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CHAPTER I

INTRODUCTION

1.1 The Purpose of The Investigation

Polypropylene (PP} is the fourth largest tonnage polymer made {1]. PP
offers a combination of inexpensive price, easy processability, and a wide
spectrum of properties. Therefore PP is used to produce a variety of products
such as molded parts, films, and textile fibers, among others. This is the only
comrmodity resin that has a heat distortion temperature above 100°C. PP as
well as polypropylene copolymer (PP-cp) is used very widely in a number of -
applications (e.g., in furniture and the automobile industry). The high impact
properties of PP-cp make it a better choice over homopolymer PP for such
applications. The impact properties of any thermoplastic material can be
improved either by chemical modification or by blending with an elastomeric
impact modifier such as ethylene propylene diene monomer rubber (EPDM)
[2], ethylene propylene rubber (EPR) [3, 4, 5], natural rubber (NR) [6].
Among those, EPR and EPDM have been considered the most effective one
[7]. These materials exhibit some of the physical properties of conventional
elastomers at service temperatures and are processable at elevarad
temperature.

Recently, polyolefins produced with metallocene catalysts have been
used as impact modifiers. Yu used metallocene ethylene-butene copolymers

for modifying PP impact resistance [8]. He found that the compound had less



shrinkage while maintaining good impact to stiffness balance, as well as low
temperature ductility. In-a study on the composition of the elastomeric
modifier, Laughner es al. found that as the comonomer is changed from
propylene to butene to octene, a substantial increase in Izod impact resistance,
- Dart impact, and weldline strength were observed [9].

Although sufficient information exists on blend of PP, there are hardly
any data on the properties of blends of PP-cp with elastomers. Therefore, in
the present work, a study has been performed to investigate PP-cp blends
containing ethylene-1-octene copolymer (EG), commercially available
polyolefinic elastomcr.. In additioﬁ, maleic anhydride-graﬁed-poly;;r(;pylene
(MAH-g-PP) will be evaluated in terms of their effect on tensile properties,

flexural properties and impact properties of the blends.

1.2 Purpose of Research

This research was studied the mechanical properties of PP-cp/EG blends
in order to improve the impact strength of PP-cp and effect of maleic
anhydride-grafted-polypropylene (MAH-g-PP) upon the phased morphology
and consequently mechanical properties of PP-cp/EG-blends. The PP-cp/EG
blends are expected to have better mechanical properties comparable to

cominercial resin.

1.3 Scope of Research

In this research, the effect of increasing octene content and EG
concentration including compatibilizing agent or polymer modifiers such as

MAH-g-PP on mechanical properties of PP-cp/EG blends were investigated.



All composition was prepared by melt mixing in a single screw extruder.
Finally, these mixtures were injection molded to produce the standard ASTM
specimens by injection machine. The Differential Scanning Calorimetry
(DSC) and Scanning Electron Microscopy (SEM) techniques were used to
analyze the blends. The mechanical properties, melt flow index, impact
strength, tensile strength, tensile modulus, yield stress, elongation at break,
flexural strength and flexural modulus were measured and compared to

commercial resin.



CHAPTER 11

THEORY AND LITERATURE REVIEW

2.1 Polymer Blends

A polymer blend will be defined a, a combination of two or more
polymers resulting from common processing steps {10]. It has become an
increasingly important technique for improving the cost-performance ratio of
commercial plastics. For example, blending may be used to reduce the cost of
an expensive engineering thermoplastic, to improve the processability of a
high-temperature or heat-sensitive thermoplastic or improve impact resistant.
Commercial blends may b.e homogeneous, phase separated [11]. [n simple
mechanical blends the plastic component usually predominates, with the
dispersed elastomer having dimensions of the order of several micrometers.
The shear action of mechanical blending also generates free radicals through
polymer degradation reactions. The free radicals thus induced by
mechanochemical action subsequently react to form a small number of true
chemical grafied between the two components [12].

Some polymer blends are fabricated to improve the melt flow and
mechanical properties and/or to reduce shrinkage. For example, polyblends of
PVC with ABS or acrylate graft copolymer have impact strength higher than
either of the components. Binary blends of PP with LLDPE are commerciaily
attractive for their strength, modulus, and low-temperature impact

performance [13]. PS blended with PP will improve the thermal stability of



PP during processing [14]. The inechanical properties of the biends depend on
the state of dispersion: shape, size and orientation of the dispersed phase. For
example, at 15% by weight of rubber/polyamide blend, a fourfold drop in
Notched Izod Impact Strength was observed in increasing the number average
minor size from 0.7 lbm to 0.8 [m [15]. It has been found that the addition of

interfacial agents can improve the properties of immiscible blends.

2.2 Thermoplastic Elastomers (TPEs) [16]

Thermoplastic elastomers first appeared as commercial entitiffs during
the late 1950s with thelintroduction- of thermoplastic polyurethane elastomers
by both B. F. Goodrich and Mobay Chemical. This was followed by the
productinn of styrene butadiene and styrene isoprene block copolymers by
Shell Chemical Company during the middle and late 1960s. A significant
innovation in the TPE field was the commercial introductton of copolyester
block copolymers by the Du Pont Company during the early 1970s, which
was followed. by the introduction .of a group of rubber-plastic blends
(primarily polypropylene and EPDM rubber) by Uniroyal Chemical
Company. By the late 1970s, TPEs were beginning to-make an impact in the
rubber products marketplace. The rapid increase in the use of the
thermoplastic elastomers showed by Figure 2.1, which gives the consumption
of these materials in the United States between 1970 and the present.

TPEs are a rubbery material with the characteristics of a conventional
thermoplastic and the performance properties of a conventional thermoset
rubber. TPEs are processed by the extrusion, injection molding, blow

molding, and so on and with the same equipment as used for thermoplastics



such as polyethylene, polypropylene, or polyvinyl chloride. On the other
hand, the properties of TPEs are extremely similar to those of a conventional
rubber such as natural rubber, SBR, or EPDM. This rapidly growing field thus
brings together the conventional commercial and technical disciplines of

rubber and thermoplastics.
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Figure 2.1 Worldwide growth curves for thermoplastic elastomers,

actval to 1990: projected for different growth rates 1990-2000.

The desirable performance properties of thermoplastic elastomers are
derived from their chemistry and morphology. There are six generic
categories of commercial TPEs:

1. Styrenic block copolymers

2. Rubber-polyolefin blends

3. Elastomeric alloys



a. Thermoplastic vulcanizates (TPVs)
b. Melt processible rubbers (MPRs)

4. Thermoplastic polyurethanes

5. Thermoplastic copolyesters

6. Thermoplastic polyamides {nylons)

The applications of TPEs are virtually as broad and intensive as those of
conventional thermoset rubbers. The major end-use markets for thermoplastic
elastomers now are mechanical rubber goods and non-tire automotive product.
The major and minor household appliances, building construction, shoes,
electrical insulation and jacketing, .sheeting, food and beverage con-tact, and

health care {17].

2.3 Thermoplastic Polyolefin Elastomers (TPOs) [18]

TPOs are like all TPE materials. TPO products cover a range of
properties, bridging the gap between elastomers and plastics. The processing
of these products on standard thermoplastic equipment allows for great
production economy. The reuse of regrind from runners, sprues, and so on,
almost eliminates scrap. TPO materials are defined as compounds comprising
blends of wvarious polyolefin semicrystalline plastics and  amorphous
elastomers. The most common types of TPOs are composed of polypropylene
(PP), ethylene-propylene rubber (EPR) and ethylene-propylene-diene-
monomer rubber (EPDM). Other polyolefin polymers commonly used in
TPO compounds
include: low-density polyethylene (LDPE), high-density polyethylene

(HDPE), linear low-density polyethylene (LLDPE), copolymers of ethylene



with vinyl acetate (EVA), ethylacrylate (EEA), and methyl acrylate (EMA),
semicrystalline copolymers of propylene and ethylene (PP-cp), and
polybutene-1. TPO products are blends or mechanical mixtures of polyolefin
polymers like most thermoplastic elastomers. They are composed of hard
domain (isotactic propylene homopolymer or isotactic propylene copolymer
with a minor amount of ethylene as the comonomer) and soft domain (usually
a rubber). The exact size and shape of these domains and their properties
determine the properties of the resulting formulations. Further, the properties
of a TPO can be changed by the method of processing and fabricating finished
parts. . ‘

TPO products are used in a variety of applications in three major market
areas: automotive, wire and cable, and mechanical goods. In each of these
markets, TPOs are used because they meet the engineering requirements of
the application and can be procduced at a cost that 1s competitive with more
traditional materials. They are used extensively in the automotive indusiry,
which 1s therr single largest market. TPO compounds are used for many sott,
durable exterior body parts to réplace sheet metal including: air dams, body
side cladding, body side molding, bumper. covers, bumper end caps, fender
liners, rub strips, stone deflectors, sight shields, wheel well moldings, and
valance panels. TPO. products are used in the engine compartment,

underhood, carburetor air ducts, conduits, fender liner pads, and firewall pads.



