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Chapter 1 
 

Introduction 
 
 

Speech is one of the most natural ways for human communication. This has 

motivated many researchers to develop machines that can accept the human 

speech and respond properly. Spoken language processing research intends 

to develop and implement algorithms for a machine to be able to generate, 

recognize, and understand a spoken language. In order to implement such a 

machine, speech analysis, speech synthesis, speech recognition, natural 

language processing, and human interface technology are incorporated in 

spoken language processing system. The spoken language systems have 

been developed for a wide variety of applications, ranging from a small set of 

vocabulary to a large set of vocabulary. Applications of human-machine 

interaction involve in many tasks for example, voice dialing in mobile 

phones, aviation information retrieval, weather information retrieval, 

automated reservation, dictation and editing, transcription of broadcast 

data, etc.  

The research of speech recognition has been continuously developed 

for the last half century. A number of significant advances in the past two 

decades including signal processing, computational architectures, computer 

hardware, and programming techniques have contributed to rapid 

development of speech technology. Development of speech recognition 

system requires not only knowledge from the computer field, but also from 

other related fields. Multidisciplinary approaches have been applied in 

speech recognition research to make the system works effectively, such as, 

signal processing, linguistics, acoustic, physics, psychology, physiology, 

pattern recognition, computer science, communication, and information 

technology (Rabiner and Juang, 1993). 

Primarily, the speech recognizer processes the input utterance in 

bottom-up direction. According to the hierarchical model of speech 

recognition, acoustic features are extracted in acoustic processor from input 

speech and converted into a phoneme sequence by means of segmentation 

and pattern recognition (Furui, 2001). In the acoustic matching unit, 
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performance of the phone recognition relied on selecting types of speech 

unit. Choice of speech units depends on the type of recognition and on the 

size of the vocabulary. 

Initially, speech recognition system utilized a simple pattern matching 

technique to recognize isolated utterances. The reference templates were 

created based upon the word model. Although the word-based approach can 

handle coarticulatory effect in the model by treating each utterance as a 

whole, segment boundaries between words in fluent speech are difficult to 

detect. Moreover, the recognition systems have reached their limitations on 

the number of words in the vocabulary to be modeled individually, which 

training data could not be shared between words (Huang, et al., 2001). 

Speech recognition system using word-based approach is not productive 

because it is impossible to implement such a recognizer that covers the 

whole language. 

Presently, most recognition systems use acoustic units corresponding 

to phonemic units. Compared to word models, subword units reduce the 

number of parameters, enable cross-word modeling, and facilitate adding 

new vocabulary. Various types of phone models have been investigated from 

an independent phone context, a single phone context (left or right context), 

left and right context (triphones), and generalized triphones. The choice of 

speech unit is dependent on language structure and the availability of 

sufficient training data for constructing effective reference models. Since 

each language has its own attribute, choosing suitable speech units leads to 

effective utilization of the training data and a good performance of speech 

recognizer. In spite of using traditional context-dependent units such as 

diphone or triphone employed in the English speech recognizer, Initials and 

Finals are utilized as a fundamental unit in a Mandarin Chinese dictation 

machine (Lee, et al., 1997). The Initial comprises the initial consonant of the 

syllable while the Final consists of the vowel part including possible medial 

or nasal ending (Lee, et al., 1993). Different syllable structures of English 

and Chinese Mandarin will result in using different speech units. Thai 

syllable structure is different from the others, and therefore, it is vital to 

figure out the proper speech units used in speech recognition for Thai 

language. 
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1.1 Continuous Speech Recognition System 

The beginning speech recognition system was based on template matching. 

The simple pattern matching techniques are not applicable to recognition of 

fluent speech because segment boundaries are difficult to detect. In normal 

speech, word boundaries are not affected by any adjacent words, and 

therefore the utterance can be segmented into words with a short period of 

silence between words. Then each word is compared with the reference 

templates to produce isolated word recognition. Since a limited number of 

the reference templates are used in the recognizer, this method is suitable 

for a small vocabulary speech recognition application. 

Word reference template techniques are limited by the number of 

templates and by capability of handling variability of speech. Changing from 

using the whole word unit to the subword unit and exploiting statistical 

technique can overcome disadvantages resulting from a simple matching 

technique. One of the stochastic processes, hidden Markov model (HMM), 

has been widely employed in the speech recognition system (Lee and Hon, 

1989; Young, 1992; Ganpathiraju, et al,. 2001; Lee, 1997). This process 

estimates the parameters of a probabilistic model of the data to produce the 

representation of speech, which is robust to the variation in the natural 

speech. Each acoustic model can be concatenated in a series to generate a 

composite model of a continuous speech utterance. A small number of 

acoustic models and a dictionary are used to construct a compound model 

for the word. This approach reduces the number of data required to cover a 

vocabulary set by using a dictionary. 

In large-vocabulary continuous speech recognition, input utterance is 

processed with many kinds of information including lexicon, syntax, 

semantics, pragmatics, context, and prosodic (Furui, 2001). The lexicon 

indicates the phoneme structure of words, syntax expresses the grammatical 

structure, semantics defines the relationship between words as well as the 

attributes of each word, pragmatics expresses general knowledge concerning 

the current topics of conversation, context concerns the contextual 

information, and prosodic represents accent and intonation. These 

knowledge sources are combined together as shown in Figure 1.1 (Deller, et 

al., 1993). The system performance depends on what kinds of these 

knowledge sources are used and how these knowledge sources are rapidly 

combined to produce the most probable recognition. 
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The structure of a typical large-vocabulary continuous speech 

recognition system is shown in Figure 1.2. Initially, a speech signal is 

converted into a time series of feature parameters in the spectral analysis 

part. The system predicts a sentence hypothesis based on the current topic, 

the meaning of words, and the language grammar, and represents a 

sentence as a sequence of words. This word sequence is then converted into 

phoneme sequence models, which were typically represented by HMM 

models. The likelihood or probability of producing the time series of feature 

parameters from the sequence of phoneme models is computed. Combined 

with the linguistic likelihood of the hypothesized sequence, the overall 

likelihood of the uttered sentence was calculated. The likelihood is computed 

for the other sentence hypotheses, and the sentence with the highest 

likelihood score is selected as the recognition sentence. 

Many state-of-the-art speech recognizers make use of continuous 

density HMM with Gaussian mixtures for acoustic modeling (Picone, 1996). 

Other approaches include segmental-based models and neural networks to 

estimate the acoustic observation likelihoods (Glass, et al., 1999; Hochberg, 

et al., 1994). The main advantage of continuous density modeling over 

observation density is that the number of parameters used to model an 

observation distribution can easily be adapted to the number of available 

training data (Gauvain and Lamel, 1998). Another disadvantage of discrete 

and semi-continuous hidden Markov models is that both systems still 

employ vector quantization technique, which produces the quantization 

error (Huang, et al., 2001). 

 

1.2 Researches in Thai Speech Recognition 

Speech recognition research in Thailand has been conducted for a 

decade. These works are based on word-based approach and phoneme-

based approach. Various techniques, distinctive feature, dynamic time 

warping, hidden Markov model, neural network, and fuzzy-neural network, 

were utilized in the researches. A wide variety of vocabulary sets, isolated 

Thai numerals, isolated Thai words, and polysyllabic Thai words were 

recognized with these techniques. 
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Figure 1.1 The acoustic and linguistic processors (Deller, et al., 1993). 

 

 

Figure 1.2 A typical continuous speech recognition system (Furui, 2001). 
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Recognizing unit smaller than word, phoneme-based speech 

recognition classifies consonants and vowels using acoustic-phonetic 

features. A study of acoustic characteristics of the vowels /i,a,u/ in Thai and 

its use in speaker identification (Leelasiriwong, 1991), a Thai speech 

recognition system based on phonemic distinctive features (Thubthong, 

1995), speaker-independent isolated Thai spoken vowel recognition by using 

spectrum distance measurement and dynamic time warping 

(Phatrapornnant, 1995), and Thai vowel phoneme recognition using artificial 

neural networks and hidden Markov models (Maneenoi, 1998; Maneenoi, et 

al., 1998; Maneenoi, et al., 1999; Maneenoi, et al., 2000) are phoneme-based 

speech recognition systems. Leelasiriwong (1991) used the first three 

formant frequencies and the fundamental frequency of the vowels /i,a,u/ for 

speaker identification. These frequencies, measured from power spectrum, 

were statistically modeled. The experimental results showed that the 

fundamental frequency and the formant frequencies are significantly 

dependent on the sex of speakers. Thubthong (1995) employed the phonemic 

distinctive feature technique to classify Thai phonemes by their acoustic-

phonetic features. Three sets of hypothetical words created from a selected 

set of phonemes were used in the research. This system is a speaker-

dependent system, which was not tested with another group of speakers 

other than the training speakers. Hence, higher recognition accuracy was 

obtained by using the same set of training and testing speakers. However, 

this technique is not practically implemented as a recognition engine 

because of its inability to cope with varying patterns of speech utterances. 

Then, it should be used as a post-processing of a recognition system in order 

to improve the recognition performance. Phatrapornnant (1995) used 

spectrum distance measurement computed from fast Fourier transform 

together with dynamic time warping technique to classify 24 Thai vowels 

uttered in isolated manner. In addition, this system can discriminate 5 Thai 

tones from 3 Thai vowels /a:/, /i:/, and /u:/ by calculating mean square 

error with tone's reference formula. Maneenoi (1998) utilized artificial neural 

networks to classify Thai monophthongs. Nine Thai vowel phonemes are 

recognized using various feature for example, linear prediction coefficient, 

LPC derived cepstral coefficient, formant frequency, and spectral intensity. 

Fundamental frequency and energy were used as feature for extracting a 

stable voiced portion in the central region of syllable from the entire speech 
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waveform at which vowel is located. Moreover, spectral characteristics of 

vowels and vowel durations were study in this research. 

Word-based speech recognition models whole word as a single 

reference template. Thai speech recognition using syllable units is a speaker-

dependent system, which was not tested with another group of speakers 

other than the training speakers (Prathumthan, 1986). Hence, higher 

recognition accuracy was obtained by using the same set of training and 

testing speakers. Contrary to the speaker-dependent system, the speaker-

independent system is tested with different group of speakers other than 

group of training speakers. The researches, multispeaker speech recognition 

system (Thumpothong, 1989) and speaker-independent Thai numeral voice 

recognition by using dynamic time warping (Pensiri, 1995) employed the 

dynamic time warping technique. A powerful statistical technique, hidden 

Markov model, was used in a speaker-independent Thai numeral speech 

recognition system by hidden Markov model and vector quantization 

(Areepongsa, 1995) and speaker-independent Thai polysyllabic word 

recognition system using hidden Markov model (Ahkuputra, 1996). A highly 

parallel computational technique, neural network, was utilized in speaker-

independent Thai numeral speech recognition using LPC and the back 

propagation neural network (Pornsukjantra, 1996), a modified back 

propagation algorithm for neural networks (Maneenoi, et al., 1997), and 

speaker independent Thai polysyllabic word recognition using fuzzy-

technique and neural network (Wutiwiwatchai, 1997). All of these researches 

are speaker-independent system. 

Thumpothong (1989) exploited the dynamic programming technique 

for computing the distance between the test and the reference patterns and 

employed the K-nearest neighbour (KNN) technique for decision rules in the 

recognition stage. Pensiri (1995) employed dynamic time warping technique 

to recognize Thai numeral. Speech parameters were obtained from applying 

discrete Hartley transform to every frame of voice. The experimental result 

showed that the recognition accuracy drops when the classified patterns 

increase. Thus, this technique is inappropriate for recognition a large set of 

vocabulary. Areepongsa (1995) proposed to use hidden Markov model (HMM) 

and vector quantization to recognize Thai numeral. This research studied the 

relationship between the accuracy of speech recognition versus the number 

of training sets. From the experimental result, the accuracy rate increases 
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along with the increment of the training data. Ahkuputra (1996) developed 

an algorithm for speaker independent Thai polysyllabic word recognition by 

using the hidden Markov model in conjunction with the vector quantization 

algorithm and the endpoint detection algorithm for syllable endpoint 

detection and separation. The 70-word vocabulary set including Thai 

numeral was recognized by these algorithms. Pornsukjantra (1996) 

conducted a research on recognition of Thai numeral using LPC and the 

back propagation neural network. A set of single syllable Thai numeral from 

0 to 9 and a set of two and three numeral syllables were classified. Time 

normalization algorithm is required to adjust unequal duration of input data 

to fit an input of neural network. Wutiwiwatchai (1997) integrated the fuzzy-

technique into the conventional neural network to enhance training data. 

Instead of using fuzzy membership input data and class membership 

desired-output data during training, the fuzzy membership input data and 

binary desired-output were used in this research. The syllable detection and 

tone detection algorithms are used for vocabulary pre-classification in order 

to reduce the number of vocabularies to be fed to the neural network. The 

recognition accuracy of the modified input data was improved compared to 

the recognition using only LPC input data. 

The syllable segmentation algorithm was used for segmenting a Thai 

spoken sentence into a set of syllables. Syllable segmentation algorithm for 

Thai connected speech employed the energy, band crossing rate, 

fundamental frequency, and duration of speech signal to detect the syllable 

boundary (Jittiwarangkul, 1998). The average accuracy of the algorithm is 

90 percent tested on a set of ambiguous syllable boundaries. This technique 

could be applied to a syllable-based speech recognition system.  

According to the researches described above, Thai researchers have 

been accumulated a lot of expertise from isolated word recognition 

technique, and they can implement some simple speech recognition 

applications. Voiced astronomical encyclopedia retrieval, BTS sky-train 

ticketing system (Charnvivit, et al., 1999), and voice-activated web browser 

(Udompisit and Sothipunchai, 2000) are speech recognition systems based 

on isolated word model. 

Designed for the specific task as described above, the prototype 

speech recognition systems get speech signal directly from microphone, 

process the input speech by signal processing algorithm, employ pattern 
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recognition technique to acoustic features, and respond the result back to 

users. However, there are still many major drawbacks in these systems that 

cause unsatisfactory recognition accuracy. Confusing words may produce 

irresolvable error, which deteriorate the system efficiency. Containing a 

small number of vocabularies, the isolated speech recognition has a limited 

capability to deal only with some particular applications. Another problem is 

that an enormous resource is required for storing and processing the 

isolated word models when vocabulary size becomes large. In addition, 

utterance in isolated manner is unsuitable for a wide variety of applications, 

for example, a friendly user interface in spoken dialogue application. Thus, 

continuous speech recognition seems to be a good solution for resolving the 

disadvantages of an isolated word speech recognition system. 

The acoustic modeling of onsets was proposed as an acoustic unit for 

Thai continuous speech recognition (Ahkuputra, 2002). The onset is a 

subsyllable unit comprising the initial consonant and its transition to the 

following vowel. To implement a complete large vocabulary speech 

recognition system for continuous speech, the subsyllable rhyme unit is 

proposed in this research. The rhyme is composed of the vowel and the 

optional final consonant. These two subsyllable units make a complete 

syllable in the speech recogntion system. To evaluate the efficiency of the 

proposed speech unit, various speech units will be utilized in the continuous 

speech recognition system. The criteria used to evaluate performance of a 

speech unit will be elaborated in the next section. 

 

1.3 Selection of Speech Unit 

One important issue in developing a speech recognition system is the 

selection of the speech unit. The choice of speech unit usually is dependent 

on the size of vocabulary to be recognized and the availability of sufficient 

training data for constructing effective reference models. Furthermore, 

efficiency of speech recognition system is relied on the number of speech 

units. Three criteria, accurate, trainable, and generalized, must be 

considered in choosing appropriate speech units (Huang, et al., 2001). 

Firstly, the speech unit should be accurate to represent the acoustic 

realization that appears in different contexts. Secondly, the unit should be 

trainable to estimate the parameters of the unit with sufficient data. Thirdly, 

the unit should be generalized, so that any new word can be derived from a 
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predefined unit inventory for task-independent speech recognition. A 

practical challenge is how to select a speech unit, which meets these criteria. 

Therefore, it is important to select an appropriate speech unit for the Thai 

language. 

 

1.4 Scope of the Dissertation 

In order to develop appropriate recognition units for Thai continuous speech 

recognition, acoustical properties of the Thai continuous speech have been 

thoroughly analyzed. This research focuses on the modeling of syllable 

rhymes consisting of the vowel and the final consonant or the codas. 

Followings are scopes and goals of this dissertation 

� To model acoustic characteristics of Thai syllable rhymes for Thai 

speech recognition. 

� To develop more appropriate recognition units for the modeling of 

Thai speech recognition in terms of accuracy, trainability, and 

generalization. 

� To provide basic acoustic knowledge for Thai continuous speech 

recognition. 

 

1.5 Dissertation Outline 

Chapter 2 provides a concise introduction to the theory and application of 

fundamental techniques for speech recognition. In chapter 3, phonological 

properties and acoustic analysis of the Thai language are described in 

details to provide basic knowledge of the Thai language. Chapter 4 describes 

the proposed onset-rhyme model. The acoustic modeling of various speech 

units with hidden Markov models is also explained in this chapter. 

Moreover, the construction of the Thai continuous speech recognition 

system is presented. In chapter 5, system configurations and experimental 

results are elaborated. In addition, performance comparison between the 

proposed onset-rhyme model and other speech units in terms of accuracy 

and complexity is described in this chapter. Finally, chapter 6 discusses and 

concludes all experimental results. Contributions and suggestions of future 

works on Thai continuous speech recognition are also detailed in this 

chapter. 

 



Chapter 2 
 

Fundamental Techniques for Speech 
Recognition 

 
 

This chapter provides a concise introduction to the theory and application of 

fundamental techniques for speech recognition. Signal processing for speech 

recognition will be described to understand the characteristics of speech 

signals. Then, theory of the hidden Markov model will be elaborated. Finally, 

details of the large vocabulary continuous speech recognition system will be 

explained. 

 

2.1 Signal Processing for Speech Recognition 

Signal processing is vitally important for optimal speech recognition. The 

purpose of signal processing is to derive a set of parameters to represent 

speech signals in form, which is suitable for consequential processing. 

Various techniques of signal processing and feature extraction for speech 

recognition have been reported. 

 

2.1.1 Short-Time Fourier Analysis of Speech Signals 

There are two important reasons for analyzing speech signal in the frequency 

domain (Furui, 2001). The first reason is that speech wave is considered to 

be reproducible by summing the sinusoidal waves, the amplitude, and phase 

of which change slowly. The other reason is that the critical features for 

perceiving speech by the human ears are mainly relied on the spectral 

information, with the phase information does not usually play a key role. 

 In order to study spectral properties of speech signal, the concept of 

short-time Fourier analysis of a signal will be introduced. The standard 

Fourier representation that is appropriate for periodic, transient, or 

stationary random signal, is not applicable to the representation of speech 

signal, whose properties change markedly as a function of time (Rabiner and 

Schafer, 1978). However, the short-time analysis principle is a valid 

approach to speech processing. A time interval on the order of 10 to 30 



 12

millisecond, which is assumed to change relatively slowly with time, is 

suitable for applying the short-time analysis. Furthermore, short-time 

Fourier analysis depends on windowing of speech waveform and the results 

depend on the properties of the specific window function. With a window of 

finite time duration, the window can move progressively along the speech 

signal to select short sections for analysis.  

 

2.1.2 LPC Analysis for Speech Signals 

Linear Predictive Coding (LPC) can provide a complete description for a 

speech prediction model at the vocal tract level. The basic idea underlying 

LPC is that each speech sample, tx , can be represented as a linear 

combination of previous samples, and prediction error can be minimized 

according to the mean-square value of the prediction error, te , which is 

defined by 

it

p

i
itt xaxe −

=
∑−=

1

    (2.1) 

where p  is the order of LPC analysis, and ia  are LPC coefficients. 

 The LPC coefficients, which minimize the mean-square prediction 

error, can be obtained by setting the partial derivative of the mean-square 

prediction error, with respect to each ia , equal to zero. By minimizing the 

prediction error, the LPC technique models the spectrum as a smooth 

spectrum of an order-p all-pole filter (Rabiner and Schafer, 1978). The value 

of p required for adequate modeling of vocal tract depends on the sampling 

frequency. The LPC coefficients can be obtained by solving the Yule-Walker 

equation. The solution of this equation can be achieved with various 

algorithms (Rabiner and Schafer, 1978; Deller, et al., 1993). However, three 

different approaches, the covariance method and the autocorrelation 

method, have been mainly used for this task (Rabiner and Juang, 1993; 

Huang, et al., 2001). 

 

2.1.3 Cepstral Analysis for Speech Signals 

The basic model of speech production can be considered as a vocal tract 

filter excited by a periodic excitation function for voiced speech or white 

noise for unvoiced speech (Vuuren, 1998). The observed speech sequence is 
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a convolution of the excitation and the vocal tract filter impulse response in 

the time domain or the product of the excitation and the filter spectra in the 

frequency domain. Short-time spectra comprise a slowly varying envelope 

corresponding to the vocal tract filter and a rapidly varying fine structure 

corresponding to the periodic excitation frequency and its harmonics 

(Rabiner and Schafer, 1978). In the frequency domain, the product of the 

excitation and filter spectra is transformed to the summation of these two 

spectra by logarithmic operation. Then, the transformation from the 

frequency domain back to the time domain results in the “cepstrum”, which 

has a number of properties suitable to the deconvolution of speech (Rabiner 

and Schafer, 1978). 

 Cepstral coefficients, which can also be obtained from LPC analysis 

(Rabiner and Schafer, 1978; Rabiner and Juang, 1993), have been widely 

used in speech recognition. The cepstral coefficients, nc , obtained from LPC 

analysis, can be computed recursively from the LPC coefficients, ia , as 

knk
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where 0=ka  when pk >  

 A major advantage of the cepstral analysis is that correlation between 

coefficients is extremely small such that simplified modeling assumption can 

be applied. 

 

2.1.4 Filterbank Analysis for Speech Signals 

Alternatively, the spectral features can be obtained by passing the speech 

signal through a bank of bandpass filters. One of the main advantages of 

this approach is that the bandpass can be placed along perceptual frequency 

scales such as critical band (Dautrich, et al., 1983), bark scale (Ali, et al., 

2002), or mel scale (Bu and Church, 2000). The filterbanks are generally 

triangular, and they are equally spaced along the mel scale, which is defined 

by 

( ) ⎟
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⎜
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f
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Obviously, the mel scale is linear below and logarithmic above 1 kHz. This 

scale is known to be a good scale for approximating the ability of human 

auditory system to discriminate frequencies. 
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 To implement the filterbank, each segment of speech data is 

transformed using a Fourier transform and the magnitude is taken. Each 

FFT magnitude coefficient is multiplied by the corresponding filter gain and 

the results are accumulated. If the cepstral parameters are computed from 

the log filterbank amplitude using the Discrete Cosine Transform as shown 

in eq. 2.4 , then, the mel-frequency ceptral coefficients (MFCCs) are 

obtained. 
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where N  is the number of filterbank channels and jm  is the log filterbank 

amplitude. Since MFCCs give good discrimination, they have been widely 

used in many speech recognition applications (Mokbel and Chollet, 1995; 

Vergin, O'Shaughnessy, and  Farhat, 1999). 

 

2.1.5 Coefficient Weighting 

The lower cepstrum coefficients have been found to be strongly affected by 

speaker-specific characteristics because the low-order cepstral coefficients 

are sensitive to overall spectral slopes (Juang, et al., 1987). This speaker-

dependent effect on the cepstrum coefficients is undesirable, and needs to be 

eliminated for speaker-independent speech recognition. Moreover, The high-

order cepstral coefficients are sensitive to noise and other forms of noiselike 

variability. These sensitivities need to be minimized by weighting technique. 

Weighting the cepstrum coefficients or less emphasis is given on the lower 

cepstrum coefficients. The process of weighting or windowing the cepstrum 

coefficients is also known as cepstrum liftering. Several weighting functions 

or lifting windows have been proposed for speech recognition (Juang, et al., 

1987; Tokhura, 1987). The raised sine function is one of the liftering 

windows, ( )iw , which has been found to work very well in speech 

recognition. This window is defined as 
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2
1   Ni ,...,1=    (2.5) 

where Q  is a liftering parameter, which is typically found experimentally. 

The new weighted coefficients were obtained as 

( ) ( ) ( )iwicic =ˆ   Ni ,...,1=    (2.6) 
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2.1.6 Delta Coefficients 

The cepstral representation of speech spectrum provides a good 

representation of the local spectral properties of the signal for the given 

analysis frame (Furui, 1986). These coefficients are considered to be static or 

instantaneous coefficients, which are computed without taking into account 

past or future spectrum information. Spectral changes, such as formant 

transitions, play an important role in speech perception. Therefore, it seems 

reasonable to incorporate such spectral changes in the features to enhance 

speech recognition extending the analysis to include information about the 

temporal cepstral derivative. To introduce the cepstral order into the cepstral 

representation, the thm  cepstral coefficient at time t  is denoted by ( )tcm . The 

time derivative of the log magnitude spectrum has a Fourier series 

representation of the form 

( )[ ] ( ) ωω j

m

mj e
t

tc
teS

t
∑
∞

−∞= ∂
∂

=
∂
∂

,log    (2.7) 

It is well known that ( )tcm  is a discrete time representation, where t  

is a frame index, simply using a first or second-order difference is 

inappropriate to approximate the derivative. Hence, a better method to 

approximate ( )
t

tcm
∂

∂  is using an orthogonal polynomial fit over a finite 

length window; that is 

( ) ( ) ( )∑
−=

+≈∆=
∂

∂ K

Kk
mm

m ktkctc
t

tc
µ    (2.8) 

where µ  is an appropriate normalization constant and ( )12 +K  is the 

number of frames over which the computation is performed (Rabiner and 

Juang, 1993). 

Based on the computation described above, for each frame t , the 

results of tO  is a vector of N  weighted MFCC and an appended vector of N  

time derivative MFCC; that is 

( ) ( ) ( ) ( ) ( ) ( )( )tctctctctctcO NNt ∆∆∆= ,...,,,ˆ,...,ˆ,ˆ 2121   (2.9) 

where tO  is a vector of ( )tciˆ  and ( )tci∆  with N  components. 
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2.2 Hidden Markov Model 

The hidden Markov model is a powerful statistical approach for the study of 

time series modeling with many of the classical probability distributions. The 

HMM approach provides a framework, which includes an automatic 

supervised training algorithm with mathematically proven convergence, the 

Baum-Welch algorithm. In addition, an efficient decoding scheme, the 

Viterbi algorithm, is incorporated in the HMM. The underlying assumption of 

the HMM is that the data samples can be well characterized as a parametric 

random process, and the parameters of the stochastic process can be 

estimated in a precise and well-defined framework. Speech observation 

sequences corresponding to an acoustic event can be modeled by traversing 

an underlying sequence of connected states, each associated with an output 

distribution. The output distribution and the relative likelihood moving 

between states are estimated from a number of observation sequences of 

particular speech unit to be modeled. This is necessary to make speech 

recognition computationally tractable, and eases the task of decoding a 

continuous waveform into a discrete set of symbols. The HMM has become 

one of the most successful statistical methods used in speech recognition, 

because of few assumptions need to be built into the models, and all model 

parameters can be efficiently estimated from the training data. Many 

successful speech recognition systems have employed the HMM approach as 

a major recognition part. Not only can the HMM be used in speech 

recognition, but it also can be applied in statistical language modeling, 

spoken language understanding, machine translation, and so on.  

This section briefly outlines the theoretical framework of the HMM by 

explaining the definition of HMM. Then the essential algorithms needed to 

estimate the model parameters and decoding are described. All initial 

discussions are based on the discrete HMM. However, most of the discrete 

HMM concepts can be extended to the continuous HMM as described 

succeeding the discrete HMM. This chapter also introduces the terminology, 

which will be used throughout this thesis. 
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2.2.1 Definition of the Hidden Markov Model 

A natural extension to the Markov chain introduces a non-deterministic 

process that generates output observation symbols in any given state. Thus, 

the observation is a probabilistic function of the state. This new model is 

known as a hidden Markov model, which can be viewed as a double-

embedded stochastic process with an underlying stochastic process or the 

state sequence not directly observable. The state sequence is hidden, and 

can only be observed through another set of observable stochastic processes. 

A hidden Markov model is basically a Markov chain, where the output 

observation is a random variable generated according to the output 

probabilistic function associated with each state. A set of output probability 

distributions of each hidden state can be either discrete probability 

distributions or continuous probability density functions. To describe the 

HMM characteristics, the following HMM elements are defined. 

1) The number of states in the model, N . Generally, the states are 

interconnected in such a way that any state can be reached from any 

other state. The individual states and the state at time t  are denoted 

as { }NSSS ,...,, 21=S  and tq  respectively. 

2) The number of distinct observation symbols per state, M . The 

observation symbols correspond to the physical output of the system 

being modeled. The individual symbols is denoted as { }MVVV ,...,, 21=V  

3) The state transition probability distribution, { }ija=A  where 

[ ]itjtij SqSqPa === +1 , Nji ≤≤ ,1 .   (2.10) 

4) The observation symbol probability distribution in state j , ( ){ }kbj=B , 

where 

( ) [ kj VPkb =  at ]jt Sqt = , Nj ≤≤1 Mk ≤≤1 .   (2.11) 

5) The initial state distribution, { }iπ=π , where 

[ ],1 ii SqP ==π  Ni ≤≤1 .   (2.12) 

Since ija , ( )kbj , and iπ  are all probabilities, they must satisfy the following 

properties: 

0≥ija , ( ) 0≥kbj , 0≥iπ  for all i , j , k  
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1
1

=∑
=

N

j
ija      (2.13) 

( ) 1
1

=∑
=

kb
M

k
j      (2.14) 

1
1

=∑
=

N

i
iπ      (2.15) 

Given appropriate value of N , M , A , B , and π , the HMM can 

generate an observation sequence TOOO ,,, 21 K=O , where each observation 

tO  is one of the symbols from V , and T  is the number of observations in 

the sequence. A complete specification of an HMM requires two constant 

parameters, N and M , representing the total number of states and the size 

of observation symbols, and three sets of probability measures, A , B , and 

π . For convenience, the compact notation is used to represent the complete 

parameter set of the model 

( )πB,A,=λ      (2.16) 

In the first-order hidden Markov model, there are two assumptions. 

The first is the Markov assumption for the Markov chain.  

( ) ( )1
1

1 −
− = tt

t
t qqPqqP      (2.17) 

where 1
1
−tq  represents the state sequence 121 ,,, −tqqq K . At each observation 

time t , a new state is entered based on the transitional probability, which 

only depends on the previous state. The transition may allow the process to 

remain in the previous state. The second is the output-independence 

assumption.  

( ) ( )tt
tt

t qPqP OOO =−
1

1
1 ,     (2.18) 

The output-independence states that the probability that a particular 

symbol is emitted at time t  depended only on the state tq  and is 

conditionally independent of the past observations. Although these 

assumptions severely limit the memory of the first-order HMM and may lead 

to model deficiency, in practice, they reduce the number of free parameters 

need to be estimated. Furthermore, these assumptions make evaluation, 

decoding, and learning feasible and efficient without significantly affecting 

the modeling capability. 
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2.2.2 Observation Density Functions 

The observation density functions have to model the distribution of the 

feature vector for the different parts in data. These distributions are 

estimated from large amounts of training data. The most frequently 

distributions are listed below. 

 

2.2.2.1 Discrete Density Functions 

This type of density modeling requires that the multidimensional continuous 

observations be quantized into a number of symbols. Each state now has a 

discrete distribution that gives the probability of each symbol for that state. 

The discrete symbols are normally generated by a vector quantizer, which 

assigns a discrete symbol to each observation vector by choosing the nearest 

example from a small codebook of reference vector. This is implicitly dealt 

with the choice of distance metric for the clustering procedure in the vector 

quantization. The Euclidian distance measure, for instance, is used in the 

k -means clustering algorithm. In order to reduce the quantization distortion 

for large observation vectors, the multiple independent codebooks for vector 

quantization were introduced. All components were assumed independent 

and their probabilities were simply multiplied to give the probability of the 

component vector. 

 

2.2.2.2 Continuous Density Functions 

In this case, the observation probability distribution in state j , ( )tjb O , is a 

general parametric distribution of a predetermined form. The generalized 

method to continuous output density functions requires that the probability 

density functions be strictly log concave. The re-estimation algorithm can be 

extended to various types of elliptically symmetric density functions. The 

rationale of continuous density function is that the continuous observations 

can be directly modeled without quantization. However, the choice of 

different density functions to model a given observation largely depends on 

the characteristics of observations. In addition, a single continuous 

probability density function associated with each state is usually inadequate 

to model complicated observations, then, finite mixture components are 

required. 
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2.2.3 The Three Basic Problems of HMM 

Given the definition of HMM, there are three basic problems of interest that 

must be solved for the model to be useful. These problems are the following: 

 

2.2.3.1 The Evaluation Problem 

Given the observation sequence TOOO ,,, 21 K=O , and the model ( )πBA ,,λ = , 

how to compute ( )λOP , the probability that the observation sequence was 

produced by the model. This problem can be also viewed as given several 

competing models and a sequence of observations, how to choose the model 

which best matches the observations for the purpose of classification or 

recognition. 

 

2.2.3.2 The Decoding Problem 

Given the observation sequence TOOO ,,, 21 K=O , and the model ( )πBA ,,λ = , 

what the most likely state sequence TqqqQ ,,, 21 K=  according to some 

optimality criteria is. This problem is the one to uncover the hidden part of 

the model to find the correct state sequence. Apart from the degenerate 

model, there is no correct state sequence to be found. Hence for practical 

situations, an optimality criterion is employed to solve this problem as best 

as possible. Unfortunately, there are several reasonable optimality criteria 

that can be imposed, and therefore, the choice of criterion is a strong 

function for the uncovered state sequence. Typical uses might be to learn 

about the structure of the model, to find the optimal state sequences for 

specific task, or to get average statistics of individual states. 

 

2.2.3.3 The Estimation Problem 

Given the observation sequence TOOO ,,, 21 K=O , how to adjust the model 

parameters ( )πBA ,,λ =  to maximize ( )λOP . The problem concerns how to 

optimize the model parameters so as to best describe how a give observation 

sequence comes about. The observation sequence used to adjust the model 

parameters is called a training sequence. The estimation problem is the 

crucial one for most applications of HMM, since the model parameters can 

be optimally adapted to observed data for real phenomena. 
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Formal mathematical solutions to these problems will be presented in the 

followings sections. The three problems are closely related under the same 

probabilistic framework. 

 

2.2.4 Solutions to the Three Basic Problems of HMM 

2.2.4.1 Solution to the Evaluation Problem 

To calculate the probability of an observation sequence TOOO ,,, 21 K=O  

given the model λ , ( )λOP , the most straightforward way is to enumerate 

every possible state sequence of length T  (the number of observations). For 

every fixed state sequence  

TqqqQ ,,, 21 K=     (2.19) 

where 1q  is the initial state. The probability of the observation sequence O  

for this state sequence is 

( ) ( )∏
=

=
T

t
tt qPQP

1

,, λλ OO     (2.20) 

From the output-independent assumption, the observations are 

assumed statistically independent. This probability can be written as 

( ) ( ) ( ) ( )TqTqq bbbQP OOO L2211
, =λO     (2.21) 

By applying Markov assumption, the probability of the state sequence 

Q  is  

( ) ( ) ( )∏
=

−=
T

t
tt qqPqPQP

2
11 ,λλλ    (2.22) 

TT qqqqqqq aaa
132211 −

= Lπ    (2.23) 

TT qqqqqq aaa
12110 −

= L     (2.24) 

where 
10qqa  denotes 

1qπ  for simplicity. 

The joint probability of O  and Q , which O  and Q  occur 

simultaneously, is simply the product of the above two terms 

( ) ( ) ( )λλλ ,,, QPQPQP OO =    (2.25) 

The probability ( )λOP  is obtained by summing this joint probability 

over all possible state sequences q  giving 

( ) ( ) ( )λλλ ,, QPQPP
Qall

∑= OO    (2.26) 
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( )∑ ∏
=

−
=

Qall

T

t
tqqq ttt

ba
1

1
O     (2.27) 

The interpretation of the computation in the above equation is the 

following. A transition starts from an initial state 1q  with probability 
10qqa , 

and generates the symbol 1O  in this state with probability ( )11
Oqb . Then, a 

transition is made from the initial state 1q to state 2q  with transition 

probability 
21qqa , and generates the symbol 2O  with output probability 

( )22
Oqb  attached to the corresponding state 2q . This process continues in 

this manner until the last transition from state 1−Tq  to state Tq  with 

transition probability 
TT qqa

1−
, and output probability ( )TqT

b O  generating 

symbol TO  is reached. 

The computation of ( )λOP , according to its direct definition () 

involves on the order of ( )TNO  calculations. At every time Tt ,,2,1 K= , there 

are N  possible states with can be reached. Therefore there are TN  possible 

state sequences. This calculation is computationally unfeasible, even for 

small values of N  and T . 

Clearly, a more efficient procedure is required to solve the Estimation 

Problem. Fortunately, such a procedure exists and is called the forward-

backward procedure. 

 

2.2.4.1.1 The Forward Procedure 

Consider the forward variable ( )tjα  defined as 

( ) ( )λα itti SqPt == ,,,, 21 OOO L    (2.28) 

This is the probability of the partial observation sequence to time t  and state 

iS  given the model λ . This probability can be inductively calculated as 

follows: 
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In the first step, the forward probabilities are initiated as the joint 

probability of state iS  and initial observation 1O . The induction step, which 

is the most important forward calculation, is illustrated in Figure 2.1. This 

figure shows how state jS  can be reached at time 1+t  from the N  possible 

states, iS , Ni ≤≤1 , at time t . Since ( )tiα  is the probability of joint event 

that tOOO ,,, 21 L  are observed, and the state at time t  is iS , the product 

( ) iji atα  is then the probability of joint event that tOOO ,,, 21 L  are observed, 

and state jS  is reached at time 1+t  via state iS  at time t . Summing this 

product over all the N  possible states iS , Ni ≤≤1  at time t  results in the 

probability of jS  at time 1+t  through all the previous partial observations. 

By multiplying the summed quantity by the probability ( )1+tjb O , ( )1+tjα , the 

probability of the new observation sequence 121 ,,,, +tt OOOO L , is obtained in 

state j . The computation of the induction step is performed for all state j , 

Nj ≤≤1 , for a given t . This computation is then iterated for 1,,2,1 −= Tt K . 

Finally, the termination step gives the desired calculation of ( )λOP  as the sum of 

the terminal forward variables ( )Tiα .  

The computation in the calculation of ( )tjα  requires only on the order 

of ( )2NO  rather than ( )TNO  as required by direct calculation. The forward 

probability calculation is based on the lattice (trellis) structure depicted in 

Forward algorithm 
 

Initialization:  
( ) ( )11 Oiii bπα = ,  Ni ≤≤1  (2.29)

 
Induction:  

( ) ( ) ( )1
1

1 +
=

⎥
⎦

⎤
⎢
⎣

⎡
=+ ∑ tj

N

i
ijjj batt Oαα ,   11 −≤≤ Tt   

Nj ≤≤1  (2.30)
Termination:  

( ) ( )∑
=

=
N

i
i TP

1

αλO .    (2.31)
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Figure 2.2. Since there are only N  states (nodes) at each time slot in the 

lattice, all possible state sequences will remerge in these N  nodes, no 

matter how long the observation sequence. At time 1=t , the first time slot in 

the lattice, the value of ( )1iα , Ni ≤≤1 , is calculated. At time Tt ,,3,2 K= , the 

only values of ( )tjα , Nj ≤≤1 , are needed to compute. Each calculation of 

( )tjα  involves only N  previous values of ( )1−tiα , because each of N  grid 

point is reached from the same N  grid points at the previous time slot. 

jS

t

1S

2S

3S

NS

1ja

2ja

3ja

Nja

( )tiα ⎟
⎠
⎞⎜

⎝
⎛ +1tjα

1+t

 

Figure 2.1. The sequence of operations required for the computation 

 of the forward variable ( )1+tjα  

 

S
T

A
T

E

1

2

3

11

N

1

1 2 3 T
OBSERVATION, t  

Figure 2.2. Implementation of the computation of ( )tiα  in terms of a lattice 

of observations t  and state i  



 25

2.2.4.1.2 The Backward Procedure 

In the similar way, a backward variable ( )tiβ  can be defined as  

( ) ( )λβ ,,,, 21 itTtti SqPt == ++ OOO K    (2.32) 

which is the probability of the partial observation sequence from 1+t  to the 

end, given state iS  at time t  and the model λ . This backward variable can 

be also solved inductively in the manner similar to the forward variable as 

follows: 

The initialization arbitrarily defines ( )Tjβ  to be 1 for all i . In order to 

be in state iS  at time t , and to account for the rest observation sequence, a 

transition from state iS  to every one of the possible states at time 1+t  must 

be made (the ija  term), which accounts for the observation symbol 1+tO  in 

state jS  (the ( )1+tjb O  term), and then accounts for the remaining partial 

observation sequence from state jS  (the ( )1+tjβ  term). 

The computational complexity of ( )tjβ  is similar to that of ( )tiα , 

which also produces a lattice with observation length and state number. The 

induction step is illustrated in Figure 2.3. 

As mentioned above, both the forward and backward procedures can 

be applied to compute ( )λOP  for the evaluation problem. They can also be 

used together to formulate a solution to the problem of model parameter 

estimation as discussed in the next section. 

 

 

 

Backward algorithm 
 

Initialization:  
( ) 1=Tiβ ,  Ni ≤≤1   (2.33)

 
Induction:  

( ) ( ) ( )∑
=

+ +=
N

j
jtjijj tbat

1
1 1ββ O ,   

   1,,2,1 K−−= TTt , Nj ≤≤1   (2.34)
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iS

t 1+t

1S

2S

3S

NS

i1a

i2a

i3a

iNa

( )itβ
( )j1t+β

 

Figure 2.3. The sequence of operations required for the computation 

 of the backward variable ( )tiα  

 

2.2.4.2 Solution to the Decoding Problem 

The hidden part of HMM, which is the state sequence, cannot be uncovered, 

but can be interpreted in some meaningful ways. A typical use of the 

recovered state sequence is to learn about the structure of the model, and to 

get average statistics within individual states. There are several possible 

ways to find the optimal state sequence associated with the given 

observation sequence. One possible optimality criterion is to choose the 

states tq , which are in the best path with the highest probability. A formal 

technique for finding this single best state sequence is called the Viterbi 

algorithm, which is very similar to the DTW algorithm. 

