET TRA PAUSE
PAUEE KRA FAUSE SAK PAUEE K@ PAUSE SUUMN PAUSE JAJ PAUSE KHRAK PAUSE EASNG PAUSE MA PAUSE CHIIF FA PAUSE SET FKAK PAUEE
! PAUEE TRA FAJEE CHAA PADEE FAAN PAUSE EUUMI PAUEE JAJ FAJEE FRA PAUEE FASF FAUEE IAN PAUSE CHIIF KA PAUSE SEET TRA TAUEE

FEAH THAM PAZSE MAA DPAUSE PLUUE PAUSE EHAAW DPAUZE HII PAUSE EUTRN PAUEE Pl PADEE LA PAUSE HART PAREE LX PADEE TiAM R
{ THH TILAM PADSE MAAM PAUSE TLUE PAUSE KHAE #PAUSE HII PAUSE SUOAN PAUGCE PHON PACEE LAM PAUSE MAS PAUSE LX PAUSE TIAM AT
EAM TILAM PAIISE MAR PALUEH PLINIK PAISE KHAAN PAIRSE HII PAOSE SUOAN PAIIGE BA FAULE MAAT PADSE LN PADSE THIAM RAAD

REE ERE

HEFE FAUSE CAAK FADSE WIT FATSE JANG PAUSE MIT FARSE EIT FADSE CK  FAUSE EARN FADSE FA PAUSE B0 SAT LITANG FADSE EHGD
HER FAMSE SARK PAUSE MITAW FAUSE MIT FAUSE EIT PADSE CET FAUSE FARN PAUSE TA PAUSE 50U 3§ LITANG PADSE EHGD
; MEER PAUSE CAAK PAUSE NIT PAUSE JANG PAUSE MITI PALSE KIT PADSE CA PAUSE KARN PAUSE PA PAUSE SU SAT LITANG PALSE XN0P

i

FHAS WA PRIFSE FHAN PAUEE HOM PAUST MIT PAUST TAAM PAUSE KAT PAUSE LX PAUSE LITANG PAUNSE FLAN FAUSE
i PHA  WVHG FAUSE IAP FAUSE PHAN PAUSE NOM PAUSE PHCP PAUSE MII PAUSE FAMM FAUSE KAAT PAUSE LX FAUSE LITANG PAUSE LEE PAUSE
EHAR BV FAUSE FHA FAUISE FOM FAUSE MIT PAVEE FAMM PAUSE KAAT FAUSE LX FAUSBE LITANC PAVEE FLAN FAUSE

RRE

Figure 5.8.14 Alignment of reference vs recognition transcription
in the syllable level

(acoustic modeling only and acoustic modeling+language modeling)

5.8.2 Discussion

Incorporating the language model in a large vocabulary speech recognition
system reduces the ambiguities between the large set of alternative
confusable words that might be hypothesized during the recognition. The
recognition results of the systems using acoustic model and language model
are clearly higher than those of the systems using acoustic model only.
When the language model is applied, the substitutions, especially the stop-
final consonant, are substantially diminished in the final/rhyme unit. A
substantial improvement of final/rhyme units results in a high recognition
rate of the system. The language model also enhances the accuracy of the
Initial and onset. However, the improvement in syllable accuracy of he Initial

and onset is much lower than the final/rhyme.
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5.9 Experiments on Speech Recognition System

using Different Test Sets

This experiment aims to evaluate the efficiency of the speech recognition
system of both using acoustic modeling only and using acoustic modeling
together with language modeling by two different test sets. The system was
already tested with the first test set in the experiment 5.7 and 5.8. The
second test set used in Visarut’ s work (Ahkuputra, 2002) will be tested in
this experiment. The results of these 2 test sets will be reported and
compared as well.
The system configuration is set as follows:
» 12 order MFCCs with delta coefficients
* 16 Gaussian mixture components per state
» Training speakers — 9 male speaker and 11 female speakers
» Evaluation speakers - 9 speaker-dependent males and 5
speaker-independent males, and 11 speaker-dependent
females and 5 speaker-independent females
» Test set I - 100 sentences, 4985 syllables
= Test set II - 30 sentences, 576 syllables

5.9.1 Experimental Results

Compared to the test set I, the test set I has the number of syllables, 576,
less than that in the test set I, 4985. The vocabulary in the test set I would
probably be complicated than those in the test set II. Figures 5.9.1-5.9.4
show the syllable accuracy of the systems using acoustic model only while
Figures 5.0.5-5.9.8 show the syllable accuracy of the systems using acoustic
model and language model. The recognition results show that the accuracy
of the test set Il is higher than the test set I for every speech unit. The
recognition results of these two test sets are in the similar way that is the
subsyllable units, Initial-Final and onset-rhyme, outperforms the phone

units.



70

60 -

50

Accuracy
a
o

W
1=}

20

70

60

50 4

Accuracy
I
o

w
S

20 A

OTest Set |
M Test Set Il

Monophone Intra-syllable Inter-syllable Cl InitiatFinal CD-Initia-Final CORM PORM
Triphone Triphone

Speech Units

Figure 5.9.1 Syllable accuracy of the male SD system

using acoustic model only

OTest Set |
W Test Set Il

Monophone Intra-syllable Inter-syllable Cl Initiak-Final CD-Initial-Final CORM PORM
Triphone Triphone

Speech Units

Figure 5.9.2 Syllable accuracy of the female SD system

using acoustic model only

185



50

45

W w &
1=} o S

Accuracy
N
o

20 A

50

45

40

35

@
S

Accuracy
N
o

20

OTest Set |
4 M Test Set Il

Speech Units

Figure 5.9.4 Syllable accuracy of the female SI system

using acoustic model only

Monophone Intra-syllable Inter-syllable ‘ Cl InitiatFinal . CD-Initia-Final ‘ CORM PORM

Triphone Triphone
Speech Units
Figure 5.9.3 Syllable accuracy of the male SI system
using acoustic model only
OTest Set |
i W Test Set Il

Monophone Intra-syllable Inter-syllable Cl Initiak-Final CD-Initial-Final CORM PORM

Triphone Triphone

186



Accuracy

N
S

Accuracy

N
S

90

80

60

@
=}

30

20 A

90

80

70

o
=}

30 A

20 4

OTest Set |
] M Test Set Il

70 A

Monophone Intra-syllable Inter-syllable Cl InitiatFinal CD-Initia-Final CORM PORM
Triphone Triphone

Speech Units

Figure 5.9.5 Syllable accuracy of the male SD system

using acoustic model and language model

OTest Set |
W Test Set Il

Monophone Intra-syllable Inter-syllable Cl Initiak-Final CD-Initial-Final CORM PORM
Triphone Triphone

Speech Units

Figure 5.9.6 Syllable accuracy of the female SD system

using acoustic model and language model

187



188

920
OTest Set |
80 A M Test Set Il

70 4

Accuracy

w B
S S

N
o

Monophone Intra-syllable Inter-syllable Cl InitiatFinal CD-Initia-Final CORM PORM
Triphone Triphone

Speech Units
Figure 5.9.7 Syllable accuracy of the male SI system

using acoustic model and language model

90

OTest Set |
80 W Test Set Il

~
=}

@
=}

o
=}

Accuracy

N
S

W
1=}

N
o

Monophone Intra-syllable Inter-syllable Cl Initiak-Final CD-Initial-Final CORM PORM
Triphone Triphone

Speech Units

Figure 5.9.8 Syllable accuracy of the female SI system

using acoustic model and language model

5.9.2 Discussion

To prove the superiority of the onset-rhyme models, the experiment using
more than two kinds of corpora was conducted. Two test sets with the
different number of syllables were employed in the experiment. The
evaluation was carried on the system using acoustic model only and the
system using both acoustic model and language model. The recognition

results show the syllable accuracies of these two test sets are in the similar
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way that is the subsyllable units, Initial-Final and onset-rhyme, outperforms
the phone units. This verifies that the proposed acoustic unit, onset-rhyme,

is superior in terms of accuracy.

5.10 Summary

In this chapter, the experiments were conducted on several speech units to
study the efficiency of the acoustic model. The speech units used in this
experiments are, the monophone, the triphone, the Initial-Final, and the
onset-rhyme. Two onset-rhyme models, the Phonotactic Onset-Rhyme Model
(PORM) and the Contextual Onset-Rhyme Model (CORM) are applied to Thai
in a continuous speech recognition system in order to illustrate their
feasibility. The results of all speech units are given and analyzed in details.
The recognition results show major improvements over other acoustic units
in many ways, indicating better performance of the models while

maintaining manageable system complexity.



Chapter 6

Conclusions

This dissertation presents acoustic modeling of the rhyme units in the onset-
rhyme models for Thai continuous speech recognition. Several conventional
speech units were tested their effectiveness. The performance was analyzed
both in terms of the computational complexity and the recognition accuracy.
The experiments on recognition system using acoustic modeling only were
conducted to obtain an actual efficiency of the acoustic model. On the other
hand, the experiments on recognition system, incorporating the language
model, were conducted to obtain the overall performance of a speech

recognition system.

6.1 Conclusions of the Dissertation

In this dissertation, the onset-rhyme models are proposed and applied to
speech recognition of Thai language. The main interest of this dissertation is
the rhyme unit. From the acoustical point of view, in the syllable structure,
the final consonant is strongly influenced by the vowel duration. This
relationship occurs only between the vowel and the final consonant. In
contrast, the initial consonant is not affected by the duration of the vowel.
Hence, the vowel and the final consonant are tightly tied while an initial
consonant is loosely tied with the vowel in the syllable. From a phonological
point of view, a syllable is composed of a pair of an onset and a rhyme unit.
The onset consists of an initial consonant and 'its transition towards the
following vowel. Along with the onset, the rhyme is composed of a vowel, a
final consonant, and a tone. The onset-rhyme not only includes its
contextual information, but also embeds the language modeling at the
syllable level. Therefore, the syllable should be decomposed into 2 parts, the
onset and the rhyme. The Thai syllables can be recognized by identifying the
onset and the rhyme.

Various conventional speech units were studied and compared their
strengths and weaknesses in practical applications. This research mainly

used four speech units. The context-independent phone, a monophone, was
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modeled initially, and then this speech unit was used for building the
triphone system. The modeling of other speech units, Initial-Final and onset-
rhyme, depended on their types. The Initial and the onset were modeled
differently, according to their context, while both of the final and the rhyme
were modeled as left context-independent units. The three criteria, accuracy,
trainability, and generalization must be considered in choosing the
appropriate speech unit. Therefore, this research evaluates the efficiency of
those speech units based on these criteria.

The hidden Markov models (HMM) were used to create the acoustic
models. The left-right topology with no skipping state is selected. The phone
units use three states for acoustic modeling. In the triphone modeling, the
additional techniques were employed to create the triphone models from the
monophone models. The numbers of HMM states were varied for the onset-
rhyme according to its characteristics. The onsets use three states for
modeling the initial consonant and the vowel transition while the rhymes,
considered as two concatenating phone units, use six states for modeling the
vowel and final consonant.

To test the gender-dependent effect, the systems were separately and
conjointly trained on male and female speakers. The recognition results
show that the gender-dependent system gives more accuracy than that of
the gender-independent system.

Multiple mixture components provide the accurate acoustic model.
The acoustic models can be created from a single mixture Gaussian
distribution. Then, an iterative divide-by-two clustering algorithm was
utilized to increase the number of Gaussian mixture components to the
desired value. ‘The more mixture components were created, the more
accuracy the acoustic models have. However, increasing in the number of
mixture components requires more computation. The experimental results
showed that the recognition rates become higher when the numbers of
mixture components are increased.