2.4 Polypropylene (PP)

Polypropylene is a thermoplastic polymer with low specific gravity,
excelient chemical resistance, high melting point (relative to volume plastics),
good stiffness/toughness balance, adaptability to many converting method,
great range of special purpose grades, excellent dielectric properties, and low
cost (especially per unit volume). [t has gained wide acceptance in
applications ranging from fibers and films to injection-molded pérts for.
automobiles and food packaging [17]. More than 7 billion pounds of
polypropylene are produced annually in the United States. About 20 % of this
volume consists of copélymers, mostly copolymers containing 2-5 % ethylene
into the polymerization reactor. The resulting polymer has increased clarity,
toughness and flexibility [19]

Although polypropylene has many useful properties, it is not
intrinsically tough especially below its glass transition temperature. However,
its impact resistance can be mmproved by adding elastomer usually
ethylene/propylene. rubber [20]. Numerous studies have been carried out that
aim at improving PP toughness, stiffness, and strength balance. The addition
of mineral fillers and reinforcing agents fo the polymeric matrix reduces the

cost of the material and enhances some of the mechanical properties.

2.4.1 Polypropylene Homopolymer

Polypropylene is synthesized by placing propylene monomer under
controlled conditions of heat and pressure in the presence of organometallic,
stereospecific catalysts {Ziegler-Natta tpye). Depending on the catalyst and

polymerization process used, the molecular structures of the resulting polymer
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consist of three different types of stereochemical configurations in varying
amounts. These are referred to an isotactic, syndiotactic, and atactic, for which

their structures are shown in Figure 2.2 [21].

(a}

Figure 2.2 Polypropylene structures

a) isotactic  b) syndiotactic  c¢) atactic

2.4.2 Polypropylene Copolymer

Polymerising propylene in the presence of Ziegler-Natta catalyst systems
makes isotactic polypropylene homopolymer. The ethylene/propylene rubber
fraction is either synthesized in the presence of homopolymer in a second, gas
phase reactor or is purchased beforechand and then blended with the
homopolymer in the extruder. The resulting impact polypropylene copolymer

1s pelletized and sold as such.
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Impact polypropylene copolymer has a density less than 1, and is less
expensive per pound than PET, PBT, HIPS, and ABS. Based on specific
volume; the cost per cubic unit of impact polypropylene is less than these
resins and PVC. Only HDPE is competitive by this measure. The effect of the
elastomer is that amorphous rubber particles distributed throughout fhe
semicrystalline homopolymeric matrix provide stress concentration point at
the interface, which initiated local deformation instead of allowing cracks to
propagate. So, impact polypropylene copolymer has excellent notched impact
energy: Izod impact strength range from 1.5 to 15 fi-lb/inch, and also
excellent in Gardner impact properﬁes at low temperatures. Furtherr;'iore, it 15
highly resistant to chemicals and environmental stress cracking. [17]

The chief commercial application of impact polypropylene is injection
molding of articles used in automotive applications, housewears, and
appliances. The impact resistance, low density, colorability, and processability
of impact polypropylene make it ideal for such applications. More application
for extruded sheeting made from impact polypropylene copolymers, extruded

sheets can be thermoformed into large, thick parts. Good samples are fender

and frunk liners in the automotive industry [22].



Table 2.1 Typical properties of polypropylene copolymer

12

Property ASTM Unit Block Randoin
copolymer copolymer

Melt Flow Index D-1238 . £/10min 1-43.8 8.3-23.2
Tensile Strength D-638 Kgf;’cm2 147-263 221-300
at Yield
Flexural Strength D-790 Kgf/cm® 193-267 237-267
Flexural Modulus D-790 Kgficm’ 4000-9000 5000-6000
Hardness R'ocldvell R-scale 65-92 85-92
Izod Impact D-256 Kgf-cm/cm 8.4-68.5 2.7-4.6

Strength
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Figure 2.4  Structures of copolymer molecules
a) Random copolymer b) Alternating copolymer

" ¢) Block copolymer d) Graft copolymer



2.5 Ethylene-1-Octene Copolymer (ENGAGE)

Engage polyolefin elastomers are ethylene copolymer produced using
“[NS[TETM”, a catalyst and process technology that allows extraordinary
control over polymer structure, properties and rheology, by controlling
molecular architecture, “INSITETM", designed to process like thermoplastics
and perform like elastomer. The unique characteristics of “INSITE " are
flexibility, bardness, elasticity, clarity, and other key properties. These
properties can be further improved through compounding and the use of filler.
When crosslinked, it also offers excellent compression set and heat resistance.
Engage is the enabling polymer in a broad range of thermoplastic elastomer
(TPE) compounds. Tt is a highly versatile material for thermoplastic
compounding and imparts a unique combination of processability and
toughness when used to modify today's premier rigid TPO blends for exterior

bumpers and fascias.

Table 2.2 Typical properties of ethylene-1-octene copolymer

Typical Properties Range of Valugs
Density, g/cc. ASTM D-792 0.864-0.913
Flexural Modulus, 2% Secant, MPa, ASTM D-790 7-19
Elongation, %, ASTM D-638 700
Melting Point,” C 50-100
Hardness, Shore A, ASTM D-2240 65-95

Melt Index, 12, ASTM D-1238, dg/min ¢.5-30
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2.5.1 Impact of Ethylene-1-Octene Copolymer onThermoplastic

Olefins

2.5.1.1 Stiffness and Ductility

Ethylene-1-octene copolymer strikes the ideal balance between
stiffness and ductility at equivalent loading of elastomer. Even at -30 °c,
TPOs made with ethylene-1-octene copolymer maintain their integrity in
high-impact applications. Combine this with good flowability and part fill. it.

cans downgauge to thinner parts to help reduce material and part costs.

2.5.1.2 Better Flow

While polypropylene’s high-flow characteristics make it difficult
to impact modify with high viscosity material such as EPDM. New polymer
that brings high-impact capability to high-flow PP allowing better, more
efficient processing and improved knit line strength is ethylene-1-octene
copolymer because its properties is low molecular weight, good flowability

-and good part fill etc.

2.5.1.3 Superior Dispersibility

Ethylene-l1-octene copolymer offers superior dispersibihty into
polypropylene when compared with EPDM. Using it in TPOs blends can help:

- Better impact efficiency

- Faster.and more uniform mixing

- Lower overall processing and part costs



Table 2.3 Improved impact performance vs. EPDM in TPOs

Feature Benefit

Superior stiffness/ductility balance - Better value as an impact modifier.
- Higher modulus TPOs with
equivalent impact strength
- Allows use of thinner parts, reducing
costs
Better and faster dispersibility - Improves impact performance of
TPOs blends

Easier handling than bales and crumbs - Reduces labor costs

2.5.2 New Advantage to a Variety of Application

Ethylene-1-octene copolymer is used in insulation and jacketing for
utility and industrial power applications. Appliance and medical industry
spec_iﬁers choose it to meet requirements for flexibility in a variety of molded
and extrudered components.

Two of the many industries that look to ethylene-1-octene copolymer
both today and for future application are the footwear and automotive

markets.
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Table 2.4 Examples of application-footwear and automotive

Footwear Automotive

- Unit soles - Brake seals, diaphragms
- Water shoes _ - Air ducts

- Compounds - Flooring, mats, liners

- Outsoles - Hosing, tubing, covers

- Direct injection molding - Bumpers, rub strips

- Foams

2.6 Compatibilization
Generally, melt mixing of polymers produces a material that is weak
and brittle. The low deformation modulus may follow approximately an linear
mixing rule, but the ultimate properties certainly will not follow this rule
becéuse of the presence of stress concentrators and wear interfaces between
the disperse phase and a matrix [23]. The process of bridging to enhance the
mechanical properties by the addition of a third component, or by in situ
chemical reaction is termed —compatibilization. In most cases, the
compatibilizer has many possible effects to the final blend, for example:
i) To reduce the interfacial tension in the melt, leading to a finer
dispersed phase
ii) To increase the adhesion at phase boundaries, giving improved
stress transfer and strengthen the interface in the solid state
iii)  To stabilize the dispersed phase by reducing the rate of domain

coalescence during melt processing and annealing
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2.6.1 Addition of Block and Graft Copolymer

Most compatibilizing agents contain blocks chemically identical to the
blend component polymers. When the melt blend cools, the two ends of the
copolymer will be physically held in the relevant phase, by a chemical link of
the copolymer chain. This action mode is illustrated in Figure 2.5. Better
dispersion and adhesion result in improved mechanical properties of the
compatibilized blend. However, the finest dispersion is not necessarily giving
‘the best physical properties to the blend. The optimum size of dispersion must

be related to the required end-use properties of the blend.

Grafied polymer Copolymer

\ Phase of polymer A /

Phase of polymerB

Figure 2.5 Schematic diagram showing location of block and graft

copolymers at phase interfaces.
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2.7 Maleic Anhydride-Grafted-Polypropylene

Effective application of polymer composites is determined by the
interfacial interactions between polymer and filler. The role of interaction is
more critical because of the non-polar hydrophobic nature of the polymer
phase and the hydrophilic character of inorganic filler. The polarity of the
polymer matrix can be increased by several methods. One of the most
common processes is to use a functional monomer with a pendant reactive
polar group. The most widely used reactive functionalities are unsaturated
acids and their derivatives. The maleic anhydride-grafted-polypropylene or
polyethylene is at thé present time a classical example of the reactive
functionality.

Considerable effort has been devoted to developing methods for grafting
maleic anhydride (MAH) to the backbones of variety of saturated and
unsaturated polymeric materials. In general, MAH grafting has been
continuously explored as a technique to improve propeﬁies of polymer by
providing polarity to promote hydrophilic and adhesion, to give functionality
for crosslinking and other chemical modification, and promote compatibility
with other materials.-A polymer containing grafted MAH has anhydride and
carboxyl groups that interact with functional groups on another polymer,
which are capable of forming covalent or hydrogen bonds therewith. Thus,
laminates or coatings based on MAH-grafted polymers have good adhesion to
other polymers in the form of fabricated shapes or films.

