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CHAPTER I 

INTRODUCTION 

 

3D reconstruction has been widely focused in the field of computer graphics and visions 

with various applications in today’s life, such as medical, engineering, advertisement, and 

entertainment. This influences researchers to develop new techniques to solve this problem more 

efficiently and with higher accuracy. Existing state-of-the-art algorithms can reconstruct 3D objects 

with great accuracy, however they typically cannot handle surface that consist if both highly diffuse 

and highly specular parts. We leverage recent acquisition techniques that can accurately capture 

surface normal vector and specular reflection vector [1], and focus our 3D reconstruction algorithm 

base on normal integration. 

There has been a considerable amount of researches that studied the multi-view normal 

integration problem [2]–[4]. Chang et al. [3] is the first to proposed the energy functional for multi-

view normal integration that is derived from the classical single view shape-from-shading problem 

[5] and variational framework has been used in most researches to solve this error functional. 

Techniques above used implicit functions to represent the surface which gives an advantage on 

topology adaptation while performing mesh deformation. However, accurately representing a 3D 

object using implicit functions typically require large memory consumption and computation time, 

as it requires three-dimensional voxels to represent all the surface. [6] proposed an optimization 

framework which used triangular-mesh to represent the surface. However, they convert their mesh 

to an implicit surface to handle topological changes. This causes the edge length of the mesh to 

be up to the size of voxels in which fine details can be lost from converting to implicit surface. 

Our technique aims to use multi-view normal integration to reconstruct an arbitrary 3D 

object using normal and reflectance map from multiple viewpoints. We implemented multi-

resolution optimization scheme in our framework which helps the overall optimization converges 

faster. We applied gradient descent to the error functional and perform all operations directly on 

the 3D triangle-based mesh. This enables us to control the resolution of the mesh during 

optimization. However, using this explicit surface representation has its drawbacks. Topology cannot 
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be trivially change and self-intersection may occur during optimization. We employ the method 

from [7] to remove self-intersection and handle topological change. 

Our main contributions are 

• Mesh base optimization scheme that can handle topological change and self-

intersection without conversion to implicit representation. 

• Mesh based multi-resolution optimization for multi-view normal integration using 

reflectance information. 

• Selective matching cost optimization schedule that interleaves with normal 

integration. 

• Calculation of reflectance photometric information that takes visibility and multi-

view information into account and can handle missing data. 
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CHAPTER II 

RELATED WORKS 

 

3D reconstruction has gain a lot of attention in computer graphics and computer visions 

fields. In this section, we will focus on reviewing 3D reconstruction techniques that takes 

photometric and normal information as their inputs from multiple viewpoints. We refer the reading 

to an excellent survey for other 3D reconstruction method by Herbort and Wöhler [8]. 

Early methods for recovering surface information is shape-from-shading [5], [9]–[11]. These 

conventional methods were designed for reconstructing 2.5D surface from a single view information 

of texture-less object with known light position. Chang et al. [3] introduced a new technique that 

can reconstructs 3D surface using normal vector information from multiple viewpoints. They 

proposed their energy functional based on the single-view variational framework for shape-from-

shading problem [5]. Geometric PDE is then derived to minimize their proposed functional and 

level-set method is used as their optimization framework. Recently, Weinmann et al. [2] employed 

a similar concept of multi-view normal integration in order to reconstruct the surface of high 

specular object. They calculated the volumetric nor-mal field from projected illumination patterns 

and then applied global optimization with octree-based min-cut framework. The benefit of using 

an implicit surface (i.e. level-set, voxels, and octree) as their surface representation is that it 

automatically handles the topological changes while deforming the surface to the optimal target 

solution. However, it suffers from a large amount of memory consumption with more detailed 

mesh and can suffers from slow convergence rate. 

A number of previous works uses another surface representation. Esteban et al. [12] refined 

a visual hull by finding photometric normal consistencies and then deformed their mesh on vertex 

space. However, problem like self-intersection was not considered in their paper. Similarly, 

Yoshiyasu and Yamazaki [6] used a hybrid framework between intrinsic and extrinsic surface 

representation by optimizing their energy terms on triangular mesh and convert the mesh into an 

implicit surface to handles self-intersections. Though, the detail of target mesh can be washed out 

when converting to implicit surface. Furthermore, Tunwattanapong et al. [1] presented a technique 

for recovering the geometry of 3D objects by projecting spherical harmonics basis on the object to 
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acquire its reflectance information and then used message passing algorithm on vertex space to 

minimize their energy functional. 