Firstly, the variable ( )tiγ , the probability of being in state iS  at time 

t , given the model λ  and the observation sequence, is defined as 

( ) ( )λγ ,Oiti SqPt ==     (2.35) 

This variable can be simply expressed in terms of the forward-

backward variables as 

( ) ( ) ( )
( )

( ) ( )
( ) ( )∑

=

==
N

i
ii

iiii
i

tt

tt

P

tt
t

1

βα

βα
λ
βαγ

O
   (2.36) 

( )tiα  accounts for the partial observation sequence tOOO ,,, 21 L  and the state 

iS  at time t , while ( )tiβ  accounts for the remainder of the observation 
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sequence Ttt OOO ,,, 21 K++  and the state iS  at time t . The normalization 

factor, ( )λOP , makes ( )tiγ , a probability measure so that 

( ) 1
1

=∑
=

N

i
i tγ .     (2.37) 

Using ( )tiγ , the individually most likely state tq  at time t  can be 

solved as 

( )[ ]tq i
Ni

t γ
≤≤

=
1

maxarg ,  Tt ≤≤1   (2.38) 

Although the above equation maximizes the expected number of 

correct states by choosing the most likely state for each t , there could be 

some problems with the resulting state sequence. For example, when the 

HMM has state transitions, which have zero probability, the optimal state 

sequence may not even be a valid state sequence. This problem occurs 

because the solution in Eq. (2.38) simply determines the most likely state at 

every instant, without regard to the probability of occurrence of sequences of 

states. 

One solution to the above problem is to modify the optimal criterion. 

The most widely used criterion is to find the single best state sequence to 

maximize ( )λ,OQP , which is equivalent to maximizing ( )λO,QP . A formal 

technique for finding this single best state sequence is called the Viterbi 

algorithm. 

 

2.2.4.2.1 The Viterbi Algorithm 

To find the single best state sequence, { }TqqqQ ,,, 21 K= , for the given 

observation sequence { }TOOO ,,, 21 K=O , the quantity ( )itδ  is needed to 

define 

( ) ( )λδ tt
qqq

i iqqqPt
t

OOO ,,,,,,,max 2121
,,, 121

KK
K

==
−

  (2.39) 

where ( )itδ  is the best score along a single path at time t , which accounts 

for the first t  observations and end in state iS . By induction, the Eq. (2.39) 

becomes 

( ) ( )[ ] ( )1max1 +⋅=+ tjiji
i

j batt Oδδ    (2.40) 
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To actually retrieve the state sequence, the array ( )tjψ  is required to keep 

track of the argument, which maximizes Eq. (2.40) for each t  and j . The 

complete procedure for finding the best state sequence can be started as 

follows: 

The Viterbi algorithm (except for the backtracking step) is similar in 

implementation to the forward calculation. The major difference is the 

maximization over the previous states in Eq. (2.43), which is used instead of 

the summing procedure of the forward variable calculation. Moreover, a 

lattice or trellis structure efficiently implements the computation of the 

Viterbi procedure. 

 

2.2.4.3 Solution to the Estimation Problem 

The most difficult problem in HMM is to determine a method to adjust the 

model parameters ( )πBA ,,λ =  to maximize the probability of the observation 

sequence given the model. There is no known way to analytically solve for 

the model, which maximizes the probability of the observation sequence. 

Actually, given any finite observation sequence, there is no optimal method 

of estimating the model parameters. However, by choosing ( )πBA ,,=λ  that 

Viterbi algorithm 
 

Initialization:  
( ) ( )11 Oiii bπδ = ,  Ni ≤≤1  (2.41)

( ) 01 =iψ      (2.42)

 
Induction:  

( ) ( )( ) ( )tjiji
Ni

j batt O1max
1

−=
≤≤

δδ , Tt ≤≤2  

Nj ≤≤1  (2.43)

( ) ( )( )iji
Ni

j att 1maxarg
1

−=
≤≤

δψ ,         Tt ≤≤2  

       Nj ≤≤1  (2.44)
Termination:  

( )[ ]TP i
Ni
δ

≤≤
=

1

* max     (2.45)

( )[ ]Tq i
Ni

T δ
≤≤

=
1

* maxarg     (2.46)

Path (state sequence) backtracking: 
   ( )*

11
*

++= ttt qq ψ , 1,,2,1 K−−= TTt  (2.47)
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( )λOP  is locally maximized, an iterative algorithm or gradient technique for 

optimization is used. In this section, one iterative algorithm known as 

Baum-Welch algorithm is described. 

 

A. Baum-Welch Re-estimation Algorithm 

The mathematical foundations of the Baum-Welch algorithm for the 

maximum likelihood estimation were established by Baum. An iterative 

method for monotonically increasing value of an arbitrary homogeneous 

polynomial ( )XP  with non-negative coefficients of degree d  in variables ijx , 

pi ,,2,1 K= , iqj ,,2,1 K= , defined over a stochastic domain 0: ≥ijxD , 

1
1

=∑
=

iq

j
ijx , through a series of transformations performed on { }ijx , was firstly 

purposed. The transformation is defined as  

( )
( )

( )∑
= ∂

∂

∂
∂

=
tq

j ij
ij

ij
ij

ij

x

X
x

x

X
x

xT

1

P

P

     (2.48) 

and is often referred to a growth transformation of ( )XP . A special case of 

the resstimation procedure for probabilistic functions of Markov chains with 

discrete observations was described. Later, the method was generalized to 

functions of Markov chains with continuously distributed observations. 

Recently, an analysis, which extends the algorithm to accommodate a large 

class of distributions and mixture distributions, was presented. For the 

discrete output distribution, transition and observation parameters are both 

reestimated according to Eq. (2.48) in the following. However, the re-

estimation formulas for the parameters of a continuous density HMM will be 

described later. 

The purpose of the solution to the estimation problem is to obtain the 

model from observations. If the model parameters are known, the forward-

backward algorithm can be used to evaluate probabilities produced by given 

model parameters for given observations. 

In order to describe the procedure for re-estimation of HMM parameters, 

( )tijξ , the probability of being in state iS  at time t  and state jS  at time 1+t , 

given the model and observation sequence, is introduced. 
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( ) ( )λξ ,, 1 Ojtitij SqSqPt === +    (2.49) 

The sequence of events leading to the conditions required by Eq. 

(2.49) is illustrated in Figure 2.4. From the definition of the forward and 

backward variables, ( )tijξ  can be written in the form 

( ) ( ) ( ) ( )
( )λ

βα
ξ

OP

jbat
t ttjiji

ij
11 ++=

O
    (2.50) 

( ) ( ) ( )

( ) ( ) ( )∑∑
= =

+

+

+

+
=

N

i

N

j
jtjiji

jtjiji

tbat

tbat

1 1
1

1

1

1

βα

βα

O

O
      (2.51) 

where the numerator term is just ( )λ,, 1 Ojtit SqSqP == +  and the division by 

( )λOP  gives the desired probability measure. 

Since ( )tiγ , the probability of being in state iS  at time t , given the 

observation sequence and the model, is previously defined, ( )tijξ  can be 

related to ( )tiγ  by summing over j , giving 

( ) ( )∑
=

=
N

j
ijt ti

1

ξγ     (2.52) 

If ( )tiγ  is summed over the time index t , a quantity, which can be 

interpreted as the expected number of times that state iS  is visited, or 

equivalently the expected number of transitions made from state iS , is 

obtained. Similarly, summation of ( )tijξ  over t  from 1=t  to 1−= Tt  can be 

interpreted as the expected number of transitions from state iS  to state jS . 

That is  

( ) =∑
−

=

1

1

T

t
i tγ  expected number of transitions from iS    (2.53) 

( ) =∑
−

=

t
T

t
ij

1

1

ξ  expected number of transitions from iS  to state jS  (2.54) 

Using the above formulas and the concept of counting event 

occurrences, a method for re-estimation of the HMM parameters is given. A 

set of re-estimation formulas for A , B , and π  are 

( )1 at time  statein frequency  expected iii S γπ =    (2.55) 
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=  (2.56) 
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=  (2.58) 
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From Eq. (2.55) to (2.59), it can be proven that either: 

1) The initial model λ  defines a critical point of likelihood function, 

where new estimates equal old ones, or 

2) Model λ  is more likely than model λ  in the sense that 

( ) ( )λλ OO PP ≥ . 

Thus, if λ  is iteratively used to replace λ  and repeats until the above re-

estimation calculation, ( )λOP  can be improved until some limiting point is 

reached. The final result of this re-estimation procedure is call a maximum 

likelihood estimation of the HMM. It should be pointed out that the forward-

backward algorithm leads to local minima only, and that in the most 

problems of interest, the optimization surface is very complex and has many 

local minima. 

iS jS

⎟
⎠
⎞

⎜
⎝
⎛

tjijba O

1−t 2+tt 1+t

1S

2S

3S

NS

1S

2S

3S

NS

j1a

j2a

j3a

jNa

1ia

2ia

3ia

Nia

( )1−tiα ( )tiα ( )tjβ ( )1+tjβ  

Figure 2.4. The sequence of operations required for the computation of the 

joint event that the system is in state iS  at time t  and state jS  at time 1+t  
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B. Multiple Observation Sequence 

Note that a single observation sequence is not enough for re-estimation of 

the HMM parameters. Hence, in order to have sufficient data to make 

reliable estimates of all model parameters, multiple observation sequences 

are used. The re-estimation formulas can be easily extended to such 

multiple observation sequences. Let a set of K  observation sequences 

denoted as 

( ) ( ) ( )[ ]kOOOO ,,, 21 K=     (2.60) 

where ( ) ( ) ( ) ( ){ }k
T

kkk

k
OOO ,,, 21 K=O  is the thk  observation sequence. Assuming that 

observation sequences are independent of each other, the parameter 

estimations of HMM is then based on the maximization of  

( ) ( )( )∏
=

=
K

k

kPP
1

λλ OO     (2.61) 
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1

     (2.62) 

Since the re-estimation formulas are based on frequencies of 

occurrence of various events, the re-estimation formulas are modified by 

adding together the individual frequencies of occurrence of each sequence. 

Thus, the re-estimation formula for the transition probability, ija , can be 

computed: 
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Similarly, the re-estimation formula for the observation symbol 

probability distribution in state j , ( )lb j , can be computed: 
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2.2.5 Continuous Density Hidden Markov Model 

If the observation does not come from a finite set, but from a continuous 

space, the discrete output distribution discuss in the previous sections can 
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be extended to the continuous output probability density function. This 

implies that the vector quantization technique, which maps observation 

vectors from the continuous space to the discrete space, is no longer 

necessary. Consequently, the inherent error can be eliminated. 

The Baum-Welch re-estimation algorithm discussed in section 3.4.3.1 

can be extended to estimate continuous probability density function with the 

auxiliary Q  function. The generalized method to continuous output density 

functions can be applicable to the Gaussian, Poisson, and Gamma 

distributions but not to the Cauchy distribution. Furthermore, the 

estimation algorithm was expanded to cope with finite mixtures of strictly log 

concave and elliptically symmetric density functions. This section will 

discuss general re-estimation formulas for the continuous HMM, which is 

applicable to a wide variety of elliptically symmetric density functions. 

 

2.2.5.1 Continuous Parameter Re-estimation 

Using continuous probability density functions, the first candidate for a type 

of output distributions is the multivariate Gaussian, since 

1) Gaussian mixture density functions can be used to approximate any 

continuous probability density functions in the sense of minimizing 

the error between two density functions. 

2) By the central limit theorem, the distribution of the sum of a large 

number of independent random variables tends towards a Gaussian 

distribution. 

3) The Gaussian distribution has the greatest entropy of any 

distribution with a given variance. 

The most commonly used distribution is the continuous Gaussian 

density function defined as 

( )
( )

( ) ( )µOµO
µO

−−−
=

-1Σ

Σ
Σ

T

e
n

2

1

2

1

π
,;N   (2.65) 

where n  is the dimensionality of the observation vector O , µ  and Σ  are the 

mean vector and the covariance matrix respectively. The advantage of 

normal distributions is that the parameters of Gaussain can be easily and 

reliably estimated from a large number of data. In order to obtain more 

accurate approximations, Gaussian mixtures were used. With enough 

components, such mixtures can approximate any density function with an 
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arbitrary precision. The probability density of the multiple Gaussian 

mixtures is defined as 

( ) ( )∑
=

=
M

m
jmjmtjmtj cb

1

,ΣµOO ;N    (2.66) 

where M  is the number of mixture components and m  is the mixture 

weight for the mixture component in state j . The mixture weights satisfy the 

stochastic constraint 

1
1

=∑
=

M

m
jmc ,  Nj ≤≤1    (2.67) 

0≥jmc ,  Nj ≤≤1 , Mm ≤≤1   (2.68) 

For the continuous probability density functions, the likelihood of an 

input observation is expressed as 

( ) ( )∑=
Qall

QPP
 

, λλ OO     (2.69) 

( ) ( )∑=
Q all

QPQP λλ ,O     (2.70) 

An information-theoretic Q -function, which is considered a function 

of λ  in the maximization procedure, is applied to derive the re-estimation 

formulas as 

( ) ( ) ( ) ( )∑=
 Sall

QPQP
P

λλ
λ

λλ ,log,
1

, OO
O

Q   (2.71) 

The mathematical derivation of the re-estimation algorithm of the 

continuous probability density functions is described in Appendix . By using 

an auxiliary Q -function, reestimated HMM parameters for the multimodal 

Gaussian distributions are 
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where prime denotes vector transpose and ( )tjmγ  is the probability of being 

in state j  at time t  with the thm  mixture component for tO  
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The re-estimation formula for ija  is identical to the one used for discrete 

observation densities. 

There are two possible options in the design of the mixtures. Either 

the Gaussian mixtures are state specific or they are shared (tied) between 

different states of the HMM. HMM with state specific Gaussian mixtures is 

called continuous density HMM. HMM that shares Gaussian mixtures 

among different states is called semi-continuous HMM or tied mixture HMM. 

 

2.2.6 Hidden Markov Model for Speech Recognition 

2.2.6.1 Composite Models for Continuous Speech Recognition 

The parameter estimation and decoding techniques in the previous section 

are defined to apply to a single HMM mapped onto an isolated word. One of 

the advantages of the HMM approach is the ease with which it can be 

adapted to a continuous recognition environment. In order to extend to the 

continuous model, two modifications are made to the HMM structure. The 

first modification was already discussed in section 2.2.4.1; the addition of 

the entry and exit states to each model. The entry and exit states are defined 

as non-emitting states, which take t∆  time to traverse, where t∆  is 

negligibly small. Thus, the forward and backward probabilities that 

correspond to the entry and exit states are those at tt ∆−  and tt ∆+ , where 

t  is the time value at the immediately following or preceding state 

respectively. Therefore, the constraints are 

011 =a  and 0=Nia  i∀     (2.76) 

which simply ensure that the entry and exit states can only be occupied for 

one transition. The other structural change is the addition of glue models. 
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These models have only one emitting state, plus the entry and exit state, 

along with a non-zero entry to exit transition probability. These glue models 

are often call null or tee models (Young, et al., 1999.). A model with entry 

and exit states is depicted in Figure 2.5 and a tee model is shown in Figure 

2.6. Using tee models and non-emitting entry and exit states, a series of 

HMMs, with tee model between word, may be linearly combined into a single 

HMM for training purpose. 

The modification required for the training formulas can be generated 

in a straightforward manner. The notation, a superscript q  in parentheses 

representing the current model, is used as the notation that a training 

sentence model is represented by Q  HMMs placed in sequence. The 

resulting forward and backward recurrent algorithms can be rewritten 

directly from the earlier definitions and new model structure. The forward 

equations are: 

Initialization:  
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⎨
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The corresponding backward equations are: 

Initialization:  
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The Baum-Welch re-estimation equations for transition probabilities will 

now be split into four categories:  

1. internal transitions between emitting states, 

2. transitions from the entry state into emitting states, 

3. transition from emitting states into the exit state, 

4. tee transitions from the entry state directly to the exit state, generally 

zero for non-tee models. 

The equations are all similar to the original transition re-estimation 

formulas, with some primary differences above. The resulting formulas are: 
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 It can also be seen from examination of the last equation that the last 

model Qq =  in the state sequence cannot have a non-zero tee probability 
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from the entry to exit state. This restriction is generally enforced for the 

initial model 1=q  as well, so that neither the beginning nor end of an 

utterance sequence can be a tee model. 

 The underlying Baum-Welch equations for estimating output 

distributions from Eq. (2.72)-(2.75) do not change once the modifications 

have been made to the forward and backward probabilities. 

 

Figure 2.5. HMM with non-emitting entry and exit states 

 

Figure 2.6. Tee model HMM 
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2.2.6.2 Multiple Observation Sequence 

In a complex large vocabulary speech recognition system, there may be 

literally thousands of models representing context-dependent subword units 

or segmental subword units. One problem that arises when performing 

training operation is that the Baum-Welch equations discussed so far are 

designed to be computed on one training sentence at a time, which is likely 

to use only a handful of different models just once or twice each, resulting in 

a very small quantity of training data for each iteration and corresponding 

poor re-estimation. 

 A simple and accurate approach to solving is to treat the training 

sentences as a concatenated series of observation sequences assumed to be 

independent of each other. This concept leads to updating the parameters 

for each model only one time over the entire training set, where the new 

parameters are given by continuously summing the numerator and 

denominator terms of the re-estimation equations throughout training. In 

the transition probability re-estimations, a 
rP

1
 term, where rP  is the ( )λOP  

for the r th sentence, is added to the numerator and denominator. The full 

set of re-estimation equations for the Gaussian mixture distributions with 

multiple observation sequences, including entry and exit states and tee 

models, is given below 
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The implementation of these equations can be made with attention to 

some cancellations within the terms. In particular, the recursion for ( ) ( )tq
jα  

contains the term ( ) ( )t
q

jb O  within it, which is also in the denominator of the 

formula for ( ) ( )tq
jmγ . The variable ( ) ( )tU q

j  is defined as  
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to represent ( ) ( )tq
jα  without ( ) ( )t

q
jb O  term. The computation of this latter term 

is cancelled entirely, giving 
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P
t Oβγ 1
=     (2.102) 

Similar modifications may be made to the distribution re-estimation 

equations for discrete probability densities so that composite models and 

multiple observation sequences can be considered, resulting in the equation 
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 It is should be noted that this formula has an identical form to the re-

estimation equation for mixture weights of Gaussian mixture distributions, if 

the mixture number m  is treated as the index of the emitted observation. 

Thus, there is a direct correspondence between an M -mixture Gaussian 

distribution and a discrete distribution of M  observation symbols. 

 

2.3 Large Vocabulary Continuous Speech 

Recognition 

The performance of a speech recognition system depends on the system’s 

ability to reduce uncertainty about the identity of a spoken word using 

information from the acoustic signal and past word sequences. 

The speech recognition problem can be view as a problem in 

communication theory (Shannon, 1948). A spoken of words of known 

identity w  is viewed as passing through an acoustic channel model, which 

produces a sequence of acoustic observation symbols a  (Valtchev, 1995). An 

acoustic observation a  is a sequence feature vector extracted from the 

acoustic signal generated by the speaker while uttering w . The joint 

probability of words w  and acoustics a  is  

( ) ( ) ( ) ( ) ( )aPawPwPwaPawP ==,    (2.104) 

The language model component, ( )wP , provides information about the 

word sequence in w . The conditional distribution ( )waP  of acoustic given 

words describes the acoustic channel model, and the conditional 

distribution ( )awP  defines a probabilistic decoder. For a known sequence of 

observations, the marginal distribution ( )aP  is assumed to be constant since 

it does not depend on the model (Valtchev, 1995). The structure of speech 

recognition system, according to information transmission theory, is 

depicted in Figure 2.7 (Furui, 2001). 
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Figure 2.7. Structure of speech recognition according to information theory 

 

The above definition of the speech recognition problem can be viewed 

as the following practical considerations (Valtchev, 1995):  

Acoustic model structure – The acoustic model is a probabilistic 

function, which models the phonological and acoustic-phonetic variations in 

the speech signal. It is extremely difficult for a human expert to devise an 

accurate and complete acoustic model due to partial knowledge and inability 

such knowledge in an algorithmic form. For this reason, an acoustic model 

is defined as a family of parametric distributions with parameter λ . The 

chosen family of distributions should be based on true assumptions about 

speech and have a relatively small number of free parameters. The value of 

λ  identifies a unique acoustic model from the family and is usually 

estimated from a large sample of speech data. 

Parameter estimation – The ultimate goal in parameter estimation is 

to find a parameter vector λ , which produces a decoder with the lowest 

possible recognition error rate. To achieve the lowest error rate, some 

objective function ( )λF , which relates to the decoder’s performance, has to 

be optimized. The objective function should be such that when ( ) ( )λλ FF >ˆ  

then λ̂  will produce a better decoder than λ . Once ( )λF  has been chosen, 

the second problem is to find the parameter set λ , which maximizes it. 

Complex acoustic models typically employ a large number of parameters, 
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which makes it very unlikely that a globally optimal λ  will be found. This 

means that even with a good function, it is possible to obtain unsatisfactory 

results if the estimation procedure converges to a bad local maximum. 

Probabilistic decoder – A speech decoder is a device, which attempts 

to find the identity of a word from its acoustic representation. Since the 

chosen identity ŵ  is different from the actual identity of the spoken word w  

then there is a decoding error. The probability of making an error is the most 

important factor in choosing the decoder. The optimal decoder with regard to 

minimizing the probability of error is the maximum a posteriori (MAP) 

decoder, where w  is chosen such that 

( ) ( ) ( )
( )aP

wP
waPawPw

ww
maxargmaxargˆ ==   (2.105) 

 
2.3.1 Search Algorithm 

The two main schemes of decoding most commonly used today are Viterbi 

decoding using the beam search heuristic and stack decoding (Ravishankar, 

1996; Steinbiss, et al., 1995; Robinson, 2002; Renals and Hochberg, 1995; 

Ortmanns and Ney, 2000; Luk and Damper, 1998; Lleida and Rose, 2000; 

Deshmukh, et al., 1999). Since the work reported in this research is based 

on the former, the basic principle of Viterbi decoding is reviewed here. 

According to the MAP rule, the decoder computes the likelihood of the 

unknown observation sequence given each acoustic model and choosing the 

one with the highest likelihood. In general, it is possible to use the forward 

probability calculation to compute the overall likelihood ( )λOP , and to 

identify the utterance based on these quantities. However, in practice, the 

most likely state sequence, which generates the sequence O , is interested 

in. In addition, in many cases, the decision of choosing w  is implicitly 

incorporated in the model by combining several models in parallel with 

common initial and final states and, in such case, the maximum likelihood 

path is an essential outcome of recognition. The Viterbi algorithm is a 

general dynamic programming technique used to find the most likely path in 

a trellis of nodes. The likelihood of the path is computed according to Eq. 

(2.43). 

Continuous speech recognition is normally performed as a time-

synchronous Viterbi search in a state space. The search produces the most 
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likely word sequence by matching each frame from the unknown utterance 

to a network of HMM instances (Valtchev, 1995). The network is compiled 

corresponding to the grammar of the language. The search itself is the 

computationally most expensive part of the recognition system due to the 

huge number of possible paths. This is a result of the vocabulary size and 

inherent acoustic ambiguities. In order to reduce the search space, it is 

customary to limit the scores generated by the acoustic models. Multi-pass 

recognition systems are another way of making the recognition task more 

manageable (Hajime, 1998; Wakita, et al., 1999; Junqua, et al., 1995; 

Richardson, et al., 1995; Deshmukh, et al., 1999; Kenny, et. al, 1994). A 

typical example is a two-pass system, where the first pass generates a list of 

the N most probable sequence using simplified acoustic models (Austin, et 

al., 1991; Wilcox and Bush, 1992; Huang, et al., 1994). The second-pass re-

scores the list using detailed acoustic models and a language model (Mohri 

et al., 2002; Sato, et. al, 2002; Johnsen, 1989; Junqua, 1990; Matsunaga 

and Sakamoto, 1996; Tran, et al., 1996). A Japanese speech recognition 

system, for example, utilizes a two-pass search algorithm as shown in Figure 

2.8 (Furui, 2001). However, a fundamental problem of the multi-pass 

decoding system is that search errors introduced in early passes are 

impossible to correct. Therefore, these errors result in degraded 

performance.  

 

Figure 2.8. Two-pass search structure used in the Japanese broadcast-

news transcription system 
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2.3.2 Language Modeling 

The language model is a natural component in the information-theoretic 

formulation of the speech recognition problem. It is required in a large 

vocabulary speech recognition system for disambiguating between the large 

set of alternative confusable words that might be hypothesized during the 

search (Ravishankar, 1996). The language model defines the priori 

probability of a sequence of a word sequence W . The probability of a 

sentence, a sequence of words nwww ,...,, 21 , provided by the language model, 

is given by 

( ) ( ) ( ) ( ) ( ) ( )113214213121 ,...,,,, −⋅⋅⋅= nn wwwPwwwwPwwwPwwPwPWP   

( )∏
=

−=
n

i
ii wwwP

1
11,...,         (2.106) 

where ( )11,..., −ii wwwP  indicates the probability that the word iw  was spoken 

given that the word sequence iwww ,...,, 21  was said. It is practically 

impossible to obtain reliable estimations given arbitrarily long histories of all 

the words in a given language since that would require enormous amount of 

training data (Ravishankar, 1996; Loizou, 1995). Instead, the language 

model probability is approximated in the following ways: 

 

2.3.2.1 N-gram Language Models 

For a vocabulary of size v  , there are iv  different histories of words to specify 

( )11,..., −ii wwwP  completely, so iv  values would have to be estimated. In 

reality, the probabilities ( )11,..., −ii wwwP  are impossible to estimate for even 

moderate values of i , since most histories iwww ,...,, 21  are unique or have 

occurred only a few times. A practical solution to the above problems is that 

the probability ( )11,..., −ii wwwP  is assumed depends only on some equivalence 

classes. The equivalence class can be simply based on the several previous 

words 121 ,...,, −+−+− iNiNi www . This leads to an gramn −  language model. 

The bigram models approximate the probability of a word depends 

only on the identity of immediately preceding word. To estimate ( )1−ii wwP , 

the frequency with which the word iw  occurs given that the last word is 1−iw , 
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simply count how often the sequence ( )1, −ii ww  occurs in some text and 

normalize the count by the number of times 1−iw  occurs. 

For a trigram model, the probability of a word depends on the two 

preceding words. The trigram can be estimated by observing the frequencies 

or counts of word pair ( )12 , −− ii wwC  and triplet ( )iii wwwC ,, 12 −−  as follows: 

( ) ( )
( )12

12
12 ,

,,
,

−−

−−
−− =

ii

iii
iii wwC

wwwC
wwwP    (2.107) 

In principle, estimates for these probabilities can be directly 

calculated from text data by a simple frequency count. The estimates can be 

stored in a look-up table. This type of language model can be easily 

integrated with the recognition algorithm, and can be implemented as finite 

state networks. Therefore, the gramn −  is the most popular type of 

stochastic language model (Duchateau, 1998; Potamianos and Jelinek, 

1998; Ng, et al., 2000; Clarkson and Robinson, 2001; O'Boyle, et al., 1994; 

Niesler and Woodland, 1999; Iyer and Ostendorf, 1999). 

Deriving trigram and even bigram probabilities is still a sparse 

estimation, even with very large corpora. Even among the observed trigrams, 

the vast majority occurred only once. Therefore, straightforward maximum-

likelihood estimation of gramn −  from counts is not advisable. Instead, 

various smoothing techniques have been developed. These include 

discounting the ML estimations (Witten and Bell, 1991), recursively backing 

off to lower-order gramn −  (Katz, 1987; Ney, et al., 1994; Kneser and Ney, 

1995), and linearly interpolating gramn −  of different order (Jelinek and 

Mercer, 1980). The variable-length gramn − , language model with a longer 

span larger than n , can be estimated with the same amount of text data. 

The span varies depending on the word context, the previous words. A longer 

or shorter context can be preferable as there can be more or less examples 

for that context in the text data, or as the context is more or less relevant to 

predict the next world. Long distance grammars are primarily used to 

rescore n -best hypothesis lists from previous decoding (Rosenfeld, 1994; 

Blasig, 1999). 

Another way to overcome sparseness is by vocabulary clustering. For 

any given assignment of a word iw  to class ic , there may be many-to-many 

mappings. For instance, a word iw  may belong to more than one class, and 
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a class ic  may contain more than one word. For simplicity, a word iw  is 

assumed to be uniquely mapped to only one class ic . The gramn −  model 

can be computed based on the previous 1−n  classes: 

( ) ( ) ( )1111 ,...,,..., −+−−+− = iniiiiinii cccPcwPccwP   (2.108) 

where ( )ii cwP  denotes the probability of word iw  given class ic  in the 

current position, and ( )11,..., −+− inii cccP  denotes the probability of class ic  

given the class history. With such a model, the class mapping cw→  can be 

learned from either text or task knowledge. In general, the class trigram can 

be express as: 

( ) ( ) ( )12
,...,

,
1

−−∑ ∏= iii
cc i

ii cccPcwPWP
n

  (2.109) 

If the classes are nonoverlapping, a word may belong to only one 

class, then Eq. (2.109) can be simplified as: 

( ) ( ) ( )12 , −−∏= iii
i

ii cccPcwPWP    (2.110) 

As a typical example, the bigram probability of a word given the prior 

word (class) can be estimated as 

       ( ) ( )11 −− = iiii cwPwwP        

( ) ( )1−= iiii ccPcwP     (2.111) 

Class-based language models have been shown to be effective for 

rapid adaptation, training on small data sets, and reduced memory 

requirement for real-time speech application. For general-purpose large 

vocabulary dictation application, class-based gramn −  have not significantly 

improved recognition accuracy. They are mainly used as a back-off model to 

complement the lower-order gramn −  for better smoothing. Nevertheless, for 

limited domain speech recognition, the class-based gramn −  is very helpful 

as the class can efficiently encode semantic information for improving 

keyword spotting and speech understanding accuracy. (Wakita, et al., 1996; 

Deligne and Sagisaka, 2000; Dagan, et al., 1995; Riccardi, et al., 1996; Gao 

and Chen, 1997; Ward and Issar, 1996; Palmer, et al., 2000; Whittaker  and 

Woodland, 2001; Yokoyama, et al., 2003; Ueberla, 1995) 
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2.3.2.2 Decision Tree Models 

Decision trees and classification and regression trees algorithms were first 

applied to language modeling by Bahl and et al (Bahl, et al., 1989). A 

decision tree can arbitrarily partition the space of histories of words by 

asking arbitrary questions about the history 121 ,...,, −+−+− iNiNi www  at each of 

the internal nodes. The training data at each leaf are then used to construct 

a probability distribution ( )11,..., −ii wwwP  over the next word. To reduce the 

variance of the estimate, this leaf distribution id interpolated with internal-

node distributions found along the path to the root. Usually, trees are grown 

by greedily selecting, at each node, the most informative question, as judged 

by reduction in entropy. Pruning and cross validation are used. 

Applying this language model is quite a challenge. The space of 

histories of words is very large, for example, 10010 for a 20-word sequence 

over a 100,000 word vocabulary, and the space of possible questions is even 

larger (
100102 ). Even if questions are restricted to individual words in the 

histories, there are still 
510220 ⋅  such questions.  

Theoretically, decision trees represent the ultimate in partition-based 

models. It is likely that trees exist that significantly outperforms n -grams. 

But finding them seems difficult for both computational and data sparseness 

reasons. Therefore, this approach was largely abandoned (Nadas, et al., 

1991) 

 

2.3.2.3 Linguistically Motivated Models 

While all statistical language models get some inspirations from an intuitive 

view of language, in most models, actual linguistic content is quite 

negligible. Several language models, however, are directly derived from 

grammars commonly used by linguists. 

A. Context-free grammar (CFG) 

A CFG is a crude-well understood model of natural language. It is defined 

by a vocabulary, a set of non-terminal symbols, and a set of production of 

transition rules. Sentences are generated, starting with an initial non-

terminal. By repeated application of the transition rules, which transform 

a non-terminal into a sequence of terminals (words) and non-terminals, 

until a terminals-only sequence is achieved (Huang, et al., 2001). 
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A probabilistic context-free grammar puts the probability distribution 

on the transitions producing from each terminal, thereby inducing a 

distribution over the set of all sentences. These transition probabilities 

can be estimated from annotated corpora using various algorithms such 

as the inside-outside algorithm and the expectation-maximization 

algorithm (Baker, 1976). However, the likelihood surfaces of these models 

tend to contain many local maxima. In addition, even if global ML 

estimation were feasible, it is generally believed that context-sensitive 

transition probabilities are needed to adequately account for actual 

behavior of language. Unfortunately, there is still no efficient algorithm 

for this situation.  

Moreover, it is assumed that the expansion of any one non-terminal is 

dependent of the expansion of other non-terminals. Thus each 

probabilistic context-free grammar rule probability is multiplied together 

without considering the location of the node in the parse tree. This is 

against the intuition of   since there is a strong tendency toward the 

context-dependent expansion. Another problem is the lack of sensitivity 

to words. The lexical information can only be represented via the 

probability of pre-terminal nodes, such as verb or noun, to be expanded 

lexically (Huang, et al., 2001). 

B. Link grammar 

Link grammar is a lexical grammar proposed by (Sleator and Temperly, 

1991). Each word is associated with one or more ordered sets of typed 

links. Each such link must be connected to a similarly typed link of 

another word in the sentence. A legal parse consists of satisfying all links 

in the sentence via a planar graph. Link grammar has the same 

expressive power as a CFG, but arguably conforms better to human 

linguistic intuition (Sleator and Temperly, 1991). 

 

2.3.2.4 Adaptive Models 

Dynamic adjusting of the language model parameter, such as n -grams 

probabilities, vocabulary size, and the choice of word in vocabulary, is 

important since the topic of conversation is highly nonstationary (Iyer, et al., 

1994; Jardino, 1996; Mahajan, et al., 1992). For example, in the dictation 

application, a particular set of words in vocabulary may suddenly burst forth 

and then become dormant later, based on the current conversation. Because 
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the topic of conversation may change from time to time, the language model 

should be dramatically different based on the topic of conversation. The 

adaptive model approach is introduced that can improve the quality of the 

language model based on the real usage of the application. 

A. Cache language models 

To adjust word frequencies observed in the current conversation, a 

dynamic cache language model is introduced. The basic idea of this 

technique is to accumulate word n -grams dictated so far in the current 

document and use these data to create a local dynamic n -grams model. 

The static n -grams model is used to adapt the probability as 

( )11,..., −+− iniis wwwP . The interpolation weight, λ , can be made to vary with 

the size of the cache. 

( ) ( ) ( ) ( )WPWPWP cachestaticadaptive λλ −+= 1    (2.112) 

The cache model is desirable in practice because of its impressive 

empirical performance improvement. In a dictation system, new words 

that are not in the static vocabulary have often occurred. The same 

words also tend to be repeated in the same article. The cache model can 

address this problem effectively by adjusting the parameters continually 

as recognition and correction proceed for incrementally improved 

performance (Huang, et al., 2001). 

B. Topic-adaptive models 

The topic can change over the time. Such topic or style information plays 

a critical role in improving the quality of the static language model. For 

example, the prediction of weather the word following the phrase “a 

bright” is “green” or “idea” can be improved substantially by knowing 

weather the topic of discussion is related to “color” or “cleverness”. 

Domain or topic-clustered language models split the language model 

training data according to topic. The training data may be divided using 

the known category information or using the automatic clustering (Ney, 

et al., 1994; Popovici and Baggia, 1997; Ney and Essen, 1991). In 

addition, a given segment of data may be assigned to multiple topics. A 

topic dependent language model is then built from each cluster of the 

training data. Topic language models are combined using linear 

interpolation or maximum entropy as discussed in the next section 

(Kalai, et al., 1999). 
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C. Maximum entropy models 

The language models as discussed above combine different n -grams 

models via linear interpolation. A different way to combine sources is the 

maximum entropy approach. It constructs a single model that attempts 

to capture all the information provided by the various knowledge sources. 

Each such knowledge source is reformulated as a set of constraints that 

the desired distribution should satisfy. These constraints can be, for 

example, marginal distributions of the combined model. Their 

intersection, if not empty, should contain a set of probability functions 

that are consistent with these separate knowledge sources. The 

maximum entropy principle can be stated as follows: 

� Reformulate different information sources as constraints to be 

satisfied by the target estimate 

� Among all probability distributions that satisfy these 

constraints, choose the one that has the highest entropy 

One of the most effective applications of the maximum entropy model is 

to integrate the cache constraints into the language model directly, instead 

of interpolating the cache n -grams with the static n -grams. The new 

constraint is that the marginal distribution of the adapted model is the same 

as the lower-order n -grams in the cache (Rosenfeld, 1994; Wu and 

Khudanpur, 2002; Khudanpur and Wu, 1999; Martin, et al., 1999; 

Rosenfeld, 1996; Zhang, et al., 2000; Martin, et al., 2000; Chen and 

Rosenfeld, 2000; Rosenfeld, 1997; Wang, et al., 2001; Chen, et al., 1998). In 

practice, the maximum entropy method has not offered any significant 

improvement in comparison to the linear interpolation (Huang, et al., 2001). 

 

2.3.2.5 Complexity Measures of Language Models 

The choice of the language model in a large vocabulary recognition system 

heavily influences the difficulty of the recognition task and then the 

recognition performance. In the construction of the word sequence during 

recognition, if the language model can easily predict each next word, giving 

high probabilities for some words and low probabilities for the other words, 

then the recognition task is easy. Sentences from the text data on which the 

language model is based are more easily recognized with only little 

discounting than with more discounting of the probabilities. Conclusively, it 
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becomes very difficult to recognize a sentence that does not resemble enough 

the text data on which the language model is based. 

The most common metric for evaluating a language model is the word 

recognition error rate, which requires the participation of a speech 

recognition system. Alternatively, the probability that the language model 

assigns to the test word strings can be measured without involving speech 

recognition systems. This is the derivative measure of cross-entropy known 

as a test-set perplexity (Huang, et al., 2001). This perplexity is related to the 

entropy H  of the information source that produces the sequence of words of 

which consists the text data.  

Given a language model that assigns probability ( )WP  to a word 

sequence W , a compression algorithm that encodes the text W  using 

( )WP2log−  bits can be derived. The cross-entropy ( )WH  of a model 

( )11,..., −+− inii wwwP  on data W , with a sufficient long word sequence, can be 

simply approximated as 

( ) ( )WP
N

WH
W

2log
1

−=    (2.113) 

where WN  is the word length of the text W . 

The perplexity of a language model ( )WP  is defined as the reciprocal 

of the geometric average probability assigned by the model to each word in 

the test set W . This is a measure, related to cross-entropy, known as test 

set perplexity: 

( )WHPerplexity 2=     (2.114) 

The perplexity can be roughly interpreted as the geometric mean of 

branching factor of the text when presented to the language model (Huang, 

et al., 2001). The perplexity defined in Eq. (2.114) has two key parameters, a 

language model and a word sequence. The test-set perplexity evaluates the 

generalization capability of the language model, whereas the training-set 

perplexity measures how the language model fits the training data, like the 

likelihood. Lower perplexity correlates with better recognition performance. 

This is because the perplexity is a statistically weighted word branching 

measured on the test set. The higher the perplexity, the more branches the 

speech recognizer needs to consider statistically. The SPHINX, for example, 

on the 997-word resource management task, SPHINX attained a word 
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accuracy of 96% with a grammar (perplexity 60), and 82% without grammar 

(perplexity 997) (Lee, et al., 1989). 

A language with higher perplexity means that the number of word 

branching from a previous word is larger on average. In this case, the 

perplexity is an indication of the complexity of the language. The perplexity 

of a particular language model can change dramatically in terms of 

vocabulary size, the number of states of grammar rules, and the estimated 

probabilities (Huang, et al., 2001). A language model with perplexity of X  

has roughly the same difficulty as another language model in which every 

word can be followed by X  different words with equal probabilities. In the 

task of connected digit recognition, for example, the perplexity is 10.  

 

2.4 Summary 

This chapter reviewed fundamental techniques used in speech recognition. 

The important issue in speech recognition is acoustic pattern matching, 

which has a close relation with signal processing and language modeling. 

Selection of signal processing methods depends on the subsequent distortion 

measures or probability density function. Cepstral-based analysis is widely 

used due to its low correlation property. In acoustic pattern matching, 

hidden Markov model is the currently technique of state-of-the art speech 

recognition. Language modeling assists acoustic pattern matching since it 

can be used to impose constraints in acoustic search space. In the large 

vocabulary speech recognition system section, it should be note that hidden 

Markov model and language modeling are usually combined in the same 

computational framework in practical speech recognition system design. 

 



Chapter 3 
 

Phonological and Acoustical Analysis 
 of Thai Language 

 
 

This chapter is intended to provide the essential knowledge of the Thai 

language. Since the syllable is principally considered a fundamental unit for 

acoustic-phonetic analysis, it is important to have a good understanding 

about Thai syllables. The basic Thai phonetic units will be described. Since 

Thai language is known of being a tonal language, the five lexical tones and 

their distinctive linguistic features will be elaborated. Also, major 

constraints, which combine these phonemic units into syllable, will be 

explained. In the acoustical point of view, four acoustic parameters, 

fundamental frequency, formant frequency, intensity, and duration, of Thai 

syllable will be examined. Furthermore, spectral feature of Thai syllable will 

be discussed. At the end of this chapter, the acoustic feature extraction 

techniques will be described. A good understanding on phonological and 

acoustical properties of Thai language paves the way for creating the 

appropriate speech unit for Thai speech recognition in subsequent chapters. 

 

3.1 Phonology of Thai Language 

This section gives details of Thai language in phonological point of view. 

Basic phonetic units, consisting of initial consonant, final consonant, and 

vowel, will be introduced first. Then, details of Thai tone system will be 

described. Finally, Thai syllable structure and the rule, which combine 

phonetic units into syllable, will be explained.  

