การค้นหาเครื่องหมายชีวภาพของโรคไตอักเสบลูปัสด้วยวิธีการศึกษาแบบชีววิทยาเชิงระบบ

นายภูมิพัฒน์ ทองอยู่

CHULALONGKORN UNIVERSITY

ับทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR)

เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text อิทยานิพมท์ขี้เทียงส่วนหนึ่งพองออรซึ่งหาดางประกัญสตรงโรกเขากิทยาสุขสตรณษฎีบัณฑิตองitory (CUIR)

are the thesis authors' files รับbmitted through the University Graduate School.

บัณฑิตวิทยาลัย จุฬา้ลงกรณ์มหาวิทยาล์ัย

ปีการศึกษา 2558

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IDENTIFICATION OF BIOMARKERS OF LUPUS NEPHRITIS BY SYSTEMS BIOLOGY APPROACH

Mr. Pumipat Tongyoo

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Biomedical Sciences (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2015 Copyright of Chulalongkorn University

Thesis Title	IDENTIFICATION OF BIOMARKERS OF LUPUS NEPHRITIS BY SYSTEMS BIOLOGY APPROACH
Ву	Mr. Pumipat Tongyoo
Field of Study	Biomedical Sciences
Thesis Advisor	Professor Yingyos Avihingsanon, M.D.
Thesis Co-Advisor	Professor Nattiya Hirankarn, M.D., Ph.D.
	Assistant Professor Santitham Prom-on, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

> _____Dean of the Graduate School (Associate Professor Sunait Chutintaranond, Ph.D.)

THESIS COMMITTEE

COMMITTEE	
Ch	airman
(Professor Apiwat Mutirangura, M.D., Ph.D.	.)
Th	esis Advisor
(Professor Yingyos Avihingsanon, M.D.)	
Th	esis Co-Advisor
(Professor Nattiya Hirankarn, M.D., Ph.D.)	
GHULALONGKORN UNIVEPT	esis Co-Advisor
(Assistant Professor Santitham Prom-on, Ph	.D.)
Ex	aminer
(Trairak Pisitkun, M.D.)	
Ex	aminer
(Associate Professor Chatchawit Aporntewa	an, Ph.D.)
Ex	ternal Examiner
(Assistant Professor Treenut Saithong, Ph.D).)

ภูมิพัฒน์ ทองอยู่ : การค้นหาเครื่องหมายชีวภาพของโรคไตอักเสบกูปัสด้วยวิธีการศึกษาแบบชีววิทยาเชิง ระบบ (IDENTIFICATION OF BIOMARKERS OF LUPUS NEPHRITIS BY SYSTEMS BIOLOGY APPROACH) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. นพ. ยิ่งยศ อวิหิงสานนท์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ. พญ. คร. ณัฏฐิยา หิรัญกาญจน์, ผศ. คร. สันติธรรม พรหมอ่อน, 153 หน้า.

Lupus Nephritis (LN) เป็น โรกภูมิค้านเนื้อเยื่อตนเองที่มีความสำคัญในประเทศไทย ผู้ป่วยเกิดความผิดปกติ ในหลายระบบของร่างกายเช่นเดียวกับโรค Systemic lupus erythematosus (SLE) โดย LN จะแสดงอาการเฉพาะที่ใตเป็น หลัก กลไกการเกิด โรค SLE เกิดจากปัจจัยทางพันธกรรมร่วมกับปัจจัยทางสิ่งแวดล้อม คณะผ้วิจัยที่คณะแพทยศาสตร์ ้จุฬาฯ ได้รายงานปัจจัยทางพันธุกรรมของ โรคนี้และ ได้รายงานยืนที่สำคัญในผู้ป่วยเอเชียซึ่งต่างจากชาวคอร์เคเซียนไว้ ้ จำนวนหนึ่ง งานวิจัยนี้ได้ใช้เทคนิคทางด้าน integrative systems biology เปรียบเทียบระหว่างข้อมูลการแสดงออกของยืน ในระดับ mRNA และ โปรตีนของผ้ป่วย LN ที่ตอบสนองต่อการรักษาและ ไม่ตอบสนองต่อการรักษาเพื่อที่จะค้นหา biomarker ชนิดใหม่ๆเพื่อใช้ในการตรวจวิเคราะห์ ติดตามการรักษาโรค SLE/LN นอกจากนี้ผลการวิเคราะห์ Meta analysis ของร่วมกับผล GWAS มีการยืนยันถึงการเปลี่ยนแปลงของระดับของหมู่เมทิลในดีเอ็นเอ (DNA methylation) เป็นกลไกหนึ่งที่เกี่ยวข้องกับการเกิดโรค SLE กลไกนี้เป็นส่วนหนึ่งที่ช่วยอธิบายว่าสิ่งแวดล้อมจากแสง UV จากยา หรือ จากอาหารบางอย่างอาจมีผลต่อการเกิดโรกได้โดยผ่านกระบวนการเปลี่ยนแปลงของระดับ methylation นั่นเอง ความ เข้าใจถึงความผิดปกตินี้จึงมีความสำคัญมากต่อการพัฒนาการรักษาโรคเนื่องจากเราสามารถเปลี่ยนแปลงระดับ methylation ได้ง่ายกว่าการแก้ไขยืน ปัจจุบันมีผู้สนใจศึกษาความผิดปกติของ methylation ในส่วนโปรโมเตอร์ที่ควบคุม การแสดงออกของยืนเป็นหลัก อย่างไรก็ตามบริเวณที่เป็นเบสซ้ำเป็นอีกส่วนหนึ่งที่มีการควบคมด้วย methylation เป็น หลักและน่าสนใจมากในโรค SLE ซึ่งการวิเคราะห์ระดับ methylation ใน IRS ของผู้ป่วย active SLE พบว่าในเซลล์ที่ สำคัญต่อการเกิด โรค CD3+CD4+ T lymphocytes มี ระดับ hypomethylation ของเบสซ้ำชนิด HERV-E LTR2C ผู้วงัย จึงได้ทำการวิเคราะห์ข้อมูล HERV (human Endogenous retrovius) ซึ่งเป็นหนึ่งในเบสซ้ำที่เป็น transposable element และพบได้มากถึง 8% ใน genome intersperse repetitive sequences (IRS) ซึ่งกลุ่มของ HERV เป็นเบสซ้ำที่สามารถ transcribe เป็น mRNA ใด้ เกลื่อนที่ในจีโนมได้ และมีรายงานว่าสามารถควบคุมยืนข้างเคียงได้ ดังนั้น ผู้วิจัยจึงได้ทำการ ้วิเคราะห์การกระจายตัวของ HERV ใน genome มนษย์และสร้างเป็นฐาน database ชื่อ EnHERV ขึ้นมารวมทั้งสร้าง ฟังก์ชันวิเคราะห์การแสดงออกของ HERV ร่วมกับการแสดงออกของยืน โดยสามารถเข้าใช้งานได้ที่ http://sysbio.chula.ac.th/enherv นอกจากนี้ คณะผู้วิจัยจึงตั้งสมมติฐานว่าในเซลล์ของผู้ป่วยลูปัสน่าจะะมีเปลี่ยนแปลง การแสดงออกของยืนข้างเคียงโดยเกิดการสร้าง chimeric transcripts อันประกอบไปด้วยส่วนหนึ่งของ LTR และส่วน ้ของยืนข้างเคียง ซึ่งจะเป็นการเพิ่มหรือลดการแสดงออกของยืนข้างเคียงนั้น ทั้งนี้ คณะผู้วิจัยมุ่งหวังที่จะค้นพบ chimeric transcripts ที่มีความสำคัญกับการคำเนินของโรค SLE รวมทั้งสามารถใช้เป็น biomarker ที่ใช้บอก prognosis หรืออาจใช้ ในเป็นเป้าหมายสำหรับการพัฒนายาหรือการรักษาใหม่สำหรับโรก SLE ได้

สาขาวิชา	ชีวเวชศาสตร์	ลายมือชื่อนิสิต
ปีการศึกษา	2558	ลายมือชื่อ อ.ที่ปรึกษาหลัก
		ลายมือชื่อ อ.ที่ปรึกษาร่วม
		ลายมือชื่อ อ.ที่ปรึกษาร่วม

5387849620 : MAJOR BIOMEDICAL SCIENCES

KEYWORDS: SYSTEMS BIOLOGY / LUPUS NEPHRITIS / HUMAN ENDOGENOUS RETROVIRUS / ENHERV / RNA-SEQ / SLE

PUMIPAT TONGYOO: IDENTIFICATION OF BIOMARKERS OF LUPUS NEPHRITIS BY SYSTEMS BIOLOGY APPROACH. ADVISOR: PROF. YINGYOS AVIHINGSANON, M.D., CO-ADVISOR: PROF. NATTIYA HIRANKARN, M.D.,Ph.D., ASST. PROF. SANTITHAM PROM-ON, Ph.D., 153 pp.

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease which is important in Thailand. Inflammation and tissue damage occurs at many organs of SLE patients. Lupus Nephritis (LN) is a major complication of SLE that cause inflammation of the kidney. The mechanisms underlying SLE pathogenesis including genetics and environmental factors. The integrative systems biology approach by transcriptome and proteomic data were used in this study to identify new biomarker. Asian Lupus Consortium has reported some important SLErelated genes which are unique in Asian population. Furthermore, our recent result from Meta analysis combining with GWAS data has identified SLE-related genes in Asian SLE patients which are involved in demethylation processes. This confirms that the dynamics of DNA methylation level is a mechanism related with SLE pathogenesis. Therefore, the environmental factors including UV light, drugs or some kind of food may contribute to SLE pathogenesis through the DNA methylation dynamics. Understanding of this mechanism is important for improving SLE treatment because DNA methylation can be easier manipulated than the genes themselves. Most DNA methylation researches have focused on the promoter which controls gene expression; however, the repetitive sequences in genome are also controlled by DNA methylation are very interesting in SLE. We recently reported the DNA methylation dynamics of intersperse repetitive sequences (IRS) in CD4+, CD8+ T lymphocytes, B lymphocytes and neutrophils. The results show that HERV (human Endogenous retrovius), a transposable element which occupies 8% of the genome, is hypomethylated in CD3+CD4+ T lymphocytes. Since HERV can transcribe into mRNA, retrotranspose in the genome, as well as control expression of the neighbor genes, we hypothesized that HERV hypomethylation in the SLE cells can alter expression of the neighbor genes by transcribing chimeric transcripts. We analyzed HERV distribution in human genome and constructed EnHERV, which is the database that allows researchers to search HERV in human genome based on their pattern or interested genes. EnHERV also provides enrichment analysis function which can identify specific HERV pattern in published expression data. EnHERV is available at http://sysbio.chula.ac.th/enherv. We also attempt to identify the chimeric transcripts using publish RNA-Seq data in SLE patients. We hypothesized that HERV-LTR can alter the expression of their neighbor genes by using their regulatory mechanism. We aimed to discover novel chimeric transcripts, which are important in SLE pathogenesis and can be used as biomarkers for predict the prognosis, develop drugs and improve the treatment of SLE.

. . ..

Field of Study: Biomedical Sciences Academic Year: 2015

Student's Signature
Advisor's Signature
Co-Advisor's Signature
Co-Advisor's Signature

ACKNOWLEDGEMENTS

First, I would like to thank you my thesis advisor, Prof Yingyos Avihingsanon for giving me a chance to join the Lupus research unit team under a funding support from Thailand Research Fund (TRF) under the Royal Golden Jubilee (RGJ) PhD program. I have to thank you my thesis co-advisors, Prof.Dr.Nattiya Hirankarn for a valuable suggestion and she always teach me how to improve a research skills. I also would like to thanks Asst.Prof.Dr.Santitham Prom-On, my thesis co-advisors as well. He also give me a lot of valuable suggestion in computational and bioinformatics work. I won't be able to complete this study without their support. I am also sincerely thanks RGJ for the support as well. It is very nice to work with lupus team especially Dr.Thitima Benjachart and Dr.Poorichaya Somparn who always give me valuable resources and precise advice to improve my work.

I would like to special thanks to Prof.Dr.Apiwat Mutirangura for always giving me guideline on my research direction. I would like to thank Dr. Sissades Tongsima, a head of Biostatistics and Informatics Laboratory, Genome Institute, BIOTEC who allows me to use the HPC server at BIOTEC. It was impossible to finish my analysis without that facility. I am really appreciate that.

I would like to thanks everyone that I didn't mention here who encouraged and supported me to complete this dissertation as well.

Finally, I would like to thanks my parents for their unconditional support during my entire study life and helped me to be the person I am today.

CONTENTS

Page
THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTSvi
CONTENTS vii
LIST OF TABLESix
LIST OF FIGURESxi
LIST OF ABBREVIATIONS xiii
CHAPTER I INTRODUCTION1
Objectives
CHAPTER II LITERATURE REVIEW
Systemic lupus erythematosus (SLE) and lupus nephritis (LN)6
Gene expression profiling in lupus nephritis8
Proteomic experiments in lupus nephritis9
A link between urine and renal tissue: a logical approach for systems biology 10
Biological network (Graph in molecular biology)10
Integrative analysis of transcriptomic and proteomic data
Epigenetics and SLE
Role of DNA methylation in SLE17
Human endogenous retroviruses (HERVs)18
Genomic structure of HERVs19
Biological functions of HERVs22
Evidences linking HERVs to SLE
Databases and tools related to HERVs27
Enrichment analysis
Next Generation Sequencing technology (NGS)
CHAPTER III MATERIALS AND METHODS
Integrative approach
Data sources

	Page
Integration method	4
Gene ontology and functional analysis	5
Integration and clustering analysis software	5
Human Endogenous Retrovirus analysis procedure	6
Data resources	7
Data collection	8
Data selection	8
HERV distribution analysis	9
EnHERV	0
Solo-LTR enrichment analysis in various disease conditions	1
Chimeric detection using RNA-Seq data44	4
CHAPTER IV RESULTS AND DISCUSSION	9
Integrative approach for LN biomarker discovery49	9
Human Endogenous Retrovisus analysis	8
Data collection	8
HERV defragmentation using REannotate60	0
Mapping HERVs on the human genes	2
EnHERV construction	4
Association analysis of solo LTR in cancer and autoimmune disease	1
Chimeric identification in RNA-Seq data analysis103	5
CHAPTER V CONCLUSIONS11	1
REFERENCES113	3
APPENDIX A Integrative analysis	3
APPENDIX B Human Endogenous Retrovirus analysis13	3
VITA	3

LIST OF TABLES

Table 1 Gene expression studies in lupus Nephritis 8
Table 2 Urine proteomic study in lupus 10
Table 3 List of some biological pathway and molecular interaction related resources. 15
Table 4 List of example human genes affected by HERV regulatory sequences24
Table 5 A 2×2 contingency table 29
Table 6 List of gene expression conditions 42
Table 7 List of solo-LTR used in enrichment analysis 43
Table 8 List of solo-LTR using as query for finding chimeric transcripts
Table 9 Number of differentially expressed probes and genes
Table 10 List of sub-networks of integrated LN network
Table 11 Biological process of refractory LN sub-networks 57
Table 12 the number of records in the original downloaded dataaccording to the categories of assembled sequences58
Table 13 The number of selected records from the data resources 59
Table 14 Detailed proportions of each HERV in the HERV annotation data60
Table 15 The numbers and percentages of HERV elements ccording to each type of truncation patterns 61
Table 16 Summary of both the numbers of genes and HERV elementsresulting from mapping HERVs on the human genes
Table 17 List of GSE experiments used as pre-set gene lists in EnHERV
Table 18 Association analysis results at entire HERV solo-LTR level(Significant data were highlighted in red and green color with OD>1 and $P < 0.001$)
Table 19 Association analysis results at HERV superfamily level withOR>1 and p <0.001 (Only significant data were shown in this table)
Table 20 Association analysis results at individual HERV withOR>1 and p <0.001 (Only significant data were shown in this table)

Table 21 Number of up-regulated genes in SLE associated with intragenic HERVs.	103
Table 22 Association analysis between 5 azacythidine treated mesenchymal stem cells and genes in various SLE conditions (significant with $OB > 1$ and $p < 0.001$)	104
Table 23 RNA-seq analysis statistic	104
Table 24 Primer list uses for detecting chimeric transcripts	109
Table A1. List of genes in MCODE clusters.	
Table B1. Full list of HERV superfamilies, families and HERV names	125
Table B2. Association analysis results of all solo-LTRs in TF gene	
knockdown studies.	.129
Table B3. Association analysis results at HERV superfamily level in	
gene knockdown studies	.130
Table B4. Functional annotation analysis of intragenic HERV	
associated over-expressed genes in SLE	.135

LIST OF FIGURES

Figure 1 The protein-protein interaction network of S100A8 protein12
Figure 2 Motifs and modules in a PPI network
Figure 3 Integration of proteome and transcriptome data14
Figure 4 Classification of transposable elements
Figure 5 Genomic structures of retroviral proviruses and HERVs20
Figure 6 Five potential mechanisms of the HERVs modulating the expression of the neighboring genes 23
Figure 7 HERV etiopathogenesis in SLE and other autoimmune diseases
Figure 8 The integrated approach concept
Figure 9 Truncation pattern determination process
Figure 10 EnHERV diagram of system flow design40
Figure 11 An overview of RNA-Seq reads mapping approach46
Figure 12 An overview of de novo RNA-Seq assembly approach47
Figure 13 List of differential expressed urine protein in refractory LN50
Figure 14 List of integrated kidney biopsy transcripts and urine protein
Figure 15 The KEGG arachidonic acid metabolism [PATH:ko00590] pathway. 53
Figure 16 The KEGG complement and coagulation cascades (PATH:ko04610).53
Figure 17 Prostaglandin synthesis and regulation pathway from WikiPathways. 54
Figure 18 Eicosanoid synthesis pathway from WikiPathways
Figure 19 Integrated LN network based on BIND and IntAct PPI55
Figure 20 Sub-networks of integrated LN proteomics and transcriptome56
Figure 21 The number and proportions of each HERV fragment type61
Figure 22 HERV distribution in human chromosomes
Figure 23 Comparing neighboring HERV expression in genbank mRNA63
Figure 24 EnHERV homepage
Figure 25 HERV characteristic parameter
Figure 26 The solo-LTR distributions ratio in different part of genes under up- and down-regulated gene expression conditions

Figure 27 Number of solo-LTR in different part of gene.	70
Figure 28 Enrichment analysis result of sense intragenic THEB LTR against up-regulated RNP+ SLE gene.	72
Figure 29 predicted IFI44L-LTR26 chimeric transcript	107
Figure 30 predicted IFI44-THE1C chimeric transcript	107
Figure 31 predicted CLEC2D-THE1C chimeric transcript	107
Figure 32 predicted CLEC4E-MER52C chimeric transcript	
Figure 33 predicted TOP3A-LTR5B chimeric transcript	
Figure 34 predicted OSCAR-LTR12B chimeric transcript	108
Figure 35 a full-range LTR2-intHERVE-LTR2 structure	109

LIST OF ABBREVIATIONS

BaEV	Baboon Endogenous Virus
CCDS	Consensus Coding Sequence Database
DLE	Discoid lupus erythematosus
DAVID	Database for Annotation, Visualization and Integrated Discovery
DNA	Deoxyribonucleic Acid
ERV	Endogenous Retroviruses
GEO	Gene Expression Omnibus database
GIRI	Genetic Information Research Institute
GO	Gene Ontology
HERV	Human Endogenous Retroviruse
LTR	Long Terminal Repeat
MMTV	Mouse Mammary Tumor Virus
MaLR	Mammalian apparent LTR-retrotransposon
mRNA	messenger Ribonucleic Acid
MuLV	Murine Leukemia Virus
NCBI	National Center for Biotechnology Information
ORF	Open Reading Frame
RepSeq	Reference Sequence Database
RNA	Ribonucleic Acid
RNP	Ribonucleoprotein
RU	Repbase Update
SLE	Systemic Lupus Erythematosus
TE	Transposable Element
tRNA	transfer Ribonucleic Acid
UCSC	University of California, Santa Cruz
NGS	Next Generation Sequencing
RNA-Seq	RNA Sequencing

CHAPTER I INTRODUCTION

Lupus nephritis (LN) is an autoimmune disease which is the second leading cause of glomerular diseases in Thailand. It is the most common and serious complication of systemic lupus erythematous (SLE). One-third of patients died or reached end-stage kidney disease within seven years [1]. Most patients with LN had a renal relapse (flare) within five years after initial diagnosis of nephritis. The leading causes of death included infection, uremia, and cardio-pulmonary failure. There was a report showing that Asian patients have higher rates of LN and more active glomerulonephritis than the Caucasian patients [2]. Up to date, Kidney biopsy is still necessary for the diagnosis and confirmation of relapse. There is still need for a noninvasive tool to monitor relapse as well as to guide the treatment decision. Therefore, a seeking for other molecular biomarkers of kidney diseases are now the highlight research in nephrology. Moreover, the exact etiology of SLE/LN is still unclear nowadays. Many studies have reported the contribution of multi-factors such as genetic factor, environmental factor and also abnormalities of immune system. Furthermore, there are increasing evidences supporting role of epigenetics in SLE/LN pathogenesis, which can explain the link between environment and genetic regulation [3, 4].

The availability of high-throughput technology make the molecular research growth very fast in term of data generation which allow for identifying of various candidate molecular targets, such as mRNA and protein for specific question. However, using microarray technology, gene expression profiles only measure transcripts at the cells expression level for specific conditions. Most biocellular processes are affected by protein-protein or other protein-substrate interactions. At the same time, the transcriptomic analysis is able to track the regulation process to feedback regulations by the expressed proteins in bio cellular mechanism. In other words, gene expression is rather interconnected with protein profile at a certain time and condition. Therefore, the analysis of gene expression profiling along with proteome level could provide a snapshot of controlled biosynthesis, which might be regulated by the transcriptomic profile level. Understanding the causal regulatory interactions of both mRNA and protein will improve the understanding at the certain conditions.

With the availability of LN Biobank samples includes kidney tissues, urine and blood at lupus research unit, faculty of medicine, Chulalongkorn university, we have recently reported the approach to identify novel biomarker using global gene expression by Illumina microarray platform. We found that 442 and 374 probe sets were upregulated and downregulated in the non-responder kidney tissues. The interesting gene sets that could predict a non-responder including tight junction gene (claudin), Blymphocyte stimulating factors (BAFF, APRIL). Moreover, a loss of kidney function might be predicted by set of genes such as complement pathway (SERPINA) or ANXA13 [5]. Since, urine is a logical resource as non-invasive marker of kidney diseases as it is secreted from diseased kidneys. Thus, our team also analyzed protein profiles by 2 dimension gel electrophoresis for urine biomarker discovery [6]. We have validated two proteins by ELISA which are PGDS and ZAG that increased in active LN while PGDS was specific to lupus disease only. Moreover, urine protein profiles of non-responder were characterized as well. Interestingly, APRIL was discovered by microarrays as a biomarker for lupus nephritis and was validated in serum and kidney tissues [7]. APRIL and BAFF play an important role in the pathogenesis of lupus disease. Anti-BAFF pathway is now the most interesting molecule among the pharmaceutical target therapy.

There have been a number of biomedical studies that investigated the integration between transcriptomic and proteomic data. Among them, Ou and colleagues conducted a cancer biomarker study that integrates proteomic and gene expression mapping together [8]. In their study, the proteomic data were mapped to mRNA transcript database of cancer cell lines. They found novel proteomic biomarkers half of them were successfully validated. Interestingly, it should be noted that event the proteomic data and transcript database of cancer cell lines are from different sources, yet the integration still yield promising candidate biomarkers. With the data from the same cell culture, researcher can investigate the underlying molecular mechanism in human cells. Shibuya and colleagues conducted the integrative study to determine the genes and proteins of human RPE cells that are altered by exposure to TFPI-2 [9]. The transcriptomic and proteomic data were integrated using data mining. By integrating both transcriptomic and proteomic data together, they found the potential mechanism of gene-protein association with the growth-promoting effect of TFPI-2 on the human RPE cells. Based on the assumption that the essential proteins tend to cluster together as a connected protein-networks for a particular biological process. The connections between single interactions that make up a whole biological network are proposed to directly affect the phenotype [10]. With the available of high throughput data in both mRNA expressions in the kidney and proteomics profile in the urine of lupus nephritis patients, our first objective is to reveal more comprehensive view on the molecular mechanism level in LN by using integrative approach.

The growing evidence of epigenetics as the science of changes to gene function not explained by structural changes to the genome indicates that aberrant in DNA methylation which is one of the most highly studied topics in epigenetics, seems to plays essential roles in the pathogenesis of SLE.[11, 12]. This phenomenon might help explain the complexity and emphasize how our genes are continually interacting with the environment around us. Since DNA methylation is not occurred only in promoter of genes but as a complex composition of our genome, it also occurs at the interspersed repetitive sequences (IRS) in human genome which found approximately 45% of the human genome. The IRS also known as transportable element (TE) due to their ability to copy or cut and then place in other location in human genome. They can be divided into DNA transposons and retroelements, encompass about 2.8% and 42.2% of the human genome, respective [13]. Even more surprisingly, our genomes carry both hosts and viruses's genetic content and hence, we are all part virus. Retroelements can be divided into 2 groups based on the presence or absence of long terminal repeats (LTRs). There are 2 types of a high copy number of non-LTR retroelements; short interspersed nuclear elements (SINEs e.g. ALU) and long interspersed nuclear elements (LINEs). While, the majority of LTR retroelements is Human endogenous retroviruses (HERVs). In most cases, HERVs contain in the human genome is solitary LTRs due to recombination of the two LTRs [14]. They were considered as junk DNA for a long time but currently studies reported the functional role of many IRSs in human genome, suggested that they can affect the human genome from generating insertion and instability effect to genome by serves as alternative promoter, enhancer, exon, or polyadenylation signal to their neighbor genes [15]. As a result, it can change gene expression and might contribute to the disease etiologies.

Several studies have reported an association of HERVs and autoimmune disease. The expression of HERV-E gag level is increasing in peripheral blood mononuclear cells (PBMCs) of SLE and there was report of the increasing of HERV-K gag gene in rheumatoid arthritis (RA) patients as well. [16]. Furthermore, HERV-E gag transcription was reported to correlate with blood plasma concentrations of anti-U1 ribonucleoprotein (RNP) and anti-Sm antibodies in SLE patients. It was also reported that HERV element participated in splicing event of pre-mRNA to mRNA in SLE [17]. Nakkuntod and colleagues [18] reported results based on the examination of methylation status of two HERV-E and HERV-K in lymphocytes from patients with SLE. They found that hypomethylation of specific HERV was a feature for SLE patients. The implication is that lower methylation levels will allow for expression of HERV genes, which may then have some biological consequences. For example, 1) increased aberrant HERV transcripts might lead to the production of autoantibodies due to molecular mimicry, 2) HERV mRNA might serve as foreign nucleic acids and stimulate abnormal immune response via endogenous immune receptor, 3) regulatory region in the HERV such as LTR can affect neighboring gene expression. Therefore, the second objective in this study aim to create a bioinformatics tool to facilitate the analysis of HERV in the genome e.g., the association studies between HERV characters and expression level of their neighboring genes that might help discover the role of certain HERV in diseases.

With the emergence of next generation sequencing (NGS) technology, highthroughput sequencing of the transcriptome, also known as RNA-Sequencing (RNA-Seq) provides a capture of an entire range of expression levels, with the advantage in the detection of novel transcripts and alternative splicing event from the generated data. Several RNA-Seq studies have proved that HERVs become one of the direct regulation on human genes by using their enhancer and promoter motifs present in their LTR. Moreover, these chimeric transcriptions in novel gene isoforms containing retroviral and human transcript sequence are transcribed from HERV promoters were report to associate with diseases. Therefore, by taking the advantage of the public RNA-Seq data, our third objective aims to identify chimeric transcripts in SLE. The finding of new biomarkers using different available approaches nowadays will not only use for measuring the SLE/LN progression or early diagnosis but it might help to reveal the underlying knowledge in SLE/LN pathogenesis.

Objectives

- 1. To find new biomarker by using systems biology approach for SLE/LN.
- 2. To construct the HERVs database and analysis tool.
- 3. To find the association of HERV elements and their neighboring genes by using available high throughput human genomics and transcriptomics data.

CHAPTER II LITERATURE REVIEW

Systemic lupus erythematosus (SLE) and lupus nephritis (LN)

Renal disease is a common and serious manifestation of systemic lupus erythematosus (SLE). Lupus nephritis (LN) is one of the most severe complications in SLE. Pathology of LN, including glomerular, tubulointerstitial, and vascular lesions, occurs in up to 60% of patients with SLE. LN is one of the most leading causes of morbidity and mortality in SLE [19]. The presentations can range from asymptomatic urinary abnormalities to rapidly progressive renal failure leading to end-stage renal disease. SLE is progressing to LN thought the dependent on the loss of self-tolerance and lead to the autoantibodies forming then deposit in the kidney to induce nephritis. Dysregulated apoptosis and inadequate removal of apoptotic cells and nuclear remnants are purpose to contribute in autoimmunity by causing prolonged exposure of the immune system to nuclear and cell membrane components [20]. The Recent studies have described specific genetic linkage to the development of renal disease in SLE among certain ethnic groups, including European American and African American populations, some of which may determine the severity of the glomerular disease. The immune dysregulation in lupus nephritis is characterized by polyclonal B-cell activation, which induced by cognate autoreactive helper T-cells, and the formation of autoreactive antibodies directed against nuclear antigen and other self-antigen, so-call autoantigen [21]. In general, LN is associate with high titers of circulating high-affinity, anti-double-stranded DNA (anti-dsDNA) antibodies and glomerular IgG immunoglobulin deposits. Elution of immunoglobulin from glomeruli revealed enrichment for anti-dsDNA antibodies. Therefore, it has been postulated that antidsDNA autoantibodies are nephritogenic in lupus nephritis. The binding of anti-doublestranded DNA (anti-dsDNA) autoantibodies to the glomerular basement membrane (GBM) in lupus nephritis can be explained by two mechanisms: i) direct cross-reactive binding to intrinsic glomerular antigens; ii) nucleosome-mediated binding to heparin sulfate in the GBM [22].

The dominant feature of renal in lupus is proteinuria, present in almost every patient and commonly leading to the nephrotic syndrome. Microscopic hematuria is almost always present, but never in isolation while macroscopic hematuria is rare. Surprisingly, hypertension is not overall more common in those with nephritis than in those without; but, as expected, those with more severe nephritis are more commonly hypertensive. About half will show a reduced GFR, and occasional patients present with acute renal failure. Renal tubular function is disturbed, which is not surprising in view of the finding of both immune aggregates in tubular basement membranes and the presence of interstitial nephritis. In a high proportion of patients, urinary excretion of light chains and \u03b32-microglobulin are both increased. Recently, hyperkalemic renal tubular acidosis has been emphasized as a manifestation of lupus. However, there are also some lupus nephritis patients with no clinical evidence of renal involvement (no proteinuria, normal urine microscopy, normal renal function) nevertheless showed active histological change on renal biopsy specimens. This has become known as "silent lupus nephritis". Recently, the investigators found significant renal involvement (Class III, IV, or V LN) in SLE patients with < 1000 mg proteinuria with or without hematuria. These findings suggest that kidney biopsy is strongly considered in this patient population [23].

There are quite a number of studies on Genome wide association (GWA) in SLE patients (6-8). The results listed a number of candidate genes including *HLA*, *FCGR*, *PTPN22*, *STAT4* and *IRF5*. This information helps elucidating novel pathogenesis of SLE. For instance, the discovery of *BLK* and *BANK1* genes emphasize the crucial role of B cell in pathogenesis of SLE. Another novel gene namely, *ITGAM* [24] was also identified which is an adhesion molecule that regulates leukocyte adhesion to endothelial cells and may contribute to vasculitis in patients with SLE. Other study has also found the association such as *TNFAIP3* [25]. This data highlight the inflammatory role of TNF pathway in the pathogenesis of SLE including *ITPR3* [26] and *TNXB* [27].

Gene expression profiling in lupus nephritis

Several studies have analyzed global gene expression profiles of SLE patients. Interferon (IFN)-related genes are a dominant signature in SLE patients. There are still limited numbers of gene expression studies in kidney tissues of LN as shows in table 1. Nevertheless, the transcriptional profiles of lupus glomeruli was available. Similarly to lupus's peripheral blood mononuclear cells (PBMC) study, IFN inducible genes were over-expressed in lupus glomeruli. A large gene cluster with decreased expression found in all samples included ion channels and transcription factors, indicating a loss-of-function response to the glomerular injury [28]. In 2008, Kamatani *et al* [29] showed 161 genes of leukocyte that different expression between LN and healthy group. The differential expressed genes were associated with antiviral, immunity, helicase and hydrolase activity. Recent study in LN biopsy showed the 20 commonly key pathologic processes of immune cell infiltration/activation, endothelial cell activation/injury, and tissue remodeling/fibrosis with macrophage/dendritic cell activation as a dominant cross-species shared transcriptional pathway [30].

Year (reference)	Results
2004 [28]	A large gene cluster with decreased expression found in all
	samples included ion channels and transcription factors,
	indicating a loss-of-function response to the glomerular injury.
2007 [29]	161 genes were identified as differential expression. These gene
	were uniquely overrepresented in antiviral, immunity, helicase,
	hydrolase activity
2012 [30]	The 20 commonly key pathologic processes of immune cell
	infiltration/activation, endothelial cell activation/injury, and
	tissue remodeling/fibrosis, with macrophage/dendritic cell
	activation as a dominant cross species shared transcriptional
	pathway.
2015 [5]	Tight junction proteins were purposed as promising biomarker
	for refractory LN analysis.

T 11 1	0	•	. 1.	•	1	A T		1 °.	•
Table 1	Gene exi	pression	studies	1n	lupus	N	ep	hrit	.1S

Proteomic experiments in lupus nephritis

In this recent years, there has been increased interest in exploring the human urinary proteome and particularly in the establishment of reference maps to assist in biomarker discovery. Because urine is an easily accessible, noninvasive body fluid that carries proteins, peptides, and amino acids related to kidney disease, the analysis of the urinary proteome is a potential source of information regarding the kidney's physiopathology. A clear knowledge of the protein composition of normal urine is an essential prerequisite to look at its pathology. Technological evolution in the field of proteomics (2-dimensional (2D) electrophoresis, equalization, mass spectrometry and exosomes) has greatly expanded the power of analysis, allowing the detection of almost 2,000 spots in normal urine at one time [31]. There are several reports on the use of urine analysis for diagnosis and/or prognosis in the following diseases: bladder cancer, acute inflammation due to urogenital diseases [32, 33]. Some of the urine protein biomarker studies in lupus were list in table 2. For example, Oates et al. [16] analyzed urine proteins by using two-dimensional electrophoresis (2 DE) (at pI 4-7) followed by mass spectrometry (MS). They can identify α -1 acid glycoprotein, α 1 microglobulin, zinc α -2 glycoprotein, zinc α -2 glycoprotein, IgG κ light chain and α 1 microglobulin which they proposed to use those biomolecules to develop a clinical assay to predict ISN/RPS class and chronicity for patients with lupus nephritis. In other study, prostaglandin-H2-isomerase and hepcidin have been identified as activity biomarkers in LN [34], along with several overexpressed or underexpressed proteins that have also been found in urine IgA nephropathy. Decreased levels of aquaporin 2 and of inter-atrypsin-inhibitor heavy chain 4 have also been reported as an associated marker to LN. By using an array-based proteomic, about 280 molecules were recently screened in lupus nephritis patients [35]. HMGB1 was introduced as a novel candidate biomarker in lupus nephritis [36]. The study showed that the interaction of HMGB1 with a variety of receptors, including receptor for advanced glycation end products (RAGE) and Tolllike receptors, might play a role in the pathogenesis of lupus nephritis. However, most of spot identified, about 80%, still need to be characterized. There was several reports on the use of urine analysis for diagnosis and/or prognosis in LN disease status. Importantly, urine proteins that are differentially expressed during flare resolution can be used as biomarkers of prognosis or response to therapy.

Table 2 Urine proteomic study in lupus

Year/ reference	Results (purpose biomarker)			
2005 [37]	i.e. α -1 acid glycoprotein, α -1 microglobulin, zinc α -2			
	glycoprotein, zinc α -2 glycoprotein, IgG light chain and 1			
	microglobulin			
2008 [38]	- Hepcidin 20 increased 4 months before renal flare			
	- Hepcidin 25 decreased at renal flare			
	- alpha 1-antitrypsin increased at renal flare			
2012 [34]	Prostaglandin-H2-isomerase as activity biomarkers.			
2013 [36]	Urine angiostatin was significantly increased in active SLE			
	compared to inactive SLE.			

A link between urine and renal tissue: a logical approach for systems biology

Since, podocytes or glomerular epithelial cells play a pivotal role in many glomerulopathies. The link between tissues in kidney and urinary sediments was demonstrated in the study of glomerulonephritis model [39]. The podocytes prevent a loss of protein through glomerular basement membrane. Another study revealed the association between vascular endothelial growth factor (VEGF) and podocyte marker (WT-1) in lupus nephritis [40]. The result showed that VEGF expression could protect podocyte cell loss and prevent proteinuria. The reduced amount of VEGF mRNA in the patients with LN was positively associated with increased numbers of urinary podocytes. They suggest that VEGF might play a crucial role in the preservation of renal function and may also serve as a useful biomarker in monitoring the progression of LN.

Biological network (Graph in molecular biology)

Since bioinformatics has increasingly shifted its focus from individual genes, proteins, into large scale, so-called omic, level such as genome, proteome, and metabolome. The inference of biological network provides a framework to model the complex events that will help to enhance the biological meaning from the interactions among these parts. Understanding these complex biological systems has become an important task that will lead to the intensive research in disease gene identification and prediction. A biological network is any network (also called graphs) that applies to biological systems by applying the graph theory concept. Normally, network is any system which contains many sub-units that are linked together into a whole system. Biological networks come in a variety of forms. Commonly, nodes in biological networks represent biomolecules such as genes, proteins or metabolites, and edges connecting these nodes indicate functional, physical or chemical interactions between the corresponding biomolecules. Graphs play roles in three complementary areas. First, graphs provide a data structure for knowledge representation. Many types of biological knowledge representation networks exist, (e.g., protein-protein interaction (PPI) network; gene regulatory network (GRN); metabolic network (MN); gene coexpression network (GCEN)) [41]. Not many networks are characterized their complete structure content [42]. A second application of graphs is to measure relationships between biological molecules. For example, in a Yeast-Two-Hybrid screen which used to explore pair of proteins that worked together or finding a protein-DNA complex model in a chromatin immuno-precipitation experiment. The last application is in statistical modeling. For example, using graph to fit a model that describes which sets of proteins can assemble together to form a protein complex by given some data consisting of observations of pairwise interactions or of the co-precipitation of proteins. The example of biological network, protein-protein interaction, is shown in Figure 1, which illustrates the interaction of S100A8, the calcium binding protein family. Each node represents protein and edge represents interaction of protein.

Figure 1 The protein-protein interaction network of S100A8 protein

Biologically significant sub-networks: Motifs and modules

There are many components of bio-cellular networks including genes, proteins, and other molecules are acting in collaboration to each other's to carry out specific biological processes and also with biochemical activities, by forming relatively isolated functional units called modules in molecular networks. A network motif is a significant recurring unit that become a subunit of biological modules. Elucidating the essential roles of motifs and identifying modules in molecular networks are the interests in both theoretically and biologically.

Figure 2 Motifs and modules in a PPI network (Figure is taken from [41]).

Databases of biological pathway and molecular interaction

Up to date there are several available molecular interaction and biological pathway including both commercial and academic/free of use. Table 3 shows some example of those databases. There are many successful reports that used these data sources as fundamental data for their studies.

Integrative analysis of transcriptomic and proteomic data

There have been a number of biomedical studies that integrate between transcriptomics and proteomic data. Among them, Ou and colleagues conducted a cancer biomarker study that integrates proteomic and gene expression mapping together [8]. In their study, the proteomic data were mapped to mRNA transcript database of cancer cell lines. They found novel proteomic biomarkers. Half of them were successfully validated. Interestingly, it should be noted that the proteomic data and the data in mRNA transcript database of cancer cell lines are from different sources, yet the integration still yield promising candidate biomarkers. With the data from the same cell culture, researcher can investigate the underlying molecular mechanism in human cells. Shibuya and colleagues conducted the integrative study to determine the genes and proteins of human RPE cells that are altered by exposure to TFPI-2 [9]. The transcriptomic and proteomic data together, they found the potential mechanism of gene-protein association with the growth-promoting effect of TFPI-2 on the human RPE cells. Mc Redmond *et al.* performed a qualitative correlation of the platelet transcription profile with proteomic data. The result showed a set of 82 proteins secreted by thrombin-activated platelets in there analysis [43]. They found the presence of transcript still appears to be associated with presence of protein. Around 70% of these proteins were represented on the microarray. There is a clear discrepancy between the numbers of expressed genes identified by transcriptomic and confirmation of the protein found in different platforms.

Figure 3 Integration of proteome and transcriptome data. Including with other genomic and biological information, this will lead to the expansion of the SLE/LN understanding based on the current disease model database.