Our proposed method performs optimization directly on triangle mesh similar to [6], [12]. 

Our energy functional is related to [3], but adding more terms in visibility function to handle inter-

reflections and noisy information better. We then minimize our energy functional using gradient 

descent scheme applying the method from Delaunoy et al. [13] which presented a framework to 

optimize a triangular mesh with gradient descent scheme. We handle the topological changes by 

employing similar algorithm from [7], [14]. Their algorithm could fix a mesh with self-intersection 

without losing details on the other part of the mesh. In addition to surface normal, we used 

reflectance information as our inputs. This allows our framework to work when the surface is not 

texture-less Lambertian. Our works compatible with other research in which they measured 

specularity [1], [2]. 
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CHAPTER III 

PROBLEM STATEMENT 

 
The goal of our framework is to recover a full water-tight triangular 3D mesh with reflectance 

information from multiple viewpoints with known intrinsic and extrinsic camera parameters. Our 

mesh consists of 𝑛 vertices and 𝑚 triangles which we denotes our vertices as a matrix 𝐕 =

[𝐯1 ⋯ 𝐯𝑛]𝑇 where 𝐯𝑖 ∈ ℝ3, 𝑖 ∈ [1, 𝑛] denotes a point in 3D space, and triangle 𝐅 =

[𝐟1 ⋯ 𝐟𝑚] where 𝐟𝑗 , 𝑗 ∈ [1, 𝑚] is a set consists of three adjacent vertices. Each vertex v𝒊 has an 

outward normal 𝐍(𝐩𝒊), similarly, each triangle also has its outward normal 𝐍F(𝐟𝑗). Our framework 

also requires a set of 𝑙 calibrated cameras 𝐂 = {𝐜1, ⋯ , 𝐜𝑙} located around the target object. Each 

camera 𝐜𝑘 where 𝑘 ∈ [1 ⋯ 𝑙]  has its own intrinsic and extrinsic parameters which can be described 

as matrices 𝐊𝑘 and [𝐑𝑘|𝐭𝑘] respectively, where 𝐭𝑘 is a translation vector in ℝ3 for camera 𝐜𝑘 and 

the projection from any point 𝐯 ∈ ℝ3 to image domain of camera 𝐜𝑘 can be written as �̃�𝑘 =

𝐊𝑘[𝐑𝑘|𝐭𝑘]𝐯 , �̃�𝑘 ∈ ℝ2. For the simplicity, we will also define this projection function to be �̃�𝑘 =

π𝑘(𝐯) and a lookup function ν𝑘,𝐗(�̃�𝑘) which will return information of image X at pixel �̃�𝑘.  

We need some information to describe how incident light reflected the object surface which in 

this case, we use diffuse and specular property of the surface as it is well known and widely used 

in many research. These information describe how the light reflect from the object surface to the 

camera lens which we can then use them to optimize the target surface. Our cameras will capture 

(or synthetically generate) these reflection information separately in each viewpoint. Our research 

will use four type of reflection data which are, diffuse intensity, diffuse reflection, specular intensity, 

and specular reflection. These information can then be derived to surface normal and use them 

in the optimization process which we will elaborate them on Section 4.1.   
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CHAPTER IV 

PROPOSED METHOD 

 

In this section, we explain the core algorithm in order to recover water-tight 3D mesh with 

reflectance information. We perform optimization directly on triangle mesh as in [3]. Therefore, we 

require an initial surface approximation which can be acquired from various procedures. In our 

work, we use shape-from-silhouette [15] to compute a visual hull and use them as an initial surface. 

We assumed that such information is also given as a part of the input data.  

We optimize the energy functional in coarse-to-fine manner by implementing multi-

resolution optimization. We schedule more optimization iterations at coarse resolution and 

gradually decrease the optimization iterations in finer resolution iteration. This helps the overall 

framework to converge faster.  

After we have a visual hull, we then minimize the cost functional based on geometric and 

photometric normal. The concept is to deform the mesh to match the target geometric normal 

with observed photometric normal.  

The input from cameras typically have some noises. We add target normal blending 

term in order to filter out unwanted noise and make the reconstruction more robust and visually 

appealing.  

