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CHAPTER 1 

INTRODUCTION 

The general applications of biometric functions can be categorized into two 
types, namely, identification and authentication. The former is a verification and 
validation of an individual person from a database or a group of persons. The latter is 
an acceptation of individual person. Biometrics is a person authentication and 
identification research area related to several real organs. Typically, it can be divided 
into 2 groups, namely, physiology and behavior of human beings. Examples of 
physiology group are fingerprints, face shape, hand geometry, ear shape, DNA, and eye 
irises. Examples of behavior group are gait, keystroke, running patterns, speech, and 
signature. Recently, both classes of biometrics are likely to be imitated due to medical 
advances and development of information technology such as plastic surgery, high 
resolution devices, and high technology digital tools. Such operations undermine the 
biometric identification process. Meanwhile, physiological signals are considered as the 
other biometric trait since it is generated from human body. The signal from each 
person is distinct and arduous to imitate. Thus, it is a good candidate for biometric 
trait. One interesting signal is brain wave. Currently, there are several noninvasive 
measures or capturing the brain activities that produce different types of signals. 
Magnetoencephalography (MEG) records magnetic signals of the brain activity. A 
function Magnetic Resonance Imaging (fMRI) is used for capturing brain metabolic 
activity. An electroencephalography (EEG) is a medical method that records scalp 
electrical activity of millions neurons from the same position generated by human 
brain [1]. Both MEG and fMRI require complex machines to measure and take a long 
time of recording which make them unsuitable for real time processing. Fortunately, 
EEG signal can be efficiently applied to daily life research and application such as 
neuroPhone [2], neural sensing healthcare [3], and monitoring driving car [4]. It has 
been said that EEG signals can be applied to many sectors such as medical center, 
online security, biometric mobile, and so on.  
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Due to noninvasive, inexpensive, and portable EEG device, many researches 
focus on using EEG as biometrics such as Poulos [5] using Autoregressive (AR) model 
and computational geometry method for feature extraction and Learning Vector 
Quantization (LVQ) as the main classifiers. Paranjape et al. [6] used AR and 
variance/covariance matrix with statistical tools for modeling of EEG signal from a single 
channel.  

Additionally, EEG is able to diagnose the function of the brain. The functional 
area in human brain can be categorized into four areas, namely, frontal, parietal, 
temporal, and occipital lobe. The frontal lobe is responsible for conscious thoughts. 
The parietal lobe integrates sensory information from various senses. The temporal 
lobe performs auditory sense, while sense of sight is processed by the occipital lobe. 
Moreover, EEG can be grouped into five different rhythms based on their frequencies: 
Delta rhythm (1-4 Hz) is seen during deep sleep in adults and in infants as an unusual 
activity; Theta rhythm (4-8 Hz) occurs in drowsiness in adults and during waking up of 
children; Alpha rhythm (8-12 Hz) is seen normally during relaxed with eye closed; Beta 
rhythm (12-30 Hz) is associated with anxious thinking and active concentration; and 
Gamma rhythm (30-100 Hz) is associated with certain cognitive senses. There have 
been many researchers focusing on person identification based on EEG with grouped 
of rhythms. Palaniappan's research [7] [8] used energy feature of gamma rhythm within 
Visual Evoked Potential (VEP) to identify individuals, K-Nearest Neighbors, and Elman 
Neural Network (ENN) as classifiers. Rocca et al. [9] used three electrodes with sub-
band of EEG signal while the subjects were in resting and closed eyes. AR stochastic 
and polynomial approach were used for feature extraction. 

There are many feature extraction methods of EEG proposed in biometrics field. 
Most methods required long data length and involved sophisticated techniques. 
Therefore, those methods are time-consuming and impractical for real-time security 
applications. The issue is a significant problem which is essential to be further explored. 
Since the minimum identification time is vital to system performance, this study 
proposes an EEG biometric method for real life and real time application by time and 
frequency techniques called power spectrogram and Singular Decomposition Value 
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(SVD) to extract main features from the EEG signal. The next problem is how many 
channels are the highest accuracy of identification?  This study will determine the 
minimized EEG data length and fewer channels to identify subjects by practical 
implementation, such as minimized data length. Afterward, the shorter minimized 
channels will be revealed by brute force experiment to obtain the significant EEG 
channels for biometric. Some subject data sets are conducted in resting state because 
subjects are not engaged in any activities which affect the EEG signal detection [13]. It 
has been estimates that the EEG signals are rather smooth with less artifacts. To 
confirm the experimental results, the experimental data length and channels are 
performed on unknown outsiders with the proposed classification algorithm.     