Type of database	Availability	Reference		
Protein-Protein Interactions				
BIND - Biomolecular Interaction Network Database	Free	[44]		
BioGRID - Biological General Repository for				
Interaction Datasets	Academic	[45]		
DIP - Database of Interacting Proteins	Academic	[46]		
GO - Gene Ontology	Free	[47]		
HAPPI - Human Annotated and Predicted Protein				
Interaction Database	Free	[48]		
IntAct–IntAct	Free	[49]		
MiMI - Michigan Molecular Interactions	Free	[50]		
MINT - Molecular Interaction Database	Free	[51]		
MIPS-MPPI - MIPS Mammalian Protein-Protein				
Interaction Database	Free	[52]		
Pathways Knowledge Base - Ingenuity Pathways	G · 1	[50]		
Knowledge Base	Commercial	[53]		
Signaling Gateway - UCSD-Nature Signaling Gateway	Erro	[5 4]		
Molecule Pages	Free	[34]		
Metabolic Pathways	A 1 ·	[[[]]		
BioCyc - BioCyc Knowledge Library	Academic	[55]		
KEGG - Kyoto Encyclopedia of Genes and Genomes	Academic	[56]		
MetaCore - MetaCore pathway database	Commercial	[57]		
MetaCyc - Metabolic Pathway Database	Academic	[55]		
NCBI BioSystems - NCBI BioSystems	Free	[50]		
Pathways Knowledge Base - Ingenuity Pathways	Commercial	[53]		
Knowledge Base	Ener	[50]		
Reactome - ReactomeKnowledgeBase	Free	[58]		
WikiPathways - WikiPathways	Free	[59]		
Signaling Pathways	F	[(0]		
BioModels - BioModels Database	Free	[60]		
GeneNet - Genetic Networks	Free	[61]		
GO - Gene Ontology	Free	[62]		
iPath - Invitrogen iPath	Free	[63]		
PANTHER - Protein ANalysis Through Evolutionary	F	5643		
Relationships	Free	[64]		
Reactome - ReactomeKnowledgeBase	Free	[58]		
Pathway Diagrams	_			
BioCarta - BioCarta Pathway Diagrams	Free			
KEGG - Kyoto Encyclopedia of Genes and Genomes	Academic	[65]		
MiMI - Michigan Molecular Interactions	Free	[50]		
INOH - Integrating Network Objects with Hierarchies	Free	[66]		
PANTHER - Protein ANalysisTHrough Evolutionary	-	F		
Relationships	Free	[64]		
WikiPathways - WikiPathways	Free	[67]		

Table 3 List of some biological pathway and molecular interaction related resources.

Table 3. cont.

Type of database	Availibility	Reference			
Transcription Factors / Gene Regulatory Networks					
CPDB - ConsensusPathDB	Academic	[68]			
miRBase - microRNA Database	Free	[69]			
JASPAR - JASPAR Transcription Factor Binding					
Profile Database	Free	[70]			
MAPPER – MAPPER	Academic	[71]			
TRANSFAC - Transcription Factor Database	Commercial	[72]			
Genetic Interaction Networks					
BIND - Biomolecular Interaction Network Database	Free	[44]			
BioGRID - Biological General Repository for					
Interaction Datasets	Academic	[45]			
GeneNet - Genetic Networks	Free	[61]			
Other					
iHOP - Information Hyperlinked Over Proteins	Free	[73]			
PRID - Protein-RNA Interaction Database	Free				
MedGene–MedGene	Academic	[74]			

A combined analysis of published transcriptomic and proteomic datasets could lead to the identification of additional novel proteins present in disease pathology. However, such an analysis is not trivial, as data can be in different formats and access to raw data can be restricted. In addition, there was not many large-scale analyses including the integrative studies in the LN especially in the identification of new biomarker for monitoring the LN therapy manner. Since, the transcriptomic and proteomic study in the treatment response in LN were perform recently in Thai cohort (in-house data). Based on the assumption, as the essential proteins tend to cluster in densely connected sub-networks with other proteins that are involved in the same biological process. The connections between the properties of single interactions and those of the whole biological network, which more directly gives rise to the phenotype [10]. These makes possible to reveal more comprehensive view on the molecular mechanism level in LN by using integration approach. Differentially regulated transcripts and proteins were mapped to their respective NCBI Gene Symbols for aligning the transcriptomic and proteomic name spaces. In the first analysis step, those features present in both the transcriptomic and proteomic lists were identified. In successive analyses, the overlap of lists was interpreted on the level of functional annotation, molecular pathways and protein dependency networks. The results of network analysis provide novel hypotheses for functional pathway involved in disease pathogenesis and the candidate network can be effectively used to identify plausible underlying cellular mechanisms of given candidates biomarkers from a genomics study.

Epigenetics and SLE

Even the pathogenesis of systemic lupus erythematosus (SLE) is incompletely understood. Many studies indicate a clear role for epigenetic defects in the pathogenesis of lupus and other autoimmune diseases, particularly DNA methylation [12, 75, 76]. The on-going research findings in the relationship of abnormal DNA methylation and SLE is still consider interesting worldwide in both global and gene-specific analysis. Study roles of aberrant DNA methylation in the initiation and development of SLE will provide an insight into the related diagnosis biomarkers and therapeutic options in SLE. The imbalance of DNA methylation are commonly found in the Interspersed Repetitive Sequences (IRSs) region [77] which Human genome contains approximately 45% of IRSs [78].

Role of DNA methylation in SLE

From independent studies, it found that leukocytes, PBMCs, T cell, CD4+ T lymphocyte of SLE patient is globally hypomethylation comparing to normal group [79-82]. The evidence of the role of demethylation in development of SLE comes from studies with demethylating agents was published. They showed that treating T cell with demethylating agents (procainamide, hydralazine, or 5-azacytidine) induces major histocompatibility complex4 specific T cell autoreactivity [83, 84]. Furthermore, demethylation and overexpression of LFA-1, PRF1, CD70 (TNFSF7), and CD40 ligand (TNFSF5) were also observed in SLE patients [85-87]. It was suggested that these genes are standing out as importance genes affected by hypomethylation.

Human endogenous retroviruses (HERVs)

Typically, endogenous retroviruses (ERVs) are termed for DNA sequences within the genome that are similar to sequences of infectious retroviruses. They likely represent the remnants of ancient infections that became incorporated in the germ line [88]. This resulted that the retroviral sequences integrated into the genome, so-called proviruses, could be inherited from generation to generation without the infections. In other words, they are permanently fixed and present in the host genome. The endogenous retroviruses can be found in humans, mammals, and other vertebrates [89]. Thus, human ERVs (HERVs) are generally referred to the endogenous retroviruses found in the human. HERVs constitute approximately 8% of the human genome, which is significantly substantial when compared to protein-coding genes constituting around only 3% of the human genome [90, 91]. This resulted from retrotransposition, amplifying themselves in a genome via RNA intermediates, induced when they were highly active. According to the transposition ability, HERVs are thus included as a member of transposable elements.

Figure 4 Classification of transposable elements (adopted from [92])

Generally, the transposable elements are DNA sequences that are able to move around and integrate into new sites within the genome [93]. As shown in Figure 4, the transposons can be separated into two main classes, including DNA transposons and retrotransposons. Retrotransposons require to be transcribed before and use those RNAs as the intermediates in the transposition, while DNA transposons employ themselves as the intermediates. In case of retrotransposons, they can be further classified into two different classes, including LTR and non-LTR retrotransposons, according to possessing of the LTRs in their sequences (Figure 2.1). Instead of LTRs, non-LTR retrotransposons contain 5'UTR and 3'-UTR to flank the internal sequences. HERVs are a member of LTR retrotransposons. Moreover, most of the LTR retrotransposons are HERVs, because there is only 0.6% remaining which is other LTR retrotransposons, not a member of HERVs.

Genomic structure of HERVs

Normally, the proviruses, the retroviral sequences initially integrated into the host genome, are composed of two flanking LTRs (5'-LTRs and 3'-LTRs) and a set of viral genes (Figure 2.2a). There are at least three genes in the proviruses: gag encoding the structural proteins of the viral core; *pol* encoding the reverse transcriptases; and *env* encoding the surface glycoproteins of the viral envelope. The expression of the retroviral proteins is controlled by several regulatory elements in the long terminal repeats (LTRs), such as promoters, enhancers, and polyadenylation signals. Other regulatory sequences are also present in the viral genome, including the site of splice donor (SD) and splice acceptor (SA) for the env expression and a primer-binding site (PBS) for a complementary to a host transfer RNA (tRNA) to initiate the reverse transcription. In general, the provirus is about 7-11 kb in length [90, 94]. In case of the HERVs, their structures are similar to the structure of the proviruses but typically accumulate many mutations, including point mutations (dark bands), frameshifts and deletions (particularly in *env*), as shown in Figure 5. The entire central region has been frequently removed by the recombination or deletions, finally leaving the solitary LTRs behind. Although most of the HERVs are defective, the LTRs may still be active, and transcription of a few HERVs is still occurred, particularly in fetal tissue and in some certain diseases, such as autoimmune diseases and cancer [90, 94, 95].

Figure 5 Genomic structures of retroviral proviruses (a) and HERVs (b) [90]

Classification of HERVs

HERVs are usually classified into families and superfamilies, sometimes also sub-families, and those names have been referred to in the studies since the discovery of the HERVs. Nevertheless, those names designation could lead to considerable confusion, not just to the outsider, because the HERVs have been arbitrarily categorized and named following to manifold criteria arising from independent investigators [91]. In other words, there is inconsistency of naming and classifying for the same sequences. For example, the human DNA sequences, isolated by Callahan et al., similar to the mouse mammary tumor virus (MMTV) were named as HML-2. Subsequently, the same sequences were reported by Ono et al. and then named differently as HERV-K10 instead [96]. Some central systems would be then described in this section.

Formerly, the specific types of the tRNAs which complement to the primer binding sites (Figure 2.2) has been considered to name and classify the HERVs. For example, the members of HERV-H family contain the primer binding sites for histidinetRNAs, and the elements in HERV-K family have the primer binding sites for LysinetRNAs. However, this method is still unreliable because there are some related HERVs displaying differences in terms of the primer binding sites, and otherwise some unrelated HERVs having the same type of the primer binding sites [94].

Another classification system is Repbase [97], a widely used repository of the repetitive elements. This nomenclature is based on nucleotide identity to the consensus sequences of the repeats, including HERVs, which are computationally generated. Due to a number of defective ERVs found in the human, LTRs and internal sequences of the HERVs have been named and classified separately. Furthermore, Repbase is somewhat useful because it also contains all known alternative names of the repeats [96]. In addition, HERVs have been classified based on the phylogenetic criteria, comparing to the infectious retroviruses. The *pol* genes, the most conserved gene among the retroviruses, and *env* genes of the HERVs were used to conduct the classification of the HERVs recently [98]. This method seems to be more useful for the classification of the HERVs [94]. However, the comprehensive results are being established today. HERV families found have been quite different in numbers, from a few to a thousand elements. For example, at least 30 HERV families were identified based on the phylogenetic approach, while more than 200 different HERV and LTR families have been mentioned in Repbase[98]. However, it is now generally accepted that HERV groups could be loosely classified into three broad classes, including class I, II, and III, based on sequence similarity to different genera of the infectious retroviruses [90, 92]. Class I, also called ERV1 superfamily, contains the HERVs related to gamma etroviruses such as murine leukemia virus (MLV) and baboon endogenous virus (BaEV). The HERVs in Class II, so-called ERVK superfamily, are related to betaretroviruses, including mouse mammy tumor virus (MMTV). Lastly, Class III HERVs, also termed ERVL superfamily, are distantly related to spumaretroviruses [90, 91]. Besides those three superfamilies, the mammalian apparent LTR-retrotransposons (MaLRs) are sometimes considered as an additional class of the HERVs, because the MaLR elements are all derived from the class III ERVs [99]. The divergence of the LTR sequences in the HERVs can be measured to estimate the age of the HERVs, given that the LTRs are identical at the time of integration [100]. Class I and III HERVs are the oldest groups and are currently present throughout the primate lineage, while class II includes the most recently integrated ERVs. A few proviruses in the HERV-K (HML-2) family are human-specific, indicating that these viruses have been active only within the last five million years [90].

Biological functions of HERVs

Since the HERVs were first discovered, there are a number of studies have been done with the effort to reveal the roles and effects of the HERVs. According to those studies, it could divide the functions of the HERVs into two categories: the cellular function and the genomic function. The cellular functions are related to their retained ability in expression of a few HERVs. For the genomic functions, these are related to their presence of potential regulatory sequences which may affect the functions of nearby genes.

1. Cellular functions: HERVs have been accumulated a number of mutations along the time resulting in the fact that most of them are incapable of being expressed. Nevertheless, there are a few HERVs still retain their ability to express the viral genes resulting in findings of retroviral RNAs, proteins, and retroviral-like particles in several human tissues, whether normal or disease tissues [101]. The retroviral products can be beneficial for the humans. The best example is the physiological roles of some HERVs in the host. HERV-W and HERV-FRD envelope (env) proteins, so called syncitin-1 and syncitin-2, respectively. These proteins have been highly found during the formation of the placenta, and suggested that they are responsible for mediating cellto-cell fusion during the formation of the placental membranes [95, 102]. In contrast, the products of some ERVs can contribute the detrimental effects to the host as well. For example, the envelope proteins of some ERVs include an immunosuppressive domain. In mouse model, it has been found that the env proteins with this domain can promote tumor growth by allowing escape from immune surveillance [94]. In the humans, the retroviral expression has been detected in numerous patients suffering from various diseases, such as cancer, autoimmune diseases, and neurological diseases. However, it is not certainly known whether the HERVs cause the diseases or are just induced to express under the disease conditions.

2. Genomic functions: Besides a few of HERV genes retained, the parts of regulatory sequences of some HERVs have been reported currently active as well. The active regulatory sequences of the HERVs could affect the expression of the neighboring genes in several ways based on the active parts of the regulatory sequences as well as the placement of insertions (Figure 6). Most regulatory sequences of the

HERVs, including promoters, enhancers, and polyadenylation signals, are located in the LTRs. Thus, the HERVs could affect the neighboring genes by providing enhancing, promoting, or terminating activities to the neighboring genes (Figure 6). In addition, the HERVs could change the patterns of the neighboring genes' transcripts by providing the additional splice sites. This may result in an introduction of new exons included in the transcripts, termed exonization process [95]. Furthermore, if the HERVs are located in gene introns in the antisense orientation, it could be possible that they would involve in antisense regulation of the pre-existing genes. This mechanism is based on the formation of the double-stranded RNA, followed by catalytic degradation of RNAs containing the sites homologous to the double-stranded fragments [103].

Figure 6 Five potential mechanisms of the HERVs modulating the expression of the neighboring genes [103]. An HERV element is indicated as LTR box in the figure.
Similar to the cellular functions, the genomic functions can be beneficial and detrimental. In some cases the HERV regulatory sequences are naturally co-opted like being a part of a host genome and in some cases the HERV regulation is abnormal and may cause diseases. The example genes which have been reported related to the HERV regulatory sequences are listed in Table 4.

HERV regulator	HERV name	Gene name	Reference
1 Enhancer	ERV9 LTR	β-globin locus	[104]
1. Emilancei	HERV-E	Amy1 (salivary amylase)	[94]
	HERV-L LTR	β 1,3-galactosyltransferase 5	[105]
	HERV-E	APOCI (apolipoprotein CI)	[106]
	HERV-H LTR	DSCR4 and DSCR8 (Down syndrome critical region)	[107]
2. Promoter	HERV-E	EDNRB (endothelin receptor	[106]
	HERV-H	NAIP (neuronal apoptosis inhibitory protein)	[94]
	ERV9 LTR	ZNF80 (zinc finger protein)	[108]
3.Polyadenylation signals	HERV-K (KML2) LTR	LEPR (human leptin receptor)	[94]
4. Splice sites	HERV-H	PLA2L (phospholipase A2-like)	[109]
5. Antisense regulators	LTR91	CEBZ	[103]

Table 4 List of example human genes affected by HERV regulatory sequences

Evidences linking HERVs to SLE

The etiopathogenesis of SLE remains partially understood. However, with the evidences accumulated over the last half century, it can be concluded that SLE is complex multifactorial disease, including genetic predisposition, environmental, as well as retroviral factors [110]. Actually, autoimmune diseases, including SLE, have been initially linked to retroviruses owing to the similarity of immune dysregulation and autoimmune manifestations between patients with SLE and known human retrovirus-related disorders, such as HIV-1 [111]. One important evidence supporting

the association between SLE and HERVs is the detection of antibodies reactive to several retroviral proteins, including *gag*, *env*, *nef*, and the p24 capsid of human immunodeficiency virus (HIV)-1 and human T cell leukemia/lymphoma virus (HTLV) in SLE patients with no history of prior infection [112]. This phenomenon was attributed to the induction by encoded retroviral proteins. Strikingly, it is found that these proteins have amino acid sequences similar to many self-nuclear antigens, such as U1 small nuclear ribonucleoprotein (70K U1 sn-RNP), topoisomerase I, and SS-B/La [111]. A given obvious example is the finding that as many as 52% of SLE patients possess circulating antibodies to HRES-1. Furthermore, from comparative sequence analysis, it was shown that there is sequence homology between HRES-1 and the 70-kDa *gag*-related region of the sn-RNP. In respect to these findings, molecular mimicry between self-antigens and retroviral proteins is purposed as one possible mechanism in etiopathogenesis of SLE by inducing the cross-reaction between the two proteins by autoantibodies.

One important HERV linked to SLE is HERV clone 4-1, a member of the HERV-E family, which is usually found in Japanese people. It has been reported that there is no transcription and translation of HERV clone 4-1 in peripheral blood lymphocytes (PBL) of normal individuals, whereas, in SLE patients, the gag region antigen and mRNA for the clone 4-1 gag region have been detected in PBL. The transcription of this HERV can be controlled by epigenetic mechanisms[113]. Moreover, there is one study supporting that *env*-encoded transmembrane proteins from HERV, such as p15E, could induce immune dysregulation. The study observed the mechanisms of a synthetic peptide derived from HERV clone 4-1, CKS-17, which was homologue sequence with p15E. The results from this study showed that the peptide could induce T-cell activation and anergy in normal peripheral blood mononuclear cells (PBMCs), and promote the production of interleukins IL-6 and IL-16. This phenomenon is representative immune abnormalities of SLE [114]. As a consequence from retroviral integration, the HERV LTRs can act as *cis*-regulatory sequences causing cellular activation, particularly genes involved in immune regulation. Using MRL/lprmice, a murine model for SLE, the study has revealed that there is an integration of an early transposable element (ETn) in the murine Fas apoptosispromoting gene. This integration results in decreased synthesis of active Fas proteins,

and undoubtedly the failure of apoptosis in autoreactive lymphocytes, which is a primary mechanism of SLE development [115]. Furthermore, many HERVs, as well as other retrotransposons, are found within the major histocompatibility complex (MHC) genes and human complement genes. Particularly, the integration of HERVs in the MHC class I is very interesting, since there are several polymorphic genes associated with susceptibility of autoimmune diseases in that region [116]. Thus, it is suggested that the regulation mediated by HERV LTRs may also influence the expression of the MHC genes in SLE patients. In addition to the *cis*-acting roles of HERVs, they have been purposed that could *trans*-activate cellular genes, since some HERVs can encode products like *Tat* in HIV-1 or *Tax* in HTLV-1, which can act as transactivators of cellular genes. However, there is currently no definitive evidence that can proof this hypothesis [112].

Interestingly, several exogenous factors, including chemicals and UV light, are also recruited as one supporting factor that could induce immune abnormalities induced by HERVs in SLE patients (Figure 7). For example, a study using DNA methylation inhibitors, such as 5-aza-deoxycytidine (5-aza C), has revealed that there is significant negative correlation between the increase of HERV clone 4-1 mRNA and the decrease of DNA methyltransferase (DNMT-1) mRNA in 5-aza C-treated normal PBL. This can be implied that the level of DNA methylation may mediate the expression of HERV clone 4-1, and may also be implicated in the development of SLE[113]. In addition, ultraviolet B (UVB) irradiation has been reported as another one factor that can activate transcription of several HERV sequences in skin biopsies of SLE patients[117].

Figure 7 Summarization of purposed mechanisms used by human endogenous retroviruses in the etiopathogenesis of SLE and other autoimmune diseases[112]

Databases and tools related to HERVs

Although HERVs have been discovered for more than two decades, databases and tools related to the HERVs that have been developed seem to be limited in number. Repbase Update (RU) is a widely used database of repetitive and transposable elements, including HERVs, from human and other eukaryotic organisms. This database has been developed since 1990 to achieve a mission of Genetic Information Research Institute (GIRI)[97].The consensus sequences of many repetitive families and subfamilies are all collected in this database. Therefore, RU is being used as a reference collection in making and annotation of repetitive DNA by using computer programs, such as RepeatMasker and CENSOR. In addition to the collection, a systemic classification and nomenclature of the repetitive elements was also developed and implemented in RU. Currently, RU contains more than 7,600 sequences of transposable elements and other repeats, including those reported in the literature and those reported in only Repbase[118]. RU is available online for searching and downloading at http://www.girinst.org/ Repbase_Update.html (last viewed on December 19, 2011). The tools for the detection of HERVs have been developed based on several different principles. The first approach uses a set of reference sequences of the HERVs to detect the HERV-related regions in a genome. The repository is frequently employed for the purpose is Repbase. The tools based on this approach are RepeatMasker and CENSOR[119]. These tools generally used Smith-Waterman nucleotide alignment to output masked genomic DNA and a tabular summary of the detection. RepeatMasker has been reported that it efficiently detects most of the HERVs [120]. Typically, HERVs are computationally identified as many fragmental matches instead of one with a long gap, due to large insertions and deletions accumulated during the evolutionary time. Therefore, a post-processing step, known as defragmentation, is often required to join fragments of the same element to achieve more biologically meaningful annotation [120]. There are several tools and scripts provided for this purpose, such as Process Repeats, LTR_MINER, Transposon Cluster Finder (TCF), MATCHER, and REannotate [121].

Chulalongkorn University

Enrichment analysis

One of a common problem in functional genomic studies is to detect significant enrichments of functional annotation in biological meaning category groups such as Gene Ontology (GO) in set of interesting genes which mostly are the group of significantly differentially expressed genes (DEG) [122]. The correct statement of enrichment testing problem leads to a unique exact null distribution of the number of DEG belonging to the GO category of interest, given the total gene number and the total number of genes belonging to the GO category. This concept was applied to calculate the enrichment of HERV in interested DE genes comparing to the number of HERV in the whole genome level. Fisher's exact test is a statistical significance test for categorical data to infer about the difference between two population proportions. This is one in a class of exact tests, providing the exact probability of obtaining the observed data under the null hypothesis. Unlike the exact tests, an approximation test, such as the chi-square test, always provide the estimated probability that would become reliable when the sample size is big enough [123]. Therefore, the Fisher's test is appropriate even for small sample sizes. The null hypothesis is usually based on that the relative proportions of both populations are not different, while the alternative hypothesis can support lesssided, greater-sided, or unequal comparisons between two proportions. The most common use of the Fisher's test is for 2×2 tables of the observed data, so called the contingency tables (Table 5) [124].

Table	5	Α	2×2	contingency	table
Lanc	-			contingency	laure

Population	Count of class I	Count of class II	Total
1	x	$n_1 - x$	n_1
2	y	$n_2 - y$	n_2
Total	m	n-m	n

According to Table 5, the numbers of samples from the population 1 and 2 are n_1 and n_2 , respectively, and n is the summation of both. Let x and y represent the numbers of the observed variable values as of class I and II, respectively, and m is the summation of both. The probability of observing a particular value of x, that is, the probability of a particular table being observed, is given by

$$P(x=k) = \frac{\binom{n_1}{k}\binom{n_2}{m-k}}{\binom{n}{m}},$$

where

$$\binom{n_1}{k} = \frac{n_1(n_1 - 1)(n_1 - 2)\cdots(n_1 - k + 1)}{k(k - 1)(k - 2)\cdots 1}$$

To test the difference in the two population proportions, the p-value of the test is the summation of the probabilities of all other possible tables in the way to support the alternative hypothesis. For example, if the alternative hypothesis is $H_a: \pi_1 > \pi_2$, where π represents a population proportion, we need to determine which other possible 2×2 tables would provide stronger support of H_a than the observed table. Therefore, the *p*-value of the case can be calculated by

$$P-\text{value} = P[x \ge k] = \sum_{j=k}^{\min(n_1,m)} \frac{\binom{n_1}{j}\binom{n_2}{m-j}}{\binom{n}{m}}$$

Next Generation Sequencing technology (NGS)

Deep sequencing or Next Generation Sequencing (NGS) became the main application for complex biological research instead of Sanger sequencing (SS) today. NGS deliver manifold increases in sequencing throughput due to a parallel sequencing design. Millions of amplicons are generated simultaneously. Innovative NGS sample preparation and data analysis options enable a broad range of applications. Such as the huge number of whole genome sequences, deep target sequencing, RNA sequencing (RNA-Seq) to discover novel transcript forms, or precisely analysis in mRNAs quantity measurement, the analysis of whole genome methylation or DNA-protein interactions (ChIP-seq), and metagenomic which allows us to study microbial diversity in humans or in the environment in one single experiment.

Current NGS sequencers produce hundreds of gigabytes of raw sequence information that is subject to direct analysis. Considering, for example, Illumina® HiSeq 2500 sequencer, it outputs more than 4 billion 125-base reads per lane (www.illumina.com). With this sequencing performance, it leads to a major challenge for biologist to handle the massive amount of information. Data analysis is commonly handled by freely available software under the Linux environment such as the Burrows-Wheeler Aligner (BWA) [125], SOAP/SOAP2 [126, 127] alignment tools, Bowtie/TopHat [128] that allows mapping of splice junctions in RNA-Seq or Trinity [129] that allows user to reconstruct a full-length transcriptome without a genome from RNA-Seq data. Including with, the Galaxy platform [130] provides an easy accessible way to handle and analyze NGS data. Various genome alignment visualization tools also available, for example, the Integrative Genomics Viewer (IGV) [131] or through the UCSC Genome Browser [132].

CHAPTER III MATERIALS AND METHODS

Integrative approach

Data sources

The transcriptome data of refractory lupus nephritis kidney biopsies which considered as the source of biological process of refractory lupus nephritis were integrated with the in house LN urine proteomics data since urine is considered as a logical approach of kidney diseases detection as it is secreted from diseased kidneys. Then the graph clustering method were applied to identify the integrated LN markers. The concept figure is shown in Figure 8. By using the bioinformatics functional analysis, the integrative approach will help to reveal the underlying refractory LN biological mechanism as well.

Causal modules (relate to treatment response because the networks were constructed from treatment response data)

Figure 8 The integrated approach concept.

Transcript data

The candidate biomarkers of refractory lupus nephritis transcripts were discovered by using the Illumina[®] HumanHT-12 v4 expression BeadChip [5]. The list of differentially expressed genes were used in this study. Patients who was recruited in the experiment fulfilled the revised American College of Rheumatology criteria for SLE and criteria for lupus nephritis according to [5]. Renal involvement was documented by having one of the following criteria: 1) a total urinary protein level of more than 0.5 g/day, 2) an increment of serum creatinine levels of more than 0.5 mg/dl during 1 month period of follow-up, or 3) presence of pyuria, hematuria, or urinary cast by microscopic examination. Before medication treated, active LN patients were performed renal biopsies as routine protocol. All of renal tissue section were collected and divided to two parts. Firstly, frozen tissues were kept on ice and immediately transfer to pathology laboratory for histological diagnosis. Secondly, the section were transferred into RNAlater® (Ambion Inc., Austin, TX, USA) solution and stored at -80°c until performed RNA extraction. All patients were treated with standard therapy, mycophenolate mofetil (MMF) or intravenous cyclophosphamide plus prednisone, by 6-month course, and were also followed and collected their clinical data. The therapeutic response was defined either by the improvement of pathological scores of activity and chronicity based on repeated kidney biopsies, or by the following clinical criteria, including: 1) stabilization or improvement in renal function; 2) X50% decrease in hematuria to less than 10 RBC per high-power field; and 3) significant reduction in proteinuria (X50% decrease to less than 3 g/day if baseline nephrotic range, p1 g/day if baseline non-nephrotic) for at least 3 months.

Proteomics data sources

Biomarker discovery utilized protein profiles by 1 dimension gel electrophoresis were perform on urine sample of response and non-response patients which collected at the day of kidney biopsy. Patients were treated with standard lupus nephritis treatment. Then the patients were classified as responder and non-responder at the sixth month of follow up as described in previous study [5]. The protein profiles were also performed for patients at sixth month of follow up as well. Only patients that had biopsy-proven class III/IV LN were included in this experiment. Response to therapy was defined as the follows. 1) stabilization or improvement in the renal function; 2) X50% decrease in hematuria to less than 10 RBC per high-power field; and 3) significant drop of proteinuria (X50% decreased to less than 3 g/day if baseline was nephrotic range or <1 g/day if the baseline was non-nephrotic) for at least 3 months.

Urine samples were collected from normal healthy individuals (who had no medication and no menstrual blood) and LN patients (inactive, active disease). The urine sample was centrifuged at 1000g, 4 °C for 5 min to clear debris. The supernatant was precipitated by 75% ethanol and mixed. Samples were incubated on ice for 10 min following by centrifugation at 12,000g for five minute. The pellet was resuspended in a sample buffer containing 7 M urea, 2 M thiourea, 4% CHAPS (3[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), and 30 mM Tris-base. The suspension samples were kept at -80 °C until use. Mid-stream urine (≈ 25 mL) was precipitated by 75% ethanol, and then resuspended with 30 mM Tris-HCl (pH 8.5) buffer containing 2 M Thio urea, 7 M Urea and 4% CHAPS on ice. The protein suspension were subsequently desalted and concentrated by 0.3 µM VivaSpin (GE Healthcare Life Sciences). In order to separate protein by its molecular weight, the protein were loaded into 12% polyacrylamide gel electrophoresis (PAGE) and run at 100 V for 2 hours. The gel were fixed and stained with Coomassie Brilliant Blue R-250. In consequent, protein were prepared for step In-Gel digestion. Next, the gel were destained with 25% Sodium Bicarbonate with 50% acetonitrite (Merck), in consequent, the gel were digested with 12.5 µg/mL Gold Trypsin (Promega) at 37 °C. The peptide were solubilized in the solution while residual peptide in gel were sonicated to ensure that there were entire peptide in suspension. In the following, peptides were dried by speed vacuum and stored at -80°C. Then the peptide were resuspended with 0.1% formic acid, then injected into Mass-spectrometer.

Integration method

We applied two integrative approaches for discovering refractor LN biomarkers in our study. For the first analysis approach, transcriptome and proteome data were directly mapped with their gene/protein names to reveal the direct overlapping relationship on these two different levels of expression in refractory LN. Unfortunately, it seems like the overlap of transcriptomic and proteomic features is low and ambivalent as described in [133]. Therefore in the second approach, we used PPI properties to connect transcripts and proteins for finding underlying relationship on those two difference expression levels as the indirect overlapping network. For transcription data, if there are multiple probe sets corresponding to the same gene were occurred we selected only one probe that give the highest statistical t-test significant value as a representative probe of that genes.

The first approach explores the mapping of differentially expressed genes and proteins to the well-characterized biological pathways. The GenMAPP-CS [134], an open-source software for pathway visualization and analysis was used to integrate the transcriptome and proteome data. At first, transcriptome and proteome expression data were imported into GenMAPP-CS then mapped these data to the existing biological pathways, including KEGG [65] (Kyoto Encyclopedia of Genes and Genomes, available at <u>http://www.genome.jp/kegg/</u>) and WikiPathways [59] (available at <u>http://wikipathways.org/</u>). Candidate biomarkers were then identified based on the obtained functional annotations and their biological relations to lupus nephritis.

In the second approach, gene-gene, gene-protein, and protein-protein interactions information were used for constructing the integrative network then identify the sub-network (module) based on the topology of the networks. Cytoscape, an open-source software for integration, visualization and analysis of biological networks were used to integrate these different layers of interaction networks together [135]. First, the transcriptional and protein networks were generated based on the protein-protein interaction (PPI) information which PPI was retrieved from BIND [136] and IntAct [137] databases through MiMi plugin [138]. Transcriptional and protein network were then integrated together based on common Entrez ID. After the network was constructed, graph-clustering algorithm was used to extract the sub-networks based on network topology. In this study, 6 clustering methods were used for comparing and

evaluating according to the review protocol that different network clustering methods can yield quite different network modules from the same data. The plugin that were used in the analysis are MCODE, MINE, NeMo, ClusterONE, APCluster, and ClusterExplorer [139, 140]. All clustering algorithms are online available at http://apps.cytoscape.org/ apps/. Then the candidate biomarkers were identified based on the highly connected molecules in sub-networks. Additionally, these highly connected molecules were also investigated by setting a minimum cut-off connected molecules to 5 molecules which at least 5 connected. Finally, the functions of each sub-network module can be inferred by identifying the enriched functions of its gene

Gene ontology and functional analysis

Differentially expressed genes and proteins will identify their enriched biological process to reveal common biological process for using in the integration procedure. GO [62] provides three structured, controlled vocabulary (ontology) to describe gene and gene product attributes in any organism, in terms of their associated biological processes, cellular components and molecular functions. Enriched biological processes will identify using the PANTHER (Protein Analysis Through Evolutionary Relationships) Classification System [141]. The two main categories "biological process" and "molecular function" will carry on for the analysis procedure. Other functional analysis will also analyze for mere comprehensive view in the disease mechanism by using DAVID (Database for Annotation, Visualization, and Integrated Discovery) tool [142], which provides gene-specific functional data mining tools and methods for functional category analysis.

Integration and clustering analysis software

Cytoscape [143] an open source bioinformatics software platform for visualizing molecular interaction networks and integrating with gene expression profiles and other state data. Cytoscape can be used to visualize and analyze network graphs of any kind involving nodes and edges. A key aspect of the software architecture of Cytoscape is the use of plugins for specialized features which are developed by many research groups.

Human Endogenous Retrovirus analysis procedure

There is no database facilitating the HERV neighboring genes available up to date. By utilized the genome information from Repbase [144], it will help in the investigation of effect of HERV to their nearby genes. Moreover, this study also facilitates the enrichment analysis for investigate the association between certain type of HERV and the certain expression pattern of their neighboring genes. Not only the association between HERV and gene expression were investigated in this study, but we also examined the RNA-Seq data for discovering HERV-gene chimeric transcripts in this study as well.

Analysis and programming tools

REannotate [121] is a computational tool that performs post-processing of repeat annotation results generated by RepeatMasker, a program that computationally detects interspersed repeats and low complexity DNA sequences [145]. The post-processing is required to improve the biological interpretation of the RepeatMasker annotations because the annotated sequences often correspond to fragments of the repetitive elements resulting from accumulation of insertions and deletions [120]. REannotatecan automatically perform main three tasks, including defragmentation of the dispersed repetitive elements, resolution of the temporal order of the elements' insertions in the nested clusters, and forecasting the age of the elements after the insertion time [121]. In this work, REannotate was employed to defragment the HERV annotations. Furthermore, there are some beneficial measurements additionally calculated by REannotate. These measurements would be kept as additional characteristics of HERVs.

Python is a high-level programming language that can be easily applied to many different problems and integrated to a system more efficiently [146]. It can run on a wide variety of operating systems: UNIX, Windows, Mac, and so on. Python is one programming language that is being used more and more in bioinformatics works. Also, there is an available tool that can facilitate the biological computation that is written in Python called Biopython.

R is a programming language and software environment for statistical computing and graphics. It is an open source under the terms of the Free Software

Foundation's GNU General Public License. There are a wide variety of statistical and graphical techniques provided in R, such as, classification, clustering, time-series analysis, linear and nonlinear modeling, and so on. It can compile and run on a various UNIX platforms, Windows, and MacOS [147].

MySQL database is a rational database management system or RDBMS that is the most popular today. It is freely downloadable and available as an open source software [148]. This software will use as the main database management system in this work.

Data resources

This is an annotation of all repeats, including short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), long terminal repeat elements (LTRs, which contains HERVs), DNA repeats, simple repeats, low complexity repeats, and satellite repeats, of the human reference sequence version hg19/GRCh37 (Feb., 2009). The annotation was created by using RepeatMasker [145], along with the Repbase repeat library (Release 20090120). It is a UCSC data table, named rmsk, and freely downloadable on the UCSC table browser [149]. This is also a UCSC track that shows the gene annotation resulting from the UCSCs' predictions [150]. This UCSC gene annotation table was named as knownGene table. Data from RepSeq, GenBank, CCDS and UniProt were used in the predictions. The track contains both protein-coding genes and putative non-protein coding genes. To be consistent with the repeat annotation data, the UCSC gene annotation of the hg19 human reference sequence would be used in this work. This is the central cross-reference table for the UCSC known genes [150]. The data has been collected in the table named kgXref and can be downloaded from the UCSC table browser as well. In the table, there are several cross-reference IDs for a UCSC known gene, including UCSC known gene ID, GenBank accession number, SWISS-PROT protein accession number, SWISS-PROT display ID, gene symbol, NCBI RefSeq ID, and NCBI protein accession number.

Data collection

The human repeat annotation, human gene annotation, and also the crossreference IDs of the UCSC genes were all downloaded from the UCSC table browser [149]. In the UCSC table browser, these three data are in the UCSC table named rmsk, knownGene, and kgXref, respectively. They are all based on the February 2009 human reference sequence (hg19/GRCh37), which includes sequences of 24 main chromosomes (chromosome 1-22, X, and Y), 59 unplaced contigs, and 9 haplotype chromosomes. The haplotype chromosomes are a collection of haplotype segments, additionally generated during the genome assembly [151].

Data selection

As mentioned before, the annotation results and the cross-reference gene IDs contain not only the records based on the main placed chromosomes, but also based on the unplaced contigs and the haplotype chromosomes, which were separately generated from the main placed contigs. In this work, only the data of the main placed chromosomes would be included in further utilization, due to easier and tidier in referring to the chromosome on which a gene or a repeat is located. This step was thus performed to remove all of the unwanted records in the data resources before performing any manipulation of the data.

HULALONGKORN UNIVERSIT

REannotate and determination of truncation patterns

Generally, the complete HERVs are composed of two flanking LTRs, 5'-LTRs and 3'-LTRs, as well as a set of internal sequences for the retroviral genes. However, due to the accumulations of insertions and deletions on their sequences, most of the HERVs currently present in the human are hardly found as the complete elements, but usually found as the truncated elements. Therefore, assigning the types of truncation patterns to each HERV element would facilitate us more in categorizing and referring to HERVs according to their structural truncation. In this work, the types of truncation patterns will define based on truncated parts of an element, including a 5'-LTR, an internal sequence, and a 3'-LTR. Thus, there are five types for the classification of the truncation patterns: complete, 5'-truncated, 3'-truncated, both 5'- and 3'-truncated

elements, as well as solitary or solo LTRs. The classification design is shown in Figure 9. To classify each HERV element, the result obtained from the step of the HERV defragmentation will be used for the purpose.

Figure 9 Truncation pattern determination process.

Mapping HERVs on the human genes

The edited REannoate output and the selected gene annotation were used. Each gene isoform were collected with their neighboring HERV elements which are located not far from the transcription start or transcription termination site more than 100,000 bps were considered as intergenic HERVs.

HULALONGKORN UNIVERSITY

HERV distribution analysis

The HERV expression were detected in gene bank mRNA using blast. Five solo LTR characteristics were tested in this study which are list below,

1.) sense direction in up-stream region,

2.) sense direction in intragenic,

3.) sense direction in down-stream region,

4.) anti-sense direction in intragenic, and

5.) anti-sense direction in down-stream region.

EnHERV

As the available of CU-DREAMX [152] that allows researchers to investigate the association of specific list of genes with microarray data in GEO database. But according to limitation of the tool that are only available for Windows OS environmental. Therefore we constructed a web-based tool, EnHERV, which facilitates in the investigations of neighboring HERVs with any interested set of gene names. The System flow design shown in Figure 10. Then Fisher's exact were tested on all solo-LTR type and characteristics in various diseases in both up- and down-regulated expression pattern.

Figure 10 EnHERV diagram of system flow design

EnHERV construction

EnHERV was constructed as web database tool for user easily access. EnHERV provides 2 functions; the first function is the search function that allows user to connect to pre-built HERV profile database as described above. There are 2 different input types for accessing database which are a.) Searching by gene(s) and b.) Searching by HERV characteristics. There are total 7 searching characteristics; 1.) HERV superfamily, 2.) HERV family, 3.) HERV name, 4.) HERV orientation, 5.) HERV location in genome, 6.) HERV location in gene, and 7.) HERV completeness type. Another function is

Enrichment analysis function. This function implement Fisher's exact test for enrichment analysis test on user defined genes list and gene that contains specific HERV characteristics. Because of HERVs are mainly reports to involve in cancer and autoimmune disease, 10 different cancer and autoimmune experiments were retrieved from gene expression omnibus (GEO) [153, 154] for using as built-in pre-set gene lists in EnHERV.

Solo-LTR enrichment analysis in various disease conditions.