Recognition results of the system using acoustic models only show
that the accuracy of monophones and triphones are lower than those for
speech units larger than phones. Although the correction of the inter-
syllable triphones is higher than that of the CD Initiai-Final model, its
accuracy is lower than that of the CD Initiai-Final model due to the high

insertion. The inter-syllable triphones performs better accuracy than
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monophones and intra-syllable triphones. The PORM gives the highest
accuracy. The performance of the CD Initial-Final model is better than that
for phone modeling units and the CI Initial-Final model, and worse than
those for either PORM or CORM.

Apart from the syllable accuracy, the recognition results of Initial-
Final and onset-rhyme acoustic units were analyzed. Since the context-
dependent Initials and the onsets of PORM and CORM are context-
dependent, they give better accuracy than the context-independent Initial.
Although the context-dependent Initial and the onset are the right context-
dependent units, the onset outperforms the context-dependent Initial. The
transitional portion towards the vowel, included in the onset, has
contributed substantially to the precise modeling of the initial consonant
segment. The accuracy of the onset in CORM is higher than the accuracy of
the context-dependent Initial but lower than that of the PORM. At the other
part of the syllable, the accuracies of the Final and the rhyme are slightly
different. The Final and rhyme units give comparable accuracies due to the
similar modeling of these units.

Obviously, the recognition results of the rhyme are very poor
compared to the onset. The three stops, [pl, [t], and [K], appearing at the
final position are acoustically different from the initial consonant, that is,
they are not audibly released. Most of the errors in the rhyme result from the
substitution of the rhyme ending with these stop consonants. Furthermore,
the rhyme without a final consonant may be recognized as the rhyme with a
final consonant, and vice versa. This serious problem is hard to overcome by
the acoustic model only.

Incorporating the language model can boost the performance of a
speech recognition system. The recognition results of systems using both
acoustic modeling and language modeling are improved ranging from 20.9 %
to 30.8 % of syllable accuracy. The PORM attains the highest syllable
accuracy at 75.2 % for male SD and 75.6 % for female SD systems. For the
SI systems, the PORM also achieves the highest syllable accuracy at 62.8 %
for male speakers and 64.8 % for female speakers.

In the language model-combined system, the accuracies of onsets of
both PORM and CORM still exceed that for the context-dependent Initial,
and the accuracy of the PORM onset is higher than that of the CORM onset.

Using the language model, accuracy of the Initial and the onset is increased
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by around 18-25 % and 16-21% for both SD and SI systems. In addition, the
accuracies of the Final and the rhyme are substantially improved by nearly
43-46 % and 45-47 % for the SD and SI systems when the language model is
applied.

The speech units were evaluated with two test sets. The recognition
results of these two test sets are in the similar way that is the subsyllable
units have a higher accuracy than the phone units. This verifies that the
proposed acoustic unit, onset-rhyme, is superior in terms of accuracy.

Speech units used for Thai speech recognition evaluated in this
research are onset-rhyme, Initial-Final, triphone, and monophone. The
result of the evaluation is summarized in Table 6.1. The units are relatively
compared based on three criteria, i.e., accuracy, generalization, and
trainability, in using the units for the Thai continuous speech recognition
system. The onset-rhyme models have a finite number of speech units that
economically represent the all potential speech units of the language. Based
on the experiments, the onset-rhyme models also satisfy all the major
criteria in selection of good acoustic units. First, the onset-rhyme models are
accurate in that each of the onset and rhyme units gives a high recognition
performance. Second, the onset and rhyme units are reliably estimated with
only a small set of training utterances that satisfy the trainability criterion.
Finally, the onset-rhyme models are generalized in that the same onset and
rhyme units have similar characteristics for different instances.

The Thai language was selected in this research, since it is a
predominantly monosyllabic language with simple syllable structure, i.e.,
syllable with one or none final consonant. The languages with these two
characteristics are spoken in mainland south-east Asia and China. They
include languages in Tai Kadai (Thai, Lao, etc.) Mon-Khmer (Cambodian,
Vietnamese, etc.), Hmong-Mian (Mao, Yao, ete.), and Sino-Tibetan (Chinese,
Tibetian, etc.) language families. In addition, the Thai language also has a
complex vowel system, i.e., contrast of short-long vowel pairs.

Considering accuracy, the onset-rhyme and the Initial-Final are better
than the triphone and the monophone. However, the onset-rhyme is best in
term of accuracy. According to the criteria of generalization, all the
candidates have the generalization capability. When taking trainability into
account, the worst one is the triphone. The best one is the monophone.

However, the triphone and the monophone cannot be considered as good
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candidates because the degrees of accuracy for both of them are low. The
only two candidates left are the onset-rhyme and the Initial-Final. In term of
trainability, they are very close, although the Initial-Final is a little bit better.

Therefore, applying the onset-rhyme model to Thai continuous speech
recognition shows major improvements over other acoustic units in many
ways, indicating better performance of the models while maintaining system
simplicity. Therefore, these make the onset-rhyme models the efficient
acoustic speech units for continuous speech recognition in the Thai
language and other predominantly monosyllabic languages with simple

syllable structure as well.

Table 6.1 Evaluation of various speech units

for Thai continuous speech recognition

Criteria Efficiency of speech units
Onset-rhyme Initial-Final Triphone Monophone
Accuracy 4 3 2 1
(considered by CORM (44.6 %) CI IF (38.4 %) intra (34.8 %) 19.6 %
% recognition) PORM (46.8 %) CD IF (42.6 %) inter (40.4 %)
Generalization All speech units have the generalization capability
Trainability 2 3 1 4
(considered by the CORM (497) CI IF (233) intra (7,769) 58
no. of units trained) PORM (992) CD IF (497) inter (64,475)

* 4 is the best score and 1 is the worst score in terms of comparison

6.2 Contributions of the Dissertation

This section summarized the contributions made during doing the research
in this dissertation. The works begin from acoustic-phonetic analysis of the
Thai language. Several tools were developed for analysis and utilization of
text and speech corpus. The onset-rhyme model for Thai continuous speech
recognition was emerged from this analysis. Hundreds of sentences were
composed for voice recording. The speech corpus for dictation task was
constructed according to these sentences. In addition, hundreds thousands
of Thai syllables were collected, analyzed, and transcribed for building the

language model. The details of the contributions are described as follows:
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6.2.1 The Onset-Rhyme Acoustic Model

This dissertation conducted a basic research on acoustic modeling for Thai
continuous speech recognition. From the acoustic-phonetic analysis of Thai
syllables, the appropriate speech unit for the Thai language is the onset-
rhyme model. An onset comprises an initial consonant and its transition
towards the following vowel. Together with the onset, the rhyme consists of a
steady vowel segment and a final consonant. Using the onset-rhyme model
in Thai speech recognition shows major improvements over other acoustic

units in many ways, indicating better performance of the model.

6.2.2 Thai Text Corpora and Thai Continuous Speech

Corpora

This dissertation provides sets of text corpus used in speech recording for
training and testing. The text corpus was designed for recording in reading
or dictating style. In addition, the text corpus was created to cover all onsets
and rhymes existing in the Royal Thai Dictionary. The set of sentences was
carefully composed to contain samples of onset and rhyme adequately for
creating the acoustic models. Therefore, a set of 1,081 sentences was created
for training the acoustic model while a set of 100 sentences was used to
evaluate the efficiency of the acoustic model.

The Thai continuous speech corpus was recorded from 14 male and
16 female speakers uttering in reading style. The total durations of the
speech corpus used in this dissertation for training and testing are
approximately 68 hours and 36 hours, respectively. Initially, the set of
recorded speech was labeled according to the phonetic transcriptions. This
process spends a lot of time to label manually. The labeled corpus was used
to train the initial acoustic models for the automatic labeling system. The
text and speech corpora constructed in this dissertation can be reliably used

as reference corpora for further research in Thai speech recognition.

6.2.3 The Language Model

From the experimental results, the speech recognition system, employing the
acoustic model only, gives unsatisfactory accuracy. Since the n-gram
language model has been among the most successful approaches used for

language modeling, particularly for speech recognition, this dissertation
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explored the use of n-gram language model in Thai continuous speech
recognition.

The n-gram language model can be trained from the text corpus
ranging from millions of word to billions of words. The text corpus for
building the n-gram model was excerpted from various kinds of reading
paragraphs. Nearly millions of syllables were transcribed into phonetic
representation. These phonetic transcriptions were then manually checked
and rectified. This process consumes a lot of time. The n-gram language
model was build from the correct transcriptions by CMU language modeling
toolkit. After taking several steps in building the language model, the output
from the toolkit is in the ARPA format. Finally, the ARPA format was
converted to the lattice network in order to use the HTK decoding module.
Experimental results show that the speech recognition system including the

language model provides notable performance.

6.2.4 Program Development

Several tools have been developed for the research in Thai continuous
speech recognition. The development begins from the analysis tool through
the evaluation tool. Details of the tools contributed by this dissertation are
listed as follows:
= Speech analysis tool — Since acoustic-phonetic analysis of the Thai
language is the important part of this dissertation, the speech
analysis program was developed in this analysis. This program clearly
illustrates acoustical properties of speech signal in both time and
frequency domain: Many parameters can be adjusted to study the
dominant feature of speech signal. Development of this tool
contributes much more understanding of characteristics of speech
signal.
= Thai text analysis tool - To design and construct the Thai
continuous speech corpora, the Thai text analysis tool was written to
analyze the distribution of speech units from selected paragraphs.
This tool assists the author to compose a set of sentences for building
acoustic models with sufficient training samples.
= Speech-labeling tool - It is necessary to indicate the boundary of
recorded sounds because the speech corpus associated with

transcriptions was employed to create the initial acoustic models. The
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speech-labeling tool was developed to mark the boundary of recorded
speech. This tool displays essential information in graphic mode, and
provides some easy use functions.
= Evaluation tool - The recognition results were shown in the specific
format. It is necessary to analyze these results in form of easy
interpretation. The original HTK program cannot provide a suitable
tool for phonetic alignment. Then, the evaluation tools were written to
handle the results with reliable evaluation.
These programs have contributed many utilities for a basic research
in speech analysis and an advance research in speech recognition. They also

provide some modules for further development.

6.3 Future Research on Thai Speech Recognition

All works in this dissertation used speech recorded in a quiet laboratory
condition. Performance of the recognition systems degrades substantially
when source of speech is in the noise and the distortion environment. To
implement systems in practical applications, the speech recognizers must be
more robust to the background noise and the distortion.

While the recognition system described in this dissertation gives high
accuracy, there are many interesting points for further refinement of the
acoustic models. Improvement in modeling accuracy has to taken account of
variation in stress. Both stress and prosody form important cues for human
speech recognition. It may be possible to study such features for acoustic
modeling.

The speech corpus used in this dissertation was read from prepared
texts. Recognition performance dramatically reduces for spontaneous or
conversational speech. The fluent nature of such speech does not match
either the acoustic or the language model. In particular, some forms of
dialogue modeling are required to interact with the user to obtain
clarification.

Due to the limited resources, the speech corpus was recorded from
only 14 male and 16 female speakers. However, this corpus can be
sufficiently verified the proposed acoustic models. To implement a practical
speech recognition system, more speakers are needed to model variation

from various speakers.
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This dissertation incorporated the language model into a speech
recognition system resulting in substantial improvement of the recognition
results. The language model is directly estimated from text data. The large
size of text corpus produces the accurate language model. Therefore, more
text data should be collected and analyzed. Furthermore, various types of
language models should be studied.