Objectives 

The objectives of this dissertation are to develop techniques: 

1. To classify an individual with a minimum EEG identification time. 
2. To reduce the number of location of scalp electrodes or channel and use only 

the necessary channels for personal identification.  
3. To identify insiders and an outsiders by using EEG power spectrogram. 

Scope of Work 

1. The feature extraction of EEG signal using power spectrogram and SVD is 
proposed to obtain singular value of the signal. These features are used to 
classify a person with minimum identification time.  

2. The experiments with combining channels are implemented to minimize the 
significant location of scalp electrodes or channels leading to accurate 
identification. Moreover, comparison with Preecha's work [10] is performed.  

3. The limitations of this work are (1) the data set obtained from the research 
data set of Preecha's work [10]. There were 40 subjects with 16 EEG channels. 
The subjects were in resting state with opened eyes. They were asked not to 
perform any task or movement during recording EEG signal. Processed 3,000 
data points (15 seconds recording) of each channel are selected. (2) a published 
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data set [11, 12] which consists of 109 subjects performing in resting state 1 
minute with opened eyes, 1 minute closed eyes, three 2 minutes running of 4 
tasks (2 motor and 2 motor-imagery), 64 EEG channels, international 10-10 
system, are recorded at a sampling rate of 160 Hz.  

Research Contribution 

The significant outcomes of this research that are conducive toward the area 
of person identification are as follows: (1) application of EEG to correctly identify a 
person, (2) important location of scalp to the application of scalp to the application, 
and (3) minimum identification time obtained by the proposed algorithm. 

Dissertation Organization 

This dissertation is organized as follows. Chapter 2 discusses the literature 
review. Some general backgrounds are described in Chapter 3. Chapter 4 proposes the 
methodology. The experiment and results are given in Chapter 5. Some important 
findings are discussed in Chapter 6, while the final remarks and future work are 
concluded in Chapter 7. 

 

 



  

 

CHAPTER 2 

LITERATURE REVIEW 

There are studies involving EEG signal in person identification. Subasi and 
Gursoy [14] used signal processing and EEG analysis to predict whether each patient 
had epileptic seizure or not. The signals were divided into the frequency sub-bands 
using DWT and a set of statistical features was extracted from the sub-bands to 
represent the distribution of wavelet coefficients. Principal Components Analysis (PCA), 
Independent Components Analysis (ICA), and Linear Discriminant Analysis (LDA) were 
used to reduce the dimension of data. Then these features were used as inputs to a 
Support Vector Machine (SVM) with two discrete outputs: epileptic seizure or not.  

Muthuswamya and Thakor [15] reviewed and revealed some drawbacks and 
limitations of EEG analysis techniques such as Fast Fourier Transform, Autoregressive, 
and Wavelet. They used EEG signals recorded in animals during hypoxic-asphyxic injury 
to brain for classification.  

Mustafa et al. [16] used time-frequency method to analyze EEG signal. 
Generally, EEG signal is analyzed by many methods such as time based, frequency 
based, time-frequency based, and wavelet. They used Gray Level Co-occurrence Matrix 
to extract the texture features from the spectrogram image. Then, k-NN and PCA were 
used to classify spectrogram image with recognition accuracy 70.83%.  

For security approach, there are many works using EEG as biometric. This is a 
novel and challenging study that integrates many fields to achieve high identification 
accuracy. Different kinds of feature extractions and classification approaches were 
revealed.  For example, the study of Marcos et al. [17] reviewed EEG subject 
identification. There were various feature extraction and classification techniques that 
yielded high accuracy. They contended that EEG biometrics research encompassed 
variables that affected the accuracy such as time, frequency, space, recording, and 
algorithms. 
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Poulos et al. [5] presented EEG signals as biometrics using AR and 
computational geometry methods for feature extraction. Classification of accuracy 
percentage ranged from 80 to 95 with 4 subjects. The work of Poulos et al. [18] 
improved accuracy of person identification with respect to non-linear model and 
Learning Vector Quantization (LVQ) classifier. The accuracy percentage increased to 
99.5 with 4 subjects. 