HERVs have been reports to be active due to hypomethylation in cancer and autoimmune diseases [18, 155, 156]. Therefore, distinct isoforms or gene silencing due to HERV were reported in various cancers [157-160] Alternative transcript of CD5 by HERV-E was also reported in SLE B cells [161]. However, there are still limited comprehensive data and tool available to analyze HERV in relation to other genes. Since we hypothesize that HERV can control neighboring genes by either up-regulation or down-regulation including with it might associate in specific direction and location. We performed the enrichment analysis in EnHERV to reveal the associated between specific HERV properties in various disease conditions. Forty nine GEO accessions were retrieved from NCBI GEO database. Then we classified these gene expression in to 56 conditions as shown in table 6 including autoimmune and other disease conditions. Differentially expressed genes were identified by using GEO2R function in GEO, available at http://www.ncbi.nlm.nih.gov/geo/geo2r/. Genes were considered as differentially expressed genes with criteria of p-value less than or equal to 0.05 and fold-change greater than 1 fold.

GEO accession	Condition
GSE27011	Asthma white blood cells
GSE31773	Asthma CD4
GSE31773	Asthma CD8
GSE43696	Asthma bronchial epithelial cells
GSE71957	Graves' disease CD4
GSE71957	Graves' disease CD8
GSE1299	Breast cancer cells
GSE13911	Microsatellite instable gastric cancer
GSE2171	HIV infected PBMC
GSE2171	HIV infected PBMC cd4dec
GSE2171	HIV infected PBMC cd4inc
GSE3167	Bladder carcinoma situ
GSE5764	Ductal and lobular breast cancer cells
GSE5816	Lung adenocarcinoma
GSE6631	Head and neck cancer cells
GSE6740	HIV infected cd4 acute
GSE6740	HIV infected cd4 chronic
GSE6740	HIV infected cd4 non-pregressive
GSE6740	HIV infected cd8 acute
GSE6740	HIV infected cd8 chronic
GSE6740	HIV infected cd8 non-pregressive
GSE6919	Metastasis prostate cancer
GSE9750	Cervical cancer
GSE9764	5aza-Human Mesenchymal Stem Cells
GSE59695	H3K4me1, HepG2
GSE22859	H3K4me2, HeLa
GSE44084	H3K9, pre-iPSC
GSE25282	H3K9me3, HeLa
GSE41040	H3K9me3, primary fibroblasts
GSE32591	LN glomerular
GSE32591	LN tubular
GSE36474	Myeloma bone marrow
GSE13355	Psoriasis skin
GSE14905	Psoriasis skin
GSE32407	Psoriasis skin
GSE52471	Psoriasis skin
GSE10500	Rheumatoid arthritis macophage
GSE15573	Rheumatoid arthritis PBMC
GSE1919	Rheumatoid arthritis synovial tissues
GSE4588	Rheumatoid arthritis B
GSE4588	Rheumatoid arthritis CD4
GSE45175	SETDB1 knockdown, lung cancer cell lines

 Table 6 List of gene expression conditions

GSE73231	SETDB1 knockdown, mouse mesenchymal stem cells
GSE10325	SLE B cells
GSE10325	SLE myeloid cells
GSE10325	SLE T cells
GSE13887	SLE T cells
GSE20864	SLE PBMC
GSE24706	SLE PBMC ANA
GSE27427	SLE neutrophil
GSE4588	SLE B cells
GSE4588	SLE CD4
GSE52471	SLE/DLE, skin
GSE61635	SLE PBMC RNP+
GSE30153	SLE inactive condition, B cells
GSE61639	TRIM28 knockdown, breast cancer cells

Since, HERVs were reported to disease or condition specific association, there are 25 individual HERVs from all 4 superfamilies were used in this study which shows in Table 7. Most of them were found as expressed HERV elements in previous reported. We also tested the association between HERVs and various disease condition at superfamily and entire HERV neighboring gene as well. HERVs and disease conditions were considered as associated event using criteria as Fisher's exact p-value less than 0.001 and OR ratio more than 1.

Super-family	family	Name/group
	ERV9	LTR12, LTR12C
	HERVH	LTR7
	HERVW	LTR2, LTR2B, LTR2C
	HUERSP1	LTR8
ERV1/ERVE	LOR1	LOR1a
	MER39	MER39
	MER4	MER4C
	MER52	MER52A
	MER57	MER57B1

Table 7 List of solo-LTR used in enrichment analysis

Super-family	family	Name/group	
	HERVK10/HERVK (HML-2)	LTR5_Hs	
ERV2/ERVK	HERVK11/HERVK (HML-8)	MER11C	
	HERV16	LTR16A1	
	HERVL33	LTR33	
EKV 3/EKVL	HERVL52	LTR52	
	HERVL66	LTR66	
	MLT	MLT1D, MLT2B3	
ERVL-MaLR	MST	MSTD	
	THE1	THE1A, THE1B, THE1C,	
		THE1D	

Chimeric detection using RNA-Seq data

Hung T et al. conducted RNA-Seq of SLE whole blood and healthy controls to determine the gene expression changes in these patients [162]. By using the advantage of this public RNA-Seq data, this make possibility of exploring of chimeric sequences in their data. In this study 10 SLE and 3 control samples were retrieve from their accession GSE72509. Not only SLE PBMC were used in this study, but K562 cell line were also included in this study since it is hypomethylation model study. So, 3 of K562 RNA-Seq samples from GSE34740 accession [163] were included in this study.

The RNA-Seq experiments information were descript in NCBI GEO portal [154] while all raw NGS data were stored as SRA file format in SRA portal (http://www.ncbi.nlm.nih.gov/sra). The SRA stores raw sequencing data and alignment information from high-throughput sequencing platforms, including Roche 454 GS System®, Illumina Genome Analyzer®, Applied Biosystems SOLiD System®, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®. For the first step in this analysis, sra files of GSE72509 and GSE34740 were retrieved from SRA portal and converted to fastq file format using SRA toolkit as descript in SRA HandBook in NBCI Bookself (accession NBK47528). Then the quality of raw NGS sequences were checked by FastQC which is one of the most popular tools for checking

the quality of raw NGS data. FastQC is available at http://www.bioinformatics. babraham.ac.uk/projects/fastqc/.

According to there is no single analysis pipeline can be used in the RNA-Seq analysis yet, this project used 2 different methods to analyze the raw RNA-Seq data.

- 1. The first approach was modified method of Trapnell C et al. which is the famous RNA-Seq analysis method for differential gene and transcript expression analysis by using TopHat and Cufflinks [164]. TopHat aligns RNA-Seq reads by using Bowtie [165] as an aligner then discovering RNA splice site by mapping the reference transcripts. The *H. sapiens* hg19 (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/) were used as references for mapping of reads. UCSC [166], RefSeq [167] and Ensembl [168] transcripts information were used in this study. Then assembled transcript were constructed using gffread function. Then assembled transcripts were used for detection of chimeric transcript in the next step. Figure 11 illustrates flow of this first approach.
- 2. De novo transcript assembly using Trinity [169] to avoid the repetitive problem during mapping process to retrieve the full range transcripts which beneficial in possible to discover any new transcripts from RNA-Seq data. Figure 12 shows the *De novo* analysis approach. The assembled transcripts were also used for detection of chimeric transcript in the next step.

Chulalongkorn University

Figure 11 An overview of RNA-Seq reads mapping approach

Figure 12 An overview of de novo RNA-Seq assembly approach

ุเหาลงกรณ์มหาวิทยาลัย

Identifying of chimeric sequences

NCBI-blast was used to detect chimeric sequences in assembled transcripts from both analysis approaches. List of solo-LTR that used for discovering chimeric sequences in RNA-Seq transcripts were listed in Table 8. Transcripts were consider as chimeric sequences by using following criteria; 1) gap free alignment sequence, 2) sequence identity is more than or equal to 98%, 3) less than 3 mismatch in the alignment, 4) the hit length is longer than or equal to 200 nucleotides, and 5) hit length/sequence length ratio is more than 20%. Transcripts that pass these criteria were consider as predicted chimeric transcripts which will manually occur the transcript structure and localization by BLAT [170] and visualizing on UCSC genome browser. Only transcript that chimeric transcript were aligned correctly between human exon and LTR fragment were consider as candidate chimeric transcripts.

Super-family	family	Name/group		
	EDVO	LTR12, LTR12CB, LTR12C,		
		LTR12D, LTR12E, LTR12F		
	HERVW	LTR2, LTR2B, LTR2C		
	HUERSP1	LTR8		
ERV1/ERVE	LOR1	LOR1a		
	MER39	MER39		
	MER4	MER4C		
	MER52	MER52A		
	MER57	MER57B2		
	HERVK10/HERVK (HML-2)	LTR5_Hs		
	HERVK11/HERVK (HML-8)	MER11C		
		LTR22, LTR22A, LTR22B,		
	HEKVK22/HEKVK(HML-3)	LTR22C		
	HERV16	LTR16A1		
ERV3/ERVL	HERVL52	LTR52		
	HERVL66	LTR66		
	MLT	MLT1L, MLT2D		
FRVI -Mal R	MST	MSTD		
	ТИЕ1	THE1A, THE1B, THE1C,		
	111121	THE1D, THE1I		

Table 8 List of solo-LTR using as query for finding chimeric transcripts

Primer3 [171] was used to design PCR primer for detecting chimeric transcripts in 4 selected chimeric transcripts which are MER52A-CLEC4E, THE1C-CLEC2D, LTR5B-TOP3A, and THE1C-IFI44. Primers were also tested with UCSC *In-Silico* PCR before used in this analysis. We then confirming these chimeric that meet the expected amplicons size with Sanger sequencing platform (1st BASE Pte Ltd, Singapore).

CHAPTER IV RESULTS AND DISCUSSION

Integrative approach for LN biomarker discovery

LN Transcript data; the number of differentially expressed genes were list in Table 9. There were interesting gene proposed as potential biomarker for predicting a non-responder in our reported which are tight junction gene (claudin), B-lymphocyte stimulating factors (BAFF, APRIL). Moreover, a loss of kidney function might be predicted by set of genes such as complement pathway (SERPINA) or ANXA13.

Table 9 Number of differentially expressed probes and genes

	Up-regulated	Down-regulated
Significant analysis		
Differentially expressed probes	442	374
Differentially expressed genes	396	353
	2111/101	

LN proteomics data; the list of differentially expressed proteins between lupus nephritis treatment responder and non-responder were illustrated in Figure 13. We have to note that there are just only one sample for responder and non-responder were investigated in this study. So we purpose this analysis result as the discovering profile procedure, there is no statistical calculation applied in this study. The result show that there are 68 proteins were identified in responder while only 43 proteins were discovered in non-responders. There were interesting gene sets that could predict a non-responder including tight junction gene (claudin), B-lymphocyte stimulating factors (BAFF, APRIL). Moreover, a loss of kidney function might be predicted by set of genes such as complement pathway (SERPINA) or ANXA13. Figure 13 illustrated the list of different refractory urine proteins between responder and non-responder. Figure 13a displayed list of urine protein at biopsies time (first month of follow up and Figure 13b listed the urine proteins at sixth month of follow up. It might result of the good response to the LN treatment.

Figure 13 List of differential expressed urine protein in refractory LN 13a.) List of different proteins at first month and 13b.) List of different proteins at 6 month follow up

All differentially expressed transcripts and proteins were mapped to the characterized molecular pathways. The KEGG was used as the background pathway for this approach. In total, 815 genes and 35 proteins were identified as differentially expressed molecules in transcription and present proteins in refractory LN, respectively. The analysis result indicates 5 over expressed transcripts which 3 were present in refractory LN responders while 2 were found in non-responders. Simultaneously 2 under expressed transcripts were found in urine proteins which 1 common protein between responder and non-responder as listed in Figure 14.

Figure 14 List of integrated kidney biopsy transcripts and urine protein at different expression occurred at the first month in both up- and down-regulated transcripts. The yellow circles indicate proteomic analysis results. (tx_up; up-regulated transcript, R_M1; protein profile of responder at biopsy time, NR_M1; protein profile of non-responder at biopsy time, tx_down; down-regulated transcript.)

REG1B, The related REG1 protein is associated with islet cell regeneration and diabetogenesis, and may be involved in pancreatic lithogenesis. This gene encodes a protein that is secreted by the exocrine pancreas. RNASE2, The protein encoded by this gene is a non-secretory ribonuclease that belongs to the pancreatic ribonuclease family. GO annotations related to this gene include nucleic acid binding and ribonuclease activity. The protein antimicrobial activity against viruses. PTGDS (prostaglandin-H2 D-isomerase) was illustrate as part of the arachidonic acid metabolism [PATH:ko00590], which illustrated in Figure 15, under Lipid metabolism pathway in KEGG. In the meanwhile, there is no arachidonic acid metabolism pathway reported in WikiPathways. Anyway there are two PTGDS involved pathways identified in WikiPathways. There are prostaglandin synthesis and regulation, and eicosanoid synthesis. Since we have reported that PTGDS as a biomarker for active lupus nephritis in proteomic aim, this molecule also involves in the eicosanoid synthesis in peripheral blood monocytes that also was reported as a marker of disease activity in lupus nephritis [24]. The involvement of PTGDS in these two molecular pathways which are prostaglandin synthesis and regulation and eicosanoid synthesis pathways as illustrated by WikiPathways in Figure 17 and 18, respectively. These finding might note the important role of PTGDS in refractory LN mechanism based on the consistency of its expression in term of both mRNA and protein expression level. While SERPINA1 and VMO1 were found as corresponding molecules with under expressed transcripts. According to the follow up urine proteomic screening at first and sixth mounts, SERPINA1 found in non-responder urine in both first month and at the sixth month while it absent in the sixth month follow of responder. This might help in tracking of protein leaking of LN patient as well. VMO1, Vitelline Membrane Outer Layer 1 Homolog is a Protein Coding gene. It found as extracellular exosome proteins. SERPINA1; serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 was illustrated in Figure 16 as part of the complement and coagulation cascades (PATH:ko04610) in both the immune system pathway of KEGG and WikiPathways. This finding is support that complement is implicated in the pathogenesis of systemic lupus erythematosus (SLE) [23] and might be used as one of the candidate biomarker network for therapeutic response of LN.

Figure 15 The KEGG arachidonic acid metabolism [PATH:ko00590] pathway. The PTGDS is illustrated using enzyme number EC 5.3.99.2 in red box.

Figure 16 The KEGG complement and coagulation cascades (PATH:ko04610). The SERPINA1 is illustrated in the red box.

Figure 17 Prostaglandin synthesis and regulation pathway from WikiPathways. The PTGDS was highlight in yellow box.

Figure 18 Eicosanoid synthesis pathway from WikiPathways. The PTGDS was highlight in yellow box.

As described in method section for the in-direct integration analysis, the molecular networks were constructed based on the protein-protein interaction networks. In order to map the mRNA expression data onto gene interaction network, we used Entrez Gene ID as the unique identifier for genes. When there are multiple probe sets corresponding to the same gene, we used the one with the maximum t-statistic as a representative. The integrated LN network was illustrated as organic interaction network shape in Figure 19. The gray square node represents the seed molecules, red node represents protein interaction molecule occurred from BIND and IntAct.

Figure 19 Integrated LN network based on BIND and IntAct PPI.

There are total 5 sub-networks were identified by MCODE. The score, number of node and edge are showed in Table 10. The top 3 sub-networks were illustrated in Figure 20. SERPINA1 was also identified in cluster 2, which shows a consistency to the direct map approach. This finding reveals the genes/proteins in complement system might play a major role in the LN treatment therapeutic response as the highly connected proteins were displayed as the core sub-network of refractory LN. The full list of each cluster members is listed in Appendix Table A1.

Cluster	Score (Density*#Nodes)	Nodes	Edges
1	4.461	89	397
2	4.368	144	629
3	2.286	7	16
4	1.4	15	21
5	0.5	2	1

Table 10 List of sub-networks of integrated proteomics and transcriptome network

Figure 20 Sub-networks of integrated LN proteomics and transcriptome.

The molecules in cluster 1 involved in DNA/RNA biosynthetic process including with apoptosis and programmed cell death. Cluster 2 involved in a response to estrogen and steroid hormone stimulus. Cluster 3 revels tight junction and also with cell-cell junction. Cluster 4 seems to play a role in monosaccharide metabolic process and cell growth regulation process. While there are only 2 members in cluster 5.

Although there are some gene/protein that not significantly expressed in the transcript or protein level, but those candidates were also identified by this approach based on their highly connected interaction with other proteins. Thus, these gene/protein candidates might be useful as the candidate refractory LN biomarker. List of biological process and gene in those process were list in Table 11.

cluster	Biological process	p-value	Gene
cluster 1	GO:0032774~RNA biosynthetic process	2.89E-09	BATF3, E2F2, TAF1, HLF, E2F3, CEBPB, CEBPD, SNAPC3, ESR1, GTF2H3, NFKB1, DDIT3, HIF1A, NFIL3, MYC
	GO:0006275~regulation of DNA replication	2.08E-06	CDC6, JUN, PPP2CA, PCNA, SHC1, TERF2, CDK2
	GO:0006915~apoptosis	0.00108438	E2F1, E2F2, TRAF2, ERBB3, MSH2, JUN, NFKBIA, NFKB1, BIRC5, FAS, MYC, CTNNB1
	GO:0012501~programmed cell death	0.001222535	E2F1, E2F2, TRAF2, ERBB3, MSH2, JUN, NFKBIA, NFKB1, BIRC5, FAS, MYC, CTNNB1
cluster 2	GO:0043627~response to estrogen stimulus	0.001249228	TRAF2, CEBPB, JUN, PPP2CA, CEBPG, IKBKG, BCL3, FAS, MYC, DDIT3
	GO:0048545~response to steroid hormone stimulus	2.96E-06	CCND1, EP300, ERBB4, BCL2, ERBB2, TGFBR2, ESR1, SERPINA1, TFF1, FAS, BRCA1, CTNNB1
	GO:0010628~positive regulation of gene expression	1.12E-11	E2F1, E2F3, MITF, NFKBIA, FOXO1, NFKB1, CTNNB1, REL, POU2F1, BCL3, MYC, TAF1, CEBPB, SMAD4, ESR1, SMAD2, RB1, BRCA1, CDK2, DDIT3, HIF1A, EP300, HNF4A, HDAC1, SP1, JUN, NCOA6, MAPK9
cluster 3	GO:0005923~tight junction	2.01E-04	PARD6A, PRKCZ, PARD3
	GO:0005911~cell-cell junction	0.001039732	PARD6A, PRKCZ, PARD3
	GO:0006468~protein amino acid phosphorylation	0.007521696	PRKCZ, PRKCI, MARK4

Table 11 Biological process of refractory LN sub-networks

cluster 4	GO:0005996~monosaccharide	4.49E-05	G6PD,	IGF2,	PPP1CC,
	metabolic process		GAPDH	I, PCK1	
	GO:0001558~regulation of	7.47E-04	EP300,	IGFBP6,	SMAD4,
	cell growth		IGF2		
	GO:0032268~regulation of	8.27E-04	G6PD,	EP300,	SMAD4,
	cellular protein metabolic		IGF2, B	RCA1	
	process				

Human Endogenous Retrovisus analysis

Data collection

First step of the analysis is data preparation. All data were store in structured database. The number of records in all data collections was shown in Table 12. In the UCSC table browser, these three data are in the UCSC table named rmsk, knownGene, and kgXref, respectively. They are all based on the February 2009 human reference sequence (hg19/GRCh37), which includes sequences of 24 main chromosomes (chromosome 1-22, X, and Y), 59 unplaced contigs, and 9 haplotype chromosomes.

Data	Categories of assembled sequences	The number of records (%)
Human repeat annotation	Main chromosomes	5,232,237 (98.76%)
Сн	Haplotype chromosomes	55,980 (1.05%)
	Unplaced contigs	9,913 (0.19%)
	Total	5,298,130
Human gene annotation/	Main chromosomes	73,660 (94.91%)
Cross-reference gene IDs	Haplotype chromosomes	3,835 (4.94%)
-	Unplaced contigs	119 (0.15%)
	Total	77,614

Table 12 the number of records in the original downloaded data according to the categories of assembled sequences

The annotation results and the cross-reference gene IDs contain not only the records based on the main placed chromosomes, but also based on the unplaced contigs and the haplotype chromosomes, which were separately generated from the main placed contigs. In this work, only the data of the main placed chromosomes were included in this study. This step was thus performed to remove all of the unwanted records in the data resources before performing any manipulation of the data. First, genome information from unplaced contigs and the haplotype chromosomes were removed.

Second selected only human repeat annotation which belong to HERV superfamilies. Finally, the annotation of HERV fragments, the gene annotation and the cross-reference IDs, which are based on only 24 main placed chromosomes were obtained from the data selection. At this step, the annotation records based on the unplaced contigs and the haplotype chromosomes were removed from downloaded data. Next, selected informative human repeat annotation by removing all of the repeats, which do not belong to HERV superfamilies. Finally, HERV fragments annotation, the gene annotation and the cross-reference IDs which are based on only 24 main assembled chromosomes, including chromosome 1-22, X and Y. The numbers of records resulting from the data selection are shown in Table 13.

3	he number of selected records from the data resources		
	Data	The number of records	
	Annotation of HERV fragments	687,420	
	Selected human gene annotation	73,660	
	Selected cross-reference gene IDs	73,660	

 Table 13 The number of selected records from the data resources

There are six HERV superfamilies found in the annotation of the HERV fragments, including ERV1, ERVK, ERVL, ERVL-MaLR, ERVL?, and ERV. For the last two, they are fragments that cannot be certainly determined for its superfamily. Thus, all of the fragments annotated belonging to ERVL? and ERV would have been considered as the unclassified fragments in this work. The detailed proportions in the annotation data of the HERV fragments, obtained from the removing unwanted records from the raw human repeat annotation, is shown in Table 14. The full list of HERV superfamily, family and name is list in Appendix Table B1.
Superfamily	The number of records	Percentage
ERVL-MaLR	343,666	49.99%
ERV1	172,863	25.15%
ERVL	157,992	22.98%
ERVK	10,490	1.53%
Unclassified ERVs	2,379	0.35%
Total	687,420	100%

 Table 14 Detailed proportions of each HERV in the HERV annotation data

HERV defragmentation using REannotate

Generally, a complete HERV element is composed of two flanking LTRs and a set of internal retroviral genes in the central. However, the computational annotation of the HERVs is usually incompletely performed unlike the picture of that complete element, because the LTRs and the internal sequences would be separately detected in the annotation. There are two reasons supporting why the separate detection is required. First, to avoid the missing discoveries of the solitary LTRs. Secondly, due to massive accumulation of insertions and deletions on the HERV sequences, the annotation results are often displayed as several fragments of an element instead of one with a long gap [120]. Therefore, to enable observing the HERVs in a view of being the elements, the HERV defragmentation is required to join fragments of the same element into a single element. The numbers and the proportions of the HERV fragments in the annotation data are shown in Figure 21.

Figure 21 The number and proportions of each HERV fragment type

HERV superfamilies that were not reported in REannotate list were still obtained but their name were changed according to REannotate result manipulation to include with data clean-up. They were named as HERV name/group. In summary, there are 133 HERV families with 413 names or groups found in the human genome in total. The full list of HERVs are showed in Appendix Table B1. The summary of the numbers of the types of truncation patterns found is shown in Table 15.

Type of transition patterns	The number of	Doroontogo
Type of truncation patterns	elements (elements)	rercentage
complete element	7,975	1.48%
5'-truncated element	10,796	2.01%
3'-trunctated element	9,856	1.84%
both 5'- and 3'-truncated element	39,724	7.40%
solo LTRs	468,710	87.27%
Total	537,061	100.00%

Table 15 The numbers and percentages of HERV elements according to each type of truncation patterns

Mapping HERVs on the human genes

The edited REannoate output and the selected gene annotation were used in this step. Each gene isoform were collected with their neighboring HERV elements which are located not far from the transcription start or transcription termination site more than 100,000 bp. This mapping was done using python program. The summary of this mapping result is shown in Table 16. More than a million copy number of HERV were found in human genome. The proportion distribution of each HERV superfamily in human chromosomes was shown in Figure 22. Their location in human gene were illustrated in Figure 22b. There is a slightly in anti-sense bias of HERV orientation in the genome. Total 899 expressed HERV were identified in genbank human transcripts. More than 50% of them are located in gene which slightly more abundant in exon region as shown in Figure 23b. There are 233 genes that contain HERV as part of their transcripts which associated to 1,086 MeSH disease terms. Most of expressed HERV type found in disease-associated genes are solo-LTR. The analysis results show that ERV3-MaLR is the most active HERV superfamily in term of disease association. These HERV neighboring genes were principally related to coenzyme metabolic process, protein kinase activity, and immunoglobulin function.

mapping HER	vs on the numa	n genes			
]	HERV elements	ERV elements Gene isoforms			
gene-	non-gene-	Total	HERV-	non-HERV-	Total
neighboring	neighboring	Total	hosting	hosting	Total
382,622	154,439	527 061	73,645	15	72 660
(71.24%)	(28.76%)	557,001	(99.98%)	(0.02%)	75,000

Table 16 Summary of both the numbers of genes and HERV elements resulting from mapping HERVs on the human genes

Figure 22 HERV distribution in human chromosomes, b) HERV's location distribution in human genome

Figure 23 Comparing neighboring HERV and expressed HERV in gen bank mRNA. b) Expressed HERV in gen bank mRNA database

EnHERV construction

EnHERV can be access at <u>http://sysbio.chula.ac.th/enherv/.</u> The main page is shown in Figure 24. EnHERV provide two searching function 1.) Search by gene(s), which provide auto-complete gene input for user and 2.) Search by HERV characteristics including HERV superfamily, family, name, their location in genome, their location in gene, their orientation, and their structure completeness as shown in Figure 25, which illustrated in red box. The searched result is displayed in the table format. EnHERV provides UCSC genome browser link for visualizing the genomic location of the searched result in specific regions. The database allows user to download the result for downstream analysis. The search by HERV name option was organized into drop down function for more precisely selected the user interested HERV member and their characteristics.

Figure 25 HERV characteristic parameter

The enrichment analysis function provides an enrichment analysis between genes with specific HERV characteristics and user-defined gene list as shown in Figure 25. EnHERV calculates Fisher's p-value including with OR ratio for the selected lists. Genes containing specified HERV characteristics will be shown in the result table. Then user can download the result table for further investigation.

Since solo-LTRs are the most abundance HERV structure and according to their properties that they contain the regulatory region of HERV which might effect to their neighboring gene expression. The next analysis step were focused on solo-LTR that located in both inter- and intra-genic regions for looking for any specific pattern in differences gene expression pattern in SLE including with some cancer types.

GSE experiment	Number of DEG
GSE50101:CD4+ Seasonal allergic rhinitis (SAR) - down regulated genes	460
GSE50101:CD4+ Seasonal allergic rhinitis (SAR) - up regulated genes	560
GSE32323:Colorectal cancer cells - down regulated genes	39
GSE32323:Colorectal cancer cells - up regulated genes	38
GSE52471:Discoid lupus erythematosus (DLE) PBMC - down regulated genes	247
GSE52471:Discoid lupus erythematosus (DLE) PBMC - up regulated genes	259
GSE32591:LN glomeruli - down regulated genes	223
GSE32591:LN glomeruli - up regulated genes	456
GSE32591:LN tubulointerstitial - down regulated genes	80
GSE32591:LN tubulointerstitial - up regulated genes	268
GSE1793:Melanoma cells - down regulated genes	174
GSE1793:Melanoma cells - up regulated genes	173
GSE10325:SLE Myeloid - down regulated genes	236
GSE10325:SLE Myeloid - up regulated genes	662
GSE61635:RNP autoantibody+ SLE PBMC - down regulated genes	41
GSE61635:RNP autoantibody+ SLE PBMC - up regulated genes	307
GSE4588:SLE B cells - down regulated genes	1138
GSE4588:SLE B cells - up regulated genes	634
GSE4588:SLE CD4 T cells - down regulated genes	988
GSE4588:SLE CD4 T cells - up regulated genes	900
GSE27427:SLE neutrophils - down regulated genes	458
GSE27427:SLE neutrophils - up regulated genes	1682
GSE20864:SLE PBMC - down regulated genes	1114
GSE20864:SLE PBMC - up regulated genes	1526

Table 17 List of GSE experiments used as pre-set gene lists in EnHERV

The proportion of the number of solo-LTR in differences gene locations was illustrated as pie chart in Figure 26. The majority of LTR are located in up-stream and down-stream region of genes. The pattern of HERV neighboring genes showed similar expression patterns as most of LTRs were located in intergenic region of the genes. While focusing on LTR intragenic, we found that the majority of LTRs are located in intron. Moreover, intragenic LTRs, especially the intron LTRs were located in anti-sense strand in all expression conditions. We further analyzed the number of solo-LTR in all conditions and plotted as line graph as some graph were illustrated in Figure 27. By comparing genes containing solo-LTR between down-regulated and up-regulated

genes, the analysis results show that number of solo-LTR in up-regulated genes were clearly higher than the down-regulated genes in SLE myeloid, RNP+ SLE PBMC, and both glomerular and tubular LN (green lines) in which the number of solo-LTR in antisense strand is slightly higher than sense direction (dark green line) comparing to expressed genes containing solo-LTR in colorectal cancer and DLE CD3+ T cells and other conditions. In summary, the intragenic solo-LTR in anti-sense direction pattern seems to associate with up-regulated genes in SLE myeloid, RNP+ SLE PBMC, and both glomerular and tubular LN.

Figure 26 The solo-LTR distributions ratio in different part of genes under up- and down-regulated gene expression conditions.

Figure 27 Number of solo-LTR in different part of gene.

Association analysis of solo LTR in cancer and autoimmune disease

HERVs have been reports to be active due to hypomethylation in cancer and autoimmune diseases [18, 155, 156]. Therefore, distinct isoforms or gene silencing due to HERV were reported in various diseases with global hypomethylation events particularly in cancers [157-160]. Alternative transcript of CD5 by HERV-E was also reported in SLE B cells [161]. However, there are still limited comprehensive data and tool available to analyze HERV in relation to other genes. Since we hypothesize that HERV can control neighboring genes by either up-regulation or down-regulation, we develop a model to identify genes that associated with HERV in the genome that were differential expression in various diseases. This information can serve as a screening tool to further study candidate genes that might be under the regulation of HERV. The association analysis results between all HERV neighboring genes in various gene expression conditions are showed in Table 18. Including with the solo-LTR distribution analysis results, there are some LTR patterns that associated with certain differentially expressed genes pattern in specific tissue and disease conditions, the association analysis were performed for all solo-LTR in 56 condition as listed in Table 6 in the method section.

The example of enrichment analysis result of sense intragenic THEB LTR against up-regulated RNP+ SLE gene were illustrated in Figure 28. The result shows the association of 50 up-regulated genes in SLE PBMC RNP+ condition containing sense intragenic THE1B LTR with significant level as P-value 0 and OR ratio 2.83.

We also performed the association analysis between all 4 HERV superfamilies and 25 selected HERVs with the same disease conditions as mention in method section. The list of significantly association between HERV superfamilies and various condition were reported in Table 19 while Table 20 shows the significantly association in individual HERV. The results clearly showed that different type of LTRs were differentially associated with certain gene expression profiles in particular disease conditions.

There is no association between hypomethylation and HERV neighboring genes found in entire HERVs and superfamilies level, with association cut-off p < 0.001 and OR >1. The hypomethylation event was represented by DEG in GSE9764 5-azacytidine treated human mesenchymal stem cells. However, we found the association between down-regulated genes in hypomethylation and some individual HERVs only in ERVL and ERVL-MaLR. These association pattern is correspond with the association pattern of HERVs and gene expression in most of cancer cells. This analysis result also supports the role of HERVs association in diseases as tissues and HERVs type specifics manner according to the hypomethylation event in our analysis was represented by 5aza treated cancer cells.

Figure 28 Enrichment analysis result of sense intragenic THEB LTR against upregulated RNP+ SLE gene.

Def accession pattern OR p-value OR p-value All 0.1411 0 0.1426 0 Sense 0.151 0 0.1426 0 GSE14905 Psoriasis, skin Anti-sense 0.1529 0 0.1566 0 Intragenic 1.2202 0.00053 0.9747 0.667739 Intergenic 0.1411 0 0.1426 0 GSE52471 psoriasis, skin Anti-sense 0.1536 0 0.2326 0 GSE52471 psoriasis, skin Anti-sense 0.1536 0 0.2263 0 Intragenic 1.1944 0.000797 1.0886 0.176576 Intergenic 0.1428 0 0.2263 0 GSE12453 Hodgkin Lymphoma vs Sense 0.1010 0.2135 0 GSE12453 Hodgkin Lymphoma vs All 0.0052 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs All 0.1052 0 0.1991 0 0 GSE	GEO accession	HERV	Down DEG		Up DE	
All 0.1411 0 0.1426 0 GSE14905 Psoriasis, skin Sense 0.151 0 0.1547 0 Anti-sense 0.1529 0 0.1566 0 Intragenic 1.2202 0.00053 0.9747 0.667739 Intergenic 0.1411 0 0.1426 0 GSE52471 psoriasis, skin All 0.1428 0 0.2326 0 GSE52471 psoriasis, skin Anti-sense 0.1536 0 0.2533 0 Intragenic 1.1944 0.000797 1.0886 0.176576 Intergenic 0.1428 0 0.2263 0 GSE12453 Hodgkin Lymphoma vs Sense 0.101 0 0.2135 0 GSE12453 Hodgkin Lymphoma vs Sense 0.101 0 0.2135 0 GSE12453 Hodgkin Lymphoma vs Sense 0.101 0 0.2135 0 GSE12453 Hodgkin Lymphoma vs GSE12453 Hodgkin Lymphoma vs Sense 0.116 0 0.2159	OEO accession	pattern	OR	p-value	OR	p-value
Sense0.15100.15470GSE14905 Psoriasis, skinAnti-sense0.15290.000530.97470.667739Intergenic0.141100.142600Intergenic0.141100.142600GSE52471 psoriasis, skinAnti-sense0.153600.25330Intragenic1.19440.0007971.08860.176576Intragenic1.19440.0007971.08860.176576Intragenic0.142800.21350GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090300.22630GSE12453 Hodgkin Lymphoma vs centrocytesAll0.169200.131300GSE12453 Hodgkin Lymphoma vs centrocytesAll0.105200.191100GSE12453 Hodgkin Lymphoma vs entrocytesAll0.105200.199100GSE12453 Hodgkin Lymphoma vs entrocytesAll0.105200.191100GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.000200.179800GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.0001740.0364000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.0001740.036400000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.0001740.03640000000000		All	0.1411	0	0.1426	0
GSE14905 Psoriasis, skinAnti-sense0.152900.15660Intragenic1.2020.000530.97470.667739Intergenic0.1411000.23260GSE52471 psoriasis, skinAll0.142800.25330Anti-sense0.153600.253300Intragenic1.19440.0007971.08860.176576Intragenic1.19440.0007971.08860.176576Intragenic0.142800.22130GSE12453 Hodgkin Lymphoma vs centroblastsSense0.099300.22630Intergenic1.491300.668449.90E-060Intergenic0.090400.213500GSE12453 Hodgkin Lymphoma vs centrocytesAll0.165200.19910GSE12453 Hodgkin Lymphoma vs entrocytesAll0.105200.19910GSE12453 Hodgkin Lymphoma vs nemory B cellsAll0.090200.17980GSE12453 Hodgkin Lymphoma vs nemory B cellsSense0.105200.19190GSE12453 Hodgkin Lymphoma vs nemory B cellsAll0.0907600.19590GSE12453 Hodgkin Lymphoma vs nemory B cellsAll0.090700.16840All0.0907000.1684000GSE12453 Hodgkin Lymphoma vs nemory B cellsAll0.0907000 <tr< td=""><td></td><td>Sense</td><td>0.151</td><td>0</td><td>0.1547</td><td>0</td></tr<>		Sense	0.151	0	0.1547	0
Intragenic1.2200.000530.97470.667739Intergenic0.141100.14260GSE52471 psoriasis, skinAll0.142800.2326Anti-sense0.153600.24710Intragenic1.19440.0007971.08860.176576Intragenic0.142800.23260GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.2135GSE12453 Hodgkin Lymphoma vs centrocytesAll0.000400.2135All0.000400.21350All0.105200.21350GSE12453 Hodgkin Lymphoma vs centrocytesAll0.000400.2135All0.105200.19910GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.1991GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.1991000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.1991000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.097300.19630All0.097300.19640000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.097300.19780All0.097300.19640 <td>GSE14905 Psoriasis, skin</td> <td>Anti-sense</td> <td>0.1529</td> <td>0</td> <td>0.1566</td> <td>0</td>	GSE14905 Psoriasis, skin	Anti-sense	0.1529	0	0.1566	0
Intergenic0.141100.14260GSE52471 psoriasis, skinAll0.142800.23260Anti-sense0.153600.25330Intragenic1.19440.0007971.08860.176576Intergenic0.142800.23260GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.21350GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.21350GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.21350GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.21350GSE12453 Hodgkin Lymphoma vs centrobyesAll0.090400.21350All0.105200.1991000GSE12453 Hodgkin Lymphoma vs memory B cellsAnti-sense0.11600.21590All0.090200.19910000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.19910000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.097300.18640All0.097300.19840000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.097300.19840All0.097300.198400<		Intragenic	1.2202	0.00053	0.9747	0.667739
All 0.1428 0 0.2326 0 GSE52471 psoriasis, skin Anti-sense 0.1518 0 0.2471 0 Anti-sense 0.1536 0 0.2533 0 Intragenic 1.1944 0.000797 1.0886 0.176576 Intragenic 0.1428 0 0.2326 0 GSE12453 Hodgkin Lymphoma vs centroblasts All 0.0993 0 0.2263 0 All 0.0993 0 0.2263 0		Intergenic	0.1411	0	0.1426	0
Sense0.151800.24710GSE52471 psoriasis, skinAnti-sense0.153600.25330Intragenic1.19440.0007971.08860.176576Intergenic0.142800.23260GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.21350All0.090400.2313000GSE12453 Hodgkin Lymphoma vs centrocytesAll0.105200.19910GSE12453 Hodgkin Lymphoma vs centrocytesAll0.105200.19910GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.105200.19910GSE12453 Hodgkin Lymphoma vs 		All	0.1428	0	0.2326	0
GSE52471 psoriasis, skinAnti-sense0.153600.25330Intragenic1.19440.0007971.08860.176576Intergenic0.142800.23260GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.21350Anti-sense0.10100.2313000Intragenic1.491300.68449.90E-06000Intragenic0.900400.2135000GSE12453 Hodgkin Lymphoma vs centrocytesAll0.105200.19910GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.1991000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.1991000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.19590000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.0907300.18640All0.0907300.18640000GSE12453 Hodgkin Lymphoma vs plasma CellsAll0.097300.18640GSE12453 Hodgkin Lymphoma vs plasma CellsAll0.097300.18640GSE12453 Hodgkin Lymphoma vs plasma Cells<		Sense	0.1518	0	0.2471	0
Intragenic1.19440.0007971.08860.176576Intergenic0.142800.23260GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.21350Anti-sense0.10100.2313000Intragenic1.491300.68449.90E-06000<	GSE52471 psoriasis, skin	Anti-sense	0.1536	0	0.2533	0
Intergenic0.142800.23260GSE12453 Hodgkin Lymphoma vs centroblastsAll0.090400.21350Anti-sense0.10100.23130Intragenic1.491300.68449.90E-06Intergenic0.090400.21350GSE12453 Hodgkin Lymphoma vs centrocytesAll0.105200.1991GSE12453 Hodgkin Lymphoma vs centrocytesAll0.105200.21350Atli-sense0.11600.2135000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.1798000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.1798000GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.097300.17980All0.097300.1798000GSE12453 Hodgkin Lymphoma vs plasma CellsAlli0.097300.18640GSE12453 Hodgkin Lymphoma vs plasma CellsAlli0.097300.19440GSE12453 Hodgkin Lymphoma vs plasma CellsAlli0.097300.19440GSE12453 Hodgkin Lymphoma vs plasma CellsAlli0.097300.19440GSE12453 Hodgkin Lymphoma vs plasma CellsAlli0.097300.		Intragenic	1.1944	0.000797	1.0886	0.176576
All 0.0904 0 0.2135 0 GSE12453 Hodgkin Lymphoma vs centroblasts Sense 0.0993 0 0.2263 0 Anti-sense 0.101 0 0.2313 0 0 0.2313 0 Intragenic 1.4913 0 0.6844 9.90E-06 0		Intergenic	0.1428	0	0.2326	0
GSE12453 Hodgkin Lymphoma vs centroblastsSense0.099300.22630Anti-sense0.10100.23130Intragenic1.491300.68449.90E-06Intergenic0.090400.21350GSE12453 Hodgkin Lymphoma vs centrocytesAll0.105200.19910Anti-sense0.113900.208800GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.1991000All0.090200.199100GSE12453 Hodgkin Lymphoma vs memory B cellsAll0.090200.19910All0.090200.1991000All0.097300.189400GSE12453 Hodgkin Lymphoma vs 		All	0.0904	0	0.2135	0
GSE12453 Hodgkin Lymphoma vs centroblasts Anti-sense 0.101 0 0.2313 0 Intragenic 1.4913 0 0.6844 9.90E-06 Intergenic 0.0904 0 0.2135 0 GSE12453 Hodgkin Lymphoma vs centrocytes All 0.1052 0 0.1991 0 All 0.1052 0 0.1991 0		Sense	0.0993	0	0.2263	0
Intragenic 1.4913 0 0.6844 9.90E-06 Intergenic 0.0904 0 0.2135 0 All 0.1052 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs centrocytes All 0.1052 0 0.2088 0 Anti-sense 0.1139 0 0.2088 0 0 0 0 0 GSE12453 Hodgkin Lymphoma vs centrocytes Anti-sense 0.116 0 0.2159 0 Intragenic 1.564 0 0.539 0	GSE12453 Hodgkin Lymphoma vs	Anti-sense	0.101	0	0.2313	0
Intergenic 0.0904 0 0.2135 0 GSE12453 Hodgkin Lymphoma vs centrocytes All 0.1052 0 0.1991 0 Anti-sense 0.1139 0 0.2088 0 Anti-sense 0.116 0 0.2159 0 Intragenic 1.564 0 0.539 0 Intergenic 0.1052 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs memory B cells All 0.0902 0 0.1991 0 Anti-sense 0.0956 0 0.1991 0<	centroblasts	Intragenic	1.4913	0	0.6844	9.90E-06
All 0.1052 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs Sense 0.1139 0 0.2088 0 Centrocytes Anti-sense 0.116 0 0.2159 0 Intragenic 1.564 0 0.539 0 Intergenic 0.1052 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs All 0.0902 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs Mati-sense 0.0956 0 0.1894 0 GSE12453 Hodgkin Lymphoma vs Sense 0.0956 0 0.1959 0 Intragenic 1.3944 0.000174 0.6036 0 Intergenic 0.0902 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs All 0.0973 0 0.1864 0 GSE12453 Hodgkin Lymphoma vs Sense 0.1036 0 0.1944 0 GSE12453 Hodgkin Lymphoma vs Intergenic 1.2982 0.000208 0.5668 0		Intergenic	0.0904	0	0.2135	0
GSE12453 Hodgkin Lymphoma vs centrocytes Sense 0.1139 0 0.2088 0 Anti-sense 0.116 0 0.2159 0 Intragenic 1.564 0 0.539 0 Intergenic 0.1052 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs memory B cells All 0.0902 0 0.1894 0 Anti-sense 0.0983 0 0.1959 0 Intragenic 1.3944 0.000174 0.6036 0 GSE12453 Hodgkin Lymphoma vs memory B cells All 0.0973 0 0.1798 0 Intragenic 1.3944 0.000174 0.6036 0 0 GSE12453 Hodgkin Lymphoma vs plasma Cells All 0.0973 0 0.1864 0 GSE12453 Hodgkin Lymphoma vs plasma Cells Anti-sense 0.1036 0 0.2001 0	1 A.M.	All	0.1052	0	0.1991	0
GSE12453 Hodgkin Lymphoma vs centrocytes Anti-sense 0.116 0 0.2159 0 Intragenic 1.564 0 0.539 0 Intergenic 0.1052 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs memory B cells All 0.0902 0 0.1798 0 Anti-sense 0.0983 0 0.1959 0 Intragenic 1.3944 0.000174 0.6036 0 Intergenic 0.0902 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs memory B cells All 0.0903 0 0.1959 0 GSE12453 Hodgkin Lymphoma vs plasma Cells All 0.0902 0 0.1798 0 Intergenic 1.3944 0.000174 0.6036 0 0 GSE12453 Hodgkin Lymphoma vs plasma Cells All 0.0973 0 0.1864 0 Mit-sense 0.1036 0 0.1944 0 Mati-sense 0.1058 0 0.2001 0 Intragenic 1.2982 0.000208 0.5668 0 <td></td> <td>Sense</td> <td>0.1139</td> <td>0</td> <td>0.2088</td> <td>0</td>		Sense	0.1139	0	0.2088	0
Centrocytes Intragenic 1.564 0 0.539 0 Intergenic 0.1052 0 0.1991 0 Mail 0.0902 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs memory B cells Sense 0.0956 0 0.1894 0 Anti-sense 0.0983 0 0.1959 0 Intragenic 1.3944 0.000174 0.6036 0 Intergenic 0.0973 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs plasma Cells Sense 0.1036 0 0.1944 0 GSE12453 Hodgkin Lymphoma vs plasma Cells Mail 0.0973 0 0.1864 0	GSE12453 Hodgkin Lymphoma vs	Anti-sense	0.116	0	0.2159	0
Intergenic 0.1052 0 0.1991 0 GSE12453 Hodgkin Lymphoma vs memory B cells All 0.0902 0 0.1798 0 Anti-sense 0.0956 0 0.1894 0 Anti-sense 0.0983 0 0.1959 0 Intragenic 1.3944 0.000174 0.6036 0 Intergenic 0.0902 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs plasma Cells All 0.0973 0 0.1864 0 Anti-sense 0.1036 0 0.1944 0 GSE12453 Hodgkin Lymphoma vs plasma Cells 0.1058 0 0.2001 0	CHULALON	Intragenic	1.564	0	0.539	0
All 0.0902 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs memory B cells Sense 0.0956 0 0.1894 0 Anti-sense 0.0983 0 0.1959 0 Intragenic 1.3944 0.000174 0.6036 0 Intergenic 0.0902 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs All 0.0902 0 0.1864 0 GSE12453 Hodgkin Lymphoma vs All 0.0973 0 0.1864 0 GSE12453 Hodgkin Lymphoma vs Sense 0.1036 0 0.1944 0 Intragenic 1.2982 0.000208 0.5668 0		Intergenic	0.1052	0	0.1991	0
GSE12453 Hodgkin Lymphoma vs memory B cells Sense 0.0956 0 0.1894 0 Anti-sense 0.0983 0 0.1959 0 Intragenic 1.3944 0.000174 0.6036 0 Intergenic 0.0992 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs plasma Cells All 0.0973 0 0.1864 0 Anti-sense 0.1036 0 0.1944 0 Intragenic 1.2982 0.000208 0.5668 0		All	0.0902	0	0.1798	0
GSE12453 Hodgkin Lymphoma vs memory B cells Anti-sense 0.0983 0 0.1959 0 Intragenic 1.3944 0.000174 0.6036 0 Intergenic 0.0902 0 0.1798 0 GSE12453 Hodgkin Lymphoma vs plasma Cells All 0.0973 0 0.1864 0 Anti-sense 0.1036 0 0.1944 0 Intragenic 1.2982 0.000208 0.5668 0		Sense	0.0956	0	0.1894	0
Intragenic 1.3944 0.000174 0.6036 0 Intergenic 0.0902 0 0.1798 0 All 0.0973 0 0.1864 0 GSE12453 Hodgkin Lymphoma vs Sense 0.1036 0 0.1944 0 Anti-sense 0.1058 0 0.2001 0 Intragenic 1.2982 0.000208 0.5668 0	GSE12453 Hodgkin Lymphoma vs	Anti-sense	0.0983	0	0.1959	0
Intergenic 0.0902 0 0.1798 0 All 0.0973 0 0.1864 0 GSE12453 Hodgkin Lymphoma vs plasma Cells Sense 0.1036 0 0.1944 0 Intragenic 1.2982 0.000208 0.5668 0	memory B cens	Intragenic	1.3944	0.000174	0.6036	0
All 0.0973 0 0.1864 0 GSE12453 Hodgkin Lymphoma vs Sense 0.1036 0 0.1944 0 Anti-sense 0.1058 0 0.2001 0 Intragenic 1.2982 0.000208 0.5668 0		Intergenic	0.0902	0	0.1798	0
GSE12453 Hodgkin Lymphoma vs Sense 0.1036 0 0.1944 0 Anti-sense 0.1058 0 0.2001 0 Intragenic 1.2982 0.000208 0.5668 0		All	0.0973	0	0.1864	0
GSE12433 Hodgkin Lymphoma vs Anti-sense 0.1058 0 0.2001 0 plasma Cells Intragenic 1.2982 0.000208 0.5668 0	CSE12452 Hedelin Lemenhamo an	Sense	0.1036	0	0.1944	0
Intragenic 1.2982 0.000208 0.5668 0	GSE12455 Hodgkin Lymphoma vs	Anti-sense	0.1058	0	0.2001	0
	piasilia Cells	Intragenic	1.2982	0.000208	0.5668	0
Intergenic 0.0973 0 0.1864 0		Intergenic	0.0973	0	0.1864	0