We minimized our energy functional using a gradient descent scheme on vertex domain 

(Section 4.1). This is similar to surface evolution on implicit surface framework, instead we evolve 

our triangular mesh towards the gradient direction directly. This may lead to unwanted self-

intersection artifacts. We perform an adaptive remeshing algorithm [7], [14] on self-intersected 

surface. Our overall procedures is shown in Algorithm 1. 

 

 
4.1 Multi-view Reflectance Integration 

As in prior research about multi-view normal integration [2]–[4], we employ an error 

functional minimization framework based on the conventional shape-from-shading approach [5]. 
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We minimize the cost functional with variational methods by minimizing the disparity of geometric 

and observed normal fields on the surface domain. In the other words, we evolve the surface so 

that its geometric normal field matched the observed normal field. However, a normal vector at a 

point on the given surface can be ambiguous with noisy data which should be taken into account. 

We adjusted the multi-view normal field integration functional proposed by Chang et al. 

[3] which required an initial approximation of surface to integrate with. In this research, we acquired 

an initial shape approximation using shape-from-silhouette [15] as it is good enough for our 

algorithm.   

From a given initial approximation surface, we refine them by displacing every vertices 

such that its geometric normal field of both from vertices and triangles matches the observed one. 

Thus, we define our cost functional of a given vertices 𝐕 and triangles 𝐅 as follows: 

𝐸(𝐕, 𝐅) = ∑ ω(𝐯) [1 − (𝐍𝑡(𝐯) ⋅ 𝐍𝑔(𝐯))]

𝐯∈𝐕

+ ∑ ω𝐅(𝐟) [1 − (𝐍𝑡
𝐅(𝐟) ⋅ 𝐍𝑔

𝐅(𝐟))]

𝐟∈𝐅

(1)
 

Algorithm 1 Reconstruction Pipeline 

                      1: (𝐕, 𝐅) ← Shape-from-silhouette                          //Initial shape  
2: for each resolution iteration do  
3: if mesh is coarse then  
4: (𝐕, 𝐅)  ←  matchingcost-optimization(𝐕, 𝐅)  
5: for each optimization iteration do  
6: Find target normal of each 𝐕 and 𝐅  
7: Calculate ∇E of each 𝐕 and 𝐅 

 
8: repeat 
9: argminβE(deform(𝐕, 𝐅, ∇E))  

10: (𝐕, 𝐅) ← deform(𝐕, 𝐅, ∇E) 
11: until E(𝐕, 𝐅) is converges 

 
12: (𝐕, 𝐅) ← resample(𝐕, 𝐅)  
13: return (𝐕, 𝐅) 
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where, 𝐍𝑡(𝐯) and 𝐍𝑡
𝐅(𝐟) are observed target normal at vertex 𝐯 and triangle 𝐟 respectively, 𝐍𝑔(𝐯) 

and 𝐍𝒈
𝐅(𝐟) are geometric normal at vertex 𝐯 and triangle 𝐟, ω(𝐯) and ω𝐅(𝐟) are a weighting 

function of vertex 𝐯 and triangle 𝐟, based on the surface area. 

Our reflectance information can be derived to normal vector so that it is consistent with 

our proposed cost functional. For diffuse component, we can derive them with the following 

equation: 

�̃�𝑘,diff(𝐩) = Normalize(α𝑟ν𝑘,diff(�̃�𝑘) − 𝐩) (2) 

where ν𝑘,diff(�̃�𝑘) is a lookup function for diffuse reflection of kth camera at pixel �̃�𝑘, �̃�𝑘,diff(𝐩) is 

calculated diffuse normal at point 𝐩 from camera 𝑘, α𝑟 is a radius constant of a projection sphere 

where the incident light reflected to, and for specular component:  

�̃�𝑘,spec(𝐩) = Normalize (
α𝑟ν𝑘,spec(�̃�𝑘) − 𝐩

|α𝑟ν𝑘,spec(�̃�𝑘) − 𝐩|
+ 𝐩 − �̅�𝑘) (3) 

Similarly, where ν𝑘,spec(�̃�𝑘) is a lookup function for specular reflection,  �̃�𝑘,spec(𝐩) is calculated 

specular normal ,and �̅�𝑘 is position vector of the kth camera. 