In this dissertation, the recognition results of the onset-rhyme models
are the syllable without tone. Presently, the recognition of Thai complete
syllable with tone is not complete. When the separated recognition of base
syllable and tone is used, tone recognition system is required for producing a
tone sequence. The additional module is needed to integrate and manipulate
different sequences of base syllable and tone. On the other hand, using
onset-rhyme as an acoustic unit provides the alternative of employing not
only separated recognition but also joint recognition of base syllable and
tone. Since prosodic information is preserved in rhyme portion, base syllable
and tone can be simultaneously recognized to produce a complete tonal
syllable. However, there are several advantages and drawbacks of these two

schemes needed to study before they will be applied to Thai language.
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APPENDIX A

The Thai Text Training Corpus

Table Al.1 Statistic of the Thali initial consonants in the training corpus

Unit Amount Percent
m 1,799 8.095 %
n 1,784 8.027 %
th 1,645 7.402 %
kh 1,584 7.127 %
s 1,401 6.304 %
] 1,368 6.156 %
K 1,289 5.800 %
c 1,248 - 5.616 %
1 1211 5449 %
r 1,174 5283 %
d 1,019  4585%
] 962 © 4.329 %
ph 908 4.086 %
P 887 3.991 %
ch 696 3.132 %
h 695 3127 %
z 674 3.033 %
w 668 3.006 %
b 557 2.506 %
£ 210 0.945 %
ng 210 0.945 %

Table Al.2 Statistic of the Thai final consonants in the training corpus

Unit Amount Percent
n 3,882 23.140 %
ng 3,273 19.510 %
j 3,155 18.807 %
k 1,571 9.365 %
m 1,561 9.305 %
w 1,260 7.511 %
t 1,156 6.891 %
P 918 5.472 %




Table Al.3 Statistic of the Thai consonant clusters in the training corpus

Unit Amount Percent
kr 235 13.048 %
kl 204 11.327 %
pr 204 11.327 %

khr 195 10.827 %

phr 189 10.494 %

p! 167 9.273 %
khw 153 8.495 %

tr 132 7.329 %
phl 123 6.830 %
khl 120 6.663 %
kw 68 3.776 %
thr 11 0.611 %

Table Al.4 Statistic of the Thai vowels in the training corpus

Unit Amount Percent
a 6,141 25.809 %
aa 4970  20.888 %
@ 1,650  6.935%
ii 1,347  5.661 %
o 1,238 5.203 %
i 858 3.606 %
uu 817 3.434 %
Xx 784 3.295 %
uua 733 3.081 %
e 716 3.009%

wva 600 2.522 %
u 594 2.496 %
iia 524 2.202 %
v 505 2.122 %
428 1.799 %

X 421 1.769 %
qq 413 1.736 %
00 373 1.568 %
- 339 1.425 %
ee 272 1.143 %
q 58 0.244 %
ia 4 0.017 %
ua 3 0.013 %
va 2 0.008 %
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Table Al.5 Statistic of the context-independent Initials

in the training corpus

Unit Amount Percent
m 1,799 7.562 %
n 1,784 7.499 %
th 1,645 6.915 %
kh 1,584 6.658 %
s 1,401 5.889 %
1 1,368 5.750 %
k 1,289 5.418 %
c 1,248 5.246 %
t 1,211 5.090 %
r 1,174 4.935 %
d 1,019 4.283 %
] 962 4.044 %
ph 908 - 3.817 %
P 887 - 3.728 %
ch 696 2.926%
h 695 2,921 %
z 674  2.833%
W 668 2.808 %
b 557  2.341%
kr 235 0.988 %
£ 210 0.883 %
ng 210 0.883 %
Kl 204 0.858 %
pr 204 0.858 %

khr 195 0.820 %

phr 189 0.794 %
pl 167 0.702 %
khw 153 0.643 %

tr 132 0.555 %
phl 123 0.517 %
khl 120 0.504 %
kw 68 0.286 %

thr 11 0.046 %
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Table Al.6 Statistic of the context-dependent Initials and CORM onsets in

the training corpus

Unit Amount Percent Unit Amount Percent
n_a 1097 4.611 % ph_v 137 0.576 %
m_a 1037 4.359 % pr._a 135 0.567 %
c_a 689 2.896 % fa 134 0.563 %
kh_a 678 2.850 % lLu 134 0.563 %
th_a 626 2.631 % S_V 134 0.563 %
k a 608 2.556 % t_o 134 0.563 %
th_i 551 2.316 % k i 128 0.538 %
s_a 533 2.240 % S_0 124 0.521 %
w_a 502 2.110 % kh_v 121 0.509 %
p_a 500 2.102 % kh_u 120 0.504 %
j_a 451 1.896 % s_@ 120 0.504 %
r.a 449 1.887 % r @ 119 0.500 %
h_a 427 1.795 % nv 118 0.496 %
ch_a 408 1.715 % kl_a 117 0.492 %
t_a 401 1.686 % r v 111 0.467 %
d_a 396 1.665 % ph_@ 109 0.458 %
lLa 392 1.648 % z i 108 0.454 %
1Lx 373 1.568 % ng a 107 0.450 %
k @ 300 1.261 % n_@ 103 0.433 %
z_a 286 1.202 % khr_a 102 0.429 %
n_i 270 1.135 % m_Xx 101 0.425 %
kh_@ 269 1.181 % c_i 97 0.408 %
m_i 257 1.080 % phr_@ 97 0.408 %
p_e 251 1.055 % le 95 0.399 %
ph_a 240 1.009 % z_ @ 94 0.395 %
s_i 237 0.996 % b_o 93 0.391 %
b_a 235 0.988 % ph i 89 0.374 %
kh_o 224 0.942 % th_v 89 0.374 %
j_u 213 0.895 % r o 87 0.366 %
th_u 204 0.858 % c_ @ 80 0.336 %
t@ 199 0.836 % w_i 80 0.336 %
d_u 193 0.811 % n_o 77 0.324 %
t_u 190 0.799 % k x 76 0.319 %
s_u 187 0.786 % ch_i 70 0.294 %
kr_a 182 0.765 % kh_i 70 0.294 %
r.u 168 0.706 % d_o 68 0.286 %
ph_u 162 0.681 % d_q 68 0.286 %
d_i 160 0.673 % n_u 68 0.286 %
tx 160 0.673 % ti 68 0.286 %
cV 154 0.647 % h_e 67 0.282 %
m_v 154 0.647 % b_i 66 0.277 %
lLo 149 0.626 % v 65 0.273 %
r_i 143 0.601 % lq 64 0.269 %
khw_a 142 0.597 % m_@ 64 0.269 %
c_o 139 0.584 % b_@ 63 0.265 %
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Unit Amount Percent
ji 63 0.265 %
kw_a 62 0.261 %
ji@ 61 0.256 %
ph_o 61 0.256 %
j_v 60 0.252 %
m_o 60 0.252 %
plL@ 59 0.248 %
ch_v 58 0.244 %
th_@ 56 0.235 %
m_u 55 0.231 %
m_e 54 0.227 %
d_e 53 0.223 %
j_o 53 0.223 %
Z_u 51 0.214 %
k e 50 0.210 %
L@ 50 0.210 %
ch_@ 49 0.206 %
p_i 48 0.202 %
h_x 46 0.193 %
i 46 0.193 %
th_x 46 0.193 %
ph_e 45 0.189 %
phr_a 45 0.189 %
Z_0 45 0.189 %
s_e 43 0.181 %
k o 42 0.177 %
kh_x 42 0.177 %
h_u 41 0.172 %
kl_u 41 0.172 %
w_e 41 0.172 %
d_v 40 0.168 %
kh_e 40 0.168 %
r_x 40 0.168 %
k_q 39 0.164 %
b_u 38 0.160 %
h_@ 38 0.160 %
khr. u 38 0.160 %
ph_x 38 0.160 %
n x 37 0.156 %
ch_u 36 0.151 %
pla 36 0.151 %
t_v 36 0.151 %
b_x 35 0.147 %
tri 35 0.147 %
zZ_e 35 0.147 %
h_o 34 0.143 %
k u 34 0.143 %
khl_a 34 0.143 %

Unit Amount Percent
c_u 33 0.139 %
j_e 32 0.135 %
phl_a 32 0.135 %
ch_o 31 0.130 %
ZV 31 0.130 %
ng q 29 0.122 %
r_e 29 0.122 %
th_q 29 0.122 %
r_q 28 0.118 %
tr_u 28 0.118 %
h_i 27 0.113 %
ph_q 27 0.113 %
tr_o 27 0.113 %
c_e 26 0.109 %
khr_v 25 0.105 %
ng o 24 0.101 %
p_u 24 0.101 %
phl_x 24 0.101 %
d@ 23 0.097 %
c_q 22 0.092 %
jx 22 0.092 %
khl_v 22 0.092 %
pLi 22 0.092 %
th_e 22 0.092 %
th_o 22 0.092 %
pr_i 21 0.088 %
ch_e 20 0.084 %
kh_q 20 0.084 %
phl g 20 0.084 %
pr_ @ 20 0.084 %
p.@ 19 0.080 %
phr_i 19 0.080 %
t_e 19 0.080 %
dx 18 0.076 %
tr_a 18 0.076 %
Z_q 18 0.076 %
fo 17 0.071 %
fu 17 0.071 %
m_q 17 0.071 %
plx 17 0.071 %
wW_o 17 0.071 %
ng u 16 0.067 %
S_X 16 0.067 %
khl_@ 15 0.063 %
p_v 15 0.063 %
ch_q 14 0.059 %
fv 14 0.059 %
khl_u 14 0.059 %
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Unit Amount Percent
ng @ 14 0.059 %
plo 13 0.055 %
k v 12 0.050 %
khl o 12 0.050 %
kl_i 12 0.050 %
kr_u 12 0.050 %
p_o 12 0.050 %
phl_o 12 0.050 %
phl_u 12 0.050 %
b_v 11 0.046 %
kr o 11 0.046 %
p_x 11 0.046 %
pr_o 11 0.046 %
ch_x 10 0.042 %
kl @ 10 0.042 %
b_q 9 0.038 %
khr @ 9 0.038 %
phl e 9 0.038 %
Cc_X 8 0.034 %
h v 8 0.034 %
khl e 8 0.034 %
n_q 8 0.034 %
phl i 8 0.034 %
phr_o 8 0.034 %
phr_x 8 0.034 %
pLv 8 0.034 %
tr x 8 0.034 %
w_@ 8 0.034 %
W_X 8 0.034 %
b_e 7 0.029 %
fi 7 0.029 %

f x 7 0.029 %
h_q 7 0.029 %
j_q 7 0.029 %
kr @ 7 0.029 %
kr_i 7 0.029 %
kr.x 7 0.029 %
P_q 7 0.029 %
plu 7 0.029 %
s_q 7 0.029 %
tr @ 7 0.029 %
fq 6 0.025%
khl x 6 0.025 %
khr_e 6 0.025 %
khr_o 6 0.025 %

Unit Amount Percent
khw_x 6 0.025 %
kl o 6 0.025 %
kl_x 6 0.025 %
n_e 6 0.025 %
ng e 6 0.025 %
ng i 6 0.025 %
tr_e 6 0.025 %
Z_X 6 0.025 %
f@ 5 0.021 %
khl i 5 0.021 %
khr_x 5 0.021 %
kr_q 5 0.021 %
phr_v 5 0.021 %
ple 5 0.021 %
w_u 5 0.021 %
khl_q 4 0.017 %
khr i 4 0.017 %
kl e 4 0.017 %
kl q 4 0.017 %
kl v 4 0.017 %
kr_e 4 0.017 %
ng v 4 0.017 %
ng x 4 0.017 %
phr_u 4 0.017 %
pr_u 4 0.017 %
pr_x 4 0.017 %
t q 4 0.017 %
thr a 4 0.017 %
thr i 4 0.017 %
W_V 4 0.017 %
fe 3 0.013 %
khw_i 3 0.013 %
kw_i 3 0.013 %
kw_x 3 0.013 %
phl_@ 3 0.013 %
phlv 3 0.013 %
phr_q 3 0.013 %
pr_e 3 0.013 %
Pr_q 3 0.013 %
pr_v 3 0.013 %
thr_@ 3 0.013 %
tr_v 3 0.013 %
w_q 3 0.013 %
khw_e 2 0.008 %
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Table Al1.7 Statistic of the PORM onsets in the training corpus