Blending PP-g-MAH with nylon 6 in the melt at 230 °C results in the
formation of a compatlbilizing agents containing segment of PP and nylon 6.

An oil-resistant thermoplastic elastomer, Geolast ™ s prepared by melt
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blending PP containing about 10% PP-g-MAH and nitrile rubber (NBR)

containing 0.2-3% amine terminated liquid NBR [24].

2.8 Literature Reviews

Improving mechanical properties such as toughness is usually the main
reason for the development of novel thermoplastic alloy and blends. Other
reasons for blending two or more polymers together include: (1) to improve
the polymer’s processability (2) to enhance the physical and chemical
properties of the blend making them more desirable than those of the
individual polymer and (3) to meet the market force.

Thermoplastic elastomers are materials that combine the excellent
processing characteristics of thermoplastics at higher temperatures, and the
wide range of physical properties of elastomers at lservice temperature.

Willis and Favis (1988) [25] investigated the processing-morphology
relationships of compatibilized polyolefin/polyamide blends. They reported
that the morphology of compatibilized polyolefin/polyamide blends was
found to be significantly dependent on the concentration of an ionomer
compatibilizer (polyethylene-methacrylic acid-isobutyl acrylate terpolymer) in
the blend. For a dispersed phase content of 10% by weight; a maximum
reduction in phase size was observed when only 0.5% by weight of ionomer
was added to the blend. A more significant reduction of the dispersed phase
size was observed when the minor phase was nylon. These interactions were
confirmed by Fourier transform infrared spectroscopy. The results observed
were explained in term of a speculative model of the interaction occurring

across the nylon polyolefin interface.
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Armat and Moet (1993) [26] investigated the effect of compatibilizing
polyethylene and nylon 6 on the morphology and mechanical properties of
their blends. A maleic anhydride functionalized styrene (styrene-co-butylene)-
styrene block copolymer (MA/SEAB) was added to the blends as a
compatibilizer. They reported that the compatibilizer was found to play a dual
interfacial function. On one hand, it reduced the interfacial tension of the
system, resulting in reduction of the particle size of the dispersed polyethylene
phase and it enhanced the interfacial adhesion through the formation of micro-
bridges.

Rijsdijk, Contaﬁt and Peijs .(1993) [27] investigated the influence of
maleic anhydride-modified polypropylene (M-PP) on mechanical properties
of continuous-glass-fiber-reinforced polypropylene (PP) composites. M-PP
was added to the PP homopolymer to improve the adhesion between the
matrix and the glass fiber. These tests showed an increase in both longitudinal
and transverse flexural strength up to 10 wt % M-PP, whereas at higher
weight fractions of M-PP a decrease in flexural strength was observed. No
significant influence of M-PP on composite stiffness was observed.
Additional mechanical tests on unidirectional glass/PP composites with 0 wt%
and 10 wt% M-PP showed only a small increase in fiber-dominate properties
such as longitudinal tensile strength and strain, whereas composite properties
that are governed by the interphase, such as transverse, shear and compressive
strength, showed significant increases as a result of matrix modification and
an enhanced interaction between the glass fibers and the PP matrix.

George et al (1997) {28] studied the effect of blend ratio and

compatibilization on dynamic mechanical properties of PP/NBR was
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investigated at different temperatures. The storage modulus of the blend
decreased with Increase in rubber content and showed two T-g’s indicating the
incompatibility of the system. Various composite models have been used to
predict the experimental viscoelastic data. The addition of phenolic modified
polypropylene (Ph-PP) and maleic modified polypropylene (MA-PP)
improved the storage modulus of the blend at lower temperatures. The
enhancement in storage modulus was correlated with the change in domain
size of dispersed NBR particies.

DaSilva et al (1997) [29] studied about the effectiveness of the
polyethylene elastomer (PEE) as an impact modifier for polypropylene in
relation to the traditional modifier EPDM. The flow properties of the PEE/PP
and EPDM/PP blends were also evaluated and analyzed by solid-state C-13
Nuclear Magnetic Resonance (C-13-NMR) Spectroscopy, Scanning Electron
Microscopy (SEM), and Differential Scanning Calorimetry (DSC). The results
showed that PEE/PP and EPDM/PP blends present a similar crystalline
behavior, which resulted in a similar mechanical performance of the blends, .
on the composition analyzed. It was also verified that the PEE/PP blend has
lower torque than the EPDM/PP blend, which indicates a better processability.

Carriere and Silvis (1997) {30] studied the effect of short-chain
branching and comonomer type on the interfacial tension of polypropylene-
polyolefin elastomer blends. They found the effect of increasing octene
content and comonomer type on the compatibility of polypropylene-
polyolefin elastomer (PP-POE) blends via direct measure of the interfacial
tension. The interfacial tension was found decreased with increasing octene

content from a starting value of 1.5+/-0.16 dyn cm at an initial octene level of
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9% down to 0.56+/-0.07 dyn cm at an octene content of 24%. These can be
interpreted in terms of the effective decrease in the molecular weight between
chain ends for the branched POE materials. The experimental data were found
to be described well by a modification of the empirical relationship used to
~ describe the effect of molecular weight on the interfacial tension for linear
materials. The measured interfacial tension was also found to be dependent on
the type of comonomer used in the PP-POE systems. The interfacial tension
ranges from 1.07+/-0.09 dyn em for a PP-POE system made using ethylene-
propylene dﬁwn to 0.56+/-0.07 dyn cm for a PP-POE made using ethylene-
octene (24%octene). .

Michel et al. (1999) [31] studied the effect of compounding conditions
and composition on the properties of talc/ethylene-octene copolymer/PP
compounds. The use of 30% talc provided a twofold increase in tensile
modulus compared with pure PP. Impact resistances of filled and unfilled
compounds were found to increase rapidly once the copolymer concentration
reached around 20 wt% based on the polymer phase. Modulus and tensile
strength decreased linearly with copolymer concentration. They used four
different commercial maleic anhydride-grafted PP with interfacial modifiers
and found that a slight tensile strength increases when using between 2 and 10
wt% maleic anhydride-grafted PP.

Premphet and Horanont (1999) [32] investigated ternary-phase
polypropylene (PP) composites containing an ethylene-octene copolymer
(EOR) and calcium carbonate (CaCO,). Particular consideration was given to
the influence of stearic acid treatment of the filler on the phase morphology

and mechanical properties of the composites. The use of filler treated with
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stearic acid had no effect either on the dispersion or the interaction of the filler
and the pelymer components. However, the surface-treated filler was found to

promote the beta-hexagonal crystallization of PP and gave a composite with

lower T onset and T, values. As a consequence, differences in mechanical

properties, impact strength were exhibited in which calcium carbonate with
stearic acid treatment was apparently more effective in increasing the impact
strength of the composites n comparison with the compositeé containing the
uncoated filler.

Dietmar et al (1999) {33] studied the influence of comonomer
incorporation on morphology and thermal and mechanical properties of
blends based upon isotactic metalloéene-polyprdpylene and random
ethylene/1-butene copolymers. Blends of isotactic polypropylene (i-PP) with
random ethylene/1-butene (EB) copolymers containing 10, 24, 48, 58, 62 82,
and 90 wt% 1-butene were prepared in order to examine the influence of the
EB molecular architecture on the morphology development as well as on the
thermal and mechanical properties. Compatibility between i-PP and EB
increased with increasing 1-butene content in EB to afford single-phase
blends at a 1-butene content exceeding 82 wt%. The morphology was
investigated using AFM and TEM, Improved compatibility ‘accounted for
enhanced EB dispersion and interfacial adhesion and highly flexible as well as
stiff blends with improved toughness were obtained.

Steven and Robert (1999) [34] studied the blends of polypropylene and
polyamide-6,6 compatibilized with polypropylene that was carboxylated
through a reactive extrusion process with asymmetric functional peroxide.

The compatibilized blends demonstrated a finely dispersed minor phase as
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shown by SEM. Because of the enhanced dispersion, addition of the
carboxylated polypropylene to the blends resulted in a change in the
crystallization nucleation mechanism of the PA-6,6 minor phase from
heterogeneous to homogeneous in nature. A linear increase in the impact
strength and significant enhancement in the tensile properties of the blends
was observed with incorporations of the compatibilizer up to 30% of the
matrix phase. When compared on an equivalent basis (total concentration of
carboxylate or anhydride functionality added to the blend), the carboxylated
polypropylene demonstrated a slightly better compatibilizing efficiency than
that of the carboxylatéd polypropylene, which was attributed to a higher
grafting efficiency of the carboxylation procedure as compared to the

anhydride functionalization procedure.



CHAPTER III

EXPERIMENTAL

3.1 Materials

3.1.1 Poivpropylene Resin (PP)

The polypropylene copolymer (PP-cp), used in this study was an
injection grade (grade 2500H). It was manufactured by Thai Petrochemical
Industry (Public) Company Limited.

Typical data of polypropylene copolymer grade 2500H are shown

‘Appendix I (Table 1).

3.1.2 Ethylene-1-Octene Copolymer (ENGAGE, E

The impact modifier was ethylene-1-octene copolymer; prepared by
Dow’s INSITE ' constrained geometry catalyst and process technology
{INSITE TM), which is a trademark of the Dow Chemical Company,
commercial grade of ethylene-1-octene copolymer (EG8100, EG8150).

Product specifications of ethylene-1-octene copolymer grade EG8100,

EG8150 are shown in Appendix I (Table 2, 3).