 

4.2 Target Normal Calculation  

According to (1), there are both 𝐍𝑡(𝐯) and 𝐍𝑡
𝐅(𝐟) terms which we need to obtain by observing 

normal vectors from the photometric information provided. At a vertex 𝐯, we calculate the normal 

vectors from diffuse and specular component separately and blend them with weighting constants 

as follows:  

𝐍𝑡(𝐯) = Normalize (wdiff𝐍𝑡,diff(𝐯) + wspec𝐍𝑡,spec(𝐯)) (4)

where wdiff and wspec are the weight for diffuse and specular component which can be 

calculated as follows:   

wdiff = ∑ α𝜃,𝑘(𝐯)ψ𝑘(𝐯)ν𝑘,diffalbedo(�̃�𝑘)

𝑘∈𝐂

(5) 

wspec = ∑ α𝜃,𝑘(𝐯)ψ𝑘(𝐯)ν𝑘,specconf(�̃�𝑘)

𝑘∈𝐂

(6) 
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α𝜃,𝑘(𝐯) = max (0, (−𝐥�̂� ⋅ 𝐍𝑔(𝐯))) (7) 

  

where 𝐥�̂� denotes a camera direction vector, 𝐍𝒈(𝐯) is geometric normal at vertex 𝐯, ψ𝑘(𝐯) is 

visibility function which will determine if camera 𝐜𝑘 is visible for vertex 𝐯. ν𝑘,specconf(�̃�𝑘) is a look 

up function for diffuse albedo at point 𝐯, and ν𝑘,specconf(�̃�𝑘) is specular reflection confidence 

which depends on the acquisition technique. 

For each component, we project this point to a set of visible cameras 𝐂seen and look up for 

reflectance information. We then use weighted average function based on camera angle towards 

the surface to calculate for the target normal as follows: 

 

𝐍𝑡,diff(𝐯) = ∑ 𝛼𝜃,𝑘(𝐯)ψ𝑘(𝐯)�̃�𝑘,diff(𝐯)

𝑘∈𝐂

(8) 

𝐍𝑡,spec(𝐯) = ∑ 𝛼𝜃,𝑘(𝐯)ψ𝑘(v)�̃�𝑘,spec(𝐯)

𝑘∈𝐂

(9) 

Similarly, for the triangle case, we used its centroid as a point of projection and then obtain 

target normal for the triangle.  

The visibility terms ψ𝑘(𝐯) can be easily calculated using ray tracing algorithm like in 

previous research [3], [4], [13] However, determining whether the surface in consideration is visible 

by just ray-tracing might not be enough as there could be some outliers (noise and inter-reflections) 

which can leads to inaccurate target normal. Therefore, we need to filter such outliers out first by 

restricting more conditions to visibility terms as follows: 

ψ𝑘(𝐯) = 𝜅𝑚(𝐯)𝜅𝑝(𝐯)𝜅𝑐𝑔(𝐯)𝜅𝑐𝑡(𝐯)𝜅𝑡𝑔(𝐯) (10) 

 

𝜅𝑚(𝐯) = {
  1,    if 𝐯 is visible at camera 𝑘

0,                            otherwise  
(11𝑎) 

𝜅𝑝(𝐯) = {
  1,          if 𝐧𝐨𝐭 self-intersected

0,                            otherwise  
(11𝑏) 
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𝜅𝑐𝑔(𝐯) = {
1,              − (𝒍�̂� ⋅ 𝐍𝒈(𝐯)) > 0

0,                            otherwise  
(11𝑐) 

𝜅𝑐𝑡(𝐯) = {
  1,    − (𝒍�̂� ⋅ ν𝑘,spec(�̃�𝑘)) > 0.5

0,                            otherwise  
(11𝑑) 

𝜅𝑡𝑔(𝐯) = {
1,        �̃�𝑘,spec(𝐯) ⋅ 𝐍𝑔(𝐯) > 0

0,                            otherwise  
(11𝑒)

 Like in [3], [4], [13], the first term (11a) can be determine by tracing a ray from camera to 

vertex, if it is not occluded by any surface then this counts as visible. Although from our 

observation, there are several sources that lead to incorrect target normal acquisition, such as inter-

reflections. (11b) checks whether the gathered information is bad from inter-reflection by tracing a 

ray from position 𝐯 along the reflection vector respected to each viewpoint. If the ray hit the mesh 

itself, we will discard the information and treated this pixel as invalid. The term (11c) checks 

boundary cases when the ray-tracer hits back-face surface. This can be occurred when tracing to a 

point located near the silhouette or thin surfaces. For specular component, (11d) filters out the 

reflection vectors that have wide angle respected to its camera direction vector as the surface that 

face off the camera are likely to be noisy. Lastly, the term (11e) filters out the bad photometric 

reflection which face backward respected to the mesh geometry. This mostly occur in the area 

with inter-reflection. 