Palaniappan's research [7] [8] [8] used energy feature of gamma band within 
Visual Evoked Potential (VEP) to identify individuals. They used a large group of 102 
subjects and a high number of VEP signals. They chose k-Nearest Neighbors and Elman 
Neural Network (ENN) as classifiers. The results showed that the maximum accuracy 
percentage of ENN and k-NN was about 98.12 and 96.13. For this reason, they indicated 
that the significant potential of brain electrical activity could be considered as 
biometrics from the experimental results.         

Paranjap et al. [6] used AR and variance/covariance matrix with statistical tools 
for modeling of EEG signal from a single channel. There were 40 subjects in resting 
state with eyes opened and eyes closed.  The accuracy percentage was 80. 

Marcel et al. [19] employed Surface Laplacian, Power Spectral Density (PSD), 
and statistical tools to extract EEG signals as significant features. In their paper, there 
were 9 subjects with HTER, ((False Acceptance + False Rejection)/2), 19.3-42.6 
classification accuracy.             

Shedeed [20] applied Discrete Fourier Transform and Wavelet packet 
decomposition for feature extraction and applied Multi-layer perceptron to classify 
each subject with 4 channels C3, C4, P3, and P4. There were 3 subjects in resting and 
eye closed in the experiment. The result reached 100 percent.  

Cempirek and Stastny [21] used sub-band of EEG frequency transformed into 
spectra by using Fourier Transform. They proposed LVQ neural network to classify the 
EEG spectra on 8 subjects. The subjects sat and closed eyes in the experiment. The 
results showed that EEG spectra analysis based on Euclidean distance was unable to 
classify some subjects. In addition, an average accuracy was about 80 percent. Besides, 
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the analysis of the segment length influenced on the subject identification success. 
They revealed that they could lower the frequency resolution to 1/90 Hz or 1/126 Hz 
for higher classification score without significant impact on the classification. However, 
the frequency resolution was not suitable for daily life applications.  

The research of Rocca et al. [9] used three electrodes with sub-band of EEG 
signal to classify 45 persons in resting and closed eyes. Recognition rate was about 
98.73 percentage. Autoregressive stochastic and polynomial approach were used for 
feature extraction.    

Yazdani et al. [22] employed AR and the peak of power spectral density (PSD) 
for feature extraction and used LDA for dimension reduction. The k-NN was used as a 
classifier. The accuracy percentage reached 100 with 20 subjects. 

Riera et al. [23] introduced feature extraction using five models combinations: 
AR, Fourier Transform, Mutual Information, Coherence, and Cross Correlation. Fisher's 
Discriminant Analysis was applied as the classifier of this study. There were 51 subjects 
and 36 intruders. The accuracy percentage was between 87.5 and 98.1. 

Abdullah [24] reported features to be extracted using AR model to obtain the 
feature set. Results showed that data from eyes open and eyes closed using 4 channels 
gave good classification rates of 96% and 97%, respectively. The above studies can be 
summarized in Table 1.  
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Table 1. Summarized related works. 
Research Feature #Subjects % Accuracy Classifier 

Poulos AR, geometry 4 80-95 LVQ 

Paranjap AR,VAR/COV 40 80 Statistics 

Palaniappan AR, gamma 102,20,40 95-99 k-NN, ENN, LVQ 

Marcel PSD 9 (HTER)19.3-42.6 GMM 

Yazdani AR PSD 20 100 LDA 

Riera AR+PSD+MI+COH+ 
correlation 

51 87.5-98.1 Linear Classifier 

Abdullah AR 10 96-97 ANN 

Shedeed DFT WPD 3 100 ANN 

Rocca AR 45 98.73 Polynomial 

Maiorana AR 50 >90 k-NN 

 
Table 1 shows that most feature extraction methods of EEG signals are based 

on signal processing methods such as AR, PSD, and DFT. Each classification approach 
depends on properties of extracted features.  