 

3.1.1 Basic Phonetic Units 

There are 21 consonantal phonemes, 12 consonant clusters, 18 

monophthongs, 6 diphthongs, and 5 tones in Thai language. These 

phonemic units form totally 26,928 grammatically admissible syllables 

(Luksaneeyanawin, 1992; Luksaneeyanawin, 1993). Details of each sound 

unit are described below. 
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A. Initial Consonant 

The Thai language has a total of 33 initial consonants consisting of 21 

consonantal phonemes and 12 consonant clusters. A set of 21 consonantal 

phonemes is categorized by place of articulation and manner of articulation. 

The place of articulation can be labial, alveolar, palatal, velar, and glottal 

respectively. The manner of articulation is classified into two major groups, 

stops and non-stops. The stops are subcategorized into voiceless 

unaspirated stops, voiceless aspirated stops, and voiced stops. The non-

stops are subcategorized into nasals, fricatives, a trill, a lateral, and 

approximants. The details of Thai consonantal phonemes and consonant 

clusters are illustrated in Tables 3.1 and 3.2 respectively. The other set of 

initial consonants comprises consonant clusters composed of two co-

articulated consonants. 

 

B. Final Consonant 

There are eight different final consonants in the Thai language. The three 

stops, [p], [t], and [k], appearing at the final position are acoustically 

different from the initial consonant, that is, they are not audibly released. 

Also, two approximants, [j] and [w], can occur at the final position of a 

syllable. Instead of considering a vowel ending with [j] or [w] as a diphthong, 

they are treated as a vowel and a final consonant separately, though they 

have vowel-like spectral features. Finally, a group of nasals, [m], [n], and 

[ng], can be final consonants. 

 

C. Vowel  

The Thai language has a complex vowel system. It consists of 18 

monophthongs and 6 diphthongs. The monophthongs are qualitatively 9 

different vowels, each of which has two members, short and long. Thai 

monophthongs are categorized according to the tongue position, tongue 

advancement and tongue height. Tongue advancement relating to the second 

formant frequency is subdivided into front, central, and back. Tongue height 

corresponding to the first formant frequency is subdivided into high, middle, 

and low. The relationship between tongue position and vowels is shown in 

Table 3.3. Obviously, Thai vowels completely span tongue advancement and 

tongue height combinations.  
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Table 3.1 Thai consonantal phonemes 

   Place of Articulation 

   

L
ab

ia
l 

A
lv

eo
la

r 

P
al

at
al

 

V
el

ar
 

G
lo

tt
al

 

S
to

p
s Voiceless Unaspirated 

Voiceless Aspirated 
Voiced 

/p/* 
/ph/ 
/b/ 

/t/* 
/th/ 
/d/ 

/c/ 
/ch/ 

/k/* 
/kh/ 

/?/ 

M
an

n
er

 o
f 

A
rt

ic
u
la

ti
o
n

 

N
o
n

-s
to

p
 Nasal 

Fricative 
Trill 

Lateral 
Approximant 

/m/* 
/f/ 

 
 

/w/* 

/n/* 
/s/ 
/r/ 
/l/ 

 
 
 
 

/j/* 

/ng/*  
/h/ 

* These consonants are both releasing consonants and arresting consonants 

 

Table 3.2 Thai consonant clusters 

 C1 

C2 p t k ph th kh 

r /pr/ /tr/ /kr/ /phr/ /thr/ /khr/ 

l /pl/  /kl/ /phl/  /khl/ 

w   /kw/   /khw/ 

 

Table 3.3 Thai vowel phonemes 

  Tongue Advancement 

  Front Central Back 

High /i, i:/ /v, v:/ /u, u:/ 

Medium /e, e:/ /q, q:/ /o, o:/ 

T
o
n

gu
e 

H
ei

gh
t 

Low /x, x:/ /a, a:/ /@, @:/ 

Diphthongs /ia, i:a/ /va, v:a/ /ua, u:a/ 

 

3.1.2 Thai Tones 

Basically, a tone is a feature of pitch movement within a syllable. Syllables 

or words having the same sequence of consonants and vowels but different 

pitch contours are different lexical entries. In addition to Thai, some 
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European, African, and Oriental languages are tonal languages. There are 5 

tones in the Thai language that are divided into 2 groups corresponding to 

the change of pitch pattern, static and dynamic tones. The former have 

either a flat or slightly falling pitch, including the high tone, the mid tone, 

and the low tone while the latter, characterized by a significant pitch 

movement during the syllable, consist of the falling tone and the rising tone. 

Five tonal patterns are depicted in Figure 3.1. Furthermore, Thai syllables 

are governed by the rules of tone assignments as shown in Table 3.4. 
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Figure 3.1 Five Thai tones 

 

Table 3.4 Thai tone assignments 

Thai syllable Syllable structure Possible tone 

1 Open syllable   
1.1 Open long syllable C (V: or V:V) M, L, F, H, R 
1.2 Open short syllable C (V or VV) L, F, H 

2 Sonorant ending syllable   
  2.1 Short syllable ending 
      with sonorant consonant 

C (V or VV) Cf L, F, H, R 

  2.2 Long syllable ending 
      with sonorant consonant C (V: or V:V) Cf M, L, F, H, R 

3 Obstruent ending syllable   
  3.1 Short syllable ending 
      with obstruent consonant C (V or VV) Cf L, F, H 

  3.2 Long syllable ending 
      with obstruent consonant 

C (V: or V:V) Cf L, F, H 

 

3.1.3 Thai Syllable Structure 

Thai syllables are composed of three sound systems, namely consonants, 

vowels, and tones. The smallest construction of sounds or a syllable in Thai 

is composed of one monophthong unit or one diphthong, one, two, or three 

consonants, and a tone (Luksaneeyanawin, 1992; Luksaneeyanawin, 1993). 

The construction can be represented with the structure illustrated in Figure 
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3.2. Combinations of these sound units are restricted by the rules shown in 

Table 3.5.  

S   =   c(c)V(V)(C)
T

 

Figure 3.2 Thai syllable structure 

 

Table 3.5 Combinations of Thai sound units 

Thai Syllable Ci V Cf T S S+T 

1 Open syllable       

1.1 Open long syllable 33 12  5 396 1,980 

Inadmissible co-occurrences       

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4  5 -8 -40 

1.2 Open short syllable 33 12  3 396 1,188 

Inadmissible co-occurrences       

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4  3 -8 -24 

2 Sonorant ending syllable       

2.1 Short syllable ending with sonorant consonant 33 12 5 5 1,980 9,900 

Inadmissible co-occurrences       

Round vowel unit preceding a labialized consonant 33 4 1 5 -132 -660 

Front vowel unit preceding a palatalized consonant 33 4 1 5 -132 -660 

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 4 5 -32 -160 

2.2 Long syllable ending with sonorant consonant 33 12 5 5 1,980 9,900 

Inadmissible co-occurrences       

Round vowel unit preceding a labialized consonant 33 4 1 5 -132 -660 

Front vowel unit preceding a palatalized consonant 33 4 1 5 -132 -660 

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 4 5 -32 -160 

3 Obstruent ending syllable       

3.1 Short syllable ending with obstruent consonant 33 12 3 3 1,188 3,564 

Inadmissible co-occurrences       

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 3 3 -24 -72 

3.2 Long syllable ending with obstruent consonant 33 12 3 3 1,188 3,564 

Inadmissible co-occurrences       

Labial consonant clusters /kw, khw/ and 4 round vowels 2 4 3 3 -24 -72 

Total     6,472 26,928 

 

 The syllable is principally considered a primitive unit for analysis with 

several reasons. First, the language model originates from this unit. A 

syllable is composed of sounds, which depends upon the phonological rules 

of each language. Second, the syllable is an acoustic unit, which is closely 
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connected with human speech perception and articulation. Especially in 

connected speech, three linguistic factors, stress, tone, and intonation, are 

influential in an utterance. The syllable integrates some co-articulation 

phenomena and represents conversational speech compactly. Therefore, 

using the syllable as the primitive unit is appropriate and has benefits for 

prosodic study. Furthermore, a syllable embraces both spectral and 

temporal dependencies due to its size, which makes the syllable a more 

stable acoustic unit. The syllable is seemingly good for modeling as an 

acoustic unit. However, there are too many syllable units in Thai language, 

26,928 units (Luksaneeyanawin, 1993). Thus, the use of syllables as 

acoustic units for speech recognition in the Thai language is not practicable. 

As an alternative, the sub-syllable units have to be taken into account. 

 

3.2 Acoustical Analysis of Thai Language 

3.2.1 Acoustic Features 

The acoustic-phonetic study has produced an extensive understanding of 

properties of sound. A spoken language is decomposed into elements of 

linguistically distinctive sounds called phonemes. The continuous sound 

wave is segmented into discrete regions corresponding to its acoustic 

properties. Properties of sounds referred to acoustic-phonetic features are 

employed to classify these phonemes systematically according to their 

articulatory configurations. Hence, a suitable method of representing the 

time-varying characteristics of speech signal is via a parameterization of the 

spectral properties based on the model of speech production. Four acoustic 

features based on the speech production model, fundamental frequency, 

formant frequency, energy, and duration, are employed for analysis and 

recognition. These acoustic features containing crucial information of speech 

signal are the important cues for distinguishing phoneme units. 

 

A. Formant Frequency 

Since the vocal tract is an air tube acting as a resonator, it has certain 

natural frequencies of vibration. The natural frequencies of the vocal tract 

are excited by a source or sources located either at the glottis or at some 

points along the length of the tract (Stevens, 1999). The natural frequencies 

or resonant frequencies of the vocal tract tube are called formant frequencies 
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and the resonances are simply called formants (Rabiner and Schafer, 1978). 

When a speech signal is modified in the vocal tract, and is transmitted 

toward the lips, the spectrum of the sound emerging from the lips has the 

peak at the natural frequency of the vocal tract (Denes and Pinson, 1963). 

Dependent upon the shape and dimensions of the vocal tract, different 

formant frequencies are formed by varying the shape of the vocal tract. The 

lowest formant frequency is called the first formant. The next highest 

frequency is called the second formant, and so forth. 

The formant frequencies are estimated from the short time spectrum 

by the Fourier transform. A general procedure for formant trajectory 

estimation is based upon linear prediction analysis, with two formant-

tracking techniques, solving the roots of the LP polynomial and spectral peak 

picking (Markel and Gray, Jr., 1980). Solving for the roots assures that the 

accurate formant frequency and bandwidth will be extracted. Required 

highly computational expense in solving the roots, the former method is not 

favorable technique. The spectral peak picking seems to be a practical 

procedure for formant estimation due to its low computation. Nevertheless, 

the major disadvantage of the latter method is that closed formant related to 

closed complex pole pairs may not be extracted from the spectrum. 

With a compact representation of the time-varying of speech signal, 

the formant frequencies have been employed as an acoustic feature for 

phoneme classification. The first, the second, and the third formant 

frequency are adequately exploited to identify vowel phonemes. According to 

vocal tract shape, the formant frequencies are dependent on three factors: 

the position of the point of maximum constriction in the vocal tract 

controlled by the backward and forward movement of tongue, the size or 

cross-sectional area of the maximum constriction controlled by the 

movements of tongue towards and away from the roof of the mouth and the 

back of the throat, and the position of lips (Ladefoged, 1962). The first 

formant associated with tongue height in the second factor is used for 

classifying vowels into the high, the middle, and the low group. The second 

formant correlated to tongue advancement in the first factor is utilized to 

categorize vowels into the front, the central, and the back group. Finally, the 

third formant, which is dependent on the shape of lips, is employed to define 

roundness of vowels. 
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B. Fundamental Frequency 

The basic property of a vocal cord sound source is its periodicity expressed 

by the duration of a complete voice period or by the inverse value of the voice 

fundamental frequency (Fant, 1970). Related to the number of times the 

vocal folds open and close per second, the frequency of vocal fold vibration 

directly determines the lowest frequency of the sound, which is produced 

(Borden and Harris, 1980). The duration of pitch cycle can always varies 

from one period to the other. This changing of pitch period perceived as pitch 

pattern or intonation contour of phrase or sentence is particularly effective 

in expressing differences in attitude and differences in meaning. The 

intonation can be imposed on a sentence, a phrase, or a word. English 

sentences are often characterized by a rising-falling intonation curve (Borden 

and Harris, 1980). The pitch rises at the first part and falls at the end of a 

declarative sentence or a question sentence impossible to answer yes or no. 

Another pattern in English is the end-of-utterance pitch rise appearing in a 

question sentence to be answered yes or no. Fundamental frequency is an 

important acoustic feature especially in tonal languages. Different 

fundamental frequency contours indicate different lexical meanings of the 

syllable. Another important exploiting of fundamental frequency is 

voiced/unvoiced classification. According to a speech production model, a 

periodic glottal excitation waveform is originated from the periodic opening 

and closure of the vocal cords in the glottis. Air is forced through the glottis 

from the lung resulting in a train of alternating high and low pressure pulses 

in vocal tracts (Vuuren, 1998). Only voiced sounds have periodic opening 

and closure. On the other hand, the air passes through the glottis 

unrestricted in unvoiced sounds. Various fundamental frequency extraction 

techniques are generally grouped into three major categories according to 

their principal features (Furui, 2001). Firstly, the waveform processing 

consists of methods for detecting the periodicity peaks in the waveform. 

Secondly, the correlation processing is composed of methods widely used in 

digital signal processing of speech. Lastly, spectrum processing comprises 

the methods for tracking pitch in spectral domain. The modified correlation 

method and simplified inverse filter tracking (SIFT) algorithm in correlation 

processing category and the cepstral method in spectrum processing 

category are the most efficient techniques since they explicitly remove the 

vocal tract effects (Furui, 2001). 



 62

 

C. Energy 

Energy together with other cues, formant and duration, is used to classify 

both Thai consonants and vowels (Trongdee, 1987; Tarnsakun, 1988; 

Maneenoi, 1998). In addition, energy, one of the prominent acoustic 

parameters, is used to detect syllable boundary in Thai connected speech 

especially in sequence of two consonantal segments and in sequence of two 

vocalic segments (Sriraksa, 1995; Jittiwarangkul, 1998). Acoustic 

characteristics of each non-stop consonant are acoustically different both in 

place of articulation and in manner of articulation. From the acoustic study, 

the nasals have low second formant energy whereas trill and lateral have 

high first and second formant energy (Trongdee, 1987). In classification of 

stops, energy was also employed to distinguish each stop both in place of 

articulation and in manner of articulation. The classification results show 

that energy of aspirated stops is higher than unaspirated stops as well as 

voiced stops and voiceless stops (Tharnsakun, 1988). 

 

D. Duration 

One of the important acoustic cues used in classification of Thai phonemes 

is duration. This acoustic feature was employed to classify both consonants 

and vowels (Trongdee, 1987; Tarnsakun, 1988; Thubthong, 1995; Maneenoi, 

1998). Each non-stop consonant in the same manner of articulation has 

different durations depended on its structural context (Trongdee, 1987). For 

stop consonants, the voiceless stops have longer durations than voiced 

stops. Between voiceless stops, voiceless aspirated stops have longer 

durations than voiceless unaspirated stops (Tarnsakun, 1988). Two of 

duration features, noise duration and burst duration, accompanied by other 

acoustic features were used in categorization of Thai initial consonants 

(Thubthong, 1995). Since short and long vowels are quantitatively different 

and Thai vowels appear in both short and long pairs, duration is a 

predominant acoustic cue used for classification them. Hence, classification 

of Thai vowels entails duration to distinguish short and long vowels 

(Thubthong, 1995; Maneenoi, 1998). Additionally, the duration rather than 

the intensity of the vowel segments can determine which syllable is stress 

(Denes and Pinson, 1963). 
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These four acoustic features are the important cues for both speech 

analysis and speech recognition. Many researches on Thai language have 

used these acoustical features in their works. Abramson (1960) employed 

acoustical measurements on the study of the vowels and tones of standard 

Thai. Trongdee (1987) and Tharnsakun (1988) worked on the analyses of 

non-stop consonants and stop consonants in Thai respectively. The two 

works have studied the acoustical characteristics of Thai consonants 

occurring in monosyllabic words. These studies utilized formant frequency, 

duration, and intensity of 10 non-stops and 11 stops in Thai with 3 different 

vowel contexts. Leelasiriwong (1991) studied acoustic characteristics of Thai 

vowels, /i:, a:, u:/. The first three-formant frequencies and the fundamental 

frequency of these vowels were statistically modeled used in speaker 

identification. Thubthong (1995) used the pre-consonantal second formant 

transition and the other acoustic features for consonantal phoneme 

classification. Six Thai vowels were classified using two formants and 

duration as well. Maneenoi (1998) applied the artificial neural network 

together with the first three-formant frequencies and their energy as an 

acoustic feature for vowel phoneme recognition. Instead of using linear 

frequency scale, the non-linear frequency scales, Bark and Mel scale, were 

applied to the classification of the nine Thai spreading vowels (Ahkuputra, et 

al., 2003). 

 

3.2.2 Acoustic Feature Extraction for Speech Analysis 

A. Formant Frequency Tracking 

On the formant frequency estimation, a spectrum envelope of a speech 

signal is tracked to find a spectral peak as shown in Figure 3.3. The lowest 

spectral peak is picked and marked as the first formant or 1F . The following 

spectral peaks are marked as the second 2F , the third 3F , and the forth 4F , 

respectively. 

 In order to obtain a spectrum envelope of the power spectrum, the 

linear predictive coding (LPC) coefficients are analyzed on the speech 

segment using the Levinson-Durbin recursive algorithm (Rabiner and Juang, 

1993; Deller, et al., 1993; Furui, 2001). The LPC coefficients, paaa ,...,, 10 , is 

the coefficients of the all-pole filter with the form in Eq. (3.1) , where p  is 

the order of the LPC coefficients. 
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The spectrum envelope could be obtained by taking the discrete Fourier 

transform to evaluate ( )ωjeH . 

 

Figure 3.3 Formant frequency 

 

 Another method to obtain the formant frequency is the root-solving 

technique. The complex poles, derived from a set of p-order linear prediction 

coefficients ka , are computed by solving roots of a polynomial in Eq. (3.1) 

(Furui, 2001). Due to a stable all-pole filter model of a linear prediction, the 

poles solved from roots of the transfer function are located inside a unit 

circle. Let ( ) ( )zjzz ImRe +=  be a root of a linear prediction polynomial, the 

formant frequency value, which related to an angle of the complex pole, can 

be computed as shown in Eq. (3.2). Since the poles occur in complex 

conjugate pairs then only the upper half of a unit circle is considered to 

compute their corresponding formant frequencies.  In addition, the 

bandwidth information is estimated from a magnitude of the complex pole as 

shown in Eq. (3.3), where n  is a formant number and sf  is the sampling 

frequency in Hz. The bandwidth information is additionally considered in 

order to exclude the undesired frequencies. This root-solving method gives 
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out much more precise and accurate formant frequency value than the peak 

picking technique, which depends on resolution of the DFT. 
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B. Fundamental Frequency 

For the automatic pitch extraction, properties of cepstrum have been utilized 

to reveal the signal periodicity. The cepstrum is the Fourier transform of the 

logarithm of the amplitude spectrum of a signal. The resulting independent 

variable, which is reciprocal frequency, or time, is called “quefrency” 

(Flanagan, 1972). 

 The cepstrum is defined as the inverse Fourier transform of a short-

time logarithmic amplitude spectrum. The cepstrum analysis is illustrated in 

Figure 3.4. The quefrency, the independent parameter for the cepstrum, is 

the time domain parameter resulting from the inverse transform of the 

frequency domain function (Furui, 2001). Let ( )tx  is the voiced speech, 

which is the response of the vocal tract articulation equivalent filter driven 

by a pseudo-periodic source ( )tg . Then, ( )tx  could be given by the 

convolution of ( )tg  and the vocal tract impulse response ( )th  as follows 

( ) ( ) ( ) τττ dthgtx
t

−= ∫0     (3.4) 

        ( ) ( ) ( )ωωω HGX =      (3.5) 

where ( )ωX , ( )ωG , and ( )ωH  are the Fourier transform of ( )tx , ( )tg , and 

( )th , respectively. By taking the logarithm function and the inverse Fourier 

transform, the cepstrum ( )τc  is obtained as follows 

( ) ( ) ( )ωωω HGX logloglog +=  (3.6) 

( ) ( )( )ωτ XFc log1−=      (3.7) 

      ( )( ) ( )( )ωω HFGF loglog 11 −− +=    (3.8) 

 From the right side of Eq. (3.6), the first term represents the spectral 

fine structure or the periodic pattern and the second term represents the 

spectrum envelope or the global pattern along the frequency axis. The 



 66

fundamental period of the source ( )tg  could be extracted from the peak at 

the high quefrency region, that is, the first term indicates the formation of 

the peak in the high frequency region (Furui, 2001).  

 

Figure 3.4 Cepstrim analysis 

 

 In Figure 3.5, a voiced and unvoiced speech segment are analyzed 

using spectrum and cepstrum analysis. In voiced speech, the sharp peak 

occurs in the cepstra plot, which corresponds to the period of pitch. Unlike 

voiced speech, unvoiced speech has no peak, which results in no 

fundamental frequency. The example of short-time spectra and cepstra is 

shown in Figure 3.6. During the voiced speech, a sharp peak occurs in the 

quefrency domain of the corresponding spectra in the period. The sharp 

peak disappears in the unvoiced speech portion. The fundamental frequency 

is directly computed from the location of the peak, which is the reciprocal of 

the period. The pitch period tracking is shown in Figures 3.5-3.6.  

 

 

Figure 3.5 Spectrum and cepstrum analysis of voiced 

 and unvoiced speeh sounds (Flanagan, 1972) 
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Figure 3.6 Short-time spectra and cepstra for male voice (Furui, 2001) 

 

C. Energy 

Amplitude of a speech wave is a peak of a speech waveform. In other words, 

an amplitude is a maximum displacement of a vibration of a mass, which is 

displaced from its rest position and moving back and forth between two 

position that mark the extreme limits of its motion (Denes and Pinson, 

1963). In speech recognition, an absolute acoustic energy contour could be 

directly computed from a speech wave using the following relation as shown 

in Eq. (3.9). In Eq. (3.9), ( )mE  is an absolute energy value of the thm  frame, 

( )ns  is an amplitude of the thn  sample, and N  is the total samples, 

( ) ( )∑
=

=
N

n

nsmE
1

     (3.9) 
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3.2.3 Acoustical Properties of Thai Phonemic Units 

A. Vowel 

Formant structure is an important indicator to describe vowel sounds in 

acoustic analysis. It refers to specific resonant frequencies of the vocal tract, 

which have the greatest energy concentration. Each of the Thai vowels is 

acoustically analyzed to explore the acoustic characteristics. Spectrums and 

spectrograms of each vowel are illustrated in Figure 3.7. In Figure 3.7, each 

Thai vowel shows its unique acoustic characteristics in terms of formants. 

According to the tongue position, the vowel advancement is represented by 

the second formant frequency, 2F , whereas the vowel height is represented 

by the first formant frequency, 1F . The front vowels have the highest 2F  

followed by the central and the back vowels, respectively. The low vowels 

have the highest 1F  followed by the mid and the high vowels, respectively. 

The vowel triangle, /ii/, /aa/, and /uu/, show distinct characteristics 

between each other. The vowel triangle is the common set of the vowels 

existed in every language in the world. 

From the acoustic characteristics described above, the Thai vowel 

distribution in 2F  and 1F  plane is shown in Figure 3.8. Three classification 

schemes namely, classification by vowel height, classification by vowel 

advancement, and classification by combined vowel height and 

advancement, were proposed to classify nine Thai monophthongs using 

Bayesian classifier (Ahkuputra, et al., 2003). The results show that the use 

of acoustic features, 1F  and 2F , gives the high accuracy in vowel 

identification. In addition to the first-two formants, the third formant, 3F , 

represents the degree of roundness in lip opening. The three dimensional 

distribution of Thai monophthongs in 1F , 2F and 3F  plane, is depicted in 

Figure 3.9. Obviously, Thai vowels completely span tongue advancement and 

tongue height combinations. From the acoustic analysis, it is generally 

agreed that the first three formant frequencies are the most informative for 

vowel perception and discrimination (Maneenoi, 1998; Ahkuputra, 2002; 

Ahkuputra, et al., 2003).  

In addition to acoustic characteristics of the Thai vowels, the duration 

is one of the acoustic cues used to identify the short and long vowels. The 

durations of the short and long vowels are shown in Figure 3.10. 
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(a) Spectrogram of high vowels /ii/, /vv/, /uu/ 

 

(b) Spectrogram of middle vowels /ee/, /qq/, /oo/ 

 

(c) Spectrogram of low vowels /xx/, /aa/, /@@/ 
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/ii/ /vv/ /uu/ 

   

/ee/ /qq/ /oo/ 

   

/xx/ /aa/ /@@/ 

(d) Short-time spectrum of vowels 

Figure 3.7 Spectrogram and spectrum of nine Thai vowels 

 

Figure 3.8 Distribution of Thai vowels on F2 and F1 plane 
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(a) High vowels /ii/, /vv/, /uu/ 

 

(b) Middle vowels /ee/, /qq/, /oo/ 

 

(c) Low vowels /ee/, /qq/, /oo/ 

Figure 3.9 Projection of vowel distribution 

 on F1-F2, F1-F3, and F2-F3 plane 
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Figure 3.10 Spectrum and duration characteristics of the 

 short-long vowel pairs /i/-/ii/, /a/-/aa/, and /u/-/uu/ 

 

B. Consonant 

Acoustically, marginal sounds or consonants can be attached along both 

sides of the syllable nucleus or the vowel. Considering the Thai syllable 

structure, the left marginal sound is an initial or a releasing consonant and 

the right marginal sound is a final or an arresting consonant. Examples of 

releasing consonants are shown in Figure 3.11.  

In Figure 3.11, spectrographic information of the syllables 

/?aa0paa0/, /?aa0taa0/, /?aa0kaa0/, and /?aa0caa0/ are illustrated. 

These releasing consonants are in the same manners of articulation but 

different places of articulation. The transitional periods between the 

releasing consonant and its following vowel are clearly different, according to 

its locus of each consonant. Thus the transitional period contains the crucial 

acoustic cues for identification of the releasing consonants. 

In Figure 3.12, spectrographic information of the syllables 

/?aa0paa0/, /?aa0phaa0/, and /?aa0baa0/ are shown. These releasing 

consonants are in the same places of articulation but different manners of 

articulation. The transitional periods between the releasing consonant and 

its following vowel are evidently comparable. The phonemes /p/ and /ph/ 

are unaspirated and aspirated voiceless stops while the phoneme /b/ is 

voiced stop.  
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(a) /?aa0paa0/ 

 

(b) /?aa0taa0/ 

 

(c) /?aa0kaa0/ 

 

(d) /?aa0caa0/ 

Figure 3.11 Spectrographic information of releasing consonants in the 

 same manners of articulation but in thedifferent places of articulation 
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(a) /?aa0paa0/ 

 

(b) /?aa0phaa0/ 

 

(c) /?aa0baa0/ 

Figure 3.12 Spectrographic information of the same releasing 

consonants in the different manners of articulation 
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In Figure 3.13, spectrographic information of the syllables /?ii0dii0/, 

/?aa0daa0/, and /?uu0duu0/ are depicted. These syllables have the same 

releasing consonants but different vowel context. The transitional periods 

between the releasing consonant and its following vowel are obviously 

different, since the formant is moving towards the different vowel from the 

same locus of the releasing consonant. 

 

(a) /?ii0dii0/ 

 

(b) /?aa0daa0/ 

 

(c) /?uu0duu0/ 

Figure 3.13 Spectrographic information of the same releasing consonants 

 in the different vowel context 
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Apart from the releasing consonant, the three stops, [p], [t], and [k], 

appearing at the final position are acoustically different from the releasing 

consonant, that is, they are not audibly released. The spectrograms of these 

arresting consonants are illustrated in Figure 3.14. In consequence, the 

transitional period between the marginal sounds and the nucleus provides 

crucial acoustic information to identify consonants. 

 

  

(a) /?aap1/ (b) /?aat1/ 

  

(c) /?aak1/ (d) /?aa0/ 

 

Figure 3.14 Spectrographic information of the arresting consonants 

 

3.3 Summary 

In this chapter, the Thai spoken language is described in terms of acoustic-

phonetic. Acoustic-phonetic analysis is conducted on the Thai utterances to 

provide understanding of the Thai spoken language. Several acoustic 

features and feature extraction techniques are described to study the 

acoustic features of the Thai utterances. The analysis provides basic 

acoustic knowledge and solid background of the Thai spoken language. Deep 

understanding of the characteristics of Thai spoken language leads to the 

appropriate acoustic modeling of the speech unit, which is described in 

details in the following chapter. 

 



Chapter 4 
 

The Onset-Rhyme Acoustic Models 

 
 

This chapter discusses properties of several speech units used in speech 

recognition. The strength and weakness of speech units according to the 

criteria of a good speech unit will be pointed out. From the previous chapter, 

the acoustic-phonetic analysis on the Thai language was conducted. The 

characteristics of vowels and consonants were thoroughly explored. Not only 

does the acoustic-phonetic analysis contribute strong knowledge, but it also 

provides acoustic cues for modeling the appropriate speech unit for the Thai 

language. The onset-rhyme units are proposed for use as a speech unit in 

speech recognition of the Thai language. Details of the onset-rhyme will be 

explained in this chapter. Finally, construction of the Thai continuous 

speech recognition system will be described. 

 

4.1 General Speech Units 

Several different approaches have been proposed for recognition of Western 

alphabetic languages with very large vocabularies. Based on these 

approaches, many successful prototype systems gave satisfactory 

performance (Lee, et al., 1990; Lee, et al., 1993; Lee, et al., 1997; Zue, et al., 

1989; Rabiner, et al., 1989). One of the important issues in developing a 

successful speech recognition system is the selection of the appropriate 

speech unit. Selection of a set of speech units, usually including phonemes, 

phone-like-units (PLUs), syllables, subword units, or even smaller or larger 

units, is dependent on the target language. Apart from the issue of language 

dependence, the choice of speech units is usually dependent on the size of 

vocabulary to be recognized and the availability of sufficient training data for 

constructing effective models. Furthermore, the performance of a speech 

recognition system depends on the number of speech units. Three criteria, 

accuracy, trainability, and generalization must be considered in choosing the 

appropriate speech unit (Huang, et al., 2001). First, the speech unit should 

accurately represent the acoustic realization that appears in different 
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contexts. Second, the unit should be trainable for estimating the parameters 

of the unit with sufficient data. Finally, the unit should be generalized, so 

that any new word can be derived from a predefined unit inventory for task-

independent speech recognition. A practical challenge is how to select a 

speech unit that meets these criteria. In this section, various speech units 

are compared, and their strengths and weaknesses in practical applications 

are pointed out. 

 

4.1.1 Context-Independent Phone Units 

In order to share phones across words, the subword unit has to be used. The 

smallest subword, phoneme or monophone, is a single model representing a 

phone in all contexts. Since there are merely 57 phonemes in Thai, they can 

be adequately trained with a few hundred sentences. However, the 

assumption of phoneme models that a phone in any context is identical to 

the same phone in any other context is entirely not true. Although each word 

is intentionally uttered as a concatenation sequence of phoneme, these 

phonemes are not independently produced because the articulator cannot 

abruptly move from one position to another. Consequently, the realization of 

a phoneme is greatly affected by its adjacent phones. The coarticulatory 

effects on phoneme /d/ in three different contexts are illustrated in Figure 

3.13. 

 

4.1.2 Context-Dependent Phone Units 

Of the context-dependent phones, the diphone and triphone capture each 

phone in a particular context. Triphone modeling is much more powerful 

and consistent than diphone modeling because it can model the most 

important coarticulatory effect from its neighboring phones. However, too 

many different triphones need to be modeled for different context 

dependency on both sides. 

Although, the triphone seems to be a good speech unit for acoustic 

modeling, there are many disadvantages in applying this context-dependent 

phone unit. Since the triphone is a phone-derivative unit, it inherits some 

limitations of phone-based approaches, namely the lack of an easy and 

efficient way for modeling long-term temporal dependencies (Ganapathiraju, 

et. at., 2001). Triphone unit spans an extremely short time interval. 

Consequently, integration of spectral and temporal dependences is not easy. 
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Moreover, since each triphone is modeled with a different context 

dependency, a large number of triphone patterns will be generated, leading 

to a great memory requirement and numerous models with poorly estimated 

parameters. Since the Thai language has a simple syllable structure, 

decomposing Thai syllables into triphone units produces an excessive 

number of speech units, which is an inefficient approach. 

 

4.1.3 Words 

Words are the most natural units of speech because they are exactly the 

units to be recognized. By modeling words as fundamental units, the 

phonological variations can be assimilated because they are able to capture 

contextual effects within words. Therefore, word models will usually achieve 

the best performance if there are sufficient training data. Speech recognition 

research in Thailand has been conducted with the word-based approach for 

a decade. Several vocabulary sets, isolated Thai numerals, isolated Thai 

words, and polysyllabic Thai words were recognized with various techniques 

(Ahkuputra, et al., 1997; Pornsukchandra, et al., 1997; Wutiwiwatchai, et 

al., 1998, Jitapunkul, et al., 1998; Ahkuputra, et al., 1998). Although a 

system using a word-based model achieves a high recognition accuracy, the 

vocabulary size is very limited (Ahkuputra, et al., 1997; Pornsukchandra, et 

al., 1997; Wutiwiwatchai, et al., 1998, Jitapunkul, et al., 1998; Ahkuputra, 

et al., 1998). In addition, many ambiguities occurred among the similar 

sounds, which resulted in incorrect classification. 

Using word models in large vocabulary continuous speech recognition 

causes several severe problems. First, since training data cannot be shared 

between words, each word has to be trained independently. Many examples 

of words are required for adequate training data. Therefore, it is nearly 

impossible to get several repetitions of all the words, which is a major 

problem in large vocabulary applications. Second, the memory usage 

increases linearly with the number of words because of no sharing between 

words. Finally, it would be extremely inconvenient to the user when new 

words need to be added to the vocabulary, and new words can be easily 

generated every day. Hence, using word models for large vocabulary 

continuous speech recognition is not practical. 
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4.1.4 Syllables 

Among the other non-phone-based units, syllables are also used as 

fundamental acoustic units for continuous speech recognition. 

Ganapathiraja (Ganapathiraja, et al., 2001) proposed the syllable models, 

which have many advantages over the phone-based units. First, since a 

syllable is perceptually defined, acoustical characteristics of a syllable relate 

to articulation and human perception. Second, a syllable acoustic unit 

provides compact representation of an utterance. Third, coarticulation 

effects are integrated within a syllable unit thus, making the unit 

acoustically stable. Moreover, the longer duration of a syllable 

simultaneously combines both temporal and spectral variations. These 

variations are then utilized during recognition. For these reasons, the 

syllables satisfy the consistency criterion. However, large numbers of 

syllables are required to cover the whole speech corpus or even the whole 

language. For the Thai language, the number of syllables that could be 

grammatically generated from combinations of consonants, vowels, and 

tones, is 26,928 units (Luksaneeyanawin, 1993). Therefore, the syllable 

units do not satisfy both trainability and generalization criteria. 

 

4.1.5 Initials and Finals 

According to the Mandarin Chinese syllable structure, every syllable is a 

morpheme, which has its own meaning, and each syllable is an open syllabic 

structure ending with a vowel or nasal /n/ or /ng/ (Lee, et al., 1993; Lee, et 

al., 1997; Chen and Liao, 1998; Chen, et al., 1998). Therefore, an Initial 

followed by a Final is used as the basic acoustic unit in Mandarin speech 

recognition. The Initial comprises the initial consonant of the syllable while 

the Final consists of the vowel or diphthong part, including the possible 

medial or nasal ending (Lee, et al., 1993). A set of 22 Initials and 38 Finals 

forms the number of 408 phonologically allowed different base syllables of 

Mandarin Chinese (disregarding tones). In addition, Cantonese is one of the 

most popular Chinese spoken languages. Similar to Mandarin, it is a bi-

syllabic language with multiple tones. Cantonese consists of 20 Initials 

(including the null initial) and 53 Finals, which form the whole set of 595 

syllables (disregarding tones) (Fu, et al., 1996). Because the Initial parts are 

usually very short compared to Final parts in base syllables and any 

important difference among the Initial parts of different syllables can be 
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easily influenced by irrelevant differences among the Final parts of the 

syllables during the recognition process, these produce a confusing set of 

Initials (Lee, et al., 1993, Wang, et al., 1997). Therefore, a set of context-

dependent Initial models expanded from context-independent Initial models 

had been proposed to overcome those problems. The error rate was 

dramatically reduced by using context-dependent Initial models (Wang, et 

al., 1997). Although the context-dependent Initial is modeled along with its 

vowel context, the formant transition portion is not included in the model. 

Missing this important acoustic cue makes the acoustic unit imprecisely 

modeled. 

 

4.1.6 Whole Word and Sub-word Modeling 

Hidden Markov models can be used to model speech at several linguistic 

levels, ranging from phone, syllable, word etc. Definition of a good speech 

unit was previously elaborated in section 1.3. The previous section has 

discussed strength and weakness of the whole-word and the sub-word 

models corresponding to definition of a good speech unit. 

 Accurate acoustic models will improve discrimination and overall 

recognition performance. Trainability will guarantee generalization and 

better use of model parameters. The accuracy and trainability properties of 

speech units are illustrated in Figure 4.1. 

 

Figure 4.1 Trade-off between accuracy and trainability 

 

 Various speech units were reviewed and given details of their 

advantages and drawbacks for speech recognition. These speech units seem 

to be unsuitable for the Thai language. An alternate speech unit has to be 

taken into account. In this paper, the concepts of onset and rhyme are 

proposed and applied to a Thai speech recognition system. Details of the 

onset-rhyme model will be described in the next section. 
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4.2 The Onset-Rhyme Acoustic Models 

4.2.1 Acoustical Properties 

An onset consists of a releasing consonant and its transition towards the 

following vowel. Including a transitional portion between consonant and 

vowel, this onset model provides consonant-vowel (CV) and consonant 

cluster-vowel (CCV) combinations of Thai syllables. The onset model also 

provides crucial acoustic cues for classification of each releasing consonant, 

particularly for stop consonants. Additionally, the onset can deal with the 

intra-word coarticulatory effects better than the phone model. Along with the 

onset, a subsyllable rhyme is composed of a steady vowel portion and an 

arresting consonant. This model contains a whole vowel portion plus the 

arresting consonant if any. Including a vowel and a final consonant, the 

rhyme model provides monophthong-consonant (VC) and diphthong-

consonant (VVC) combinations of Thai syllables (Maneenoi, et al., 2002; 

Jitapunkul, et al., 2003; Maneenoi, et al., 2004). The onset-rhyme segment 

together with other speech units is shown in Figure 4.2. Obviously, the onset 

covers the transition towards the vowel, which makes the onset precisely 

modeled. 

From acoustical point of view, a pair of onset and rhyme contains an 

internal syllable juncture within a syllable whereas an external juncture 

appears between syllables. The internal juncture, which strongly binds the 

onset and rhyme together, can efficiently handle co-articulation within a 

syllable. On the other hand, the external juncture provides the crucial 

acoustic cues between the rhyme and the following onset of the adjacent 

syllable. 

Since the realization of a context-independent phone unit is strongly 

affected by its neighboring phones, contextual information is needed to 

model speech units. The recognition accuracy of the speech recognition 

system using context-dependent speech units is significantly improved. 

Hence, context-dependent speech units have been widely used for several 

large-vocabulary speech recognition systems (Lee, et al., 1989; Zue, et al., 

1989; Rabiner, et al., 1989; Lee, et, al, 1990; Jelinek, et al., 2001; Chow, et 

al., 1987). The onset-rhyme is context-dependent modeling. It contains both 

a releasing consonant and a vowel in the onset and a vowel plus arresting 

consonant in rhyme. The context-dependent units are able to model the 
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transitional portion between the releasing consonant and vowel in onset 

part. In addition, transitional stage between vowel and arresting consonant 

in rhyme part is modeled. Therefore, the onset-rhyme incorporates both left-

context dependent and right-context dependent modeling. 

The onset-rhyme should be suitable for representing Thai sound units 

for several reasons. According to the acoustic properties of Thai syllable, in 

the syllable structure, the final consonant is strongly influenced by the vowel 

duration. The duration of a final consonant following a short vowel or a weak 

vowel is longer than that of a final consonant following a long vowel or a 

strong vowel as shown in Figure 4.3. This relationship occurs only between 

the vowel and the final consonant. In contrast, the initial consonant is not 

affected by the duration of the vowel. Hence, the vowel and the final 

consonant are tightly tied while an initial consonant is loosely tied with the 

vowel in the syllable. Consequently, the decomposition of the syllable into an 

onset and rhyme is appropriate to the Thai language. The whole set of Thai 

syllables can be recognized by identifying onsets and rhymes. 

 

Figure 4.2 Various speech segments 
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Moreover, unlike other context-dependent phone units, the onset-

rhyme is larger than the diphone and triphone. The onset-rhyme is modeled 

with a consonant, including its transitional stage in onset and the entire 

vowel along with the final consonant in the rhyme, while the same phone 

units in diphones or triphones are differently modeled according to their 

contexts. The use of an acoustic unit with a longer duration facilitates 

simultaneous exploitation of temporal and spectral variation (Gish and Ng, 

1996). Consequently, these onset-rhyme units contain the most variable 

contextual effects at the beginning portion of the syllable in the onset and at 

the ending portion of the syllable in the rhyme. 

 

Figure 4.3 Relationship between vowel and final consonant duration 

 

Acoustically, the rhyme contains crucial prosodic information within 

the segment. The prosodic features that the rhyme carries are tone, stress, 

accent, intonation, etc. (Luksaneeyanawin, 1992; Luksaneeyanawin, 1993; 

Thubthong, et al., 2002). The importance of these prosodies varies according 

to the language. For instance, the rhyme unit in Thai contains tone and 

stress information while only the stress and accent are provided in English. 

Tones in Thai are also influenced by the arresting consonant within the 

rhyme unit (Thubthong, et al., 2002). Although patterns of the same tone in 
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both obstruent and sonorant endings are different (Luksaneeyanawin, 1992; 

Luksaneeyanawin, 1993; Thubthong, et al., 2002), their variations are 

captured within the whole rhyme unit. These are major advantages of the 

onset-rhyme models over the phone-based models. In the phone-based 

models, not only the contextual information but also the prosodic 

information is lost when breaking up the nucleus and coda in the rhyme 

unit. 