 

4.3 Gradient Descent Optimization Scheme 

 With observed target normal being calculated on every vertices in V and triangles in F, we 

then minimize our energy functional in (1) with gradient descent framework. Similar to [13], but 

with our proposed energy functional. Basically, we will deform our mesh by translating each vertex 

v𝑖 along the calculated deformation direction vector d𝑖 which can be written as: 

 

𝐯𝑖
′ = 𝐯𝑖 + 𝑡𝐝𝑖 (12) 

where v𝑖
′ denotes a deformed vertex v𝑖 with scalar weight t for direction d𝑖. This deformation 

vector can be computed by finding the gradient of energy functional in (1) and energy decreases 
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when the surface is deformed in the opposite gradient direction. Thus, the deformation equation 

of the whole mesh can be written as: 

 

𝐕′ = 𝐕 − 𝛽𝛻𝐸(𝐕, 𝐅) (13) 

 

Figure 1 Vertex deformation of point v toward the direction vector d which can be calculated by 

finding gradient of vertex v 

Finding the gradient for each vertex v𝑖 is not trivial since our energy functional (1) is based 

on normal terms. Besides, we need to calculate the gradient respect to its position: 

 

∇E(V, F) = [
δE

δx
(V, F),

δE

δy
(V, F),

δE

δz
(V, F)] (14) 

Our normal can be derived from its adjacent vertices using the following equations: 

t1 = ∑ cos (
2πi

k
) Adj(v, i)

k−1

i=0

(15𝑎) 

t2 = ∑ sin (
2πi

k
) Adj(v, i)

k−1

i=0

(15b) 

where v has k adjacent vertices, t1 and t2 are tangent vectors, and Adj(v, i) returns the position 

of ith adjacent vertex of v. The cross product t1 × t2 is then calculated for vertex normal. (For 

more in details please refer to [16]) With this we can solve for an analytic gradient of the energy 

with a symbolic differentiation package such as sympy [17]. 
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We then perform line search algorithm to find the value β in (13) which will minimize our 

energy toward the current surface. Then from (13), we have: 

argminβE(V − β∇E(V, F), F) = 0 (16) 

 

4.4 Target Normal Blending 

Some part of the surface may not be captured with high quality information (e.g. highly 

concave surface) or that part of the surface is totally occluded. This could be problematic as 

observed target normal vector N𝑡(v) or N𝑡
𝐅(f) could be an undefined vector which caused by our 

visibility terms in (10) of every camera returns zero. This may lead to an undefined behavior for 

our optimization process. Therefore, our framework will need to handle this case, so that at least 

the surface without information can still be reconstructed with visually appealing output. We define 

a confidence function λ(v) for our observed target normal or can be also called normal blending 

weight. This confidence value decreases as the calculated target normal become unreliable. We 

then use the confidence term to blend the calculated target normal with smoothed geometric 

normal using the following equation: 

 

N𝑡
blend(v) = λ(v)N𝑡(v) + (1 − λ(v))�̅�𝑔(v) (17) 

where, �̅�𝑔(𝐯) is normal vector of smoothed geometric surface at point v. Our normal blending 

weight is varied to the number of visible viewpoints and variance of photometric curvature of 

visible viewpoints: 

λ(p) = λH(p)λC(p) (18𝑎) 

λH = exp (min (0, −
σH

2
)) (18b) 

λC = exp (min (0, |Cseen| − ⌈
(1 − cos θ)

2
⌉ |C|)) (18𝑐) 

where λH is photometric curvature variance term which can be calculated by looking up all normal 

components from visible cameras and compute its variance. That is, if the photometric normals 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

are consistent, the calculated target normal is more likely to be reliable. Where, λH captures the 

photometric curvature variance. The term λC represents the vertex visibility. If the calculated target 

normal are computed from more viewpoints, the target normal is acceptable. We assumed that 

camera set C are uniformly located along the sphere that covers the scanning object. Then, at a 

particular vertex v on a surface, v will have a set of visible cameras Cseen. The term (1 − cos θ)/2 

is derived from the ratio between surface of spherical sector to the whole sphere, where at a 

particular point v should be at least visible to the camera that is located on the part of spherical 

cap which in this research we set the θ value to be 45 degree. However, this equation is only based 

on our camera configuration. It could be adjusted to be suitable for other configuration as well.