The study of DelPozo et al. [25] applied Short Time Fourier Transform (STFT) 
to 6 publicly available EEG databases to obtain high identification accuracy. The 
maximum number of subjects in that experiment was 20. The accuracy was from 92.5 
to 95 percent at 4 to 6 seconds. Rocca et al [26] proposed the spectral coherence-
based connectivity as feature extraction of EEG signals for person identification. The 
work used the data set from EEG Motor Movement/Imagery Dataset    [12]. There were 
108 subjects with opened and closed eyes in resting state. They divided the brain into 
3 regions. The electrode pair in each region matched score fusion according to a 
forward/backward to improve the identification accuracy. The accuracy could reach 
100 percent in frontal lobe. However, the main design problem of the biometric system 
was due to many electrodes to be placed on the scalp.     

Maiorana’s work [27] used AR model with reflection coefficient and k-NN as 
classifier with 50 subjects. The EEG data of each subject were recorded in resting state 
with longitudinal data. The results showed that AR method gave a discriminating 
capability higher than using PSD and COH as feature extraction methods. The 
identification time for a subject was less than a minute. 
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Preecha's works [28] [29] applied Independent Component Analysis (ICA) for 
signal cleaning and multilayer perceptron neural networks for signal classification. From 
the experimental results, 4 channels F7, C3, P3, and O1 could identify a group of 20 
users with high accuracy. The insider and outsider person identification of Preecha’s et 
al [10] experiment revealed that position P4 was the significant location for 
identification. The identification time for a subject was 5 seconds.  

However, shorter identification time of EEG are rarely published. It is an 
important point of security view if EEG data are applied to the real applications. It can 
be summarized that many researches involving EEG biometrics and EEG classification 
use complex method that are time-consuming for identification which is hard to 
implement for practical real time security applications. This study develops an EEG 
biometric method for real life and real time application by using time and frequency 
techniques called Short Time Fourier Transform (STFT) or spectrogram and Singular 
Decomposition Value (SVD) to extract EEG signals. This research focuses on person 
identification using power spectrogram. Furthermore, classification techniques are 
experimented to achieve high accuracy and to discover a proper classifier. The results 
are minimized EEG data signals length and shorter minimum channel combinations to 
correctly identify the subjects. 



  

 

CHAPTER 3 

GENERAL BACKGROUND 

3.1 Short Time Fourier Transform (STFT) 

A signal can be expressed in time domain. However, the frequency domain of 
the signal obtains significant frequency information providing available signal analysis. 
Fourier Transform is a method transforming time domain into frequency domain of 
signals to obtain the magnitude of frequency components. The Fourier Transform 
normally performs based on Discrete Fourier Transform (DFT) [30]. It can be defined as 
in Equation 1. 
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where ( )x k  denotes signal with N points, ( )X i  denotes the discrete Fourier of ( )x k , 
and ( )X i  = ( ( ))DFT x k . A constraint on Fourier Transform method is unsuitable for 
non-stationary signal analysis owing to the uncertainty of signal characteristics. 
Examples of non-stationary signal are speech, sound or music, sonar signals, EEG, and 
so on. Hence, Short Term Fourier Transform (STFT) is proposed to deal with the 
limitations of the signals. STFT is able to decompose non-stationary signal to time and 
frequency analysis producing a matrix called spectrogram. It has been considered an 
efficient method for appraising non-stationary signals. The STFT can be expressed in 
Equation 2. 
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Let x(k) be an N point signal decomposed into 2s-1 overlapping sub-signals xm(k) 
of length l. That is N = l*s for integer l and s, where w(k) denotes a window function. 
G(m,i) is spectrogram of x(k), m is time interval of each sub-signal, and i is frequency.  

The window function is used for the frequency domain leakage reduction. The 
popular window functions are Hanning, Hamming, and Blackman. This work uses the 
Hamming window.   

 


 

2
( ) [.54 .46 ( )]

k
w k s

l
co                                           (3) 

 

Normally, w(k) is shorter than the length of data point signals. Various lengths 
of window function cause wide-band and narrow-band of signals. The smaller the 
window function length or wide-band is, the better time resolution is recognized. 
Meanwhile, STFT is calculated by using Discrete Fourier Transform on the input data 
multiplied by the length of window function. This computational complexity is )( 2O l
where l  is the data points signals [31]. STFT is performed based on Fast Fourier 
Transform (FFT) algorithm because the number of data points and the window function 
length are defined in power of two. Thus, its computational complexity is ( log )O l l  
[32]. The magnitude squared of STFT produces the power spectrogram. 