3.1.3 Maleic Anhydride-Grafted-Polypropylene (MAH-g- PP)

In this study, MAH-g-PP, under the trade name of Polybond 3150
(PB3150) was evaluated as compatibilizing agent or polymer modifier.

Uniroyal Chemical Company Limited manufactured it.
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Product specifications of MAH-g-PP (PB3150) are shown in Appendix

I (Table 4).

3.2 Instruments and Apparatus

1. Mixing Machine : Bosco Engineering Model Mixer 50

2. Single Screw Extruder : Axon Ab Plastmaskiner

3. Plastic Injection Molding Machine: Cosmo Model TT1-220/80 PC

4, Tensile Tester . : Universal Testing Machine; LLOYD
Instruments LR 30K )

5. Flexural Tester : Universal Testing Machine; LLOYD

Instruments LR 30K

6. Universal Impact Tester : Yasuda Seiki Seisakusho Ltd.

7. Melt Indexer : Davenport

8. Differential Scanning Calorimeter : Perkin-Elmer DSC-7

9. Scanning Electron Microscope : JEOL Model JSM-5300

3.3 Polymer Processing

3.3.1 Mixing and Extrusion
A dry blending of PP-cp, EG, and MAH-g-PP was performed according

to the formulation show in Table 3.1 using the mixing machine. This mixture
was then melt blending and extrudated by single screw extruder was set at 100
rpm and temperature profile in the extruder from the feed to the metering zone
was set 230°C as shown in Figure 3.1 The extruder was passed through a

water-cooling, dried, and subsequently pelletized.
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Figure 3.1 A single screw extruder

3.3.2 Injection Molding
The pellets of PP-cp/EG/MAH-g-PP were injection molded by using

injection machine as shown in Figure 3.2. The testing specimens were
prepared according to ASTM using a mold that is generally used for the
commercial samples.

Different levels of EG loading from 5, 10, 20, 30, 40, 50, and 60% (by
weight of blends) and different levels of MAH-g-PP from 0.5, 1, 2, 3 phr.
were prepared. For each level of EG loading, five to eight specimens were

tested in each case. (See Appendix II)
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Figure 3.2 A plastic injection molding machine (Courtesy Mannesmann-

Demag Kunststofftechnik)
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Figure 3.3 The three stages of injection molding: injection, plastication

(feeding), ejection



Table 3.1 Formulation of PP-cp/EG/MAH-g-PP blends

Sample PP-cp EG EG MAH-g-PP
No. (wt%o) 8150 8100 {phkr)
(wt%) | (wth)

1 100 0 -

2 95 5 ; -

3 90 10 =

4 80 20 a -
5 70 30 5

6 60 40 X

7 50 50 3

8 40 60

9 95 - 5 -
10 90 10 -
11 80 20 -
12 70 < 30 -
13 60 = 40 -
14 - 50 . = 50 -
15 40 - © 60

16 80 20 - 0.5
17 &0 20 1.0
1% 80 20 - 2.0
19 80 20 - 3.0
20 80 - 20 0.5
21 80 - 20 1.0
22 80 - 20 2.0
23 80 20 3.0

31
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3.4 Characterization of Polypropylene, Elastomers and Blends
3.4.1. ASTM D1238: Standard test method for melts flow index.

The melt flow index of PP-cp, EG and polypropylene blends were
determined using a Melt Flow Indexcr according to ASTM D1238. The
temperature of cylinder with piston and die in place has been at the test
temperature 190°C and 230°C for at least 4 min before a test is begun. PP-cp
and blends were melting at 230°C while EG was melting at 190°C. The
polymer melt was driven through the capillary die using a 2.16 kg piston. The
sample obtained is then weighed and the melt flow property expressed in

grams per 10 minutes of the operation.

3.4.2 Differential Scanning Calorimeter (DSC)

A Perkin-Elmer DSC-7 apparatus was used to determine the thermal
transition behavior of PP-cp, EG, and their blends. About 5-7 mg of samples
were placed in an aluminum pan, which was sealed by using a sample pan
crimper. The sample was heated up to 180°C at a rate of 10°C /min then
cooled down at a scan rate of 10°C /min. The results are shown in Tables 4.2-

4.3.

3.4.3 Microstructure of The Fracture Surface of The Polymer Blends

The fracture surfaces from impact testing specimens were observed by a
JEOL Scanning Electron Microscope (SEM), Model JSM-5300 and operated
at 20kv, 2000x. The samples were coated with gold before scanning

observations.
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3.5 Miechanical Testing of Sample
Mechanical properties of the blends were measured by the following

ASTM test methods.

3.5.1. ASTM D638: Standard test method for tensile properties.

The tensile properties were measured according to ASTM D638 using
Universal Testing Machine Model LR 30K. The dumbell specimen of type IV
was used. Figures 3.4 and 3.5 shown the dimensions of dumbell specimen of
type IV and schematic of tensile test set-up.

The tensile testing conditions were as follows:

Temperature 23°C
Relative humidity 54 %
Speed of testing _ 50.00 mm/min
Gauge length 25.00 mm/min
]
" W .
L ey U
H™ 81770t “{:'lm
; o i
Lo
L 5 me Wyt 19 nm a 25 mn R 14 =n
L: 33 mm Lyt 316 mn D: &5 mn Bot 25 we

Figure 3.4 Dimension of tensile test specimen (Type V)
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Figure 3.5 Schematic of tensile test set-up

3.5.2. ASTM D790M: Standard test method for flexural properties.

Flexural properties were measured using an Universal Testing Machine
Model LR 30K. Specimen having 10 mm in width and 4 mm in depth and 80
mm in length were used for testing flexural strength and flexural medulus of
the sample. Figures 3.6 and 3.7 shown schematic of flexural test set-up and
schematic of stress in flexed sample.

For a 3-point bending flexural testing, the length of the support span
depends upon the thickness. In this case, 64.0 mm span length was used in
order to have support span to thickness ratio 16:1. A test specimen was loaded
via at a 10.05 mm diameter of crosshead loading nose by using the rate of

crosshead motion at 1.7 mm/min.
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Figure 3.6 Schematic of flexural test set-up
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Figure 3.7 Schematic of stress in flexed sample
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3.5.3. ASTM D256: Standard test method for impact resistance.

Impact strength was measured according to ASTM D256 on an
Universal Impact Tester. The test specimen dimension for [zod type test and
schematic of Izod test are shown in Figures 3.8 and 3.9.

The machine parameters and testing conditions of the impact test were

listed below:
Temperature 23°C
Relative humidity 54 %
Pendululﬁ capacity 3.5\ ] ’

= -
/f'
IZGD :
/ impact vaiue
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Figure 3.8 Dimensions of [zod type test specimen



Figure 3.9 Schematic of [zod test
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CHAPTER IV

RESULTS AND DISCUSSION

The purpose of this research is to improve mechanical properties of
polypropylene copolymer with ethylene-1-octene copolymer. The focus of
this research is on the application for the automobile part, car bumpers. At
present, commercial resin has been used for manufacturing the car bumpers
according to their quality. Thus, their mechanical properties have been
measured and used as the benchmarks to compare with those of the blends of

this study. They are as follow:

Melt Flow Index, g/10 min 11
Tensile Strength at Yield, MPa >16
Flexural Modulus, MPa 750
Elongation at break, % >300
Notched Izod impact strength, MPa not break

4.1 Effect of EG Concentration on Melt Flow Index of PP-cp/EG Blends

From Figure 4.1, Table 4.1 when the percentage of elastomer, EG
concentration increased the melt flow index value decreased, therefore the
viscosity of the blends increased. Choudhary et al. [35] showed that addition
of EPDM rubber results in an increase in viscosity of PP/HDPE blend. It is

possible that the EG could be obstructing the flow and reducing the fluidity of



39

PP-cp so that the melt flow index value reduced which agreed the results of
Liao et al. [36] that the increased rubber content caused a decrease in the melt

flow index value of a PC/PET blend system.

Table 4.1 Melt flow index of PP-cp/EG blends

EG MFI MFI
(wt%) | (g/10min) | (g/10min)
EG 8150 EG 8100
0 2.10 2.10
5 2.04 2.07
10 1.96 2.00
20 1.80 1.85
30 1.75 1.79
40 1.52 1.68
50 1.35 1.57
60 1.30 1.42
—@— EG 8150
2.5
—&— EG 8100
20 =
1.5 -
MFI
1.0
(g/10min)
0.5 -+
0.0 1 1 1 1 1 1
0 10 20 30 40 50 60
EG concentration, wt%

Figure 4.1 Melt flow index (MFI) of PP-cp/EG blends.
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4.2 Effect of EG and MAH-g-PP Concentration on Thermal Behavior

4.2.1 Study by Differential Scanning Calorimeter

The mechanical properties of PP-cp are determined by its crystalline
structure. Any changes in that structure will result in a change of properties.
So it is essential to determine the effect of elastomer blending on the
crystalline structure as well as on the melting and crystallization behavior of
PP. DSC curves illustrating melting behavior of the pure polymer and PP-cp
blends are showed in Figures 1-12 in Appendix III. The PP-cp/EG and PP-
cp/EG/MAH-g-PP blends had only one melting peak, which situated between
the peaks of PP-¢p and EG. Thermal properties of PP-cp, PP-cp blends are
summarized in Tables 4.2-4.3. It can be seen that there is change in the
crystallization behavior of the PP-cp matrix when EG and MAH-g-PP
contents are added. The melting temperature (T ) and heat of fusion (AH,)
were determined from the heating cycle of a DSC scan. The percentage

crystallinity was also calculated by using the relationship

% Crystallinity = [AH. " JAH,’ (100%)] x 100

A value of AH, (100%) is heat of fusion of 100 % crystallinity PP =
209.0 J/g. In this work PP-cp containing 10% ethylene comonomer, so heat of
fusion of 100 % crystallinity PP-cp = [209-(209x10)/100] = 188.1 J/g and
AHfObS is heat of fusion from experiment [37].