Table 18 Association analysis results at entire HERV solo-LTR level (Significant
data with OD > 1 and P < 0.001, indicated in bold letter)</th>

CEO accession	HERV	Ι	Down DEG		Up DEG
GEO accession	pattern	OR	p-value	OR	p-value
	All	0.1095	0	0.1528	0
	Sense	0.1189	0	0.1604	0
GSE12453 Diffuse Large B cells	Anti-sense	0.1195	0	0.1629	0
Lymphoma vs centroblasts	Intragenic	1.6974	0	0.5042	0
	Intergenic	0.1095	0	0.1528	0
	All	0.1038	0	0.1363	0
	Sense	0.1123	0	0.1445	0
GSE12455 Diffuse Large B cens	Anti-sense	0.1128	0	0.1452	0
Lymphoma vs centrocytes	Intragenic	1.7304	3.00E-08	0.4389	0
	Intergenic	0.1038	0	0.1363	0
	All	0.1061	0	0.1175	0
CSE12452 Diffuse Large D calls	Sense	0.1143	0	0.1256	0
GSE12453 Diffuse Large B cells	Anti-sense	0.1148	0	0.1284	0
Lymphoma vs memory B cens	Intragenic	1.6155	0.00025	0.5491	0
	Intergenic	0.1061	0	0.1175	0
	All	0.2749	0	0.2021	0
	Sense	0.2873	0	0.2154	0
GSE45829 EBV Infected B cells	Anti-sense	0.2886	0	0.2215	0
	Intragenic	0.7178	0.001509	1.4435	0
	Intergenic	0.2749	0	0.2021	0
จุฬาลงก	All	0.1202	0	0.1425	0
	Sense	0.1281	0	0.1489	0
GSE1299 Breast cancer cells	Anti-sense	0.1305	0	0.154	0
	Intragenic	1.3762	0.000808	1.0505	0.744504
	Intergenic	0.1202	0	0.1425	0
	All	0.0896	0	0.0912	0
GSE9764 5-azacydine treated	Sense	0.0973	0	0.0988	0
human mesenchymal stem cells	Anti-sense	0.0968	0	0.0992	0
	Intragenic	0.8994	0.195535	0.9395	0.504043
	Intergenic	0.0896	0	0.0912	0

Table 19 Association analysis results at HERV superfamily level with OR > 1 and p < 0.001, indicated in bold letter (Only association data were shown in this table)

	HERV		ERV1/HERVE solo-LTR				
GEO accession	pattern		Down DEG		Up DEG		
		OR	p-value	OR	p-value		
	All	0.2312	0	0.1894	0		
	Sense	0.3922	0	0.3648	0		
GSE13887 SLE T cells	Anti-sense	0.364	0	0.3746	0		
	Intragenic	0.6386	0	1.3478	1.02E-06		
	Intergenic	0.2448	0	0.1985	0		
	All	0.3412	0.32715351	0.3091	0		
	Sense	0.3412	0.21366473	0.5722	0.00035791		
GSE20864 SLE PBMC	Anti-sense	0.7739	0.57836251	0.4959	8.10E-06		
	Intragenic	1.1661	1	1.7429	1.57E-05		
	Intergenic	0.3611	0.34199072	0.3026	0		
	All	0.1805	0	0.116	0		
	Sense	0.3277	0	0.2681	0		
GSE61635 SLE PBMC RNP+	Anti-sense	0.3668	0	0.2506	0		
	Intragenic	1.2134	0.0368163	1.3443	2.39E-05		
	Intergenic	0.188	0	0.1221	0		
	All	0.4136	8.00E-08	0.3885	0		
	Sense	0.6945	0.00579991	0.659	0.00011074		
GSE13355 Psoriasis, skin	Anti-sense	0.6615	0.00255271	0.6092	6.55E-06		
	Intragenic	1.5684	2.61E-05	0.9349	0.49353108		
จุฬาสงบ	Intergenic	0.4289	1.80E-07	0.4122	0		
	All	0.2766	0	0.2843	0		
	Sense	0.526	0	0.5003	0		
GSE14905 Psoriasis, skin	Anti-sense	0.5025	0	0.4823	0		
	Intragenic	1.4588	0	0.8767	0.03968541		
	Intergenic	0.2867	0	0.2978	0		
	All	inf	1	0.2273	0.04598508		
	Sense	inf	1	0.3838	0.10873814		
GSE32407 Psoriasis, skin	Anti-sense	inf	1	0.5158	0.40229897		
	Intragenic	inf	0.02702273	0.4239	0.36775098		
	Intergenic	inf	1	0.2405	0.05249269		
	All	0.2873	0	0.4111	0		
	Sense	0.5098	0	0.649	5.00E-08		
GSE52471 psoriasis, skin	Anti-sense	0.4688	0	0.6327	2.00E-08		
	Intragenic	1.2675	2.10E-05	0.9724	0.68830239		
	Intergenic	0.3007	0	0.43	0		

19A.	ERV	1/HERV	VE s	solo-L	JTR
------	-----	--------	------	--------	------------

	All	0.203	0	0.3687	0
CSE12452 Hedelin Longhomeous	Sense	0.4032	0	0.6228	1.54E-05
centroblasts	Anti-sense	0.4098	0	0.5571	1.10E-07
	Intragenic	1.2306	0.00015277	0.7329	1.75E-03
	Intergenic	0.2094	0	0.3801	0
	All	0.2293	0	0.3436	0
	Sense	0.4296	0	0.5681	2.00E-08
CSE12455 Hodgkin Lymphoma vs centrocytes	Anti-sense	0.4392	0	0.5182	0
	Intragenic	1.2922	3.64E-05	0.6118	2.20E-07
	Intergenic	0.2354	0	0.3603	0
	All	0.1837	0	0.3214	0
GSE12453 Hodgkin Lymphoma vs memory B cells	Sense	0.363	0	0.5546	0
	Anti-sense	0.3558	0	0.4765	0
	Intragenic	1.3666	0.00073039	0.6234	0
	Intergenic	0.1913	0	0.3391	0
GSE12453 Diffuse Large B cells Lymphoma vs centroblasts	All	0.2267	0	0.2782	0
	Sense	0.4305	0	0.4966	0
	Anti-sense	0.4199	0	0.4515	0
	Intragenic	1.5358	1.10E-07	0.5131	0
	Intergenic	0.2345	0	0.2931	0
	All	0.2173	0	0.2581	0
	Sense	0.4308	0	0.45	0
GSE12453 Diffuse Large B cells Lymphoma vs centrocytes	Anti-sense	0.4176	0	0.3921	0
	Intragenic	1.6832	1.30E-07	0.4605	0
	Intergenic	0.2247	0	0.2728	0
	All	0.2172	0	0.2313	0
CSE12452 D'ffree Land David	Sense	0.4319	2.00E-08	0.4073	0
GSE12453 Diffuse Large B cells	Anti-sense	0.4236	2.00E-08	0.3833	0
	Intragenic	1.6833	6.49E-05	0.5158	0
	Intergenic	0.2252	0	0.2446	0
	All	0.157	0	0.2164	0
CSE12452 D'ffree Lance Daville	Sense	0.3137	0	0.3952	0
GSE12453 Diffuse Large B cells	Anti-sense	0.3144	0	0.386	0
	Intragenic	1.6229	3.97E-05	0.5586	0
	Intergenic	0.1614	0	0.2309	0
	All	0.4396	1.11E-06	0.3909	0
	Sense	0.6833	0.00508797	0.6027	0
GSE45829 EBV Infected B cells	Anti-sense	0.6402	0.00103782	0.6472	0
	Intragenic	0.7393	0.01269972	1.2568	4.60E-07
	Intergenic	0.4659	6.04E-06	0.408	0

	All	0.2377	0	0.258	0
	Sense	0.4624	0	0.4316	5.00E-08
GSE1299 Breast cancer cells	Anti-sense	0.4276	0	0.4553	1.18E-06
	Intragenic	1.4685	7.62E-05	1.0116	0.943421
GSE9750 Cervical cancer	Intergenic	0.2523	0	0.2735	0
	All	0.2022	0	0.3485	0
	Sense	0.4755	0	0.5399	0
	Anti-sense	0.4464	0	0.4537	0
	Intragenic	1.2148	1.00E-08	0.6896	2.00E-08
	Intergenic	0.2177	0	0.3688	0
	All	0.1738	0	0.1767	0
GSE9764 5-azacydine treated	Sense	0.3613	0	0.3495	0
human mesenchymal stem cells	Anti-sense	0.3212	0	0.3402	0
	Intragenic	1.1446	0.12298673	1.0424	0.66259312
	Intergenic	0.1801	0	0.1878	0

19B. ERV3/HERVL solo-LTR

	HEDV	ERV3/HERVL solo-LTR				
GEO accession	pattern	Down DF	EG	Up DEG		
		OR	p-value	OR	p-value	
	All	0.205	0	0.1856	0	
CSE12997 SLET colle	Sense Anti-	0.3484	0	0.4186	0	
USE13887 SEE 1 Cells	sense	0.335	0	0.4338	0	
	Intragenic	0.7302	1.39E-05	1.3342	2.08E-06	
 	Intergenic	0.214	0	0.194	0	
GSE10325 SLE myeloid cells	All	0.3421	5.10E-07	0.3645	0	
	Sense	0.574	0.001236	0.5904	0.000108	
	Anti- sense	0.5918	0.003464	0.6594	0.003091	
	Intragenic	1.134	0.404069	1.4597	0.000949	
	Intergenic	0.3615	2.42E-06	0.3681	0	
	All	0.1782	0	0.1095	0	
	Sense Anti-	0.3633	0	0.2893	0	
GSE61635 SLE PBMC RNP+	sense	0.3523	0	0.277	0	
	Intragenic	1.2727	0.008475	1.4665	3.00E-08	
	Intergenic	0.187	0	0.1162	0	
	All	0.3632	0	0.3851	0	
	Sense Anti-	0.512	0	0.7011	3.14E-06	
GSE10500 RA macophage cells	sense	0.4702	0	0.7284	5.45E-05	
	Intragenic	0.9208	0.260191	1.2356	0.000658	
	Intergenic	0.3689	0	0.4087	0	

	All	0.3959	2.00E-08	0.331	0
	Sense	0.7187	0.012891	0.6036	1.33E-06
GSE13355 Psoriasis, skin	Antı- sense	0.7454	0.028713	0.5446	1.00E-08
	Intragenic	1.4256	0.000888	0.9818	0.856629
	Intergenic	0.4186	7.00E-08	0.3371	0
	All	0.2812	0	0.2631	0
	Sense	0.5802	0	0.4673	0
GSE14905 Psoriasis, skin	Anti-	0 576	0	0 4560	0
	Intragenic	1 4997	0	0.4309	0 253534
	Intergenic	0.2957	0	0.2674	0.255554
	All	0.2732	0	0.3646	0
	Sense	0.5416	0	0.5761	0
GSE52471 psoriasis, skin	Anti-	0.4060	0	0.50/7	0
1	sense	0.4868	0	0.5867	0 110526
	Intragenic	1.4214	0	1.1084	0.119536
	All	0.2652	0	0.3722	0
	All	0.2070	0	0.5005	0
GSE12453 Hodgkin Lymphoma vs	Anti-	0.4303	0	0.5511	0
centroblasts	sense	0.4324	0	0.5752	3.60E-07
	Intragenic	1.4091	0	0.689	0.000148
	Intergenic	0.2179	0	0.3816	0
	All	0.2275	0	0.3401	0
GSE12453 Hodgkin Lymphoma vs	Sense Anti-	0.4716	0	0.5055	0
centrocytes	sense	0.4693	0	0.4981	0
	Intragenic	1.4627	0	0.5368	0
จุพาสงเ	Intergenic	0.2381	0	0.3602	0
	All	0.1796	0	0.3218	0
CSE12452 Hodelin Lymphome	Sense	0.3819	0	0.4982	0
vs memory B cells	Anti- sense	0.3674	0	0.4655	0
2	Intragenic	1.3955	0.00024	0.5655	0
	Intergenic	0.1865	0	0.3278	0
	All	0.232	0	0.2795	0
	Sense	0.498	0	0.4725	0
GSE12453 Diffuse Large B cells Lymphoma vs centroblasts	Anti- sense	0 4842	0	0 4373	0
	Intragenic	1.703	0	0.5133	0
	Intergenic	0.2371	0	0.291	0
	All	0.2153	0	0.2466	0
	Sense	0.5	0	0.4008	0
GSE12453 Diffuse Large B cells	Anti-	0 4714	0	0 2710	0
Lymphoma vs centrocytes	Intragenic	0.4714 1 <i>7546</i>	U 1 00F 00	0.3/10	0
	Intergenic	0 225	1.00E-00	0.3043	0
	mergeme	0.223	0	0.2302	0

	All	0.2125	0	0.2294	0
	Sense	0.4276	1.00E-08	0.4088	0
GSE12453 Diffuse Large B cells Lymphoma vs memory B cells	Anti- sense	0.4428	8.00E-08	0.3643	0
Lymphonia (5 memory 2 cons	Intragenic	1.6786	5.86E-05	0.5071	0
	Intergenic	0.215	0	0.2387	0
	All	0.156	0	0.2102	0
	Sense	0.3556	0	0.3842	0
GSE12453 Diffuse Large B cells	Anti-	0 2 4 2 2	0	0 2472	0
Lympholia vs harve B cens	Intragenic	0.3423 1 7831	7 60F-07	0.5472	0
	Intergenic	0.1574	7.00E-07	0.2201	0
	All	0.4626	7.91E-06	0.3621	0
	Sense	0.6517	0.001178	0.5733	0
GSE45829 EBV infected B cells	Anti-	0.700	0.011020	0 (012	0
	Intragonic	0.709	0.011829	0.0013 1 1929	0 000105
	Intergenic	0.798	1 34E-05	0.3758	0.000195
	All	0.4771	1.34 <u>L-03</u>	0.2397	0
	Sense	0.5814	2.38E-06	0.4615	4.90E-07
GSE1299 Breast cancer cells	Anti-	0.001		0.40.54	
	sense	0.5106	0	0.4954	1.03E-05
	Intragenic	1.7121	2.00E-08	0.942	0.725264
	intergenic	0.2301	0	0.2471	0
	All	0.1157	0	0.2313	0
CSE5816 Lung Adonocarcinoma	Anti-	0.3274	0	0.4710	0
GSE3810 Lung Adenocarcinoma	sense	0.3159	0	0.4451	0
	Intragenic	1.0615	0.122261	1.2789	0.000367
Current	Intergenic	0.125	0	0.2425	0
	All	0.4188	0	0.2975	0
	Sense Anti-	0.6889	3.79E-05	0.4986	0
GSE6919 Metastasis prostate cancer	sense	0.6744	2.23E-05	0.5285	0
	Intragenic	1.2899	0.000589	0.9843	0.836614
	Intergenic	0.4436	0	0.3089	0
	All	0.1815	0	0.3426	0
	Sense	0.4718	0	0.4749	0
GSE9750 cervical cancer	sense	0.4788	0	0.4665	0
	Intragenic	1.2248	0	0.8118	0.001078
	Intergenic	0.1969	0	0.341	0
	All	0.2158	0	0.1822	0
GSE9764 5-azacydine treated	Sense	0.417	0	0.3709	0
human mesenchymal stem cells	Anti- sense	0.4198	0	0.3443	0
	Intragenic	0.9308	0.336312	1.0843	0.38765109
	Intergenic	0.2247	0	0.189	0

19C. ERVL-MaLR

GEO accession	HERV pattern	Down	DEG	Up DEG	
	1 -	OR	p-value	OR	p-value
	All	0.1296	0	0.094	0
	Sense	0.1998	0	0.1743	0
GSE13887 SLE T cells	Anti-sense	0.1793	0	0.1561	0
	Intragenic	0.6399	0	1.2717	3.22E-05
	Intergenic	0.1304	0	0.0949	0
	All	0.291	0	0.2242	0
	Sense	0.3753	0	0.3682	0
GSE10500 RA macophage cells	Anti-sense	0.3535	0	0.3363	0
	Intragenic	0.8763	0.049067	1.2469	0.000185
	Intergenic	0.2911	0	0.2233	0
	All	0.1578	0	0.1571	0
	Sense	0.2653	0	0.2571	0
GSE14905 Psoriasis, skin	Anti-sense	0.2449	0	0.2217	0
	Intragenic	1.4491	0	0.9605	0.490139
	Intergenic	0.16	0	0.1594	0
	All	0.1586	0	0.2465	0
	Sense	0.2502	0	0.3885	0
GSE52471 psoriasis, skin	Anti-sense	0.2406	0	0.3389	0
	Intragenic	1.3569	1.00E-08	1.0493	0.44043
	Intergenic	0.1609	0	0.2496	0
	All	0.1029	0	0.2362	0
CSE12452 Hodskin Lymphone	Sense	0.189	0	0.3533	0
vs centroblasts	Anti-sense	0.1668	0	0.3271	0
	Intragenic	1.5389	0	0.7286	0.000346
	Intergenic	0.1045	0	0.239	0
	All	0.1182	0	0.2206	0
GSE12453 Hodgkin Lymphoma	Sense	0.2095	0	0.3148	0
vs centrocytes	Anti-sense	0.1846	0	0.308	0
	Intragenic	1.6388	0	0.5651	0
	Intergenic	0.12	0	0.2233	0
	All	0.1005	0	0.1984	0
GSE12453 Hodgkin Lymphoma	Sense	0.168	0	0.2935	0
vs memory B cells	Anti-sense	0.1495	0	0.2667	0
-	Intragenic	1.5216	1.65E-06	0.5852	0
	Intergenic	0.1006	0	0.201	0

GEO accession	HERV pattern	v n Down DE		UI	p DEG	
		OR	p-value	OR	p-value	
	All	0.1083	0	0.2045	0	
CSE12452 Hedelin Lamahama an	Sense	0.1856	0	0.2924	0	
plasma Cells	Anti-sense	0.1723	0	0.2659	0	
L	Intragenic	1.4366	1.70E-07	0.5664	0	
	Intergenic	0.1098	0	0.207	0	
	All	0.121	0	0.1683	0	
	Sense	0.2072	0	0.2567	0	
GSE12453 Diffuse Large B cells Lymphoma vs centroblasts	Anti-sense	0.1874	0	0.2301	0	
	Intragenic	1.8389	0	0.517	0	
	Intergenic	0.1226	0	0.1705	0	
	All	0.1152	0	0.1512	0	
CSE12452 Diffuse Large D colle	Sense	0.199	0	0.2303	0	
Lymphoma vs centrocytes	Anti-sense	0.1781	0	0.2034	0	
5 I I I I I I I I I I I I I I I I I I I	Intragenic	1.92	0	0.4441	0	
	Intergenic	0.1167	0	0.1532	0	
	All	0.1172	0	0.1305	0	
CSE12452 D'Good Long Double	Sense	0.1908	0	0.2053	0	
Lymphoma vs memory B cells	Anti-sense	0.1728	0	0.187	0	
	Intragenic	1.7667	6.56E-06	0.5253	0	
	Intergenic	0.1186	0	0.1326	0	
	All	0.0856	0	0.1132	0	
CSE12453 Diffuse Large R calls	Sense	0.1394	0	0.1954	0	
Lymphoma vs naive B cells	Anti-sense	0.1314	0	0.1701	0	
Chulalon	Intragenic	1.5074	0.000373	0.5802	0	
	Intergenic	0.0867	0	0.1149	0	
	All	0.2945	0	0.2214	0	
	Sense	0.4038	1.10E-07	0.3274	0	
GSE45829 EBV infected B cells	Anti-sense	0.3851	7.00E-08	0.3153	0	
	Intragenic	0.6928	0.000674	1.3029	0	
	Intergenic	0.2979	0	0.2223	0	
	All	0.1334	0	0.1571	0	
	Sense	0.2207	0	0.257	0	
GSE1299 Breast cancer cells	Anti-sense	0.1923	0	0.2411	0	
	Intragenic	1.5123	8.75E-06	1.1619	0.265316	
	Intergenic	0.135	0	0.159	0	
	All	0.0537	0	0.2427	0	
	Sense	0.1685	0	0.3198	0	
GSE9750 cervical cancer	Anti-sense	0.1426	0	0.3066	0	
	Intragenic	1.1485	1.34E-05	0.8536	0.006343	
	Intergenic	0.0562	0	0.2417	0	

GEO accession	HERV pattern	Down	DEG	Up DEG		
GSE9764 5-azacydine treated	_	OR	p-value	OR	p-value	
	All	0.0981	0	0.1015	0	
CSE0764 5 areauding tracted	Sense	0.1659	0	0.1705	0	
human mesenchymal stem cells	Anti-sense	0.1499	0	0.1502	0	
	Intragenic	1.1619	0.0672580	1.0948	0.3246718	
	Intergenic	0.0994	0	0.1028	0	

The analysis results in Table 18 showed that there was no association between HERV and gene expression in SLE at entire HERV neighboring genes but we found the association between intragenic ERV1/ERVE, ERV3/ERVL, and ERVL-MaLR superfamilies with the up-regulated gene in SLE T cell and PBMC with RNP+ conditions, while there was no association found in ERV2/ERVK superfamily (Table 19). This observation is interestingly correlated with our previous studies that hypomethylation of HERV-E was detected in SLE CD4+ T cell but not HERV-K [18]. This specific hypomethylation is also associated with up-regulation of HERV-E transcript in CD4+ T cells [172]. Moreover, our result showed a strong association particularly with SLE with RNP+. This is consistent with the fact that there is sequence homology between HRES-1 and the 70-kDa gag-related region of the sn-RNP supporting that possible mechanism in etiopathogenesis of SLE by inducing the cross-reaction between the two proteins by autoantibodies.

We found that intragenic HERV in both entire HERV and superfamilies classification level were associated with down-regulated gene in most of cancer conditions. This finding might suggest that not only LINE-1 are associated with cancer genome wide hypomethylation down-regulating genes as previous report [173], but genes containing intragenic HERVs are also highly associate with down-regulated genes under cancer conditions. Another interesting point is the pattern of association. In contrary to the association with SLE, which were with up-regulated genes suggesting a clear different in pathogenesis of how HERV affect gene regulation in these 2 groups of disease. It should be noted that HERV also associated with up-regulted genes in B cells with EBV infection. This observation is interesting due to the fact that EBV has been implicated as a major risk factor for SLE. In addition, there was no striking

association between HERV and immune cells from other immune-mediated diseases that we analyzed e.g., asthma, graves' disease, rheumatoid arthritis (except for macrophage).

As for the targeted tissue in autoimmune diseases, we found that the pattern of association in psoriasis skin tissue was similar to the pattern in cancer suggesting similar mechanism. However, we did not see any association between HERV in kidney tissue from SLE. It seems that the mechanism that HERV might have in SLE is mainly in the immune cells and have some specificity with certain HERV as well.

GEO accession	heryl ist	Down DEG		Up DEG	
	Her vEist	OR	p-value	OR	p-value
LTR12	////				
	All	0.588	0.057009	0.9963	1
	Sense	0.5965	0.225575	1.0031	0.950761
GSE45829 EBV infected B cells	Anti-sense	0.6318	0.278349	0.9708	0.898923
	Intragenic	0.2979	0.270368	1.0969	0.647804
	Intergenic	0.6483	0.159074	1.0146	0.885635
LTR12C					
	All	1.0631	0.528835	1.1989	0.029162
	Sense	1.0277	0.799053	1.4276	0.000687
GSE6919 Metastasis prostate cancer	Anti-sense	1.1335	0.286361	1.0914	0.428592
	Intragenic	1.8283	0.004252	1.1755	0.41821
	Intergenic	1.011	0.920935	1.2282	0.015741
LTR7					
	All	0.6176	0.315517	1.9198	0.00177
	Sense	0.7588	0.822676	2.1462	0.00468
GSE10325 SLE myeloid cells	Anti-sense	0.406	0.248602	1.6445	0.102023
	Intragenic	1.6009	0.359273	1.9322	0.160718
	Intergenic	0.4456	0.116453	2.1057	0.000603
	All	0	1	3.2302	0.00132
	Sense	0	1	2.5107	0.05714
GSE24706 SLE PBMC, ANA	Anti-sense	0	1	3.9256	0.003117
	Intragenic	0	1	6.2826	0.013876
	Intergenic	0	1	3.5384	0.000655

Table 20 Association analysis results at individual HERV with $OR \ge 1$ and p < 0.001, indicated in bold letter (Only association data were shown in this table)

GEO accession	heryI ist	Dov	Down DEG		Up DEG		
	nervList	OR	p-value	OR	p-value		
	All	0.7021	0.149413	1.0698	0.638086		
	Sense	0.641	0.215454	0.6875	0.142685		
GSE61635 SLE PBMC RNP+	Anti-sense	0.6952	0.388232	1.4125	0.080671		
	Intragenic	0.8994	1	3.1509	8.52E-05		
	Intergenic	0.6359	0.085513	0.9862	1		
	All	1.7767	0.068882	0.8392	0.847136		
CSE6740 HIW infacted add non	Sense	1.1352	0.78288	1.0273	0.797975		
pregressive	Anti-sense	2.213	0.046591	0.5477	0.591067		
	Intragenic	7.5414	0.000223	2.1599	0.241396		
	Intergenic	1.7539	0.089586	0.6033	0.42085		
	All	0.9465	0.853674	1.1964	0.339477		
	Sense	0.622	0.138268	0.9181	0.887625		
GSE22859 H3K4me2, HeLa	Anti-sense	1.2613	0.304893	1.7086	0.026196		
	Intragenic	0.9559	1	3.7344	0.000337		
	Intergenic	1.0012	1	1.1612	0.438858		
LTR2							
	All	7.0415	0.055184	0.9924	1		
	Sense	6 2423	0.172558	0.4887	0 202822		
GSE20864 SLE PBMC	Anti-sense	12,7467	0.019356	1.3547	0.253101		
	Intragenic	65.4884	0.000855	1.0141	0.725561		
	Intergenic	3.0157	0.31986	0.9298	0.897101		
		10					
LTR8		<u> </u>					
	All	0.7988	0.012832	0.9589	0.619813		
Снита с	Sense	0.8937	0.353236	0.8926	0.299009		
GSE13887 SLE T cells	Anti-sense	0.7485	0.012909	1.0088	0.923736		
	Intragenic	0.48	0.011516	1.8072	0.000332		
	Intergenic	0.8243	0.037693	0.8783	0.117034		
	All	0.968	0.450923	0.8761	0.096783		
	Sense	0.9802	0.74477	0.9529	0.660108		
GSE9750 cervical cancer	Anti-sense	1.0036	0.937214	0.8075	0.037212		
	Intragenic	1.413	0.000614	0.5184	0.008094		
	Intergenic	0.9461	0.204692	0.9106	0.261139		
MER4C							
	All	1.3223	0.022372	0.862	0.275799		
	Sense	1.2531	0.185942	0.8784	0.551222		
GSE6919 Metastasis prostate cancer	Anti-sense	1.3631	0.054162	0.8562	0.387764		
	Intragenic	2.7771	3.35E-05	0.8118	0.643995		
	Intergenic	1.2065	0.161647	0.8859	0.41281		
	<u>~</u>						

GEO accession	hervI ist	Dov	vn DEG	Up DEG	
	noi vList	OR	p-value	OR	p-value
MER39					
	All	1.0281	0.835094	1.3053	0.007087
	Sense	0.8961	0.640778	1.1125	0.434509
GSE61635 SLE PBMC RNP+	Anti-sense	1.0667	0.662871	1.5765	0.00011
	Intragenic	1.5226	0.115824	3.1201	0
	Intergenic	1.0261	0.82779	1.1429	0.204549
	All	1.1447	0.124687	0.8717	0.157811
	Sense	1.0551	0.627061	0.7533	0.042565
GSE14905 Psoriasis, skin	Anti-sense	1.3202	0.008843	1.0228	0.818633
	Intragenic	1.9111	9.98E-05	0.7725	0.305462
	Intergenic	1.0669	0.478771	0.9016	0.316747
	All	0.8048	0.214075	1.6484	0.000398
	Sense	0.7584	0.294309	1.8778	0.000484
GSE36474 myeloma, bone marrow	Anti-sense	1.0212	0.921962	1.3852	0.069275
	Intragenic	0.8173	0.72804	1.7934	0.044624
	Intergenic	0.8522	0.415841	1.5913	0.001839
	All	1.3157	0.009408	1.1032	0.310102
	Sense	1.2719	0.081014	1.2698	0.05571
GSE6919 Metastasis prostate cancer	Anti-sense	1.3566	0.018969	0.9665	0.848034
	Intragenic	2.2615	3.41E-05	0.8269	0.567387
	Intergenic	1.2538	0.039063	1.1245	0.242868
	All	1.2051	0.000136	0.7365	0.002259
	Sense	1.2093	0.003817	0.8379	0.197778
GSE9750 cervical cancer	Anti-sense	1.2356	0.000525	0.6407	0.000709
	Intragenic	1.7392	6.00E-08	0.4917	0.007568
	Intergenic	1.1684	0.002579	0.7608	0.008753
	All	1.0478	0.505376	0.8147	0.06519
GSE13911 Microsatellite i nstable	Sense	1.0783	0.422201	0.8525	0.301262
gastric cancer	Anti-sense	1.0596	0.50805	0.8711	0.333987
	Intragenic	1.6944	0.000105	0.4858	0.020551
	Intergenic	0.9881	0.912398	0.8278	0.107861
MER52A					
	All	0.7389	0.118091	1.2736	0.039187
	Sense	0.4491	0.007372	1.206	0.236743
GSE61635 SLE PBMC RNP+	Anti-sense	1.0608	0.740231	1.281	0.109835
	Intragenic	1.3062	0.435661	2.5372	2.18E-05
	Intergenic	0.7104	0.085716	1.1894	0.15098

GEO accession	hervI ist	Dow	Down DEG		Up DEG		
	nervEist	OR	p-value	OR	p-value		
	All	0.6984	0.033059	1.0409	0.799671		
	Sense	0.5753	0.028201	0.9318	0.908788		
GSE22859 H3K4me2, HeLa	Anti-sense	0.7945	0.323749	1.1299	0.568387		
	Intragenic	1.1507	0.604114	2.7278	0.000368		
	Intergenic	0.6004	0.005513	0.9402	0.791115		
	All	0.7543	0.046102	0.9224	0.456476		
CSE41040 U2V0mo2	Sense	0.6936	0.063892	0.8217	0.201587		
primary fibroblasts	Anti-sense	0.8768	0.50327	1.0064	0.946699		
	Intragenic	0.6403	0.243601	2.1863	2.12E-05		
	Intergenic	0.7931	0.117455	0.8412	0.131389		
MER11C							
	All	0.6762	0.559803	2.0077	0.000612		
	Sense	0.8736	1	1.2444	0.470698		
GSE32591 LN glomolular	Anti-sense	0.488	0.443655	2.7174	3.45E-05		
	Intragenic	0	0.629955	2.508	0.037807		
	Intergenic	0.7458	0.686787	1.9789	0.001418		
LTR16A1							
1	All	0.8284	0.217784	1.0021	0.958538		
	Sense	0.6825	0.083285	1.0822	0.53428		
GSE61635 SLE PBMC RNP+	Anti-sense	0.9355	0.788665	1.0411	0.734174		
	Intragenic	1.0908	0.757381	2.5649	7.00E-08		
(11)	Intergenic	0.7724	0.114719	0.9256	0.514124		
	All	1.0323	0.728231	0.9859	0.959313		
	Sense	1.0599	0.644252	0.9062	0.542037		
GSE52471 SLE/DLE, skin	Anti-sense	1.1564	0.242536	0.9945	1		
	Intragenic	1.8645	0.000722	1.0411	0.818851		
	Intergenic	1.0302	0.755389	0.9608	0.749064		
	All	1.1037	0.519014	0.8574	0.291982		
	Sense	1.0188	0.914653	1.0449	0.792755		
GSE13355 Psoriasis, skin	Anti-sense	1.2974	0.170418	0.6602	0.047095		
	Intragenic	2.6631	0.000165	0.4086	0.037415		
	Intergenic	0.8939	0.612707	0.8889	0.448736		
	All	1.0078	0.929001	0.8185	0.038477		
	Sense	1.031	0.767577	0.9545	0.765204		
GSE14905 Psoriasis, skin	Anti-sense	1.0321	0.771093	0.667	0.002678		
	Intragenic	1.8052	0.000416	0.6315	0.068406		
	Intergenic	0.9606	0.709379	0.8706	0.172436		