 
3.2 Singular Value Decomposition (SVD)  

SVD method is used to decompose a matrix to obtain the dominant value 
matrices consisting of three related matrices. The first matrix denotes columns of the 
matrix as singular vector. The second matrix holds singular values diagonally arranged 
in descending order. The last matrix denotes the rows of the matrix as the singular 
vector. The equation of SVD can be defined in Equation 4. 

 



 

 

15 

                                         TS UXV                                                    (4) 

 

where p pU and q qV denote squared matrix. Both are mutually orthogonal 
property. p qX is a diagonal matrix comprising singular values. The singular values 
represent the significant values of the matrix. The computational time of SVD is usually 

min( , )O(pq p q )  or 2O(pq ) [33].  

 

3.3 Independent Component Analysis (ICA)  

Independent Component Analysis (ICA) is a particular technique of blind source 
separation (BSS) which divides multivariate signals into individual source signals or 
components that are statistically independent. ICA can be explained as in Equation 5. 

 

                                      O AB                                                        (5) 

  

where O  denotes mixture of the source signals B , A  is the unknown mixture matrix. 
Let O  be the EEG estimation from the electrodes on the scalp, O  = [O1 (t)... On (t)] T. 
Let B  = [B1(t) ... Bn(t)] be source EEG signals. An estimated source EEG signals can be 
expressed as  

 

                                       Y DO                                                        (6) 
 
where Y  = [Y1(t)... Yn(t)] T is an estimated source signals of B . O  denotes the inverse 
matrix of mixture matrix A . There are many algorithms which estimate accurate value 
of matrix D  such as JADE[34], SOBI [35] [36], SOBIRO [37], FastICA [38], ERICA [39]  and 
so on. In this work, SOBIRO is selected for the ICA process.  
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3.4 Autogressive Model (AR)  

The AR model of order z  can be defined as in Equation 7. 

 

                               




  ( )
1

l l

z

i l
i

X X                                                 (7) 

 

where 
l

X   is the signal at sample point l ,   is the real valued AR coefficient, and 
l

is white noise. The coefficients, , can be evaluated by Yule-Walker  and  can be 
solved repeatedly by performing the Levinson method to obtain the reflection 
coefficients of AR model. However, Burg algorithm can compute the reflection 
coefficients directly from the signal 

l
X  [40]. 

 
3.5 Classification Approaches and Validation 

To obtain the prediction accuracy of person identification, two classification 
approaches are used in this research, namely, Artificial Neural Networks (ANN) and k-
Nearest Neighbor (k-NN). 

3.5.1 Artificial Neural Networks (ANN)  

ANN is a simple abstraction of biological neuron in the human brain. It consists 
of input vector of pattern  , weight of each input element or link of input vector Wj, 
activation function ()g . Let a  = [ 

1
a ... 

n
a ] T be an input vector of pattern  . The 

class b  of the input vector can be expressed as 

 

                                 ( ( ))
j j

g wb a                                               (8) 
  

where  ( )
j

 is the jth kernel function. jw  is a weight of link j.  ( )g  is the activation 
function of output. There are many kernel functions and many adjusted weight 
methods for ANN. In this work, three kernel functions, e.g., Multilayer Perceptron, Radial 
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Basis Function Network, and Probabilistic Neural Networks are selected to be candidate 
classifiers. 

Multilayer Perceptron (MLP)  

MLP is one of neural network approaches for solving classification issues. This 
method consists of 3 layers, namely, an input layer, an output layer, and a hidden 
layer. The input layer comprises the number of neurons equals to the number of 
features of input vector. The output layer has the same number of neurons as the 
output vectors or the classes. The hidden layer is able to define the number of neurons 
by trial and error. Each neuron unit of the hidden layer is a weight coefficient which 
can be conducted from its input vectors. Each input vector is multiplied by a weight 
matrix and is aggregated together to determine the output vector. Moreover, training 
of neural network leads to adjusting a weight value to minimize errors of the output. 
These methods are called back-propagation (BP) algorithm. There are many back-
propagation methods to speed up training and increase accuracy. This work focuses 
on Levenberg Marquardt (LM) and Bayesian Regularization (BR) approaches on account 
of different functions of the MLP-BP.   

 Radial Basis Function Network (RBFN) 
RBFN is one of neural network approaches like MLP. Generally, RBFN approach 

consists of three-layers, namely, an input layer, hidden layer, and output layer. The 
hidden layer nodes are determined by a parameter vector and a scalar, applying 
Gaussian density function as an activation function. The weight matrix is between the 
hidden and output layers. RBFN performs classification based on Euclidean distance 
between the test data set and trained data set. 