The blends show a broad melting endotherm, which is probably related
to changes in the distribution of PP-cp crystal morphology when elastomers

are added. The melt temperatures of pure PP-cp and PP-cp blends occur at
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about 153.7-157.2 "C. As should be expected, the results show that as the EG
and MAH-g-PP concentrations increase, the percentage crystallinity and the
heat of fusion decrease in relation to pure PP-cp. In the composition analyzed,
the percentage crystallinity of the PP-cp/EG8150, PP-cp/EG8100 and PP-

cp/EG/MAH-g-PP blends are similar.

Table 4.2 Effect of EG 8150 and MAH-g-PP concentration on the

thermal behavior by DSC measurement

Sample | EG 8150 | MAH-g-PP Ty AH Crystallinity
No. | (Wt%) (phr) (‘o) | W (%)
1 0 = 157.3 75.9 40.4
3 10 3 155.4 63.5 33.7
4 20 = 154.3 53.2 28.6
7 50 = 153.8 30.0 16.0
17 20 1.0 157.2 53.2 28.3
18 20 2.0 154.2 55.9 29.7

Table 4.3 Effect of EG 8100 and MAH-g-PP concentration on the

thermal behavior by DSC measurement

Sample | EG 8100 | MAH-g-PP T, AH Crystallinity
No. | (wi%) (phr) ‘o) | W (%)
1 0 T 153.7 75.0 40.4
10 10 - 155.3 62.8 334
11 20 - 154.1 56.6 30.1
14 50 - 155.3 335 17.8
21 20 1.0 154.6 55.7 29.6
22 20 2.0 155.0 54.6 29.0
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4.3 Effect of EG Concentration on Mechanical Properties of

PP-cp/EG Blend.

4.3.1 Tensile Properties and Flexural Properties

Figures 4.2-4.9, Tables 4.4-4.5 and Appendix II show the effect of EG
concentration on tensile properties and flexural properties. It can be seen that
the tensile strength, Young’'s modulus, yield stress and flexural properties of
PP-cp/EG blends decrease while the elongation at break and impact strength
increase with increasing the EG concentration. It can be described due to the
crystallinity and orientation. Side chain branching of EG disrupts chain of
molecular order and chain regularity of PP-cp, thereby reducing both
crystallinity and the melting point. Orientation has a very large effect on both
crystallinity morphology and rate of crystallization [38]. It induces nucleation
growth along the flow lines by shear, and then growth occurs from these

nuclei.

Table 4.4 Tensile and flexural properties of PP-cp/EG 8150 blends.

Sample | EG 8150 TS ™ YS EB FS M
No. wt%) |(MPa) | (MPa) | (MPa) | (%) |(MPa) |(MPa)
1 0 25.55 232.52 24.85 33431 25.44 878.01
2 5 21.41 184.64 20.95 350.23 25.19 834.83
3 10 21.03 160.46 19.72 370.77 22.25 782.51
4 20 20.10 154.28 13.38 410.12 14.72 501.33
5 30 19.14 130.48 11.38 470.20 12.36 450.26
6 40 16.33 117.65 6.73 526.00 7.05 225.47
7 50 15.26 104.25 541 580.72 4.39 187.38
8 60 14.04 94.28 4.35 593.20 3.15 160.25
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Table 4.5 Tensile and flexural properties of PP-cp/EG 8100 blends.

Sample | EG 8100 TS ™ YS EB FS FM

No. wt%) |(MPa) | (MPa) | (MPa) | (%) |(MPa) |(MPa)

1 0 25.55 232.52 2485 334.31 25.44 878.01

9 5 22.06 195.80 21.18 345.20 25.29 854.37

10 10 208 7S 180.99 20.35 357.71 23.85 838.34

11 20 20.59 170.70 15.54 368.72 16.01 534.20

12 30 19.92 147.66 12.89 424,51 13.24 492.36

13 40 18.45 128.53 7.53 450.81 7.74 266.40

14 50 15.76 115.72 6.28 510.25 5.02 210.35

15 60 14.95 107.13 5.52 552.11 393 182.76
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Figure 4.2 Tensile strength and Young’s modulus against the concentration of

EG of PP-cp/EG 8150 blends.
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Figure 4.3 Tensile strength and Young's modulus against the
concentration of EG of PP-cp/EG 8100 blends.
30 —8—EG 8150
25
—A— EG 8100
20
15
yield stress1
MP
(MPa) 5
0 } } | | | |

EG concentration, wt%

Figure 4.4 Yield stress against the concentration of EG of PP-cp/EG

8150 blends and PP-cp/EG 8100 blends.
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The properties of PP-cp/EG blends were examined as a function of the
I-octene content in EG. Figures 4.4-4.8 indicate that yield stress, the tensile
strength, Young's modulus and flexural properties decrease with increasing
amount of l-octene content in the blends. It was noted that the tensile
strength, Young's modulus and yield stress of the system containing EG with
high 1-octene content (EG 8150, 25 wt% l-octene) showed the low value, as a
result of branching or 1-octene content which it strongly influences the
crystallization, melting behavior and the degree of crystallinity of the
fractions. The lamellae become decreasing with increasing branch content and

eventually the crystallinity has fewer tendencies to be occurred [39].

30 - —— EG 8150

—&— EG 8100

25

Tensile strength 20

(MPa)

10 | | | | | |

EG concentration, wt%

Figure 4.5 Tensile strength against the concentration of EG of PP-cp/EG

8150 blends and PP-cp/EG 8100 blends.
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Figure 4.6 Young's modulus against the concentration of EG of PP-cp/EG

8150 blends and PP-cp/EG 8100 blends

30
-
i —— EG 8150
208 —— EG 8100
Flexural
15
strength
10
(MPa)
0 | 1 | 1 1 1
0 10 20 30 40 50 60
EG concentration, wt %

Figure 4.7 Flexural strength against the concentration of EG of PP-cp/EG

8150 blends and PP-cp/EG 8100 blends.
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Figure 4.8 Flexural modulus against the concentration of EG of PP-cp/EG

8150 blends and PP-cp/EG 8100 blends.

Similar observation was also reported by Mehrabzadeh and Hossein
[40]. They found that rubber content and ethylene content are important
factors in controlling the blend properties.

Figure 4.9 illustrates the increase ot elongation at break with increasing
concentration of EG. It can be seen that elongation at break of the blends with
high content of 1-octene (PP-cp/EG 8150) shows high values. Because the
comonomer-unit in, EG acts to increase high elasticity: so the flexibility or
extensibility is increased. The elongation depends on the amorphous part of
the molecule, which contains the segment of free mobile chain [41]. EG has
more amorphous phase than PP-cp, higher EG concentration in blends will
increase in amorphous phase, which will lead to higher free volume. The free

volume could allow the chain to move easy when the stress is applied.
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Figure 4.9 Elongation at break against the concentration of EG of PP-cp/EG

8150 blends and PP-cp/EG 8100 blends.

4.3.2 Notch Izod Impact Strength

A tough material is one that can absorb a large amount of energy
before failure. This means that there needs to be available to the polymer one
or more deformation mechanism, which absorbs energy before crack
propagation, occurs. It is recognized that elastomer particles in the PP matrix
play an important role in improving. the impact strength by functioning as
stress concentrators under deformation.

From Figure 4.10 and Table 4.6, it can be seen that the Notched Izod
impact strengths of PP-cp/EG 8150 and PP-cp/EG 8100 blends were not much
different. Compounds containing EG 8150 had slightly higher impact strength
than the one containing EG 8100. This may be due to the difference in amount
of 1-octene content in EG. The maximum value of impact strength appears

when EG concentration was 20 wt% and sample did not break on the further
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addition of EG concentration up to 30 wt%. A similar behavior was found for
high flow polypropylene/ethylene-propylene elastomers blends by
Dharmarajan and Kaufman [42]. They found that long chain branched
ethylene-propylene elastomers provide enhanced impact resistance with a

ductile failure mode in high flow polypropylene.

Table 4.6 Notched [zod impact strength of PP-cp/EG blends

EG (Wt%) | NI(KJ/m’) | NI(KJ/m’)
EG 8150 EG 8100
0 57.60 57.60
5 58.92 58.44
10 62.97 62.12
20 64.80 63.55
30 NB NB
40 NB NB
50 NB NB
60 NB NB

NB: sample did not break
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Figure 4.10 Notched Izod impact strength against the concentration of EG of

PP-cp/EG 8150 and PP-cp/EG 8100 blends.