GEO accession	heryI ist	Dov	vn DEG	Up DEG		
	nei vList	OR	p-value	OR	p-value	
	All	1.1005	0.051774	0.7483	0.003007	
	Sense	1.0934	0.164609	0.7995	0.094565	
GSE9750 cervical cancer	Anti-sense	1.1239	0.06815	0.7169	0.011551	
	Intragenic	1.7822	1.00E-08	0.2161	2.51E-06	
	Intergenic	1.059	0.262267	0.8429	0.090681	
	All	0.9861	0.862713	0.9541	0.686066	
GSE13911 Microsatellite i nstable	Sense	0.9998	1	0.9942	1	
gastric cancer	Anti-sense	1.1252	0.175183	0.9912	1	
	Intragenic	1.719	4.95E-05	0.9179	0.820658	
	Intergenic	0.9374	0.405268	0.9954	1	
	All	1.4411	0.04277	0.9181	0.814226	
	Sense	1.1552	0.589299	0.7152	0.434822	
GSE6740 HIV infect CD, acute	Anti-sense	1.6273	0.032892	1.0604	0.759368	
	Intragenic	3.4224	4.87E-05	1.3696	0.423472	
	Intergenic	1.2732	0.204212	0.7924	0.460108	
	All	0.9617	0.799527	0.8722	0.400549	
GSE9764 5-aza Human mesenchymal	Sense	0.9938	1	0.7829	0.264599	
stem cells	Anti-sense	0.984	1	1.0164	0.927034	
	Intragenic	2.2079	0.000298	1.4462	0.156837	
	Intergenic	0.8362	0.231131	0.8538	0.341195	
	All	0.787	0.033341	1.0495	0.562006	
CSE 41040 H2K0	Sense	0.8681	0.370229	0.9991	1	
primary fibroblasts	Anti-sense	0.6602	0.008097	1.162	0.144064	
	Intragenic	0.8124	0.485087	1.9861	6.45E-06	
ชูพ เถ	Intergenic	0.8063	0.073003	0.9555	0.633868	
LTR33 GHULAL						
	All	0.5788	0	0.9476	0.39222	
	Sense	0.6473	1.15E-06	0.9648	0.660431	
GSE13887 SLE T cells	Anti-sense	0.5932	0	1.0588	0.411931	
	Intragenic	0.6178	0.002659	1.5445	7.37E-05	
	Intergenic	0.6	0	0.9444	0.367537	
	All	0.7531	0.003186	0.9968	1	
	Sense	0.7278	0.008059	0.9848	0.899908	
GSE61635 SLE PBMC RNP+	Anti-sense	0.9095	0.419935	1.1664	0.05465	
	Intragenic	1.3428	0.076966	2.2835	0	
	Intergenic	0.7696	0.007561	0.928	0.318866	
	All	1.0141	0.84115	0.9353	0.354274	
	Sense	0.9959	1	0.9082	0.267219	
GSE52471 SLE/DLE, skin	Anti-sense	1.0884	0.274659	0.9667	0.718433	
	Intragenic	1.7442	1.46E-06	0.7864	0.127286	
	Intergenic	1.0199	0.785755	0.9609	0.600688	

GEO accession	horyList	Dov	Down DEG		Up DEG		
	nervList	OR	p-value	OR	p-value		
	All	0.7193	5.10E-06	1.1711	0.010493		
	Sense	0.7496	0.001251	1.0656	0.390045		
GSE10500 RA macophage cells	Anti-sense	0.7321	0.000331	1.3025	0.000149		
	Intragenic	0.7218	0.043088	1.676	2.74E-06		
	Intergenic	0.7445	6.20E-05	1.1479	0.028514		
	All	1.4185	0.000923	0.84	0.056759		
	Sense	1.3337	0.019228	0.8668	0.203045		
GSE13355 Psoriasis, skin	Anti-sense	1.5021	0.000604	0.8245	0.078636		
	Intragenic	2.5649	2.00E-08	0.722	0.12761		
	Intergenic	1.3879	0.002006	0.8738	0.149327		
	All	1.167	0.009112	0.853	0.010123		
	Sense	1.0426	0.565719	0.834	0.016757		
GSE14905 Psoriasis, skin	Anti-sense	1.3348	1.40E-05	0.8452	0.023709		
	Intragenic	2.0279	0	0.6744	0.004891		
	Intergenic	1.1387	0.030464	0.8761	0.036377		
	All	1.063	0.268151	0.9089	0.153149		
	Sense	1.0239	0.715307	0.8766	0.110724		
GSE52471 psoriasis, skin	Anti-sense	1.1269	0.060725	0.8774	0.102993		
	Intragenic	1.8729	0	0.6942	0.01516		
	Intergenic	1.0579	0.310849	0.9535	0.488124		
	All	1.1136	0.279978	0.8242	0.190319		
	Sense	1.1279	0.289802	0.847	0.364553		
GSE1299 Breast cancer cells	Anti-sense	1.1861	0.121627	0.8984	0.573273		
	Intragenic	1.8112	0.000328	1.091	0.677073		
161 19	Intergenic	1.065	0.516625	0.8721	0.362541		
	All	1.1645	0.204846	0.7976	0.000431		
	Sense	1.0459	0.772263	0.8011	0.005121		
GSE3167 Bladder carcinoma Situ	Anti-sense	1.2726	0.077565	0.8142	0.00712		
	Intragenic	2.4267	2.34E-06	0.3601	0		
	Intergenic	1.1301	0.325738	0.8492	0.012329		
	All	0.9736	0.696914	0.9407	0.457752		
GSE5764 Ductal and lobular breast	Sense	1.0124	0.876385	0.922	0.426029		
cancer	Anti-sense	1.0293	0.704636	1.0569	0.552916		
	Intragenic	1.6294	1.89E-05	1.105	0.478299		
	Intergenic	0.9325	0.306059	0.9508	0.551025		
	All	1.2119	0.008807	0.8679	0.039818		
	Sense	1.1261	0.178631	0.8365	0.035761		
GSE6919 Metastasis prostate cancer	Anti-sense	1.3024	0.001633	0.9338	0.408679		
	Intragenic	1.8298	2.30E-06	0.9538	0.785668		
	Intergenic	1.1958	0.016492	0.8923	0.107127		

GEO accession	horyI ist	Dow	vn DEG	Up DEG		
	IICI VLISI	OR	p-value	OR	p-value	
	All	1.0075	0.827404	0.6142	0	
	Sense	1.0312	0.445202	0.7043	8.17E-06	
GSE9750 cervical cancer	Anti-sense	1.0662	0.099951	0.6036	0	
	Intragenic	1.4915	0	0.4816	1.30E-06	
	Intergenic	0.9946	0.877992	0.6349	0	
	All	0.8917	0.015501	0.6966	3.90E-07	
GSE13911 Microsatellite instable	Sense	0.8839	0.031838	0.676	1.06E-05	
gastric cancer	Anti-sense	0.9856	0.806834	0.7835	0.003742	
	Intragenic	1.5809	6.00E-08	0.7342	0.046528	
	Intergenic	0.8606	0.001926	0.7138	3.48E-06	
	All	0.8854	0.17117	0.9846	0.887743	
GSE9764 5-aza Human mesenchymal	Sense	0.9315	0.538691	1.1031	0.366957	
stem cells	Anti-sense	0.999	1	0.9164	0.4747	
	Intragenic	1.7753	8.97E-05	1.4892	0.017116	
	Intergenic	0.8284	0.036824	0.9475	0.598481	
	All	0.8033	0.010604	0.796	0.020196	
	Sense	0.7839	0.023082	0.8533	0.191701	
GSE22859 H3K4me2, HeLa	Anti-sense	0.9147	0.386723	0.9205	0.506452	
	Intragenic	1.6586	0.00044	1.3561	0.08387	
	Intergenic	0.7681	0.002543	0.8443	0.091549	
	All	0.7016	1.38E-06	0.8248	0.000747	
CSE41040 U2K0mo2	Sense	0.8371	0.044654	0.8756	0.057115	
primary fibroblasts	Anti-sense	0.6967	4.43E-05	0.9481	0.435065	
อหาอ	Intragenic	0.7605	0.090378	1.8866	0	
8 H 101	Intergenic	0.7036	2.66E-06	0.7888	5.04E-05	
LTR52						
	All	0.5389	0.034318	1.2284	0.178167	
	Sense	0.4592	0.084173	1.1859	0.406151	
GSE61635 SLE PBMC RNP+	Anti-sense	0.5815	0.180523	1.2688	0.257472	
	Intragenic	0.8691	1	3.442	1.12E-05	
	Intergenic	0.5466	0.047286	0.9852	1	
	All	1.3771	0.151546	1.4936	0.032182	
GSE13355 Provincia skin	Sense	1.4587	0.198488	0.7734	0.547764	
05E15555 F 80Ha818, 8KIII	Anti-sense	1.3087	0.378401	2.1262	0.000796	
	Intragenic	2.5009	0.038427	1.3564	0.427121	
	Intergenic	0.5466	0.047286	0.9852	1	

MLT1D					
	All	0.6251	0	0.5544	0
	Sense	0.7361	5.70E-05	0.6886	2.40E-07
GSE4588 SLE CD4 CELLS	Anti-sense	0.6926	1.28E-06	0.7043	8.50E-07
	Intragenic	1.5068	4.75E-05	1.0556	0.602307
	Intergenic	0.6351	0	0.5612	0
	All	0.5382	0	0.7972	0.000106
	Sense	0.6462	0	0.929	0.223066
GSE13887 SLE T cells	Anti-sense	0.5835	0	0.9452	0.345224
	Intragenic	0.575	1.50E-06	1.6388	0
	Intergenic	0.5734	0	0.7905	5.11E-05
	All	0.7067	8.00E-05	0.5806	0
	Sense	0.8561	0.097383	0.7262	5.77E-06
GSE61635 SLE PBMC RNP+	Anti-sense	0.6927	7.33E-05	0.784	0.000437
	Intragenic	1.3504	0.015155	1.8107	0
	Intergenic	0.7042	6.30E-05	0.582	0
	All	0.8884	0.067435	0.7975	0.000538
	Sense	0.9355	0.313984	0.8013	0.001203
GSE52471 SLE/DLE, skin	Anti-sense	1.0781	0.245613	0.8924	0.091203
	Intragenic	1.4915	7.98E-06	0.877	0.228007
4	Intergenic	0.874	0.035636	0.8238	0.002927
	All	0.6872	0	0.768	6.47E-05
	Sense	0.733	3.00E-06	0.7948	0.000955
GSE4588 RA B CELLS	Anti-sense	0.9039	0.125289	0.8803	0.061172
	Intragenic	1.4217	8.42E-05	1.1882	0.075823
3 18 1 8	Intergenic	0.6946	1.00E-08	0.7958	0.000526
	All	0.7511	1.39E-05	0.9982	0.976111
	Sense	0.7924	0.0007	0.9981	1
GSE10500 RA macophage cells	Anti-sense	0.8806	0.062151	1.0937	0.139932
	Intragenic	1.0295	0.761934	1.3521	0.000426
	Intergenic	0.7688	5.99E-05	0.9928	0.905399
	All	1.0157	0.917126	0.8286	0.026867
	Sense	1.1632	0.154589	0.7715	0.003844
GSE13355 Psoriasis, skin	Anti-sense	1.1245	0.27178	0.9873	0.897926
	Intragenic	1.8159	1.54E-05	0.7753	0.079562
	Intergenic	0.9884	0.917816	0.8677	0.091425
	All	0.8796	0.024826	0.6957	0
	Sense	0.9151	0.137179	0.756	3.76E-06
GSE14905 Psoriasis, skin	Anti-sense	0.993	0.930837	0.7801	3.30E-05
	Intragenic	1.6377	0	0.8593	0.110741
	Intergenic	0.8643	0.011036	0.7123	0

OR p-value OR p-value G8E52471 psoriasis, skin All 0.8582 0.003758 0.8484 0.008041 Sense 0.8908 0.035673 0.8463 0.009609 Anti-sense 1.034 0.538712 0.9684 0.616162 Intragenic 1.5304 1.00E-08 0.7852 0.019755 Intergenic 0.8386 0.000806 0.8966 0.07792 GSE12453 Diffuse Large B cells All 0.6346 7.96E-05 0.5924 0 Sense 0.6755 0.001533 0.6348 0 0 0.07792 GSE12453 Diffuse Large B cells Anti-sense 0.7797 0.041782 0.6773 0 Intragenic 1.8252 9.09E-05 0.4857 0 0 1 GSE3167 Bladder carcinoma Situ All 0.9647 0.772034 0.6654 0 GSE5764 Ductal and lobular breast cancer All 0.7293 3.00E-07 0.7482 0.007125 GSE5764 Ductal and lobular breast cancer	GEO accession	hervList Dow		vn DEG	Up DEG	
All 0.8582 0.003758 0.8484 0.008041 Sense 0.8908 0.035673 0.8463 0.009609 Anti-sense 1.034 0.538712 0.9684 0.616162 Intragenic 1.5304 1.00E-08 0.7852 0.019755 Intergenic 0.8386 0.000806 0.8966 0.07792 GSE12453 Diffuse Large B cells All 0.6346 7.96E-05 0.5924 0 Sense 0.6755 0.001533 0.6348 0 Jymphoma vs naive B cells Anti-sense 0.7797 0.041782 0.6773 0 Intragenic 1.8252 9.09E-05 0.4857 0 Intragenic 1.8252 9.09E-05 0.4857 0 GSE3167 Bladder carcinoma Situ All 0.9647 0.77234 0.6654 0 GSE5764 Ductal and lobular breast All 0.9603 0.730288 0.6945 0 GSE5764 Ductal and lobular breast Sense 0.8942 0.079233 0.8632 0.059101 <td>ner vEist</td> <td>OR</td> <td>p-value</td> <td>OR</td> <td>p-value</td>		ner vEist	OR	p-value	OR	p-value
GSE52471 psoriasis, skin Sense 0.8908 0.035673 0.8463 0.009609 GSE52471 psoriasis, skin Anti-sense 1.034 0.538712 0.9684 0.616162 Intragenic 1.5304 1.00E-08 0.7852 0.019755 Intergenic 0.8386 0.000806 0.8966 0.07792 GSE12453 Diffuse Large B cells All 0.6346 7.96E-05 0.5924 0 Sense 0.6775 0.001533 0.6348 0 Anti-sense 0.7797 0.041782 0.6773 0 Intragenic 1.8252 9.09E-05 0.4857 0 Intergenic 0.6169 2.62E-05 0.6285 0 GSE3167 Bladder carcinoma Situ All 0.9647 0.772034 0.6654 0 Sense 0.9555 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 GSE5764 Ducta	GSE52471 psoriasis, skin	All	0.8582	0.003758	0.8484	0.008041
GSE52471 psoriasis, skin Anti-sense 1.034 0.538712 0.9684 0.616162 Intragenic 1.5304 1.00E-08 0.7852 0.019755 Intergenic 0.8386 0.000806 0.8966 0.07792 GSE12453 Diffuse Large B cells All 0.6346 7.96E-05 0.5924 0 Sense 0.6755 0.001533 0.6348 0 Mati-sense 0.7797 0.041782 0.6773 0 Intragenic 1.8252 9.09E-05 0.4857 0 Intergenic 0.6169 2.62E-05 0.6285 0 GSE3167 Bladder carcinoma Situ All 0.9647 0.772034 0.6654 0 Sense 0.9555 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 GSE5764 Ductal and lobular breast Sense 0.8393 0.06605 0.8748 0.087126 Cance		Sense	0.8908	0.035673	0.8463	0.009609
Intragenic 1.5304 1.00E-08 0.7852 0.019755 Intergenic 0.8386 0.000806 0.8966 0.07792 GSE12453 Diffuse Large B cells Lymphoma vs naive B cells All 0.6346 7.96E-05 0.5924 0 Anti-sense 0.6755 0.001533 0.6348 0 Intragenic 1.8252 9.09E-05 0.4857 0 Intergenic 0.6169 2.62E-05 0.6285 0 GSE3167 Bladder carcinoma Situ All 0.9647 0.772034 0.6654 0 Sense 0.9555 0.724828 0.7095 5.00E-08 0.8147 0 GSE3167 Bladder carcinoma Situ All 0.9655 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 0 Intragenic 1.802 0.000126 0.4347 0 GSE55764 Ductal and lobular breast Sense 0.8933 0.006605 0.8748 0.087126 Garcer All 0.729		Anti-sense	1.034	0.538712	0.9684	0.616162
Intergenic 0.8386 0.000806 0.8966 0.07792 GSE12453 Diffuse Large B cells Lymphoma vs naive B cells All 0.6346 7.96E-05 0.5924 0 Anti-sense 0.7797 0.041782 0.6773 0 Intragenic 1.8252 9.09E-05 0.4857 0 Intergenic 0.6169 2.62E-05 0.66285 0 GSE3167 Bladder carcinoma Situ All 0.9647 0.772034 0.6654 0 Sense 0.9555 0.724828 0.7095 5.00E-08 0 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 Intergenic 0.9603 0.730288 0.6945 0 GSE55764 Ductal and lobular breast cancer Sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 <tr< td=""><td>Intragenic</td><td>1.5304</td><td>1.00E-08</td><td>0.7852</td><td>0.019755</td></tr<>		Intragenic	1.5304	1.00E-08	0.7852	0.019755
All 0.6346 7.96E-05 0.5924 0 GSE12453 Diffuse Large B cells Lymphoma vs naive B cells Sense 0.6755 0.001533 0.6348 0 Anti-sense 0.7797 0.041782 0.6773 0 Intragenic 1.8252 9.09E-05 0.4857 0 Intragenic 0.6169 2.62E-05 0.6285 0 All 0.9647 0.772034 0.6654 0 Sense 0.9555 0.724828 0.7095 5.00E-08 All 0.9647 0.772034 0.6654 0 Sense 0.9555 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 GSE5764 Ductal and lobular breast Sense 0.8393 0.006605 0.8748 0.087126 Cancer All 0.7233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 </td <td>Intergenic</td> <td>0.8386</td> <td>0.000806</td> <td>0.8966</td> <td>0.07792</td>		Intergenic	0.8386	0.000806	0.8966	0.07792
GSE12453 Diffuse Large B cells Lymphoma vs naive B cells Sense 0.6755 0.001533 0.6348 0 Anti-sense 0.7797 0.041782 0.6773 0 Intragenic 1.8252 9.09E-05 0.4857 0 Intergenic 0.6169 2.62E-05 0.6285 0 GSE3167 Bladder carcinoma Situ All 0.9655 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 1 Intragenic 1.802 0.000126 0.4347 0 GSE5764 Ductal and lobular breast cancer All 0.7293 3.00E-07 0.778 0.000725 Sense 0.8942 0.079233 0.8632 0.059101 1 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 GSE5816 Lung Adenocarcinoma All 0.65 0 0.8063 0.01141 Sense 0.7683 0 0.9054 0.142357	GSE12453 Diffuse Large B cells Lymphoma vs naive B cells	All	0.6346	7.96E-05	0.5924	0
Anti-sense 0.7797 0.041782 0.6773 0 Lymphoma vs naive B cells Intragenic 1.8252 9.09E-05 0.4857 0 Intragenic 0.6169 2.62E-05 0.6285 0 All 0.9647 0.772034 0.6654 0 Sense 0.9555 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 Intergenic 0.9603 0.730288 0.6945 0 GSE5764 Ductal and lobular breast Sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.32		Sense	0.6755	0.001533	0.6348	0
Intragenic 1.8252 9.09E-05 0.4857 0 Intergenic 0.6169 2.62E-05 0.6285 0 All 0.9647 0.772034 0.6654 0 GSE3167 Bladder carcinoma Situ All 0.9555 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 Intergenic 0.9603 0.730288 0.6945 0 GSE5764 Ductal and lobular breast Sense 0.8393 0.006605 0.8748 0.087126 Cancer Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense <td< td=""><td>Anti-sense</td><td>0.7797</td><td>0.041782</td><td>0.6773</td><td>0</td></td<>		Anti-sense	0.7797	0.041782	0.6773	0
Intergenic 0.6169 2.62E-05 0.6285 0 All 0.9647 0.772034 0.6654 0 GSE3167 Bladder carcinoma Situ Anti-sense 0.9555 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 Intergenic 0.9603 0.730288 0.6945 0 All 0.7293 3.00E-07 0.778 0.000725 GSE5764 Ductal and lobular breast Sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763		Intragenic	1.8252	9.09E-05	0.4857	0
All 0.9647 0.772034 0.6654 0 GSE3167 Bladder carcinoma Situ Sense 0.9555 0.724828 0.7095 5.00E-08 Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 Intergenic 0.9603 0.730288 0.6945 0 GSE5764 Ductal and lobular breast cancer Sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		Intergenic	0.6169	2.62E-05	0.6285	0
Sense 0.9555 0.724828 0.7095 5.00E-08 GSE3167 Bladder carcinoma Situ Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 Intergenic 0.9603 0.730288 0.6945 0 GSE5764 Ductal and lobular breast All 0.7293 3.00E-07 0.778 0.000725 GSE5764 Ductal and lobular breast Sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		All	0.9647	0.772034	0.6654	0
GSE3167 Bladder carcinoma Situ Anti-sense 1.1424 0.267964 0.7497 3.08E-06 Intragenic 1.802 0.000126 0.4347 0 Intergenic 0.9603 0.730288 0.6945 0 All 0.7293 3.00E-07 0.778 0.000725 GSE5764 Ductal and lobular breast Sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.01141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		Sense	0.9555	0.724828	0.7095	5.00E-08
Intragenic 1.802 0.000126 0.4347 0 Intergenic 0.9603 0.730288 0.6945 0 GSE5764 Ductal and lobular breast cancer All 0.7293 3.00E-07 0.778 0.000725 Mati-sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357	GSE3167 Bladder carcinoma Situ	Anti-sense	1.1424	0.267964	0.7497	3.08E-06
Intergenic 0.9603 0.730288 0.6945 0 GSE5764 Ductal and lobular breast cancer All 0.7293 3.00E-07 0.778 0.000725 Mati-sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		Intragenic	1.802	0.000126	0.4347	0
All 0.7293 3.00E-07 0.778 0.000725 GSE5764 Ductal and lobular breast cancer Sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		Intergenic	0.9603	0.730288	0.6945	0
GSE5764 Ductal and lobular breast cancer Sense 0.8393 0.006605 0.8748 0.087126 Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		All	0.7293	3.00E-07	0.778	0.000725
cancer Anti-sense 0.8942 0.079233 0.8632 0.059101 Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357	GSE5764 Ductal and lobular breast	Sense	0.8393	0.006605	0.8748	0.087126
Intragenic 1.4571 1.46E-05 1.3294 0.007122 Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357	cancer	Anti-sense	0.8942	0.079233	0.8632	0.059101
Intergenic 0.7482 2.50E-06 0.7991 0.002543 All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		Intragenic	1.4571	1.46E-05	1.3294	0.007122
All 0.65 0 0.8063 0.001141 Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357	j	Intergenic	0.7482	2.50E-06	0.7991	0.002543
Sense 0.7683 0 0.9338 0.329899 GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		All	0.65	0	0.8063	0.001141
GSE5816 Lung Adenocarcinoma Anti-sense 0.763 0 0.9054 0.142357		Sense	0.7683	0	0.9338	0.329899
	GSE5816 Lung Adenocarcinoma	Anti-sense	0.763	0	0.9054	0.142357
Intragenic 1.1993 0.000715 1.6143 1.30E-07		Intragenic	1.1993	0.000715	1.6143	1.30E-07
Intergenic 0.6594 0 0.7738 8.88E-05		Intergenic	0.6594	0	0.7738	8.88E-05
All 1.041 0.590095 0.8276 0.00322		All	1.041	0.590095	0.8276	0.00322
Sense 1.0119 0.884289 0.7713 0.000123		Sense	1.0119	0.884289	0.7713	0.000123
GSE6919 Metastasis prostate cancer Anti-sense 1.0835 0.263031 1.0201 0.769649	GSE6919 Metastasis prostate cancer	Anti-sense	1.0835	0.263031	1.0201	0.769649
Intragenic 1.4149 0.000546 1.111 0.277505		Intragenic	1.4149	0.000546	1.111	0.277505
Intergenic 1.0738 0.335873 0.8229 0.002279		Intergenic	1.0738	0.335873	0.8229	0.002279
All 0.8175 0 0.7269 3.00E-08	GSE9750 cervical cancer	All	0.8175	0	0.7269	3.00E-08
Sense 0.9055 0.002546 0.7338 3.50E-07		Sense	0.9055	0.002546	0.7338	3.50E-07
GSE9750 cervical cancer Anti-sense 0.9371 0.0464 0.8468 0.005085		Anti-sense	0.9371	0.0464	0.8468	0.005085
Intragenic 1.4869 0 0.7107 0.000465		Intragenic	1.4869	0	0.7107	0.000465
Intergenic 0.8256 0 0.7567 1.11E-06		Intergenic	0.8256	0	0.7567	1.11E-06
All 0.6558 0 0.6507 0		All	0.6558	0	0.6507	0
GSE13911 Microsatellite i nstable Sense 0.7866 2.10E-07 0.7039 3.40E-07	GSE13911 Microsatellite i nstable	Sense	0.7866	2.10E-07	0.7039	3.40E-07
gastric cancer Anti-sense 0.8125 5.59E-06 0.7138 6.90E-07	gastric cancer	Anti-sense	0.8125	5.59E-06	0.7138	6.90E-07
Intragenic 1.4879 0 0.8014 0.041173		Intragenic	1.4879	0	0.8014	0.041173
Intergenic 0.6706 0 0.6677 0		Intergenic	0.6706	0	0.6677	0

GEO accession	hervList D		Down DEG		Up DEG	
	nor vEist	OR	p-value	OR	p-value	
GSE6740 HIV infected CD4, chronic	All	1.1511	0.467167	0.6236	0.000319	
	Sense	1.4127	0.064342	0.5782	0.000153	
	Anti-sense	1.2402	0.234641	0.9928	1	
	Intragenic	2.4799	6.44E-05	1.1321	0.542474	
	Intergenic	1.0762	0.71817	0.6118	0.000208	
GSE6740 HIV infected cd8acute	All	1.0507	0.56373	0.6607	5.54E-06	
	Sense	1.0779	0.380205	0.7037	0.000306	
	Anti-sense	1.0797	0.361499	0.7812	0.010477	
	Intragenic	1.5386	0.000151	1.0595	0.672164	
	Intergenic	1.0372	0.682347	0.6736	1.53E-05	
	All	0.7757	0.001791	0.6591	3.01E-06	
GSE9764 5-aza Human mesenchymal	Sense	0.872	0.113916	0.6778	5.33E-05	
stem cells	Anti-sense	0.9521	0.563501	0.8982	0.255736	
	Intragenic	1.6851	2.34E-06	1.4907	0.001457	
	Intergenic	0.7642	0.000954	0.6329	2.90E-07	
	All	0.6533	0.005627	0.6999	0.002476	
	Sense	0.5703	0.000805	0.8338	0.149986	
GSE59695 H3K4me1, HepG2	Anti-sense	0.8639	0.396453	0.8413	0.170756	
	Intragenic	1.786	0.004612	1.7042	0.00077	
	Intergenic	0.6019	0.000795	0.7141	0.00396	
	All	0.6551	0	0.6739	0	
CSE41040 U2K0mo2	Sense	0.7023	5.70E-07	0.759	7.00E-07	
primary fibroblasts	Anti-sense	0.7889	0.000582	0.832	0.000771	
านการ	Intragenic	1.1246	0.239605	1.5402	1.00E-08	
จุพาล	Intergenic	0.649	0	0.6671	0	
MI T2B3						
	All	1.0079	0.945104	1.1858	0.084327	
	Sense	0.8136	0.346161	1.0157	0.88592	
GSE61635 SLE PBMC RNP+	Anti-sense	1.2233	0.211426	1.2651	0.066404	
	Intragenic	1.3211	0.31275	2.3812	8.61E-06	
	Intergenic	1.0364	0.774395	1.0956	0.383253	
GSE9750 cervical cancer	All	1.0237	0.633888	0.6845	0.000172	
	Sense	1.0123	0.863515	0.6976	0.010944	
	Anti-sense	1.0541	0.416181	0.6377	0.000998	
	Intragenic	1.6021	2.23E-05	0.3503	0.000854	
	Intergenic	0.9971	0.979169	0.7374	0.003485	
	All	1.1855	0.498438	1.0611	0.796546	
	Sense	1.3135	0.355953	1.0569	0.858927	
GSE6740 HIV infected cd8 non-pregressive	Anti-sense	1.2833	0.381855	1.0423	0.866794	
	Intragenic	4.579	0.000134	1.1621	0.74662	
	Intergenic	0.9888	1	1.0305	0.89313	

GEO accession	hervI ist	Down DEG		Up DEG	
	nei vEist	OR	p-value	OR	p-value
MSTD					
GSE13887 SLE T cells	All	0.6884	3.40E-07	0.9926	0.925094
	Sense	0.7589	0.002699	0.9674	0.698192
	Anti-sense	0.6705	1.14E-05	1.0533	0.477425
	Intragenic	0.6178	0.002659	1.6122	1.07E-05
	Intergenic	0.7101	5.37E-06	0.9925	0.923225
GSE61635 SLE PBMC RNP+	All	0.7506	0.003933	0.9066	0.184234
	Sense	0.7713	0.040789	0.8679	0.131087
	Anti-sense	0.8152	0.090998	1.0344	0.699864
	Intragenic	1.1635	0.40185	1.7424	5.22E-06
	Intergenic	0.74	0.003623	0.8486	0.032749
	All	0.7617	0.000231	1.1879	0.005926
	Sense	0.801	0.018015	1.0401	0.606869
GSE10500 RA macophage cells	Anti-sense	0.7268	0.000454	1.3239	0.000113
	Intragenic	0.7034	0.030536	1.4477	0.001039
	Intergenic	0.7954	0.002592	1.1205	0.076597
/ /	All	1.4036	0.001511	0.9534	0.617397
	Sense	1.3361	0.023196	0.8914	0.339489
GSE13355 Psoriasis, skin	Anti-sense	1.409	0.005287	0.9988	1
	Intragenic	2.2202	4.77E-06	0.6006	0.019653
	Intergenic	1.2745	0.030159	1.006	0.96284
1 Alexandre	All	1.1545	0.017922	0.8014	0.000569
	Sense	1.1843	0.02036	0.8683	0.083918
GSE14905 Psoriasis, skin	Anti-sense	1.1947	0.012591	0.778	0.001441
	Intragenic	1.82	1.00E-08	0.6051	0.00048
	Intergenic	1.1121	0.08883	0.8369	0.006839
GSE52471 psoriasis, skin	All	1.011	0.842488	0.9673	0.641128
	Sense	0.9816	0.83302	0.9085	0.26618
	Anti-sense	1.0674	0.325912	0.9971	1
	Intragenic	1.6124	1.36E-06	0.8255	0.189948
	Intergenic	0.9853	0.815895	0.9996	1
GSE12453 Diffuse Large B cells Lymphoma vs naive B cells	All	1.0714	0.578657	0.7483	0
	Sense	1.0247	0.878534	0.7363	1.90E-07
	Anti-sense	1.1116	0.461325	0.7693	2.92E-06
	Intragenic	1.9287	0.000923	0.531	0
	Intergenic	1.0213	0.849682	0.7882	4.60E-07
	All	1.2159	0.107336	0.9312	0.277678
	Sense	1.0328	0.81826	0.8871	0.154769
GSE3167 Bladder carcinoma Situ	Anti-sense	1.3841	0.017929	0.9379	0.423772
	Intragenic	1.9427	0.000865	0.7503	0.044021
	Intergenic	1.1669	0.227536	0.9561	0.512704

GEO accession	FO accession hervList		Down DEG		Up DEG	
	nor vEist	OR	p-value	OR	p-value	
GSE5764 Ductal and lobular breast cancer	All	0.998	1	0.9073	0.245035	
	Sense	1.0019	0.96715	0.8644	0.165118	
	Anti-sense	1.0936	0.249292	0.9798	0.885887	
	Intragenic	1.8442	4.00E-08	1.0546	0.693529	
	Intergenic	0.9582	0.561721	0.9195	0.324232	
GSE5816 Lung Adenocarcinoma	All	0.8113	1.50E-07	0.9525	0.523639	
	Sense	0.8458	0.000764	0.981	0.860836	
	Anti-sense	0.8618	0.001896	0.957	0.641937	
	Intragenic	1.2634	0.001311	1.5385	0.000467	
	Intergenic	0.794	2.00E-08	0.93	0.344973	
	All	0.9826	0.617894	0.7364	2.39E-06	
	Sense	0.9548	0.287256	0.6834	5.79E-06	
GSE9750 cervical cancer	Anti-sense	1.0322	0.435496	0.7857	0.002131	
	Intragenic	1.4422	1.00E-08	0.6173	0.000765	
	Intergenic	0.9688	0.377944	0.7734	0.000105	
	All	0.7646	6.00E-08	0.8012	0.002147	
GSE13911 Microsatellite i nstable	Sense	0.8061	0.000545	0.7998	0.015631	
gastric cancer	Anti-sense	0.8676	0.016718	0.8259	0.03046	
	Intragenic	1.4707	6.15E-06	0.7163	0.033224	
	Intergenic	0.7293	0	0.8311	0.012355	
	All	0.8592	0.095628	0.9723	0.809207	
GSE9764 5-aza Human mesenchymal stem cells	Sense	0.884	0.3023	1.0076	0.952336	
	Anti-sense	1.043	0.675569	0.8994	0.41961	
	Intragenic	1.6429	0.00096	0.895	0.635279	
	Intergenic	0.8335	0.053146	1.0271	0.804472	
	All	0.7534	0.000167	0.9005	0.071931	
GSE41040 H3K9me3 primary fibroblasts	Sense	0.7037	0.000276	0.983	0.832064	
	Anti-sense	0.8634	0.104462	0.9138	0.207189	
	Intragenic	0.954	0.832456	1.4674	0.000158	
	Intergenic	0.7566	0.000317	0.8628	0.015025	
THE1A						
GSE61635 SLE PBMC RNP+	All	0.8296	0.256099	0.9937	1	
	Sense	0.7756	0.28022	0.8451	0.331968	
	Anti-sense	0.8719	0.579061	1.1826	0.206243	
	Intragenic	1.0833	0.76731	2.4455	1.50E-07	
	Intergenic	0.7606	0.11465	0.776	0.045783	
	All	1.1072	0.248873	0.718	0.001289	
	Sense	0.9544	0.798302	0.6704	0.00673	
GSE14905 Psoriasis, skin	Anti-sense	1.248	0.047357	0.7326	0.024616	
	Intragenic	2.3026	3.00E-08	0.5411	0.011661	
	Intergenic	0.9692	0.807162	0.7753	0.01795	

GEO accession	accession hervList		Down DEG		Up DEG	
	nervEist	OR	p-value	OR	p-value	
GSE5764 Ductal and lobular breast cancer	All	1.1285	0.211289	0.8542	0.229043	
	Sense	0.787	0.127703	0.8341	0.359198	
	Anti-sense	1.4717	0.000881	0.9395	0.754261	
	Intragenic	1.6835	0.003402	1.3265	0.209454	
	Intergenic	1.0729	0.491749	0.859	0.279318	
GSE6919 Metastasis prostate cancer	All	1.1943	0.106487	0.8457	0.132531	
	Sense	0.9813	1	0.7567	0.084888	
	Anti-sense	1.3313	0.035557	0.9382	0.685639	
	Intragenic	1.9934	0.000297	1.099	0.591126	
	Intergenic	1.0536	0.669517	0.8364	0.138118	
	All	0.9822	0.756674	0.5833	5.80E-07	
	Sense	0.9234	0.283911	0.5154	2.63E-05	
GSE9750 cervical cancer	Anti-sense	1.0333	0.614252	0.6208	0.000682	
	Intragenic	1.6977	4.00E-08	0.6457	0.065709	
	Intergenic	0.9013	0.06718	0.6039	8.87E-06	
	All	0.9426	0.430778	0.7283	0.006425	
GSE13911 Microsatellite i nstable	Sense	0.9371	0.552002	0.8322	0.276744	
gastric cancer	Anti-sense	0.9947	1	0.6523	0.007709	
	Intragenic	1.6529	0.000102	0.564	0.038409	
	Intergenic	0.9026	0.197625	0.7714	0.035169	
THE1B						
GSE4588 SLE CD4 CELLS	All	0.8864	0.098368	0.7324	6.05E-06	
	Sense	1.0489	0.552182	0.8239	0.012682	
	Anti-sense	0.8792	0.111602	0.8218	0.009716	
	Intragenic	1.5224	9.42E-05	1.2344	0.049074	
	Intergenic	0.8348	0.014041	0.7347	8.80E-06	
GSE13887 SLE T cells	All	0.5689	0	0.9826	0.772239	
	Sense	0.6812	3.60E-07	1.0158	0.798441	
	Anti-sense	0.5476	0	1.1066	0.103997	
	Intragenic	0.5664	5.51E-06	1.6812	0	
	Intergenic	0.5782	0	0.9687	0.600523	
GSE61635 SLE PBMC RNP+	All	0.7092	0.00012	0.9957	0.973555	
	Sense	0.6879	0.000299	1.1232	0.107578	
	Anti-sense	0.8326	0.066064	1.1308	0.085656	
	Intragenic	1.3613	0.019896	2.235	0	
	Intergenic	0.6807	2.03E-05	1.0068	0.920416	
GSE52471 SLE/DLE, skin	All	0.8819	0.049751	0.8346	0.00631	
	Sense	0.9843	0.834188	0.8896	0.114742	
	Anti-sense	0.9904	0.918354	0.833	0.011519	
	Intragenic	1.7463	0	0.7492	0.017044	
	Intergenic	0.8233	0.002514	0.849	0.014267	
GEO accession	hervListI		own DEG	Up DEG		
---	------------	--------	----------	--------	----------	
	ner vEist	OR	p-value	OR	p-value	
	All	0.829	0.003213	0.8418	0.009535	
	Sense	0.9691	0.678377	1.0116	0.88492	
GSE4588 RA B CELLS	Anti-sense	0.9248	0.264299	0.8116	0.004577	
	Intragenic	1.4512	8.73E-05	1.2563	0.02503	
	Intergenic	0.8279	0.003072	0.8436	0.011113	
	All	0.5884	0	1.0878	0.156091	
	Sense	0.6763	3.50E-07	1.1793	0.009988	
GSE10500 RA macophage cells	Anti-sense	0.5551	0	1.1303	0.05159	
	Intragenic	0.5847	2.59E-05	1.5447	9.90E-07	
	Intergenic	0.5962	0	1.0607	0.327081	
	All	1.3535	0.003386	0.782	0.004272	
	Sense	1.4389	0.00081	0.8945	0.247279	
GSE13355 Psoriasis, skin	Anti-sense	1.4148	0.001268	0.7822	0.009732	
	Intragenic	2.2856	0	0.6447	0.006335	
	Intergenic	1.2748	0.02012	0.8075	0.012794	
	All	1.206	0.000986	0.6869	0	
	Sense	1.1984	0.003231	0.7633	4.46E-05	
GSE14905 Psoriasis, skin	Anti-sense	1.3058	7.49E-06	0.6721	0	
	Intragenic	2.1892	0	0.6319	2.52E-05	
	Intergenic	1.1696	0.006152	0.6956	0	
	All	0.9803	0.713543	0.7866	0.000119	
	Sense	1.0706	0.235602	0.8317	0.00897	
GSE52471 psoriasis, skin	Anti-sense	1.0884	0.133354	0.8028	0.001424	
	Intragenic	1.9241	0	0.5924	9.94E-06	
	Intergenic	0.9367	0.225354	0.8164	0.001298	
	All	1.0752	0.351061	0.5596	0	
GSF12453 Diffuse Large B cells	Sense	1.0522	0.548372	0.6775	7.04E-06	
Lymphoma vs centroblasts	Anti-sense	1.1024	0.239905	0.5525	0	
	Intragenic	1.5772	7.33E-05	0.3596	0	
	Intergenic	1.0387	0.639226	0.5919	0	
	All	1.2187	0.039516	0.481	0	
GSE12453 Diffuse Large B cells Lymphoma vs centrocytes	Sense	1.109	0.315989	0.5889	0	
	Anti-sense	1.2256	0.043761	0.4926	0	
	Intragenic	1.9157	1.96E-06	0.2688	0	
	Intergenic	1.172	0.10183	0.5093	0	
	All	0.9114	0.425341	0.512	0	
GSE12453 Diffuse Large B cells	Sense	1.1229	0.34585	0.5817	0	
Lymphoma vs naive B cells	Anti-sense	0.9354	0.622633	0.5329	0	
	Intragenic	2.1282	1.45E-06	0.3978	0	
	Intergenic	0.8681	0.229236	0.5358	0	

GEO accession	heryList	Down DEG		Up DEG	
	nei vList	OR	p-value	OR	p-value
	All	1.1306	0.192859	0.7909	0.078136
	Sense	1.1171	0.281229	0.9179	0.614178
GSE1299 Breast cancer cells	Anti-sense	1.1971	0.070455	0.7227	0.034153
	Intragenic	2.0155	7.00E-08	1.1123	0.586428
	Intergenic	1.0766	0.427288	0.7973	0.100706
	All	1.213	0.097089	0.6311	0
	Sense	1.0333	0.800839	0.6507	0
GSE3167 Bladder carcinoma Situ	Anti-sense	1.3422	0.013466	0.6424	0
	Intragenic	1.9214	5.18E-05	0.3803	0
	Intergenic	1.114	0.35793	0.6692	0
	All	0.8731	0.028991	0.9993	1
GSE5764 Ductal and lobular breast	Sense	1.0394	0.564262	1.0161	0.838279
cancer	Anti-sense	0.9194	0.219259	0.9677	0.718991
	Intragenic	1.6357	6.00E-08	1.1088	0.387551
	Intergenic	0.8692	0.026028	0.9934	0.940704
	All	0.7209	0	1.0088	0.895908
	Sense	0.8022	6.00E-08	0.9628	0.613521
GSE5816 Lung Adenocarcinoma	Anti-sense	0.7973	1.00E-08	1.1273	0.089805
	Intragenic	1.2732	2.17E-05	1.6047	1.09E-06
	Intergenic	0.72	0	1.0051	0.947572
	All	0.981	0.804102	0.9236	0.225031
	Sense	1.0377	0.639019	0.8906	0.112987
GSE6919 Metastasis prostate cancer	Anti-sense	1.1031	0.193314	0.889	0.09797
	Intragenic	1.7448	6.00E-08	1.0025	0.957604
	Intergenic	0.9591	0.568899	0.924	0.222915
	All	0.9769	0.464907	0.5202	0
	Sense	1.0819	0.023773	0.4963	0
GSE9750 cervical cancer	Anti-sense	1.0272	0.430084	0.5962	0
	Intragenic	1.5939	0	0.5653	3.00E-07
	Intergenic	0.9686	0.322228	0.5207	0
	All	0.8318	3.39E-05	0.6263	0
GSE13911 Microsatellite i nstable gastric cancer	Sense	0.947	0.273889	0.6742	2.00E-07
	Anti-sense	0.9336	0.160171	0.712	3.61E-06
	Intragenic	1.6002	0	0.7013	0.003126
	Intergenic	0.8138	4.46E-06	0.6492	0
	All	0.92	0.311386	0.7843	0.00741
GSE9764 5-aza Human mesenchymal	Sense	1.0463	0.623056	0.8407	0.094268
stem cells	Anti-sense	1.0309	0.726499	0.914	0.385911
	Intragenic	1.7888	6.80E-07	1.1303	0.372789
	Intergenic	0.9002	0.207008	0.8163	0.027953