Not only does the rhyme contain contextual information, but it also 

contains prosodic information, including the tone, accent, stress, and 

intonation. In the Thai language, tones are governed by a vowel and an 

arresting consonant as shown in Table 3.4. These properties of the rhyme 

are important in modeling the proper speech units for the tonal languages. 

The onset-rhyme models have preserved crucial prosodic information within 

the models. Thubthong (Thubthong, et al., 2002) illustrated the use of tone 

information within the rhyme unit for tone recognition. The rhyme units 

provide better results than using the whole syllable or only the vowel 

segment. Therefore, using only tone information within a vowel segment is 

not sufficient. Chen (Chen, et al., 2001) used only tone information within a 

main vowel for tone recognition, which is not adequate for tone recognition 

since arresting consonants also have large effects on tone patterns. Both the 

vowel and arresting consonant, making up a rhyme unit, store some 

prosodic information that is crucial for tone recognition (Thubthong, et al., 

2002). 

 

4.2.2 Phonological Properties 

From a phonological point of view, a syllable is composed of a pair of an 

onset and a rhyme unit, where the rhyme comprises a nucleus and coda as 

shown in Figure 4.4. An onset consists of an initial consonant and its 

transition towards the following vowel. Along with the onset, the rhyme is 

composed of a vowel, a final consonant, and a tone. The onset-rhyme not 

only includes its context information, but also embeds the language 

modeling at the syllable level. Recognition accuracy can be greatly improved 

by taking advantage of possible a priori information on the sequences to be 

recognized. An automatic speech recognition system can successfully use 

language information if such knowledge is embedded in a language model. 

Composing the onset and rhyme forms a syllable according to the syllable 
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structure. The rhyme must have the same vowel as the preceding onset. This 

indicates that language modeling is embedded in the unit of onset and 

rhyme. 

 

Figure 4.4 Syllable segment 

 

In Figure 4.5, all of the phones, diphones, triphones, and onset-rhyme 

units are illustrated with regard to their physical and logical representation 

of speech. A speech signal is assumed to be composed of phone sequences 

as shown in Figure 4.5 with their physical speech segment and location in 

the phrase /khaw4 svv3 phaan0 naj0/. Each phone occurs independently 

without using any contextual information. Thus, context-dependent phones, 

the diphones and the triphones, are physically similar to the phones but 

logically differ depending on specific context. For instance, the phone /a/ in 

/khaw/ and /naj/ are in different context, which are then separately 

modeled as /kh-a+w/ and /n-a+j/, respectively, as shown in Figure 4.5. 

However, the context-dependent phones still use the same speech segment 

as the phones without taking into account on any articulatory effects 

between each phone. Consequently, the context-dependent phones do not 

effectively handle any coarticulation between speech segments, which 

contain crucial acoustic information. Unlike other units, the onset and 

rhyme units efficiently model coarticulatory effects both within syllables and 

across syllables. The internal syllable junctures reside within a syllable, 

tying a pair of onset and rhyme units together and treating coarticulation 

between releasing consonant and vowel. Within the rhyme unit, the vowel 

and arresting consonant are tightly tied together to preserve their 

coarticulation. Also, there are external syllable junctures that consider 

coarticulation between syllables, which provide acoustic cues between the 

rhyme and the neighboring onset in the following syllable. These external 

syllable junctures are syllable boundaries, which are explicitly located and 
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combined into the models. Examples of both junctures are depicted in 

Figure 4.5. 

 

Figure 4.5 Representation of various speech units – phones,  

initial-final, and onset-rhyme 

 

4.2.3 Types of Onset-Rhyme Models 

By considering the duration of the releasing consonant plus its transition 

preceding different vowel contexts, the onset-rhyme models are defined into 

two types (Ahkuputra, 2002; Jitapunkul, et al., 2003; Maneenoi, et al., 

2004): (1) Phonotactic Onset-Rhyme Model (PORM) and (2) Contextual 

Onset-Rhyme Model (CORM). These two models are generated from different 

combinations between the releasing consonant and vowel. According to the 

duration of the releasing consonant and its transition, the phonotactic onset 

is created differently for each releasing consonant and each vowel context, 

even for vowels in the same short-long pair. On the other hand, the 

contextual onset is modeled similarly for a given releasing consonant an 

either member of same short-long vowel pair. The number of phonotactic 

onset and contextual onset units are 792 and 297, respectively, while both 

models have the same 200 rhyme units as described in Tables 4.1 and 4.2. 

Based on the onset-rhyme models, a speech recognition system forms 

syllables using the network of onset and rhyme HMMs. The HMM networks 

of two onset-rhyme models are depicted in Figures 4.6 and 4.7, respectively. 

This research will explore both two types of onset-rhyme models in order to 
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determine which type will be more efficient and suitable for Thai speech 

recognition systems. 

 

Table 4.1 Number of the rhyme units 

Thai Syllable V Cf Units 
1 Open syllable    
1.1 Open long syllable 12  12 
1.2 Open short syllable 12  12 
2 Sonorant ending syllable    
2.1 Short syllable ending with sonorant consonant 12 5 60 

Inadmissible co-occurrences    
Round vowel unit preceding 
 a labialized sonorant consonant 

4 1 -4 

Front vowel unit preceding 
 a palatalized sonorant consonant 

4 1 -4 

2.2 Long syllable ending with sonorant consonants 12 5 60 
Inadmissible co-occurrences    

Round vowel unit preceding 
 a labialized sonorant consonant 

4 1 -4 

Front vowel unit preceding 
 a palatalized sonorant consonant 4 1 -4 

3 Obstruent ending syllable    
3.1 Short syllable ending with obstruent consonant 12 3 36 
3.2 Long syllable ending with obstruent consonant 12 3 36 

Total   200 
 

Table 4.2 Number of the onset units 

Onset Combination Units 

Contextual onset 33Ci x 9V 297 

Phonotactic onset 33Ci x (18V + 6VV) 792 

 

4.2.3.1 Phonotactic Onset-Rhyme Model (PORM) 

The onset units of the PORM are generated from combinations of releasing 

consonants in all possible vowel contexts. Each phonotactic onset is created 

differently, according to the duration of the releasing consonant and its 

transition preceding the vowel, even for following vowels is the same short-

long pair. Except during the transitional period, the patterns of formant 

transition of the same releasing consonant with different vowel contexts are 

similar as indicated in Figures 4.8 and 4.9. Different combinations of the 

releasing consonants and following vowels lead to 792 possible PORM 

onsets. Figure 4.10 shows the formant transitions of the releasing consonant 

[n] occurring in three different vowel contexts [i, ii, iia]. By considering the 

difference of a releasing consonant plus transitional period in each vowel 

context, onset units of PORM are individually modeled. For instance, onsets 
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consisting of the releasing consonant [n] occurring before vowels [i, ii, iia] are 

separately modeled as [n_i, n_ii, n_iia]. According to their neighboring 

vowels, the PORM onsets are thoroughly modeled. Consequently, PORM will 

produce the most accurate onset units due to its completely contextual 

modeling. 
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Figure 4.6 Network of phonotactic onset HMMs and rhyme HMMs 
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4.2.3.2 Contextual Onset-Rhyme Model (CORM) 

The contextual onset-rhyme models are proposed in this paper along with 

the phonotactic onset-rhyme models. Acoustic analyses conducted on Thai 

syllables showed similar patterns of formant transitions in particular cases. 

Apart from the duration of formant transition of male and female speakers 

as indicated in Figures 4.8 and 4.9, the formant patterns are similar in both 

short and long vowel contexts for a given releasing consonant. Figure 4.11 

shows the formant transitions of the releasing consonant [n] occurring in 

three different vowel contexts [i, ii, iia]. By disregarding the duration of the 

formant transition, these onset units can share formant-transitional 

information. Therefore, combining similar onsets for short-long vowel pairs 

with the same releasing consonant substantially reduces the number of 

onset units. The number of these so-called contextual onsets is reduced to 

297 in comparison with the 792 phonotactic onsets. CORM gives a lower 

complexity in terms of search space than PORM, which has a larger number 

of units. As a result, with fewer onset candidates, the CORM network 

performs faster in the decoding process while it still produces the same 

number of syllables as PORM does. 

Compared with other context-dependent phone units, the number of 

onset-rhyme units in the Thai language is smallest. The numbers of possible 

combination units are summarized in Table 4.3. Consequently, with a small 

number of onsets and rhymes, a remarkably small database size is required 

for modeling of the onset-rhyme, compared with those for diphones and 

triphones. This makes a recognition system more manageable. 
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Figure 4.8 Duration of initial consonant preceding short and long vowels 

 for 6 male speakers 



 92

0

20

40

60

80

100

120

p t k c ph th kh ch b d m n ng j w r l f s h ?

Initial Consonant

D
u

ra
ti

o
n

 (
m

s)

Short Vowels
Long Vowels

 

Figure 4.9 Duration of initial consonant preceding short and long vowels 

 for 6 female speakers 

 

 

(a) /nit3/ (b) /niit2/ (c) /niiat2/ 

Figure 4.10 Spectrogram of the syllables /nit3/, /niit2/, and /niiat2/ 

 

Table 4.3 Numbers of various speech units applying to the Thai language 

Speech Unit Possible Speech Unit Possible 

monophone 58 CI Initial-Final 33I + 200F 

intra-syllable 1, 042 (left) / 1,041 CD Initial-Final 297I + 200F 

inter-syllable 1,913 CORM 297O + 200R 

intra-syllable 7,769 PORM 792O + 200R 

inter-syllable 64,475 syllable 26,928 

 

4.3 Construction of the Thai Continuous Speech 

Recognition System 

4.3.1 Thai Speech Corpus 

One of the important issues on construction of a speech recognition system 

is creating a speech corpus. Since there is no Thai continuous speech 

corpus available for the research, it is necessary to create the new Thai 
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continuous speech corpus. This section describes the procedure in creating 

a Thai continuous speech corpus, beginning with design, then recording, 

and labeling of the corpus. 

 

4.3.1.1 Design a Thai Continuous Speech Corpus 

In this research, the reading speech was selected for less significant 

coarticulatory effects and pronunciation variations. A Series of Aesop’s 

Fables in Thai was selected because it does not contain any foreign words. 

Initially, seven Aesop’s Fables were analyzed on the distribution of phone 

and onset-rhyme units. This set of data contains about a hundred 

sentences. In order to create an initial acoustic model of onset-rhyme, a 

number of training samples must be sufficient. Therefore, a new set of 

sentences was composed in order to fulfill the insufficient onset-rhyme 

units. The Royal Thai Dictionary was additionally used to find out all 

possible onset-rhyme units existing in the Thai language. Finally, a speech 

corpus contains a set of 111 sentences from Aesop’s Fables, 550 sentences 

from a new composed set, and 420 sentences from reading paragraphs. 

There are total 23,790 syllables in the training set. 

To evaluate the speech recognition system, a set of test sentences has 

to be created. In this research, a set of 100 sentences was excerpted from 

five different reading stories – Thai central geography, Encyclopedia of 

butterfly, Solar system, Cultivation of rose, and “Doi Suthep” national park. 

The sentences, excerpted from those stories, are more natural in reading 

than the composed sentences. There are total 4,985 syllables in these test 

sentences. 

 

4.3.1.2 Recording of Thai Utterances 

Recording of Thai sentences was taken in the quiet laboratory environment. 

The speech data were recorded with 16 bit resolution and 16 kHz sampling 

frequency. Two different microphones were used to record simultaneously. 

The stereo-recorded data were separate into the left and the right channel. 

This recording gives two different output utterances from one utterance. A 

complete set of training and test sentences was recorded from 9 male and 11 

female speakers. The other 5 male and 5 female speakers recorded only a set 

of test sentences. The total durations of the speech corpus used in this 
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experiment for training and testing are approximately 68 hours and 36 

hours, respectively 

 

4.3.1.3 Labeling of the Recorded Thai Utterances 

The initial set of sentences was label manually according to their 

transcriptions by “Speech Labeler” program developed by the Thai Speech 

Processing Research Group, Digital Signal Processing Research Laboratory 

(Ahkuputra, 2002). User interface of the program is illustrated in Figure 

4.11. The output label transcriptions are in phones and onset-rhyme models 

conforming to the Hidden Markov Model Toolkit (HTK) format (Young, et al., 

1999). 

 The manual label transcriptions were used to create the initial 

acoustic models. Then, these acoustic models were used to create the 

automatic labeling system. The automatic labeling system aligns the 

phonetic transcription of the sentence automatically. The alignment results 

needed little correction. 

Figure 4.11 “Speech Labeler” program 

 

4.3.2 Speech Signal Processing and Feature Extraction 

The speech samples were passed through a signal preprocessing routine 

consisting of signal pre-emphasis and a smoothing window. In the signal 

pre-emphasis step, the first-order FIR filter is used for flattening the 

spectrum (Rabiner and Juang, 1993; Lee, et al., 1989; Lee, et al., 1990; 



 95

Juang and Furui, 2001; Furui, 2001). The Hamming window was applied in 

order to divide the speech signal into frames. Since the MFCCs are the 

speech parameterization for many speech recognition systems (Mokbel and 

Chollet, 1995; Vergin, et al., 1999), this research employed the MFCC for 

representing speech signals. The dynamic feature, the temporal derivative, 

contributes significantly to improvement of recognition performance. 

Therefore, the MFCCs were applied and the temporal derivatives were 

additionally utilized (Maneenoi, et al., 2002; Ahkuputra, 2002; Jitapunkul, 

et al., 2003; Maneenoi, et al., 2004).  

 

4.3.3 Acoustic Modeling of Speech Units 

This section describes the implementation of acoustic modeling of various 

speech units. This research mainly used four speech units. The context-

independent phone, a monophone, was modeled initially, and then this 

speech unit was used for building the triphone system. The modeling of 

other speech units, Initial-Final and onset-rhyme, depended on their types. 

The Initial and the onset were modeled differently, according to their context, 

while both of the final and the rhyme were modeled as left context-

independent units. 

Model parameters were initiated and re-estimated using the standard 

Viterbi alignment process and Baum-Welch algorithm together with the 

labeled transcriptions. A set of initial acoustic models was then trained with 

the embedded Baum-Welch algorithm in which a composite model for each 

complete sentence was used to probabilistically assign observations to states 

and then update the model parameters with only the unlabeled 

transcriptions. 

To achieve a higher performance, an iterative divide-by-two clustering 

algorithm was utilized to increase the Gaussian mixture component. The 

complexity of the models was increased in this mixture incremental. 

Experimental results will be reported benefit in varying the number of 

Gaussian mixture components. 

 The training process of the monophone, Initial-Final, and onset-rhyme 

models is generally similar as depicted in Figure 4.12. To the trainability 

problem of the triphone models, the training process is more complex than 

the others. The acoustic model construction of these speech units will be 

described in the following section. 
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Figure 4.12 General training process 

 

4.3.3.1 Construction of the Context-Independent Phone Model — the 

Monophone Model 

The phone models use standard three state left-to-right topologies with no 

skip state. Primarily, monophone models were initiated using a single 

Gaussian observation distribution from the labeled data. The standard 

Viterbi alignment process and Baum-Welch algorithm were applied to obtain 

the initial acoustic models. A set of initial acoustic models, was then trained 

with the embedded Baum-Welch algorithm. To achieve a higher 

performance, an iterative divide-by-two clustering algorithm was utilized to 

increase the Gaussian mixture component. 
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4.3.3.2 Construction of the Context-Dependent Phone Model — the 

Triphone Model 

 

4.3.3.2.1 Syllable Boundaries 

The presence of syllable boundaries in the phone sequences complicates the 

use of context-dependent phonetic models and this can be dealt with in one 

of two ways. 

 

A. Intra Syllable Context Dependency 

Syllable boundaries represent a distinct context and further expansion of 

the context across syllable boundaries is blocked. 

CHAN KIN KHAAW = sil ch+a ch-a+n a-n k+i k-i+n i-n kh+aa 

     kh-aa+w aa-w sil 

 

B. Inter Syllable Context Dependency 

Expansion of context can occur into surrounding syllables. The presence 

of syllable boundaries can be either ignored or used as additional 

contextual information. 

CHAN KIN KHAAW =   sil sil-ch+a ch-a+n a-n+k n-k+i k-i+n  

i-n+kh n-kh+aa kh-aa+w aa-w+sil sil 

 

 In continuous speech, as opposed to isolated word speech with each 

word delimited by silence, co-articulatory effects occur across the syllable 

boundaries since these often have important acoustic significance. However, 

there are several remarks when using the inter syllable triphones and the 

intra syllable triphones. 

 

� Size 

The total number of contexts is much smaller than in the inter syllable 

case because many contexts will never appear in a corpus. A greater 

proportion of contexts will be seen in the training data. Moreover, the 

problem of unseen contexts is less important in this case. The total 

number of contexts depends on the dictionary but, for modeling the 

whole Thai language, an intra syllable triphone system needs models for 

7,769 distinct contexts while an inter syllable triphone system requires 
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64,775 models. However, only 10,642 of these appear in the training 

data. 

� Complexity 

With an intra syllable triphone system, every realization of a syllable is 

the same and can be taken straightforward from a dictionary. With an 

inter syllable triphone system, the choice of the first and last models of 

each syllable depends on the preceding and following syllables. The 

networks for the decoding process of an intra syllable triphone and an 

inter syllable triphone systems are shown in Figures 4.13 and 4.14. 

Obviously, the inter syllable triphone system greatly complicates the 

decoding process.  

 

 

Figure 4.13 Intra-syllable triphone network 

 

Figure 4.14 Inter-syllable triphone network 
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4.3.3.2.2 Trainability Problems 

Due to the fact that the acoustic realization of the phonemes depends 

heavily on the phonetic context, it is essential for efficient speech recognition 

to model this context dependency (Lee and Hon; Lee, et al., 1990). The most 

commonly used context dependent phoneme model is the phoneme model in 

a triphone context. Although triphones provide an excellent modeling of 

context dependency, their exclusive used as acoustic models is prohibitive 

for vocabulary-independent speech recognition because the set of triphones 

in the recognition vocabulary often contains triphones that cannot be 

observed in the training. Another serious problem is that many triphones 

occur very seldom in the training corpus so the estimation of the models 

may not be reliable. It is impractical to train a separate model from only a 

few occurrences especially if mixture Gaussian distributions are used. Since 

there are many triphone contexts, which occur only a few times in the 

training corpus and many more than that do not occur at all, special 

methods must be made to assure that a triphone system is trainable and its 

parameters can be estimated reliably. This trainability problem becomes 

even more serious if larger amounts of context are to be taken into account. 

There are several ways in which the trainability problem can be relieved 

(Odell, 1995): 

 

� Backing-Off 

When there is insufficient data to train a given model, it is possible 

to back-off and use less specific model for which there is enough 

data. For example, a diphone model could substitute for a triphone, 

which has only a few examples in the training corpus. If there were 

few occurrences of that diphone, a monophone model could be used. 

This guarantee the model used is well trained but it can mean that 

relatively few models will have full triphone context especially if the 

training corpus is relatively sparse. 

� Smoothing 

In order to maintain a greater degree of context dependency, it is 

possible to smooth the parameters of more specific model with those 

of the less specific model. One way in which this can be 

accomplished is to use interpolation between the less and more 

specific models with the interpolation weights chosen using deleted 
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interpolation (Lee and Hon, 1989). This method preserves the 

context dependency of the unsmoothed models but increases their 

robustness by effectively sharing training corpus from other 

contexts to produce more accurate parameters. 

� Sharing 

Another method for increasing the robustness of the system is to 

explicitly share models or parts of models between different contexts 

(Young, 1992). This method is sensible since the acoustic 

realizations of a phone occurring in different contexts are often very 

similar. This method also ensures that all the system parameters 

are well trained while maintaining the model context dependency. 

 

All these techniques require that a choice is made about which 

parameters are backed-off to, smoothing with, or shared with others. For a 

simple backing-off strategy, a simple and obvious hierarchy exists; triphones 

are more specific and less trainable than biphones, which are more specific 

and less trainable than monophones. The weakness of this scheme is big 

jumps in specificity. Similarly, smoothing of parameters must occur through 

some forms of hierarchy. However, more flexibility is possible since different 

parts of a model can be smoothed in variable proportions with different 

models. For instance, initial state can be smoothed with a left diphone to 

preserve as much left context dependency as possible, while the final state 

can be smoothed with the corresponding right diphone. 

 Finally, sharing presents even more possibilities. Parameter sharing 

between models of the same complexity is possible as well as sharing with 

models further up the hierarchy. To improve the robustness of the 

parameter estimation, the emitting probabilities of the triphone states are 

shared between clusters of states, which are similar according to a distance 

measure. The training data assigned to the states of one cluster in used to 

estimate the shared emitting probability of these states. Sharing schemes 

can be divided into two approaches, bottom-up and top-down. 

 

4.3.3.2.3 Bottom-up Approach 

Bottom-up approach to the data insufficiency problem starts by assuming 

that all contexts are distinct, but to ensure that the parameters of each 

model can be reliably estimated, some forms of sharing is required. This 
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method can be accomplished by examining the original models and 

determining sets that can share parameters. These sets are chosen to ensure 

that the resulting models can be robustly estimated, and that members of 

the sets are sufficiently similar to ensure that the model will provide 

accurate representations. 

 

A. Generalized Triphones 

One of the methods to implement parameter sharing is to compare models 

from different triphone model contexts and merge those similar models. The 

merged models will be estimated from data. If the more realizations of the 

triphone in the different contexts are similar, the more accurate models are 

obtained. The generalized triphones evolved from the discrete distribution 

show better performance than triphones, which were smoothed with less 

specific models using deleted interpolation (Lee, et al., 1990; Deng, et al, 

1992). However, sharing at the model level may not be appropriate method 

for triphone models composed of distinct states (Odell, 1995). 

 

B. State Clustering 

Sharing distributions at the state level share the output distributions among 

states. This sharing is constrained so that distributions are specific to a 

particular state position in a particular phones and they are only shared 

among the same state occurring in different contexts. The clustering is 

performed on single Gaussian diagonal covariance models in two stages; 

 

� An iterative merging procedure, which merges the most similar 

pair of distributions according to the minimum distance between 

them. This stage terminates when this minimum distance exceeds 

a predetermined threshold. 

� A merging procedure ensures the trainability of the models by 

ensuring that the occupancy γ  of each tied distribution exceeds 

some thresholds. Each distribution with occupation counts below 

this threshold is merged with the nearest distribution (with the 

minimum value of ( )jid , ). 

 

Data-Driven clustering is performed by placing all states in individual 

clusters (Anderson, et al., 1994). The pair of the clusters, which when 
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combined would form the smallest resulting cluster are merged. This process 

repeats until either the size of the largest cluster reaches the threshold or 

the total number of clusters has fallen to the specific value. The size of 

cluster is defined as the greatest distance between any two states. The 

distance metric depends on the type of state distribution. For single 

Gaussian distributions, a weighted Euclidean distance between the means is 

used, and for tied-mixture systems, a Euclidean distance between mixture 

weights is used. For all other cases, the average probability of each 

component mean with respect to the other state is used. 

The distribution between distributions, which will initially be for a 

single context and later for a cluster of contexts, i  and j  is calculated using 
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where n  is the dimension of the data, skµ  and skσ  are the mean and 

variance of the thk  dimension of the Gaussian distribution of state s , either 

i  or j . The values sγ  for the untied distributions are calculated during 

preceding training and then summed to give the occupation counts after 

merging. 

 This procedure results in a set of models with Gaussian probability 

distributions for clusters of contexts with similar acoustic features and 

ensures that each distribution has enough training samples to accurately 

estimate its parameters. This procedure reduces the total number of 

distributions significantly but results in a much smaller reduction in the 

number of distinct models because different models may share two state 

distributions and only differ in the final one. This preserves a higher degree 

of context dependency by allowing for contextual factors that only effect part 

of a phone. For instance, models with the same right context but different 

left contexts may have different initial state distributions while sharing those 

for the final and center states. 

 The main drawback of the bottom-up approach is that for triphones, 

which were not observed in the training corpus, no tied model is available. 

These unseen triphones are modeled by so-called backing-off models 

(Aubert, et al., 1996). Usually these models are simple generalizations of the 

triphones such as diphones or monophones. The training of the backing-off 
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models is performed on the data of the triphones, which were not involved in 

the clustering process. 

 

4.3.3.2.4 Top-down Approach 

The bottom-up approach is limited, as it requires examples of each context 

to produce initial estimates of the model parameters used in the clustering 

procedure. It is impossible to use such approach to construct models for 

contexts that may occur during recognition but do not appear in the training 

corpus. It is also unreliable for contexts that only occur a few times, since 

the examples may be unrepresentative and so the parameter estimates used 

during clustering will be inaccurate.  

 This problem can be minimized by ensuring that the training data 

gives adequate coverage of the models needed for recognition. However, this 

solution seems to be possible only for small vocabularies and system using 

word-internal context dependency. For large vocabularies and cross-word 

context dependent systems, it is virtually impossible to ensure that the 

training data will include examples of every possible context. 

 Using the top-down approach based on the decision trees avoids the 

problem of unseen models by using linguistic knowledge together with the 

training data to decide which contexts, including the unseen ones, are 

acoustically similar (Odell, et al., 1994; Odell, 1995). 

 A decision tree for each phoneme selects which of a set of models is 

used in each context. The model is chosen by traversing the tree, starting 

from node then selecting the next node depending on the answer to a simple 

question about the current context. For binary decision trees, these 

questions will normally be yes/no questions concerning membership of 

particular sets of phones. 

 For example, in the decision tree shown in Figure 4.15, the root 

question is answered by checking if the immediately preceding phone, the 

left context, is a nasal – m, n, ng. If the actual context is n-i+t, the next 

question to be asked would concern whether the following phone was an 

approximant, j and w. Since t is not a member of this set and the answer no 

results in a terminal node, the model labeled C would be used in the context. 

 This procedure has several advantages over bottom-up approach 

� The hierarchical structure and the form of the questions mean 

that the tree will find an equally context dependent model for every 
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context. This method does not require the backing-off technique to 

less specific models for contexts that have not occurred in the 

training data. 

� Expert knowledge can be incorporated in the form of set of 

questions that are used to split each node of the tree and this will 

be used to determine which contexts are similar to any unseen 

ones. 

� The construction procedure can be constrained to ensure that leaf 

nodes are only generated for sets of contexts that have sufficient 

examples in the training data to reliably train an accurate model. 

The clustering does not suffer from the use of under-trained 

parameters. 

� A greater degree of context dependency than triphones can be 

implemented by extending the types of questions. 

 

Figure 4.15 A decision tree 
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A. Decision Tree 

To exploit the advantages of the top-down decision tree based approach, it is 

necessary to be able to automatically construct the trees. The construction 

procedure should aim to ensure that the resulting set of models provide an 

accurate and robust estimate of the underlying speech. The trees were 

constructed in locally optimized fashion starting from a single root node 

representing all contexts. As each node is created, an optimal question 

chosen from a finite set is selected to maximize the increase in probability at 

the resulting terminal nodes generating the training samples. Then the 

current set of terminal nodes is searched to find the one, which can be split 

using its optimum question to provide the largest increase in the total 

probability of the training data. If the increase of probability exceeds a 

threshold and the number of training samples associated with the node 

exceeds a threshold, the node is divided using the optimum question and 

two new terminal nodes were created. When none of the terminal nodes can 

be split, the procedure terminates and the tree is finished. 

 Several experiments suggested that sharing at the state distribution 

rather than at the model level led to improved performance (Hwang and 

Huang, 1992, Hwang and Huang, 1993). This state-tying approach also has 

the benefit of simplicity since the underlying model topology is used while 

the additional alignment technique, such as linear or dynamic time warping, 

does not need during constructing the trees. 

The aim of state-tying is to reduce the number of parameters of the 

speech recognition system without a significantly degradation in accuracy. 

The states of the triphones used in training, which are similar according to a 

distance measure are tied together. First, a suitable triphone list is 

assembled according to the training corpus. Because this list has to be quite 

large to achieve an accurate modeling of the acoustic context, simple models 

are used for emitting probabilities – one Gaussian density with full or 

diagonal covariance matrix. Using a segmentation of the training data, the 

mean and the variance of the triphone states are estimated. The triphone 

states are then subdivided into subsets according to their central phoneme 

and their position within the phoneme model. Inside these sets, the states 

are tied together according to a distance measure. In addition, it has to be 

assured that every model contains a sufficient amount of training data. The 

resulting models are then re-estimated. 
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B. Decision Tree Construction 

There are a number of criteria for decision tree construction procedure; 

 

� Each leaf must have a minimum number of samples, a minimum 

occupancy, to ensure that the parameters of the final models can 

be accurately estimated. 

� A finite set of questions can be used to divide each node. These 

questions constrain the way each node may be divided and also 

allows the incorporation of expert knowledge needed to predict 

contextual similarity when little or no data is available to 

determine which contexts are acoustically similar. 

� Hidden Markov models should be able to accurately capture the 

variability of the terminal nodes. Gaussian mixture probability 

distributions should be able to accurately represent the training 

samples at each terminal node. 

 

The first criteria can be satisfied by restricting the choice of question 

to those models to ensure that any created nodes have a sufficient number 

of associated samples in the training data. This restricted set of questions is 

searched in order to maximize the accuracy of the resulting hidden Markov 

models. Theoretically, this means attempting to minimize the within class 

variance while maximizing the between class variance. A simple scheme, 

which attempts to maximize the accuracy of the models with respect to their 

own class, is a maximum likelihood approach. This approach is very 

attractive since it is well matched to the way the parameters of models are 

subsequently estimated. 

 

C. Likelihood Based Decision Criteria 

Let S  be a set of HMM states and let ( )SL  be the log likelihood of S  

generating the set of training frames F  under the assumption that all states 

in S  are tied, i.e., they share a common mean ( )Sµ  and variance ( )SΣ  and 

that transition probabilities can be ignored. Then, assuming that tying states 

do not change the frame/state alignment, an approximation for ( )SL  is given 

by (Young et al., 1994) 
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where ( )fs oγ  is a posteriori probability of the observed frame fo  being 

generated by state s . If the Gaussian probability distribution function is 

employed, then 
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where n  is the dimension of the data. Thus, the log likelihood of the whole 

data set depends only on the pooled state variance ( )SΣ  and the total state 

occupancy of the pool, ( )f
Ss Ff

s o∑∑
∈ ∈

γ . The former can be calculated from 

means and variances of the states in the pool, and the state occupancy 

counts can be obtained during the preceding Baum-Welch re-estimation. For 

a given node with state S , which is partitioned into two subsets, ( )qS y  and 

( )qSn , by question q , the node is split using the question ∗q , which 

maximizes 

( )( ) ( )( ) ( )SLqSLqSLL nyq −+=∆    (4.4) 

provided that both ∗∆
q

L  and the total pooled state occupation counts for 

both ( )∗qS y  and ( )∗qSn  exceeds their associated thresholds. 

As a final stage, the decrease in log likelihood is calculated for 

merging terminal nodes with differing parents. Any pairs of nodes for which 

this decrease is less than the threshold used to stop splitting are then 

merged. 

 

4.3.3.2.5 Triphone Model Construction Procedure 

The monophone-based system is used for creating the triphone system 

according to the following procedure: 

 

1) Manually labeled monophone training: Initiated from a set of single 

Gaussian distributions, monophone models were generated from the 

labeled data using the standard Viterbi alignment process. Then, 

single Gaussian monophone models were reestimated using the 

Baum-Welch algorithm.  
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2) Triphone construction: In order to create a triphone system from a 

trained-monophone system, monophone models were copied and their 

transition matrices were tied. Then, triphones were initially trained 

using a forward-backward algorithm. A tree-based clustering was 

applied to cluster data from a phonetic decision tree. The final 

processes were state-tying, which merged any identical triphones, and 

re-training of state-tied triphones.  

3) Mixture incrementing: A single Gaussian mixture was split to attain a 

higher recognition performance. Finally, the splitting mixture models 

were re-estimated using the forward-backward algorithm. 

 

In order to construct context-dependent triphones, context-independent 

monophones were cloned and their transition matrices were tied to obtain a 

much more reliable estimation. Then four passes of the Baum-Welch 

algorithm were applied to a set of triphones to obtain the triphone 

parameters. After the initial training of triphones, state-clustering is an 

efficient technique to form the robust estimation of parameters of mixture 

distributions. To avoid the unseen triphone problem, a tree-based clustering 

technique is selected. This technique utilizes a log likelihood criterion and 

only supports a single-Gaussian continuous density output distribution. The 

objective of state-tying is to group triphone states into a number of 

equivalence classes using various linguistic questions concerning the 

identity of the base phone and the triphone context (Woodland, et al., 1994). 

Therefore, the total number of mixtures was reduced during the state-tying 

process. Iterative re-estimation by four passes of the Baum-Welch algorithm 

and incrementing of mixture components by a mixture-splitting procedure 

were applied to the tied-state triphones. Finally, the number of Gaussian 

distributions was increased to sixteen components per state.  

 

4.3.3.3 Construction of the Initial-Final Model 

The Initial-Final labels were generated from manual labeling. The Initial 

segment comprises the initial consonant only while the final consists of the 

rest of syllable. However, the Initial is contextually modeled in two ways, the 

context-independent Initial and the context-dependent Initial. The context-

independent Initial modeling is independent of its vowel context whereas, the 

context-dependent Initial is modeled according to its vowel context. The 



 109

duration of the Final is longer than that of phone unit. Then the number of 

HMM states used to model the Final is more than that for a phone. A three 

state HMM was used for modeling the Initial, whereas the Final is modeled 

with a six state HMM. The training of the Initial-Final model is started from 

a single Gaussian observation distribution from the Initial-Final labeled data 

with the standard Viterbi alignment process and Baum-Welch algorithm. 

Then the labeled trained models are iteratively re-estimated with the 

embedded Baum-Welch algorithm. Finally, the number of Gaussian mixture 

components is increased up to sixteen mixtures per state. 

 

4.3.3.4 Construction of the Onset-Rhyme Model 

Initially, onset-rhyme labels were generated from manual labeling. The initial 

consonant segment and its transition towards the vowel were then converted 

to the onset segment, corresponding to two types of onset-rhyme models, 

CORM and PORM. The rhyme segment is converted from the steady vowel 

portion and the optional final consonant. Since the rhyme consists of the 

vowel including the optional final consonant, this implies that the rhyme can 

comprise two connected phones. Therefore, the duration of the rhyme is 

longer than that for the phone unit. Then the number of HMM states used to 

model the rhyme is more than that of phone. A three state HMM was used 

for modeling onset, whereas the rhyme is modeled with a six state of HMM. 

The onset-rhyme models were initiated starting from a single Gaussian 

observation distribution from the onset-rhyme labeled data. The standard 

Viterbi alignment process and Baum-Welch algorithm were applied to obtain 

the initial acoustic models. A set of initial acoustic models, was then trained 

with the embedded Baum-Welch algorithm. Iterative re-estimation by four 

passes of the Baum-Welch algorithm and incrementing of mixture 

components by a mixture-splitting procedure were employed to train the 

models. To achieve a higher performance, an iterative divide-by-two 

clustering algorithm was utilized to increase the number of Gaussian 

mixture components up to sixteen mixtures per state. 

 

4.3.4 Mixture Component Incrementing 

Mixture component incrementing provides an iterative mechanism for 

building a multiple mixture component system from a single Gaussian 

system. An output distribution of M  mixture components is converted to an 
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1+M  component mixture distribution by cloning the mixture component 

with the largest weight and then perturbing the mean vectors of the two 

identical distributions by adding and subtracting 0.2 time of standard 

deviations respectively (Valtchev, 1995). The new mixture system is then 

trained using the Baum-Welch algorithm. 

 Traditionally, mixture densities of HMMs are built using the 

segmental k-means procedure to initialize the required number of mixture 

components and then retraining the models using the Baum-Welch 

algorithm. However, this approach requires exact the number of mixture 

components prior to building and assessing the performance of the system. 

The mixture component incrementing approach has been produced the 

similar results to the k-means clustering procedure, while, at the same time, 

the advantage of the former is that the number of mixture components can 

be continuously increased to obtain any desired balance between 

performance and model complexity (Young and Woodland, 1994). 

 

4.3.5 Architecture of the Recognition System 

All recognition systems were based on hidden Markov models using 

continuous density diagonal covariance mixture Gaussian output probability 

distributions. The output probability distributions could be shared at the 

state level but there was no sharing of mixture components that is the 

models were continuous density rather than tied-mixture or semi-

continuous. 

  

4.3.5.1 Word Network  

A word network is defined using HTK Standard Lattice Format (SLF) (Young, 

et al., 1999). The SLF file contains a list of nodes representing syllables and 

a list of arc representing the transition between syllables. The transition can 

have probabilities attached to them and these can be used to indicate 

preferences in a grammar network. The construction of a word level SLF 

network can be specified by the grammar in form of regular expression. The 

expressions are constructed from sequences of syllables and metacharacters 

(Young, et al., 1999). Examples of word networks are shown in Figure 4.16. 
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Figure 4.16 Word network for connected digit recognition 

 

4.3.5.2 Language Modeling 

In the recognition, two types of models, a no-language model and a bigram 

language model, are applied. In no-language model, each syllable can 

connect to all other word with optional silence. This no-language model is 

employed in order to evaluate the actual performance of acoustic models. 

The perplexity of the no-language model is equal to the number of words. 

For a bigram language model, a word can only connect to words that 

can legally follow it. This bigram language model is used to evaluate the 

performance of the recognition system, which is composed of an acoustic 

model and grammar. A number of text corpus excerpted from various 

reading paragraphs were used to create a bigram language model. The 

language model is used to perform the linguistic post-processing and 

determine the optimal syllable sequence. Building a complex language model 

would required more study on the syntactic and semantic rules of Thai 

continuous speech. 

 

4.3.5.3 Vocabulary and Dictionary 

The Thai language is found to be relatively discrete in comparison with 

Western languages. Therefore, recognition of syllable sequences in the 

utterance is more reasonable than word sequence. The Royal Thai Dictionary 

is used as the reference to produce an inventory of syllables. 

 

4.3.5.4 Decoding Process 

In a continuous speech recognition system, decoding process is controlled by 

a recognition network compiled from a word-level network, a dictionary, and 

a set of HMM models. A recognition network ultimately consists of HMM 

states connected by transitions. However, it can be viewed at three different 
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levels: word, model, and state as illustrated in Figure 4.17 (Young, et al., 

1999). 

 

Figure 4.17 Recognition network level 

 

A network describes the sequence of words that can be recognized 

while a dictionary describes the sequence of HMM models that constitute 

each word. A word level network will typically represent either a task 

grammar, which defines all of legal word sequences explicitly or a word loop, 

which simply puts all words of vocabulary in a loop and allows any word to 

follow any other word. Word-loop networks are obtained from stochastic 

language modeling. When a word network is loaded into a recognizer, a 

dictionary is used to convert each word in the network into a sequence of 

acoustic units represented by HMM models. Then, a word network is 

expanded into a HMM level network. Once the HMM network is constructed, 

it can be input to the decoder module and used to recognize speech input 

(Young, et al., 1999). 

The task of the decoder is to find the paths through the network, 

which have the highest log probability. A log probability of each path is 

computed by summing the log probability of each individual transition in the 

path and the log probability of each emitting state generating the 

corresponding observation. Within-HMM transitions are determined from the 

HMM Parameters, between-model transitions are constant, and word-end 

transitions are determined by the language model likelihood attached to the 
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word level network. The most likely state sequence through a network can be 

found using the token passing implementation of the Viterbi algorithm. A 

token represents a partial path through the network extending from the 

beginning to the present time. At the end of the utterance, the most likely 

sequence of words is recovered by trace back through the decisions made 

about transitions between words. The recognition process is depicted in 

Figure 4.18. 

 

Figure 4.18 Recognition process 

 

4.3.5.4 Evaluating Recognition Results 

After the recognizer has processed the test data, the next step is to analyze 

the results. The transcription output from the recognizer is compared with 

the original transcription. Using dynamic programming, an optimal string 

match is obtained from matching each of the recognized and reference label 

sequences. The optimal string match is label alignment, which has the 

lowest possible score. 

One of the criteria used for evaluating the efficiency of speech units is 

accuracy. The accuracy of speech units is computed from 2 formulas called 

“Percentage Correction” and “Percentage Correction” (Young, et al., 1999). 

When the optimal alignment has been found, the number of 

substitution errors ( S ), deletion errors ( D ), and insertion errors ( I ) can be 

calculated. Then, the percentage correct is 
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Percentage Correct  %100×
−−

=
N

SDN
   (4.4) 

where N is the total number of labels in the reference transcriptions. For 

many purposes, the percentage accuracy defined as 

Percentage Accuracy  %100×
−−−

=
N

ISDN
  (4.5) 

is a more representative figure of recognizer performance. An example of 

labeled transcription and recognition sentence is shown in Figure 4.19. 

 

 

Figure 4.19 Evaluation of recognized sentence 

 

4.4 Summary 

This chapter has reviewed general speech units used in speech recognition 

to find the appropriate speech unit for the Thai language. However, the 

existing speech units seem to be inappropriate when applying to the Thai 

language according to the criteria of a good speech unit.  

The onset-rhyme model is proposed in this chapter. The model 

comprises a pair of onset and rhyme units, which makes up a syllable. The 

onset comprises an initial consonant and its transition towards the following 

vowel. Together with the onset, the rhyme consists of a steady vowel segment 

and a final consonant. Two types of the onset-rhyme models, contextual 

onset-rhyme model (CORM) and phonotactic onset-rhyme model (PORM), are 

differently modeled according to their contexts. 

 The construction of the Thai continuous speech recognition system 

begins from speech corpus design, speech recording, and speech labeling. 

Then the HMM acoustic modeling is applied to speech units. The triphones 

have the trainability problem so the additional techniques, model clustering 

and state-tying, are required to overcome this problem. 

 



Chapter 5 
 

Experimental Results 
 
 

This chapter describes the configurations of the Thai continuous speech 

recognition system used in this research. Details of recognition results 

performed with the Hidden Markov Model Toolkit (HTK) will be elaborated. 

The experiments were conducted for two main schemes, a recognition 

system using acoustic modeling only and a recognition system using both 

acoustic modeling and language modeling. In order to obtain an actual 

efficiency of the acoustic model, a language model should not be applied. On 

the other hand, incorporating the language model can boost the performance 

of a speech recognition system. 