4.4 State of Dispersion of PP-cp/EG Blends.

The Notched 1zod impact fracture surface of the blends was studied by
using SEM. Figures 13-17 in Appendix III shows the effect of concentration
of EG. The SEM micrographs show that EG particles are uniformly
distributed in the PP-cp matrix and the size of the elastomer domains
increases as the EG concentration increases. Perhaps some agglomeration may
have taken place.  No phase separation seems to be evident for any
concentration. The disperse phase seems to be in elongated form for blends

containing more than 20 wt% EG blends.
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Table 4.7 Properties of commercial resin, PP-cp and PP-cp/EG blends

Properties Commercial PP-cp PP-cp/EG
resin (100%) (80/20)
Melt Flow Index, g/10 min 11 2.1 1.8-1.9
Tensile Strength at Yield, MPa >16 24.85 13.4-15.5
Flexural Modulus, MPa 750 878.01 501.3-534.2
Elongation at break, % >300 334.31 368.7-410.1
Notch Izod impact strength, MPa Not break 57.60 63.5-64.8

PP-cp/EG (80/20) has lower yield stress or tensile strength at yield,
flexural modulus and impact strength than commercial resin. MAH-g-PP is
added 0.5-3.0 phr in PP-cp/EG (80/20) blends in order to improve those

properties.

4.5 Effect of MAH-g-PP Concentration on Melt Flow Index of

PP-cp/EG/MAH-g-PP Blends at 20 wt% EG

Figure 4.11, Table 4. show that the influences of the addition of MAH-
g-PP on melt flow index of PP-cp melts. The addition 1.0 phr MAH-g-PP
gave the system a further decrease melt flow index or increase in viscosity,
though the viscosity of MAH-g-PP was lower than that of PP-cp. This
phenomenon implied that MAH-g-PP. might have improved the interfacial
adhesion of PP-cp and EG. Other studies showed that functionalized
thermoplastics such as maleated polypropylene could be used to improve the

compatibility of waste paper and thermoplastic [44].



Table 4.8 Melt flow index of PP-cp/EG/MAH-g-PP blends

at 20 wt% EG
Grade MAH-g-PP MFI
(phr) (g/10min)

EG 8150 0 1.80
0.5 1.87

1.0 1.84

2.0 1.78

3.0 1.76

EG 8100 0 L)
0.5 O3

1.0 1.91

2.0 1.90

3.0 1.89

52

MFI

(9/10min)

1.7

1.6

—&— EG 8150

—*— EG 8100

1.5

MAH-g-PP concentration, phr

Figure 4.11 Melt flow index of PP-cp/EG/MAH-g-PP blends at 20 wt% EG.
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4.6 Effect of MAH-g-PP Concentration on Mechanical Properties of

PP-cp/EG/MAH-g-PP Blends at 20 wt% EG

MAH-g-PP had two part structures, polar and non-polar parts. In this
case maleic anhydride is the polar part and PP is the non-polar part. Therefore,
it can be expected that each part of the compatibilizer can be miscible with
each phase of compound that similar in polarity. MAH-g-PP was added to
improve the adhesion between the phases and enhance the mechanical
properties of the blends. The effect of increasing concentration of MAH-g-PP
on the tensile properties, flexural properties and impact strength of the PP-
cp/EG blends with a fix EG concentration at 20 wt% was investigated.

The results of this work are shown in the Figures 4.12-4.18 and Tables
4.8-4.9, the concentration of MAH-g-PP within the blend rises to 3.0 phr.
There is a large improvement of the Young’s modulus, yield stress, impact
strength and a moderate change of tensile strength and flexural properties at
the amount of MAH-g-PP 1.0 phr. At the same figure, it can be seen that 0.5
phr MAH-g-PP was enough to improve the tensile properties, flexural
properties and impact strength. A highest tensile strength, Young’s modulus,
yield stress, flexural strength and flexural modulus properties of PP-cp/EG
8150 blends are obtained using 1.0 phr MAH-g-PP with 17.91%, three times,
59.19%, 23.23% and 25.76% increases, respectively. The tensile properties,
flexural properties and impact strength of the blends with different amounts of
MAH-g-PP in this experiment are better than those of the blends without
compatibilizer at the same percentage of EG, while impact strength increases

slightly and sample did not break as MAH-g-PP concentration up to 1.0 phr
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and the elongation at break shows 69.36% decrease i.e. from 368.7 to
112.95%.

EG8150 has the more 1-octene content than EG8100. Consequently, the
tensile properties, flexural properties and impact strength of PP-
cp/EG8150/MAH-g-PP blends should be less than PP-cp/EG8100/MAH-g-PP
blends, as a result of branching or comonomer (1-octene) content which it
strongly influences the crystallization and melting behavior. The lamellae first
become decreasing with increasing branch content and eventually the

crystallinity has fewer tendencies to be occurred [39].

Table 4.9 Mechanical properties of PP-cp/EG/MAH-g-PP blends

at 20 wt% EG 8150
Sample | MAH-g-PP TS ™ YS EB FS FM NI
No. (phr)
4 0 20.10 154.28 | 13.38 | 410.12 | 14.72 | 501.33 | 64.80
16 0.5 22.06 | 244.06 | 17.68 | 182.51 | 15.78 | 522.05 | 66.79
17 1.0 23.70 | 456.30 | 21.30 | 133.20 | 17.05 | 550.30 NB
18 2.0 23.19 | 365.29 | 18.72 | 150.10 | 18.14 | 630.46 | NB
19 3.0 22.61 326.25 | 16:94 16540 |-17.97 | 610.48 NB
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Table 4.10 Mechanical properties of PP-cp/EG/MAH-g-PP blends

MAH -g-PP concentration, phr

at 20 wt% EG 8100
Sample | MAH-g-PP TS ™ YS EB FS FM NI
No. (phr)
11 0 20.59 | 170.70 | 15.54 | 368.72 | 16.01 | 534.20 | 63.55
20 0.5 2221 | 25843 | 19.08 | 15997 | 16.52 | 540.43 | 65.54
21 1.0 24.09 | 541.21 | 21.80 | 11295 | 18.12 | 610.40 NB
22 2.0 23.47 | 380.18 | 20.45 | 129.70 | 19.47 | 665.15 NB
23 3.0 2294 | 351.55 | 18.18 | 137.75 | 18.42 | 630.70 NB
25
24
23
Tensile
22
strength a 7/
A ——
(MPa ) c EG 8150
—&— EG 8100
19
18 1 1 |

Figure 4.12 Tensile strength against the concentration of MAH-g-PP

of PP-cp/20 wt% EG/MAH-g-PP blends.
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Figure 4.13 Young’s modulus against the concentration of MAH-g-PP of

PP-cp/20 wt% EG/MAH-g-PP blends.
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Figure 4.14 Yield stress against the concentration of MAH-g-PP of

PP-cp/20 wt% EG/MAH-g-PP blends.
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Figure 4.15 Elongation at break against the concentration of MAH-g-PP

of PP-cp/20 wt% EG/MAH-g-PP blends.
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Figure 4.16 Flexural strength against the concentration of MAH-g-PP of

PP-cp/20 wt% EG/MAH-g-PP blends.
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Figure 4.17 Flexural modulus against the concentration of MAH-g-PP of

PP-cp/20 wt% EG/MAH-g-PP blends
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Figure 4.18 Notched [zod impact strength against the concentration of

MAH-g-PP of PP-cp/20 wt% EG/MAH-g-PP blends
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4.7 State of Dispersion of PP-cp/EG/MAH-g-PP Blends

at 20 wt% EG

Scanning electron microscope (SEM) was used to study the surface of
blends containing 20 wt% EG. SEM micrographs are shown in Figures 18-20
in Appendix III. As described in Section 2.6, compatibilization reduces the
interfacial tension, which contributes interfacial adhesion, a finer dispersion
and a more uniform distribution of the dispersed phase. MAH-g-PP
compatibilized blends exhibit more finely dispersed phase than blends without
compatibilizer.

From SEM micrographs, the size reduction and increased dispersion
occur in proportion to MAH-g-PP concentration. At 1.0 phr MAH-g-PP the
EG domains have a finer dispersion related to other MAH-g-PP
concentrations. This explains maximum tensile properties, flexural properties
and impact strength found at 1.0 phr MAH-g-PP. When the amount of MAH-
g-PP higher than 1.0 phr, the tensile properties and flexural properties drop
from the maximum values. The optimum amount of compatibilizer gives

highest mechanical properties.

4.8 Economic Consideration

From the result of this research, the best composition is PP-¢cp/EG/MAH-
g-PP at 80/20/1, which its mechanical properties approach to commercial
resin. The cost of this blend is based on the cost of PP-cp, EG, MAH-g-PP.
The costs of PP-cp, EG, MAH-g-PP in August 2000 are approximately 30,

110, and 225 Baht/kg, respectively. Table 4.11 indicated the cost analysis of
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the blends. It can be seen that the cost of the blends per kilogram is relatively

low.

Using blends of EG and PP-cp would reduce the cost versus a 100% EG

compound. Conversely, addition of small amounts of EG to PP-cp would only

increase price slightly. The use of a chemically modified polyolefin (MAH-g-

PP) as a compatibilizer in PP-cp/EG blends will be explored as a way to

achieve cost-effective blends with desirable mechanical properties.

Table 4.11 Cost analysis of PP-cp/EG/MAH-g-PP blends.

Materials Cost (Baht/kg)

PP-cp/EG/MAH-g-PP

PP-cp

EG

MAH-g-PP

Cost of blends (Baht/kg)

80/20/1

30

110

225

48.2

** Cost of commercial resin = 100 Baht/kg.




CHAPTER V

CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions

The polypropylene copolymer, PP-cp has been blended with two
different types of ethylene-1-octene copolymer, EG and 20 wt% EG were
added with maleic anhydride-grafted-polypropylene, MAH-g-PP. The effects
of increasing octene content, EG concentrations and MAH-g-PP
concentrations on mechanical properties, thermal properties and morphology
of PP-cp/EG/MAH-g-PP blends were investigated. The following results
should to be noted:

1. The values of PP-cp/EG blend melt flow index are between the
values of the pure component melt flow index, and these values decrease as
the EG concentration and 1-octene content increase. The melt flow index of
PP-cp/EG 8150 is higher than PP-cp/EG 8100 blend. This behavior can be
related to the effect of the presence of EG long chain branches that become
more significant and thus entanglement between branching and chain
segments of EG and PP-cp can occur. The addition of 1.0 phr MAH-g-PP
gave system a further decrease melt flow index. This behavior implied that
MAH-g-PP might have improved the interfacial adhesion of PP-cp and EG.