  

 

Figure 2 Blending weight function of our camera configuration, varied to 𝜎𝐻 and |𝐶seen| with 31 
total cameras and 𝜃 = 45∘ 
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Figure 3 Cameras within an infinite radius spherical sector (hi-lighted in blue) will be marked as 
visible. 

 
4.5 Matching Cost Optimization  

Normal integration has its limitation about ambiguity as stated in [18], which can result in 

an incorrect answer even the energy functional is converged. Especially in the concave area where 

the observed target normal can be inaccurate due to projection error. We can solve such problem 

by using similar idea to stereo reconstruction. 

We solved this problem in a similar manner to the normal integration by defining the 

normal correspondence energy function based on mesh vertices and move them to the optimal 

solution. Given, a vertex v ∈ ℝ3 and camera set C. We assumed that, if the vertex v is at the 

correct position, then its projected normal from each camera should be correspond to every other 

cameras. In order to find such correspondence, we defined our matching cost function to be a 

variance of observed normal of visible viewpoints where the number of visible viewpoint is more 

than 3. Otherwise we will force the matching cost to be +∞  

We sampled points along the vertex normal both outward and inward, then calculate the 

matching cost at each sampling. After that, from all computed matching cost samples, we fit a 

quadratic equation for the displacement from the sample with minimum cost and its adjacent 

samples. We then compute the location of the tip of the parabola. Finally, based on the matching 
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cost of the optimal point, we translate the vertex along its normal with the displacement 

calculated earlier. 

4.6 Remeshing 

 The drawback of using explicit surface representation like triangular mesh is that it could 

not automatically deal with topology changes unlike implicit surface representation. It is likely that 

self-intersection will occurred in our mesh due to our mesh evolution in Section 4.3. 

The author in [7], [14] proposed a framework to efficiently solve topological changes on 

triangular mesh called Transformesh. The algorithm solves topology changes by using an intuitive 

geometrically driven solution which we found it suitable for our framework. We perform 

Transformesh algorithm after the whole mesh deformation process is completed in every iteration. 

Other self-intersection algorithm such as [19]–[21] can also be used in this step. 

Then, after every resolution iteration, we resample our mesh to be finer with edge splitting 

operation and remove short edge with edge collapsing operation. We then use the mesh in the 

next optimization iteration. 
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CHAPTER V 

RESULTS 

 
In this section, we will discuss and evaluate the result of our reconstruction pipeline with 

both real and synthetic data. All procedures are executed with Intel i7-5820K 3.30GHz, with 64GB 

of RAM. 

 

5.1 Real data 

We performed the reconstruction on two real data (As shown in Figure 4 ). Our setup has 

31 viewpoints uniformly located on faces of truncated icosahedral (except one on the bottom-

most) with 30 centimeters in radius which we can set our parameter αr in (2) and (3) to be 30. All 

input images are captured in 4896 by 3684 pixels and camera matrices are already calibrated. Visual 

hull is then extracted for initial mesh with 1 millimeter in voxel edge length. We optimized more 

iterations in coarser resolution mesh as the coarse details will converged before refining the mesh 

in the finer iteration so that the optimization converges faster in overall. We scheduled 10 iterations 

or the coarse resolutions, then decreasing the number of optimization iterations in finer resolution 

iteration. 

 

Figure 4 Input reflectance information of speccat and hammerman. From left to right, diffuse 
albedo, diffuse reflection, specular albedo, specular reflection, and mask information for our 

optimization framework. 
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Figure 5 shows the results of reconstructed mesh of speccat and hammerman. Our 

framework successfully recovered both data. The output of speccat has reasonable geometric 

features and being able to render an appealing result. 

 

5.2 Synthetic data 

 We simulate the configurations from real data reconstruction from the last section, so that 

it is not biased or favoring to our framework. We used three ground truth meshes (As shown in 

Figure 6) and projecting reflectance information needed with similar camera calibration to the prior 

section. We replaced every pixels to be one for diffuse and specular intensity since there were no 

such information to project and this would not violate our framework. In addition, additive white 

gaussian noise is added to the generated images with coefficient AWGN coeff value set to 0.1, 

0.2, and 0.3 (As shown in Figure 7) and compared the result to evaluate the robustness of our 

framework.  