The experiment on gender effect will be conducted to study the effect 

of gender-dependent and gender-independent modeling. In the next 

experiment, mixture incrementing will be performed on the acoustic models. 

The objective of this experiment is to observe the improvement of the 

acoustic model by mixture incrementing technique. The first two 

experiments are conducted on the least complex acoustic unit, the 

monophone. The parameters obtained from these experiments will be used 

throughout the experiments in this dissertation. The other experiments will 

be carried on the triphone, Initial-Final, and onset-rhyme acoustic units. 

The final experiment incorporates the language model to the recognition 

system. This experiment will be conducted on the monophone, triphone, 

Initial-Final, and onset-rhyme respectively. 

Recognition results of the system using the acoustic units—

monophone triphone, Initial-Final, and onset-rhyme—are shown and in 

terms of syllable correction and accuracy. Apart from the syllable accuracy, 

the recognition results of phone, Initial-Final, and onset-rhyme acoustic 

units were analyzed. The analysis of the recognition results at the bottom 

level of the system, the acoustic level, reveals the actual efficiency of the 

speech unit. 
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5.1 Thai Continuous Speech Recognition System 
This section described the configurations of the Thai continuous speech 

recognition system used in this research.  

 

5.1.1 Speech Signal Processing and Feature Extraction 

The speech samples were passed through a signal preprocessing routine 

consisting of signal pre-emphasis with a coefficient of 0.97 (Rabiner and 

Juang, 1993; Lee, et al., 1989; Lee, et al., 1990; Juang and Furui, 2001; 

Furui, 2001). The 25 ms Hamming window was applied every 10 ms in order 

to divide the speech signal into frames. This research employed a 12-order 

MFCC together its temporal derivatives for speech signal representation. 

(Maneenoi, et al., 2002; Ahkuputra, 2002; Jitapunkul, et al., 2003). 

 

5.1.2 Language Modeling 

In the recognition, two types of models, a no-language model and a bigram 

language model, are applied. The perplexity of the no-language model is 

3200. A number of text corpus excerpted from various reading paragraphs, 

approximately 800,000 syllables, were used to create a bigram language 

model. The perplexity of this bigram language model is 252.03.  

 

5.1.3 Vocabulary 

The pronunciation dictionary is a syllable dictionary composed from 

monophones, Initial-Final units, or onset-rhyme units. In addition, the 

triphone network can be generated from the simple monophone dictionary 

(Young, et al., 1999). This dictionary consists of 3,200 syllables excluding 

tones, which covers almost 33,000 vocabulary words in the Royal Thai 

Dictionary. 

 

5.2 Experiments on Gender Effect 
Generally, there are different characteristics between male and female 

speech indicated in the frequency domain. The distinction can be 

represented by the location of the first three formants for vowels and the 

fundamental frequency, since men and women have different size of 

articulatory organ. This experiment intends to study the characteristics of 
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gender effect. Therefore, the experiment will be performed using systems 

that were gender-independent and gender-dependent. The monophone 

model was used in the experiment. For the gender-dependent system, the 

acoustic models were separately trained for male and female speakers. On 

the other hands, the acoustic models for the gender-independent system 

were conjointly trained on male and female speakers. 

 The experiments will be conducted in 3 schemes: 

1. Recognition of male and female speakers on gender-dependent 

modeling 

2. Recognition of male and female speakers on gender-independent 

modeling 

3. Recognition of male speakers with the acoustic model created from 

female speakers, and recognition of female speakers with the 

acoustic model created from male speakers 

 The system configuration is set as follows: 

� The standard 3-state left-to-right HMM with no skip state 

� 12 order MFCCs with delta coefficients 

� A single Gaussian output distribution 

� 58 monophone models 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

 

5.2.1 Experimental Results 

A. Recognition of male and female speakers on gender-dependent 

modeling 

The syllable recognition results of gender-dependent modeling are shown in 

Tables 5.2.1 and 5.2.2. The speaker-dependent system of both male and 

female speakers gives higher recognition results than the speaker-

independent system. The results show the correction at 15.6% and 15.9% 

for the male and female speaker-dependent systems. For the speaker-

independent systems, the correction of male and female speakers is 12.2% 

and 12.7%. 

Due to the high insertion rate of the phone model, the accuracy is 

very low compared to the correction. The accuracy of male and female 
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speakers in the speaker-dependent system is 4.5% and 5.4%, while the 

speaker-independent system gives 0.7% and 2.0% of the accuracy for male 

and female speakers respectively. 

 

Table 5.2.1 Syllable recognition results of male speakers on the system 

trained with male speakers 

System Correction Accuracy 

Speaker-dependent 15.6% 4.5% 

Speaker-independent 12.2% 0.7% 

 

Table 5.2.2 Syllable recognition results of female speakers on the system 

trained with female speakers 

System Correction Accuracy 

Speaker-dependent 15.9% 5.4% 

Speaker-independent 12.7% 2.0% 

 

B. Recognition of male and female speakers on gender-independent 

modeling 

The syllable recognition results of gender-independent modeling are shown 

in Tables 5.2.3 and 5.2.4. The results show the correction at 13.0% and 

13.2% for the male and female speaker-dependent systems. For the speaker-

independent systems, the correction of male and female speakers is 10.3% 

and 11.0%. The accuracy of male and female speakers in the speaker-

dependent system is 2.7% and 3.2%, while the speaker-independent system 

gives 0.1% and 0.6% of the accuracy for male and female speakers 

respectively. 

 Comparing the syllable recognition results to gender-dependent 

modeling, gender-independent modeling gives lower correction and accuracy 

of both speaker-dependent and speaker-independent system. The correction 

and accuracy of gender-independent modeling for male and female SD 

system is lower than gender-dependent modeling around 2.7% and 2.0%. 

For the male and female SI system, the performance of gender-independent 

modeling is worse than the performance of gender-dependent modeling 

around 1.8% of correction and 1.0% of accuracy respectively. 
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Table 5.2.3 Syllable recognition results of male speakers on the system 

trained with male and female speakers 

System Correction Accuracy 

Speaker-dependent 13.0% 2.7% 

Speaker-independent 10.3% 0.1% 

 

Table 5.2.4 Syllable recognition results of female speakers on the system 

trained with male and female speakers 

System Correction Accuracy 

Speaker-dependent 13.2% 3.2% 

Speaker-independent 11.0% 0.6% 

 

C. Recognition of male speakers with the acoustic model created 

from female speakers, and recognition of female speakers with the 

acoustic model created from male speakers 

When using the automatic gender classification, the misclassification may be 

occurred. In this severe condition, the speakers are tested with the acoustic 

model created from a different gender. The recognition results show very 

poor performance in this case. The syllable recognition results of gender-

independent modeling are shown in Tables 5.2.5 and 5.2.6. 

Comparing the syllable recognition results to gender-dependent and 

gender-independent modeling, the correction and accuracy of male and 

female SD system is lower than gender-dependent modeling around 10.6% 

and 17.7%, and around 8.0% and 15.7% for gender-independent modeling. 

For the male and female SI system, the performance also degrades from 

gender-dependent and gender-independent modeling around 9.7% of 

correction and 15.1% of accuracy, and around 7.9% of correction and 14.1% 

of accuracy respectively. 
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Table 5.2.5 Syllable recognition results of male speakers on the system 

trained with female speakers 

System Correction Accuracy 

Speaker-dependent 4.8% -10.8% 

Speaker-independent 2.7% -14.7% 

 

Table 5.2.6 Syllable recognition results of female speakers on the system 

trained with male speakers 

System Correction Accuracy 

Speaker-dependent 5.5% -8.5% 

Speaker-independent 2.9% -12.7% 

 

 

5.2.2 Discussion 

Most parametric representations of speech are highly dependent on a group 

of speakers, and probability distributions suitable for a certain group of 

speakers may not be suitable for other group of speakers. Speaker attributed 

variability is undesirable in speaker-independent speech recognition system. 

Especially, the gender of the speaker is one of the influential sources of this 

variability. The recognition results the system based on gender-dependent 

modeling are higher than those of gender-independent modeling. When the 

speakers are tested with the acoustic model created from a different gender, 

the performance of the system would be highly degraded. These 

experimental results support the use of the gender specific model 

throughout this dissertation. 

 

5.3 Experiments on Mixture Incrementing 
To improve the accuracy of the recognizer, the number of Gausian mixture 

components per state was increased. Increasing the number of Gaussian 

mixture components per state can improve the recognizer’s performance up 

to a point where not enough information is available to fit the actual shape 

of the probability contour. 

Though initialization of the output distribution can start from any 

number of mixtures, it has been found to be more effective to train mixtures 

incrementally. We first create one mixture component per state, train it and 
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then build two mixture components per state, etc. This process can be 

continued until the required number of mixture components is trained. The 

number of re-estimations to perform before incrementing mixtures is usually 

chosen to be four or more. This process is shown in Figure 5.3.1. 

  

 

Figure 5.3.1 The process of mixture incrementing and training 

 

In order to determine the improvement of the acoustic models by 

incrementing the number of mixtures, the experiments are performed 

beginning at one mixture. As already mentioned, in the training iterations, 

the number of Gaussian mixture components was increased at a time up to 

the number of 256, with 2n at a time thereafter.  

 The system configuration is set as follows: 

� The standard 3-state left-to-right HMM with no skip state 

� 12 order MFCCs with delta coefficients 

� 58 monophone models 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

 

5.3.1 Experimental Results 

Figures 5.3.2-5.3.9 illustrate the correction and the accuracy, as the number 

of mixtures is increased. As evident from Figures 5.3.2-5.3.5, the syllable 

recognition rates were increased when the number of mixture components 

was increased. The syllable recognition results of speaker-dependent 

systems tend to continually increase when the number of mixture 

components was increased. On the other hands, the syllable recognition 
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results of speaker-independent systems tend to be gradually increased. At 

256 mixture components per state, male and female SD systems produce 

46.1 % and 44.3 % of syllable correction, and 37.2 % and 38.3 % of syllable 

accuracy. For male and female SI systems, the syllable correction rates are 

20.7 % and 25.6 %, and the syllable accuracy rates are 8.8 % and 15.3 %.  

 

Figure 5.3.2 Syllable recognition results of male SD system 

 

Figure 5.3.3 Syllable recognition results of female SD system 
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Figure 5.3.4 Syllable recognition results of male SI system 

 

Figure 5.3.5 Syllable recognition results of female SI system 

 

 Recognition rate of phone unit in SD and SI systems exhibit the 

similar way to the syllable recognition results. Phone correction and 

accuracy rates at 256 mixture components per state are 69.5 % and 59.0 %, 

and 69.3 % and 61.1 % for male and female SD systems respectively. The 
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male and female SI systems give the syllable correction rates at 42.5 % and 

51.4 %, and the syllable accuracy rates at 28.6 % and 39.5 % respectively. 

The phone recognition results are shown in Figures 5.3.6-5.3.9.  

 

Figure 5.3.6 Phone recognition results of male SD system 

 

Figure 5.3.7 Phone recognition results of female SD system 



 125

 

Figure 5.3.8 Phone recognition results of male SI system 

 

Figure 5.3.9 Phone recognition results of female SI system 

 

5.3.2 Discussion 

Mixture component incrementing provides an iterative mechanism for 

building a multiple mixture component system from a single Gaussian 

system. The number of mixture components can be continuously increased 
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to obtain any desired balance between performance and model complexity. 

The recognition results show that both SD and SI systems achieve a higher 

performance when the number of mixture components is increased. 

However, the recognition results of SD systems is likely to rise continually, 

while the recognition results of SI systems tend to be saturated at a high 

number of mixture components. In the SD system, incrementing the large 

number mixture components yields the tightly fit acoustic model. This fitting 

acoustic model gives out a high recognition result for the SD system. On the 

contrary to the SD system, the recognition results of the SI system rise 

slightly when then number of mixture components is increased. The 

acoustic model trained with a large number of mixture components is very 

fit to the group of training speakers. When employing this fitting acoustic 

model to another group of speakers or the SI system, the recognition results 

increase in dissimilar way compared with those of the SD system. The 

acoustic model trained with a large number mixture components is not 

suitable for using in the SI system. Moreover, the acoustic model with a 

large number mixture components requires extensive computation. 

Therefore, choosing a suitable number of mixtures for the acoustic model 

yields a good efficiency in terms of performance and complexity. 

 

5.4 Experiments on Tied-State Triphone Modeling 
This experiment creates the acoustic models of the intra and inter syllable 

triphones and evaluates their performance. There are 2 main steps for 

creating the triphones.  

1. Creating triphones from monophones. In order to create a triphone 

system from a trained-monophone system, monophone models were 

copied and their transition matrices were tied. Then, triphones were 

initially trained using a forward-backward algorithm. 

2. State clustering and parameter tying: After the initial training of 

triphones, a tree-based clustering technique is employed to form the 

robust estimation of parameters of mixture distributions by utilizing a 

log likelihood criterion. The final process was state-tying, which 

merged any identical triphone states into a number of equivalence 

classes using various linguistic questions concerning the identity of 

the base phone and the triphone context (Woodland, et al., 1994). 
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Consequently, the total number of mixtures was reduced during the 

state-tying process. 

Since the performance of the triphones usually varies depending on 

the size of the tree, it is necessary to control the size of the decision tree. The 

number of leaf nodes or tied-states was controlled by the log likelihood 

criterion. Several numbers of tied-states that were made, when the triphone 

models were created by tree-based clustering, were tested to obtain the 

suitable parameters for the model. The suitable parameters of the triphones 

from state tying process will be used throughout all experiments in this 

dissertation. 

After state tying process, the tied-state triphones will be trained using 

the Baum-Welch algorithm. Then, the mixture incrementing will be applied 

to increase the number of mixture components until it reaches the required 

number. 

5.4.1 Experimental Results on Creating the Tied State 

Triphones 

The trainability problem becomes more serious when larger amounts of 

context are to be taken into account. There are many triphone contexts, 

which occur only a few times in the training corpus and many more than 

that do not occur at all. State tying is one of the methods to overcome this 

trainability problem and ensure the triphone parameters can be estimated 

reliably. 

The first step of this experiment is to vary the log likelihood to control 

the size of the decision tree. The log likelihood is adjusted to obtain the 

desired number of tied state triphones. The relation between the log 

likelihood and the number of tied state triphones is shown in Figures 5.4.1 

to 5.4.4. 

The system configuration is set as follows: 

� The standard 3-state left-to-right HMM with no skip state 

� A single component of Gaussian distribution 

� 12 order MFCCs with delta coefficients 

� 7,769 logical intra-syllable triphone models and 23,307 states 

� 64,775 logical inter-syllable triphone models and 193,425 

states 

� Training speakers – 9 male speaker and 11 female speakers 
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� Evaluation speakers – 3 speaker-dependent males and 3 

speaker-dependent females 

Any pairs of nodes for which the decrease in log likelihood is less than 

the threshold used to stop splitting are then merged at the final stage of the 

state tying. According to the log likelihood based decision criteria in eq (4.2)-

(4.4), the number of tied-state triphones is dropped when the log likelihood 

is raised. Increasing the log likelihood threshold results in reduction of the 

number of physical triphone models as well. Both numbers of tied-state 

triphones and physical triphone models decline exponentially. 

 

 

Figure 5.4.1 Relation between log likelihood and the number of tied state 

intra-syllable triphones of male speakers 
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Figure 5.4.2 Relation between log likelihood and the number of tied state 

intra-syllable triphones of female speakers 

Figure 5.4.3 Relation between log likelihood and the number of tied state 

inter-syllable triphones of male speakers 
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Figure 5.4.4 Relation between log likelihood and the number of tied state 

inter-syllable triphones of female speakers 

 

Since the decoding process of a triphone system is very complex and 

it takes much time in the recognition stage, only 3 male and 3 female 

speakers were selected to evaluate the efficiency of the acoustic models. The 

triphone parameters of a triphone system, which has the minimum word 

error rate (WER), will be used in the further experiment. The syllable 

recognition results of both intra and inter syllable triphone systems are 

shown in Figures 5.4.5-5.4.8.  

Syllable correction rates decrease continually if the number of tied 

states is dropped. Substitution and deletion errors become higher when the 

number of tied states is declined. On the contrary, insertion error decreases 

in the same way as the number of tied states is lessening. Since the inter-

syllable triphones provide cross-context acoustic modeling, the correction 

rates of the inter-syllable triphone system are better than those of the intra-

syllable triphone system. The male and female intra-syllable triphone system 

produces the highest syllable correction rates at 44.4 % and 38.1 %. The 

highest syllable correction rates of the male and female inter-syllable 

triphone system are 49.6 % and 48.5 % respectively.  
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The highest syllable accuracy is used to determine the suitable 

triphone parameters. The male and female intra-syllable triphone system 

produces the highest syllable accuracy rates at 20.2 % and 22.1 %. The 

highest syllable accuracy rates of the male and female inter-syllable triphone 

system are 25.4 % and 26.1 % respectively. Obviously, the number of states 

at the highest accuracy is different from he number of states that produces 

the highest correction. The numbers of tied states, which give the highest 

accuracy, are summarized in Table 5.4.1.  

Phone recognition results with disregarding contexts are illustrated in 

Figures 5.4.9-5.4.12. The triphone systems show correction and accuracy 

rates of phone in the similar way to those of the syllable. 

 

 

Figure 5.4.5 Syllable recognition results of intra-syllable triphone  

(male speaker-dependent system) 
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Figure 5.4.6 Syllable recognition results of intra-syllable triphone  

(female speaker-dependent system) 

 

Figure 5.4.7 Syllable recognition results of inter-syllable triphone  

(male speaker-dependent system) 
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Figure 5.4.8 Syllable recognition results of inter-syllable triphone  

(female speaker-dependent system) 

 

 

Figure 5.4.9 Phone recognition results of intra-syllable triphone  

(male speaker-dependent system) 
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Figure 5.4.10 Phone recognition results of intra-syllable triphone  

(female speaker-dependent system) 

 

Figure 5.4.11 Phone recognition results of inter-syllable triphone  

(male speaker-dependent system) 
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Figure 5.4.12 Phone recognition results of inter-syllable triphone  

(female speaker-dependent system) 

 

Table 5.4.1 The number of tied states that produces the highest accuracy 

Triphone system No. of tied states Correction Accuracy 

male 4,455 42.7 20.2 Intra-

syllable female 4,011 41.0 22.1 

male 15,949 47.1 25.4 Inter-

syllable female 12,718 45.2 26.1 

 

5.4.2 Experimental Results on Mixture Incrementing 

The next step after achieving the suitable tied state triphone parameters is to 

increase the number of Gaussian mixture components. The number of 

Gaussian mixture components was increased, starting from a single 

component of Gaussain distribution per state, up to 8 mixture components 

per state. 

The system configuration is set as follows: 

� The standard 3-state left-to-right HMM with no skip state 

� 12 order MFCCs with delta coefficients 

� 4,642 logical intra-syllable triphone models and 4,455 states 

for male system 
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� 4,510 logical intra-syllable triphone models and 4,011 states 

for female system 

� 25,776 logical inter-syllable triphone models and 15,949 states 

for male system 

� 23,388 logical inter-syllable triphone models and 12,718 states 

for female system 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

The syllable recognition results of both intra and inter syllable 

triphone systems are shown in Tables 5.4.2-5.4.9. Furthermore, phone 

recognition results with disregarding contexts are shown in Tables 5.4.10-

5.4.17. From the experimental results, the performance is boosted when the 

number of mixture components is increased. The inter-syllable triphone 

systems have higher syllable accuracy than the intra-syllable triphone 

systems. At eight mixture components per states, the inter-syllable triphone 

system gives out the syllable accuracy at 35.5 % and 36.4 %, while the intra-

syllable triphone system produces the syllable accuracy at 28.0 % and 30.4 

% for male and female SD systems. For the male and female SI systems, the 

syllable accuracy of the inter-syllable triphone system is 22.3 % and 23.4 %, 

while the syllable accuracy of the inter-syllable triphone system is 18.7 % 

and 18.9. 

  

Table 5.4.2 Syllable recognition results of intra-syllable triphone  

(male speaker-dependent system) 

No. of mixtures per state Correction Accuracy 

1 30.9 12.7 

2 34.5 17.8 

4 39.4 22.1 

8 43.3 28.0 
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Table 5.4.3 Syllable recognition results of intra-syllable triphone  

(female speaker-dependent system) 

No. of mixtures per state Correction Accuracy 

1 31.5 14.6 

2 35.9 21.3 

4 40.2 24.5 

8 44.4 30.4 

 

Table 5.4.4 Syllable recognition results of intra-syllable triphone  

(male speaker-independent system) 

No. of mixtures per state Correction Accuracy 

1 29.7 14.2 

2 31.3 16.0 

4 34.1 18.5 

8 34.5 18.7 

 

Table 5.4.5 Syllable recognition results of intra-syllable triphone  

(female speaker-independent system) 

No. of mixtures per state Correction Accuracy 

1 29.0 14.4 

2 32.9 16.5 

4 35.9 17.2 

8 36.3 18.9 

 

Table 5.4.6 Syllable recognition results of inter-syllable triphone  

(male speaker-dependent system) 

No. of mixtures per state Correction Accuracy 

1 37.4 17.5 

2 40.2 24.6 

4 43.9 30.1 

8 47.3 35.5 
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Table 5.4.7 Syllable recognition results of inter-syllable triphone  

(female speaker-dependent system) 

No. of mixtures per state Correction Accuracy 

1 36.6 18.9 

2 41.4 25.2 

4 44.1 29.7 

8 48.2 36.4 

 

Table 5.4.8 Syllable recognition results of inter-syllable triphone  

(male speaker-independent system) 

No. of mixtures per state Correction Accuracy 

1 33.4 15.7 

2 35.8 18.0 

4 37.2 21.5 

8 39.7 22.3 

 

Table 5.4.9 Syllable recognition results of inter-syllable triphone  

(female speaker-independent system) 

No. of mixtures per state Correction Accuracy 

1 33.6 15.3 

2 35.4 17.8 

4 36.9 21.0 

8 39.9 23.4 

 

The inter-syllable triphone systems also have the higher phone 

accuracy than the intra-syllable triphone systems. The phone accuracy of 

the inter-syllable triphone system is 49.6 % and 50.5 % for male and female 

SD systems, better than 44.0 % and 47.3 % of the intra-syllable triphone 

system. The inter-syllable triphone surpass the intra-syllable triphone for 

the SI systems as well. The phone accuracy of the male and female SI inter-

syllable triphone system is 41.7 % and 43.8 %, and 34.4 % and 34.8 % of 

the intra-syllable triphone system.  
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Table 5.4.10 Phone recognition results of intra-syllable triphone  

(male speaker-dependent system) 

No. of mixtures per state Correction Accuracy 

1 56.6 28.6 

2 61.2 33.9 

4 64.7 38.6 

8 67.8 44.0 

 

Table 5.4.11 Phone recognition results of intra-syllable triphone  

(female speaker-dependent system) 

No. of mixtures per state Correction Accuracy 

1 56.3 29.4 

2 61.2 34.3 

4 65.1 40.9 

8 68.9 47.3 

 

Table 5.4.12 Phone recognition results of intra-syllable triphone  

(male speaker-independent system) 

No. of mixtures per state Correction Accuracy 

1 52.5 30.6 

2 53.9 32.7 

4 54.0 33.2 

8 54.8 34.4 

 

Table 5.4.13 Phone recognition results of intra-syllable triphone  

(female speaker-independent system) 

No. of mixtures per state Correction Accuracy 

1 49.8 28.9 

2 53.8 30.0 

4 56.1 31.9 

8 58.5 34.8 
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Table 5.4.14 Phone recognition results of inter-syllable triphone  

(male speaker-dependent system) 

No. of mixtures per state Correction Accuracy 

1 60.0 33.7 

2 64.2 38.3 

4 68.8 43.7 

8 72.4 49.6 

 

Table 5.4.15 Phone recognition results of inter-syllable triphone  

(female speaker-dependent system) 

No. of mixtures per state Correction Accuracy 

1 61.9 41.3 

2 65.1 44.6 

4 69.8 46.2 

8 73.3 50.5 

 

Table 5.4.16 Phone recognition results of inter-syllable triphone  

(male speaker-independent system) 

No. of mixtures per state Correction Accuracy 

1 56.2 36.1 

2 57.4 38.3 

4 60.9 39.8 

8 62.2 41.7 

 

Table 5.4.17 Phone recognition results of inter-syllable triphone  

(female speaker-independent system) 

No. of mixtures per state Correction Accuracy 

1 58.6 38.9 

2 60.4 40.2 

4 62.7 41.5 

8 63.0 43.8 
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5.4.3 Discussion 

There are several steps in building a triphone system as described in 

Chapter 4. State tying is the important technique used to overcome the 

trainability problem of the triphones. The log likelihood threshold in the 

state tying process controls the number of tied state triphones, which relates 

to the performance of a triphone system. It is necessary to determine the 

suitable number of tied state triphones, which give the highest accuracy. 

This step takes time to adjust the log likelihood threshold, train the models, 

and evaluate the results, especially for the inter-syllable triphone system, 

which has a complex decoding process. 

 Though the process in building a triphone system is quite complex, 

the performance of a triphone system is much better than the monophone 

system. The triphones were modeled according their contexts resulting in the 

accurate acoustic model, comparing to the monophones. The inter-syllable 

triphone system outperforms the intra-syllable triphone system because the 

speech units were modeled the co-articulation across the syllable.  

The inter-syllable triphone seems to be better than the intra-syllable 

triphone. However, the numbers of tied states of the inter-syllable triphone 

system is more than that of the intra-syllable triphone system. The inter-

syllable triphone system consumes greater memory than the intra-syllable 

triphone system. Moreover, the decoding process of the inter-syllable 

triphone system is much more complex than the intra-syllable triphone 

system as depicted in Figures 4.13 and 4.14. Recognition of the inter-

syllable triphone system takes much more time in the decoding process than 

the intra-syllable triphone system. This is the weak point of the inter-syllable 

triphone system. 

In the recognition result analysis, the triphone systems have a high 

correction rate. However, the accuracy is considerable lower than the 

correction. There are many deletions in the triphone system due to the short 

duration of the units. The alternative acoustic model will be figured out to 

overcome the problem of the triphones. 
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5.5 Experiments on Onset-Rhyme Modeling 
This experiment contains three studies on onset-rhyme modeling. The first 

study will focus on determining the suitable number of states for modeling 

the onset-rhyme acoustic units. The number of states, tightly linked to the 

acoustical properties of the speech units, has affected to the performance of 

the onset-rhyme models. The second study will examine the efficiency of the 

two onset-rhyme models, CORM and PORM. These two models are generated 

from different combinations between the releasing consonant and vowel. The 

number of phonotactic onset and contextual onset units are different, while 

both models have the same number rhyme units. The syllable recognition 

results of CORM and PORM will be compared. Apart from the syllable level, 

the analysis is carried on the acoustic level, the onset-rhyme units. Analysis 

of recognition results at the bottom level of the system reveals the actual 

efficiency of the speech unit. The final study will investigate the performance 

of the system when the number of mixture components is increased. 

 

5.5.1 Experimental Results on Determining the Number of 

States 

In order to determine the appropriate number of states for acoustic modeling 

of the onset-rhyme models, the number of states should be initially set equal 

to that of the phone unit. The syllable recognition results will be compared to 

the phone units and the error will be analyzed. Then, the number of states 

will be adjusted, corresponding to the acoustical properties of the onset-

rhyme models, relating to hidden Markov models. 

 In this experiment, a smaller amount of onset-rhyme models, CORM, 

will be deployed to determine the number of states. The smaller number of 

units, the faster computation required. The standard 3-state left-to-right 

HMM with no skip state is used for both onset and rhyme modeling. The 

system configuration is set as follows: 

� 12 order MFCCs with delta coefficients 

� A single component of Gaussian distribution 

� 275 onset models and 159 rhyme models 

� Training speakers – 9 male speaker and 11 female speakers 
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� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

 

Table 5.5.1 Syllable recognition results of speech units modeling with 3-

state HMM for male speaker-dependent system  

Speech unit Correction Accuracy 

monophone 15.6 4.5 

intra-syllable triphone 30.9 12.7 

inter-syllable triphone 37.4 17.5 

CORM (o3r3) 22.4 8.0 

 

Table 5.5.2 Syllable recognition results of speech units modeling with 3-

state HMM for female speaker-dependent system  

Speech unit Correction Accuracy 

monophone 15.9 5.4 

intra-syllable triphone 31.5 14.6 

inter-syllable triphone 36.6 18.9 

CORM (o3r3) 21.9 7.7 

 

Table 5.5.3 Syllable recognition results of speech units modeling with 3-

state HMM for male speaker-independent system  

Speech unit Correction Accuracy 

monophone 12.2 0.7 

intra-syllable triphone 29.7 14.2 

inter-syllable triphone 33.4 15.7 

CORM (o3r3) 19.7 6.8 

 

Table 5.5.4 Syllable recognition results of speech units modeling with 3-

state HMM for female speaker-independent system  

Speech unit Correction Accuracy 

monophone 12.7 2.0 

intra-syllable triphone 29.0 14.4 

inter-syllable triphone 33.6 15.3 

CORM (o3r3) 19.4 7.1 
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Table 5.5.5 Onset - rhyme recognition results of CORM for speaker-

dependent system modeling onset and rhyme with 3-state HMM 

onset rhyme 
Gender 

Correction Accuracy Correction Accuracy 

male 43.4 31.1 27.1 17.4 

female 42.9 30.0 26.1 16.6 

 

Table 5.5.6 Onset - rhyme recognition results of CORM for speaker-

independent system modeling onset and rhyme with 3-state HMM 

onset rhyme 
Gender 

Correction Accuracy Correction Accuracy 

male 41.1 25.5 24.7 11.0 

female 39.4 22.3 23.5 10.2 

 

The initial experiment, modeling of each onset-rhyme, using the 

number of states equivalent to the phone models, shows the efficiency of the 

onset-rhyme models worse than the phone models. From the experimental 

results shown in Tables 5.5.1-5.5.6, the syllable recognition rates of CORM, 

modeling with a 3-state HMM, are lower than those of the triphone models. 

Recognition result of rhyme units is deteriorated compared to onset units. 

Modeling the rhyme unit with a 3-state HMM cannot capture acoustic 

information containing in the unit sufficiently. From the acoustic analysis, 

the duration of rhymes is longer than onsets. A longer state HMM should be 

employed for modeling the rhyme units. Since rhyme unit appears to be a 

concatenation of two acoustic units, a vowel and a final consonant, a 6-state 

is chosen to model the rhyme units.  

 

Table 5.5.7 Syllable recognition results for male SD system 

Speech unit Correction Accuracy 

CORM (o3r3) 22.4 8.0 

CORM (o3r6) 32.6 21.5 
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Table 5.5.8 Syllable recognition results for female SD system  

Speech unit Correction Accuracy 

CORM (o3r3) 21.9 7.7 

CORM (o3r6) 31.9 24.0 

 

Table 5.5.9 Syllable recognition results for male SI system  

Speech unit Correction Accuracy 

CORM (o3r3) 19.7 6.8 

CORM (o3r6) 28.4 18.2 

 

Table 5.5.10 Syllable recognition results for female SI system 

Speech unit Correction Accuracy 

CORM (o3r3) 19.4 7.1 

CORM (o3r6) 27.7 16.9 

 

Table 5.5.11 Onset-rhyme recognition results of CORM for male SD system 

onset rhyme 
CORM 

Correction Accuracy Correction Accuracy 

o3r3 43.4 31.1 27.1 17.4 

o3r6 50.1 43.9 41.8 31.6 

 

Table 5.5.12 Onset-rhyme recognition results of CORM  

for female SD system 

onset rhyme 
CORM 

Correction Accuracy Correction Accuracy 

o3r3 42.9 30.0 26.1 16.6 

o3r6 52.4 45.1 40.0 32.7 

 

Table 5.5.13 Onset-rhyme recognition results of CORM for male SI system 

onset rhyme 
CORM 

Correction Accuracy Correction Accuracy 

o3r3 41.1 25.5 24.7 11.0 

o3r6 47.2 40.6 38.0 31.4 
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Table 5.5.14 Onset-rhyme recognition results of CORM  

for female SI system 

onset rhyme 
CORM 

Correction Accuracy Correction Accuracy 

o3r3 39.4 22.3 23.5 10.2 

o3r6 46.8 39.8 37.6 32.2 

 

Recognition results of both syllable and onset-rhyme levels were 

significantly improved when modeling the rhyme units with a 6-state HMM 

(o3r6) as shown in Tables 5.5.7-5.5.14. Syllable accuracy rates increase 

around 13.5 % and 16.3 % for male and female SD system, and 11.4 % and 

9.8 % for male and female SI system. In the acoustic unit level, the system 

modeling rhyme units with a 6-state HMM (o3r6) provides a better 

percentage correction and accuracy of the onset-rhyme units compared to 

the system modeling rhyme units with a 3-state HMM (o3r3). A substantial 

improvement of the rhyme units for male and female SD system is 14.2 % 

and 16.1 %, and 20.4 % and 20.0 % for male and female SI system. 

Conclusively, a 3-state HMM and 6-state HMM seems to be appropriate for 

acoustic modeling of onset and rhyme and will be used throughout the 

dissertation.  

 

5.5.2 Experimental Results on Types of Onset-Rhyme Models 

By considering the combination between the releasing consonant and vowel, 

there are two types of the onset-rhyme models, Phonotactic Onset-Rhyme 

Model (PORM) and Contextual Onset-Rhyme Model (CORM). These two types 

of onset-rhyme models have different onsets while their rhymes are still 

identical. The phonotactic onset is created differently for each releasing 

consonant and each vowel context, even for vowels in the same short-long 

pair. On the contrary, the contextual onset is modeled similarly for a given 

releasing consonant an either member of same short-long vowel pair. This 

experiment will explore both two types of onset-rhyme models in order to 

determine which type will be more efficient and suitable for Thai speech 

recognition systems. The system configuration is set as follows: 

� 12 order MFCCs with delta coefficients 

� A single component of Gaussian distribution 
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� The standard 3-state left-to-right HMM with no skip state for 

onset modeling 

� The standard 6-state left-to-right HMM with no skip state for 

rhyme modeling 

� CORM 275 onset models and 159 rhyme models 

� PORM 621 onset models and 159 rhyme models 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

 

Table 5.5.15 Syllable recognition results for male SD system  

Speech unit Correction Accuracy 

CORM (o3r6) 32.6 21.5 

PORM (o3r6) 34.1 24.3 

 

Table 5.5.16 Syllable recognition results for female SD system  

Speech unit Correction Accuracy 

CORM (o3r6) 31.9 24.0 

PORM (o3r6) 33.7 26.1 

 

Table 5.5.17 Syllable recognition results for male SI system  

Speech unit Correction Accuracy 

CORM (o3r6) 28.4 18.2 

PORM (o3r6) 30.3 19.6 

 

Table 5.5.18 Syllable recognition results for female SI system  

Speech unit Correction Accuracy 

CORM (o3r6) 27.7 16.9 

PORM (o3r6) 29.8 17.5 

 

Recognition results gave accuracies at 22.8 % and 17.6 % for SD and 

SI systems using the CORM and at 25.2 % and 18.6 % for SD and SI 

systems using the PORM. 
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Table 5.5.19 Onset-rhyme recognition results for male SD system  

onset rhyme 
Speech unit 

Correction Accuracy Correction Accuracy 

CORM (o3r6) 50.1 39.9 41.8 31.6 

PORM (o3r6) 54.7 43.0 42.4 31.8 

 

Table 5.5.20 Onset-rhyme recognition results for female SD system  

onset rhyme 
Speech unit 

Correction Accuracy Correction Accuracy 

CORM (o3r6) 52.4 45.1 40.0 32.7 

PORM (o3r6) 55.3 48.2 41.7 33.6 

 

Table 5.5.21 Onset-rhyme recognition results for male SI system  

onset rhyme 
Speech unit 

Correction Accuracy Correction Accuracy 

CORM (o3r6) 47.2 40.6 38.0 31.4 

PORM (o3r6) 49.9 43.5 39.8 33.1 

 

Table 5.5.22 Onset-rhyme recognition results for female SI system  

onset rhyme 
Speech unit 

Correction Accuracy Correction Accuracy 

CORM (o3r6) 46.8 39.8 37.6 32.2 

PORM (o3r6) 49.4 42.7 39.1 32.9 

 

On the result analysis of the onset-rhyme units, the correction and 

accuracy of the phonotactic onset are better than the contextual onset as 

shown in Tables 5.5.19-5.5.22. The accuracy of the PORM onset shows a 

modest improvement 7.4 % and 7.2 % over the CORM onset for speaker-

dependent and speaker-independent systems. Since the rhyme units of both 

CORM and PORM are identical, the recognition results of the rhyme units 

are slightly different. 
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5.5.3 Experimental Results on Mixture Incrementing 

To achieve higher performance, similar to the previous experiments, mixture 

incrementing is applied. The number of Gaussian mixture components was 

increased up to 8 mixture components per state.  

The system configuration is set as follows: 

� 12 order MFCCs with delta coefficients 

� The standard 3-state left-to-right HMM with no skip state for 

onset modeling 

� The standard 6-state left-to-right HMM with no skip state for 

rhyme modeling 

� CORM 275 onset models and 159 rhyme models 

� PORM 621 onset models and 159 rhyme models 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

At higher mixture components, the recognition results are improved 

as shown in Tables 5.5.23-5.5.38. The PORM improves the syllable accuracy 

of the CORM by nearly 2.2 % and 1.9 % for SD and SI systems at eight 

mixture components per state. At the acoustic unit level, the PORM onset is 

better than the CORM onset in terms of accuracy. The improvement nearly 

3.0 % and 4.1 % for SD and SI systems over the CORM onset shows the 

advantages of the PORM onset. However, the performance of the CORM and 

the PORM rhymes is insignificantly different. 

 

Table 5.5.23 Syllable recognition results of CORM male SD system 

No. of mixtures per state Correction Accuracy 

1 32.6 21.5 

2 38.9 27.6 

4 42.7 33.2 

8 47.8 38.9 
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Table 5.5.24 Syllable recognition results of CORM female SD system 

No. of mixtures per state Correction Accuracy 

1 31.9 24.0 

2 36.6 29.5 

4 42.1 35.4 

8 49.1 42.5 

 

Table 5.5.25 Syllable recognition results of CORM male SI system 

No. of mixtures per state Correction Accuracy 

1 28.4 18.2 

2 33.5 22.7 

4 37.5 26.1 

8 41.3 29.8 

 

Table 5.5.26 Syllable recognition results of CORM female SI system 

No. of mixtures per state Correction Accuracy 

1 27.7 16.9 

2 32.6 23.5 

4 38.7 26.8 

8 43.4 31.2 

 

Table 5.5.27 Syllable recognition results of PORM male SD system 

No. of mixtures per state Correction Accuracy 

1 34.1 24.3 

2 41.9 30.4 

4 44.8 36.0 

8 50.5 41.7 

 

Table 5.5.28 Syllable recognition results of PORM female SD system 

No. of mixtures per state Correction Accuracy 

1 33.7 26.1 

2 40.4 33.3 

4 46.2 38.6 

8 52.7 44.0 
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Table 5.5.29 Syllable recognition results of PORM male SI system 

No. of mixtures per state Correction Accuracy 

1 30.3 19.6 

2 34.4 24.1 

4 38.0 27.9 

8 42.9 31.3 

 

Table 5.5.30 Syllable recognition results of PORM female SI system 

No. of mixtures per state Correction Accuracy 

1 29.8 17.5 

2 34.7 25.6 

4 39.6 29.3 

8 45.3 33.5 

 

Table 5.5.31 Onset-rhyme recognition results of CORM male SD system 

onset rhyme No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 50.1 39.9 41.8 31.6 

2 55.5 46.2 46.2 36.9 

4 60.9 52.4 49.7 41.2 

8 66.0 58.3 53.6 45.9 

 

Table 5.5.32 Onset-rhyme recognition results of CORM female SD system 

onset rhyme No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 52.4 45.1 40.0 32.7 

2 58.3 51.9 44.5 38.1 

4 62.8 57.0 47.5 41.7 

8 69.4 66.3 52.6 49.6 
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Table 5.5.33 Onset-rhyme recognition results of CORM male SI system 

onset rhyme No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 47.2 40.6 38.0 31.4 

2 51.2 44.2 42.1 35.2 

4 54.0 47.4 45.0 39.4 

8 59.6 52.0 48.6 43.0 

 

Table 5.5.34 Onset-rhyme recognition results of CORM female SI system 

onset rhyme No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 46.8 39.8 37.6 32.2 

2 52.2 44.8 42.9 34.5 

4 56.8 48.7 46.9 39.8 

8 60.5 53.1 49.4 44.4 

 

Table 5.5.35 Onset-rhyme recognition results of PORM male SD system 

onset rhyme No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 54.7 43.0 42.4 31.8 

2 59.9 49.3 47.6 37.7 

4 65.6 55.4 51.3 42.8 

8 71.2 60.7 54.3 47.2 

 

Table 5.5.36 Onset-rhyme recognition results of PORM female SD system 

onset rhyme No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 55.3 48.2 41.7 33.6 

2 62.1 56.9 45.6 39.8 

4 67.3 63.4 49.1 42.0 

8 74.7 69.8 54.0 51.5 
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Table 5.5.37 Onset-rhyme recognition results of PORM male SI system 

onset rhyme No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 49.9 43.5 39.8 33.1 

2 54.3 47.0 43.6 36.0 

4 58.5 49.8 46.3 40.2 

8 63.7 54.9 49.4 43.5 

 

Table 5.5.38 Onset-rhyme recognition results of PORM female SI system 

onset rhyme No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 49.4 42.7 39.1 32.9 

2 55.7 47.3 44.3 34.9 

4 60.2 52.5 50.6 45.1 

8 65.8 58.3 53.9 45.2 

 

5.5.4 Discussion 

The number of HMM states has an effect on the performance of the acoustic 

model. The onset-rhyme system using a 3-state HMM for modeling both 

onset and rhyme has a very low recognition results, comparing to the 

triphone systems. Recognition results in the acoustic level show that 

accuracy of the rhyme units is deteriorated compared to the onset units. 

Acoustic analysis reveals that the duration of rhymes is longer than onsets. 