2. Thermal analysis shows that there is no change in the crystallization
behavior of the matrix when different elastomer and compatibilizer content

are added. It is also verified that as the EG, 1-octene and MAH-g-PP content
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increases, the crystallinity degree and the heat of fusion decrease in the
relation to PP-cp.

3. The main factor affecting the mechanical properties of the
investigated ethylene-1-octene copolymer is the degree of crystallinity. In
general, the higher the crystallinity, the higher the tensile strength, Young’s
modulus, yield stress and the resistance to strain of copolymers. Since the
degree of crystallinity is directly related to the concentration of EG and octene
content, it decreases as the concentration of EG and 1-octene content increase.

4. The present study shows that incorporating EG and MAH-g-PP can
enhance the impact properties of PP-cp in the PP-cp matrix. At 20 wt% EG
and 1.0 phr concentration, PP-cp/EG blends showed a significant increase in
impact strength and sample did not break at up to 30 wt% EG and up to 1.0
phr MAH-g-PP.

5. The elasticity of the blends increase with increasing the EG and 1-
octene content. This behavior is a result of the presence of the entanglements
between branching and chain segment of EG and PP-cp.

6. MAH-g-PP is a compatibilizer for PP-cp/EG blends. It can be
expected that the PP segments of MAH-g-PP formed misicible blends with
the bulk PP through' cocrystallization and the polar of MAH-g-PP (maleic
anhydride) formed a chemical bond with the EG. Thus it can improve the
compatibility of PP-cp and EG and hence increase the mechanical properties
of the blends.

7. The SEM micrographs show that the presence of 0.5-1.0 phr MAH-
g-PP enhanced the adhesion of EG and PP-cp, improved the compatibility of

two phases and therefore led to better mechanical properties.
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In this research, the formulations of PP-cp blends that provide good

balance of mechanical properties comparable to commercial resin, composed

of 80 wt% PP-cp, 20 wt% EG and 1.0 phr MAH-g-PP. This formulation

shows MFI ca. 1.84-1.91 g/10 min, tensile strength ca. 23.70-24.09 MPa,

tensile modulus ca. 456.30-541.21 MPa, yield stress ca. 21.30-21.80 MPa,

elongation at break 112.95-133.20 %, flexural strength ca. 17.05-18.12 MPa,

flexural modulus ca. 550.30-610.40 MPa and sample from Izod impact test

did not break. Consequently, this formulation is a potential material replacing

commercial resin due to good mechanical properties and cost advantage.

Table 5.1 Properties of commercial reain, PP-cp, PP-cp/EG (80/20)

blend, PP-cp/EG/MAH-g-PP (80/20/1) blend

Properties Commercial | PP-cp PP-cp/EG PP-cp/EG/MAH-g-PP
resin (100%) (80/20) (80/20/1)
Melt Flow Index, g/10 min 11 2.1 1.80-1.85 1.84-1.91
Tensile Strength at Yield, MPa >16 24.85 13.38-15.54 21.30-21.80
Flexural Modulus, MPa 750 878.01 | 501.33-534.20 550.30-610.40
Elongation at Break, % >300 33431 | 368.72-410.12 112.95-133.20
not break 57.60 63.55-64.80 not break

Notch Izod Impact Strength, MPa

5.2 Suggestion for Further Study

According to this research, the mechanical properties and physical

properties such as elongation at break and melt flow index of PP-cp blends

cannot be achieved compared with the commercial resin. In order to improve
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the properties close to that of commercial resin, the following study are
suggested.
1. The effect of high MFI of PP-cp and EG on MFI of the polymer
blends.
2. The effect of type of polyolefin elastomer, type and content of
comonomer on the properties.
3. The effect of temperature on Notched 1zod impact strength.
4. In order to improve mixing efficiency, the varying rotation speed of
twin screw extruder should be investigated.
Moreover, it is 1important to consider the cost performance,

environmental impact of the polymer blends as well.
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Table 1. Typical Data of Polypropylene Copolymer (grade 2500H).

Item Test method Typical data
Melt Flow Index, g/10min ASTM D1238 2.1
Charpy Notched Impact Strength DIN 53453 10

at —200C, mJ/mm’
Tensile Strength at Yield, N/mm’ ASTM D638 23
Shear Modulus, N/mm” DIN 53457 465

Table 2. Product Specification of Ethylene-1-Octene Copolymer

(EG8150)
Item Test method Specification
Percent Comonomer, Octene Content 25.0
Melt Flow Index, g/10 min ASTM D1238 0.5
Mooney Viscosity, ML 1+4 at 121°C  ASTM D1646 35.0
Ultimate Tensile Strength, N/mm’ ASTM D638-90 15.4

Table 3. Product Specification of Ethylene-1-Octene Copolymer

(EG8100)
Item Test method Specification
Percent Comonomer, Octene Content 24.0
Melt Flow Index, g/10 min ASTM D1238 1.0
Mooney Viscosity, ML 1+4 at 121°C  ASTM D1646 23.0

Ultimate Tensile Strength, N/mm’ ASTM D638-90 16.3




Table 4. Product Specification of Maleic Anhydride-Grafted-

Polypropylene (MAH-g-PP)
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Item Specification

Composition : Maleic Anhydride Modified Homopolymer Polypropylene
Physical Form : Pellets

Melt Flow Index, g/10min 50
Density at 23 0C, g/cc 0.91

Melting Point, 'C 157
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Table S. Physical Analysis Data Sheet of PP-cp/EG Blends.
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Sample |Analysis| MFI TS ™ YS EB FS FM NI
No. No.
1 1 2.08 25.61 | 232.45| 24.89 | 33427 | 25.45 | 878.05 | 57.50
2 2.10 25.50 | 232.60 | 24.80 | 334.31 | 25.46 | 878.01 | 57.72
3 2.11 25.55 | 232.52 | 24.85 | 33435 | 25.42 | 877.98 | 57.58
Average| 2.10 | 2555 | 232.52 [ 24.85 | 334.31 | 25.44 | 878.01 | 57.60
2 1 2.03 21.38 | 184.59 | 20.93 | 350.21 | 25.23 | 834.81 | 58.93
2 2.04 21.40 | 184.62 | 20.95 | 350.23 | 25.20 | 834.86 | 58.90
3 2.04 21.44 | 184.70 | 20.97 | 350.25 | 25.15 | 834.83 | 58.94
Average| 2.04 | 21.41 | 184.64 | 20.95 | 350.23 | 25.19 | 834.83 | 58.92
3 1 1.97 21.05 | 160.50 | 19.73 | 370.80 | 22.29 | 782.54 | 62.93
2 1.96 21.01 | 160.42 { 19.71 | 370.77 | 22.25 | 782.50 | 63.00
3 1.95 21.03 | 160.46 | 19.72 | 370.75 | 22.21 | 782.48 | 62.97
Average| 1.96 21.03 | 160.46 | 19.72 | 370.77 | 22.25 | 782.51 | 62.97
4 1 1.80 20.12 1 15432 | 13.39 | 410.07 | 14.74 | 501.31 | 64.76
2 1.80 20.09 | 154.25 ) 13.36 | 410.10 | 14.68 | 501.33 | 64.80
3 1.81 20.10 | 154.27 | 13.39 | 410.18 | 14.75 | 501.36 | 64.83
Average| 1.80 20.10 | 154.28 | 13.38 | 410.12 | 14.72 | 501.33 | 64.80
5 1 1.76 19.14 113046 | 11.37 | 470.17 | 12.38 | 450.34 | NB
2 1.74 19.15 | 130.50 | 11.38 | 470.20 | 12.34 | 450.24 NB
3 1.75 19.14 | 13047 | 11.38 | 470.24 | 12.36 | 450.20 | NB
Average| 1.75 19.14 | 130.48 | 11.38 | 470.20 | 12.36 | 450.26 | NB
6 1 1.52 16.31 | 117.63 | 6.69 | 52597 | 7.07 |225.50| NB
2 1.50 1635 | 117.67 | 6.75 | 526.00 | 7.03 | 225.44 NB
3 1.53 1634 | 117.64 ] 6.74 | 526.04 ] 7.06 | 22546 | NB
Average| 152 1633 | 117.65] 6.73 | 526.00 | 7.05 | 225.47 NB