Unit Amount Percent
n_a 674 2.833%
m_a 546 2.295%
m_aa 492 2.068%
th_ii 477 2.005%
th_a 425 1.786%
n_aa 424 1.782%
c_a 420 1.765%
kh_a 417 1.753%
p_a 398 1.673%
k a 392 1.648%
s_a 359 1.509%
j_aa 348 1.463%
k @@ 287 1.206%
d_aa 284 1.194%
w_aa 273 1.148%
c_aa 269 1.131%
kh_@@ 268 1.127%
r.a 267 1.122%
kh_aa 263 1.106%
h_a 255 1.072%
t_aa 253 1.063%
p_e 249 1.047%
m_ii 238 1.000%
l_a 236 0.992%
w_a 230 0.967%
kh_o 221 0.929%
Ix 221 0.929%
k_aa 216 0.908%
ch_a 212 0.891%
th_aa 201 0.845%
ch_aa 197 0.828%
r_aa 182 0.765%
kr_a 180 0.757%
n_ii 175 0.736%
s_aa 175 0.736%
j_uu 173 0.727%
h_aa 172 0.723%
Z_aa 157 0.660%
l_aa 156 0.656%
cv 154 0.647%
1_xx 153 0.643%
t_uua 151 0.635%
t_a 148 0.622%
b_aa 142 0.597%
t_xx 141 0.593%
ph_aa 133 0.559%
z_a 129 0.542%
khw_aa 127 0.534%

Unit Amount Percent
lo 126 0.530%
m_vva 123 0.517%
c_o 121 0.509%
pr._a 113 0.475%
S_O 113 0.475%
ph_uu 111 0.467%
s_@@ 111 0.467%
d_a 109 0.458%
t_ @@ 109 0.458%
ph_a 108 0.454%
j_a 107 0.450%
ph_vva 106 0.446%
r @@ 102 0.429%
t_o 102 0.429%
p_aa 101 0.425%
ki 98 0.412%
d_ii 97 0.408%
d_uua 96 0.404%
m_Xx 96 0.404%
ph_@@ 95 0.399%
r_uu 94 0.395%
s_iia 94 0.395%
b_a 93 0.391%
n_v 91 0.383%
s_u 91 0.383%
t@ 91 0.383%
n_@@ 90 0.378%
ng aa 88 0.370%
kh_v 87 0.366%
fa 85 0.357%
d uu 84 0.353%
n_i 83 0.349%
th_uu 82 0.345%
z_@@ 81 0.340%
kh_u 79 0.332%
khr_a 79 0.332%
r iia 79 0.332%
r_vva 77 0.324%
b_o 76 0.319%
s_ii 75 0.315%
w_i 75 0.315%
n_o 74 0.311%
c_@@ 72 0.303%
c_i 72 0.303%
I_uu 70 0.294%
phr_@ 70 0.294%
th_u 69 0.290%
d_qq 67 0.282%
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Unit Amount Percent
s_i 67 0.282%
th_v 65 0.273%
k_xx 63 0.265%
kw_aa 62 0.261%
l_e 62 0.261%
m_Q@ 62 0.261%
ji 60 0.252%
s_uua 60 0.252%
kl a 58 0.244%
kl_aa 58 0.244%
S Vv 56 0.235%

1 qq 55 0.231%
z_ii 54 0.227%
b_@@ 53 0.223%
d_e 53 0.223%
th_uua 53 0.223%
h_e 51 0.214%
ph_o 51 0.214%
th_@@ 51 0.214%
m_e 50 0.210%
d_oo 49 0.206%
m_o 49 0.206%
s_vva 49 0.206%
f aa 48 0.202%
I_u 48 0.202%
r_o 48 0.202%
r_uua 48 0.202%
l_ee@ 43 0.181%
r_ii 43 0.181%
ph_i 42 0.177%
1 vva 41 0.172%
ti 40 0.168%
k_qq 39 0.164%
r_00 39 0.164%
j_u 38 0.160%
r_xx 38 0.160%
th_i 38 0.160%
ph_uua 36 0.151%
pl.aa 36 0.151%
s_uu 36 0.151%
th_iia 36 0.151%
ph_e 35 0.147%
w_ee 35 0.147%
ch_iia 34 0.143%
ch_vva 34 0.143%
b_iia 33 0.139%
ch_uua 33 0.139%
d_i 33 0.139%

Unit Amount Percent
j@ 33 0.139%
1_ee 33 0.139%
kl_uua 32 0.135%
pl.@e@ 32 0.135%
t_oo 32 0.135%
h_uua 31 0.130%
j_vv 31 0.130%
k e 31 0.130%
kh_ii 31 0.130%
kh_x 31 0.130%
m_vv 31 0.130%
Z_ee 31 0.130%
ch_@@ 30 0.126%
d_iia 30 0.126%
j_o 30 0.126%
z_iia 30 0.126%
ph_iia 29 0.122%
S_V 29 0.122%
Z_00 29 0.122%
h_xx 28 0.118%
jea 28 0.118%
n_u 28 0.118%
r.e 28 0.118%
r_qq 28 0.118%
r_vv 28 0.118%
t_u 28 0.118%
Z_VV 28 0.118%
b/ i 27 0.113%
jovva 27 0.113%
n_vva 27 0.113%
pPh_qq 27 0.113%
phr_e@@ 27 0.113%
pL@ 27 0.113%
tr.o 27 0.113%
b_u 26 0.109%
kh_vv 26 0.109%
r_u 26 0.109%
ch_vv 25 0.105%
j_e 25 0.105%
Li 25 0.105%
m_uu 25 0.105%
phl_xx 25 0.105%
tr_ii 25 0.105%
Z_uua 25 0.105%
c_e 24 0.101%
d_ee 24 0.101%
d_vva 24 0.101%
h_@ 24 0.101%
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Unit Amount Percent
kh_ee 24 0.101%
n_xx 24 0.101%
phr_a 24 0.101%
th_vv 24 0.101%
z_i 24 0.101%
j_oo 23 0.097%
k o 23 0.097%
kh_uua 23 0.097%
khr_aa 23 0.097%
1_oo 23 0.097%
pr_aa 23 0.097%
th_x 23 0.097%
th_xx 23 0.097%
ng q 22 0.092%
th_ee 22 0.092%
zZ_u 22 0.092%
ch_o 21 0.088%
h_o 21 0.088%
h_x 21 0.088%
phl_qq 21 0.088%
phr_aa 21 0.088%
r i 21 0.088%
s_e 21 0.088%
s_ee 21 0.088%
b_xx 20 0.084%
ch_e 20 0.084%
ch_ii 20 0.084%
kh_i 20 0.084%
kh_qq 20 0.084%
khl_a 20 0.084%
khr_uu 20 0.084%
n_uu 20 0.084%
n_uua 20 0.084%
p_ii 20 0.084%
ph_xx 20 0.084%
ch_@ 19 0.080%
d.o 19 0.080%
h_i 19 0.080%
j_xx 19 0.080%
k_ee 19 0.080%
k_oo 19 0.080%
kh_iia 19 0.080%
ng a 19 0.080%
pr_iia 19 0.080%
t_e 19 0.080%
tx 19 0.080%
d_xx 18 0.076%
k_uua 18 0.076%

Unit Amount Percent
ph_vv 18 0.076%
phr_i 18 0.076%
t_vv 18 0.076%
Z_qq 18 0.076%
fo 17 0.071%
k_iia 17 0.071%
khr_uua 17 0.071%
1_iia 17 0.071%
m_qq 17 0.071%
p_@ 17 0.071%
p_i 17 0.071%
ph_ii 17 0.071%
ph_x 17 0.071%
phl_aa 17 0.071%
pl xx 17 0.071%
r @ 17 0.071%
tv 17 0.071%
W_o 17 0.071%
b_oo 16 0.067%
ch_i 16 0.067%
h_ee 16 0.067%
k u 16 0.067%
kh_e 16 0.067%
kh_uu 16 0.067%
khr_vva 16 0.067%
I_uua 16 0.067%
p_uua 16 0.067%
th_qq 16 0.067%
b_x 15 0.063%
¢ 00 15 0.063%
c_qq 15 0.063%
d_vv 15 0.063%
f uu 15 0.063%
khl @@ 15 0.063%
khw_a 15 0.063%
m_u 15 0.063%
m_uua 15 0.063%
ng oo 15 0.063%
ph_u 15 0.063%
phl_a 15 0.063%
t_iia 15 0.063%
z_@ 15 0.063%
Z_0 15 0.063%
c_u 14 0.059%
ch_qq 14 0.059%
h_e@ 14 0.059%
khl_aa 14 0.059%
khl_u 14 0.059%
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Unit Amount Percent
n_x 14 0.059%
ph_@ 14 0.059%
pliia 14 0.059%
S_XX 14 0.059%
t_ii 14 0.059%
th_o 14 0.059%
tr_uu 14 0.059%
tr_uua 14 0.059%
c_ii 13 0.055%
d_u 13 0.055%
fv 13 0.055%
h_oo 13 0.055%
k @ 13 0.055%
k_ii 13 0.055%
k x 13 0.055%
Lv 13 0.055%
n_@ 13 0.055%
ng u 13 0.055%
ph_v 13 0.055%
plo 13 0.055%
th_q 13 0.055%
b_uu 12 0.050%
c_iia 12 0.050%
c_uua 12 0.050%
k_vva 12 0.050%
khl_oo 12 0.050%
khl_vva 12 0.050%
m_i 12 0.050%
n_iia 12 0.050%
p_o 12 0.050%
p_vva 12 0.050%
t_uu 12 0.050%
b_@ 11 0.046%
h_uu 11 0.046%
kh_xx 11 0.046%
kr_o 11 0.046%
1_vv 11 0.046%
m_oo 11 0.046%
ph_ee 11 0.046%
phl_oo 11 0.046%
pr_@@ 11 0.046%
S_00 11 0.046%
b_vva 10 0.042%
ch_oo 10 0.042%
khl_vv 10 0.042%
kl_i 10 0.042%
ph_oo 10 0.042%
phl_u 10 0.042%