A longer state HMM should be employed for modeling the rhyme units. The 

rhyme unit appears to be a concatenation of two acoustic units, a vowel and 

a final consonant. Therefore, a 6-state HMM is chosen to model the rhyme 

units. The recognition results of the rhyme units were substantially 

improved around 15.0 % and 20.2 % for SD and SI systems. Hence, a 3-

state HMM and 6-state HMM seems to be appropriate for acoustic modeling 

of onset and rhyme. 

The phonotactic onset units of the PORM model each releasing 

consonant in every possible vowel context in Thai syllables. The contextual 

onset units of the CORM treat a given releasing consonant the same way in 

contexts of vowels belonging to the same short-long pair. From speech signal 

characteristics, formant transition patterns of the same releasing consonant 
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are comparable within a short and long monophthong pair, including 

diphthongs. 

The CORM then has a smaller number of onset units than the PORM. 

Both PORM and CORM share the same rhyme units, which cover every 

possible combination of a vowel and arresting consonant in Thai syllables. 

Since the onset of PORM completely models the initial consonant along with 

its transitional portion towards the vowel in every context, the PORM is more 

accurate than the CORM. Though the PORM has a higher accuracy than the 

CORM, the PORM system is more complex than the CORM due to the larger 

units of the PORM. 

 

5.6 Experiments on Initial-Final Modeling 
In phonological point of view, the context-dependent Initial-Final model is 

similar to the CORM. However, The difference between the CORM and the 

context-dependent Initial-Final model is the segmentation. The Initial-Final 

models are investigated the effect of the difference in this segmentation. The 

Initial followed by a Final has been used as the basic acoustic unit in 

Chinese speech recognition. There are two types of the Initial-Final models, 

context-independent Initial-Final and context-dependent Initial-Final. For 

the context-independent Initial-Final, the Initial comprises an initial 

consonant of the syllable while the Final consists of a vowel or diphthong 

part, including a possible medial or nasal ending. On the other hands, 

context-dependent Initial models are expanded from context-independent 

Initial models according to its following Final. The two types of Initial-Final 

models will be applied to the Thai language and its results will be analyzed. 

Finally, the number of Gaussian mixture components is increased up to 

eight mixtures per state. 

 

5.6.1 Experimental Results on Types of Initial-Final Models 

In this section, the first experiment is conducted to compare the 

performance of the context-independent Initial-Final and the context-

dependent Initial-Final. The Initial-Final models are comparable to the 

onset-rhyme models in both acoustical and phonological points of views. To 

compare the Initial-Final models with the onset-rhyme models, the same 

parameters would be applied to both models. From the previous section, the 
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appropriate number of HMM states for onset-rhyme modeling was 

determined. This parameter is applied to Initial-Final modeling as well. 

 The system configuration is set as follows: 

� 12 order MFCCs with delta coefficients 

� A single component of Gaussian distribution 

� The standard 3-state left-to-right HMM with no skip state for 

Initial modeling 

� The standard 6-state left-to-right HMM with no skip state for 

Final modeling 

� 33 context-independent Initial models and 159 Final models 

� 279 context-dependent Initial models and 159 Final models 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

 

The initial experiment was conducted to compare the efficiency the context-

independent Initial-Final model and the context-independent Initial-Final 

model. The recognition results show clearly that the context-dependent 

Initial-Final model outperforms the context-independent Initial-Final model 

as indicated in Tables 5.6.1-5.6.4. The acoustic model incorporating 

contextual information improves the syllable accuracy approximately % and 

% for SD and SI systems. 

 

Table 5.6.1 Syllable recognition results for male SD system  

Initial-Final Correction Accuracy 

Context-independent 24.6 15.6 

Context-dependent 29.2 18.5 

 

 

 

Table 5.6.2 Syllable recognition results for female SD system  

Initial-Final Correction Accuracy 

Context-independent 24.3 16.5 

Context-dependent 29.7 19.4 
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Table 5.6.3 Syllable recognition results for male SI system  

Initial-Final Correction Accuracy 

Context-independent 21.7 11.2 

Context-dependent 25.4 15.9 

 

Table 5.6.4 Syllable recognition results for female SI system  

Initial-Final Correction Accuracy 

Context-independent 20.9 11.8 

Context-dependent 25.0 15.6 

 

 The recognition results of acoustic units are shown in Tables 5.6.5-

5.6.8. The context-dependent Initial shows better results in both SD and SI 

systems. A substantial improvement of the context-dependent Initial is 7.1 % 

and 8.7 % for SD and SI systems. On the other hands, the Final of the two 

models are identical. Exploiting contextual information in the context-

dependent Initial does not affect the efficiency of the Final. The results show 

a slightly different accuracy of the Final model. 

 
Table 5.6.5 Initial-Final recognition results for male SD system  

Initial Final 
Initial-Final 

Correction Accuracy Correction Accuracy 

Context-independent 38.8 32.4 36.3 27.5 

Context-dependent 45.3 39.1 38.2 29.0 

 

Table 5.6.6 Initial-Final recognition results for female SD system  

Initial Final 
Initial-Final 

Correction Accuracy Correction Accuracy 

Context-independent 41.2 36.8 35.6 30.9 

Context-dependent 49.5 44.3 37.8 31.6 

 

Table 5.6.7 Initial-Final recognition results for male SI system 

Initial Final 
Initial-Final 

Correction Accuracy Correction Accuracy 

Context-independent 35.7 29.2 34.9 29.5 

Context-dependent 44.3 39.1 35.9 30.7 
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Table 5.6.8 Initial-Final recognition results for female SI system  

Initial Final 
Initial-Final 

Correction Accuracy Correction Accuracy 

Context-independent 34.4 28.7 32.2 27.5 

Context-dependent 42.6 36.1 33.1 28.6 

 

5.6.2 Experimental Results on Mixture Incrementing 

A single Gaussian mixture was split to attain a higher recognition 

performance. The splitting mixture models were re-estimated using the 

forward-backward algorithm. Finally, the number of Gaussian distributions 

was increased to eight mixture components per state. 

The system configuration is set as follows: 

� 12 order MFCCs with delta coefficients 

� The standard 3-state left-to-right HMM with no skip state for 

Initial modeling 

� The standard 6-state left-to-right HMM with no skip state for 

Final modeling 

� 33 context-independent Initial models and 159 Final models 

� 279 context-dependent Initial models and 159 Final models 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

The recognition results show the improvement when the number of 

mixture components is increased. The context-dependent Initial-Final model 

highly surpasses the context-independent Initial-Final model in terms of 

recognition rates. From the syllable recognition results in Tables 5.6.9-

5.6.16, the context-dependent Initial-Final model outperforms the context-

independent Initial-Final model by 5.0 % and 4.7 % for SD and SI systems at 

eight mixture components per state. 
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Table 5.6.9 Syllable recognition results of context-independent 

Initial-Final (male SD system) 

No. of mixtures per state Correction Accuracy 

1 24.6 15.6 

2 30.2 21.6 

4 34.4 26.7 

8 39.4 31.8 

 

Table 5.6.10 Syllable recognition results of context-independent 

Initial-Final (female SD system) 

No. of mixtures per state Correction Accuracy 

1 24.3 16.5 

2 31.2 25.1 

4 35.2 29.4 

8 39.6 34.0 

 

Table 5.6.11 Syllable recognition results of context-independent 

Initial-Final (male SI system) 

No. of mixtures per state Correction Accuracy 

1 21.7 11.2 

2 23.5 14.4 

4 25.1 18.0 

8 27.7 21.2 

 

Table 5.6.12 Syllable recognition results of context-independent 

Initial-Final (female SI system) 

No. of mixtures per state Correction Accuracy 

1 20.9 11.8 

2 25.7 17.0 

4 28.6 20.2 

8 31.7 24.4 
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Table 5.6.13 Syllable recognition results of context-dependent 

Initial-Final (male SD system) 

No. of mixtures per state Correction Accuracy 

1 29.2 18.5 

2 33.4 24.0 

4 39.9 30.1 

8 45.5 36.4 

 

Table 5.6.14 Syllable recognition results of context-dependent 

(female SD system) 

No. of mixtures per state Correction Accuracy 

1 29.7 19.4 

2 34.5 24.6 

4 39.4 31.2 

8 46.8 39.3 

 

Table 5.6.15 Syllable recognition results of context-dependent 

Initial-Final (male SI system) 

No. of mixtures per state Correction Accuracy 

1 25.4 15.9 

2 31.7 19.3 

4 34.6 22.8 

8 38.4 26.5 

 

Table 5.6.16 Syllable recognition results of context-dependent 

Initial-Final (female SI system) 

No. of mixtures per state Correction Accuracy 

1 25.0 15.6 

2 30.3 19.7 

4 34.9 23.8 

8 41.8 28.4 

 

Analysis of recognition results at the acoustic unit level reveals the 

actual efficiency of the units clearly. The recognition results of the Initial-

Final model are shown in Tables 5.6.17-5.6.24. Using the context-dependent 
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Initial model can improve the accuracy by 5.4 % and 4.6 % over the context-

independent Initial model for SD and SI systems at eight mixture 

components per state.  

 

Table 5.6.17 Context-independent Initial-Final recognition results 

 of male SD system 

Initial Final No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 38.8 32.4 36.3 27.5 

2 44.6 38.6 41.0 33.1 

4 49.6 44.5 44.1 39.3 

8 55.4 50.6 48.4 42.7 

 

Table 5.6.18 Context-independent Initial-Final recognition results 

 of female SD system 

Initial Final No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 41.2 36.8 35.6 30.9 

2 47.6 44.0 39.9 35.3 

4 53.0 50.7 43.2 38.9 

8 60.4 56.3 48.9 44.8 

 

Table 5.6.19 Context-independent Initial-Final recognition results 

 of male SI system 

Initial Final No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 35.7 29.2 34.9 29.5 

2 41.4 34.6 37.5 32.7 

4 47.0 40.4 40.9 35.3 

8 52.1 46.4 43.4 39.7 
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Table 5.6.20 Context-independent Initial-Final recognition results 

 of female SI system 

Initial Final No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 34.4 28.7 32.2 27.5 

2 39.4 35.2 35.0 32.9 

4 44.7 39.0 39.9 35.1 

8 50.4 45.7 42.3 38.6 

 

Table 5.6.21 Context-dependent Initial-Final recognition results 

 of male SD system 

Initial Final No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 45.3 39.1 38.2 29.0 

2 51.9 42.5 43.4 35.8 

4 57.7 49.2 47.9 40.6 

8 63.4 55.7 52.5 45.1 

 

Table 5.6.22 Context-dependent Initial-Final recognition results 

 of female SD system 

Initial Final No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 49.5 44.3 37.8 31.6 

2 56.7 49.5 41.2 36.9 

4 59.3 54.4 45.7 39.3 

8 65.2 61.9 51.0 47.7 

 

Table 5.6.23 Context-dependent Initial-Final recognition results 

 of male SI system 

Initial Final No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 44.3 39.1 35.9 30.7 

2 48.8 42.7 40.3 33.9 

4 52.6 45.9 43.8 37.6 

8 57.4 50.5 46.2 42.1 
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Table 5.6.24 Context-dependent Initial-Final recognition results 

 of female SI system 

Initial Final No. of mixtures 

per state Correction Accuracy Correction Accuracy 

1 42.6 36.1 33.1 28.6 

2 47.3 40.4 38.2 33.7 

4 53.7 45.6 43.9 37.5 

8 58.4 50.7 47.8 42.9 

 

5.6.3 Discussion 

Like a phone unit, context-dependent acoustic modeling provides a better 

result than context-independent acoustic modeling. The context-dependent 

Initial-Final yields a superior accuracy over the context-independent Initial-

Final. This indicates that context-dependent acoustic modeling contributes 

an accurate acoustic unit. At eight mixture components per state, the 

accuracy of the context-dependent Initial is better than that of the context-

independent Initial around 5.4 % and 4.6 %, while the Final of the context-

dependent Initial-Final provides a higher accuracy around 2.7 % and 3.4 % 

for the SD and SI systems, respectively. 

The context-dependent Initial-Final seems to be similar to the CORM. 

The number of units of these two models is identical. However, The 

difference between the CORM and the context-dependent Initial-Final model 

is the segmentation. The CORM onset consists of the releasing consonant 

and the transitional stage to its following vowel, whereas the context-

dependent Initial contains the releasing consonant only. The recognition 

results show that the accuracy of the CORM onset is higher than the 

context-dependent Initial. However, in the other part of the syllable, the 

Final and the rhyme are comparable. The recognition results of the Final 

and the rhyme are insignificant different. 
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5.7 Experiments on Speech Recognition System 

using Acoustic Modeling Only 
In order to obtain the actual efficiency of an acoustic model, a language 

model should not be applied. All kinds of speech units will be evaluated and 

compared their efficiency. The efficiency of all speech units will be compared 

by syllable recognition results since each speech unit has the equal number 

of syllables. On the other hands, the numbers of acoustic units of the phone, 

monophone and triphone, and the subsyllable, Initial-Final and onset-

rhyme, are different. The results of acoustic unit will be analyzed and 

compared within the groups of phone and subsyllable units. 

All speech units were trained and increased their mixture components 

up to 16 mixture components per state. Some speech units cannot be 

increased their mixture components over 16 mixture components per state 

because there are a few samples of those units, especially the triphones. A 

large number of mixtures cannot be fit to the model. The system 

configuration is set as follows: 

� 12 order MFCCs with delta coefficients 

� 16 Gaussian mixture components per state 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

 

5.7.1 Experimental Results 

Syllable recognition rates for each speech unit are shown in Tables 5.7.1-

5.7.4. Recognition results show that the accuracy of monophones and 

triphones, are lower than those for speech units larger than phones due to 

the high insertion. The inter-syllable triphones performs better accuracy 

than monophones and intra-syllable triphones. The inter-syllable triphone 

system performs at 39.0 % and 24.8 % accuracy for male SD and SI 

systems, and 41.7 %, and 28.8 % accuracy for female SD and SI systems. 

The PORM gives the highest accuracy at 45.4 % for male SD system and 

48.1 % for female SD system. For the SI systems, the PORM also gives the 

highest accuracy. The accuracy of the CD Initial-Final is 40.9 % and 29.3 % 

for male SD and SI systems and 44.2 % and 30.4 % for female SD and SI 
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systems. This is better than that for phone modeling units and the CI Initial-

Final model, and worse than those for either PORM or CORM. 

 

Table 5.7.1 Syllable recognition results for male SD system 

 using acoustic modeling only 

Speech unit Correction Accuracy 

monophone 29.4 17.3 

Intra-syllable triphone 48.0 31.8 

Inter-syllable triphone 52.2 39.0 

CI Initial-Final 44.8 37.7 

CD Initial-Final 50.7 40.9 

CORM 52.8 42.9 

PORM 55.3 45.4 

 

Table 5.7.2 Syllable recognition results for female SD system 

 using acoustic modeling only 

Speech unit Correction Accuracy 

monophone 30.1 21.8 

Intra-syllable triphone 47.7 37.7 

Inter-syllable triphone 53.1 41.7 

CI Initial-Final 44.4 39.0 

CD Initial-Final 50.8 44.2 

CORM 54.6 46.3 

PORM 56.1 48.1 

 

Table 5.7.3 Syllable recognition results for male SI system 

 using acoustic modeling only 

Speech unit Correction Accuracy 

monophone 18.8 9.0 

Intra-syllable triphone 35.2 19.2 

Inter-syllable triphone 41.4 24.8 

CI Initial-Final 31.7 25.6 

CD Initial-Final 41.5 29.3 

CORM 44.3 32.7 

PORM 45.9 34.1 
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Table 5.7.4 Syllable recognition results for female SI system 

 using acoustic modeling only 

Speech unit Correction Accuracy 

monophone 22.3 11.5 

Intra-syllable triphone 39.2 20.0 

Inter-syllable triphone 43.8 28.8 

CI Initial-Final 32.9 26.6 

CD Initial-Final 45.8 30.4 

CORM 47.3 34.2 

PORM 49.5 36.7 

 

Apart from the syllable accuracy, the recognition results of Initial-

Final and onset-rhyme acoustic units were analyzed. The analysis of the 

recognition results at the bottom level of the system, the acoustic level, 

reveals the actual efficiency of the speech unit. Since the context-dependent 

Initials and the onsets of PORM and CORM are context-dependent, they give 

better accuracy than the context-independent Initial as shown in Tables 

5.7.9-5.7.12. Although the context-dependent Initial and the onset are the 

right context-dependent units, the onset outperforms the context-dependent 

Initial. The transitional portion towards the vowel, included in the onset, has 

contributed substantially to the precise modeling of the initial consonant 

segment. The accuracy of the onset in CORM is higher than the accuracy of 

the context-dependent Initial by 2.5 % and 2.1 % for male SD and SI 

systems, and 3.2 % and 3.0 % for female SD and SI systems. The onset of 

PORM provides better accuracy than the onset of CORM nearly 3.8 % and 

4.2 % for SD and SI systems, and achieves the highest accuracy at 67.3 % 

and 59.4 % for male SD and SI systems, and 74.4 % and 62.7 % for female 

SD and SI systems. At the other part of the syllable, the accuracies of the 

Final and the rhyme are slightly different as shown in Tables 5.7.9-5.7.12. 

The Final and rhyme units give comparable accuracies due to the similar 

modeling of these units. The examples of aligned transcription of the 

recognized result and the reference label are shown in Figures 5.7.1-5.7.4. 
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Table 5.7.5 Phone recognition results of monophone and triphone 

 for male SD system using acoustic modeling only 

Speech unit Correction Accuracy 

monophone 53.7 39.9 

Intra-syllable triphone 69.5 47.4 

Inter-syllable triphone 76.3 54.7 

 

Table 5.7.6 Phone recognition results of monophone and triphone 

 for female SD system using acoustic modeling only 

Speech unit Correction Accuracy 

monophone 56.1 45.5 

Intra-syllable triphone 71.0 53.4 

Inter-syllable triphone 77.8 59.8 

 

Table 5.7.7 Phone recognition results of monophone and triphone 

 for male SI system using acoustic modeling only 

Speech unit Correction Accuracy 

monophone 41.3 29.1 

Intra-syllable triphone 56.2 36.1 

Inter-syllable triphone 66.2 45.4 

 

Table 5.7.8 Phone recognition results of monophone and triphone 

 for female SI system using acoustic modeling only 

Speech unit Correction Accuracy 

monophone 45.3 31.8 

Intra-syllable triphone 60.5 37.8 

Inter-syllable triphone 66.0 47.9 
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Table 5.7.9 Recognition results of Initial-Final and Onset-Rhyme units 

 for male SD system using acoustic modeling only 

Initial/Onset Final/Rhyme Speech 

unit Correction Accuracy Correction Accuracy 

CI Initial-

Final 
59.3 54.6 52.9 45.4 

CD Initial-

Final 
67.8 61.7 55.8 49.7 

CORM 70.9 64.2 57.9 51.2 

PORM 74.1 67.3 59.4 51.8 

 

Table 5.7.10 Recognition results of Initial-Final and Onset-Rhyme units 

 for female SD system using acoustic modeling only 

Initial/Onset Final/Rhyme Speech 

unit Correction Accuracy Correction Accuracy 

CI Initial-

Final 
64.9 60.7 54.4 50.2 

CD Initial-

Final 
70.8 65.9 56.0 53.0 

CORM 73.5 69.1 57.3 55.9 

PORM 78.3 74.4 58.7 55.6 

 

Table 5.7.11 Recognition results of INTIAL-Final and Onset-Rhyme units for 

male SI system using acoustic modeling only 

Initial/Onset Final/Rhyme Speech 

unit Correction Accuracy Correction Accuracy 

CI Initial-

Final 
56.8 50.2 45.8 42.2 

CD Initial-

Final 
61.5 54.9 49.3 45.1 

CORM 64.5 57.0 51.9 47.4 

PORM 66.7 59.4 52.6 47.6 
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Table 5.7.12 Recognition results of Initial-Final and Onset-Rhyme units 

 for female SI system using acoustic modeling only 

Initial/Onset Final/Rhyme Speech 

unit Correction Accuracy Correction Accuracy 

CI Initial-

Final 
55.3 48.6 46.2 41.5 

CD Initial-

Final 
60.2 54.5 51.5 45.7 

CORM 64.9 57.5 53.6 46.2 

PORM 68.3 62.7 57.4 47.8 

 

 

Figure 4.7.1 Alignment of reference vs recognition transcription 

(monophone, intra-syllable triphone, and inter-syllable triphone) 
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Figure 4.7.2 Alignment of reference vs recognition transcription 

 (CI Initial-Final and CD Initial-Final) 

 

 

Figure 4.7.3 Alignment of reference vs recognition transcription 

 (CORM and PORM) 
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Figure 4.7.4 Alignment of reference vs recognition transcription  

in the syllable level 

 

5.7.2 Discussion 

Considering the training data, the onset-rhyme units seem to have a poorer 

scalability for the small amount of training data. The triphone system has 

the additional techniques to overcome the trainability problem. However, 

when the training data are large enough, the complexity of the onset-rhyme 

system is lower than the comparable triphone system when state-tying and 

context-clustering are not employed. Additionally, decoding process of the 

context-dependent phone model, especially inter-syllable triphone, is much 

more complex than the onset-rhyme models. 

Compared with the context-independent Initial-Final model, the 

onset-rhyme models provide better modeling of speech segments as follows. 

The onset explicitly models internal coarticulatory effects within a syllable 

while the context-independent Initial implies a single model of a given initial 

consonant occurring in every vowel context. This makes the onset more 

precisely modeled than the context-independent Initial. In addition, a 

language model is embedded into the onset-rhyme model by means of 

phonological rules of composing this model into a syllable. Although the 

context-dependent Initial models the initial consonant differently depending 

on its following vowel, it cannot capture contextual information adequately. 

The Initial does not include the transitional portion towards the vowel within 

the model, which is an important acoustic cue. As a result, the onset-rhyme 

model gives a better accuracy than context-dependent Initial-Final model. 
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The recognition results indicated that the onset-rhyme outperforms the 

context-dependent Initial-Final model. 

 

The phonotactic onset units of the PORM model each releasing 

consonant in every possible vowel context in Thai syllables. The contextual 

onset units of the CORM treat a given releasing consonant the same way in 

contexts of vowels belonging to the same short-long pair. From speech signal 

characteristics, formant transition patterns of the same releasing consonant 

are comparable within a short and long monophthong pair, including 

diphthongs. Both PORM and CORM share the same rhyme units, which 

cover every possible combination of a vowel and arresting consonant in Thai 

syllables. Since the onset of PORM completely models the initial consonant 

along with its transitional portion towards the vowel in every context, the 

PORM is more accurate than the CORM. However, The PORM improves the 

syllable accuracy of the CORM only 2.2 % and 2.0 % for the SD and SI 

system. Moreover, the CORM then has a smaller number of onset units than 

the PORM. From the experimental results, the CORM has the efficiency in 

terms of accuracy and complexity. Therefore, should be appropriate for 

acoustic modeling of the Thai language. 

 

5.8 Experiments on Speech Recognition System 

using Acoustic Modeling and Language Modeling 
Incorporating the language model can boost the performance of a speech 

recognition system. A bigram language model model is selected in this 

research while a complex language model would require more study on the 

syntactic and semantic rules. For a bigram language model, a syllable can 

only connect to syllables that can legally follow it. This bigram language 

model is used to evaluate the performance of the recognition system, which 

is composed of an acoustic model and grammar. The perplexity of this 

bigram language model is 252.03. The language model is used to perform 

the linguistic post-processing and determine the optimal syllable sequence. 

 The system configuration is set as follows: 

� 12 order MFCCs with delta coefficients 

� 16 Gaussian mixture components per state 

� Training speakers – 9 male speaker and 11 female speakers 
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� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

 

5.8.1 Experimental Results 

The recognition results of systems using both acoustic modeling and 

language modeling are shown in Tables 5.8.1-5.8.4. As was the case for the 

systems using acoustic modeling only, the PORM attains the highest syllable 

accuracy at 75.2 % for male SD and 75.6 % for female SD systems. For the 

SI systems, the PORM also achieves the highest syllable accuracy at 62.8 % 

for male speakers and 64.8 % for female speakers. The system using a CD 

phone unit, inter-syllable triphone, performs at 68.8 % and 53.7 % accuracy 

for male SD and SI systems, and 70.1 % and 54.9 % accuracy for female SD 

and SI systems, better than the system with monophone and intra-syllable 

triphone units, and worse than the systems utilizing speech units larger 

than phones. It is noticeable that the language modeling, incorporated in 

speech recognition system, increases the performance of the system. The 

accuracy of PORM is boosted from 45.4 % to 75.2 % for male SD system and 

from 48.1 % to 75.6 % for female SD system, compared with a system using 

acoustic modeling only. The accuracy of PORM in the SI systems, as well as 

in the SD systems, is increased from 34.1 % to 62.8 % for male speakers 

and from 36.7 % to 64.8 % for female speakers. Figures 5.8.1-5.8.4 show the 

comparison of the syllable accuracy between the system using acoustic 

model only and the system using both acoustic model and language model. 

Table 5.8.1 Syllable recognition results for male SD system 

 using acoustic modeling and language modeling 

Speech unit Correction Accuracy 

monophone 50.1 42.9 

Intra-syllable triphone 67.7 62.6 

Inter-syllable triphone 73.4 68.8 

CI Initial-Final 66.2 64.1 

CD Initial-Final 72.9 71.0 

CORM 75.9 73.3 

PORM 77.4 75.2 
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Table 5.8.2 Syllable recognition results for female SD system 

 using acoustic modeling and language modeling 

Speech unit Correction Accuracy 

monophone 51.7 42.7 

Intra-syllable triphone 68.1 61.2 

Inter-syllable triphone 74.7 70.1 

CI Initial-Final 67.9 65.7 

CD Initial-Final 73.6 71.4 

CORM 76.1 73.8 

PORM 78.5 75.6 

 

Table 5.8.3 Syllable recognition results for male SI system 

 using acoustic modeling and language modeling 

Speech unit Correction Accuracy 

monophone 42.3 35.8 

Intra-syllable triphone 53.1 46.3 

Inter-syllable triphone 58.5 53.7 

CI Initial-Final 49.4 47.6 

CD Initial-Final 60.2 57.9 

CORM 63.7 61.7 

PORM 64.4 62.8 

 

Table 5.8.4 Syllable recognition results for female SI system 

 using acoustic modeling and language modeling 

Speech unit Correction Accuracy 

monophone 44.3 38.2 

Intra-syllable triphone 55.7 49.0 

Inter-syllable triphone 60.4 54.9 

CI Initial-Final 50.2 47.7 

CD Initial-Final 59.1 56.3 

CORM 64.2 61.9 

PORM 66.5 64.8 
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Figure 5.8.1 Syllable accuracy of the male SD system using acoustic model 

only and the male SD system using acoustic model and language model 
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Figure 5.8.2 Syllable accuracy of the female SD system using acoustic 

model only and the female SD system using acoustic model and language 

model 
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Figure 5.8.3 Syllable accuracy of the male SI system using acoustic model 

only and the male SI system using acoustic model and language model 
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Figure 5.8.4 Syllable accuracy of the female SI system using acoustic model 

only and the female SI system using acoustic model and language model 

 

As in the previous experiment, the recognition results of acoustic 

units of Initial-Final and onset-rhyme models were also analyzed. These 

results are shown in Tables 5.8.9-5.8.12. In this language model-combined 

system, the accuracies of onsets of both PORM and CORM still exceed that 

for the context-dependent Initial, and the accuracy of the PORM onset is 

higher than that of the CORM onset. Using the language model, the Initial 

and the onset accuracies are increased by around 18-25 % and 16-21 % for 
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both SD and SI systems. In addition, the accuracies of the Final and the 

rhyme are substantially improved by nearly 43-46 % and 45-47 % for both 

SD and SI systems when the language model is applied. Figures 5.8.5-5.8.12 

show the comparison of the syllable accuracy between the system using 

acoustic model only and the system using both acoustic model and language 

model. The examples of aligned transcription of the recognized result and 

the reference label are shown in Figures 5.8.13-5.8.14. 

Table 5.8.5 Phone recognition results of monophone and triphone 

 for male SD system using acoustic modeling and language modeling 

Speech unit Correction Accuracy 

monophone 68.7 57.4 

Intra-syllable triphone 72.2 63.7 

Inter-syllable triphone 83.6 72.1 

 

Table 5.8.6 Phone recognition results of monophone and triphone 

 for female SD system using acoustic modeling and language modeling 

Speech unit Correction Accuracy 

monophone 69.4 62.5 

Intra-syllable triphone 75.2 64.1 

Inter-syllable triphone 84.6 73.2 

 

Table 5.8.7 Phone recognition results of monophone and triphone 

 for male SI system using acoustic modeling and language modeling 

Speech unit Correction Accuracy 

monophone 50.9 42.6 

Intra-syllable triphone 62.6 58.2 

Inter-syllable triphone 70.7 64.4 

 

Table 5.8.8 Phone recognition results of monophone and triphone 

 for female SI system using acoustic modeling and language modeling 

Speech unit Correction Accuracy 

monophone 54.8 47.5 

Intra-syllable triphone 64.2 57.8 

Inter-syllable triphone 71.3 65.3 
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Table 5.8.9 Recognition results of Initial-Final and Onset-Rhyme units 

 for male SD system using acoustic modeling and language modeling 

Initial/Onset Final/Rhyme Speech 

unit Correction Accuracy Correction Accuracy 

CI Initial-

Final 
69.4 67.2 68.6 66.3 

CD Initial-

Final 
75.9 74.5 74.5 73.1 

CORM 79.0 77.8 79.5 77.3 

PORM 82.1 79.7 80.9 78.2 

 

Table 5.8.10 Recognition results of Initial-Final and Onset-Rhyme units 

 for female SD system using acoustic modeling and language modeling 

Initial/Onset Final/Rhyme Speech 

unit Correction Accuracy Correction Accuracy 

CI Initial-

Final 
71.4 68.0 72.5 69.3 

CD Initial-

Final 
77.8 75.1 76.3 73.7 

CORM 81.9 78.7 80.5 77.2 

PORM 83.5 80.6 80.7 78.1 

 

Table 5.8.11 Recognition results of Initial-Final and Onset-Rhyme units 

 for male SI system using acoustic modeling and language modeling 

Initial/Onset Final/Rhyme Speech 

unit Correction Accuracy Correction Accuracy 

CI Initial-

Final 
64.2 61.2 63.7 61.7 

CD Initial-

Final 
69.1 67.5 67.6 65.3 

CORM 72.5 69.8 70.4 68.6 

PORM 73.4 70.3 71.8 69.5 
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Table 5.8.12 Recognition results of Initial-Final and Onset-Rhyme units 

 for female SI system using acoustic modeling and language modeling 

Initial/Onset Final/Rhyme Speech 

unit Correction Accuracy Correction Accuracy 

CI Initial-

Final 
67.2 64.0 65.1 61.9 

CD Initial-

Final 
70.7 68.0 68.6 65.9 

CORM 74.5 71.6 71.6 69.7 

PORM 76.3 73.8 72.8 70.2 
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Figure 5.8.5 Initial/Onset accuracy of the male SD system using  

acoustic model only and the male SD system using  

acoustic model and language model 
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Figure 5.8.6 Initial/Onset accuracy of the female SD system using  

acoustic model only and the female SD system using  

acoustic model and language model 
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Figure 5.8.7 Initial/Onset accuracy of the male SI system using  

acoustic model only and the male SI system using  

acoustic model and language model 
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Figure 5.8.8 Initial/Onset accuracy of the female SI system using  

acoustic model only and the female SI system using  

acoustic model and language model 
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Figure 5.8.9 Final/Rhyme accuracy of the male SD system using  

acoustic model only and the male SD system using  

acoustic model and language model 
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Figure 5.8.10 Final/Rhyme accuracy of the female SD system using 

acoustic model only and the female SD system using  

acoustic model and language model 
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Figure 5.8.11 Final/Rhyme accuracy of the male SI system using  

acoustic model only and the male SI system using  

acoustic model and language model 
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Figure 5.8.12 Final/Rhyme accuracy of the female SI system using  

acoustic model only and the female SI system using  

acoustic model and language model 

 

 

Figure 5.8.13 Alignment of reference vs recognition transcription 

 (acoustic modeling only and acoustic modeling +language modeling) 
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Figure 5.8.14 Alignment of reference vs recognition transcription  

in the syllable level 

(acoustic modeling only and acoustic modeling+language modeling) 

 

5.8.2 Discussion 

Incorporating the language model in a large vocabulary speech recognition 

system reduces the ambiguities between the large set of alternative 

confusable words that might be hypothesized during the recognition. The 

recognition results of the systems using acoustic model and language model 

are clearly higher than those of the systems using acoustic model only. 

When the language model is applied, the substitutions, especially the stop-

final consonant, are substantially diminished in the final/rhyme unit. A 

substantial improvement of final/rhyme units results in a high recognition 

rate of the system. The language model also enhances the accuracy of the 

Initial and onset. However, the improvement in syllable accuracy of he Initial 

and onset is much lower than the final/rhyme. 
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5.9 Experiments on Speech Recognition System 

using Different Test Sets 
This experiment aims to evaluate the efficiency of the speech recognition 

system of both using acoustic modeling only and using acoustic modeling 

together with language modeling by two different test sets. The system was 

already tested with the first test set in the experiment 5.7 and 5.8. The 

second test set used in Visarut’ s work (Ahkuputra, 2002) will be tested in 

this experiment. The results of these 2 test sets will be reported and 

compared as well.  

The system configuration is set as follows: 

� 12 order MFCCs with delta coefficients 

� 16 Gaussian mixture components per state 

� Training speakers – 9 male speaker and 11 female speakers 

� Evaluation speakers – 9 speaker-dependent males and 5 

speaker-independent males, and 11 speaker-dependent 

females and 5 speaker-independent females 

� Test set I – 100 sentences, 4985 syllables 

� Test set II – 30 sentences, 576 syllables 

 

5.9.1 Experimental Results 

Compared to the test set I, the test set II has the number of syllables, 576, 

less than that in the test set I, 4985. The vocabulary in the test set I would 

probably be complicated than those in the test set II. Figures 5.9.1-5.9.4 

show the syllable accuracy of the systems using acoustic model only while 

Figures 5.0.5-5.9.8 show the syllable accuracy of the systems using acoustic 

model and language model. The recognition results show that the accuracy 

of the test set II is higher than the test set I for every speech unit. The 

recognition results of these two test sets are in the similar way that is the 

subsyllable units, Initial-Final and onset-rhyme, outperforms the phone 

units. 
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Figure 5.9.1 Syllable accuracy of the male SD system  

using acoustic model only 
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Figure 5.9.2 Syllable accuracy of the female SD system  

using acoustic model only 
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Figure 5.9.3 Syllable accuracy of the male SI system  

using acoustic model only 
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Figure 5.9.4 Syllable accuracy of the female SI system  

using acoustic model only 
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Figure 5.9.5 Syllable accuracy of the male SD system  

using acoustic model and language model 

0

10

20

30

40

50

60

70

80

90

Monophone Intra-syllable
Triphone

Inter-syllable
Triphone

CI Initial-Final CD-Initial-Final CORM PORM

Speech Units

A
cc

u
ra

cy

Test Set I

Test Set II

 

Figure 5.9.6 Syllable accuracy of the female SD system  

using acoustic model and language model 
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Figure 5.9.7 Syllable accuracy of the male SI system  

using acoustic model and language model 

0

10

20

30

40

50

60

70

80

90

Monophone Intra-syllable
Triphone

Inter-syllable
Triphone

CI Initial-Final CD-Initial-Final CORM PORM

Speech Units

A
cc

u
ra

cy

Test Set I

Test Set II

 

Figure 5.9.8 Syllable accuracy of the female SI system  

using acoustic model and language model 

 

5.9.2 Discussion 

To prove the superiority of the onset-rhyme models, the experiment using 

more than two kinds of corpora was conducted. Two test sets with the 

different number of syllables were employed in the experiment. The 

evaluation was carried on the system using acoustic model only and the 

system using both acoustic model and language model. The recognition 

results show the syllable accuracies of these two test sets are in the similar 
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way that is the subsyllable units, Initial-Final and onset-rhyme, outperforms 

the phone units. This verifies that the proposed acoustic unit, onset-rhyme, 

is superior in terms of accuracy. 

 

5.10 Summary 

In this chapter, the experiments were conducted on several speech units to 

study the efficiency of the acoustic model. The speech units used in this 

experiments are, the monophone, the triphone, the Initial-Final, and the 

onset-rhyme. Two onset-rhyme models, the Phonotactic Onset-Rhyme Model 

(PORM) and the Contextual Onset-Rhyme Model (CORM) are applied to Thai 

in a continuous speech recognition system in order to illustrate their 

feasibility. The results of all speech units are given and analyzed in details. 

The recognition results show major improvements over other acoustic units 

in many ways, indicating better performance of the models while 

maintaining manageable system complexity. 

 



Chapter 6 
 

Conclusions 
 
 

This dissertation presents acoustic modeling of the rhyme units in the onset-

rhyme models for Thai continuous speech recognition. Several conventional 

speech units were tested their effectiveness. The performance was analyzed 

both in terms of the computational complexity and the recognition accuracy. 

The experiments on recognition system using acoustic modeling only were 

conducted to obtain an actual efficiency of the acoustic model. On the other 

hand, the experiments on recognition system, incorporating the language 

model, were conducted to obtain the overall performance of a speech 

recognition system.  

 

6.1 Conclusions of the Dissertation 

In this dissertation, the onset-rhyme models are proposed and applied to 

speech recognition of Thai language. The main interest of this dissertation is 

the rhyme unit. From the acoustical point of view, in the syllable structure, 

the final consonant is strongly influenced by the vowel duration. This 

relationship occurs only between the vowel and the final consonant. In 

contrast, the initial consonant is not affected by the duration of the vowel. 

Hence, the vowel and the final consonant are tightly tied while an initial 

consonant is loosely tied with the vowel in the syllable. From a phonological 

point of view, a syllable is composed of a pair of an onset and a rhyme unit. 

The onset consists of an initial consonant and its transition towards the 

following vowel. Along with the onset, the rhyme is composed of a vowel, a 

final consonant, and a tone. The onset-rhyme not only includes its 

contextual information, but also embeds the language modeling at the 

syllable level. Therefore, the syllable should be decomposed into 2 parts, the 

onset and the rhyme. The Thai syllables can be recognized by identifying the 

onset and the rhyme.  

 Various conventional speech units were studied and compared their 

strengths and weaknesses in practical applications. This research mainly 

used four speech units. The context-independent phone, a monophone, was 
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modeled initially, and then this speech unit was used for building the 

triphone system. The modeling of other speech units, Initial-Final and onset-

rhyme, depended on their types. The Initial and the onset were modeled 

differently, according to their context, while both of the final and the rhyme 

were modeled as left context-independent units. The three criteria, accuracy, 

trainability, and generalization must be considered in choosing the 

appropriate speech unit. Therefore, this research evaluates the efficiency of 

those speech units based on these criteria. 

The hidden Markov models (HMM) were used to create the acoustic 

models. The left-right topology with no skipping state is selected. The phone 

units use three states for acoustic modeling. In the triphone modeling, the 

additional techniques were employed to create the triphone models from the 

monophone models. The numbers of HMM states were varied for the onset-

rhyme according to its characteristics. The onsets use three states for 

modeling the initial consonant and the vowel transition while the rhymes, 

considered as two concatenating phone units, use six states for modeling the 

vowel and final consonant. 

To test the gender-dependent effect, the systems were separately and 

conjointly trained on male and female speakers. The recognition results 

show that the gender-dependent system gives more accuracy than that of 

the gender-independent system. 

Multiple mixture components provide the accurate acoustic model. 

The acoustic models can be created from a single mixture Gaussian 

distribution. Then, an iterative divide-by-two clustering algorithm was 

utilized to increase the number of Gaussian mixture components to the 

desired value. The more mixture components were created, the more 

accuracy the acoustic models have. However, increasing in the number of 

mixture components requires more computation. The experimental results 

showed that the recognition rates become higher when the numbers of 

mixture components are increased.  

Recognition results of the system using acoustic models only show 

that the accuracy of monophones and triphones are lower than those for 

speech units larger than phones. Although the correction of the inter-

syllable triphones is higher than that of the CD Initiai-Final model, its 

accuracy is lower than that of the CD Initiai-Final model due to the high 

insertion. The inter-syllable triphones performs better accuracy than 
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monophones and intra-syllable triphones. The PORM gives the highest 

accuracy. The performance of the CD Initial-Final model is better than that 

for phone modeling units and the CI Initial-Final model, and worse than 

those for either PORM or CORM. 

Apart from the syllable accuracy, the recognition results of Initial-

Final and onset-rhyme acoustic units were analyzed. Since the context-

dependent Initials and the onsets of PORM and CORM are context-

dependent, they give better accuracy than the context-independent Initial. 

Although the context-dependent Initial and the onset are the right context-

dependent units, the onset outperforms the context-dependent Initial. The 

transitional portion towards the vowel, included in the onset, has 

contributed substantially to the precise modeling of the initial consonant 

segment. The accuracy of the onset in CORM is higher than the accuracy of 

the context-dependent Initial but lower than that of the PORM. At the other 

part of the syllable, the accuracies of the Final and the rhyme are slightly 

different. The Final and rhyme units give comparable accuracies due to the 

similar modeling of these units.  

Obviously, the recognition results of the rhyme are very poor 

compared to the onset. The three stops, [p], [t], and [k], appearing at the 

final position are acoustically different from the initial consonant, that is, 

they are not audibly released. Most of the errors in the rhyme result from the 

substitution of the rhyme ending with these stop consonants. Furthermore, 

the rhyme without a final consonant may be recognized as the rhyme with a 

final consonant, and vice versa. This serious problem is hard to overcome by 

the acoustic model only. 

Incorporating the language model can boost the performance of a 

speech recognition system. The recognition results of systems using both 

acoustic modeling and language modeling are improved ranging from 20.9 % 

to 30.8 % of syllable accuracy. The PORM attains the highest syllable 

accuracy at 75.2 % for male SD and 75.6 % for female SD systems. For the 

SI systems, the PORM also achieves the highest syllable accuracy at 62.8 % 

for male speakers and 64.8 % for female speakers. 