GEO accession	hervI ist	hervList Dov		Up DEG	
	ner vEist	OR	p-value	OR	p-value
	All	0.7756	0.000161	0.7936	1.49E-05
CSE41040 U2K0	Sense	0.7527	0.000225	0.8931	0.058494
primary fibroblasts	Anti-sense	0.831	0.012401	0.9208	0.162625
	Intragenic	0.8967	0.377848	1.7067	0
	Intergenic	0.757	4.26E-05	0.7824	5.01E-06
THE1C					
	All	0.7138	5.62E-06	0.9539	0.48393
	Sense	0.8156	0.02737	0.9596	0.638471
GSE13887 SLE T cells	Anti-sense	0.6709	2.04E-05	1.0699	0.375858
	Intragenic	0.8283	0.220196	1.8179	2.00E-08
	Intergenic	0.7403	8.33E-05	0.9432	0.396038
	All	0.8931	0.270087	0.9941	0.970935
	Sense	0.8589	0.238013	0.9637	0.719864
GSE61635 SLE PBMC RNP+	Anti-sense	0.9714	0.861834	1.2176	0.01942
	Intragenic	1.414	0.040166	2.3049	0
	Intergenic	0.9005	0.325182	0.9545	0.549978
	All	0.5225	0	1.0857	0.205221
	Sense	0.6008	3.40E-07	1.1644	0.05009
GSE10500 RA macophage cells	Anti-sense	0.5143	0	1.1566	0.054201
	Intragenic	0.6296	0.005235	1.5498	8.90E-05
	Intergenic	0.5465	0	1.0797	0.243581
	All	1.1008	0.118818	0.7566	2.38E-05
	Sense	1.0642	0.420092	0.7648	0.001282
GSE14905 Psoriasis, skin	Anti-sense	1.2744	0.00077	0.7678	0.001187
	Intragenic	1.8345	0	0.6875	0.00715
GHULAL	Intergenic	1.1113	0.096007	0.7929	0.000608
	All	0.9072	0.100374	0.8583	0.02804
	Sense	0.9314	0.338372	0.8036	0.014071
GSE52471 psoriasis, skin	Anti-sense	1.0021	0.972182	0.9656	0.712807
	Intragenic	1.5124	3.40E-05	0.8912	0.432224
	Intergenic	0.9212	0.183253	0.8798	0.076923
	All	0.8367	0.119288	0.9323	0.580165
GSE36474 myeloma, bone marrow	Sense	0.9931	1	0.8671	0.340998
	Anti-sense	0.7367	0.032046	1.1257	0.349194
	Intragenic	0.8755	0.603903	1.9062	0.000242
	Intergenic	0.8939	0.348991	0.9078	0.427197
	All	0.9597	0.802104	0.6118	0
GSE12453 Diffuse Large B calls	Sense	0.8438	0.316977	0.6804	0
Lymphoma vs naive B cells	Anti-sense	1.2416	0.129399	0.5757	0
	Intragenic	2.1282	0.000126	0.4061	0
	Intergenic	0.9612	0.797261	0.6433	0

GEO accession	hervI ist	Down DEG		Up DEG	
	nei vList	OR	p-value	OR	p-value
	All	1.3341	0.003529	0.9415	0.719989
	Sense	1.2186	0.101651	1.0444	0.79113
GSE1299 Breast cancer cells	Anti-sense	1.4645	0.000814	0.7343	0.117889
	Intragenic	1.8088	0.000333	0.8585	0.78004
	Intergenic	1.3364	0.003891	0.97	0.88307
	All	1.2005	0.131797	0.7036	2.90E-07
	Sense	1.2644	0.104336	0.6953	3.24E-05
GSE3167 Bladder carcinoma Situ	Anti-sense	1.3544	0.03291	0.7033	3.72E-05
	Intragenic	2.3527	7.05E-06	0.529	3.13E-05
	Intergenic	1.1771	0.19709	0.7166	2.25E-06
	All	0.9486	0.457169	0.9208	0.328951
GSE5764 Ductal and lobular breast	Sense	0.9217	0.360205	0.9282	0.514981
cancer	Anti-sense	1.1081	0.204751	0.8357	0.09391
	Intragenic	1.7433	7.70E-07	0.9784	1
	Intergenic	0.9485	0.466589	0.9529	0.587481
	All	0.7592	0	0.8488	0.028206
	Sense	0.749	2.00E-08	0.917	0.353018
GSE5816 Lung Adenocarcinoma	Anti-sense	0.8268	0.000122	0.9363	0.486296
	Intragenic	1.1614	0.042854	1.5577	0.000356
	Intergenic	0.768	0	0.8331	0.018153
	All	1.0196	0.815214	0.8434	0.018723
	Sense	1.0579	0.533574	0.8407	0.057473
GSE6919 Metastasis prostate cancer	Anti-sense	1.0224	0.813699	0.949	0.580959
	Intragenic	1.5976	0.000368	1.2152	0.134159
	Intergenic	1.0273	0.749202	0.8475	0.028034
	All	1.037	0.294831	0.6282	0
	Sense	1.0987	0.026879	0.6301	8.00E-08
GSE9750 cervical cancer	Anti-sense	1.0855	0.049428	0.6327	6.00E-08
	Intragenic	1.7552	0	0.5754	0.000148
	Intergenic	1.0136	0.706794	0.6498	0
	All	0.8681	0.004575	0.7198	1.11E-05
GSE13911 Microsatellite i nstable	Sense	0.8739	0.029523	0.7463	0.001964
gastric cancer	Anti-sense	1.0413	0.481784	0.7218	0.00044
	Intragenic	1.5584	1.30E-07	0.6445	0.005991
	Intergenic	0.8609	0.003351	0.7413	0.0001
	All	0.889	0.21246	0.8436	0.095691
GSE9764 5-aza Human mesenchymal	Sense	0.9801	0.912745	0.9069	0.469148
stem cells	Anti-sense	1.0115	0.914202	0.9158	0.51401
	Intragenic	1.84	2.88E-05	1.4103	0.045198
	Intergenic	0.8634	0.1316	0.8433	0.107549

GEO accession	hervI ist	Down DEG		Up DEG	
	HervEist	OR	p-value	OR	p-value
	All	0.8935	0.213564	0.6821	0.000306
	Sense	1.0026	0.957953	0.688	0.006167
GSE22859 H3K4me2, HeLa	Anti-sense	0.8999	0.350293	0.8354	0.169402
	Intragenic	1.8106	2.74E-05	1.1645	0.388781
	Intergenic	0.8492	0.078332	0.6707	0.00026
	All	0.7989	0.003216	0.899	0.076829
CSE 41040 H2K0 2	Sense	0.8194	0.035608	0.9318	0.353458
primary fibroblasts	Anti-sense	0.8573	0.103559	0.9746	0.752134
1 5	Intragenic	0.9922	1	1.7505	1.00E-08
	Intergenic	0.8176	0.010045	0.8945	0.069511
тнг1р					
	Δ11	0 583	0	0.9347	0 276093
	Sense	0.5809	0	0.9347	0.11409
GSE13887 SLE T cells	Anti-sense	0.556	8 80F-07	1 0391	0 572841
	Intragenic	0.5498	8.19F-05	1 5511	1.60F-05
	Intergenic	0.6053	0.171-05	0.9021	0.103052
/	All	0.81	0.025469	1 114	0.118893
	Sense	0.7978	0.051332	1 1862	0.032352
GSE61635 SLE PBMC RNP+	Anti-sense	0.8934	0.338757	1 2303	0.002552
	Intragenic	1.5419	0.004225	2.6444	0.007009
	Intergenic	0.7901	0.015859	1.0315	0.672537
	All	0.9923	0.920985	0.8343	0.009805
	Sense	1.0311	0.694598	0.8032	0.009859
GSE52471 SLE/DLE, skin	Anti-sense	1.0426	0.589475	0.8784	0.122567
	Intragenic	1.4789	0.000541	0.7719	0.071427
	Intergenic	0.9682	0.662057	0.8558	0.029557
	All	0.8958	0.112169	0.7496	0.001274
	Sense	0.8828	0.137683	0.8358	0.102875
RA_GSE4588_CD4	Anti-sense	0.987	0.905939	0.8291	0.07996
	Intragenic	1.4671	0.000841	1.2303	0.166532
	Intergenic	0.8646	0.039244	0.7207	0.000343
	All	0.6206	0	1.1205	0.063827
	Sense	0.6971	4.10E-05	1.1366	0.072387
GSE10500 RA macophage cells	Anti-sense	0.6055	1.00E-08	1.134	0.071976
	Intragenic	0.6704	0.007819	1.5844	1.03E-05
	Intergenic	0.6252	0	1.096	0.140094

GEO accession	hory ist	Down DEG		Up DEG	
	nervEist	OR	p-value	OR	p-value
	All	1.1409	0.217221	0.8139	0.022559
	Sense	1.028	0.8484	0.7736	0.021854
GSE13355 Psoriasis, skin	Anti-sense	1.2072	0.117889	0.781	0.024386
	Intragenic	2.1106	5.66E-06	0.4818	0.000603
	Intergenic	1.0172	0.870143	0.8585	0.098956
	All	1.1106	0.075064	0.7381	1.02E-06
	Sense	1.0411	0.57305	0.7541	0.000187
GSE14905 Psoriasis, skin	Anti-sense	1.2348	0.00164	0.7186	1.06E-05
	Intragenic	1.8547	0	0.5794	4.19E-05
	Intergenic	1.0439	0.469364	0.7787	7.44E-05
	All	1.0029	0.956293	0.8398	0.008369
	Sense	1.0473	0.47407	0.8648	0.072796
GSE52471 psoriasis, skin	Anti-sense	1.0491	0.443449	0.7995	0.004933
	Intragenic	1.6095	2.40E-07	0.779	0.067383
	Intergenic	0.9454	0.329452	0.8615	0.026285
	All	0.9122	0.385769	1.2023	0.073871
	Sense	0.7682	0.045338	1.2891	0.033518
GSE36474 myeloma, bone marrow	Anti-sense	0.9711	0.858345	1.0805	0.500829
	Intragenic	0.7401	0.207241	1.9672	3.66E-05
	Intergenic	0.9164	0.436248	1.1338	0.239474
	All	1.1228	0.338877	0.6945	2.00E-08
	Sense	1.0838	0.570142	0.7506	0.000248
GSE3167 Bladder carcinoma Situ	Anti-sense	1.3073	0.043158	0.7162	1.58E-05
	Intragenic	1.8683	0.000906	0.5194	3.61E-06
ម្មី W 1តា	Intergenic	1.0958	0.465873	0.7356	2.53E-06
	All	0.9507	0.440652	0.8595	0.057903
GSE5764 Ductal and lobular breast	Sense	0.9714	0.731341	0.8409	0.073265
cancer	Anti-sense	1.0539	0.476744	0.9805	0.856919
	Intragenic	1.4458	0.000786	1.4416	0.005243
	Intergenic	0.9249	0.252769	0.8441	0.03706
	All	0.7843	0	0.9617	0.584338
	Sense	0.8276	4.18E-05	0.988	0.903109
GSE5816 Lung Adenocarcinoma	Anti-sense	0.8594	0.000764	0.9685	0.719868
	Intragenic	1.182	0.014221	1.5457	0.00016
	Intergenic	0.7856	0	0.9608	0.578209
	All	1.1532	0.054002	0.8361	0.009217
	Sense	1.2626	0.005564	0.8652	0.081322
GSE6919 Metastasis prostate cancer	Anti-sense	1.1029	0.243949	0.8047	0.008156
	Intragenic	1.6234	7.80E-05	0.8956	0.447807
	Intergenic	1.0947	0.228238	0.8728	0.053113

CEO accession	heryl ist	De	Down DEG		DEG
	nervEist	OR	p-value	OR	p-value
	All	0.9621	0.251887	0.6137	0
GSE9750 cervical cancer	Sense	0.9855	0.72273	0.6901	1.55E-06
	Anti-sense	1.0372	0.343088	0.5861	0
	Intragenic	1.5831	0	0.4738	1.10E-07
	Intergenic	0.9332	0.042805	0.6388	0
	All	0.8569	0.000984	0.7162	2.00E-06
GSE13911 Microsatellite i nstable	Sense	0.9244	0.163047	0.6125	3.00E-08
gastric cancer	Anti-sense	0.9537	0.390362	0.8343	0.028035
	Intragenic	1.5852	0	0.6487	0.003293
	Intergenic	0.8403	0.000282	0.7398	2.51E-05
	All	0.8383	0.012818	0.8558	0.005803
GSE41040 H3K9me3 primary fibroblasts	Sense	0.8719	0.109665	0.8276	0.00593
	Anti-sense	0.8586	0.06998	0.98	0.772458
	Intergenic	0.9244	0.163047	0.6125	3.00E-08
	Intragenic	0.9368	0.694207	1.5721	1.08E-06

Intragenic HERVs associated with up-regulated genes in SLE

There are total 852 and 896 over-expressed genes in SLE were associated with intragenic ERV1 and ERV3 containing genes, respectively. While the number of intragenic HERVs neighboring gene associated with over-expressed genes in SLE were listed in Table 21. As mention previously, there was no HERVK association with SLE in our analysis. In summary, our result showed that the association was restricted to certain LTR subtype (Table 20). It is likely that this specificity was mediated through sequence-specific and cell-specific transcription factor [174]. We have reviewed literatures about the factors that regulate methylation of HERV e.g., SETDB1[175], KAP1 [176], TRIM28 [177] and then analyzed gene expression in cells that lack these genes by knockout experiments as showed in Appendix Table B2 and Table B3 for entire HERVs and superfamily level, respectively. However, we did not see significant changes of gene expression that associated with HERV. It is possible that these transcription factors might be important in embryonic stem cells but not in mature somatic cells especially in blood cells that we are interested in SLE.

Superfamily	Family	HERV	Number of intragenic
Bupertaininy	1 annry	name	HERV genes
ERV1/ERVE	HERVH	LTR7	45
ERV3/ERVL	HERVL33	LTR33	212
	MLT	MLT1D	384
	MST	MSTD	191
ERVL-MaLR		THE1B	354
	THE1	THE1C	228
		THE1D	264

Table 21 Number of up-regulated genes in SLE associated with intragenic HERVs

We further performed functional analysis for all list of discovered associated genes. The analysis results were listed in Appendix Table B4. The gene expression level of cell adhesion molecules was reports as a good prognostic of lupus nephritis previously [5]. Many genes are also involved in biological processes and molecular functions that potentially play a role in SLE pathogenesis. Furthermore, our analysis help reveals signaling pathways that were reported to involve in SLE. The abnormal signaling activity of phosphatidylinositol 3-kinase pathway in SLE patients was reported to be a part of the disease factors [178, 179]. Moreover, the over-expression of EGF gene family was also observed. The EGF proteins play a role in EGFR signaling pathway, which is responding to RNP complex. There is a report on the activation of EGFR pathway by LTR polymorphism [180, 181]. Including with a computational protein-protein interaction network analyses of quantitative phosphoproteome data indicated the linked of RNP complex and EGFR/HER2 signaling networks [182]. This information from our analysis suggest the important role of HERV related to RNP formation due to both the cross-reactivity with HERV protein and the aberrant regulation of EGFR/HER2 signaling.

The enrichment analysis results show that there are associations between certain LTR patterns and gene-upregulation mainly in SLE T cells as shown above [183, 184]. It is most likely that these LTRs from HERV were activated by hypomethylation. We confirm this hypothesis by analysis the association of gene expression profile of cells treated with hypomethylating agent, 5 azacythidine. If hypomethylation is the main

cause, we expect to see up-regulation of genes containing LTR. In fact, this is what we found, both in CD4+ T cells, T cells and B cells as showed in Table 22.

Therefore, we hypothesize that aberrant HERV regulation in SLE will lead to upregulation of genes due to function of LTR as promoter, enhancer or alternative splicing. We analyzed the transcriptome sequencing to detect chimeric sequences. There are many reports showed that TE-derived alternative promoters, which generate a chimeric mRNA with an adjacent gene, are arguably one of the more straightforward scenarios to link a TE with a functional product. Particularly when that gene encodes a protein of known function and LTR located immediately at 5' of protein-coding region frequently function as alternative promoters and/or also express noncoding RNAs. [174, 185, 186]. Since, all chimeric patterns were listed, further analysis in structure visualization of candidate chimerics are required to confirm those chimerics.

Gene expression condition	OR	p-value
GSE32591 LN glomolular	3.232	0.00023694
GSE32591 LN tubulolar	2.7351	0.04193993
GSE10325 SLE B cells	4.0474	4.82E-05
GSE10325 SLE myeloid cells	2.1846	0.01156959
GSE10325 SLE T cells	2.8833	0.02195973
GSE13887 SLE T cells	2.6678	0
GSE20864 SLE PBMC	1.2979	0.4764354
GSE24706 SLE PBMC, ANA	2.0974	0.18050457
GSE27427 SLE neutrophils	1.5061	0.03732643
GSE4588 SLE B cells	3.3814	0
GSE4588 SLE CD4 CELLS	4.6134	0
GSE52471 SLE/DLE, skin	3.3241	0
GSE61635 SLE PBMC RNP+	3.3246	0
GSE30153 SLE inactive condition, B cells	6.5257	0.00154786

Table 22 Association analysis between 5 azacythidine treated mesenchymal stem cells and genes in various SLE conditions (significant with OR > 1 and p < 0.001, indicated in bold letter)

Chimeric identification in RNA-Seq data analysis

There are 355 and 1678 NGS datasets are available in GEO database that sequenced by Illumina® HiSeq2500 and HIseq2000, respectively (MAY 2016). Unfortunately, with the limitation of computational capability unit, we selected 10 SLE and 3 healthy control RNA-Seq samples from published GSE72509 in NCBI GEO database as the source materials for detecting chimeric transcripts in this analysis. We chosed the samples that have a top three lowest HERV expression signal based on calculated RPKM of RNA-Seq data for representing control group. In contrast we selected top 10 SLE samples that have the highest level of HERV expression to represent SLE group. The number of raw read and assembled transcripts using both TopHat and trinity method was shown in Table 23. The assemble result show that the number of transcripts constructed by Trinity, the de novo, assembly are higher that mapping with TopHat method. This might occurred because the complex of the repeat sequence.

Sample total read		Num trans	ber of cripts	No o (RefSeq a	f gene annotation)
	23-	Tophat	Trinity	Tophat	Trinity
C5	91422694	45289	51219	21137	15190
C7	95262500	45066	50725	21556	15379
C10	82631888	45174	52818	21589	15719
SLE4	96825506	45350	60493	21634	18744
SLE9	108708983	46789	89903	21757	16256
SLE27	98661930	45249	64057	21639	16690
SLE34	97581203	44620	51244	21587	15326
SLE35	96325010	45963	75887	21696	18744
SLE50	94582459	44334	46567	21554	14801
SLE54	96252132	44330	45867	21549	14132
SLE72	92762536	44067	40278	21618	14140
SLE75	98652153	44815	58582	21628	16170
SLE76	91254856	44387	55442	21537	15711

 Table 23 RNA-seq analysis statistic

By using both chimeric detection approaches as mentioned in method section, we selected 4 candidate chimeric transcript based on chimeric pattern and gene related to SLE/LN pathogenesis for further validation by Sanger sequencing method. Figure 30-33 showed the chimeric pattern of selected candidate chimeric transcripts.

There were reported previously that IFI44L promoter methylation can be used as a blood biomarker for SLE [170]. Interestingly, we detected the IFI44L chimeric transcript as shown in Figure 29. The chimeric was found as a part of the last exon of the gene which is normally there is no effect to their neighboring gene. Besides IFI44L, we also discovered IFI44-THE1C chimeric transcript from this study as shown in Figure 30. The THE1C LTR elongates the transcript of IFI44 by fusing to the first exon of the gene. There are about 22 times higher expression level of IFI44 in SLE when compare to healthy people found in this study. Second example, the predicted CLEC2D-THE1C chimeric were shown in Figure 31. This chimeric event possible to use the THE1C LTR as the alternative promoter which is located inside the intron region resulting in shorten the transcript by missing the up-stream exon of the LTR location. This made a high possibility that the chimeric sequence of this CLEC2D might lose their function in SLE. Third example shown in Figure 32 is the predicted CLEC4E-MER52C transcript as MER52C LTR is transcribe to be the alternative first exon of CLEC4E gene. Our last observed chimeric TOP3A-LTR5B indicated LTR5B is located in intron region of the gene as shown in Figure 33. This chimeric shows the same alternative pattern as CLEC2D-THE1C chimeric since they might generate a new transcript isoform by using LTR inside the intron region as the alternative promoter that results in shorten transcript by missing the up-stream exons. We also found that there are difference chimeric transcripts in OSCAR-LTR12B between SLE and normal group as showed in Figure 34. There are many LTRs that located in the exon as part of the genes. But this assembly event normally not affect the expression of their neighboring genes. So, we did not investigate this event in detail in this study. Furthermore, we also can identify a full-range HERV from this RNA-Seq data such as LTR2-HERVE-LTR2 that illustrated in Figure 35.

Figure 29 predicted IFI44L-LTR26 chimeric transcript

Figure 30 predicted IFI44-THE1C chimeric transcript

Figure 31 predicted CLEC2D-THE1C chimeric transcript

Figure 32 predicted CLEC4E-MER52C chimeric transcript

Figure 33 predicted TOP3A-LTR5B chimeric transcript

Figure 34 predicted OSCAR-LTR12B chimeric transcript

Figure 35 a full-range LTR2-intHERVE-LTR2 structure

For the validation procedure, the forward primers were designed to locate at LTR regions while reverse primers were located at next exon of the chimeric genes. The primers used in this study were listed in Table 24. We have further validated the amplicons that meet the expected size of 3 candidates with Sanger sequencing. Interestingly, the sequencing results show that all LTR forward amplicons were unreadable. It might because THE1C and also other LTR are globally located in the genome so the LTR forward primers might bind to many region subsequently to the mixed amplicons at the LTR regions.

Chulalongkorn University

Chimeric transcript	Forward primer	Reverse primer	Expected product size
IFI44- THE1B	CAGCAGGAGAGGGAAATGAG	GTGCAACCATGTCAAACGAG	1470
CLEC2D- THE1C	CCCCAGCCATGTAGAACTGT	CAACCTGAGCAAGATCAGCA	932
CLEC4E- MER52C	TCTCTGCTGAGAGCTGGACA	TGTGCATTGTGTTTCAGATGAT	1380
TOP3A- LTR5B	CTGATCTCTCTTTTTCCCCACA	CCAGCACCTCAGGAAAAATC	465

 Table 24 Primer list uses for detecting chimeric transcripts

In addition, LOR1a-IRF5 chimeric transcript was reported in Hodgkin lymphoma (HL) by Babaian A *et al.* [186]. They purpose this finding as a key regulator of the aberrant transcriptome characteristic of this disease which IRF5 up-regulation in HL is driven by LOR1a LTR upstream of IRF5. Therefore we have tested the published primers for detecting this chimeric transcript in the SLE and K562 RNA-Seq data. Unfortunately there is no any chimeric transcript found in our analysis results.

As the limitation of whole genome RNA-Seq analysis in term of the amount of reads in specific region, Stone RC et al. performed RNA-Seq for targeted enrichment for IRF5-SLE risk haplotype analysis [187]. This target enrichment approach will also help in chimeric sequence detection as well. At last, we have to note that the SLE RNA-Seq data that we used in this study is the single end sequencing technique since the aim of the author this RNA-Seq publication was just only to measure the gene expression level. So we suggest that if the pair-end SLE/LN RNA-Seq data are available in the future, this will help to improve the chimeric transcript detection in term of accuracy and the orientation of the assembly as well.

CHAPTER V CONCLUSIONS

Although renal pathology provides the best diagnostic/prognostic values for lupus nephritis, a non-invasive monitoring remains an unmet need. As urine and serum may be the best sources of repeatable and safely tests. We proposed to identify lists of candidate genes/proteins for diagnostic /prognostic biomarkers using systems biology using two differences studies. The first part we investigated the integration of gene and protein layers of refractory LN. We can identify 5 compacted protein cluster underlying pathways of resistant to treatment such as tight junction, complement and TNF pathways.

Since, many reported support that epigenetics also play an import role in SLE/LN pathogenesis. With the previous publications that shows how TEs can alter the expression of their nearby genes, which resulted from the methylation imbalance. Therefore the second part of this study investigated the association of HERV and gene expression under various disease conditions especially in SLE/LN. By using repeat and human genome information from Repbase and UCSC table browser, respectively, we have developed a HERV database and enrichment tool called EnHERV. EnHERV is available at http://sysbio.chula.ac.th/enherv/. EnHERV provides searching by gene names or HERV characteristics. EnHERV also allows user to do enrichment analysis between user interested genes list and selected specific HERV characteristics. Thousands of enrichment analysis was calculated in this study. The results showed that there seems to have LTR type specific to certain disease conditions. For example, we found that THE1B and THE1D in both orientations were significantly enrichment in over-expression of SLE RNP+ genes. Many THE1B and THE1D intragenic genes tended to involve in molecular functions that played a role in SLE pathogenesis such as cell-cell adhesion, phosphatidylinositol and EGFR pathways. By using EnHERV, it might help us to further understand the pathogenesis of not only SLE in our analysis result but also with other disease that HERVs might involve in their pathogenesis as well.

Based on the hypothesis that HERV used their own regulatory region such as promoter or enhancer in their LTR as alternative regulator of the neighboring genes under imbalance methylation condition. We further investigated the mechanism of those LTR using available SLE RNA-Seq data for detecting chimeric transcript. As a result 4 candidate chimeric transcripts were identified with the computational and RNA-Seq sequences. Further investigate in other RNA-Seq data or construct a precise validation process might help to confirm our hypothesis about these chimeric events in the future.

In conclusion, we report an un-biased discovery of biomarkers of lupus nephritis. These biomarkers may not only be used for diagnostic purpose but may also lead to the new therapeutic targets in the future. However, it is in crucial needs to validate these findings in a well-designed clinical trial before clinical practice guideline implementation.

REFERENCES

- 1. Avihingsanon, Y. and N. Hirankarn, *Major lupus organ involvement: severe lupus nephritis*. Lupus, 2010. **19**(12): p. 1391-8.
- Mok, M.Y. and W.L. Li, *Do Asian patients have worse lupus*? Lupus, 2010. 19(12): p. 1384-90.
- 3. Jeffries, M.A. and A.H. Sawalha, *Epigenetics in systemic lupus erythematosus: leading the way for specific therapeutic agents.* Int J Clin Rheumtol, 2011. **6**(4): p. 423-439.
- 4. Wu, H., et al., *The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation.* Int J Mol Sci, 2015. **16**(5): p. 11013-33.
- 5. Benjachat, T., et al., *Biomarkers for Refractory Lupus Nephritis: A Microarray Study of Kidney Tissue.* Int J Mol Sci, 2015. **16**(6): p. 14276-90.
- 6. Somparn, P., et al., Urinary proteomics revealed prostaglandin H(2)Disomerase, not Zn-alpha2-glycoprotein, as a biomarker for active lupus nephritis. J Proteomics, 2012. **75**(11): p. 3240-7.
- 7. Treamtrakanpon, W., et al., *APRIL, a proliferation-inducing ligand, as a potential marker of lupus nephritis.* Arthritis Res Ther, 2012. **14**(6): p. R252.
- 8. Ou, K., et al., *Novel breast cancer biomarkers identified by integrative proteomic and gene expression mapping.* J Proteome Res, 2008. **7**(4): p. 1518-28.
- Shibuya, M., et al., Proteomic and transcriptomic analyses of retinal pigment epithelial cells exposed to REF-1/TFPI-2. Invest Ophthalmol Vis Sci, 2007. 48(2): p. 516-21.
- 10. Goymer, P., *Network biology: why do we need hubs?* Nat Rev Genet, 2008.9(9): p. 650.
- 11. Rodenhiser, D. and M. Mann, *Epigenetics and human disease: translating basic biology into clinical applications*. CMAJ, 2006. **174**(3): p. 341-8.
- 12. Wu, H., et al., *The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation.* Autoimmun Rev, 2016.
- Bannert, N. and R. Kurth, *Retroelements and the human genome: new perspectives on an old relation*. Proc Natl Acad Sci U S A, 2004. **101 Suppl 2**: p. 14572-9.
- 14. Buzdin, A., *Human-specific endogenous retroviruses*. ScientificWorldJournal, 2007. **7**: p. 1848-68.
- 15. Cordaux, R. and M.A. Batzer, *The impact of retrotransposons on human genome evolution*. Nat Rev Genet, 2009. **10**(10): p. 691-703.
- Okada, M., et al., Role of DNA methylation in transcription of human endogenous retrovirus in the pathogenesis of systemic lupus erythematosus. J Rheumatol, 2002. 29(8): p. 1678-82.
- 17. Piotrowski, P.C., S. Duriagin, and P.P. Jagodzinski, *Expression of human endogenous retrovirus clone 4-1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies.* Clin Rheumatol, 2005. **24**(6): p. 620-4.
- 18. Nakkuntod, J., et al., *DNA methylation of human endogenous retrovirus in systemic lupus erythematosus.* J Hum Genet, 2013. **58**(5): p. 241-9.

- Lea, J.P., Lupus nephritis in African Americans. Am J Med Sci, 2002. 323(2): p. 85-9.
- 20. Eguchi, K., *Apoptosis in autoimmune diseases*. Intern Med, 2001. **40**(4): p. 275-84.
- 21. Pisetsky, D.S. and I.A. Vrabie, *Antibodies to DNA: infection or genetics?* Lupus, 2009. **18**(13): p. 1176-80.
- 22. van Bavel, C.C., J. van der Vlag, and J.H. Berden, *Glomerular binding of antidsDNA autoantibodies: the dispute resolved?* Kidney Int, 2007. **71**(7): p. 600-1.
- 23. Christopher-Stine, L., et al., *Renal biopsy in lupus patients with low levels of proteinuria.* J Rheumatol, 2007. **34**(2): p. 332-5.
- 24. Fagerholm, S.C., et al., *The CD11b-integrin (ITGAM) and systemic lupus erythematosus*. Lupus, 2013. **22**(7): p. 657-63.
- Musone, S.L., et al., Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet, 2008. 40(9): p. 1062-4.
- 26. Oishi, T., et al., A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population. J Hum Genet, 2008. **53**(2): p. 151-62.
- 27. Kamatani, Y., et al., *Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population.* J Hum Genet, 2008. **53**(1): p. 64-73.
- 28. Peterson, K.S., et al., *Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli.* J Clin Invest, 2004. **113**(12): p. 1722-33.
- Alcorta, D.A., et al., Leukocyte gene expression signatures in antineutrophil cytoplasmic autoantibody and lupus glomerulonephritis. Kidney Int, 2007. 72(7): p. 853-64.
- 30. Berthier, C.C., et al., *Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.* J Immunol, 2012. **189**(2): p. 988-1001.
- 31. Santucci, L., et al., *Urinary proteome in a snapshot: normal urine and glomerulonephritis.* J Nephrol, 2013. **26**(4): p. 610-6.
- 32. Vlahou, A., et al., *Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine.* Am J Pathol, 2001. **158**(4): p. 1491-502.
- 33. Bratt, O., *Hereditary prostate cancer: clinical aspects.* J Urol, 2002. **168**(3): p. 906-13.
- 34. Liska, V., et al., *Matrix metalloproteinases and their inhibitors in correlation* to proliferative and classical tumour markers during surgical therapy of colorectal liver metastases. Bratisl Lek Listy, 2012. **113**(2): p. 108-13.
- 35. Wu, T., et al., *Urinary angiostatin--a novel putative marker of renal pathology chronicity in lupus nephritis.* Mol Cell Proteomics, 2013. **12**(5): p. 1170-9.
- 36. Wu, T. and C. Mohan, *Lupus nephritis alarmins may sound the alarm?* Arthritis Res Ther, 2012. **14**(6): p. 129.
- 37. Oates, J.C., et al., *Prediction of urinary protein markers in lupus nephritis*. Kidney Int, 2005. **68**(6): p. 2588-92.

- 38. Zhang, X., et al., *Biomarkers of lupus nephritis determined by serial urine proteomics*. Kidney Int, 2008. **74**(6): p. 799-807.
- 39. Bollain, Y.G.J.J., et al., *Increased excretion of urinary podocytes in lupus nephritis*. Indian J Nephrol, 2011. **21**(3): p. 166-71.
- 40. Avihingsanon, Y., et al., *Decreased renal expression of vascular endothelial* growth factor in lupus nephritis is associated with worse prognosis. Kidney Int, 2009. **75**(12): p. 1340-8.
- 41. Zhang, S., et al., *Discovering functions and revealing mechanisms at molecular level from biological networks*. Proteomics, 2007. **7**(16): p. 2856-69.
- 42. Marbach, D., et al., *Wisdom of crowds for robust gene network inference*. Nat Methods, 2012. **9**(8): p. 796-804.
- 43. McRedmond, J.P., et al., *Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes*. Mol Cell Proteomics, 2004. **3**(2): p. 133-44.
- 44. Bader, G.D., D. Betel, and C.W. Hogue, *BIND: the Biomolecular Interaction Network Database.* Nucleic Acids Res, 2003. **31**(1): p. 248-50.
- 45. Chatr-Aryamontri, A., et al., *The BioGRID interaction database: 2015 update.* Nucleic Acids Res, 2015. **43**(Database issue): p. D470-8.
- 46. Xenarios, I., et al., *DIP*, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res, 2002. **30**(1): p. 303-5.
- 47. Gene Ontology, C., *The Gene Ontology project in 2008.* Nucleic Acids Res, 2008. **36**(Database issue): p. D440-4.
- 48. Chen, J.Y., S. Mamidipalli, and T. Huan, *HAPPI: an online database of comprehensive human annotated and predicted protein interactions.* BMC Genomics, 2009. **10 Suppl 1**: p. S16.
- 49. Kerrien, S., et al., *The IntAct molecular interaction database in 2012*. Nucleic Acids Res, 2012. **40**(Database issue): p. D841-6.
- 50. Tarcea, V.G., et al., *Michigan molecular interactions r2: from interacting proteins to pathways.* Nucleic Acids Res, 2009. **37**(Database issue): p. D642-6.
- 51. Chatr-aryamontri, A., et al., *MINT: the Molecular INTeraction database*. Nucleic Acids Res, 2007. **35**(Database issue): p. D572-4.
- 52. Pagel, P., et al., *The MIPS mammalian protein-protein interaction database*. Bioinformatics, 2005. **21**(6): p. 832-4.
- 53. Ficenec, D., et al., *Computational knowledge integration in biopharmaceutical research*. Brief Bioinform, 2003. **4**(3): p. 260-78.
- 54. Li, J., et al., The Molecule Pages database. Nature, 2002. 420(6916): p. 716-7.
- 55. Caspi, R., et al., *The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.* Nucleic Acids Res, 2016. **44**(D1): p. D471-80.
- 56. Kanehisa, M., et al., *KEGG for representation and analysis of molecular networks involving diseases and drugs.* Nucleic Acids Res, 2010. **38**(Database issue): p. D355-60.
- 57. Ekins, S., et al., *Pathway mapping tools for analysis of high content data*. Methods Mol Biol, 2007. **356**: p. 319-50.

- 58. Matthews, L., et al., *Reactome knowledgebase of human biological pathways and processes*. Nucleic Acids Res, 2009. **37**(Database issue): p. D619-22.
- 59. Pico, A.R., et al., *WikiPathways: pathway editing for the people*. PLoS Biol, 2008. **6**(7): p. e184.
- 60. Le Novere, N., et al., *BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems.* Nucleic Acids Res, 2006. **34**(Database issue): p. D689-91.
- 61. Ananko, E.A., et al., *GeneNet in 2005*. Nucleic Acids Res, 2005. **33**(Database issue): p. D425-7.
- 62. Harris, M.A., et al., *The Gene Ontology (GO) database and informatics resource*. Nucleic Acids Res, 2004. **32**(Database issue): p. D258-61.
- 63. Letunic, I., et al., *iPath: interactive exploration of biochemical pathways and networks.* Trends Biochem Sci, 2008. **33**(3): p. 101-3.
- 64. Mi, H., et al., *PANTHER version 10: expanded protein families and functions, and analysis tools.* Nucleic Acids Res, 2016. **44**(D1): p. D336-42.
- 65. Kanehisa, M., et al., *KEGG for integration and interpretation of large-scale molecular data sets.* Nucleic Acids Res, 2012. **40**(Database issue): p. D109-14.
- 66. Zhao, Y. and Y. Yang, *Frex and FrexH: Indicators of metabolic states in living cells.* Bioeng Bugs, 2012. **3**(3): p. 181-8.
- 67. Kutmon, M., et al., *WikiPathways: capturing the full diversity of pathway knowledge*. Nucleic Acids Res, 2016. **44**(D1): p. D488-94.
- 68. Kamburov, A., et al., *ConsensusPathDB: toward a more complete picture of cell biology*. Nucleic Acids Res, 2011. **39**(Database issue): p. D712-7.
- 69. Griffiths-Jones, S., et al., *miRBase: tools for microRNA genomics*. Nucleic Acids Res, 2008. **36**(Database issue): p. D154-8.
- 70. Mathelier, A., et al., *JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles.* Nucleic Acids Res, 2014. **42**(Database issue): p. D142-7.
- 71. Marinescu, V.D., I.S. Kohane, and A. Riva, *MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes.* BMC Bioinformatics, 2005. **6**: p. 79.
- 72. Wingender, E., *The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation.* Brief Bioinform, 2008. **9**(4): p. 326-32.
- 73. Hoffmann, R., *Using the iHOP information resource to mine the biomedical literature on genes, proteins, and chemical compounds.* Curr Protoc Bioinformatics, 2007. **Chapter 1**: p. Unit1 16.
- 74. Hu, Y., et al., *Analysis of genomic and proteomic data using advanced literature mining.* J Proteome Res, 2003. **2**(4): p. 405-12.
- 75. Pan, Y. and A.H. Sawalha, *Epigenetic regulation and the pathogenesis of systemic lupus erythematosus*. Transl Res, 2009. **153**(1): p. 4-10.
- 76. Zhao, M., et al., *Epigenetic dynamics in immunity and autoimmunity*. Int J Biochem Cell Biol, 2015. **67**: p. 65-74.
- 77. Murakami, H., et al., *Detection of inter-spread repeat sequence in genomic DNA sequence*. Genome Inform, 2004. **15**(1): p. 170-9.

- 78. Hsieh, J. and A. Fire, *Recognition and silencing of repeated DNA*. Annu Rev Genet, 2000. **34**: p. 187-204.
- Javierre, B.M., et al., *Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus*. Genome Res, 2010. 20(2): p. 170-9.
- 80. Wang, G.S., et al., Ultraviolet B exposure of peripheral blood mononuclear cells of patients with systemic lupus erythematosus inhibits DNA methylation. Lupus, 2009. **18**(12): p. 1037-44.
- 81. Richardson, B., et al., *Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis.* Arthritis Rheum, 1990. **33**(11): p. 1665-73.
- 82. Luo, Y., et al., *Abnormal DNA methylation in T cells from patients with subacute cutaneous lupus erythematosus.* Br J Dermatol, 2008. **159**(4): p. 827-33.
- 83. Richardson, B., *Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells.* Hum Immunol, 1986. **17**(4): p. 456-70.
- 84. Cribbs, A., M. Feldmann, and U. Oppermann, *Towards an understanding of the role of DNA methylation in rheumatoid arthritis: therapeutic and diagnostic implications.* Ther Adv Musculoskelet Dis, 2015. **7**(5): p. 206-19.
- 85. Lu, Q., et al., *Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus*. Arthritis Rheum, 2002. **46**(5): p. 1282-91.
- 86. Liang, J., et al., A correlation study on the effects of DNMT1 on methylation levels in CD4(+) T cells of SLE patients. Int J Clin Exp Med, 2015. 8(10): p. 19701-8.
- 87. Lu, Q., A. Wu, and B.C. Richardson, *Demethylation of the same promoter* sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol, 2005. **174**(10): p. 6212-9.
- 88. Blikstad, V., et al., *Evolution of human endogenous retroviral sequences: a conceptual account.* Cell Mol Life Sci, 2008. **65**(21): p. 3348-65.
- 89. Gifford, R. and M. Tristem, *The Evolution, Distribution and Diversity of Endogenous Retroviruses.* Virus Genes, 2003. **26**(3): p. 291-315.
- 90. Griffiths, D., *Endogenous retroviruses in the human genome sequence*. Genome Biology, 2001. **2**(6): p. reviews1017.1 reviews1017.5.
- 91. Nelson, P.N., et al., *Dymystified...Human endogenous retroviruses*. Journal of Clinical Pathology, 2003. **56**(1): p. 11-18.
- 92. Nelson, P.N., et al., *Human endogenous retroviruses: transposable elements with potential?* Clinical & Experimental Immunology, 2004. **138**(1): p. 1-9.
- 93. Kazazian, H.H., Jr., *Mobile Elements: Drivers of Genome Evolution*. Science, 2004. **303**(5664): p. 1626-1632.
- 94. Jern, P. and J.M. Coffin, *Effects of Retroviruses on Host Genome Function*. Annual Review of Genetics, 2008. **42**(1): p. 709-732.
- 95. Donovan, T., Endogenous Retroviruses and the Human Genome: Implications for Human Disease. SPCV, 2010. **2**(1): p. 1-33.
- 96. Blomberg, J., et al., *Classification and nomenclature of endogenous retroviral sequences (ERVs): Problems and recommendations.* Gene, 2009. **448**(2): p. 115-123.