Unit Amount Percent
tr_aa 10 0.042%
tr_iia 10 0.042%
b_qq 9 0.038%
kl_@@ 9 0.038%
kl_u 9 0.038%
kr_uua 9 0.038%
lLq 9 0.038%
phl_ee 9 0.038%
pr_@ 9 0.038%
s_ @ 9 0.038%
c_@ 8 0.034%
f xx 8 0.034%
h_vva 8 0.034%
kh_vva 8 0.034%
khl_ee 8 0.034%
khr_@@ 8 0.034%
n_qq 8 0.034%
ng @ 8 0.034%
ng o 8 0.034%
p_iia 8 0.034%
p_uu 8 0.034%
phl_i 8 0.034%
phr_oo 8 0.034%
pl_vva 8 0.034%
th_oo 8 0.034%
tr_a 8 0.034%
tr_xx 8 0.034%
w_@ 8 0.034%
W_XX 8 0.034%
c q 7 0.029%
c_uu 7 0.029%
h_qq 7 0.029%
j_ee 7 0.029%
kr @ 7 0.029%
kr_x 7 0.029%
L@ 7 0.029%
m_iia 7 0.029%
ng @@ 7 0.029%
ng qq 7 0.029%
P_qq 7 0.029%
phr_xx 7 0.029%
plLi 7 0.029%
pr_oo 7 0.029%
s_qq 7 0.029%
tr @@ 7 0.029%
b_ii 6 0.025%
ch_x 6 0.025%
h_ii 6 0.025%
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Unit Amount Percent Unit Amount Percent
khl_xx 6 0.025% kh_oo 3 0.013%
khr_ee 6 0.025% khr_v 3 0.013%
khr_oo 6 0.025% khw_iia 3 0.013%

kl_o 6 0.025% kl_vv 3 0.013%

m_x 6 0.025% kl_x 3 0.013%
ng ee 6 0.025% kl_xx 3 0.013%

p_X 6 0.025% kr_ee 3 0.013%

rv 6 0.025% kr_ii 3 0.013%

w_e 6 0.025% kr_u 3 0.013%

C_XX 5 0.021% kw_iia 3 0.013%

f_ii 5 0.021% kw_x 3 0.013%

f qq 5 0.021% n_oo 3 0.013%

j_qq 5 0.021% ng i 3 0.013%
khl_ii 5 0.021% ng_ii 3 0.013%
khr_vv 5 0.021% phl_v 3 0.013%
khw_xx 5 0.021% phr_qq 3 0.013%
kr_qq 5 0.021% phr_u 3 0.013%

pP_xx 5 0.021% pr_ee 3 0.013%
phr_v 5 0.021% pr_o 3 0.013%
pl_ee 5 0.021% pr_vv 3 0.013%
pl_uu 5 0.021% thr @@ 3 0.013%

w_ii 5 0.021% tr_e 3 0.013%

w_u 5 0.021% tr_ee 3 0.013%

b_e 4 0.017% tr_v 3 0.013%
ch_xx 4 0.017% Z_uu 3 0.013%
khl_qq 4 0.017% Z_X 3 0.013%
khr_x 4 0.017% Z_XX 3 0.013%

kl e 4 0.017% Lree 2 0.008%
kl qq 4 0.017% ch_ua 2 0.008%

kr_i 4 0.017% f @ 2 0.008%

Lii 4 0.017% fi 2 0.008%
m_ee 4 0.017% fu 2 0.008%

n_e 4 0.017% h_iia 2 0.008%

ng v 4 0.017% jiq 2 0.008%

pr_u 4 0.017% khr_i 2 0.008%
pr_xx 4 0.017% khr_ii 2 0.008%

t qq 4 0.017% khw_ee 2 0.008%

th_ @ 4 0.017% kl_ii 2 0.008%
thr_.aa 4 0.017% m_@ 2 0.008%

thr_i 4 0.017% n_ee 2 0.008%

W_VV 4 0.017% ng uua 2 0.008%

zZ_e 4 0.017% ng x 2 0.008%

b_ee 3 0.013% ng xx 2 0.008%

Cc_X 3 0.013% p_@@ 2 0.008%

f @@ 3 0.013% p_ia 2 0.008%

fe 3 0.013% phl_@@ 2 0.008%

j_ii 3 0.013% phl_uu 2 0.008%

jx 3 0.013% pl u 2 0.008%
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Unit Amount Percent
pr_ii 2 0.008%
Pr_q 2 0.008%
r x 2 0.008%
S_X 2 0.008%
w_q 2 0.008%
z_va 2 0.008%
b_v 1 0.004%
ch_u 1 0.004%
dv 1 0.004%
fq 1 0.004%
f_vva 1 0.004%
jv 1 0.004%
kh_@ 1 0.004%
khr @ 1 0.004%
khr_u 1 0.004%
khr_xx 1 0.004%
khw_x 1 0.004%

Unit Amount Percent
kl @ 1 0.004%
kl_vva 1 0.004%
kr_aa 1 0.004%
kr_ e 1 0.004%
ng_uu 1 0.004%
p_v 1 0.004%
p_vv 1 0.004%
ph_ia 1 0.004%
phl_@ 1 0.004%
phl_iia 1 0.004%
phr_uu 1 0.004%
phr_x 1 0.004%
r_ee 1 0.004%
z_ia 1 0.004%
z_ua 1 0.004%
zZ_vva 1 0.004%
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Table Al1.8 Statistic of the Finals and rhymes in the training corpus

Unit Amount Percent Unit Amount Percent
a_j 1,906 8.012% vva_ng 117 0.492%
aa 1,632 6.860% u_n 116 0.488%

a 1,215 5.107% XxX_ng 112 0.471%

ii 1,173 4.931% X ng 109 0.458%
a_n 868 3.649% @@_p 108 0.454%
aa_j 766 3.220% uua_n 108 0.454%
aa_ng 617 2.594% u 104 0.437%

aa_n 606 2.547% qq_n 103 0.433%
uu 523 2.198% ila_w 96 0.404%

a_ng 514 2.161% q9.Jj 96 0.404%

on 513 2.156% vva_n 95 0.399%
Q@ 481 2.022% @@_m 91 0.383%

a_m 468 1.967% 0o_ng 91 0.383%

aa_m 455 1.913% v_n 87 0.366%
aw 453 1.904% o_p 85 0.357%
e_n 451 1.896% u_ng 85 0.357%

@@_ng 407 1.711% uua_t 85 0.357%

aa_w 376 1.580% 00 81 0.340%

v_ng 330 1.387% u_t 81 0.340%
XX 329 1.383% @@_j 80 0.336%

ap 303 1.274% ee 80 0.336%

vva 273 1.148% e_t 73 0.307%

aa_k 272 1.143% e k 70 0.294%

uua 263 1.106% ii_p 69 0.290%

X 245 1.030% @_j 68 0.286%

a_k 228 0.958% qq 68 0.286%

ing 226 0.950% xx_k 68 0.286%

@@_n 222 0.933% @@ t 63 0.265%
i_n 219 0.921% ee_t 63 0.265%

o_ng 193 0.811% v_k 62 0.261%

@@_k 192 0.807% aa p 59 0.248%

aa_t 184 0.773% oo_n 57 0.240%
a_t 183 0.769% ee_ng 55 0.231%

uu_k 156 0.656% im 55 0.231%

uua_j 154 0.647% iia 54 0.227%

ok 153 0.643% qq_t 49 0.206%
vV 151 0.635% e.p A7 0.198%

o_m 150 0.631% qq.m 46 0.193%

ila_ng 147 0.618% uua_ng 46 0.193%
XX_W 147 0.618% iia_p 45 0.189%
o_t 144 0.605% oo_t 44 0.185%

i 140 0.588% u_m 43 0.181%

@_ng 139 0.584% uu_t 42 0.177%

vv_n 136 0.572% uu_ng 41 0.172%
@ 135 0.567% ii_k 40 0.168%
it 127 0.534% uua_k 40 0.168%

u_k 124 0.521% @_m 38 0.160%

iila_n 117 0.492% iw 38 0.160%
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Unit Amount Percent
00_j 38 0.160%
XX_n 38 0.160%
oo_k 37 0.156%
q 37 0.156%
vva_k 37 0.156%
XX_p 37 0.156%
@_n 34 0.143%
uu_p 34 0.143%
X n 32 0.135%
ip 31 0.130%
vv_t 31 0.130%
e_m 30 0.126%
XX_m 29 0.122%
ii_n 28 0.118%
u_j 28 0.118%
iia_m 27 0.113%
vva_m 25 0.105%
uua_m 24 0.101%
iia_t 23 0.097%
qq_k 23 0.097%
qq_ng 23 0.097%
e_ng 21 0.088%
i_k 21 0.088%
q_n 21 0.088%
vva_p 21 0.088%
ii_t 20 0.084%
xx_t 20 0.084%
ew 19 0.080%
vva_j 19 0.080%
ee_k 18 0.076%
vv_m 18 0.076%
ee_w 17 0.071%

Unit Amount Percent
ii_m 17 0.071%
iia_k 17 0.071%
u_p 17 0.071%
uu_n 17 0.071%
ee_m 16 0.067%
vva_t 15 0.063%
ee_n 14 0.059%
00_p 14 0.059%
00_m 13 0.055%
v_p 12 0.050%
uua_p 11 0.046%
X_W 10 0.042%
e 9 0.038%
ee_p 8 0.034%
X m 8 0.034%
X k 7 0.029%
@_k 6 0.025%
o 6 0.025%
qq._p 6 0.025%
\% 6 0.025%
@_p 5 0.021%
v_t 5 0.021%
@_t 4 0.017%
ia 4 0.017%
uu_m 4 0.017%
v_m 4 0.017%
x_t 4 0.017%
ua 3 0.013%
VV_p 3 0.013%
X p 3 0.013%
va 2 0.008%
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APPENDIX B

The Thai Text Testing Corpus

Table B1.1 Statistic of the Thai initial consonants in the test set I

Unit Amount Percent
s 424 9.031%
th 395 8.413%
n 385 8.200%
m 382 8.136%
d 305 6.496%
] 295 6.283%
r 261 5.559%
1 260  5.538%
K 258  5.495%
Kkh 255 5.431%
p 226  4.814%
ph 198 4.217%
c 193 C 4111%
] 181 © 3.855%
z 167 3.557%
ch 136  2.897%
w 127 2.705%
h 116 2.471%
b 91 1.938%
ng 21 0.447%
f 19 0.405%

Table B1.2 Statistic of the Thai final consonantsin the test set I

Unit Amount Percent
n 744 283.265%
ng 624 119.512%
j 450 14.071%
k 385 12.039%
t 342 10.694%
m 277 8.662%
P 203 6.348%
w 173 5.410%
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Table Al1.3 Statistic of the Thai consonant clusters in the test set I

Unit Amount Percent
kl 64 22.069%
pPr 54 18.621%

khr 42 14.483%

phr 24 8.276%

khw 23 7.931%
p! 18 6.207%

phl 17 5.862%
kr 16 5.517%

khl 14 4.828%
kw 11 3.793%
tr 7 2.414%

thr 0 0.000%

Table Al.4 Statistic of the Thai vowels in the test set I

Unit Amount Percent
a 1,164 23.345%
aa 1,031  20.678%
ii 429 © 8.604%
@@ 386 - 7.742%
i 223 4.473%
o 206 4.132%
uua 174 3.490%
e 170 3.410%
XX 170 3.410%
uu 52 3.089%
142 2.848%
v 111 2.226%
vva 107 2.146%
X 99 1.986%
ce 92 1.845%
- 81 1.625%
00 77 1.544%
iia 66 1.324%
qq 54 1.083%
@ 49 0.983%
ia 0 0.000%
q 0 0.000%
ua 0 0.000%
va 0 0.000%
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Table B1.5 Statistic of the context-independent Initials
in the test set I

Unit Amount Percent
s 424 9.031%
th 395 8.413%
n 385 8.200%
m 382 8.136%
d 305 6.496%
1 295 6.283%
r 261 5.559%
t 260 5.538%
Kk 258 5.495%
kh 255 5.431%
P 296 4.814%
ph 198 4.217%
c 193  4.111%
] 181  3.855%
z 167  3.557%
ch 136 2.897%
w 127 - 2.705%
h 116 - 2.471%
b 91 1.938%
Kl 64 . 22.069%
pr 54 18.621%
Kkhr 42 14.483%
phr 24 8.276%
Khw 23 7.931%
ng 21 0.447%
f 19 0.405%
pl 18 6.207%
phl 17 5.862%
kr 16 5.517%
Kkhl 14 4.828%
kw 11 3.793%

tr 7 2.414%
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Table B1.6 Statistic of the context-dependent Initials and CORM onsets in