In the language model-combined system, the accuracies of onsets of 

both PORM and CORM still exceed that for the context-dependent Initial, 

and the accuracy of the PORM onset is higher than that of the CORM onset. 

Using the language model, accuracy of the Initial and the onset is increased 
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by around 18-25 % and 16-21% for both SD and SI systems. In addition, the 

accuracies of the Final and the rhyme are substantially improved by nearly 

43-46 % and 45-47 % for the SD and SI systems when the language model is 

applied. 

The speech units were evaluated with two test sets. The recognition 

results of these two test sets are in the similar way that is the subsyllable 

units have a higher accuracy than the phone units. This verifies that the 

proposed acoustic unit, onset-rhyme, is superior in terms of accuracy. 

Speech units used for Thai speech recognition evaluated in this 

research are onset-rhyme, Initial-Final, triphone, and monophone. The 

result of the evaluation is summarized in Table 6.1. The units are relatively 

compared based on three criteria, i.e., accuracy, generalization, and 

trainability, in using the units for the Thai continuous speech recognition 

system. The onset-rhyme models have a finite number of speech units that 

economically represent the all potential speech units of the language. Based 

on the experiments, the onset-rhyme models also satisfy all the major 

criteria in selection of good acoustic units. First, the onset-rhyme models are 

accurate in that each of the onset and rhyme units gives a high recognition 

performance. Second, the onset and rhyme units are reliably estimated with 

only a small set of training utterances that satisfy the trainability criterion. 

Finally, the onset-rhyme models are generalized in that the same onset and 

rhyme units have similar characteristics for different instances. 

The Thai language was selected in this research, since it is a 

predominantly monosyllabic language with simple syllable structure, i.e., 

syllable with one or none final consonant. The languages with these two 

characteristics are spoken in mainland south-east Asia and China. They 

include languages in Tai Kadai (Thai, Lao, etc.) Mon-Khmer (Cambodian, 

Vietnamese, etc.), Hmong-Mian (Mao, Yao, etc.), and Sino-Tibetan (Chinese, 

Tibetian, etc.) language families. In addition, the Thai language also has a 

complex vowel system, i.e., contrast of short-long vowel pairs. 

Considering accuracy, the onset-rhyme and the Initial-Final are better 

than the triphone and the monophone. However, the onset-rhyme is best in 

term of accuracy. According to the criteria of generalization, all the 

candidates have the generalization capability. When taking trainability into 

account, the worst one is the triphone. The best one is the monophone. 

However, the triphone and the monophone cannot be considered as good 
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candidates because the degrees of accuracy for both of them are low. The 

only two candidates left are the onset-rhyme and the Initial-Final. In term of 

trainability, they are very close, although the Initial-Final is a little bit better. 

Therefore, applying the onset-rhyme model to Thai continuous speech 

recognition shows major improvements over other acoustic units in many 

ways, indicating better performance of the models while maintaining system 

simplicity. Therefore, these make the onset-rhyme models the efficient 

acoustic speech units for continuous speech recognition in the Thai 

language and other predominantly monosyllabic languages with simple 

syllable structure as well. 

 

Table 6.1 Evaluation of various speech units 

 for Thai continuous speech recognition 

Efficiency of speech units Criteria 

Onset-rhyme Initial-Final Triphone Monophone 

Accuracy 4 3 2 1 

(considered by  

% recognition) 

CORM (44.6 %) 

PORM (46.8 %) 

CI IF (38.4 %) 

CD IF (42.6 %) 

intra (34.8 %) 

inter (40.4 %) 
19.6 % 

Generalization All speech units have the generalization capability 

Trainability 2 3 1 4 

(considered by the 

no. of units trained) 

CORM (497) 

PORM (992) 

CI IF (233) 

CD IF (497) 

intra (7,769) 

inter (64,475) 
58 

* 4 is the best score and 1 is the worst score in terms of comparison 

 

6.2 Contributions of the Dissertation 

This section summarized the contributions made during doing the research 

in this dissertation. The works begin from acoustic-phonetic analysis of the 

Thai language. Several tools were developed for analysis and utilization of 

text and speech corpus. The onset-rhyme model for Thai continuous speech 

recognition was emerged from this analysis. Hundreds of sentences were 

composed for voice recording. The speech corpus for dictation task was 

constructed according to these sentences. In addition, hundreds thousands 

of Thai syllables were collected, analyzed, and transcribed for building the 

language model. The details of the contributions are described as follows: 
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6.2.1 The Onset-Rhyme Acoustic Model 

This dissertation conducted a basic research on acoustic modeling for Thai 

continuous speech recognition. From the acoustic-phonetic analysis of Thai 

syllables, the appropriate speech unit for the Thai language is the onset-

rhyme model. An onset comprises an initial consonant and its transition 

towards the following vowel. Together with the onset, the rhyme consists of a 

steady vowel segment and a final consonant. Using the onset-rhyme model 

in Thai speech recognition shows major improvements over other acoustic 

units in many ways, indicating better performance of the model. 

 

6.2.2 Thai Text Corpora and Thai Continuous Speech 

Corpora 

This dissertation provides sets of text corpus used in speech recording for 

training and testing. The text corpus was designed for recording in reading 

or dictating style. In addition, the text corpus was created to cover all onsets 

and rhymes existing in the Royal Thai Dictionary. The set of sentences was 

carefully composed to contain samples of onset and rhyme adequately for 

creating the acoustic models. Therefore, a set of 1,081 sentences was created 

for training the acoustic model while a set of 100 sentences was used to 

evaluate the efficiency of the acoustic model. 

 The Thai continuous speech corpus was recorded from 14 male and 

16 female speakers uttering in reading style. The total durations of the 

speech corpus used in this dissertation for training and testing are 

approximately 68 hours and 36 hours, respectively. Initially, the set of 

recorded speech was labeled according to the phonetic transcriptions. This 

process spends a lot of time to label manually. The labeled corpus was used 

to train the initial acoustic models for the automatic labeling system. The 

text and speech corpora constructed in this dissertation can be reliably used 

as reference corpora for further research in Thai speech recognition. 

 

6.2.3 The Language Model 

From the experimental results, the speech recognition system, employing the 

acoustic model only, gives unsatisfactory accuracy. Since the n-gram 

language model has been among the most successful approaches used for 

language modeling, particularly for speech recognition, this dissertation 
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explored the use of n-gram language model in Thai continuous speech 

recognition. 

 The n-gram language model can be trained from the text corpus 

ranging from millions of word to billions of words. The text corpus for 

building the n-gram model was excerpted from various kinds of reading 

paragraphs. Nearly millions of syllables were transcribed into phonetic 

representation. These phonetic transcriptions were then manually checked 

and rectified. This process consumes a lot of time. The n-gram language 

model was build from the correct transcriptions by CMU language modeling 

toolkit. After taking several steps in building the language model, the output 

from the toolkit is in the ARPA format. Finally, the ARPA format was 

converted to the lattice network in order to use the HTK decoding module. 

Experimental results show that the speech recognition system including the 

language model provides notable performance. 

 

6.2.4 Program Development 

Several tools have been developed for the research in Thai continuous 

speech recognition. The development begins from the analysis tool through 

the evaluation tool. Details of the tools contributed by this dissertation are 

listed as follows: 

� Speech analysis tool – Since acoustic-phonetic analysis of the Thai 

language is the important part of this dissertation, the speech 

analysis program was developed in this analysis. This program clearly 

illustrates acoustical properties of speech signal in both time and 

frequency domain. Many parameters can be adjusted to study the 

dominant feature of speech signal. Development of this tool 

contributes much more understanding of characteristics of speech 

signal.  

� Thai text analysis tool – To design and construct the Thai 

continuous speech corpora, the Thai text analysis tool was written to 

analyze the distribution of speech units from selected paragraphs. 

This tool assists the author to compose a set of sentences for building 

acoustic models with sufficient training samples. 

� Speech-labeling tool – It is necessary to indicate the boundary of 

recorded sounds because the speech corpus associated with 

transcriptions was employed to create the initial acoustic models. The 
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speech-labeling tool was developed to mark the boundary of recorded 

speech. This tool displays essential information in graphic mode, and 

provides some easy use functions. 

� Evaluation tool – The recognition results were shown in the specific 

format. It is necessary to analyze these results in form of easy 

interpretation. The original HTK program cannot provide a suitable 

tool for phonetic alignment. Then, the evaluation tools were written to 

handle the results with reliable evaluation.  

These programs have contributed many utilities for a basic research 

in speech analysis and an advance research in speech recognition. They also 

provide some modules for further development. 

 

6.3 Future Research on Thai Speech Recognition 

All works in this dissertation used speech recorded in a quiet laboratory 

condition. Performance of the recognition systems degrades substantially 

when source of speech is in the noise and the distortion environment. To 

implement systems in practical applications, the speech recognizers must be 

more robust to the background noise and the distortion. 

 While the recognition system described in this dissertation gives high 

accuracy, there are many interesting points for further refinement of the 

acoustic models. Improvement in modeling accuracy has to taken account of 

variation in stress. Both stress and prosody form important cues for human 

speech recognition. It may be possible to study such features for acoustic 

modeling.  

The speech corpus used in this dissertation was read from prepared 

texts. Recognition performance dramatically reduces for spontaneous or 

conversational speech. The fluent nature of such speech does not match 

either the acoustic or the language model. In particular, some forms of 

dialogue modeling are required to interact with the user to obtain 

clarification. 

Due to the limited resources, the speech corpus was recorded from 

only 14 male and 16 female speakers. However, this corpus can be 

sufficiently verified the proposed acoustic models. To implement a practical 

speech recognition system, more speakers are needed to model variation 

from various speakers. 
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This dissertation incorporated the language model into a speech 

recognition system resulting in substantial improvement of the recognition 

results. The language model is directly estimated from text data. The large 

size of text corpus produces the accurate language model. Therefore, more 

text data should be collected and analyzed. Furthermore, various types of 

language models should be studied. 

 In this dissertation, the recognition results of the onset-rhyme models 

are the syllable without tone. Presently, the recognition of Thai complete 

syllable with tone is not complete. When the separated recognition of base 

syllable and tone is used, tone recognition system is required for producing a 

tone sequence. The additional module is needed to integrate and manipulate 

different sequences of base syllable and tone. On the other hand, using 

onset-rhyme as an acoustic unit provides the alternative of employing not 

only separated recognition but also joint recognition of base syllable and 

tone. Since prosodic information is preserved in rhyme portion, base syllable 

and tone can be simultaneously recognized to produce a complete tonal 

syllable. However, there are several advantages and drawbacks of these two 

schemes needed to study before they will be applied to Thai language. 
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APPENDIX A 

The Thai Text Training Corpus 

 

Table A1.1 Statistic of the Thai initial consonants in the training corpus 

Unit Amount Percent 

m 1,799 8.095 % 

n 1,784 8.027 % 

th 1,645 7.402 % 

kh 1,584 7.127 % 

s 1,401 6.304 % 

l 1,368 6.156 % 

k 1,289 5.800 % 

c 1,248 5.616 % 

t 1,211 5.449 % 

r 1,174 5.283 % 

d 1,019 4.585 % 

j 962 4.329 % 

ph 908 4.086 % 

p 887 3.991 % 

ch 696 3.132 % 

h 695 3.127 % 

z 674 3.033 % 

w 668 3.006 % 

b 557 2.506 % 

f 210 0.945 % 

ng 210 0.945 % 

 

Table A1.2 Statistic of the Thai final consonants in the training corpus 

Unit Amount Percent 

n 3,882 23.140 % 

ng 3,273 19.510 % 

j 3,155 18.807 % 

k 1,571 9.365 % 

m 1,561 9.305 % 

w 1,260 7.511 % 

t 1,156 6.891 % 

p 918 5.472 % 
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Table A1.3 Statistic of the Thai consonant clusters in the training corpus 

Unit Amount Percent 

kr 235 13.048 % 

kl 204 11.327 % 

pr 204 11.327 % 

khr 195 10.827 % 

phr 189 10.494 % 

pl 167 9.273 % 

khw 153 8.495 % 

tr 132 7.329 % 

phl 123 6.830 % 

khl 120 6.663 % 

kw 68 3.776 % 

thr 11 0.611 % 

 

Table A1.4 Statistic of the Thai vowels in the training corpus 

Unit Amount Percent 

a 6,141 25.809 % 

aa 4,970 20.888 % 

@@ 1,650 6.935 % 

ii 1,347 5.661 % 

o 1,238 5.203 % 

i 858 3.606 % 

uu 817 3.434 % 

xx 784 3.295 % 

uua 733 3.081 % 

e 716 3.009 % 

vva 600 2.522 % 

u 594 2.496 % 

iia 524 2.202 % 

v 505 2.122 % 

@ 428 1.799 % 

x 421 1.769 % 

qq 413 1.736 % 

oo 373 1.568 % 

vv 339 1.425 % 

ee 272 1.143 % 

q 58 0.244 % 

ia 4 0.017 % 

ua 3 0.013 % 

va 2 0.008 % 
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Table A1.5 Statistic of the context-independent Initials 

 in the training corpus 

Unit Amount Percent 

m 1,799 7.562 % 

n 1,784 7.499 % 

th 1,645 6.915 % 

kh 1,584 6.658 % 

s 1,401 5.889 % 

l 1,368 5.750 % 

k 1,289 5.418 % 

c 1,248 5.246 % 

t 1,211 5.090 % 

r 1,174 4.935 % 

d 1,019 4.283 % 

j 962 4.044 % 

ph 908 3.817 % 

p 887 3.728 % 

ch 696 2.926 % 

h 695 2.921 % 

z 674 2.833 % 

w 668 2.808 % 

b 557 2.341 % 

kr 235 0.988 % 

f 210 0.883 % 

ng 210 0.883 % 

kl 204 0.858 % 

pr 204 0.858 % 

khr 195 0.820 % 

phr 189 0.794 % 

pl 167 0.702 % 

khw 153 0.643 % 

tr 132 0.555 % 

phl 123 0.517 % 

khl 120 0.504 % 

kw 68 0.286 % 

thr 11 0.046 % 
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Table A1.6 Statistic of the context-dependent Initials and CORM onsets in 

the training corpus 

Unit Amount Percent  Unit Amount Percent 
n_a 1097 4.611 %  ph_v 137 0.576 % 
m_a 1037 4.359 %  pr_a 135 0.567 % 
c_a 689 2.896 %  f_a 134 0.563 % 

kh_a 678 2.850 %  l_u 134 0.563 % 
th_a 626 2.631 %  s_v 134 0.563 % 
k_a 608 2.556 %  t_o 134 0.563 % 
th_i 551 2.316 %  k_i 128 0.538 % 
s_a 533 2.240 %  s_o 124 0.521 % 
w_a 502 2.110 %  kh_v 121 0.509 % 
p_a 500 2.102 %  kh_u 120 0.504 % 
j_a 451 1.896 %  s_@ 120 0.504 % 
r_a 449 1.887 %  r_@ 119 0.500 % 
h_a 427 1.795 %  n_v 118 0.496 % 
ch_a 408 1.715 %  kl_a 117 0.492 % 
t_a 401 1.686 %  r_v 111 0.467 % 
d_a 396 1.665 %  ph_@ 109 0.458 % 
l_a 392 1.648 %  z_i 108 0.454 % 
l_x 373 1.568 %  ng_a 107 0.450 % 
k_@ 300 1.261 %  n_@ 103 0.433 % 
z_a 286 1.202 %  khr_a 102 0.429 % 
n_i 270 1.135 %  m_x 101 0.425 % 

kh_@ 269 1.131 %  c_i 97 0.408 % 
m_i 257 1.080 %  phr_@ 97 0.408 % 
p_e 251 1.055 %  l_e 95 0.399 % 

ph_a 240 1.009 %  z_@ 94 0.395 % 
s_i 237 0.996 %  b_o 93 0.391 % 
b_a 235 0.988 %  ph_i 89 0.374 % 

kh_o 224 0.942 %  th_v 89 0.374 % 
j_u 213 0.895 %  r_o 87 0.366 % 

th_u 204 0.858 %  c_@ 80 0.336 % 
t_@ 199 0.836 %  w_i 80 0.336 % 
d_u 193 0.811 %  n_o 77 0.324 % 
t_u 190 0.799 %  k_x 76 0.319 % 
s_u 187 0.786 %  ch_i 70 0.294 % 
kr_a 182 0.765 %  kh_i 70 0.294 % 
r_u 168 0.706 %  d_o 68 0.286 % 

ph_u 162 0.681 %  d_q 68 0.286 % 
d_i 160 0.673 %  n_u 68 0.286 % 
t_x 160 0.673 %  t_i 68 0.286 % 
c_v 154 0.647 %  h_e 67 0.282 % 
m_v 154 0.647 %  b_i 66 0.277 % 
l_o 149 0.626 %  l_v 65 0.273 % 
r_i 143 0.601 %  l_q 64 0.269 % 

khw_a 142 0.597 %  m_@ 64 0.269 % 
c_o 139 0.584 %  b_@ 63 0.265 % 
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Unit Amount Percent  Unit Amount Percent 
j_i 63 0.265 %  c_u 33 0.139 % 

kw_a 62 0.261 %  j_e 32 0.135 % 
j_@ 61 0.256 %  phl_a 32 0.135 % 

ph_o 61 0.256 %  ch_o 31 0.130 % 
j_v 60 0.252 %  z_v 31 0.130 % 

m_o 60 0.252 %  ng_q 29 0.122 % 
pl_@ 59 0.248 %  r_e 29 0.122 % 
ch_v 58 0.244 %  th_q 29 0.122 % 
th_@ 56 0.235 %  r_q 28 0.118 % 
m_u 55 0.231 %  tr_u 28 0.118 % 
m_e 54 0.227 %  h_i 27 0.113 % 
d_e 53 0.223 %  ph_q 27 0.113 % 
j_o 53 0.223 %  tr_o 27 0.113 % 
z_u 51 0.214 %  c_e 26 0.109 % 
k_e 50 0.210 %  khr_v 25 0.105 % 
l_@ 50 0.210 %  ng_o 24 0.101 % 

ch_@ 49 0.206 %  p_u 24 0.101 % 
p_i 48 0.202 %  phl_x 24 0.101 % 
h_x 46 0.193 %  d_@ 23 0.097 % 
l_i 46 0.193 %  c_q 22 0.092 % 

th_x 46 0.193 %  j_x 22 0.092 % 
ph_e 45 0.189 %  khl_v 22 0.092 % 
phr_a 45 0.189 %  pl_i 22 0.092 % 
z_o 45 0.189 %  th_e 22 0.092 % 
s_e 43 0.181 %  th_o 22 0.092 % 
k_o 42 0.177 %  pr_i 21 0.088 % 

kh_x 42 0.177 %  ch_e 20 0.084 % 
h_u 41 0.172 %  kh_q 20 0.084 % 
kl_u 41 0.172 %  phl_q 20 0.084 % 
w_e 41 0.172 %  pr_@ 20 0.084 % 
d_v 40 0.168 %  p_@ 19 0.080 % 

kh_e 40 0.168 %  phr_i 19 0.080 % 
r_x 40 0.168 %  t_e 19 0.080 % 
k_q 39 0.164 %  d_x 18 0.076 % 
b_u 38 0.160 %  tr_a 18 0.076 % 
h_@ 38 0.160 %  z_q 18 0.076 % 

khr_u 38 0.160 %  f_o 17 0.071 % 
ph_x 38 0.160 %  f_u 17 0.071 % 
n_x 37 0.156 %  m_q 17 0.071 % 

ch_u 36 0.151 %  pl_x 17 0.071 % 
pl_a 36 0.151 %  w_o 17 0.071 % 
t_v 36 0.151 %  ng_u 16 0.067 % 
b_x 35 0.147 %  s_x 16 0.067 % 
tr_i 35 0.147 %  khl_@ 15 0.063 % 
z_e 35 0.147 %  p_v 15 0.063 % 
h_o 34 0.143 %  ch_q 14 0.059 % 
k_u 34 0.143 %  f_v 14 0.059 % 

khl_a 34 0.143 %  khl_u 14 0.059 % 



 

 

219

 

Unit Amount Percent  Unit Amount Percent 
ng_@ 14 0.059 %  khw_x 6 0.025 % 
pl_o 13 0.055 %  kl_o 6 0.025 % 
k_v 12 0.050 %  kl_x 6 0.025 % 

khl_o 12 0.050 %  n_e 6 0.025 % 
kl_i 12 0.050 %  ng_e 6 0.025 % 
kr_u 12 0.050 %  ng_i 6 0.025 % 
p_o 12 0.050 %  tr_e 6 0.025 % 

phl_o 12 0.050 %  z_x 6 0.025 % 
phl_u 12 0.050 %  f_@ 5 0.021 % 
b_v 11 0.046 %  khl_i 5 0.021 % 
kr_o 11 0.046 %  khr_x 5 0.021 % 
p_x 11 0.046 %  kr_q 5 0.021 % 
pr_o 11 0.046 %  phr_v 5 0.021 % 
ch_x 10 0.042 %  pl_e 5 0.021 % 
kl_@ 10 0.042 %  w_u 5 0.021 % 
b_q 9 0.038 %  khl_q 4 0.017 % 

khr_@ 9 0.038 %  khr_i 4 0.017 % 
phl_e 9 0.038 %  kl_e 4 0.017 % 
c_x 8 0.034 %  kl_q 4 0.017 % 
h_v 8 0.034 %  kl_v 4 0.017 % 

khl_e 8 0.034 %  kr_e 4 0.017 % 
n_q 8 0.034 %  ng_v 4 0.017 % 

phl_i 8 0.034 %  ng_x 4 0.017 % 
phr_o 8 0.034 %  phr_u 4 0.017 % 
phr_x 8 0.034 %  pr_u 4 0.017 % 
pl_v 8 0.034 %  pr_x 4 0.017 % 
tr_x 8 0.034 %  t_q 4 0.017 % 
w_@ 8 0.034 %  thr_a 4 0.017 % 
w_x 8 0.034 %  thr_i 4 0.017 % 
b_e 7 0.029 %  w_v 4 0.017 % 
f_i 7 0.029 %  f_e 3 0.013 % 
f_x 7 0.029 %  khw_i 3 0.013 % 
h_q 7 0.029 %  kw_i 3 0.013 % 
j_q 7 0.029 %  kw_x 3 0.013 % 

kr_@ 7 0.029 %  phl_@ 3 0.013 % 
kr_i 7 0.029 %  phl_v 3 0.013 % 
kr_x 7 0.029 %  phr_q 3 0.013 % 
p_q 7 0.029 %  pr_e 3 0.013 % 
pl_u 7 0.029 %  pr_q 3 0.013 % 
s_q 7 0.029 %  pr_v 3 0.013 % 
tr_@ 7 0.029 %  thr_@ 3 0.013 % 
f_q 6 0.025%  tr_v 3 0.013 % 

khl_x 6 0.025 %  w_q 3 0.013 % 
khr_e 6 0.025 %  khw_e 2 0.008 % 
khr_o 6 0.025 %  
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Table A1.7 Statistic of the PORM onsets in the training corpus 

Unit Amount Percent  Unit Amount Percent 
n_a 674 2.833%  l_o 126 0.530% 
m_a 546 2.295%  m_vva 123 0.517% 
m_aa 492 2.068%  c_o 121 0.509% 
th_ii 477 2.005%  pr_a 113 0.475% 
th_a 425 1.786%  s_o 113 0.475% 
n_aa 424 1.782%  ph_uu 111 0.467% 
c_a 420 1.765%  s_@@ 111 0.467% 

kh_a 417 1.753%  d_a 109 0.458% 
p_a 398 1.673%  t_@@ 109 0.458% 
k_a 392 1.648%  ph_a 108 0.454% 
s_a 359 1.509%  j_a 107 0.450% 
j_aa 348 1.463%  ph_vva 106 0.446% 

k_@@ 287 1.206%  r_@@ 102 0.429% 
d_aa 284 1.194%  t_o 102 0.429% 
w_aa 273 1.148%  p_aa 101 0.425% 
c_aa 269 1.131%  k_i 98 0.412% 

kh_@@ 268 1.127%  d_ii 97 0.408% 
r_a 267 1.122%  d_uua 96 0.404% 

kh_aa 263 1.106%  m_xx 96 0.404% 
h_a 255 1.072%  ph_@@ 95 0.399% 
t_aa 253 1.063%  r_uu 94 0.395% 
p_e 249 1.047%  s_iia 94 0.395% 
m_ii 238 1.000%  b_a 93 0.391% 
l_a 236 0.992%  n_v 91 0.383% 
w_a 230 0.967%  s_u 91 0.383% 
kh_o 221 0.929%  t_@ 91 0.383% 
l_x 221 0.929%  n_@@ 90 0.378% 

k_aa 216 0.908%  ng_aa 88 0.370% 
ch_a 212 0.891%  kh_v 87 0.366% 
th_aa 201 0.845%  f_a 85 0.357% 
ch_aa 197 0.828%  d_uu 84 0.353% 
r_aa 182 0.765%  n_i 83 0.349% 
kr_a 180 0.757%  th_uu 82 0.345% 
n_ii 175 0.736%  z_@@ 81 0.340% 
s_aa 175 0.736%  kh_u 79 0.332% 
j_uu 173 0.727%  khr_a 79 0.332% 
h_aa 172 0.723%  r_iia 79 0.332% 
z_aa 157 0.660%  r_vva 77 0.324% 
l_aa 156 0.656%  b_o 76 0.319% 
c_v 154 0.647%  s_ii 75 0.315% 
l_xx 153 0.643%  w_i 75 0.315% 

t_uua 151 0.635%  n_o 74 0.311% 
t_a 148 0.622%  c_@@ 72 0.303% 

b_aa 142 0.597%  c_i 72 0.303% 
t_xx 141 0.593%  l_uu 70 0.294% 

ph_aa 133 0.559%  phr_@ 70 0.294% 
z_a 129 0.542%  th_u 69 0.290% 

khw_aa 127 0.534%  d_qq 67 0.282% 
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Unit Amount Percent  Unit Amount Percent 
s_i 67 0.282%  j_@ 33 0.139% 

th_v 65 0.273%  l_ee 33 0.139% 
k_xx 63 0.265%  kl_uua 32 0.135% 

kw_aa 62 0.261%  pl_@@ 32 0.135% 
l_e 62 0.261%  t_oo 32 0.135% 

m_@@ 62 0.261%  h_uua 31 0.130% 
j_i 60 0.252%  j_vv 31 0.130% 

s_uua 60 0.252%  k_e 31 0.130% 
kl_a 58 0.244%  kh_ii 31 0.130% 
kl_aa 58 0.244%  kh_x 31 0.130% 
s_vv 56 0.235%  m_vv 31 0.130% 
l_qq 55 0.231%  z_ee 31 0.130% 
z_ii 54 0.227%  ch_@@ 30 0.126% 

b_@@ 53 0.223%  d_iia 30 0.126% 
d_e 53 0.223%  j_o 30 0.126% 

th_uua 53 0.223%  z_iia 30 0.126% 
h_e 51 0.214%  ph_iia 29 0.122% 

ph_o 51 0.214%  s_v 29 0.122% 
th_@@ 51 0.214%  z_oo 29 0.122% 
m_e 50 0.210%  h_xx 28 0.118% 
d_oo 49 0.206%  j_@@ 28 0.118% 
m_o 49 0.206%  n_u 28 0.118% 

s_vva 49 0.206%  r_e 28 0.118% 
f_aa 48 0.202%  r_qq 28 0.118% 
l_u 48 0.202%  r_vv 28 0.118% 
r_o 48 0.202%  t_u 28 0.118% 

r_uua 48 0.202%  z_vv 28 0.118% 
l_@@ 43 0.181%  b_i 27 0.113% 
r_ii 43 0.181%  j_vva 27 0.113% 
ph_i 42 0.177%  n_vva 27 0.113% 
l_vva 41 0.172%  ph_qq 27 0.113% 
t_i 40 0.168%  phr_@@ 27 0.113% 

k_qq 39 0.164%  pl_@ 27 0.113% 
r_oo 39 0.164%  tr_o 27 0.113% 
j_u 38 0.160%  b_u 26 0.109% 
r_xx 38 0.160%  kh_vv 26 0.109% 
th_i 38 0.160%  r_u 26 0.109% 

ph_uua 36 0.151%  ch_vv 25 0.105% 
pl_aa 36 0.151%  j_e 25 0.105% 
s_uu 36 0.151%  l_i 25 0.105% 
th_iia 36 0.151%  m_uu 25 0.105% 
ph_e 35 0.147%  phl_xx 25 0.105% 
w_ee 35 0.147%  tr_ii 25 0.105% 
ch_iia 34 0.143%  z_uua 25 0.105% 
ch_vva 34 0.143%  c_e 24 0.101% 
b_iia 33 0.139%  d_@@ 24 0.101% 

ch_uua 33 0.139%  d_vva 24 0.101% 
d_i 33 0.139%  h_@ 24 0.101% 
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Unit Amount Percent  Unit Amount Percent 
kh_ee 24 0.101%  ph_vv 18 0.076% 
n_xx 24 0.101%  phr_i 18 0.076% 
phr_a 24 0.101%  t_vv 18 0.076% 
th_vv 24 0.101%  z_qq 18 0.076% 

z_i 24 0.101%  f_o 17 0.071% 
j_oo 23 0.097%  k_iia 17 0.071% 
k_o 23 0.097%  khr_uua 17 0.071% 

kh_uua 23 0.097%  l_iia 17 0.071% 
khr_aa 23 0.097%  m_qq 17 0.071% 

l_oo 23 0.097%  p_@ 17 0.071% 
pr_aa 23 0.097%  p_i 17 0.071% 
th_x 23 0.097%  ph_ii 17 0.071% 
th_xx 23 0.097%  ph_x 17 0.071% 
ng_q 22 0.092%  phl_aa 17 0.071% 
th_ee 22 0.092%  pl_xx 17 0.071% 
z_u 22 0.092%  r_@ 17 0.071% 
ch_o 21 0.088%  t_v 17 0.071% 
h_o 21 0.088%  w_o 17 0.071% 
h_x 21 0.088%  b_oo 16 0.067% 

phl_qq 21 0.088%  ch_i 16 0.067% 
phr_aa 21 0.088%  h_ee 16 0.067% 

r_i 21 0.088%  k_u 16 0.067% 
s_e 21 0.088%  kh_e 16 0.067% 
s_ee 21 0.088%  kh_uu 16 0.067% 
b_xx 20 0.084%  khr_vva 16 0.067% 
ch_e 20 0.084%  l_uua 16 0.067% 
ch_ii 20 0.084%  p_uua 16 0.067% 
kh_i 20 0.084%  th_qq 16 0.067% 

kh_qq 20 0.084%  b_x 15 0.063% 
khl_a 20 0.084%  c_oo 15 0.063% 

khr_uu 20 0.084%  c_qq 15 0.063% 
n_uu 20 0.084%  d_vv 15 0.063% 
n_uua 20 0.084%  f_uu 15 0.063% 

p_ii 20 0.084%  khl_@@ 15 0.063% 
ph_xx 20 0.084%  khw_a 15 0.063% 
ch_@ 19 0.080%  m_u 15 0.063% 
d_o 19 0.080%  m_uua 15 0.063% 
h_i 19 0.080%  ng_oo 15 0.063% 
j_xx 19 0.080%  ph_u 15 0.063% 
k_ee 19 0.080%  phl_a 15 0.063% 
k_oo 19 0.080%  t_iia 15 0.063% 

kh_iia 19 0.080%  z_@ 15 0.063% 
ng_a 19 0.080%  z_o 15 0.063% 
pr_iia 19 0.080%  c_u 14 0.059% 

t_e 19 0.080%  ch_qq 14 0.059% 
t_x 19 0.080%  h_@@ 14 0.059% 

d_xx 18 0.076%  khl_aa 14 0.059% 
k_uua 18 0.076%  khl_u 14 0.059% 
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Unit Amount Percent  Unit Amount Percent 
n_x 14 0.059%  tr_aa 10 0.042% 

ph_@ 14 0.059%  tr_iia 10 0.042% 
pl_iia 14 0.059%  b_qq 9 0.038% 
s_xx 14 0.059%  kl_@@ 9 0.038% 
t_ii 14 0.059%  kl_u 9 0.038% 
th_o 14 0.059%  kr_uua 9 0.038% 
tr_uu 14 0.059%  l_q 9 0.038% 
tr_uua 14 0.059%  phl_ee 9 0.038% 

c_ii 13 0.055%  pr_@ 9 0.038% 
d_u 13 0.055%  s_@ 9 0.038% 
f_v 13 0.055%  c_@ 8 0.034% 

h_oo 13 0.055%  f_xx 8 0.034% 
k_@ 13 0.055%  h_vva 8 0.034% 
k_ii 13 0.055%  kh_vva 8 0.034% 
k_x 13 0.055%  khl_ee 8 0.034% 
l_v 13 0.055%  khr_@@ 8 0.034% 

n_@ 13 0.055%  n_qq 8 0.034% 
ng_u 13 0.055%  ng_@ 8 0.034% 
ph_v 13 0.055%  ng_o 8 0.034% 
pl_o 13 0.055%  p_iia 8 0.034% 
th_q 13 0.055%  p_uu 8 0.034% 
b_uu 12 0.050%  phl_i 8 0.034% 
c_iia 12 0.050%  phr_oo 8 0.034% 

c_uua 12 0.050%  pl_vva 8 0.034% 
k_vva 12 0.050%  th_oo 8 0.034% 
khl_oo 12 0.050%  tr_a 8 0.034% 
khl_vva 12 0.050%  tr_xx 8 0.034% 

m_i 12 0.050%  w_@ 8 0.034% 
n_iia 12 0.050%  w_xx 8 0.034% 
p_o 12 0.050%  c_q 7 0.029% 

p_vva 12 0.050%  c_uu 7 0.029% 
t_uu 12 0.050%  h_qq 7 0.029% 
b_@ 11 0.046%  j_ee 7 0.029% 
h_uu 11 0.046%  kr_@ 7 0.029% 
kh_xx 11 0.046%  kr_x 7 0.029% 
kr_o 11 0.046%  l_@ 7 0.029% 
l_vv 11 0.046%  m_iia 7 0.029% 

m_oo 11 0.046%  ng_@@ 7 0.029% 
ph_ee 11 0.046%  ng_qq 7 0.029% 
phl_oo 11 0.046%  p_qq 7 0.029% 
pr_@@ 11 0.046%  phr_xx 7 0.029% 
s_oo 11 0.046%  pl_i 7 0.029% 
b_vva 10 0.042%  pr_oo 7 0.029% 
ch_oo 10 0.042%  s_qq 7 0.029% 
khl_vv 10 0.042%  tr_@@ 7 0.029% 

kl_i 10 0.042%  b_ii 6 0.025% 
ph_oo 10 0.042%  ch_x 6 0.025% 
phl_u 10 0.042%  h_ii 6 0.025% 
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Unit Amount Percent  Unit Amount Percent 

khl_xx 6 0.025%  kh_oo 3 0.013% 
khr_ee 6 0.025%  khr_v 3 0.013% 
khr_oo 6 0.025%  khw_iia 3 0.013% 

kl_o 6 0.025%  kl_vv 3 0.013% 
m_x 6 0.025%  kl_x 3 0.013% 

ng_ee 6 0.025%  kl_xx 3 0.013% 
p_x 6 0.025%  kr_ee 3 0.013% 
r_v 6 0.025%  kr_ii 3 0.013% 
w_e 6 0.025%  kr_u 3 0.013% 
c_xx 5 0.021%  kw_iia 3 0.013% 
f_ii 5 0.021%  kw_x 3 0.013% 
f_qq 5 0.021%  n_oo 3 0.013% 
j_qq 5 0.021%  ng_i 3 0.013% 

khl_ii 5 0.021%  ng_ii 3 0.013% 
khr_vv 5 0.021%  phl_v 3 0.013% 
khw_xx 5 0.021%  phr_qq 3 0.013% 
kr_qq 5 0.021%  phr_u 3 0.013% 
p_xx 5 0.021%  pr_ee 3 0.013% 
phr_v 5 0.021%  pr_o 3 0.013% 
pl_ee 5 0.021%  pr_vv 3 0.013% 
pl_uu 5 0.021%  thr_@@ 3 0.013% 
w_ii 5 0.021%  tr_e 3 0.013% 
w_u 5 0.021%  tr_ee 3 0.013% 
b_e 4 0.017%  tr_v 3 0.013% 

ch_xx 4 0.017%  z_uu 3 0.013% 
khl_qq 4 0.017%  z_x 3 0.013% 
khr_x 4 0.017%  z_xx 3 0.013% 
kl_e 4 0.017%  c_ee 2 0.008% 

kl_qq 4 0.017%  ch_ua 2 0.008% 
kr_i 4 0.017%  f_@ 2 0.008% 
l_ii 4 0.017%  f_i 2 0.008% 

m_ee 4 0.017%  f_u 2 0.008% 
n_e 4 0.017%  h_iia 2 0.008% 
ng_v 4 0.017%  j_q 2 0.008% 
pr_u 4 0.017%  khr_i 2 0.008% 
pr_xx 4 0.017%  khr_ii 2 0.008% 
t_qq 4 0.017%  khw_ee 2 0.008% 
th_@ 4 0.017%  kl_ii 2 0.008% 

thr_aa 4 0.017%  m_@ 2 0.008% 
thr_i 4 0.017%  n_ee 2 0.008% 
w_vv 4 0.017%  ng_uua 2 0.008% 
z_e 4 0.017%  ng_x 2 0.008% 

b_ee 3 0.013%  ng_xx 2 0.008% 
c_x 3 0.013%  p_@@ 2 0.008% 

f_@@ 3 0.013%  p_ia 2 0.008% 
f_e 3 0.013%  phl_@@ 2 0.008% 
j_ii 3 0.013%  phl_uu 2 0.008% 
j_x 3 0.013%  pl_u 2 0.008% 
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Unit Amount Percent  Unit Amount Percent 
pr_ii 2 0.008%  kl_@ 1 0.004% 
pr_q 2 0.008%  kl_vva 1 0.004% 
r_x 2 0.008%  kr_aa 1 0.004% 
s_x 2 0.008%  kr_e 1 0.004% 
w_q 2 0.008%  ng_uu 1 0.004% 
z_va 2 0.008%  p_v 1 0.004% 
b_v 1 0.004%  p_vv 1 0.004% 

ch_u 1 0.004%  ph_ia 1 0.004% 
d_v 1 0.004%  phl_@ 1 0.004% 
f_q 1 0.004%  phl_iia 1 0.004% 

f_vva 1 0.004%  phr_uu 1 0.004% 
j_v 1 0.004%  phr_x 1 0.004% 

kh_@ 1 0.004%  r_ee 1 0.004% 
khr_@ 1 0.004%  z_ia 1 0.004% 
khr_u 1 0.004%  z_ua 1 0.004% 
khr_xx 1 0.004%  z_vva 1 0.004% 
khw_x 1 0.004%     
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Table A1.8 Statistic of the Finals and rhymes in the training corpus 

Unit Amount Percent  Unit Amount Percent 
a_j 1,906 8.012%  vva_ng 117 0.492% 
aa 1,632 6.860%  u_n 116 0.488% 
a 1,215 5.107%  xx_ng 112 0.471% 
ii 1,173 4.931%  x_ng 109 0.458% 

a_n 868 3.649%  @@_p 108 0.454% 
aa_j 766 3.220%  uua_n 108 0.454% 

aa_ng 617 2.594%  u 104 0.437% 
aa_n 606 2.547%  qq_n 103 0.433% 
uu 523 2.198%  iia_w 96 0.404% 

a_ng 514 2.161%  qq_j 96 0.404% 
o_n 513 2.156%  vva_n 95 0.399% 
@@ 481 2.022%  @@_m 91 0.383% 
a_m 468 1.967%  oo_ng 91 0.383% 
aa_m 455 1.913%  v_n 87 0.366% 
a_w 453 1.904%  o_p 85 0.357% 
e_n 451 1.896%  u_ng 85 0.357% 

@@_ng 407 1.711%  uua_t 85 0.357% 
aa_w 376 1.580%  oo 81 0.340% 
v_ng 330 1.387%  u_t 81 0.340% 
xx 329 1.383%  @@_j 80 0.336% 
a_p 303 1.274%  ee 80 0.336% 
vva 273 1.148%  e_t 73 0.307% 
aa_k 272 1.143%  e_k 70 0.294% 
uua 263 1.106%  ii_p 69 0.290% 

x 245 1.030%  @_j 68 0.286% 
a_k 228 0.958%  qq 68 0.286% 
i_ng 226 0.950%  xx_k 68 0.286% 

@@_n 222 0.933%  @@_t 63 0.265% 
i_n 219 0.921%  ee_t 63 0.265% 

o_ng 193 0.811%  v_k 62 0.261% 
@@_k 192 0.807%  aa_p 59 0.248% 
aa_t 184 0.773%  oo_n 57 0.240% 
a_t 183 0.769%  ee_ng 55 0.231% 

uu_k 156 0.656%  i_m 55 0.231% 
uua_j 154 0.647%  iia 54 0.227% 
o_k 153 0.643%  qq_t 49 0.206% 
vv 151 0.635%  e_p 47 0.198% 

o_m 150 0.631%  qq_m 46 0.193% 
iia_ng 147 0.618%  uua_ng 46 0.193% 
xx_w 147 0.618%  iia_p 45 0.189% 
o_t 144 0.605%  oo_t 44 0.185% 
i 140 0.588%  u_m 43 0.181% 