- 97. Jurka, J., et al., *Repbase Update, a database of eukaryotic repetitive elements.* Cytogenet Genome Res, 2005. **110**(1-4): p. 462-7.
- 98. Mayer, J. and E. Meese, *Human endogenous retroviruses in the primate lineage and their influence on host genomes.* Cytogenetic and Genome Research, 2005. **110**(1-4): p. 448-456.
- 99. Smit, A.F.A., *Identification of a new, abundant superfamily of mammalian LTR-transposons*. Nucleic Acids Research, 1993. **21**(8): p. 1863-1872.
- 100. Oja, M., et al., *Methods for estimating human endogenous retrovirus activities from EST databases.* BMC Bioinformatics, 2007. 8(Suppl 2): p. S11.
- 101. Blomberg, J., D. Ushameckis, and P. Jern, *Evolutionary Aspects of Human Endogenous Retroviral Sequences (HERVs) and Disease*. Retroviruses and Primate Genome Evolution, ed. E.D. Sverdlov. 2005: Eurekah.com.
- 102. Kurth, R. and N. Bannert, *Beneficial and detrimental effects of human endogenous retroviruses*. International Journal of Cancer, 2010. **126**(2): p. 306-314.
- 103. Buzdin, A., *Human-Specific Endogenous Retroviruses*. TheScientificWorldJOURNAL, 2007. **7**: p. 1848-1868.
- 104. Long, Q., et al., A Long Terminal Repeat of the Human Endogenous Retrovirus ERV-9 Is Located in the 5' Boundary Area of the Human [beta]-Globin Locus Control Region. Genomics, 1998. **54**(3): p. 542-555.
- 105. Dunn, C.A., P. Medstrand, and D.L. Mager, An endogenous retroviral long terminal repeat is the dominant promoter for human Beta1,3galactosyltransferase 5 in the colon. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(22): p. 12841-12846.
- 106. Medstrand, P., J.-R. Landry, and D.L. Mager, Long Terminal Repeats Are Used as Alternative Promoters for the Endothelin B Receptor and Apolipoprotein C-I Genes in Humans. Journal of Biological Chemistry, 2001.
 276(3): p. 1896-1903.
- 107. Dunn, C.A., et al., *Transcription of two human genes from a bidirectional endogenous retrovirus promoter*. Gene, 2006. **366**(2): p. 335-342.
- 108. Di Cristofano, A., et al., Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retrovrial family. Nucleic Acids Research, 1995. 23(15): p. 2823-2830.
- 109. Feuchter-Murthy, A.E., J.D. Freeman, and D.L. Mager, *Splicing of a human* endogenous retrovirus to a novel phospholipase A2 related gene. Nucleic Acids Research, 1993. **21**(1): p. 135-143.
- 110. Shirai, T. and S. Hirose, *Molecular pathogenesis of SLE*. Springer Seminars in Immunopathology, 2006. **28**(2): p. 79-82.
- Ines, C. and F.G. Robert, *Role of Endogenous Retroviruses in Autoimmune Diseases*. Infectious disease clinics of North America, 2006. 20(4): p. 913-929.
- Adelman, M.K. and J.J. Marchalonis, *Endogenous Retroviruses in Systemic Lupus Erythematosus: Candidate Lupus Viruses*. Clinical Immunology, 2002. 102(2): p. 107-116.
- 113. Sekigawa, I., et al., *Systemic lupus erythematosus and human endogenous retroviruses*. Modern Rheumatology, 2003. **13**(2): p. 107-113.

- 114. Naito, T., et al., *Immune Abnormalities Induced by Human Endogenous Retroviral Peptides: With Reference to the Pathogenesis of Systemic Lupus Erythematosus.* Journal of Clinical Immunology, 2003. **23**(5): p. 371-376.
- 115. Chu, J.L., et al., *The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn.* The Journal of Experimental Medicine, 1993. **178**(2): p. 723-730.
- 116. Balada, E., J. Ordi-Ros, and M. Vilardell-Tarrés, *Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity*. Reviews in Medical Virology, 2009. **19**(5): p. 273-286.
- Balada, E., M. Vilardell-Tarres, and J. Ordi-Ros, *Implication of Human* Endogenous Retroviruses in the Development of Autoimmune Diseases. International Reviews of Immunology, 2009. 29(4): p. 351-370.
- 118. Wicker, T., et al., *A universal classification of eukaryotic transposable elements implemented in Repbase.* Nat Rev Genet, 2008. **9**(5): p. 414-414.
- 119. Blikstad, V., et al., *Endogenous retroviruses*. Cellular and Molecular Life Sciences, 2008. **65**(21): p. 3348-3365.
- Bergman, C.M. and H. Quesneville, *Discovering and detecting transposable elements in genome sequences*. Briefings in Bioinformatics, 2007. 8(6): p. 382-392.
- 121. Pereira, V., *Automated paleontology of repetitive DNA with REANNOTATE*. BMC Genomics, 2008. **9**(1): p. 614.
- 122. Rivals, I., et al., *Enrichment or depletion of a GO category within a class of genes: which test?* Bioinformatics, 2007. **23**(4): p. 401-7.
- 123. McDonald, J.H., *Handbook of Biological Statistics*. 2nd ed. ed. 2009, Maryland: Sparky House Publishing.
- 124. Ott, R.L. and M. Longnecker, An Introduction to Statistical Methods and Data Analysis. 6th ed. ed. 2010: Brooks/Cole Cengage Learning.
- 125. Li, H. and R. Durbin, *Fast and accurate long-read alignment with Burrows-Wheeler transform.* Bioinformatics, 2010. **26**(5): p. 589-95.
- 126. Li, R., et al., *SOAP: short oligonucleotide alignment program*. Bioinformatics, 2008. **24**(5): p. 713-4.
- 127. Li, R., et al., *SOAP2: an improved ultrafast tool for short read alignment*. Bioinformatics, 2009. **25**(15): p. 1966-7.
- 128. Trapnell, C., L. Pachter, and S.L. Salzberg, *TopHat: discovering splice junctions with RNA-Seq.* Bioinformatics, 2009. **25**(9): p. 1105-11.
- 129. Grabherr, M.G., et al., *Full-length transcriptome assembly from RNA-Seq data without a reference genome.* Nat Biotechnol, 2011. **29**(7): p. 644-52.
- 130. Giardine, B., et al., *Galaxy: a platform for interactive large-scale genome analysis.* Genome Res, 2005. **15**(10): p. 1451-5.
- Thorvaldsdottir, H., J.T. Robinson, and J.P. Mesirov, *Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration*. Brief Bioinform, 2013. 14(2): p. 178-92.
- 132. Rosenbloom, K.R., et al., *ENCODE data in the UCSC Genome Browser: year* 5 update. Nucleic Acids Res, 2013. **41**(Database issue): p. D56-63.
- 133. Perco, P., et al., *Linking transcriptomic and proteomic data on the level of protein interaction networks*. Electrophoresis, 2010. **31**(11): p. 1780-9.

- 134. Dahlquist, K.D., et al., *GenMAPP*, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet, 2002. **31**(1): p. 19-20.
- 135. Shannon, P., et al., *Cytoscape: a software environment for integrated models of biomolecular interaction networks*. Genome Res, 2003. **13**(11): p. 2498-504.
- Alfarano, C., et al., *The Biomolecular Interaction Network Database and related tools 2005 update*. Nucleic Acids Res, 2005. **33**(Database issue): p. D418-24.
- 137. Hermjakob, H., et al., *IntAct: an open source molecular interaction database*. Nucleic Acids Res, 2004. **32**(Database issue): p. D452-5.
- 138. Gao, J., et al., *Integrating and annotating the interactome using the MiMI plugin for cytoscape*. Bioinformatics, 2009. **25**(1): p. 137-8.
- 139. Bader, G.D. and C.W. Hogue, An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003.
 4: p. 2.
- 140. Saito, R., et al., *A travel guide to Cytoscape plugins*. Nat Methods, 2012.9(11): p. 1069-76.
- 141. Thomas, P.D., et al., *PANTHER: a library of protein families and subfamilies indexed by function*. Genome Res, 2003. **13**(9): p. 2129-41.
- 142. Dennis, G., Jr., et al., *DAVID: Database for Annotation, Visualization, and Integrated Discovery*. Genome Biol, 2003. **4**(5): p. P3.
- 143. Cline, M.S., et al., *Integration of biological networks and gene expression data using Cytoscape*. Nat Protoc, 2007. **2**(10): p. 2366-82.
- 144. Bao, W., K.K. Kojima, and O. Kohany, *Repbase Update, a database of repetitive elements in eukaryotic genomes.* Mob DNA, 2015. **6**: p. 11.
- 145. Smit, A., R. Hubley, and G. Glusman. *RepeatMasker*. 2011, 8 June]; Available from: <u>http://www.repeatmasker.org/</u>.
- 146. De Santis, M. and C. Selmi, *The therapeutic potential of epigenetics in autoimmune diseases*. Clin Rev Allergy Immunol, 2012. **42**(1): p. 92-101.
- 147. Ihaka, R. and R. Gentleman, *R: A Language for Data Analysis and Graphics.* Journal of Computational and Graphical Statistics, 1996. **5**(3): p. 299-314.
- 148. Schumacher, R. and A. Lentz. *Dispelling the Myths*. 2011, 8 June]; Available from: <u>http://dev.mysql.com/tech-resources/articles/dispelling-the-myths.html</u>.
- 149. Karolchik, D., et al., *The UCSC Table Browser data retrieval tool*. Nucleic Acids Research, 2004. **32**(suppl 1): p. D493-D496.
- 150. Hsu, F., et al., *The UCSC Known Genes*. Bioinformatics, 2006. **22**(9): p. 1036-1046.
- 151. Bansal, V., et al., *An MCMC algorithm for haplotype assembly from wholegenome sequence data*. Genome Research, 2008. **18**(8): p. 1336-1346.
- 152. Aporntewan, C., Mutirangura, A., *Connection up- and down-regulation expression*

analysis of microarrays (CU-DREAM): a physiogenomic discovery tool. Asian Biomedicine, 2011. 5(2): p. 257-262.

153. Edgar, R., M. Domrachev, and A.E. Lash, *Gene Expression Omnibus: NCBI* gene expression and hybridization array data repository. Nucleic Acids Res, 2002. **30**(1): p. 207-10.

- 154. Barrett, T., et al., *NCBI GEO: archive for functional genomics data sets-update.* Nucleic Acids Res, 2013. **41**(Database issue): p. D991-5.
- 155. Bhardwaj, N. and J.M. Coffin, *Endogenous retroviruses and human cancer: is there anything to the rumors?* Cell Host Microbe, 2014. **15**(3): p. 255-9.
- 156. Absher, D.M., et al., Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet, 2013. 9(8): p. e1003678.
- 157. Lock, F.E., et al., *Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma*. Proc Natl Acad Sci U S A, 2014. **111**(34): p. E3534-43.
- 158. Sarot, E., et al., *Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene.* Genetics, 2004. **166**(3): p. 1313-21.
- 159. Landry, J.R., et al., *The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter*. Mol Biol Evol, 2002. **19**(11): p. 1934-42.
- 160. Feuchter-Murthy, A.E., J.D. Freeman, and D.L. Mager, *Splicing of a human* endogenous retrovirus to a novel phospholipase A2 related gene. Nucleic Acids Res, 1993. **21**(1): p. 135-43.
- 161. Renaudineau, Y., et al., *Characterization of the human CD5 endogenous retrovirus-E in B lymphocytes*. Genes Immun, 2005. **6**(8): p. 663-71.
- 162. Hung, T., et al., *The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression.* Science, 2015. **350**(6259): p. 455-9.
- 163. Slavoff, S.A., et al., *Peptidomic discovery of short open reading frameencoded peptides in human cells.* Nat Chem Biol, 2013. **9**(1): p. 59-64.
- 164. Trapnell, C., et al., *Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks*. Nat Protoc, 2012. **7**(3): p. 562-78.
- 165. Langmead, B., *Aligning short sequencing reads with Bowtie*. Curr Protoc Bioinformatics, 2010. **Chapter 11**: p. Unit 11 7.
- 166. Rosenbloom, K.R., et al., *The UCSC Genome Browser database: 2015 update*. Nucleic Acids Res, 2015. **43**(Database issue): p. D670-81.
- 167. Pruitt, K.D., et al., *RefSeq: an update on mammalian reference sequences*. Nucleic Acids Res, 2014. **42**(Database issue): p. D756-63.
- 168. Yates, A., et al., *Ensembl 2016*. Nucleic Acids Res, 2016. 44(D1): p. D710-6.
- Haas, B.J., et al., *De novo transcript sequence reconstruction from RNA-seq* using the Trinity platform for reference generation and analysis. Nat Protoc, 2013. 8(8): p. 1494-512.
- 170. Kent, W.J., *BLAT--the BLAST-like alignment tool.* Genome Res, 2002. **12**(4): p. 656-64.
- 171. Untergasser, A., et al., *Primer3--new capabilities and interfaces*. Nucleic Acids Res, 2012. **40**(15): p. e115.
- 172. Wu, Z., et al., DNA methylation modulates HERV-E expression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci, 2015. 77(2): p. 110-6.

- 173. Aporntewan, C., et al., *Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2.* PLoS One, 2011. **6**(3): p. e17934.
- 174. Mak, K.S., et al., *Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor.* Genome Biol, 2014. **15**(4): p. R58.
- 175. Collins, P.L., et al., *The histone methyltransferase SETDB1 represses* endogenous and exogenous retroviruses in B lymphocytes. Proc Natl Acad Sci U S A, 2015. **112**(27): p. 8367-72.
- Lukic, S., J.C. Nicolas, and A.J. Levine, *The diversity of zinc-finger genes on human chromosome 19 provides an evolutionary mechanism for defense against inherited endogenous retroviruses*. Cell Death Differ, 2014. 21(3): p. 381-7.
- 177. Turelli, P., et al., *Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements*. Genome Res, 2014. **24**(8): p. 1260-70.
- 178. Besliu, A.N., et al., *PI3K/Akt signaling in peripheral T lymphocytes from systemic lupus erythematosus patients*. Roum Arch Microbiol Immunol, 2009.
 68(2): p. 69-79.
- Lee, T.P., et al., Anti-ribosomal phosphoprotein autoantibody triggers interleukin-10 overproduction via phosphatidylinositol 3-kinase-dependent signalling pathways in lipopolysaccharide-activated macrophages. Immunology, 2009. 127(1): p. 91-102.
- Kahyo, T., et al., Identification and association study with lung cancer for novel insertion polymorphisms of human endogenous retrovirus. Carcinogenesis, 2013. 34(11): p. 2531-8.
- 181. Planque, S., et al., Autoantibodies to the epidermal growth factor receptor in systemic sclerosis, lupus, and autoimmune mice. FASEB J, 2003. **17**(2): p. 136-43.
- Imami, K., et al., *Temporal profiling of lapatinib-suppressed phosphorylation* signals in EGFR/HER2 pathways. Mol Cell Proteomics, 2012. 11(12): p. 1741-57.
- 183. Faulkner, G.J., et al., *The regulated retrotransposon transcriptome of mammalian cells*. Nat Genet, 2009. **41**(5): p. 563-71.
- 184. Reichmann, J., et al., *Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells.* PLoS Comput Biol, 2012. **8**(4): p. e1002486.
- 185. Tallack, M.R., et al., *A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells.* Genome Res, 2010. **20**(8): p. 1052-63.
- 186. Babaian, A., et al., Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene, 2015.
- 187. Stone, R.C., et al., *RNA-Seq for enrichment and analysis of IRF5 transcript expression in SLE*. PLoS One, 2013. **8**(1): p. e54487.

APPENDIX A

Integrative analysis

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

 Table A1. List of genes in MCODE clusters.

MCODE cluster	gene symbol	description
C1	REI	v-rel reticuloendotheliosis viral oncogene
CI	NLL	homolog (avian)
C1	CDC6	cell division cycle 6 homolog (S. cerevisiae)
C1	BRD2	bromodomain containing 2
C1	CKS2	CDC28 protein kinase regulatory subunit 2
C1	CCND1	cyclin D1
C1	SRPR	signal recognition particle receptor ('docking
		protein')
C1	HIST1H2AC	histone cluster 1, H2ac
C1	CDK2	cyclin-dependent kinase 2
C1	CCNB1	cyclin B1
C1	SMAD2	SMAD family member 2
C1	PPP2CA	protein phosphatase 2 (formerly 2A), catalytic
		subunit, alpha isoform
C1	GTF2H3	general transcription factor IIH, polypeptide 3,
C 1	TAG	34kDa
Cl	FAS	Fas (INF receptor superfamily, member 6)
Cl	ESRI	estrogen receptor 1
CI	TAFI	TAFI RNA polymerase II, TATA box binding
C1	TECO	protein (TBP)-associated factor, 250kDa
CI C1	ISC2	tuberous scierosis 2 national lastoma 1 (including astronomona)
CI C1		retinoblastoma 1 (including osteosarcoma)
CI	PPP2R1B	regulatory subunit A bata isoform
C1	MDM2	Mdm ² transformed 3T3 cell double minute 2
CI	3147831	n53 binding protein (mouse)
C1	JARID1A	jumonji, AT rich interactive domain 1A
C1	HNRNPA2B1	heterogeneous nuclear ribonucleoprotein
		A2/B1
C1	TMPO	thymopoietin
C1	ALG5	asparagine-linked glycosylation 5 homolog (S.
		cerevisiae, dolichyl-phosphate beta-
		glucosyltransferase)
C1	MYBL2	v-myb myeloblastosis viral oncogene homolog
~		(avian)-like 2
Cl	JUND	jun D proto-oncogene
C1	JUN	jun oncogene
Cl	TUBA3C	tubulin, alpha 3c
Cl	TIMM50	translocase of inner mitochondrial membrane
C1	TEDEO	50 homolog (S. cerevisiae)
	IEKF2	teiomeric repeat binding factor 2
CI	5P1	Sp1 transcription factor

MCODE_cluster	gene_symbol	description
C1	SNAPC3	small nuclear RNA activating complex,
		polypeptide 3, 50kDa
C1	SNAPC1	small nuclear RNA activating complex,
		polypeptide 1, 43kDa
C1	SHC1	SHC (Src homology 2 domain containing)
C1		transforming protein 1
Cl	RUVBL2	RuvB-like 2 (E. coli)
CI	PSMB2	proteasome (prosome, macropain) subunit, beta type 2
C1	PPIA	peptidylprolyl isomerase A (cyclophilin A)
C1	PIK3R1	phosphoinositide-3-kinase, regulatory subunit
C1	PCNA	proliferating cell nuclear antigen
C1	NFKB1	nuclear factor of kappa light polypentide gene
<u><u></u></u>		enhancer in B-cells 1 (p105)
C1	MTHFD1	methylenetetrahydrofolate dehydrogenase
		(NADP+ dependent) 1,
		methenyltetrahydrofolate cyclohydrolase,
		formyltetrahydrofolate synthetase
C1	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)
C1	HSPA9	heat shock 70kDa protein 9 (mortalin)
C1	HSPA8	heat shock 70kDa protein 8
C1	HSPA1L	heat shock 70kDa protein 1-like
C1	HIF1A	hypoxia-inducible factor 1, alpha subunit
		(basic helix-loop-helix transcription factor)
C1	HDAC1	histone deacetylase 1
C1	GRB2	growth factor receptor-bound protein 2
C1	ERBB3	v-erb-b2 erythroblastic leukemia viral
		oncogene homolog 3 (avian)
C1	EGFR	epidermal growth factor receptor
		(erythroblastic leukemia viral (v-erb-b)
C1		oncogene homolog, avian)
CI	CINNBI	catenin (cadherin-associated protein), beta 1,
C1	CD92	ookDa
		LDo2 IIIOlecule
	DIKUJ	D coll CL //wmphases 2
	BULS	D-cell ULL/lyinpnoma 3
	ACIGI	actin, gamma i
CI	NFKBIB	enhancer in B-cells inhibitor, beta
C1	E2F3	E2F transcription factor 3
C1	HNF4A	hepatocyte nuclear factor 4, alpha
C1	IKBKG	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma

MCODE_cluster	gene_symbol	description
C1	MYC	v-myc myelocytomatosis viral oncogene
		homolog (avian)
C1	HIST1H2BJ	histone cluster 1, H2bj
C1	MAP3K14	mitogen-activated protein kinase kinase kinase 14
C1	MSH2	mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
C1	E2F4	E2F transcription factor 4, p107/p130-binding
C1	E2F1	E2F transcription factor 1
C1	NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
C1	CDK6	cyclin-dependent kinase 6
C1	CDK4	cyclin-dependent kinase 4
C1	MT1G	metallothionein 1G
C1	NFIL3	nuclear factor, interleukin 3 regulated
C1	CREB3L3	cAMP responsive element binding protein 3-
		like 3
C1	CREB3L1	cAMP responsive element binding protein 3-
		like 1
C1	CREB3	cAMP responsive element binding protein 3
C1	RBL1	retinoblastoma-like 1 (p107)
C1	BATF3	basic leucine zipper transcription factor, ATF- like 3
C1	BATF	basic leucine zipper transcription factor, ATF-
		like
C1	TRAF2	TNF receptor-associated factor 2
C1	RBL2	retinoblastoma-like 2 (p130)
C1	IKBKB	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta
C1	DDIT3	DNA-damage-inducible transcript 3
C1	CEBPG	CCAAT/enhancer binding protein (C/EBP), gamma
C1	UXT	ubiquitously-expressed transcript
C1	E2F2	E2F transcription factor 2
C1	TEF	thyrotrophic embryonic factor
C1	HLF	hepatic leukemia factor
C1	DBP	D site of albumin promoter (albumin D-box)
		binding protein
C1	CEBPE	CCAAT/enhancer binding protein (C/EBP), ensilon
C1	CEBPD	CCAAT/enhancer binding protein (C/EBP),
C1	CEBPB	CCAAT/enhancer binding protein (C/EBP), beta

MCODE_cluster	gene_symbol	description
C2	PPT2	palmitoyl-protein thioesterase 2
C2	NEK2	NIMA (never in mitosis gene a)-related kinase 2
C2	IGFBP6	insulin-like growth factor binding protein 6
C2	IGF2	insulin-like growth factor 2 (somatomedin A)
C2	RECQL5	RecQ protein-like 5
C2	UCP2	uncoupling protein 2 (mitochondrial, proton carrier)
C2	BGLAP	bone gamma-carboxyglutamate (gla) protein (osteocalcin)
C2	RANBP9	RAN binding protein 9
C2	HTATIP	HIV-1 Tat interacting protein, 60kDa
C2	ATF1	activating transcription factor 1
C2	POLA2	polymerase (DNA directed), alpha 2 (70kD subunit)
C2	FOXO1	forkhead box O1
C2	NCOA6	nuclear receptor coactivator 6
C2	RIPK2	receptor-interacting serine-threonine kinase 2
C2	PCK1	phosphoenolpyruvate carboxykinase 1 (soluble)
C2	GEMIN4	gem (nuclear organelle) associated protein 4
C2	RFC2	replication factor C (activator 1) 2, 40kDa
C2	MYH10	myosin, heavy chain 10, non-muscle
C2	SERPINA1	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1
C2	TGFBR2	transforming growth factor, beta receptor II (70/80kDa)
C2	POU2F1	POU class 2 homeobox 1
C2	PEX6	peroxisomal biogenesis factor 6
C2	FADD	Fas (TNFRSF6)-associated via death domain
C2	PPP1CC	protein phosphatase 1, catalytic subunit, gamma isoform
C2	MITF	microphthalmia-associated transcription factor
C2	MGST3	microsomal glutathione S-transferase 3
C2	LIG1	ligase I, DNA, ATP-dependent
C2	SLC25A5	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5
C2	FASLG	Fas ligand (TNF superfamily, member 6)
C2	BCL2	B-cell CLL/lymphoma 2
C2	TPMT	thiopurine S-methyltransferase
C2	ERBB2	v-erb-b2 erythroblastic leukemia viral
		oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian)

MCODE cluster	gene symbol	description
<u>C2</u>	AURKR	aurora kinase B
C2	TROVE?	TROVE domain family member 2
C2	CASP3	caspase 3 apontosis-related cysteine pentidase
C^2	PPOX	protoporphyrinogen oxidase
C_2	KHDRBS1	KH domain containing RNA hinding signal
C2	KIIDKDSI	transduction associated 1
C2	PLEKHO1	pleckstrin homology domain containing,
		family O member 1
C2	ZFYVE9	zinc finger, FYVE domain containing 9
C2	GAPDH	glyceraldehyde-3-phosphate dehydrogenase
C2	SKP2	S-phase kinase-associated protein 2 (p45)
C2	PXN	paxillin
C2	ERBB4	v-erb-a erythroblastic leukemia viral oncogene
C2	G6PD	glucose-6-phosphate dehvdrogenase
C2	NOL3	nucleolar protein 3 (apontosis repressor with
~2		CARD domain)
C2	ATF2	activating transcription factor 2
C2	EP300	E1A binding protein p300
C2	NFKBIE	nuclear factor of kappa light polypeptide gene
		enhancer in B-cells inhibitor, epsilon
C2	TRAF6	TNF receptor-associated factor 6
C2	MAP3K7IP1	mitogen-activated protein kinase kinase kinase
		7 interacting protein 1
C2	SMAD4	SMAD family member 4
C2	BRCA1	breast cancer 1, early onset
C2	CDC25A	cell division cycle 25 homolog A (S. pombe)
C2	REL	v-rel reticuloendotheliosis viral oncogene
C2	CDC6	cell division cycle 6 homolog (S cerevisiae)
C2	BRD2	bromodomain containing 2
C_2	CCND1	cyclin D1
C2	CKS2	CDC28 protein kinase regulatory subunit 2
C2	HIST1H2AC	histone cluster 1, H2ac
C2	CCNB1	cyclin B1
C2	CDK2	cvclin-dependent kinase 2
C2	SRPR	signal recognition particle receptor ('docking
		protein')
C2	PPP2CA	protein phosphatase 2 (formerly 2A), catalytic
		subunit, alpha isoform
C2	SMAD2	SMAD family member 2
C2	ESR1	estrogen receptor 1
C2	GTF2H3	general transcription factor IIH, polypeptide 3

MCODE_cluster	gene_symbol	description
C2	FAS	Fas (TNF receptor superfamily, member 6)
C2	TAF1	TAF1 RNA polymerase II, TATA box binding
		protein (TBP)-associated factor, 250kDa
C2	TSC2	tuberous sclerosis 2
C2	RB1	retinoblastoma 1 (including osteosarcoma)
C2	JARID1A	jumonji, AT rich interactive domain 1A
C2	HNRNPA2B1	heterogeneous nuclear ribonucleoprotein A2/B1
C2	PPP2R1B	protein phosphatase 2 (formerly 2A), regulatory subunit A, beta isoform
C2	MDM2	Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse)
C2	TMPO	thymopoietin
C2	ALG5	asparagine-linked glycosylation 5 homolog (S. cerevisiae, dolichyl-phosphate beta-
C^{2}		jun D proto-oncogene
C_2	MVBL2	y myh myelohlastosis viral oncogene homolog
C2	WIDL2	(avian)-like 2
C2	IUN	iun oncogene
C2	SNAPC1	small nuclear RNA activating complex
02	Sidiret	polypeptide 1, 43kDa
C2	SHC1	SHC (Src homology 2 domain containing)
		transforming protein 1
C2	ERBB3	v-erb-b2 erythroblastic leukemia viral
		oncogene homolog 3 (avian)
C2	HSPA1L	heat shock 70kDa protein 1-like
C2	NFKB1	nuclear factor of kappa light polypeptide gene
		enhancer in B-cells 1 (p105)
C2	TIMM50	translocase of inner mitochondrial membrane
		50 homolog (S. cerevisiae)
C2	BCL3	B-cell CLL/lymphoma 3
C2	PPIA	peptidylprolyl isomerase A (cyclophilin A)
C2	HSPA8	heat shock 70kDa protein 8
C2	HIF1A	hypoxia-inducible factor 1, alpha subunit
		(basic helix-loop-helix transcription factor)
C2	TERF2	telomeric repeat binding factor 2
C2	PCNA	proliferating cell nuclear antigen
C2	ACTG1	actin, gamma 1
C2	CTNNB1	catenin (cadherin-associated protein), beta 1, 88kDa
C2	SP1	Sp1 transcription factor
C2	SNAPC3	small nuclear RNA activating complex,
		polypeptide 3, 50kDa

MCODE_cluster	gene_symbol	description
C2	HDAC1	histone deacetylase 1
C2	MTHFD1	methylenetetrahydrofolate dehydrogenase
		(NADP+ dependent) 1,
		methenyltetrahydrofolate cyclohydrolase,
		formyltetrahydrofolate synthetase
C2	TUBA3C	tubulin, alpha 3c
C2	RUVBL2	RuvB-like 2 (E. coli)
C2	GRB2	growth factor receptor-bound protein 2
C2	PSMB2	proteasome (prosome, macropain) subunit, beta type, 2
C2	EGFR	epidermal growth factor receptor
		(erythroblastic leukemia viral (v-erb-b)
		oncogene homolog, avian)
C2	HSPA9	heat shock 70kDa protein 9 (mortalin)
C2	PIK3R1	phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
C2	BIRC5	baculoviral IAP repeat-containing 5 (survivin)
C2	MAD2L1	MAD2 mitotic arrest deficient-like 1 (veast)
C2	NFKBIB	nuclear factor of kappa light polypeptide gene
		enhancer in B-cells inhibitor, beta
C2	E2F3	E2F transcription factor 3
C2	CDC2	cell division cycle 2, G1 to S and G2 to M
C2	HNF4A	hepatocyte nuclear factor 4, alpha
C2	IKBKG	inhibitor of kappa light polypeptide gene
		enhancer in B-cells, kinase gamma
C2	MYC	v-myc myelocytomatosis viral oncogene
~~	จุฬาลงเ	homolog (avian)
C2	HIST1H2BJ	histone cluster 1, H2bj
C2	MAP3K14	mitogen-activated protein kinase kinase kinase 14
C2	MSH2	mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
C2	E2F4	E2F transcription factor 4, p107/p130-binding
C2	E2F1	E2F transcription factor 1
C2	NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
C2	CDK4	cyclin-dependent kinase 4
C2	CDK6	cyclin-dependent kinase 6
C2	MT1G	metallothionein 1G
C2	CREB3	cAMP responsive element binding protein 3
C2	CREB3L3	cAMP responsive element binding protein 3-
		like 3
C2	CREB3L1	cAMP responsive element binding protein 3- like 1

C2BATFbasic leucine zipper transcription factor, ATF-likeC2RBL1retinoblastoma-like 1 (p107)C2BATF3basic leucine zipper transcription factor, ATF-like 3C2TRAF2TNF receptor-associated factor 2C2RBL2retinoblastoma-like 2 (p130)C2IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase betaC2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PARD6A par-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
likeC2RBL1retinoblastoma-like 1 (p107)C2BATF3basic leucine zipper transcription factor, ATF-like 3C2TRAF2TNF receptor-associated factor 2C2RBL2retinoblastoma-like 2 (p130)C2IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase betaC2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPECCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PARD6A par-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2RBL1retinoblastoma-like 1 (p107)C2BATF3basic leucine zipper transcription factor, ATF-like 3C2TRAF2TNF receptor-associated factor 2C2RBL2retinoblastoma-like 2 (p130)C2IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase betaC2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), epsilonC2DBPD site of albumin promoter (albumin D-box) binding proteinC2DBPD site of albumin promoter (albumin D-box) binding proteinC3MARK4MAP/microtubule affinity-regulating kinase 4C3PARD6A par-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2BATF3basic leucine zipper transcription factor, ATF-like 3C2TRAF2TNF receptor-associated factor 2C2RBL2retinoblastoma-like 2 (p130)C2IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase betaC2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), epsilonC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPBCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PARD6A par-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
like 3C2TRAF2TNF receptor-associated factor 2C2RBL2retinoblastoma-like 2 (p130)C2IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase betaC2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2DBPD site of albumin promoter (albumin D-box) binding proteinC2DBPD site of albumin promoter (albumin D-box) binding proteinC3MARK4MAP/microtubule affinity-regulating kinase 4 (C. elegans)C3PARD6A ParAD6Bpar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2TRAF2TNF receptor-associated factor 2C2RBL2retinoblastoma-like 2 (p130)C2IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase betaC2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), detaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), detaC3MARK4MAP/microtubule affinity-regulating kinase 4 (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2RBL2retinoblastoma-like 2 (p130)C2IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase betaC2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4 protein kinase C, iotaC3PRKCIprotein kinase C, zetaC3PARD6A par-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2IKBKBinhibitor of kappa light polypeptide gene enhancer in B-cells, kinase betaC2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4 protein kinase C, iotaC3PARD6A PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPECCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2CEBPGCCAAT/enhancer binding protein (C/EBP), gammaC2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2DDIT3DNA-damage-inducible transcript 3C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4 protein kinase C, iotaC3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2E2F2E2F transcription factor 2C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4 protein kinase C, iotaC3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2UXTubiquitously-expressed transcriptC2HLFhepatic leukemia factorC2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4 protein kinase C, iotaC3PRKCIprotein kinase C, iotaC3PRKCZprotein kinase C, zetaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2HLFhepatic leukemia factorC2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4 protein kinase C, iotaC3PRKCIprotein kinase C, iotaC3PRKCZprotein kinase C, zetaC3PARD6Apar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2TEFthyrotrophic embryonic factorC2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2CEBPECCAAT/enhancer binding protein (C/EBP), epsilonC2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2CEBPBepsilon CCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2CEBPBCCAAT/enhancer binding protein (C/EBP), betaC2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2DBPbeta D site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2DBPD site of albumin promoter (albumin D-box) binding proteinC2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2CEBPDbinding protein CCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C2CEBPDCCAAT/enhancer binding protein (C/EBP), deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
deltaC3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C3MARK4MAP/microtubule affinity-regulating kinase 4C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C3PRKCIprotein kinase C, iotaC3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C3PARD6Apar-6 partitioning defective 6 homolog alpha (C. elegans)C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C3PRKCZprotein kinase C, zetaC3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C3PARD6Bpar-6 partitioning defective 6 homolog beta (C. elegans)C3YWHAHtyrosine 3-monooxygenase/tryptophan 5-
C3 YWHAH elegans) tyrosine 3-monooxygenase/tryptophan 5-
C3 YWHAH tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, eta
C2 DADD2 non 2 nortitioning defective 2 homeles (C
CS PARDS par-s partitioning detective 5 nomolog (C.
CA SMADA SMAD family member A
C4 SWAD4 SWAD family memoer 4 C4 ATE2 sociulting transcription factor 2
C4 ATT2 activating transcription factor 2 C4 ICEPD6 inculin like growth factor binding protain 6
C4 IOFBF0 Insumi-like growth factor binding protein 0
c4 Prefice protein phosphatase 1, catalytic subunit,
CA PCK1 phosphoapolpyruyata carboyykinasa 1
(coluble)
C4 IGF2 insulin-like growth factor 2 (somatomedin A)
MCODE_cluster

C4
C4
C4
C4
C4
C4
C4
C4
C5
C5

, Chulalongkorn University

APPENDIX B

Human Endogenous Retrovirus analysis

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Superfamily Family Name/group HERV9, LTR12, LTR12B, LTR12C, LTR12D, ERV9 LTR12E, LTR12F HERV1 I. HERV1_LTRa, HERV1 LTRb, HERV1 HERV1_LTRc, HERV1_LTRd, HERV1_LTRe HERV15 HERV15, LTR15 HERV17 HERV17, LTR17 LTR23, LTR44, LTR56 HERV23 HERV3 HERV3, LTR4 HERV30, LTR30 HERV30 HERV35I, LTR35, LTR35A, LTR35B HERV35 HERV38 LTR38, LTR38B, LTR38C HERV39 LTR39 HERV4 HERV4 I HERV43 LTR43, LTR43B HERV45 LTR45, LTR45B, LTR45C HERV46 LTR46 HERV49 LTR49 HERV70 **LTR70** HERVE HERVE, HERVE_a HERVFc1, HERVFc1_LTR1, HERVFc1_LTR2, HERVFc1 HERVFc1 LTR3 HERVFc2 HERVFc2 HERVFH19 HERVFH19 HERVFH21 HERVFH21, LTR21A, LTR21B HERVH HERVH, LTR7, LTR7A, LTR7B, LTR7C, LTR7Y 1. ERV1 HERVH48 HERVH48, MER48 HERVI, LTR10A, LTR10B, LTR10B1, LTR10C, HERVI LTR10D, LTR10E, LTR10G HERVIP10F, HERVIP10FH, LTR10F HERVIP10 HERVP71A, LTR71A, LTR71B HERVP71A HERVS71 HERVS71, LTR6A, LTR6B HERVW Harlequin_I, LTR2, LTR2B, LTR2C HUERSP1 HUERSP1, LTR8, LTR8A HUERSP2, LTR1, LTR1B, LTR1C, LTR1D HUERSP2 HUERSP3, HUERSP3b, LTR9, LTR9B HUERSP3 LOR1 LOR1, LOR1a, LOR1b, LTR26, LTR26B, LTR26E LTR19 LTR19, LTR19A, LTR19B, LTR19C LTR24, LTR24B, LTR24C LTR24 LTR25 LTR25 LTR27, LTR27B LTR27 LTR28 LTR28 LTR29 LTR29 LTR31 LTR31 LTR34 LTR34 LTR36 LTR36 LTR37A, LTR37B LTR37 LTR48, LTR48B LTR48 LTR51 LTR51 LTR54 LTR54, LTR54B

Table B1. Full list of HERV superfamilies, families and HERV names

Superfamily	Family	Name/group
	LTR58	LTR58
	LTR59	LTR59
	LTR60	LTR60
	LTR61	LTR61
	LTR64	LTR64
	LTR65	LTR65
	LTR68	LTR68
	LTR72	LTR72, LTR72B
	LTR75_1	LTR75_1
	LTR76	LTR76
	LTR77	LTR77
	LTR78	LTR78, LTR78B
	MER101	MER101, MER101B
	MER110	MER110, MER110A
	MER31	MER31, MER31A, MER31B
		MER34, MER34A, MER34A1, MER34B, MER34C,
	MEK34	MER34C2, MER34D
	MER39	MER39, MER39B
	MED 4	MER4, MER4A, MER4A1, MER4B, MER4C,
	MEK4	MER4D, MER4D0, MER4D1, MER4E, MER4E1
	NED 41	MER41, MER41A, MER41B, MER41C, MER41D,
	MER41	MER41E, MER41G
	MER49	MER49
1. ERV1 (cont.)	MER50	MER50, MER50B, MER50C
()	MEDGI	MER51, MER51A, MER51B, MER51C, MER51D.
	MERSI	MER51E
	MER52	MER52, MER52A, MER52C, MER52D
		MER57, MER57A, MER57A1, MER57B1,
	MER57	MER57B2, MER57C1, MER57C2, MER57D.
		MER57E1, MER57E2, MER57E3, MER57F
	MEDCI	MER61, MER61A, MER61B, MER61C, MER61D,
	MEKOI	MER61E, MER61F
	MER65	MER65, MER65A, MER65B, MER65C, MER65D
	MEDCO	LTR73, MER66, MER66A, MER66B, MER66C,
	MEKOO	MER66D
	MER67	MER67A, MER67B, MER67C, MER67D
	MER72	MER72, MER72B
	MER83	MER83, MER83A, MER83B, MER83C
	MER84	MER84
	MER87	MER87, MER87B
	MER89	MER89
	MER90	MER90a
	MER92	MER92A, MER92B
	PAB	PABL_A, PABL_B
	PRIMA4	PRIMA4, PRIMAX
	PRIMA41	PRIMA41
	PrimLTR79	PrimLTR79