Unit Amount Percent
n_a 222 4.453%
th_i 167 3.350%
th_a 149 2.989%
m_a 148 2.969%
k a 144 2.889%
c_a 132 2.648%
s_a 130 2.608%
d_a 116 2.327%
l_a 115 2.307%
m_i 115 2.307%
p_e 101 2.026%
j_a 97 1.946%
r.a 93 1.866%
1Lx 88 1.765%
s_u 86 1.725%
w_a 86 1.725%
kh_a 84 1.685%
ph_a 81 1.625%
s_i 77 1.545%
p_a 75 1.505%
t_a 75 1.505%
Z_a 72 1.444%
ch_a 70 1.404%
kh_@ 69 1.384%
h_a 62 1.244%
d @ 59 1.184%
t_o 58 1.163%
S_V 56 1.123%
n_i 53 1.063%
pr_a 50 1.003%
d_u 47 0.943%
r i 47 0.943%
kl_a 45 0.903%
j_u 40 0.802%
k @ 40 0.802%
nyv 38 0.762%
kh_v 37 0.742%
d_i 36 0.722%
b_a 35 0.702%
ph_i 34 0.682%
ph_u 34 0.682%
m_v 33 0.662%
t_u 33 0.662%
tx 33 0.662%
1o 32 0.642%

the test set I

Unit Amount Percent
s_ @ 32 0.642%
n_o 31 0.622%
p_i 30 0.602%
r @ 30 0.602%
r.v 29 0.582%
z_i 28 0.562%
m_x 27 0.542%
t@ 27 0.542%
ru 25 0.502%
z_ @ 24 0.481%
n_@ 23 0.461%
k u 22 0.441%
ki 21 0.421%
kh_o 21 0.421%
khr_@ 21 0.421%
khw_a 21 0.421%
th_u 21 0.421%
th_v 21 0.421%
c_@ 20 0.401%
ch_i 20 0.401%
m_u 20 0.401%
d_x 19 0.381%
m_e 19 0.381%
ph_v 19 0.381%
zZ_Uu 19 0.381%
kh u 18 0.361%
€ 18 0.361%
b_@ 17 0.341%
ng a 17 0.341%
d_o 16 0.321%
j @ 16 0.321%
le 16 0.321%
phr_a 16 0.321%
th_e 16 0.321%
w_i 16 0.321%
b_u 15 0.301%
fa 15 0.301%
lLu 15 0.301%
r o 15 0.301%
t_e 15 0.301%
ch_v 14 0.281%
k x 14 0.281%
khr_a 14 0.281%
s_e 14 0.281%
th_@ 14 0.281%
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Unit Amount Percent
b_o 13 0.261%
cV 13 0.261%
h_u 13 0.261%
h_x 13 0.261%

Li 13 0.261%
c_u 12 0.241%

ch_e 12 0.241%

kr_a 12 0.241%

kw_a 11 0.221%
m_o 11 0.221%
pPX 11 0.221%
S_X 11 0.221%

t_i 11 0.221%

w_e 11 0.221%
wW_o 11 0.221%
ZV 11 0.221%

kh_i 10 0.201%
r_q 10 0.201%

ch_o 9 0.181%
h_o 9 0.181%
k q 9 0.181%
kl i 9 0.181%

m_@ 9 0.181%

ch_u 8 0.160%
j.o 8 0.160%

kh_e 8 0.160%

kh_x 8 0.160%
n_u 8 0.160%

ph_@ 8 0.160%

plLu 8 0.160%
r_x 8 0.160%
t q 8 0.160%
c_o 7 0.140%
d_q 7 0.140%

h_@ 7 0.140%
j i 7 0.140%

ph.e 7 0.140%

phl e 7 0.140%
phl_u 7 0.140%
z_e 7 0.140%
j_e 6 0.120%
k e 6 0.120%
khl_u 6 0.120%
L@ 6 0.120%
Lv 6 0.120%

Unit Amount Percent
pPh_q 6 0.120%
th_x 6 0.120%
b_i 5 0.100%
h_e 5 0.100%
h_i 5 0.100%
ph_o 5 0.100%
b_x 4 0.080%
c_i 4 0.080%
jx 4 0.080%
khl_a 4 0.080%
khl_v 4 0.080%
khr_o 4 0.080%
lLq 4 0.080%
n_q 4 0.080%
ph_x 4 0.080%
phr_@ 4 0.080%
pLi 4 0.080%
re 4 0.080%
Z_0 4 0.080%
c_X 3 0.060%
d_v 3 0.060%
fu 3 0.060%
j_v 3 0.060%
kl_u 3 0.060%
kl_v 3 0.060%
kr_u 3 0.060%
n_e 3 0.060%
nAx 3 0.060%
p.@ 3 0.060%
p_o 3 0.060%
phr_x 3 0.060%
c_e 2 0.040%
ch_@ 2 0.040%
d’e 2 0.040%
kv 2 0.040%
khr_v 2 0.040%
khw x 2 0.040%
kl_@ 2 0.040%
ng u 2 0.040%
P_q 2 0.040%
phl_q 2 0.040%
plLv 2 0.040%
pLx 2 0.040%
pr_o 2 0.040%
th_o 2 0.040%
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Unit Amount Percent
tr_a 2 0.040%
tr i 2 0.040%
tr_u 2 0.040%
W_X 2 0.040%
Z_X 2 0.040%
b_e 1 0.020%
b_v 1 0.020%
ch_q 1 0.020%
fo 1 0.020%
h_q 1 0.020%
h_v 1 0.020%
khr_i 1 0.020%
kl_o 1 0.020%

Unit Amount Percent
kl_x 1 0.020%
kr_i 1 0.020%
ng @ 1 0.020%
ng o 1 0.020%
p_v 1 0.020%
phl_a 1 0.020%
phr_i 1 0.020%
plL@ 1 0.020%
pla 1 0.020%
pr_i 1 0.020%
pr.x 1 0.020%
tr_o 1 0.020%




Table B1.7 Statistic of the PORM onsets in the test set I
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Unit Amount Percent
th_ii 134 2.688%
n_a 114 2.287%
m_ii 109 2.187%
n_aa 108 2.166%
p_e 101 2.026%
th_a 100 2.006%
m_aa 98 1.966%
d_aa 94 1.886%
s a 85 1.705%
k_aa 80 1.605%
c_a 74 1.484%
1x 72 1.444%
r.a 70 1.404%
kh_@@ 67 1.344%
k a 64 1.284%
kh_a 63 1.264%
Il_a 62 1.244%
d_ee 59 1.184%
c_aa 58 1.163%
j_a 57 1.143%
ph_a 55 1.103%
l_aa 53 1.063%
m_a 50 1.003%
w_a 50 1.003%
ch_a 48 0.963%
pr_a 48 0.963%
th_aa 48 0.963%
z_aa 47 0.943%
p_a 45 0.903%
s_aa 45 0.903%
t_aa 45 0.903%
s_ii 41 0.822%
j_aa 40 0.802%
k @@ 39 0.782%
d_uua 38 0.762%
j_uu 37 0.742%
kl_aa 36 0.722%
t_o 36 0.722%
w_aa 36 0.722%
s_i 35 0.702%
h_aa 34 0.682%
t_xx 33 0.662%
s_@@ 32 0.642%
s_uu 32 0.642%
t_uua 32 0.642%
n_ii 30 0.602%
n_o 30 0.602%
p_aa 30 0.602%

Unit Amount Percent
t_a 30 0.602%
m_vva 29 0.582%
r @@ 29 0.582%
s_vva 29 0.582%
h_a 28 0.562%
s_uua 28 0.562%
m_xXX 27 0.542%
ph_ii 27 0.542%
p_ii 26 0.522%
ph_aa 26 0.522%
s_u 26 0.522%
th_i 26 0.522%
S_V 25 0.502%
zZ_a 25 0.502%
z_ @@ 24 0.481%
n_Q@ 23 0.461%
n_v 23 0.461%
r_aa 23 0.461%
ch_aa 22 0.441%
d_a 22 0.441%
k u 22 0.441%
kh_vv 22 0.441%
n_i 22 0.441%
ph_uu 22 0.441%
t_oo 22 0.441%
kh_aa 21 0.421%
khw_aa 21 0.421%
1_oo 21 0.421%
r i 21 0.421%
th_v 21 0.421%
c_@@ 20 0.401%
z_i 20 0.401%
d_xx 19 0.381%
k'i 19 0.381%
m_ee 19 0.381%
b_a 18 0.361%
S_0 18 0.361%
t @@ 18 0.361%
b_aa 17 0.341%
ng aa 17 0.341%
b_@@ 16 0.321%
I xx 16 0.321%
r_ii 16 0.321%
r_vv 16 0.321%
th_ee 16 0.321%
zZ_u 16 0.321%
n_vva 15 0.301%
phr_a 15 0.301%
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Unit Amount Percent
t_e 15 0.301%
w_i 15 0.301%
b_u 14 0.281%
d_i 14 0.281%
j_e@ 14 0.281%
kh_oo 14 0.281%
c_V 13 0.261%
k_xx 13 0.261%
kh_v 13 0.261%
khr_@ 13 0.261%
ph_vv 13 0.261%
r_o 13 0.261%
b_o 12 0.241%
ch_e 12 0.241%
ch_vv 12 0.241%
d_iia 12 0.241%
kr_a 12 0.241%
l_e 12 0.241%
r_uua 12 0.241%
th_@@ 12 0.241%
kw_aa 11 0.221%

lLo 11 0.221%

pP_xx 11 0.221%

r_uu 11 0.221%
t_i 11 0.221%

w_ee 11 0.221%
wW_o 11 0.221%
d_ii 10 0.201%

d_oo 10 0.201%
h_x 10 0.201%

m_uua 10 0.201%

r_iia 10 0.201%

r_qq 10 0.201%

S_XX 10 0.201%

Z_VV 10 0.201%
h_o 9 0.181%

h uua 9 0.181%

k qq 9 0.181%

khr_a 9 0.181%

kl_a 9 0.181%

m_o 9 0.181%
t@ 9 0.181%
c_u 8 0.160%
ch_i 8 0.160%

ch_o 8 0.160%

d_uu 8 0.160%
f a 8 0.160%

kh_iia 8 0.160%

Unit Amount Percent
kh_x 8 0.160%
khr_@@ 8 0.160%
kl_ii 8 0.160%
pl.uu 8 0.160%
r_xx 8 0.160%
s_ee 8 0.160%
t_qq 8 0.160%
th_u 8 0.160%
th_uua 8 0.160%
c_o 7 0.140%
ch_ii 7 0.140%
ch_uua 7 0.140%
d_qq 7 0.140%

f aa 7 0.140%
j_o 7 0.140%
kh_o 7 0.140%
kh_uua 7 0.140%
1_iia 7 0.140%
I_uua 7 0.140%
ph_@ 7 0.140%
ph_uua 7 0.140%
phl_ee 7 0.140%
phl_uu 7 0.140%
rv 7 0.140%
th_iia 7 0.140%
d_o 6 0.120%
h_@@ 6 0.120%
j_e 6 0.120%
kh_ee 6 0.120%
kh_uu 6 0.120%
khl_u 6 0.120%
l_e@ 6 0.120%
m_Q@ 6 0.120%
m_u 6 0.120%
n_uua 6 0.120%
ph_qq 6 0.120%
r_vva 6 0.120%
s e 6 0.120%
th_xx 6 0.120%
z_ii 6 0.120%
ch_iia 5 0.100%
j_ii 5 0.100%
k_ee 5 0.100%
kh_u 5 0.100%
khr_aa 5 0.100%
l_vva 5 0.100%
m_i 5 0.100%
ph_ee 5 0.100%
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Unit Amount Percent
ph_i 5 0.100%
ph_o 5 0.100%
ph_u 5 0.100%
ph_vva 5 0.100%
th_uu 5 0.100%
b_i 4 0.080%
h_e 4 0.080%
h_i 4 0.080%
h_u 4 0.080%
joxx 4 0.080%
khl_aa 4 0.080%
1l ee 4 0.080%