@_ng 139 0.584%  uu_t 42 0.177% 
vv_n 136 0.572%  uu_ng 41 0.172% 

@ 135 0.567%  ii_k 40 0.168% 
i_t 127 0.534%  uua_k 40 0.168% 
u_k 124 0.521%  @_m 38 0.160% 
iia_n 117 0.492%  i_w 38 0.160% 
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Unit Amount Percent  Unit Amount Percent 
oo_j 38 0.160%  ii_m 17 0.071% 
xx_n 38 0.160%  iia_k 17 0.071% 
oo_k 37 0.156%  u_p 17 0.071% 

q 37 0.156%  uu_n 17 0.071% 
vva_k 37 0.156%  ee_m 16 0.067% 
xx_p 37 0.156%  vva_t 15 0.063% 
@_n 34 0.143%  ee_n 14 0.059% 
uu_p 34 0.143%  oo_p 14 0.059% 
x_n 32 0.135%  oo_m 13 0.055% 
i_p 31 0.130%  v_p 12 0.050% 
vv_t 31 0.130%  uua_p 11 0.046% 
e_m 30 0.126%  x_w 10 0.042% 
xx_m 29 0.122%  e 9 0.038% 
ii_n 28 0.118%  ee_p 8 0.034% 
u_j 28 0.118%  x_m 8 0.034% 

iia_m 27 0.113%  x_k 7 0.029% 
vva_m 25 0.105%  @_k 6 0.025% 
uua_m 24 0.101%  o 6 0.025% 

iia_t 23 0.097%  qq_p 6 0.025% 
qq_k 23 0.097%  v 6 0.025% 
qq_ng 23 0.097%  @_p 5 0.021% 
e_ng 21 0.088%  v_t 5 0.021% 
i_k 21 0.088%  @_t 4 0.017% 
q_n 21 0.088%  ia 4 0.017% 

vva_p 21 0.088%  uu_m 4 0.017% 
ii_t 20 0.084%  v_m 4 0.017% 
xx_t 20 0.084%  x_t 4 0.017% 
e_w 19 0.080%  ua 3 0.013% 
vva_j 19 0.080%  vv_p 3 0.013% 
ee_k 18 0.076%  x_p 3 0.013% 
vv_m 18 0.076%  va 2 0.008% 
ee_w 17 0.071%  
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APPENDIX B 

The Thai Text Testing Corpus 

 

Table B1.1 Statistic of the Thai initial consonants in the test set I 

Unit Amount Percent 

s 424 9.031% 

th 395 8.413% 

n 385 8.200% 

m 382 8.136% 

d 305 6.496% 

l 295 6.283% 

r 261 5.559% 

t 260 5.538% 

k 258 5.495% 

kh 255 5.431% 

p 226 4.814% 

ph 198 4.217% 

c 193 4.111% 

j 181 3.855% 

z 167 3.557% 

ch 136 2.897% 

w 127 2.705% 

h 116 2.471% 

b 91 1.938% 

ng 21 0.447% 

f 19 0.405% 

 

Table B1.2 Statistic of the Thai final consonants in the test set I 

Unit Amount Percent 

n 744 23.265% 

ng 624 19.512% 

j 450 14.071% 

k 385 12.039% 

t 342 10.694% 

m 277 8.662% 

p 203 6.348% 

w 173 5.410% 
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Table A1.3 Statistic of the Thai consonant clusters in the test set I 

Unit Amount Percent 

kl 64 22.069% 

pr 54 18.621% 

khr 42 14.483% 

phr 24 8.276% 

khw 23 7.931% 

pl 18 6.207% 

phl 17 5.862% 

kr 16 5.517% 

khl 14 4.828% 

kw 11 3.793% 

tr 7 2.414% 

thr 0 0.000% 

 

Table A1.4 Statistic of the Thai vowels in the test set I 

Unit Amount Percent 

a 1,164 23.345% 

aa 1,031 20.678% 

ii 429 8.604% 

@@ 386 7.742% 

i 223 4.473% 

o 206 4.132% 

uua 174 3.490% 

e 170 3.410% 

xx 170 3.410% 

uu 154 3.089% 

u 142 2.848% 

v 111 2.226% 

vva 107 2.146% 

x 99 1.986% 

ee 92 1.845% 

vv 81 1.625% 

oo 77 1.544% 

iia 66 1.324% 

qq 54 1.083% 

@ 49 0.983% 

ia 0 0.000% 

q 0 0.000% 

ua 0 0.000% 

va 0 0.000% 
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Table B1.5 Statistic of the context-independent Initials 

 in the test set I 

Unit Amount Percent 

s 424 9.031% 

th 395 8.413% 

n 385 8.200% 

m 382 8.136% 

d 305 6.496% 

l 295 6.283% 

r 261 5.559% 

t 260 5.538% 

k 258 5.495% 

kh 255 5.431% 

p 226 4.814% 

ph 198 4.217% 

c 193 4.111% 

j 181 3.855% 

z 167 3.557% 

ch 136 2.897% 

w 127 2.705% 

h 116 2.471% 

b 91 1.938% 

kl 64 22.069% 

pr 54 18.621% 

khr 42 14.483% 

phr 24 8.276% 

khw 23 7.931% 

ng 21 0.447% 

f 19 0.405% 

pl 18 6.207% 

phl 17 5.862% 

kr 16 5.517% 

khl 14 4.828% 

kw 11 3.793% 

tr 7 2.414% 
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Table B1.6 Statistic of the context-dependent Initials and CORM onsets in 

the test set I 

Unit Amount Percent  Unit Amount Percent 

n_a 222 4.453%  s_@ 32 0.642% 
th_i 167 3.350%  n_o 31 0.622% 
th_a 149 2.989%  p_i 30 0.602% 
m_a 148 2.969%  r_@ 30 0.602% 
k_a 144 2.889%  r_v 29 0.582% 
c_a 132 2.648%  z_i 28 0.562% 
s_a 130 2.608%  m_x 27 0.542% 
d_a 116 2.327%  t_@ 27 0.542% 
l_a 115 2.307%  r_u 25 0.502% 
m_i 115 2.307%  z_@ 24 0.481% 
p_e 101 2.026%  n_@ 23 0.461% 
j_a 97 1.946%  k_u 22 0.441% 
r_a 93 1.866%  k_i 21 0.421% 
l_x 88 1.765%  kh_o 21 0.421% 
s_u 86 1.725%  khr_@ 21 0.421% 
w_a 86 1.725%  khw_a 21 0.421% 
kh_a 84 1.685%  th_u 21 0.421% 
ph_a 81 1.625%  th_v 21 0.421% 
s_i 77 1.545%  c_@ 20 0.401% 
p_a 75 1.505%  ch_i 20 0.401% 
t_a 75 1.505%  m_u 20 0.401% 
z_a 72 1.444%  d_x 19 0.381% 

ch_a 70 1.404%  m_e 19 0.381% 
kh_@ 69 1.384%  ph_v 19 0.381% 
h_a 62 1.244%  z_u 19 0.381% 
d_@ 59 1.184%  kh_u 18 0.361% 
t_o 58 1.163%  s_o 18 0.361% 
s_v 56 1.123%  b_@ 17 0.341% 
n_i 53 1.063%  ng_a 17 0.341% 

pr_a 50 1.003%  d_o 16 0.321% 
d_u 47 0.943%  j_@ 16 0.321% 
r_i 47 0.943%  l_e 16 0.321% 

kl_a 45 0.903%  phr_a 16 0.321% 
j_u 40 0.802%  th_e 16 0.321% 
k_@ 40 0.802%  w_i 16 0.321% 
n_v 38 0.762%  b_u 15 0.301% 
kh_v 37 0.742%  f_a 15 0.301% 
d_i 36 0.722%  l_u 15 0.301% 
b_a 35 0.702%  r_o 15 0.301% 
ph_i 34 0.682%  t_e 15 0.301% 
ph_u 34 0.682%  ch_v 14 0.281% 
m_v 33 0.662%  k_x 14 0.281% 
t_u 33 0.662%  khr_a 14 0.281% 
t_x 33 0.662%  s_e 14 0.281% 
l_o 32 0.642%  th_@ 14 0.281% 
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Unit Amount Percent  Unit Amount Percent 
b_o 13 0.261%  ph_q 6 0.120% 
c_v 13 0.261%  th_x 6 0.120% 
h_u 13 0.261%  b_i 5 0.100% 
h_x 13 0.261%  h_e 5 0.100% 
l_i 13 0.261%  h_i 5 0.100% 
c_u 12 0.241%  ph_o 5 0.100% 
ch_e 12 0.241%  b_x 4 0.080% 
kr_a 12 0.241%  c_i 4 0.080% 
kw_a 11 0.221%  j_x 4 0.080% 
m_o 11 0.221%  khl_a 4 0.080% 
p_x 11 0.221%  khl_v 4 0.080% 
s_x 11 0.221%  khr_o 4 0.080% 
t_i 11 0.221%  l_q 4 0.080% 
w_e 11 0.221%  n_q 4 0.080% 
w_o 11 0.221%  ph_x 4 0.080% 
z_v 11 0.221%  phr_@ 4 0.080% 
kh_i 10 0.201%  pl_i 4 0.080% 
r_q 10 0.201%  r_e 4 0.080% 

ch_o 9 0.181%  z_o 4 0.080% 
h_o 9 0.181%  c_x 3 0.060% 
k_q 9 0.181%  d_v 3 0.060% 
kl_i 9 0.181%  f_u 3 0.060% 
m_@ 9 0.181%  j_v 3 0.060% 
ch_u 8 0.160%  kl_u 3 0.060% 
j_o 8 0.160%  kl_v 3 0.060% 

kh_e 8 0.160%  kr_u 3 0.060% 
kh_x 8 0.160%  n_e 3 0.060% 
n_u 8 0.160%  n_x 3 0.060% 

ph_@ 8 0.160%  p_@ 3 0.060% 
pl_u 8 0.160%  p_o 3 0.060% 
r_x 8 0.160%  phr_x 3 0.060% 
t_q 8 0.160%  c_e 2 0.040% 
c_o 7 0.140%  ch_@ 2 0.040% 
d_q 7 0.140%  d_e 2 0.040% 
h_@ 7 0.140%  k_v 2 0.040% 
j_i 7 0.140%  khr_v 2 0.040% 

ph_e 7 0.140%  khw_x 2 0.040% 
phl_e 7 0.140%  kl_@ 2 0.040% 
phl_u 7 0.140%  ng_u 2 0.040% 
z_e 7 0.140%  p_q 2 0.040% 
j_e 6 0.120%  phl_q 2 0.040% 
k_e 6 0.120%  pl_v 2 0.040% 

khl_u 6 0.120%  pl_x 2 0.040% 
l_@ 6 0.120%  pr_o 2 0.040% 
l_v 6 0.120%  th_o 2 0.040% 
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Unit Amount Percent  Unit Amount Percent 
tr_a 2 0.040%  kl_x 1 0.020% 
tr_i 2 0.040%  kr_i 1 0.020% 
tr_u 2 0.040%  ng_@ 1 0.020% 
w_x 2 0.040%  ng_o 1 0.020% 
z_x 2 0.040%  p_v 1 0.020% 
b_e 1 0.020%  phl_a 1 0.020% 
b_v 1 0.020%  phr_i 1 0.020% 
ch_q 1 0.020%  pl_@ 1 0.020% 
f_o 1 0.020%  pl_a 1 0.020% 
h_q 1 0.020%  pr_i 1 0.020% 
h_v 1 0.020%  pr_x 1 0.020% 

khr_i 1 0.020%  tr_o 1 0.020% 
kl_o 1 0.020%     
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Table B1.7 Statistic of the PORM onsets in the test set I 

Unit Amount Percent  Unit Amount Percent 
th_ii 134 2.688%  t_a 30 0.602% 
n_a 114 2.287%  m_vva 29 0.582% 
m_ii 109 2.187%  r_@@ 29 0.582% 
n_aa 108 2.166%  s_vva 29 0.582% 
p_e 101 2.026%  h_a 28 0.562% 
th_a 100 2.006%  s_uua 28 0.562% 
m_aa 98 1.966%  m_xx 27 0.542% 
d_aa 94 1.886%  ph_ii 27 0.542% 
s_a 85 1.705%  p_ii 26 0.522% 

k_aa 80 1.605%  ph_aa 26 0.522% 
c_a 74 1.484%  s_u 26 0.522% 
l_x 72 1.444%  th_i 26 0.522% 
r_a 70 1.404%  s_v 25 0.502% 

kh_@@ 67 1.344%  z_a 25 0.502% 
k_a 64 1.284%  z_@@ 24 0.481% 

kh_a 63 1.264%  n_@@ 23 0.461% 
l_a 62 1.244%  n_v 23 0.461% 

d_@@ 59 1.184%  r_aa 23 0.461% 
c_aa 58 1.163%  ch_aa 22 0.441% 
j_a 57 1.143%  d_a 22 0.441% 

ph_a 55 1.103%  k_u 22 0.441% 
l_aa 53 1.063%  kh_vv 22 0.441% 
m_a 50 1.003%  n_i 22 0.441% 
w_a 50 1.003%  ph_uu 22 0.441% 
ch_a 48 0.963%  t_oo 22 0.441% 
pr_a 48 0.963%  kh_aa 21 0.421% 
th_aa 48 0.963%  khw_aa 21 0.421% 
z_aa 47 0.943%  l_oo 21 0.421% 
p_a 45 0.903%  r_i 21 0.421% 
s_aa 45 0.903%  th_v 21 0.421% 
t_aa 45 0.903%  c_@@ 20 0.401% 
s_ii 41 0.822%  z_i 20 0.401% 
j_aa 40 0.802%  d_xx 19 0.381% 

k_@@ 39 0.782%  k_i 19 0.381% 
d_uua 38 0.762%  m_ee 19 0.381% 
j_uu 37 0.742%  b_a 18 0.361% 
kl_aa 36 0.722%  s_o 18 0.361% 
t_o 36 0.722%  t_@@ 18 0.361% 

w_aa 36 0.722%  b_aa 17 0.341% 
s_i 35 0.702%  ng_aa 17 0.341% 

h_aa 34 0.682%  b_@@ 16 0.321% 
t_xx 33 0.662%  l_xx 16 0.321% 

s_@@ 32 0.642%  r_ii 16 0.321% 
s_uu 32 0.642%  r_vv 16 0.321% 
t_uua 32 0.642%  th_ee 16 0.321% 
n_ii 30 0.602%  z_u 16 0.321% 
n_o 30 0.602%  n_vva 15 0.301% 
p_aa 30 0.602%  phr_a 15 0.301% 
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Unit Amount Percent  Unit Amount Percent 
t_e 15 0.301%  kh_x 8 0.160% 
w_i 15 0.301%  khr_@@ 8 0.160% 
b_u 14 0.281%  kl_ii 8 0.160% 
d_i 14 0.281%  pl_uu 8 0.160% 

j_@@ 14 0.281%  r_xx 8 0.160% 
kh_oo 14 0.281%  s_ee 8 0.160% 

c_v 13 0.261%  t_qq 8 0.160% 
k_xx 13 0.261%  th_u 8 0.160% 
kh_v 13 0.261%  th_uua 8 0.160% 

khr_@ 13 0.261%  c_o 7 0.140% 
ph_vv 13 0.261%  ch_ii 7 0.140% 

r_o 13 0.261%  ch_uua 7 0.140% 
b_o 12 0.241%  d_qq 7 0.140% 
ch_e 12 0.241%  f_aa 7 0.140% 
ch_vv 12 0.241%  j_o 7 0.140% 
d_iia 12 0.241%  kh_o 7 0.140% 
kr_a 12 0.241%  kh_uua 7 0.140% 
l_e 12 0.241%  l_iia 7 0.140% 

r_uua 12 0.241%  l_uua 7 0.140% 
th_@@ 12 0.241%  ph_@ 7 0.140% 
kw_aa 11 0.221%  ph_uua 7 0.140% 

l_o 11 0.221%  phl_ee 7 0.140% 
p_xx 11 0.221%  phl_uu 7 0.140% 
r_uu 11 0.221%  r_v 7 0.140% 
t_i 11 0.221%  th_iia 7 0.140% 

w_ee 11 0.221%  d_o 6 0.120% 
w_o 11 0.221%  h_@@ 6 0.120% 
d_ii 10 0.201%  j_e 6 0.120% 
d_oo 10 0.201%  kh_ee 6 0.120% 
h_x 10 0.201%  kh_uu 6 0.120% 

m_uua 10 0.201%  khl_u 6 0.120% 
r_iia 10 0.201%  l_@@ 6 0.120% 
r_qq 10 0.201%  m_@@ 6 0.120% 
s_xx 10 0.201%  m_u 6 0.120% 
z_vv 10 0.201%  n_uua 6 0.120% 
h_o 9 0.181%  ph_qq 6 0.120% 

h_uua 9 0.181%  r_vva 6 0.120% 
k_qq 9 0.181%  s_e 6 0.120% 
khr_a 9 0.181%  th_xx 6 0.120% 
kl_a 9 0.181%  z_ii 6 0.120% 
m_o 9 0.181%  ch_iia 5 0.100% 
t_@ 9 0.181%  j_ii 5 0.100% 
c_u 8 0.160%  k_ee 5 0.100% 
ch_i 8 0.160%  kh_u 5 0.100% 
ch_o 8 0.160%  khr_aa 5 0.100% 
d_uu 8 0.160%  l_vva 5 0.100% 
f_a 8 0.160%  m_i 5 0.100% 

kh_iia 8 0.160%  ph_ee 5 0.100% 
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Unit Amount Percent  Unit Amount Percent 
ph_i 5 0.100%  ph_i 5 0.100% 
ph_o 5 0.100%  ph_o 5 0.100% 
ph_u 5 0.100%  ph_u 5 0.100% 

ph_vva 5 0.100%  ph_vva 5 0.100% 
th_uu 5 0.100%  th_uu 5 0.100% 

b_i 4 0.080%  b_i 4 0.080% 
h_e 4 0.080%  h_e 4 0.080% 
h_i 4 0.080%  h_i 4 0.080% 
h_u 4 0.080%  h_u 4 0.080% 
j_xx 4 0.080%  j_xx 4 0.080% 

khl_aa 4 0.080%  khl_aa 4 0.080% 
l_ee 4 0.080%  l_ee 4 0.080% 
l_qq 4 0.080%  l_qq 4 0.080% 
l_u 4 0.080%  l_u 4 0.080% 

l_uu 4 0.080%  l_uu 4 0.080% 
m_uu 4 0.080%  m_uu 4 0.080% 
m_vv 4 0.080%  m_vv 4 0.080% 
n_qq 4 0.080%  n_qq 4 0.080% 

phr_@ 4 0.080%  phr_@ 4 0.080% 
pl_iia 4 0.080%  pl_iia 4 0.080% 
z_ee 4 0.080%  z_ee 4 0.080% 
z_o 4 0.080%  z_o 4 0.080% 

b_xx 3 0.060%  b_xx 3 0.060% 
c_uu 3 0.060%  c_uu 3 0.060% 
h_xx 3 0.060%  h_xx 3 0.060% 
j_u 3 0.060%  j_u 3 0.060% 

khl_vva 3 0.060%  khl_vva 3 0.060% 
kl_u 3 0.060%  kl_u 3 0.060% 
kr_u 3 0.060%  kr_u 3 0.060% 
l_i 3 0.060%  l_i 3 0.060% 
l_ii 3 0.060%  l_ii 3 0.060% 

m_@ 3 0.060%  m_@ 3 0.060% 
n_ee 3 0.060%  n_ee 3 0.060% 
p_o 3 0.060%  p_o 3 0.060% 

phr_xx 3 0.060%  phr_xx 3 0.060% 
r_e 3 0.060%  r_e 3 0.060% 
z_e 3 0.060%  z_e 3 0.060% 

z_uu 3 0.060%  z_uu 3 0.060% 
c_i 2 0.040%  c_i 2 0.040% 
c_ii 2 0.040%  c_ii 2 0.040% 
c_x 2 0.040%  c_x 2 0.040% 

ch_vva 2 0.040%  ch_vva 2 0.040% 
d_e 2 0.040%  d_e 2 0.040% 

d_vva 2 0.040%  d_vva 2 0.040% 
f_u 2 0.040%  f_u 2 0.040% 
j_@ 2 0.040%  j_@ 2 0.040% 
j_i 2 0.040%  j_i 2 0.040% 

j_vva 2 0.040%  j_vva 2 0.040% 
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Unit Amount Percent  Unit Amount Percent 

k_iia 2 0.040%  ch_@ 1 0.020% 
k_vva 2 0.040%  ch_@@ 1 0.020% 
kh_@ 2 0.040%  ch_oo 1 0.020% 
kh_e 2 0.040%  ch_qq 1 0.020% 

kh_vva 2 0.040%  ch_u 1 0.020% 
khr_o 2 0.040%  d_u 1 0.020% 
khr_oo 2 0.040%  d_v 1 0.020% 
khr_v 2 0.040%  f_o 1 0.020% 

khw_xx 2 0.040%  f_uu 1 0.020% 
kl_@@ 2 0.040%  h_@ 1 0.020% 
kl_vva 2 0.040%  h_ee 1 0.020% 
m_oo 2 0.040%  h_iia 1 0.020% 
n_u 2 0.040%  h_qq 1 0.020% 
n_x 2 0.040%  h_v 1 0.020% 

ng_uua 2 0.040%  j_oo 1 0.020% 
p_@ 2 0.040%  j_v 1 0.020% 
p_i 2 0.040%  k_@ 1 0.020% 

p_iia 2 0.040%  k_e 1 0.020% 
p_qq 2 0.040%  k_x 1 0.020% 
ph_e 2 0.040%  kh_i 1 0.020% 

ph_iia 2 0.040%  kh_ii 1 0.020% 
ph_x 2 0.040%  khl_vv 1 0.020% 
ph_xx 2 0.040%  khr_i 1 0.020% 
phl_qq 2 0.040%  kl_i 1 0.020% 
pl_vva 2 0.040%  kl_o 1 0.020% 
pl_xx 2 0.040%  kl_vv 1 0.020% 
pr_aa 2 0.040%  kl_xx 1 0.020% 
r_oo 2 0.040%  kr_i 1 0.020% 
r_u 2 0.040%  l_v 1 0.020% 
s_vv 2 0.040%  m_iia 1 0.020% 
th_@ 2 0.040%  n_iia 1 0.020% 
th_o 2 0.040%  n_oo 1 0.020% 
tr_ii 2 0.040%  n_xx 1 0.020% 

tr_uu 2 0.040%  ng_@@ 1 0.020% 
w_xx 2 0.040%  ng_o 1 0.020% 
z_iia 2 0.040%  p_@@ 1 0.020% 
z_xx 2 0.040%  p_v 1 0.020% 
b_@ 1 0.020%  ph_@@ 1 0.020% 
b_ee 1 0.020%  ph_v 1 0.020% 
b_ii 1 0.020%  phl_a 1 0.020% 
b_oo 1 0.020%  phr_aa 1 0.020% 
b_uu 1 0.020%  phr_i 1 0.020% 
b_v 1 0.020%  pl_@@ 1 0.020% 
b_x 1 0.020%  pl_aa 1 0.020% 
c_e 1 0.020%  pr_iia 1 0.020% 
c_ee 1 0.020%  pr_o 1 0.020% 

c_uua 1 0.020%  pr_oo 1 0.020% 
c_xx 1 0.020%  pr_xx 1 0.020% 
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Unit Amount Percent  Unit Amount Percent 
r_@ 1 0.020%  tr_aa 1 0.020% 
r_ee 1 0.020%  tr_o 1 0.020% 
s_iia 1 0.020%  w_@ 1 0.020% 
s_x 1 0.020%  w_ii 1 0.020% 
t_u 1 0.020%  z_vva 1 0.020% 
tr_a 1 0.020%     
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Table B1.8 Statistic of the Finals and rhymes in the test set I 

Unit Amount Percent  Unit Amount Percent 
a 466 9.348%  @@_p 24 0.481% 
ii 394 7.904%  x_ng 23 0.461% 
aa 256 5.135%  ii_k 22 0.441% 
a_j 224 4.493%  iia_ng 22 0.441% 

aa_ng 136 2.728%  xx_ng 22 0.441% 
e_n 133 2.668%  iia_w 21 0.421% 
aa_n 131 2.628%  xx_k 21 0.421% 
a_n 125 2.508%  o_m 20 0.401% 
aa_j 125 2.508%  u_m 20 0.401% 

@@_ng 104 2.086%  vva_ng 20 0.401% 
aa_m 104 2.086%  o_t 19 0.381% 
aa_k 92 1.846%  uu_k 18 0.361% 
uu 92 1.846%  uu_ng 18 0.361% 

aa_w 85 1.705%  @@_t 17 0.341% 
v_ng 82 1.645%  ee 17 0.341% 
o_n 79 1.585%  xx_n 17 0.341% 
a_m 78 1.565%  @_ng 15 0.301% 
xx 73 1.464%  i_ng 15 0.301% 

a_ng 72 1.444%  qq_t 14 0.281% 
@@_k 68 1.364%  uu_n 14 0.281% 
vva 66 1.324%  xx_t 14 0.281% 
x 65 1.304%  e_m 13 0.261% 
i 64 1.284%  o_p 13 0.261% 

aa_t 59 1.184%  uua_m 13 0.261% 
u 59 1.184%  v_n 13 0.261% 

@@ 58 1.163%  xx_w 13 0.261% 
i_t 58 1.163%  qq_n 12 0.241% 

@@_n 57 1.143%  ii_p 11 0.221% 
a_k 55 1.103%  oo_k 11 0.221% 
a_t 54 1.083%  vva_n 11 0.221% 

@@_j 49 0.983%  e_t 10 0.201% 
ee_t 49 0.983%  oo_j 10 0.201% 
i_n 49 0.983%  @@_m 9 0.181% 
uua 47 0.943%  e_k 9 0.181% 
oo 46 0.923%  ee_n 9 0.181% 

a_w 45 0.903%  ee_ng 9 0.181% 
a_p 44 0.883%  u_k 9 0.181% 
aa_p 43 0.863%  iia_k 8 0.160% 
vv 42 0.843%  oo_ng 8 0.160% 
o_k 41 0.822%  qq_p 8 0.160% 
u_t 40 0.802%  u_n 8 0.160% 

uua_ng 38 0.762%  uua_k 8 0.160% 
uua_n 37 0.742%  v 8 0.160% 
o_ng 33 0.662%  xx_p 8 0.160% 
vv_n 33 0.662%  uu_p 7 0.140% 
i_p 28 0.562%  @_j 6 0.120% 

uua_j 28 0.562%  iia_p 6 0.120% 
@ 26 0.522%  qq 6 0.120% 
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Unit Amount Percent  Unit Amount Percent 
qq_m 6 0.120%  iia 2 0.040% 
vva_k 6 0.120%  qq_k 2 0.040% 
ee_p 5 0.100%  u_j 2 0.040% 
i_k 5 0.100%  uua_p 2 0.040% 

iia_n 5 0.100%  vv_p 2 0.040% 
qq_j 5 0.100%  vva_p 2 0.040% 
i_w 4 0.080%  x_m 2 0.040% 

u_ng 4 0.080%  xx_m 2 0.040% 
uu_m 4 0.080%  @_m 1 0.020% 
v_k 4 0.080%  ee_w 1 0.020% 
vv_t 4 0.080%  iia_m 1 0.020% 
x_k 4 0.080%  iia_t 1 0.020% 
x_n 4 0.080%  qq_ng 1 0.020% 
e_w 3 0.060%  uu_t 1 0.020% 
oo_n 3 0.060%  uua_t 1 0.020% 
v_m 3 0.060%  v_t 1 0.020% 
@_n 2 0.040%  vva_j 1 0.020% 
e_ng 2 0.040%  vva_m 1 0.020% 
ee_k 2 0.040%  x_w 1 0.020% 
ii_n 2 0.040%     
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Table B2.1 Statistic of the Thai initial consonants in the test set II 

Unit Amount Percent 

kh 46 8.630% 

m 43 8.068% 

n 38 7.129% 

th 37 6.942% 

s 36 6.754% 

k 34 6.379% 

l 33 6.191% 

p 27 5.066% 

j 26 4.878% 

t 26 4.878% 

r 25 4.690% 

ch 24 4.503% 

d 23 4.315% 

ph 21 3.940% 

c 19 3.565% 

f 16 3.002% 

b 15 2.814% 

h 14 2.627% 

w 13 2.439% 

z 9 1.689% 

ng 8 1.501% 

 

Table B2.2 Statistic of the Thai final consonants in the test set II 

Unit Amount Percent 

ng 100 22.321 

n 92 20.536 

j 88 19.643 

t 44 9.821 

w 38 8.482 

k 34 7.589 

m 34 7.589 

p 18 4.018 
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Table B2.3 Statistic of the Thai consonant clusters in the test set II 

Unit Amount Percent 

pr 11 25.581% 

kr 8 18.605% 

kl 7 16.279% 

khr 6 13.953% 

phr 5 11.628% 

phl 2 4.651% 

khl 1 2.326% 

khw 1 2.326% 

kw 1 2.326% 

pl 1 2.326% 

 

Table B2.4 Statistic of the Thai vowels in the test set II 

Unit Amount Percent 

aa 165 28.646% 

a 136 23.611% 

@@ 35 6.076% 

o 33 5.729% 

i 23 3.993% 

ii 23 3.993% 

uua 21 3.646% 

uu 19 3.299% 

xx 15 2.604% 

e 14 2.431% 

iia 14 2.431% 

vva 14 2.431% 

oo 11 1.910% 

@ 9 1.563% 

ee 9 1.563% 

qq 9 1.563% 

u 9 1.563% 

x 7 1.215% 

vv 5 0.868% 

v 4 0.694% 

q 1 0.174% 
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Table B2.5 Statistic of the context-independent Initials 

 in the test set II 

Unit Amount Percent 

kh 46 7.986% 

m 43 7.465% 

n 38 6.597% 

th 37 6.424% 

s 36 6.250% 

k 34 5.903% 

l 33 5.729% 

p 27 4.688% 

j 26 4.514% 

t 26 4.514% 

r 25 4.340% 

ch 24 4.167% 

d 23 3.993% 

ph 21 3.646% 

c 19 3.299% 

f 16 2.778% 

b 15 2.604% 

h 14 2.431% 

w 13 2.257% 

pr 11 1.910% 

z 9 1.563% 

kr 8 1.389% 

ng 8 1.389% 

kl 7 1.215% 

khr 6 1.042% 

phr 5 0.868% 

phl 2 0.347% 

khl 1 0.174% 

khw 1 0.174% 

kw 1 0.174% 

pl 1 0.174% 
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Table B2.6 Statistic of the context-dependent Initials and CORM onsets in 

the test set II 

Unit Amount Percent  Unit Amount Percent 
n_a 28 4.861%  n_i 4 0.694% 
kh_a 27 4.688%  ng_a 4 0.694% 
m_a 23 3.993%  th_u 4 0.694% 
p_a 18 3.125%  ch_@ 3 0.521% 
th_a 17 2.951%  d_@ 3 0.521% 
s_a 16 2.778%  j_o 3 0.521% 

ch_a 15 2.604%  k_e 3 0.521% 
f_a 15 2.604%  k_q 3 0.521% 
k_a 14 2.431%  kh_v 3 0.521% 
c_a 13 2.257%  l_o 3 0.521% 
w_a 13 2.257%  m_o 3 0.521% 
r_a 12 2.083%  n_o 3 0.521% 
d_a 10 1.736%  ng_@ 3 0.521% 
h_a 9 1.563%  ph_o 3 0.521% 
j_a 9 1.563%  r_i 3 0.521% 
th_i 9 1.563%  r_o 3 0.521% 
b_a 8 1.389%  s_@ 3 0.521% 
kr_a 8 1.389%  th_e 3 0.521% 
l_a 8 1.389%  th_o 3 0.521% 

pr_a 8 1.389%  b_u 2 0.347% 
k_@ 7 1.215%  c_o 2 0.347% 
l_x 7 1.215%  c_v 2 0.347% 
p_e 7 1.215%  ch_u 2 0.347% 

ph_a 7 1.215%  d_e 2 0.347% 
ph_u 7 1.215%  d_i 2 0.347% 
s_i 7 1.215%  d_o 2 0.347% 
t_a 7 1.215%  d_q 2 0.347% 
t_o 7 1.215%  h_e 2 0.347% 
j_u 6 1.042%  j_@ 2 0.347% 

kh_@ 6 1.042%  k_i 2 0.347% 
kl_a 6 1.042%  k_o 2 0.347% 
l_u 6 1.042%  k_u 2 0.347% 
t_@ 6 1.042%  kh_u 2 0.347% 
b_i 5 0.868%  khr_@ 2 0.347% 
j_i 5 0.868%  l_@ 2 0.347% 

kh_o 5 0.868%  l_i 2 0.347% 
m_v 5 0.868%  l_q 2 0.347% 
r_u 5 0.868%  l_v 2 0.347% 
s_v 5 0.868%  n_u 2 0.347% 
z_i 5 0.868%  phr_@ 2 0.347% 

ch_i 4 0.694%  phr_i 2 0.347% 
khr_v 4 0.694%  pr_o 2 0.347% 
m_i 4 0.694%  s_u 2 0.347% 
m_u 4 0.694%  t_i 2 0.347% 
m_x 4 0.694%  t_u 2 0.347% 
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Unit Amount Percent  Unit Amount Percent 
t_x 2 0.347%  ng_q 1 0.174% 
z_a 2 0.347%  p_@ 1 0.174% 
c_e 1 0.174%  p_i 1 0.174% 
c_u 1 0.174%  ph_@ 1 0.174% 
d_u 1 0.174%  ph_e 1 0.174% 
d_x 1 0.174%  ph_i 1 0.174% 
f_o 1 0.174%  ph_x 1 0.174% 
h_@ 1 0.174%  phl_e 1 0.174% 
h_o 1 0.174%  phl_q 1 0.174% 
h_x 1 0.174%  phr_a 1 0.174% 
j_x 1 0.174%  pl_a 1 0.174% 
k_x 1 0.174%  pr_i 1 0.174% 
kh_e 1 0.174%  r_@ 1 0.174% 
kh_i 1 0.174%  r_x 1 0.174% 
kh_x 1 0.174%  s_e 1 0.174% 
khl_v 1 0.174%  s_o 1 0.174% 
khw_a 1 0.174%  s_x 1 0.174% 
kl_u 1 0.174%  th_x 1 0.174% 
kw_a 1 0.174%  z_@ 1 0.174% 
l_e 1 0.174%  z_q 1 0.174% 
n_v 1 0.174%     
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Table B2.7 Statistic of the PORM onsets in the test set II 

Unit Amount Percent  Unit Amount Percent 
kh_aa 17 2.951%  m_ii 4 0.694% 
n_a 16 2.778%  m_uu 4 0.694% 

m_aa 12 2.083%  m_xx 4 0.694% 
n_aa 12 2.083%  ng_aa 4 0.694% 
s_aa 12 2.083%  r_a 4 0.694% 
m_a 11 1.910%  s_a 4 0.694% 
p_a 11 1.910%  s_ii 4 0.694% 

ch_aa 10 1.736%  th_uua 4 0.694% 
kh_a 10 1.736%  d_@@ 3 0.521% 
th_a 10 1.736%  d_a 3 0.521% 
w_a 10 1.736%  j_o 3 0.521% 
k_a 9 1.563%  k_e 3 0.521% 
b_aa 8 1.389%  k_qq 3 0.521% 
f_aa 8 1.389%  l_o 3 0.521% 
kr_a 8 1.389%  m_o 3 0.521% 
r_aa 8 1.389%  n_o 3 0.521% 
th_ii 8 1.389%  ph_oo 3 0.521% 
c_a 7 1.215%  r_uua 3 0.521% 

d_aa 7 1.215%  s_@@ 3 0.521% 
f_a 7 1.215%  s_i 3 0.521% 

h_aa 7 1.215%  s_vv 3 0.521% 
k_@@ 7 1.215%  th_ee 3 0.521% 
p_aa 7 1.215%  w_aa 3 0.521% 
p_e 7 1.215%  b_i 2 0.347% 

ph_uu 7 1.215%  b_iia 2 0.347% 
pr_a 7 1.215%  b_u 2 0.347% 
t_o 7 1.215%  c_o 2 0.347% 

th_aa 7 1.215%  c_v 2 0.347% 
c_aa 6 1.042%  ch_@@ 2 0.347% 

kh_@@ 6 1.042%  ch_uua 2 0.347% 
kl_aa 6 1.042%  d_e 2 0.347% 
l_x 6 1.042%  d_oo 2 0.347% 

ph_aa 6 1.042%  d_qq 2 0.347% 
ch_a 5 0.868%  h_a 2 0.347% 
j_aa 5 0.868%  h_ee 2 0.347% 
j_i 5 0.868%  j_@ 2 0.347% 

k_aa 5 0.868%  j_u 2 0.347% 
kh_o 5 0.868%  kh_uua 2 0.347% 

m_vva 5 0.868%  kh_vv 2 0.347% 
t_@@ 5 0.868%  khr_@@ 2 0.347% 
t_aa 5 0.868%  l_qq 2 0.347% 

ch_iia 4 0.694%  l_uua 2 0.347% 
j_a 4 0.694%  l_vva 2 0.347% 

j_uu 4 0.694%  n_ii 2 0.347% 
khr_vva 4 0.694%  ng_@ 2 0.347% 

l_a 4 0.694%  phr_i 2 0.347% 
l_aa 4 0.694%  pr_oo 2 0.347% 
l_uu 4 0.694%  r_iia 2 0.347% 
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Unit Amount Percent  Unit Amount Percent 
r_oo 2 0.347%  l_i 1 0.174% 
r_u 2 0.347%  l_iia 1 0.174% 

s_uua 2 0.347%  l_xx 1 0.174% 
s_vva 2 0.347%  n_i 1 0.174% 
t_a 2 0.347%  n_iia 1 0.174% 
t_i 2 0.347%  n_u 1 0.174% 

t_uua 2 0.347%  n_uua 1 0.174% 
t_xx 2 0.347%  n_v 1 0.174% 
th_o 2 0.347%  ng_@@ 1 0.174% 
z_ii 2 0.347%  ng_q 1 0.174% 
z_iia 2 0.347%  p_@ 1 0.174% 
b_ii 1 0.174%  p_ii 1 0.174% 
c_e 1 0.174%  ph_@@ 1 0.174% 
c_u 1 0.174%  ph_a 1 0.174% 

ch_@ 1 0.174%  ph_ee 1 0.174% 
d_i 1 0.174%  ph_i 1 0.174% 
d_ii 1 0.174%  ph_xx 1 0.174% 

d_uua 1 0.174%  phl_ee 1 0.174% 
d_xx 1 0.174%  phl_qq 1 0.174% 
f_o 1 0.174%  phr_@ 1 0.174% 

h_@@ 1 0.174%  phr_@@ 1 0.174% 
h_o 1 0.174%  phr_aa 1 0.174% 
h_xx 1 0.174%  pl_aa 1 0.174% 
j_xx 1 0.174%  pr_aa 1 0.174% 
k_i 1 0.174%  pr_iia 1 0.174% 

k_iia 1 0.174%  r_@@ 1 0.174% 
k_o 1 0.174%  r_i 1 0.174% 
k_oo 1 0.174%  r_o 1 0.174% 
k_u 1 0.174%  r_xx 1 0.174% 

k_uua 1 0.174%  s_ee 1 0.174% 
k_xx 1 0.174%  s_o 1 0.174% 
kh_ee 1 0.174%  s_xx 1 0.174% 
kh_i 1 0.174%  t_@ 1 0.174% 
kh_v 1 0.174%  th_i 1 0.174% 
kh_x 1 0.174%  th_oo 1 0.174% 

khl_vva 1 0.174%  th_xx 1 0.174% 
khw_aa 1 0.174%  z_@@ 1 0.174% 
kl_uua 1 0.174%  z_a 1 0.174% 
kw_aa 1 0.174%  z_aa 1 0.174% 

l_@ 1 0.174%  z_i 1 0.174% 
l_@@ 1 0.174%  z_qq 1 0.174% 
l_e 1 0.174%     
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Table B2.8 Statistic of the Finals and rhymes in the test set II 

Unit Amount Percent  Unit Amount Percent 
aa_j 41 7.118%  o_m 3 0.521% 
a_j 40 6.944%  o_ng 3 0.521% 
aa 32 5.556%  o_t 3 0.521% 
a 23 3.993%  oo_ng 3 0.521% 

aa_n 23 3.993%  qq_j 3 0.521% 
aa_ng 23 3.993%  qq_n 3 0.521% 

ii 20 3.472%  v_ng 3 0.521% 
aa_w 19 3.299%  xx_n 3 0.521% 
a_ng 17 2.951%  @@_m 2 0.347% 
o_n 17 2.951%  ee 2 0.347% 
a_w 16 2.778%  iia_n 2 0.347% 
a_n 14 2.431%  iia_p 2 0.347% 
uu 13 2.257%  iia_w 2 0.347% 

aa_m 12 2.083%  oo_t 2 0.347% 
@@_ng 10 1.736%  qq_t 2 0.347% 

a_m 10 1.736%  u_t 2 0.347% 
a_t 9 1.563%  uua_m 2 0.347% 
i_ng 9 1.563%  xx_k 2 0.347% 
@@ 8 1.389%  xx_m 2 0.347% 
aa_t 8 1.389%  xx_ng 2 0.347% 
e_n 7 1.215%  @_m 1 0.174% 

iia_ng 7 1.215%  aa_p 1 0.174% 
vva_ng 7 1.215%  e_t 1 0.174% 
@@_p 6 1.042%  ee_ng 1 0.174% 
aa_k 6 1.042%  ee_p 1 0.174% 
i_n 6 1.042%  i_k 1 0.174% 
o_k 6 1.042%  i_m 1 0.174% 
uua 6 1.042%  i_p 1 0.174% 

x 6 1.042%  i_w 1 0.174% 
@@_n 5 0.868%  ii_k 1 0.174% 
ee_t 5 0.868%  ii_p 1 0.174% 
xx 5 0.868%  ii_t 1 0.174% 
@ 4 0.694%  iia_t 1 0.174% 

@@_k 4 0.694%  o_p 1 0.174% 
@_ng 4 0.694%  oo 1 0.174% 
a_p 4 0.694%  oo_j 1 0.174% 
i_t 4 0.694%  q_n 1 0.174% 

oo_n 4 0.694%  qq_ng 1 0.174% 
u_k 4 0.694%  u_j 1 0.174% 

uu_k 4 0.694%  u_m 1 0.174% 
uua_n 4 0.694%  u_ng 1 0.174% 
uua_ng 4 0.694%  uu_ng 1 0.174% 
uua_t 4 0.694%  uu_t 1 0.174% 

vv 4 0.694%  uua_j 1 0.174% 
vva 4 0.694%  v_n 1 0.174% 
a_k 3 0.521%  vv_n 1 0.174% 
e_k 3 0.521%  vva_j 1 0.174% 
e_ng 3 0.521%  vva_n 1 0.174% 
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Unit Amount Percent  Unit Amount Percent 
vva_t 1 0.174%  xx_p 1 0.174% 
x_ng 1 0.174%     
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