Table 5. (continued)
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Sample |Analysis| MFI TS ™ YS EB FS FM NI
No. No.
7 1 1.36 1528 | 104.28 | 5.43 |580.69 | 4.40 | 187.46| NB
2 1.33 1526 | 104.24 | 5.41 | 580.71 | 4.42 | 187.35 NB
3 1.35 15.25 | 10422 | 540 | 580.75]| 4.36 | 187.32 NB
Average| 135 1526 | 104.25 | 5.41 | 580.72 | 439 | 187.38| NB
8 1 1.30 14.07 | 94.35 438 |593.18 1 3.15 | 160.19| NB
2 1.32 14.01 | 94.25 432 |59320 ) 3.18 | 160.25 NB
3 1.28 14.03 | 94.27 434 159321 | 3.11 | 160.31 NB
Average| 1.30 | 14.04 | 9428 | 435 |59320| 3.15 | 16025 NB
9 1 2.06 22.05 | 19590 | 21.17 | 345.15 | 25.32 | 854.32 | 58.50
2 2.07 22.07 | 195.70 | 21.17 | 345.20 | 25.25 | 854.42 | 58.38
3 2.07 22.06 | 195.80 | 21.20 | 34525 | 25.29 | 854.36 | 58.43
Average| 207 | 22:06 | 195.80 | 21.18 | 34520 | 25.29 | 854.37 | 58.44
10 1 1.99 21.78 1 181.02 | 20.38 | 357.73 | 23.82 | 838.34 | 62.11
2 2.02 21.74 1 180.97 | 20.35 | 357.68 | 23.88 | 838.30 | 62.15
3 2.00 21.73 | 180.99 | 20.33 | 357.71 | 23.85 | 838.38 | 62.09
Average| 2.00 21.75 1 180.99 | 20.35 | 357.71 | 23.85 | 838.34 | 62.12
11 1 1.85 20.56 | 170.72 | 15.52 | 368.70 | 16.05 | 534.24 | 63.56
2 1.84 20.59 | 170.69 | 15.54 | 368.67 | 16.01 | 534.16 | 63.53
3 1.85 20.61 | 170.70 | 15.57 | 368.80 | 15.97 | 534.20 | 63.57
Average| 1.85 20.59 | 170.70.] 15.54 | 368.72 | 16.01 | 534.20 | 63.55
12 1 1.80 1994 | 147.64 | 12.87 | 42449 | 13.27 | 49236 | NB
2 1.78 19.90 | 147.65 | 12.89 | 424.51 | 13.24 | 49238 | NB
3 1.79 19.93 | 147.68 | 12.92 | 424.53 | 13.21 | 492.34| NB
1.79 19.92 | 147.66 | 12.89 | 42451 | 13.24 | 49236 | NB

Average




Table 5. (continued)
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Sample |Analysis| MFI TS ™ YS EB FS FM NI
No. No.

13 1 1.68 18.43 | 128.53 | 7.52 |450.84 | 7.78 | 266.45| NB
2 1.66 18.45 | 128.56 | 7.54 | 450.80 | 7.74 | 266.41 NB

3 1.70 18.46 | 128.51 | 7.54 | 450.80 | 7.70 |266.35| NB

Average| 1.68 18.45 | 128.53 | 7.53 | 45081 | 7.74 | 26640 | NB

14 1 1.57 1575 | 11571} 6.27 |510.29 | 5.06 | 210.40| NB
2 1.59 1575 | 115.72 ] 6.28 | 510.25 | 4.99 | 210.35 NB

3 1.56 15.77 | 115.74 | 6.29 | 51021 | 5.02 | 21030 | NB

Average| 1.57 | 1576 | 11572 | 628 |51025| 502 |21035| NB

15 1 1.42 1497 | 107.14 1 5.52 | 552.14] 3.96 | 182.80| NB
2 1.41 1494 | 107.11 | 5.50 | 552.09 | 9.90 | 182.75 NB

3 1.44 1495 | 107.14 | 5.53 | 552.10 | 3.94 | 182.72| NB

Average| 142 | 1495 [107.13| 552 | 55211 | 593 |182.76 | NB
16 1 1.87 22.07 | 244.08 | 17.72 | 182.51 | 15.79 | 522.10 | 66.82
2 1.86 22.08 | 244.07 { 17.69 | 182.55 | 15.82 | 522.05 | 66.79
3 1.88 22.04 | 244.04 | 17.64 | 182.48 | 15.72 | 521.99 | 66.77
Average| 1.87 22.06 | 244.06 | 17.68 | 182.51 | 15.78 | 522.05 | 66.79

17 1 1.84 23.72 | 456.30 | 21.32 |/133.24 | 17.06 | 550.33 | NB
2 1.83 23.69 | 456.28 | 21.27 | 133.20 | 17.01 | 550.27 | NB

3 1.84 23.70 | 45631 | 21.30 | 133.17 | 17.08 | 55030 | NB

Average| 1.84 | 23.70 | 456.30 | 21.30 [ 13320 17.05 | 550.30| NB

18 1 1.77 23.23 136533 | 18.75 | 150.12 | 18.17 | 630.42 NB
2 1.80 23.16 | 365.25 | 18.69 | 150.11 | 18.11 | 630.45 NB

3 1.78 23.19 | 365.30 | 18.72 | 150.07 | 18.14 | 630.50 | NB

1.78 23.19 | 365.29 | 18.72 | 150.10 | 18.14 | 630.46 | NB

Average




Table 5. (continued)
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Sample |Analysis| MFI TS ™ YS EB FS FM NI
No. No.
19 1 1.78 22.64 | 32629 | 1698 | 16543 | 17.97 | 610.52 | NB
2 1.76 22.61 | 326.25 | 16.94 | 16538 | 18.04 | 610.42 NB
3 1.76 22.59 | 32622 | 1690 | 16540 1791 | 61049 | NB
Average| 1.76 22.61 | 326.25| 16.94 | 16540 | 17.97 | 610.48 | NB
20 1 1.94 2224 | 25846 | 19.12 | 160.07 | 16.53 | 540.47 | 65.52
2 1.93 22.21 | 258.43 | 19.08 | 159.95 ]| 16.46 | 540.42 | 65.57
3 1.92 22.19 | 258.41 | 19.04 | 15990 | 16.58 | 540.40 | 65.54
Average| 1.93 | 22.21 [258.43 | 19.08 | 159.97 | 16.52 | 540.43 | 65.54
21 1 1.91 24.10 | 541.24 | 21.83 | 112.90 | 18.14 | 610.35 NB
2 1.92 24.08 | 541.22 | 21.81 | 11295 18.13 | 610.43 NB
3 1.89 24.10 | 541.18 | 21.77 | 112.99 | 18.10 | 610.41 NB
Average 1.91 24.09 | 541.21 | 21.80 | 112.95 ] 18.12 | 610.40 NB
22 1 1.90 23.47 1380.20 | 20.49 | 129.74 ] 19.44 | 66520 | NB
2 1.91 23.44 | 380.17 | 20.40 | 129.67 | 19.47 | 665.16 | NB
3 1.90 23.50 | 380.18 | 20.45 | 129.70 | 19.51 | 665.08 NB
Average| 1.90 | 23.47 |380.18 | 20.45 | 129.70 | 19.47 | 665.15| NB
23 1 1.90 22.95 1351.58 | 18.21 | .137.74 | 18.43 | 630.77 NB
2 1.89 22.92 | 351.52 | 18.15 | 137.79 | 18.45 | 630.64 | NB
3 1.88 2294 |351.54 | 18.19 | 137.71 ] 1838 | 630.70 | NB
Average | 1.89 2294 | 351.55| 18.18 | 137.75/] 18.42 | 630.70.| NB




Remarks :

MFI
TS
™
YS
EB
FS
FM
NI

NB

Melt Flow Index, g/10min

Tensile Strength, MPa

Tensile Modulus, MPa

Yield Stress, MPa

Elongation at break, %

Flexural Strength, MPa

Flexural Modulus, MPa

Notched 1zod Impact Strength, MPa
Not break

80
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Table 7. Average Physical Analysis Data Sheet of PP-cp/EG/MAH-g-PP
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Blends at 20 wt%% EG
Sample| MAH-g-PP
MF1 TS ™ YS EB FS FM NI
No. (phr) _
4 0 “1.80 | 20.10 | 15428 | 13.38 | 410.127] 14.72 {1 501.33 | 64.80
16 0.5 1.87 22,06 | 24406 | 17.68 § 182.51] 15.78 | 522.05} 66.79
17 1.0 1.84 23..?0 456.30| 21.30 §133.20] 17.05 } 550.30] NB
18 2.0 1.78 | 23.19 | 365.29 | 18.72 | 150.10| 18.14 |} 630461 NB
19 3.0 1.76 2261 | 326.25| 1694 | 165.40] 17.97 | 610.48] NB
11 0.0 1.85 | 20.59 | 170.7 | 15.54 |} 368.72 | 16.01. | 534.2 | 63.55
20 0.5 1.93 22.2] | 258431 19.08 | 159.97] 16.52 | 540.43 | 65.54
21 1.0 1.91 2409 | 541.21 1 21.80 § 112.95| 18.12 | 61040] NB
22 2.0 1.90 | 23.47 | 380.18 | 2045 | 129.70 | 19.47 ] 665.15] NB
23 3.0 | 1.89 | 22.94°f 351.55 18.18. 137.75{ 18.42 | 630.70} NB
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Figure 13. SEM micrograph of PP-cp
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Figure 14. SEM micrograph of PP-cp/10 wt% EG blends
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Figure 15. SEM micrograph of PP-cp/20 wt% EG blends
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Figure 16. SEM micrograph of PP-cp/30 wt% EG blends
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Figure 17. SEM micrograph of PP-cp/50 wt% EG blends
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Figure 18. SEM micrograph of PP-cp/20 wt% EG/1.0 phr MAH-g-PP blends
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Figure 19. SEM micrograph of PP-cp/20 wt% EG/2.0 phr MAH-g-PP blends
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Figure 20. SEM micrograph of PP-cp/20 wt% EG/3.0 phy MAH-g-PP blends
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