Figure 5 Reconstructed 3D models of speccat and hammerman. The real objects are shown on the 
left and rendered reconstructed outputs are shown on the middle and right. 
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Figure 6 Synthetic data of bunny, dragon, and discolobus. From left to right, ground truth mesh, 
diffuse reflection, and specular reflection. We omitted diffuse and specular albedo since we set 

all the value into one. 

 

 

Figure 7 Additive white gaussian noise is added to bunny data with coefficient 0.1, 0.2, and 0.3 
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We measure the error of our output with Hausdorff distance [22] as shown in Table 1. Note 

that our framework can reasonably recovered the shape even with noisy data. Only the concave 

area seems to far off the ground truth due to the matching cost optimization could not perfectly 

find the correct optimal point with noisy data. 

Table 1: Hausdorff distance of outputs toward ground truths 
Model AWGN Coeff Mean dH (mm) RMS 

Bunny 0 0.06026 0.07269 
0.1 0.06405 0.07791 
0.2 0.16838 0.27443 

0.3 0.23536 0.47291 
Dragon 0 0.12251 0.27265 

0.1 0.15447 0.33639 
0.2 0.24416 0.46701 
0.3 0.30370 0.55531 

Discolobus 0 0.21390 0.30124 

0.1 0.22146 0.30930 
0.2 0.36786 0.55528 
0.3 0.44007 0.71934 
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AWGN coeff 0.0 AWGN coeff 0.1 

  
Ground truth AWGN coeff 0.2 AWGN coeff 0.3 

Figure 8 The Hausdorff distance of bunny toward its ground truth. 
 

 

  

 

AWGN coeff 0.0 AWGN coeff 0.1 

  
Ground truth AWGN coeff 0.2 AWGN coeff 0.3 

Figure 9 The Hausdorff distance of dragon toward its ground truth. 
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AWGN coeff 0.0 AWGN coeff 0.1 

  
Ground truth AWGN coeff 0.2 AWGN coeff 0.3 

Figure 10 The Hausdorff distance of discolobus toward its ground truth.  
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CHAPTER VI 

CONCLUSION 

 

 We have presented a 3D reconstruction technique that uses multi-view normal integration 

framework using reflectance information. With our mesh-based optimization, we are able to 

reconstruct fine details without sacrificing unnecessary memory consumption unlike implicit surface 

framework. Although it can presents self-intersection, we exploit such problem by using 

Transformesh [7] which fix topology changes completely in triangular mesh domain. We also deal 

with those surface which only a few or none of the camera can be seen with target normal blending 

which will smooth out the surface without photometric information. 

 Our framework also has some limitations toward the area with high details and thin surface. 

This is due to the inability to observe high frequency target normals on the coarse iterations which 

result it smoothed out surface like in hammerman (Figure 5). This could be resolved with adaptive 

mesh w.r.t. photometric curvature and is an interesting area of future work. While our method can 

handle topological change during optimization, if the initial mesh is of different genus from the real 

mesh, our algorithm may not be able to change the genus. Hence, using a good initial mesh with 

matching genus may be needed. Creating a better initial mesh is hence another interesting area of 

future work.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 
 

 
[1] B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, 
“Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. 
Graph., vol. 32, no. 4, p. 109, 2013. 

[2] M. Weinmann, A. Osep, R. Ruiters, and R. Klein, “Multi-View Normal Field Integration for 3D 
Reconstruction of Mirroring Objects,” Proc. IEEE Int. Conf. Comput. Vis., pp. 2504–2511, 2013. 

[3] J. Y. C. J. Y. Chang, K. M. L. K. M. Lee, and S. U. L. S. U. Lee, “Multiview normal field 
integration using level set methods,” 2007 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1–8, 2007. 

[4] A. Osep, “Multiview Normal Field Integration using Graph-Cuts,” in Central European 
Seminar on Computer Graphics for Students, 2012. 

[5] B. K. Horn and M. J. Brooks, “The Variational Approach to Shape from Shading,” Comput. 
Vis. Graph. Image Process., vol. 33, pp. 174–208, 1986. 