1 qq 4 0.080%
lLu 4 0.080%
I_uu 4 0.080%
m_uu 4 0.080%
m_vv 4 0.080%
n_qq 4 0.080%
phr_@ 4 0.080%
pliia 4 0.080%
Z_ee 4 0.080%
Z_0 4 0.080%
b_xx 3 0.060%
c_uu 3 0.060%
h_xx 3 0.060%
ju 3 0.060%
khl_vva 3 0.060%
kl_u 3 0.060%
kr_u 3 0.060%
Li 3 0.060%
Lii 3 0.060%
m_@ 3 0.060%
n_ee 3 0.060%
p_o 3 0.060%
phr_xx 3 0.060%
re 3 0.060%
zZ_e 3 0.060%
Z_uu 3 0.060%
c.i 2 0.040%
c_ii 2 0.040%
Cc_X 2 0.040%
ch_vva 2 0.040%
d_e 2 0.040%
d_vva 2 0.040%
fu 2 0.040%
ji@ 2 0.040%
ji 2 0.040%
j_vva 2 0.040%

Unit Amount Percent
ph_i 5 0.100%
ph_o 5 0.100%
ph_u 5 0.100%
ph_vva 5 0.100%
th_uu 5 0.100%
b_i 4 0.080%
h_e 4 0.080%
h_i 4 0.080%
h_u 4 0.080%
joxx 4 0.080%
khl_aa 4 0.080%
I_ee 4 0.080%
1L qq 4 0.080%
lLu 4 0.080%
l_uu 4 0.080%
m_uu 4 0.080%
m_vv 4 0.080%
n_qq 4 0.080%
phr_@ 4 0.080%
pl_iia 4 0.080%
Z_ee 4 0.080%
Z_0 4 0.080%
b_xx 3 0.060%
c_uu 3 0.060%
h_xx 3 0.060%
ju 3 0.060%
khl_vva 3 0.060%
kl_u 3 0.060%
kr_u 3 0.060%
Li 3 0.060%
Lii 3 0.060%
m_@ 3 0.060%
n_ee 3 0.060%
p_o 3 0.060%
phr_xx 3 0.060%
re 3 0.060%
zZ_e 3 0.060%
zZ_uu 3 0.060%
c_i 2 0.040%
c_ii 2 0.040%
Cc_X 2 0.040%
ch_vva 2 0.040%
d.e 2 0.040%
d_vva 2 0.040%
fu 2 0.040%
ji@ 2 0.040%
ji 2 0.040%
j_vva 2 0.040%
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Unit Amount Percent Unit Amount Percent
k_iia 2 0.040% ch_@ 1 0.020%
k_vva 2 0.040% ch_@@ 1 0.020%
kh_@ 2 0.040% ch_oo 1 0.020%
kh_e 2 0.040% ch_qq 1 0.020%
kh_vva 2 0.040% ch_u 1 0.020%
khr_o 2 0.040% d_u 1 0.020%
khr_oo 2 0.040% d_v 1 0.020%
khr_v 2 0.040% fo 1 0.020%
khw_xx 2 0.040% f_ uu 1 0.020%
kl @@ 2 0.040% h_@ 1 0.020%
kl_vva 2 0.040% h_ee 1 0.020%
m_oo 2 0.040% h_iia 1 0.020%
n_u 2 0.040% h_qq 1 0.020%
n_x 2 0.040% h_v 1 0.020%
ng uua 2 0.040% j_oo 1 0.020%
p_@ 2 0.040% j_v 1 0.020%
p_i 2 0.040% k @ 1 0.020%
p_iia 2 0.040% k e 1 0.020%
P_qq 2 0.040% k x 1 0.020%
ph_e 2 0.040% kh_i 1 0.020%
ph_iia 2 0.040% kh_ii 1 0.020%
ph_x 2 0.040% khl_vv 1 0.020%
ph_xx 2 0.040% khr_i 1 0.020%
phl_qq 2 0.040% kl_i 1 0.020%
plvva 2 0.040% kl o 1 0.020%
pl_xx 2 0.040% kl_vv 1 0.020%
pr_aa 2 0.040% kl_xx 1 0.020%
I_00 2 0.040% kr_i 1 0.020%
r_u 2 0.040% Lv 1 0.020%

S Vv 2 0.040% m_iia 1 0.020%
th_@ 2 0.040% n_iia 1 0.020%
th_o 2 0.040% n_oo 1 0.020%
tr_ii 2 0.040% n_xx 1 0.020%
tr_uu 2 0.040% ng @@ 1 0.020%
W_XX 2 0.040% ng o 1 0.020%
z_iia 2 0.040% p_@@ 1 0.020%
Z_XX 2 0.040% p_v 1 0.020%
b_@ 1 0.020% ph_@@ 1 0.020%
b_ee 1 0.020% ph_v 1 0.020%
b_ii 1 0.020% phl_a 1 0.020%
b_oo 1 0.020% phr_aa 1 0.020%
b_uu 1 0.020% phr_i 1 0.020%
b_v 1 0.020% pl_ @@ 1 0.020%
b_x 1 0.020% pl_aa 1 0.020%
c_e 1 0.020% pr_iia 1 0.020%
c_ee 1 0.020% pr_o 1 0.020%
c_uua 1 0.020% pr_oo 1 0.020%
C_XX 1 0.020% pr_xx 1 0.020%
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Unit Amount Percent
r @ 1 0.020%
r_ee 1 0.020%
s_iia 1 0.020%
S_X 1 0.020%
t_u 1 0.020%
tr_a 1 0.020%

Unit Amount Percent
tr_aa 1 0.020%
tr_o 1 0.020%
w_@ 1 0.020%
w_ii 1 0.020%
z_vva 1 0.020%
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Table B1.8 Statistic of the Finals and rhymes in the test set I

Unit Amount Percent
a 466 9.348%

ii 394 7.904%
aa 256 5.135%
aj 224 4.493%
aa_ng 136 2.728%
e_n 133 2.668%
aa_n 131 2.628%
a_n 125 2.508%
aa_j 125 2.508%
@@_ng 104 2.086%
aa_m 104 2.086%
aa_k 92 1.846%
uu 92 1.846%
aa_w 85 1.705%
v_ng 82 1.645%
on 79 1.585%
am 78 1.565%
XX 73 1.464%
a_ng 72 1.444%
@@_k 68 1.364%
vva 66 1.324%
X 65 1.304%

i 64 1.284%
aa_t 59 1.184%
u 59 1.184%
Q@@ 58 1.163%
it 58 1.163%
@@_n 57 1.143%
a_k 55 1.103%
a_t 54 1.083%
@@_j 49 0.983%
ee_t 49 0.983%
i_n 49 0.983%
uua 47 0.943%
00 46 0.923%
a_w 45 0.903%
ap 44 0.883%
aa_p 43 0.863%
vV 42 0.843%
ok 41 0.822%
u_t 40 0.802%
uua_ng 38 0.762%
uua_n 37 0.742%
o_ng 33 0.662%
vv_n 33 0.662%
ip 28 0.562%
uua_j 28 0.562%
@ 26 0.522%

Unit Amount Percent
@@_p 24 0.481%
X _ng 23 0.461%
ii_k 22 0.441%
iila_ng 22 0.441%
XxX_ng 22 0.441%
ila_w 21 0.421%
xx_k 21 0.421%
o_m 20 0.401%
u_m 20 0.401%
vva_ng 20 0.401%
ot 19 0.381%
uu_k 18 0.361%
uu_ng 18 0.361%
@@_t 17 0.341%
ee 17 0.341%
XX 1N 17 0.341%
@_ng 15 0.301%
ing 15 0.301%
qq_t 14 0.281%
uu_n 14 0.281%
xx_t 14 0.281%
e_m 13 0.261%
o_p 13 0.261%
uua_m 13 0.261%
v_n 13 0.261%
XX_W 13 0.261%
qq_n 12 0.241%
ii_p 11 0.221%
oo_k 11 0.221%
vva_n 11 0.221%
et 10 0.201%
00_j 10 0.201%
@@_m 9 0.181%
e’k 9 0.181%
ee_n 9 0.181%
ee_ng 9 0.181%
u_k 9 0.181%
iia_k 8 0.160%
oo_ng 8 0.160%
qq_p 8 0.160%
u_n 8 0.160%
uua_k 8 0.160%
\% 8 0.160%
XX_P 8 0.160%
uu_p 7 0.140%
@_j 6 0.120%
iia_p 6 0.120%
qq 6 0.120%
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Unit Amount Percent
qq_m 6 0.120%
vva_k 6 0.120%
ee_ 5 0.100%
ik 5 0.100%
iila_n 5 0.100%
qq_j 5 0.100%
iw 4 0.080%
u_ng 4 0.080%
uu_m 4 0.080%
v_k 4 0.080%
vv_t 4 0.080%
x_k 4 0.080%
X_n 4 0.080%
ew 3 0.060%
oo_n 3 0.060%
v_m 3 0.060%
@_n 2 0.040%
e_ng 2 0.040%
ee_k 2 0.040%
ii_n 2 0.040%

Unit Amount Percent
iia 2 0.040%
qq_k 2 0.040%
u_j 2 0.040%
uua_p 2 0.040%
VV_p 2 0.040%
vva_p 2 0.040%
x_m 2 0.040%
XxX_m 2 0.040%
@_m 1 0.020%
ee_w 1 0.020%
iia_m 1 0.020%
iia_t 1 0.020%
qq_ng 1 0.020%
uu_t 1 0.020%
uua_t 1 0.020%
v_t 1 0.020%
vva_j 1 0.020%
vva_m 1 0.020%
X W 1 0.020%




Table B2.1 Statistic of the Thai initial consonants in the test set II

Unit Amount Percent
kh 46 8.630%
m 43 8.068%
n 38 7.129%
th 37 6.942%

36 6.754%
K 34 6.379%
1 33 6.191%
p 27 5.066%
] 26 4.878%
1 26 4.878%
T 25 4.690%
ch 24 4.503%
d 23 - 4.315%
ph 21 3.940%
c 19  3.565%
£ 16  3.002%
b 15  2.814%
h 14 . 2.627%
w 13  2.439%
z =Wl 1.689%
ng 8  1.501%

Table B2.2 Statistic of the Thai final consonants in the test set II

Unit Amount Percent
ng 100 22.321
n 92 20.536
j 88 19.643
t 44 9.821
w 38 8.482
k 34 7:589
m 34 7.589
P 18 4.018
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Table B2.3 Statistic of the Thai consonant clusters in the test set II

Unit Amount Percent
pPr 11 25.581%
kr 8 18.605%
kl 7 16.279%

khr 6 13.953%

phr 5 11.628%

phl 2 4.651%

khl 1 2.326%

khw 1 2.326%
kw 1 2.326%
pl 1 2.326%

Table B2.4 Statistic of the Thai vowels in the test set II

Unit Amount Percent
aa 165 28.646%
a 136 1 93.611%
@@ 35  6.076%
o 33 5.729%
i 23 © 3.993%
ii 23 3.993%
uua 21 3.646%
uu 19 3.299%
xx 15 2.604%
e 14 2.431%
iia 14 2.431%
= = 2 —
00 11 1.910%
@ 9 1.563%
ce 9 1.563%
qq 9 1.563%
u 9 1.563%
X 7 1.215%
v 5 0.868%
v 4 0.694%
q 1 0.174%
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Table B2.5 Statistic of the context-independent Initials
in the test set II

Unit Amount Percent
kh 46 7.986%
m 43 7.465%
n 38 6.597%
th 37 6.424%

s 36 6.250%

Kk 34 5.903%

1 33 5.729%

P 27 4.688%

] 26 4.514%

t 26 4.514%

r 25 4.340%

ch 24 4.167%

d 23  3.993%
ph 21 . 3.646%

¢ 19 © 3.299%
f 16 2.778%

b 15  2.604%
h 14 . 2.431%

w 13 2.257%

pr 11 1.910%

z 9 1.563%

kr 8 1.389%
ng 8 1.389%

Kl 7 1.215%

Kkhr 6 1.042%

phr 5 0.8_68%

phl 2 0.347%

Kkhl 1 0.174%

Khw 1 0.174%
kw 1 0.174%
pl 1 0.174%
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Table B2.6 Statistic of the context-dependent Initials and CORM onsets in