Superfamily	Family	Name/group			
	HERVK10/	I TD5 I TD5 II. I TD5A I TD5D IIEDVV			
	HERVK (HML-2)	LIKJ, LIKJ_HS, LIKJA, LIKJB, HEKVK			
	HERVK14/	HERVK14, HERVK14C, LTR14, LTR14A, LTR14B,			
	HERVK (HML-1)	LTR14C			
	HERVK9/	HERVK9 MER9a1 MER9a2 MER9a3 MER9B			
	HERVK (HML-3)	TIER V RS, WIERSul, WIERSul, WIERSul, WIERSul, WIERSU			
	HERVK13/	HERVK13 LTR13 LTR13A			
	HERVK (HML-4)				
2. ERVK	HERVK22/	HERVK22, LTR22, LTR22A, LTR22B, LTR22C			
	HERVK (HML-5)	,,,			
	HERVK3/	HERVK3, LTR3, LTR3A, LTR3B			
	HERVK (HML-6)				
	HERVKIID/	HERVK11D, MER11D			
	HERVK (HML-/)				
	$\frac{\text{HEKVKII}}{(\text{ID}M)}$	HERVK11, MER11A, MER11B, MER11C			
	$\Pi \subseteq \mathbf{K} \vee \mathbf{K} (\Pi \mathbb{ML} - \delta)$				
	$\frac{\Pi E K V K C 4}{\Gamma E D V V (LIMI 10)}$	HERVKC4			
	$\frac{112KVK(\Pi WIL-10)}{ERV3.16A2}$	EBV3 16A3			
	EIX V J-TUAJ	$\mathbf{FRVI} \mathbf{FRVI} \mathbf{B}_{\mathbf{A}} \mathbf{FRVI} \mathbf{F} \mathbf{HEPVI} \mathbf{MIT}_{\mathbf{A}} 1$			
		$MIT2\Delta 2$ MIT2B1 MIT2B2 MIT2B3 MIT2B4			
	ERVL	MI T2B5 MI T2C1 MI T2C2 MI T2D MI T2F			
		MIT2E, MIT2E, MIT2E, MIT2E, MIT2E,			
		HERVIG LTRIGA LTRIGAI LTRIGA? LTRIGR			
	HFRV16	ITRI6RI ITRI6RI ITRI6RI ITRI6RI ITRI6RI			
	TILIKVIO	I TR16D? I TR16F1 I RF16F2			
	HERV18	HERVL18 LTR18A LTR18B			
	HERV32	HERVL32, LTR32			
	HERV47	LTR47A, LTR47B			
	HERVL33	LTR33, LTR33A, LTR33B, LTR33C, LTR41, LTR41B			
	HERVL40	HERVL40. LTR40a. LTR40A1. LTR40b. LTR40c			
	HERVL42	LTR42			
	HERVL50	LTR50			
	HERVL52	LTR52			
3. EKVL	HERVL53	LTR53, MER88			
	HERVL54	MER54A, MER54B			
	HERVL57	LTR57			
	HERVL66	HERVL66, LTR66			
	HERVL67	LTR67B			
	HERVL68	MER68, MER68B			
	HERVL69	LTR69			
	HERVL70	MER70, MER70A, MER70B, MER70C			
	HERVL73	MER73			
	HERVL74	HERVL74, MER74A, MER74B, MER74C			
	HERVL75	LTR75, LTR75B			
	LTR62	LTR62			
	LTR79	LTR79			
	LTR80	LTR80A, LTR80B			
	LTR82	LTR82A, LTR82B			
	LTR83	LTR83			

Superfamily	Family	Name/group						
	LTR84	LTR84a, LTR84b						
3 FRVL (cont.)	I TR86	LTR86A1, LTR86A2, LTR86B1, LTR86B2,						
	LIKOO	LTR86C						
$\mathbf{J}_{\mathbf{L}} = \mathbf{L}_{\mathbf{L}} = $	MER21	MER21, MER21A, MER21B, MER21C						
	MER76	MER76						
	MER77	MER77, MER77B						
		MLT1, MLT1A, MLT1A0, MLT1A1, MLT1B,						
4. ERVL-MaLR		MLT1C, MLT1D, MLT1E, MLT1E1, MLT1E1A,						
	MLT1	MLT1E2, MLT1E3, MLT1F, MLT1F1, MLT1F2,						
		MLT1G, MLT1G1, MLT1G3, MLT1H,						
		MLT1H1, MLT1H2, MLT1I, MLT1J, MLT1J1,						
		MLT1J2, MLT1K, MLT1L, MLT1M, MLT1N2						
	MST	MST, MSTA, MSTB, MSTB1, MSTB2, MSTC,						
	10151	MSTD						
	THE1	MLT, THE1, THE1A, THE1B, THE1C, THE1D						
	LTR11	LTR11						
5. Unclassified ERVs	LTR55	LTR55						
	LTR87	LTR87						
	LTR89	LTR89						
	MER95	MER95						

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

GFO accession	HERV	Do	own DEG	Up DEG		
	HERV pattern Down DEG OR p-value All 0.0813	p-value	OR	p-value		
	All	0.0813	0	0.1023	0	
	Sense	0.0875	0	0.1103	0	
H3K4me1_GSE59695	Anti-sense	0.0879	0	0.1108	0	
	Intragenic	0.8569	0.32634303	1.2136	0.10259369	
	Intergenic	0.0813	0	0.1023	0	
	All	0.0737	0	0.0779	0	
H3K4me2_GSE22859	Sense	0.0803	0	0.0836	0	
	Anti-sense	0.08	0	0.084	0	
	Intragenic	0.9258	0.33007014	0.7913	0.00926265	
	Intergenic	0.0737	0	0.0779	0	
	All	0	0	0.0002	0	
	Sense	0	0	0.0003	0	
H3K9_GSE44084	Anti-sense	0	0	0.0003	0	
	Intragenic	0	0	0	0	
/	Intergenic	0	0	0.0002	0	
	All	0.1177	0.0327894	0.1679	0.01952111	
	Sense	0.1262	0.03714177	0.1802	0.02331161	
H3K9me3_GSE25282	Anti-sense	0.1267	0.03741682	0.1809	0.02355726	
	Intragenic	0.7097	0.74286987	0.7097	0.48876999	
	Intergenic	0.1177	0.0327894	0.1679	0.01952111	
	All	0.1169	0	0.0706	0	
	Sense	0.1264	0	0.0772	0	
H3K9me3_GSE41040	Anti-sense	0.127	0	0.0777	0	
	Intragenic	0.8875	0.07448786	0.9484	0.31674741	
	Intergenic	0.1169	0	0.0706	0	
	All	0.1455	0.01405811	0.1177	0	
	Sense	0.1561	0.01684388	0.1264	0	
SETDB1_GSE45175	Anti-sense	0.1568	0.01702487	0.1269	0	
	Intragenic	1.9527	0.22299657	0.4346	0.00033427	
	Intergenic	0.1455	0.01405811	0.1177	0	
	All	0	0	0	0	
	Sense	0	0	0	0	
SETDB1_GSE73231	Anti-sense	0	0	0	0	
	Intragenic	0.0027	0	0	0	
	Intergenic	0	0	0	0	

Table B2. Association analysis results of all solo-LTRs in gene knockdown studies.

GEO accession	HERV	Dow	vn DEG	Up DEG	
	pattern	OR	p-value	OR	p-value
	All	0.1602	0	0.1927	0
	Sense	0.3296	0	0.3892	0
H3K4me1_GSE59695	Anti-sense	0.2838	0	0.3523	0
	Intragenic	1.0799	0.6225193	1.2162	0.11243188
	Intergenic	0.1698	0	0.1971	0
	All	0.1559	0	0.1611	0
H3K4me2_GSE22859	Sense	0.3422	0	0.3521	0
H3K4me2_GSE22859	Anti-sense	0.3044	0	0.2928	0
	Intragenic	1.1494	0.09783741	1.0342	0.73252917
	Intergenic	0.1634	0	0.1695	0
	All	0	0	0.0005	0
	Sense	0	0	0.0014	0
H3K9_GSE44084	Anti-sense	0	0	0.0012	0
	Intragenic	0	0	0	0
	Intergenic	0	0	0.0006	0
	All	0.2387	0.10893156	0.3409	0.10377159
	Sense	0.5973	0.62800843	0.8533	0.73862702
H3K9me3_GSE25282	Anti-sense	0.3094	0.10849076	0.7738	0.72506798
	Intragenic	0.6662	0.73308789	1.1662	0.79825837
	Intergenic	0.2526	0.11913333	0.3608	0.11699692
	All	0.2137	0	0.1574	0
	Sense	0.3971	0	0.3373	0
H3K9me3_GSE41040	Anti-sense	0.3737	SITY 0	0.3104	0
	Intragenic	0.911	0.20823849	1.1729	0.00489918
	Intergenic	0.2277	0	0.1649	0
	All	0.2955	0.07817655	0.2098	1.60E-07
	Sense	0.3752	0.07143696	0.4111	0.00074238
SETDB1_GSE45175	Anti-sense	0.6706	0.46481864	0.3956	0.00045769
	Intragenic	2.3334	0.10046444	0.4385	0.00511858
	Intergenic	0.3127	0.08857196	0.2221	3.70E-07
	All	0.0001	0	0	0
	Sense	0.0005	0	0.0001	0
SETDB1_GSE73231	Anti-sense	0.0004	0	0.0001	0
	Intragenic	0.0073	0	0	0
	Intergenic	0.0002	0	0	0

Table B3. Association analysis results at HERV superfamily level in geneknockdown studies.**ERV1/HERVE solo-LTR**

GEO accession	hervI ist		Down DEG	Ŭ	Up DEG		
	101 (200	OR	p-value	OR	p-value		
	All	inf		1 0.4094	0.37015791		
	Sense	1.0	0241	1 1.0241	1		
TRIM28_gse61639	Anti-sen	se inf	0.604290	54 0.3869	0.23918297		
	Intrageni	ic	0 0.111063	57 3.1105	0.20838854		
	Intergeni	ic inf		1 0.4333	0.38633196		
ERV2/HERVK solo-L1	T R						
	All	0.7441	0.06655765	0.75	0.01822931		
	Sense	0.8406	0.38116924	0.8236	0.19818313		
H3K4me1_GSE59695	Anti-sense	0.6858	0.04193788	0.7341	0.03038839		
	Intragenic	0.6627	0.29184958	1.3459	0.1592962		
	Intergenic	0.7178	0.04488832	0.7511	0.0203067		
	All	0.6458	9.00E-08	0.7226	0.00055385		
	Sense	0.7124	0.00048932	0.7414	0.00787723		
H3K4me2_GSE22859	Anti-sense	0.7027	0.00016332	0.7845	0.02332106		
	Intragenic	1.0725	0.6392624	0.8471	0.47155876		
	Intergenic	0.6329	4.00E-08	0.7377	0.00134659		
	All	0	0	0	0		
	Sense	0	0	0	0		
H3K9_GSE44084	Anti-sense	0	0	0	0		
	Intragenic	0	0.00011923	0	0.00037728		
	Intergenic	0	0	0	0		
	All	0.6912	0.74268879	1.7289	0.33941363		
	Sense	0.8794	ยวจัย 1	1.184	0.78444887		
H3K9me3_GSE25282	Anti-sense	0.7691	1 1	2.1548	0.1120043		
	Intragenic	0	VERSITY 1	2.809	0.11373028		
	Intergenic	0.757	1	1.5146	0.47094426		
	All	0.7614	6.91E-05	0.5894	0		
	Sense	0.7869	0.00314985	0.6751	0		
H3K9me3_GSE41040	Anti-sense	0.7792	0.00140923	0.6031	0		
	Intragenic	0.9593	0.84259056	1.1175	0.26775267		
	Intergenic	0.771	0.00016059	0.5716	0		
	All	1.3829	0.6145428	0.678	0.11622941		
	Sense	1.026	1	0.6884	0.24640907		
SETDB1_GSE45175	Anti-sense	1.6157	0.39825251	0.8114	0.4581713		
	Intragenic	2.0054	0.28864514	0.1728	0.04376174		
	Intergenic	1.1778	0.80090074	0.7427	0.21581801		

GEO accession	hervList	Ľ	Jown DEG	Up DEG		
	nor verst	OR	p-value	OR	p-value	
	All	0.0021	0	0	0	
	Sense	0.0048	0	0	0	
SETDB1_GSE73231	Anti-sense	0	0	0	0	
	Intragenic	0.022	0	0	0	
	Intergenic	0.0023	0	0	0	
	All	3.4576	0.13870927	1.8438	0.46310899	
	Sense	4.1057	0.06620708	4.1057	0.06620708	
TRIM28_gse61639	Anti-sense	0.4486	0.68244559	0.4486	0.68244559	
	Intragenic	0	1	2.3391	0.38244404	
	Intergenic	3.7866	0.12278983	2.0192	0.44698496	
ERV3/HERVL solo-L	ZTR	Mar.				
	All	0.1524	0	0.1919	0	
	Sense	0.3808	2.00E-08	0.4232	0	
H3K4me1_GSE59695	Anti-sense	0.342	0	0.3898	0	
	Intragenic	1.2886	0.121324	1.3982	0.005604	
	Intergenic	0.1612	0	0.1994	0	
H3K4me2_GSE22859	All	0.1559	0	0.1558	0	
	Sense	0.3566	0	0.3348	0	
	Anti-sense	0.3394	0	0.3193	0	
	Intragenic	1.1677	0.058753	1.029	0.77176	
	Intergenic	0.1656	0	0.1652	0	
	All	0	0	0.0005	0	
	Sense	0	0	0.0015	0	
H3K9_GSE44084	Anti-sense	0	0	0.0014	0	
	Intragenic	0	0	0	0	
	Intergenic	0	0	0.0006	0	
	All	0.2337	0.105291	0.3337	0.09913	
	Sense	0.638	0.636504	0.6379	0.507711	
H3K9me3_GSE25282	Anti-sense	0.3363	0.128247	0.4371	0.166142	
	Intragenic	1.1084	1	0.6332	0.611038	
	Intergenic	0.2467	0.114772	0.2465	0.027327	
	All	0.2158	0	0.1611	0	
	Sense	0.417	0	0.3679	0	
H3K9me3_GSE41040	Anti-sense	0.4198	0	0.3352	0	
	Intragenic	0.9308	0.336312	1.2266	0.000245	
	Intergenic	0.2247	0	0.1703	0	

GEO accession	hervI ist	Do	own DEG	Up DEG		
GEO accession SETDB1_GSE45175 SETDB1_GSE73231 TRIM28_gse61639	ner vErst	OR	p-value	OR p	-value	
	All	0.2001	0.015209	0.1923	2.00E-08	
SETDB1_GSE45175	Sense	0.4008	0.087008	0.37	7.86E-05	
	Anti-sense	0.2801	0.019479	0.3059	1.76E-06	
	Intragenic	2.2178	0.110567	0.4555	0.00565	
	Intergenic	0.2113	0.018047	0.2031	5.00E-08	
	All	0.0001	0	0	0	
	Sense	0.0005	0	0.0001	0	
SETDB1_GSE73231	Anti-sense	0.0005	0	0.0001	0	
	Intragenic	0.0069	0	0	0	
	Intergenic	0.0002	0	0	0	
	All	inf	1	0.4008	0.364187	
	Sense	inf	0.604783	1.094	1	
TRIM28_gse61639	Anti-sense	inf	0.603397	1.0094	1	
	Intragenic	0	0.107354	2.9565	0.214325	
	Intergenic	inf	1	0.4232	0.379514	

ERV3/HERVL-MaLR solo-LTR

-					
	All	0.0897	0	0.1131	0
	Sense	0.1431	0	0.1768	0
H3K4me1_GSE59695	Anti-sense	0.1341	0	0.1718	0
	Intragenic	1.0176	0.93954	1.3002	0.025795
	Intergenic	0.0908	0	0.1145	0
	All	0.0827	0	0.0869	0
H3K4me2_GSE22859	Sense	0.1456	0	0.1399	0
	Anti-sense	0.1276	0	0.131	0
	Intragenic	1.0549	0.505659	0.9249	0.392258
	Intergenic	0.0831	0	0.088	0
	All	0	0	0.0003	0
	Sense	0	0	0.0005	0
H3K9_GSE44084	Anti-sense	0	0	0.0004	0
	Intragenic	0	0	0	0
	Intergenic	0	0	0.0003	0
	All	0.1292	0.038735	0.1845	0.024744
	Sense	0.2198	0.095387	0.2196	0.01913
H3K9me3_GSE25282	Anti-sense	0.1955	0.078759	0.1953	0.0132
	Intragenic	0.631	0.739804	0.4853	0.23468
	Intergenic	0.1307	0.039506	0.1866	0.025446

GEO accession	hervI ist		Down DEG			EG
	ner vEist	OR	р	-value OR	p-v	alue
	All		0.1599	0.0179	0.1295	0
	Sense		0.272	0.064896	0.193	4.00E-08
SETDB1_GSE45175	Anti-sense		0.1674	0.008541	0.1714	1.00E-08
	Intragenic		2.7784	0.074748	0.4619	0.001657
	Intergenic		0.1617	0.018418	0.131	0
	All		0	0	0	0
	Sense		0.0001	0	0	0
SETDB1_GSE73231	Anti-sense		0.0001	0	0	0
	Intragenic		0.0039	0	0	0
	Intergenic		0	0	0	0
	All	-	inf	1	0.2218	0.224513
	Sense	12	inf	1	0.3769	0.347344
TRIM28_gse61639	Anti-sense		inf	1	0.3354	0.316772
	Intragenic		0	0.02012	1.6832	0.706967
	Intergenic		inf	1	0.2242	0.226683

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Term - Biological Function	PValue	FDR
GO:0007155~cell adhesion	1.79E-05	0.031974
GO:0022610~biological adhesion	1.80E-05	0.032142
GO:0006793~phosphorus metabolic process	2.62E-04	0.465859
GO:0006796~phosphate metabolic process	2.62E-04	0.465859
GO:0048666~neuron development	4.63E-04	0.822743
GO:0030182~neuron differentiation	6.18E-04	1.096611
GO:0030030~cell projection organization	8.91E-04	1.578573
GO:0007409~axonogenesis	0.00102	1.805016
GO:0007167~enzyme linked receptor protein signaling pathway	0.001112	1.965951
GO:0048667~cell morphogenesis involved in neuron differentiation	0.001147	2.028433
GO:0007268~synaptic transmission	0.001204	2.127704
GO:0048812~neuron projection morphogenesis	0.001457	2.569179
GO:0015698~inorganic anion transport	0.00163	2.870146
GO:0007242~intracellular signaling cascade	0.001669	2.938353
GO:0048858~cell projection morphogenesis	0.001707	3.004174
GO:0016337~cell-cell adhesion	0.001809	3.180801
GO:0006468~protein amino acid phosphorylation	0.001993	3.498344
GO:0007214~gamma-aminobutyric acid signaling pathway	0.002155	3.777331
GO:0051056~regulation of small GTPase mediated signal transduction	0.002454	4.29141
Term - Cellular Component		
GO:0044459~plasma membrane part	4.44E-08	6.25E-05
GO:0045202~synapse	1.67E-07	2.34E-04
GO:0044456~synapse part	1.16E-06	0.001629
GO:0030054~cell junction	3.33E-06	0.004693
GO:0005626~insoluble fraction	3.78E-06	0.005322
GO:0005886~plasma membrane	5.92E-06	0.008338
GO:0005624~membrane fraction	5.56E-05	0.07818
GO:0042995~cell projection	2.42E-04	0.340513
GO:0031226~intrinsic to plasma membrane	2.81E-04	0.395478
GO:0005856~cytoskeleton	2.95E-04	0.41425
GO:0000267~cell fraction	3.98E-04	0.559286
GO:0045211~postsynaptic membrane	5.04E-04	0.707481
GO:0005912~adherens junction	8.37E-04	1.17214
GO:0044463~cell projection part	0.00126	1.759215
GO:0005887~integral to plasma membrane	0.001434	1.999142
GO:0043005~neuron projection	0.002449	3.392555
GO:0070161~anchoring junction	0.00261	3.611965
GO:0009986~cell surface	0.003131	4.317599

Table B4. Functional annotation analysis of intragenic HERV associated over-
expressed genes in SLE**ERV1/ERVE**

Term - Biological Function	PValue	FDR
GO:0015629~actin cytoskeleton	0.003381	4.655253
GO:0034707~chloride channel complex	0.00359	4.936643
Term - Molecular Function		
GO:0030695~GTPase regulator activity	3.21E-06	0.004994
GO:0060589~nucleoside-triphosphatase regulator activity	5.56E-06	0.00864
GO:0030554~adenyl nucleotide binding	9.09E-06	0.01412
GO:0001883~purine nucleoside binding	1.11E-05	0.01722
GO:0001882~nucleoside binding	1.54E-05	0.0239
GO:0005524~ATP binding	1.69E-05	0.026262
GO:0032559~adenyl ribonucleotide binding	1.78E-05	0.0276
GO:0017076~purine nucleotide binding	7.04E-05	0.10943
GO:0032553~ribonucleotide binding	1.30E-04	0.20205
GO:0032555~purine ribonucleotide binding	1.30E-04	0.20205
GO:0005083~small GTPase regulator activity	1.87E-04	0.29078
GO:0017124~SH3 domain binding	2.30E-04	0.35657
GO:0043167~ion binding	2.43E-04	0.37777
GO:0019904~protein domain specific binding	4.09E-04	0.63349
GO:0005096~GTPase activator activity	4.97E-04	0.77051
GO:0000166~nucleotide binding	7.17E-04	1.10807
GO:0008047~enzyme activator activity	0.00105	1.62024
GO:0019899~enzyme binding	0.001095	1.6888
GO:0003779~actin binding	0.0014	2.15369
GO:0008237~metallopeptidase activity	0.001614	2.47891
GO:0008092~cytoskeletal protein binding	0.00178	2.7310
GO:0043169~cation binding	0.001864	2.85831
GO:0046872~metal ion binding	0.00235	3.5918
GO:0005230~extracellular ligand-gated ion channel activity	0.002552	3.89370
GO:0005254~chloride channel activity	0.002552	3.89370
GO:0008081~phosphoric diester hydrolase activity	0.002559	3.9045
GO:0005089~Rho guanyl-nucleotide exchange factor activity	0.003133	4.76008
GO:0005085~guanyl-nucleotide exchange factor activity	0.003181	4.83196

ERV3-ERVL

Term - Biological Function		
GO:0022610~biological adhesion	1.46E-06	0.002627
GO:0007155~cell adhesion	1.47E-06	0.002638
GO:0051270~regulation of cell motion	1.50E-05	0.026957
GO:0007214~gamma-aminobutyric acid signaling pathway	3.63E-05	0.065231
GO:0042692~muscle cell differentiation	3.71E-05	0.066667
GO:0040012~regulation of locomotion	3.99E-05	0.07173
GO:0015698~inorganic anion transport	6.31E-05	0.113489

Term - Biological Function	PValue	FDR
GO:0030334~regulation of cell migration	1.30E-04	0.233112
GO:0006897~endocytosis	1.34E-04	0.240103
GO:0010324~membrane invagination	1.34E-04	0.240103
GO:0007167~enzyme linked receptor protein signaling pathway	1.36E-04	0.244618
GO:0016337~cell-cell adhesion	1.63E-04	0.292148
GO:0007229~integrin-mediated signaling pathway	1.86E-04	0.334262
GO:0006821~chloride transport	2.16E-04	0.387625
GO:0048666~neuron development	2.53E-04	0.454706
GO:0030182~neuron differentiation	4.55E-04	0.815529
GO:0051146~striated muscle cell differentiation	4.67E-04	0.836333
GO:0034330~cell junction organization	5.22E-04	0.93459
GO:0007268~synaptic transmission	5.89E-04	1.053337
GO:0007044~cell-substrate junction assembly	7.99E-04	1.427642
GO:0034329~cell junction assembly	9.05E-04	1.614692
GO:0006820~anion transport	9.19E-04	1.639583
GO:0007242~intracellular signaling cascade	0.001008	1.796532
GO:0051056~regulation of small GTPase mediated signal transduction	0.001046	1.864234
GO:0030030~cell projection organization	0.001073	1.911849
GO:0001932~regulation of protein amino acid phosphorylation	0.001244	2.21331
GO:0051240~positive regulation of multicellular organismal process	0.00147	2.610331
GO:0045087~innate immune response	0.001674	2.968469
GO:0007160~cell-matrix adhesion	0.001727	3.060784
GO:0019226~transmission of nerve impulse	0.001827	3.23439
GO:0007169~transmembrane receptor protein tyrosine kinase signaling	0.002305	4.064838
GO:0009187~cyclic nucleotide metabolic process	0.002666	4.686284
Term - Cellular Component		
GO:0044459~plasma membrane part	8.54E-14	1.20E-10
GO:0005886~plasma membrane	5.23E-11	7.37E-08
GO:0045202~synapse	2.06E-10	2.91E-07
GO:0030054~cell junction	8.39E-09	1.18E-05
GO:0044456~synapse part	7.98E-08	1.12E-04
GO:0031226~intrinsic to plasma membrane	2.62E-07	3.69E-04
GO:0005887~integral to plasma membrane	1.16E-06	0.00164
GO:0005626~insoluble fraction	1.70E-06	0.002393
GO:0005912~adherens junction	4.64E-06	0.006539
GO:0042995~cell projection	6.75E-06	0.009522
GO:0005624~membrane fraction	1.35E-05	0.019065
GO:0016323~basolateral plasma membrane	1.39E-05	0.019591
GO:0005856~cytoskeleton	2.33E-05	0.032855
GO:0070161~anchoring junction	2.50E-05	0.035281
GO:0045211~postsynaptic membrane	7.80E-05	0.109871
GO:0030055~cell-substrate junction	8.40E-05	0.118403

Term - Biological Function	PValue	FDR
GO:0031410~cytoplasmic vesicle	1.36E-04	0.19202
GO:0009986~cell surface	1.43E-04	0.2013
GO:0000267~cell fraction	1.61E-04	0.22613
GO:0031982~vesicle	2.14E-04	0.30094
GO:0005925~focal adhesion	3.52E-04	0.49455
GO:0044463~cell projection part	3.68E-04	0.51797
GO:0005924~cell-substrate adherens junction	5.24E-04	0.7365
GO:0019898~extrinsic to membrane	8.23E-04	1.15374
GO:0016023~cytoplasmic membrane-bounded vesicle	0.001068	1.49601
GO:0034707~chloride channel complex	0.001113	1.55758
GO:0015629~actin cytoskeleton	0.001197	1.67426
GO:0031091~platelet alpha granule	0.001271	1.77669
GO:0009898~internal side of plasma membrane	0.001299	1.81633
GO:0014069~postsynaptic density	0.001963	2.73301
GO:0031988~membrane-bounded vesicle	0.001981	2.75704
GO:0043005~neuron projection	0.002085	2.90026
GO:0012505~endomembrane system	0.002572	3.56573
Term - Molecular Function		
GO:0030695~GTPase regulator activity	2.97E-07	4.61E-0
GO:0060589~nucleoside-triphosphatase regulator activity	5.61E-07	8.70E-0
GO:0017124~SH3 domain binding	1.53E-06	0.00237
GO:0003779~actin binding	4.71E-06	0.00730
GO:0008092~cytoskeletal protein binding	1.20E-05	0.01860
GO:0008047~enzyme activator activity	2.13E-05	0.03298
GO:0019904~protein domain specific binding	3.88E-05	0.06017
GO:0005096~GTPase activator activity	6.14E-05	0.09520
GO:0005509~calcium ion binding	6.25E-05	0.09683
GO:0005254~chloride channel activity	6.52E-05	0.1010
GO:0005083~small GTPase regulator activity	7.27E-05	0.11259
GO:0031404~chloride ion binding	1.33E-04	0.20674
GO:0016917~GABA receptor activity	1.46E-04	0.22553
GO:0005253~anion channel activity	1.53E-04	0.23663
GO:0043167~ion binding	1.61E-04	0.2500
GO:0004890~GABA-A receptor activity	2.72E-04	0.42087
GO:0043168~anion binding	8.01E-04	1.23474
GO:0004222~metalloendopeptidase activity	8.38E-04	1.29096
GO:0004725~protein tyrosine phosphatase activity	8.38E-04	1.29096
GO:0008509~anion transmembrane transporter activity	0.001414	2.16941
GO:0005085~guanyl-nucleotide exchange factor activity	0.002035	3.10874
GO:0046872~metal ion binding	0.002544	3.87207
GO:0043169~cation binding	0.002626	3.99568
GO:0008237~metallopeptidase activity	0.002713	4.12444
GO:0001883~purine pucleoside binding	0.00311	4 71525

Term - Biological Function	PValue	FDR
LTR7		
Term - Molecular Function		
GO:0046870~cadmium ion binding	1.77E-06	0.0021640
GO:0005507~copper ion binding	6.99E-04	0.8497616
GO:0031267~small GTPase binding	0.002104	2.5375235
GO:0051020~GTPase binding	0.002614	3.1438198
LTR33		
Term - Biological Function		
GO:0048666~neuron development	4.06E-05	0.06711
GO:0007155~cell adhesion	1.73E-04	0.286508
GO:0030182~neuron differentiation	1.76E-04	0.291357
GO:0022610~biological adhesion	1.77E-04	0.291991
GO:0009187~cyclic nucleotide metabolic process	9.48E-04	1.556741
GO:0009123~nucleoside monophosphate metabolic process	9.98E-04	1.638803
GO:0046058~cAMP metabolic process	0.001749	2.85506
GO:0046928~regulation of neurotransmitter secretion	0.001749	2.85506
GO:0007268~synaptic transmission	0.002512	4.075657
Term - Cellular Component		
GO:0005856~cytoskeleton	3.65E-04	0.468627
GO:0031012~extracellular matrix	3.74E-04	0.480741
GO:0045202~synapse	4.91E-04	0.630079
GO:0044459~plasma membrane part	6.53E-04	0.837969
GO:0005578~proteinaceous extracellular matrix	6.57E-04	0.842559
GO:0030054~cell junction	7.28E-04	0.933463
GO:0016010~dystrophin-associated glycoprotein complex	0.00113	1.444845
GO:0005886~plasma membrane	0.002405	3.052403
GO:0019898~extrinsic to membrane	0.003448	4.349105
GO:0044456~synapse part	0.003648	4.596318
Term - Molecular Function		
GO:0005509~calcium ion binding	1.18E-06	0.001638
GO:0043167~ion binding	6.25E-05	0.086697
GO:0008081~phosphoric diester hydrolase activity	6.33E-05	0.087909
GO:0004115~3',5'-cyclic-AMP phosphodiesterase activity	1.33E-04	0.184525
GO:0043169~cation binding	4.66E-04	0.645097
GO:0046872~metal ion binding	6.23E-04	0.861255
GO:0004114~3',5'-cyclic-nucleotide phosphodiesterase activity	0.00281	3.832194
GO:0008092~cytoskeletal protein binding	0.002847	3.881698
GO:0004112~cyclic-nucleotide phosphodiesterase activity	0.003165	4 307123

PValue FDR

MLTID		
Term - Biological Function		
GO:0007155~cell adhesion	5.70E-08	9.68E-0
GO:0022610~biological adhesion	5.81E-08	9.87E-0
GO:0019226~transmission of nerve impulse	4.60E-05	0.07808
GO:0007268~synaptic transmission	5.42E-05	0.09204
GO:0009187~cyclic nucleotide metabolic process	1.23E-04	0.20801
GO:0016337~cell-cell adhesion	2.25E-04	0.38177
GO:0050808~synapse organization	2.65E-04	0.44858
GO:0048666~neuron development	2.75E-04	0.46583
GO:0030182~neuron differentiation	3.44E-04	0.58258
GO:0007156~homophilic cell adhesion	4.15E-04	0.70224
GO:0007519~skeletal muscle tissue development	4.32E-04	0.73196
GO:0060538~skeletal muscle organ development	4.32E-04	0.73196
GO:0050806~positive regulation of synaptic transmission	6.44E-04	1.08867
GO:0030030~cell projection organization	7.24E-04	1.22297
GO:0051971~positive regulation of transmission	9.59E-04	1.61669
GO:0031646~positive regulation of neurological system process	0.001224	2.05985
GO:0031644~regulation of neurological system process	0.001383	2.32412
GO:0050804~regulation of synaptic transmission	0.002181	3.64253
GO:0043062~extracellular structure organization	0.002215	3.69695
GO:0009123~nucleoside monophosphate metabolic process	0.002479	4.13030
GO:0007242~intracellular signaling cascade	0.002561	4.26353
Term - Cellular Component		
GO:0045202~synapse	1.92E-07	2.56E-0
GO:0030054~cell junction	2.37E-06	0.00315
GO:0044459~plasma membrane part	4.93E-06	0.0065
GO:0044456~synapse part	6.19E-06	0.00824
GO:0005886~plasma membrane	1.42E-05	0.01890
GO:0005856~cytoskeleton	1.88E-05	0.02499
GO:0019898~extrinsic to membrane	2.41E-05	0.03213
GO:0015629~actin cytoskeleton	7.29E-05	0.09697
GO:0044463~cell projection part	1.65E-04	0.22001
GO:0005912~adherens junction	5.24E-04	0.69576
GO:0031226~intrinsic to plasma membrane	7.44E-04	0.98554
GO:0014069~postsynaptic density	8.12E-04	1.07537
GO:0005913~cell-cell adherens junction	8.50E-04	1.12636
GO:0042995~cell projection	0.001079	1.42775
GO:0005626~insoluble fraction	0.001148	1.51721
GO:0070161~anchoring junction	0.00124	1.63870
GO:0043197~dendritic spine	0.001248	1.6484

Term - Biological Function	PValue	FDR
GO:0005887~integral to plasma membrane	0.001615	2.129118
GO:0030425~dendrite	0.002772	3.628239
GO:0043005~neuron projection	0.003025	3.953829
GO:0042734~presynaptic membrane	0.003259	4.252815
GO:0009986~cell surface	0.003588	4.673085
Term - Molecular Function		
GO:0043167~ion binding	2.11E-05	0.030787
GO:0005509~calcium ion binding	2.18E-05	0.031814
GO:0030695~GTPase regulator activity	2.77E-05	0.040375
GO:0060589~nucleoside-triphosphatase regulator activity	3.91E-05	0.057097
GO:0043169~cation binding	7.78E-05	0.113479
GO:0046872~metal ion binding	8.12E-05	0.118447
GO:0005096~GTPase activator activity	1.00E-04	0.146583
GO:0060090~molecular adaptor activity	6.31E-04	0.916449
GO:0017124~SH3 domain binding	0.001193	1.727193
GO:0004114~3',5'-cyclic-nucleotide phosphodiesterase activity	0.001686	2.433324
GO:0004112~cyclic-nucleotide phosphodiesterase activity	0.001973	2.841981
GO:0003779~actin binding	0.002221	3.193667
GO:0005083~small GTPase regulator activity	0.002867	4.104468
MSTD		
Term - Biological Function		
GO:0007155~cell adhesion	5 69E-06	0.009175
GO:0022610~biological adhesion	5.82E-06	0.009379
GO:0016337~cell-cell adhesion	2.04E-05	0.032842
Term - Cellular Component	2.0 12 00	0.032012
GO:0044459~plasma membrane part	6 09E-04	0 771758
Term - Molecular Function	0.091 01	0.771700
GO:0008092~cvtoskeletal protein binding	0.001085	1.482524
GO:0004114~3' 5'-cyclic-nucleotide phosphodiesterase activity	0.002104	2.856019
GO:0004112~cvclic-nucleotide phosphodiesterase activity	0.002372	3 214559
GO:0003779~actin binding	0.002794	3 77533
	0.002771	5.17555
THE1B		
Term - Biological Function		
GO:0007155~cell adhesion	2.37E-07	4.03E-04
GO:0022610~biological adhesion	2.41E-07	4.09E-04
GO:0019226~transmission of nerve impulse	1.63E-04	0.277736
GO:0007268~synaptic transmission	2.33E-04	0.395441
GO:0060538~skeletal muscle organ development	2.77E-04	0.470567
GO:0007519~skeletal muscle tissue development	2.77E-04	0.470567
GO:0048666~neuron development	3.33E-04	0.56555
GO:0030182~neuron differentiation	9.02E-04	1.524226

Term - Biological Function	PValue	FDR
Term - Cellular Component		
GO:0030054~cell junction	6.37E-07	8.57E-0
GO:0044459~plasma membrane part	6.92E-07	9.31E-0
GO:0045202~synapse	8.47E-07	0.00113
GO:0044456~synapse part	2.52E-06	0.00339
GO:0005626~insoluble fraction	3.32E-05	0.04470
GO:0005856~cytoskeleton	2.22E-04	0.29840
GO:0005886~plasma membrane	3.37E-04	0.452
GO:0005624~membrane fraction	4.33E-04	0.58144
GO:0009986~cell surface	7.12E-04	0.95297
GO:0000267~cell fraction	0.001052	1.40587
GO:0005912~adherens junction	0.001193	1.59224
GO:0009897~external side of plasma membrane	0.002373	3.14510
GO:0070161~anchoring junction	0.002576	3.40918
GO:0015629~actin cytoskeleton	0.003254	4.28938
Term - Molecular Function		
GO:0003779~actin binding	4.04E-04	0.58051
GO:0005509~calcium ion binding	5.65E-04	0.80991
GO:0004115~3',5'-cyclic-AMP phosphodiesterase activity	6.52E-04	0.93441
GO:0008092~cytoskeletal protein binding	6.98E-04	0.99988
GO:0004222~metalloendopeptidase activity	0.00132	1.88397
GO:0004114~3',5'-cyclic-nucleotide phosphodiesterase activity	0.001325	1.89062
GO:0008237~metallopeptidase activity	0.00139	1.9827
GO:0004112~cyclic-nucleotide phosphodiesterase activity	0.001552	2.21150
GO:0019899~enzyme binding	0.002558	3.62014

Chulalongkorn University

Term - Biological Function		
GO:0007155~cell adhesion	3.02E-06	0.00493
GO:0022610~biological adhesion	3.09E-06	0.005053
GO:0050808~synapse organization GO:0007185~transmembrane receptor protein tyrosine phosphatase	8.02E-04	1.302657
signaling pathway	0.002877	4.599809
Term - Cellular Component		
GO:0005886~plasma membrane	2.61E-04	0.336618
GO:0044459~plasma membrane part	2.66E-04	0.343818
GO:0016010~dystrophin-associated glycoprotein complex	0.001193	1.53141
GO:0031224~intrinsic to membrane	0.00214	2.732228
GO:0030054~cell junction	0.002424	3.090474
GO:0016021~integral to membrane	0.002829	3.597619
Term - Molecular Function		
GO:0005216~ion channel activity	9.81E-04	1.34800

Term - Biological Function	PValue	FDR
GO:0022838~substrate specific channel activity	0.001295	1.77532
GO:0019198~transmembrane receptor protein phosphatase activity	0.001308	1.793287
GO:0030695~GTPase regulator activity	0.001481	2.027636
GO:0015267~channel activity	0.001763	2.409153
GO:0022803~passive transmembrane transporter activity	0.001801	2.460709
GO:0060589~nucleoside-triphosphatase regulator activity	0.001801	2.460709
GO:0005509~calcium ion binding	0.002021	2.757363

THE1D

Term - Biological Function		
GO:0050808~synapse organization	2.39E-04	0.397623
GO:0008104~protein localization	3.92E-04	0.65175
GO:0043112~receptor metabolic process	9.71E-04	1.608948
GO:0043062~extracellular structure organization	0.002499	4.091787
GO:0060538~skeletal muscle organ development	0.002593	4.242038
GO:0007519~skeletal muscle tissue development	0.002593	4.242038
Term - Cellular Component		
GO:0045202~synapse	1.52E-06	0.001972
GO:0044456~synapse part	1.94E-05	0.02517
GO:0044459~plasma membrane part	1.81E-04	0.233886
GO:0030054~cell junction	2.78E-04	0.359693
GO:0005886~plasma membrane	8.86E-04	1.141762
GO:0042995~cell projection	0.001719	2.203694
GO:0043005~neuron projection	0.001898	2.429726
GO:0016010~dystrophin-associated glycoprotein complex	0.001914	2.450228
GO:0009986~cell surface	0.002212	2.827497
GO:0015629~actin cytoskeleton	0.0024	3.06347
GO:0044463~cell projection part	0.002731	3.479362
Term - Molecular Function		
GO:0005509~calcium ion binding	5.91E-05	0.083317
GO:0043167~ion binding	3.25E-04	0.456931
GO:0004114~3',5'-cyclic-nucleotide phosphodiesterase activity	4.39E-04	0.616967
GO:0030695~GTPase regulator activity	4.66E-04	0.65522
GO:0004112~cyclic-nucleotide phosphodiesterase activity	5.16E-04	0.725414
GO:0060589~nucleoside-triphosphatase regulator activity	5.94E-04	0.834066
GO:0043169~cation binding	0.001482	2.069051
GO:0003779~actin binding	0.001493	2.083938
GO:0046872~metal ion binding	0.001764	2.457321
GO:0008081~phosphoric diester hydrolase activity	0.001768	2.462905
GO:0019198~transmembrane receptor protein phosphatase activity	0.002408	3.340632
GO:0017016~Ras GTPase binding	0.002655	3.678445
GO:0005083~small GTPase regulator activity	0.003237	4.466659

VITA

Mr. Pumipat was born on March 4th, 1983 in Sing Buri, Thailand. He graduated with the Bachelor of Science degree in Agricultural Biotechnology with first class honor from Kasetsart University in 2005 and Master of Science degree in Bioinformatics from King Mongkut's University of Technology Thonburi in 2008. He got a Royal Golden Jubilee (RGJ) Ph.D. Scholarship from the Thailand Research Fund (TRF) and participated in Biomedical Science program, Graduate School, Chulalongkorn University for philosophy degree in 2010.

Chulalongkorn University