[6] Y. Yoshiyasu and N. Yamazaki, “Topology-adaptive multi-view photometric stereo,” in 
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 2011, pp. 1001–1008. 

[7] A. Zaharescu, E. Boyer, and R. Horaud, “TransforMesh: A Topology-adaptive Mesh-based 
Approach to Surface Evolution,” in Proceedings of the 8th Asian Conference on Computer Vision - 
Volume Part II, 2007, pp. 166–175. 

[8] S. Herbort and C. Wöhler, “An introduction to image-based 3D surface reconstruction and 
a survey of photometric stereo methods,” 3D Res., vol. 2, no. 3, p. 4, 2011. 

[9] R. T. Frankot and R. Chellappa, “A method for enforcing integrability in shape from shading 
algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, no. 4, pp. 439–451, 1988. 

[10] J. T. Barron and J. Malik, “Shape, Illumination, and Reflectance from Shading,” IEEE Trans. 
Pattern Anal. Mach. Intell., vol. 37, no. 8, pp. 1670–1687, Aug. 2015. 

[11] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: a survey,” Pattern Anal. 
Mach. Intell. IEEE Trans., vol. 21, no. 8, pp. 690–706, 1999. 

[12] C. H. Esteban, G. Vogiatzis, and R. Cipolla, “Multiview photometric stereo,” IEEE Trans. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

Pattern Anal. Mach. Intell., vol. 30, no. 3, pp. 548–554, 2008. 

[13] A. Delaunoy and E. Prados, “Gradient Flows for Optimizing Triangular Mesh-based Surfaces: 
Applications to 3D Reconstruction Problems Dealing with Visibility,” Int. J. Comput. Vis., vol. 95, no. 
2, pp. 100–123, Nov. 2011. 

[14] A. Zaharescu, E. Boyer, and R. Horaud, “Topology-adaptive mesh deformation for surface 
evolution, morphing, and multiview reconstruction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 
33, no. 4, pp. 823–837, 2011. 

[15] A. Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 16, no. 2, pp. 150–162, 1994. 

[16] P. Schroeder, D. Zorin, and W. Sweldens, “Subdivision for Modeling and Animation,” 1998. 

[17] “SymPy.” [Online]. Available: http://www.sympy.org/. [Accessed: 19-Jun-2018]. 

[18] J. Balzer and S. Werling, “Principles of Shape from Specular Reflection,” Measurement, 
vol. 43, no. 10, pp. 1305–1317, 2010. 

[19] N. Chentanez, M. Müller, and M. Macklin, “GPU accelerated grid-free surface tracking,” 
Comput. Graph., vol. 57, pp. 1–11, 2016. 

[20] N. Chentanez, M. Müller, M. Macklin, and T.-Y. Kim, “Fast Grid-free Surface Tracking,” ACM 
Trans. Graph., vol. 34, no. 4, p. 148:1--148:11, Jul. 2015. 

[21] G. L. Bernstein and C. Wojtan, “Putting Holes in Holey Geometry: Topology Change for 
Arbitrary Surfaces,” ACM Trans. Graph., vol. 32, no. 4, p. 34:1--34:12, Jul. 2013. 

[22] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring Error on Simplified Surfaces,” 
Comput. Graph. Forum, vol. 17, no. 2, pp. 167–174, 1998.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28 

 

 

 

 
VITA 

VITA 

 

Name : Wichayut Eaksarayut 

Date : May 29, 1993 

Place of Birth : Bangkok, Thailand 

Education 

Master of Computer Engineering, Faculty of Engineering, Chulalongkorn 
University, Bangkok, Thailand.  2015-present 

Bachelor of Computer Engineering, Faculty of Engineering, Chulalongkorn 
University, Bangkok, Thailand. 2011-2014 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29 

 


	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	CHAPTER II RELATED WORKS
	CHAPTER III PROBLEM STATEMENT
	CHAPTER IV PROPOSED METHOD
	4.1 Multi-view Reflectance Integration
	4.2 Target Normal Calculation
	4.3 Gradient Descent Optimization Scheme
	4.4 Target Normal Blending
	4.5 Matching Cost Optimization
	4.6 Remeshing

	CHAPTER V RESULTS
	5.1 Real data
	5.2 Synthetic data

	CHAPTER VI CONCLUSION
	REFERENCES
	VITA