Unit Amount Percent
n_a 28 4.861%
kh_a 27 4.688%
m_a 23 3.993%
p_a 18 3.125%
th_a 17 2.951%
s_a 16 2.778%
ch_a 15 2.604%
f a 15 2.604%
k a 14 2.431%
c_a 13 2.257%
w_a 13 2.257%
r.a 12 2.083%
d_a 10 1.736%
h_a 9 1.563%
j_a 9 1.563%
th_i 9 1.563%
b_a 8 1.389%
kr_a 8 1.389%
lLa 8 1.389%
pr_a 8 1.389%
k @ 7 1.215%
1Lx 7 1.215%
p_e 7 1.215%
ph_a 7 1.215%
ph_u 7 1.215%
s_i 7 1.215%
t_a 7 1.215%
t_o 7 1.215%
j_u 6 1.042%
kh_@ 6 1.042%
kl_a 6 1.042%
I_u 6 1.042%
t@ 6 1.042%
b_i 5 0.868%
ji 5 0.868%
kh_o 5 0.868%
m_v 5 0.868%
r_u 5 0.868%
S_V 5 0.868%
z_i 5 0.868%
ch_i 4 0.694%
khr_v 4 0.694%
m_i 4 0.694%
m_u 4 0.694%
m_X 4 0.694%

the test set II

Unit Amount Percent
n_i 4 0.694%
ng a 4 0.694%
th_u 4 0.694%
ch_@ 3 0.521%
d @ 3 0.521%
j_o 3 0.521%
k e 3 0.521%
k q 3 0.521%
kh_v 3 0.521%
lLo 3 0.521%
m_o 3 0.521%
n_o 3 0.521%
ng @ 3 0.521%
ph_o 3 0.521%
ri 3 0.521%
ro 3 0.521%
s_ @ 3 0.521%
th_e 3 0.521%
th_o 3 0.521%
b_u 2 0.347%
c_o 2 0.347%
cv 2 0.347%
ch_u 2 0.347%
d_e 2 0.347%
d_i 2 0.347%
d.o 2 0.347%
d. g 2 0.347%
h_e 2 0.347%
j @ 2 0.347%
ki 2 0.347%
k o 2 0.347%
k u 2 0.347%
kh_u 2 0.347%
khr_@ 2 0.347%
L@ 2 0.347%
L 2 0.347%
lLq 2 0.347%
Lv 2 0.347%
n_u 2 0.347%
phr_@ 2 0.347%
phr_i 2 0.347%
pr_o 2 0.347%
s_u 2 0.347%
t_i 2 0.347%
t_u 2 0.347%
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Unit Amount Percent
tx 2 0.347%
zZ_a 2 0.347%
c_e 1 0.174%
c_u 1 0.174%
d_u 1 0.174%
dx 1 0.174%
fo 1 0.174%
h_@ 1 0.174%
h_o 1 0.174%
h_x 1 0.174%
jx 1 0.174%
k x 1 0.174%
kh_e 1 0.174%
kh_i 1 0.174%
kh_x 1 0.174%
khl_v 1 0.174%
khw_a 1 0.174%
kl_u 1 0.174%
kw_a 1 0.174%
le 1 0.174%
nv 1 0.174%

Unit Amount Percent
ng q 1 0.174%
p_@ 1 0.174%
p_i 1 0.174%
ph_@ 1 0.174%
ph_e 1 0.174%
ph_i 1 0.174%
ph_x 1 0.174%
phl_e 1 0.174%
phl_q 1 0.174%
phr_a 1 0.174%
pla 1 0.174%
pr_i 1 0.174%
r @ 1 0.174%
r X 1 0.174%
s_e 1 0.174%
S_O 1 0.174%
S_X 1 0.174%
th_x 1 0.174%
z @ 1 0.174%
Z_q 1 0.174%
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Table B2.7 Statistic of the PORM onsets in the test set II

Unit Amount Percent Unit Amount Percent
kh_aa 17 2.951% m_ii 4 0.694%
n_a 16 2.778% m_uu 4 0.694%
m_aa 12 2.083% m_Xxx 4 0.694%
n_aa 12 2.083% ng aa 4 0.694%
s_aa 12 2.083% r.a 4 0.694%
m_a 11 1.910% s_a 4 0.694%
p_a 11 1.910% s_ii 4 0.694%
ch_aa 10 1.736% th_uua 4 0.694%
kh_a 10 1.736% d_ee 3 0.521%
th_a 10 1.736% d_a 3 0.521%
w_a 10 1.736% j_o 3 0.521%
k_a 9 1.563% k e 3 0.521%
b_aa 8 1.389% k_qq 3 0.521%
f aa 8 1.389% lLo 3 0.521%
kr_a 8 1.389% m_o 3 0.521%
r_aa 8 1.389% n_o 3 0.521%
th_ii 8 1.389% ph_oo 3 0.521%
c_a 7 1.215% r_uua 3 0.521%
d_aa 7 1.215% s_@@ 3 0.521%
f a 7 1.215% s_i 3 0.521%
h_aa 7 1.215% S_VV 3 0.521%
k_ @@ 7 1.215% th_ee 3 0.521%
p_aa 7 1.215% w_aa 3 0.521%
p_e 7 1.215% b_i 2 0.347%
ph_uu 7 1.215% b_iia 2 0.347%
pr_a 7 1.215% b_u 2 0.347%
t_o 7 1.215% c_o 2 0.347%
th_aa 7 1.215% cC_V 2 0.347%
c_aa 6 1.042% ch_@@ 2 0.347%
kh_@@ 6 1.042% ch_uua 2 0.347%
kl_aa 6 1.042% d_e 2 0.347%
1_x 6 1.042% d_oo 2 0.347%
ph_aa 6 1.042% d_qq 2 0.347%
ch_a 5 0.868% h a 2 0.347%
j_aa 5 0.868% h_ee 2 0.347%
ji 5 0.868% ji@ 2 0.347%
k_aa 5 0.868% ju 2 0.347%
kh_o 5 0.868% kh_uua 2 0.347%
m_vva 5 0.868% kh_vv 2 0.347%
t_ @@ 5 0.868% khr_@@ 2 0.347%
t_aa 5 0.868% l_qq 2 0.347%
ch_iia 4 0.694% I_uua 2 0.347%
j_a 4 0.694% I_vva 2 0.347%
j_uu 4 0.694% n_ii 2 0.347%
khr_vva 4 0.694% ng @ 2 0.347%
l_a 4 0.694% phr_i 2 0.347%
l_aa 4 0.694% pr_oo 2 0.347%
I_uu 4 0.694% r_iia 2 0.347%
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Unit Amount Percent
I_oo 2 0.347%
r.u 2 0.347%
s_uua 2 0.347%
s_vva 2 0.347%
t_a 2 0.347%
t i 2 0.347%
t_uua 2 0.347%
t_xx 2 0.347%
th_o 2 0.347%
z_ii 2 0.347%
z_iia 2 0.347%
b_ii 1 0.174%
c_e 1 0.174%
c_u 1 0.174%
ch_@ 1 0.174%
d_i 1 0.174%
d_ii 1 0.174%
d_uua 1 0.174%
d_xx 1 0.174%
fo 1 0.174%
h_@@ 1 0.174%
h_o 1 0.174%
h_xx 1 0.174%
j_xx 1 0.174%
k i 1 0.174%
k_iia 1 0.174%
k o 1 0.174%
k_oo 1 0.174%
k u 1 0.174%
k_uua 1 0.174%
k_xx 1 0.174%
kh_ee 1 0.174%
kh_i 1 0.174%
kh_v 1 0.174%
kh_x 1 0.174%
khl_vva 1 0.174%
khw.aa 1 0.174%
kl_uua 1 0.174%
kw_aa 1 0.174%
L@ 1 0.174%
l_e@ 1 0.174%
le 1 0.174%

Unit Amount Percent
Li 1 0.174%
L_iia 1 0.174%

1 xx 1 0.174%
n_i 1 0.174%
n_iia 1 0.174%
n_u 1 0.174%
n_uua 1 0.174%
n_v 1 0.174%
ng @@ 1 0.174%
ng q 1 0.174%
p_@ 1 0.174%
p_ii 1 0.174%
ph_@@ 1 0.174%
ph_a 1 0.174%
ph_ee 1 0.174%
ph_i 1 0.174%
ph_xx 1 0.174%
phl_ee 1 0.174%
phl_qq 1 0.174%
phr_@ 1 0.174%
phr_@@ 1 0.174%
phr_aa 1 0.174%
pl_aa 1 0.174%
pr_aa 1 0.174%
pr_iia 1 0.174%
r @@ 1 0.174%
ri 1 0.174%

r o 1 0.174%
T_XX 1 0.174%
S.ee 1 0.174%
S_O 1 0.174%
S_XX 1 0.174%
t@ 1 0.174%
th_i 1 0.174%
th_oo 1 0.174%
th_xx 1 0.174%
z_@@ 1 0.174%
Z a 1 0.174%
zZ_aa 1 0.174%
z_i 1 0.174%
Z_qq 1 0.174%
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Table B2.8 Statistic of the Finals and rhymes in the test set II

Unit Amount Percent Unit Amount Percent
aa_j 41 7.118% o_m 3 0.521%
aj 40 6.944% o_ng 3 0.521%
aa 32 5.556% o_t 3 0.521%
a 23 3.993% oo_ng 3 0.521%
aa_n 23 3.993% q9.j 3 0.521%
aa_ng 23 3.993% qq_n 3 0.521%
i 20 3.472% v_ng 3 0.521%
aa_w 19 3.299% XX_N 3 0.521%
a_ng 17 2.951% @@_m 2 0.347%
on 17 2.951% ee 2 0.347%
a_w 16 2.778% ila_n 2 0.347%
a_n 14 2.431% ila_p 2 0.347%
uu 13 2.257% iia_w 2 0.347%
aa_m 12 2.083% oo_t 2 0.347%
@@_ng 10 1.736% qq_t 2 0.347%
a_m 10 1.736% u_t 2 0.347%
at 9 1.563% uua_m 2 0.347%
ing 9 1.563% xx_k 2 0.347%
Q@@ 8 1.389% XX_m 2 0.347%
aa_t 8 1.389% XX_ng 2 0.347%
en 7 1.215% @_m 1 0.174%
ila_ng 7 1.215% aa_ 1 0.174%
vva_ng 7 1.215% et 1 0.174%
@@_p 6 1.042% ee_ng 1 0.174%
aa_k 6 1.042% ee_p 1 0.174%
i_n 6 1.042% i_k 1 0.174%
ok 6 1.042% i_m 1 0.174%
uua 6 1.042% ip 1 0.174%
X 6 1.042% iw 1 0.174%
@@_n 5 0.868% ii_k 1 0.174%
ee_t 5 0.868% ii p 1 0.174%
XX 5 0.868% ii_t 1 0.174%
@ 4 0.694% iia_t 1 0.174%
@@_k 4 0.694% op 1 0.174%
@_ng 4 0.694% 00 1 0.174%
ap 4 0.694% 00_j 1 0.174%
it 4 0.694% qn 1 0.174%
00_n 4 0.694% qq_ng 1 0.174%
u k 4 0.694% u_j 1 0.174%
uu_k 4 0.694% u_m 1 0.174%
uua_n 4 0.694% u_ng 1 0.174%
uua_ng 4 0.694% uu_ng 1 0.174%
uua_t 4 0.694% uu_t 1 0.174%
vV 4 0.694% uua_j 1 0.174%
vva 4 0.694% v_n 1 0.174%
a_k 3 0.521% vv_n 1 0.174%
e k 3 0.521% vva,_j 1 0.174%
e_ng 3 0.521% vva_n 1 0.174%
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Unit Amount Percent Unit Amount Percent
vva_t 1 0.174% XX_P 1 0.174%
X _ng 1 0.174%
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