Probabilistic Neural Network (PNN)  

PNN is a radial basis network which is appropriate for classification problem. 
PNN consists of four layers such as input layer, pattern layer, summation layer, and 
decision layer. The input layer function will receive inputs and send them to the 
neurons in the pattern layer to compute the output. The summation layer neurons 
compute the maximum output from the previous layers to the decision layer, resulting 
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in either correct or incorrect decision. If the PNN classifier has a problem for output 
decision, Bayes’ decision will be performed [41].     

3.5.2 k-Nearest Neighbor (k-NN)  

k-Nearest Neighbor is a simple classifier with respect to calculating the distance 
to all trained data sets. Each test data is predicted as belonging to class which is the 
trained set having the shortest distance. Euclidean distance is applied. Computation of 
Euclidean distance can be expressed as 
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where qn is the number of features. H and K are patterns in specific data. There are 
many distance algorithms used by nearest neighbor such as Cosine, Hamming, Jaccard, 
Manhattan, Mahalanobis, and so on.   

      k-NN is a fundamental machine learning approach for object classification 
based on the shortest distance in the sample with k number of nearest patterns. Each 
object or class is classified by an absolute majority of its neighbors.   

3.5.3 k-fold Cross Validation 

k-fold cross-validation technique is an effective measurement of accurate 
predictive model based on repetitively executions. It is used for evaluating data to 
reliably generalize an independent data set. Data are randomly divided into k folds or 
data sets. The technique runs k times with defining index to k-1 folds as trained data 
set and the remaining fold as the test data set for each run. All the results from each 
fold are averaged to obtain the final result.  For example, 10-fold cross validation is 
randomly divided into 10 folds. Nine of ten data are trained data and the remaining 
part is used as test data for calculating the mean accuracy.  This process repeats 10 
times until all data sets are trained and evaluated on ten different individual data sets. 

 



  

 

CHAPTER 4 

METHODOLOGY 

The methodology is composed of 3 main sequential processes, namely, data 
segmentation, proposed feature extraction, and classification. The data segmentation 
process aims to separate the EEG signals to four data point lengths: 32, 64, 128, and 
256. The segmented data point affects the identification time and consuming process. 
The proposed feature extraction is performed on the segmented data points by using 
STFT and SVD to extract dominant values of each segmented data point. The 
classification process is performed to classify individual person. However, the 
appropriate classifier of this work is experimented with 3,000 data points of 16 channels 
and 20 subjects. Then, the appropriate classifier is used to classify individual person to 
obtain the highest accuracy. Figure 1 highlights the input, the three processes, and the 
output of the methodology. 
 

 
Figure 1. Methodology. 

 
4.1 Data Segmentation 

Initially, each EEG signal of each channel is divided equally into many fixed 
data point length in power of two, namely, 32, 64, 128 and 256. Furthermore, half of 
each data segment is overlapped to increase the number of data segments. Each 
fixed data point length is used to determine the minimum identification time. The 
time of each fixed data segment is shown in Table 2. 
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Table 2. The minimum time of each fixed data segment. 

Data segment 256 128 64 32 
Time (seconds) 1.28 0.64 0.32 0.16 

Total Data 
Segments per 
channel 

22 45 92 186 

 
If the fixed data point length are 32, 64, 128 and 256, the number of segmented 

data per fixed length are 186, 92, 45, and 22 data segments per channel, respectively, 
as shown in Table 2.  For extracted feature, each data segment is transformed into 
power spectrogram using STFT and SVD. 

 
4.2 Proposed Feature Extraction  

The proposed feature extraction process is shown in Figure2. 

 

 
Figure 2. Proposed Feature Extraction. 

 

The first step is to segment EEG data points by STFT and Hamming window 
with 50% overlapping. The result will return a matrix calculating from their magnitude. 
Each value of the matrix represents power intensity of the signal. The matrix is called 
power spectrogram.  All values of power spectrogram are converted into decibel unit 
by multiplying with 10log10. Finally, each power spectrogram is decomposed to take a 
singular value by SVD. The singular value of each channel is combined as a pattern or 
feature vector of each subject.   
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Figure 3. Transform EEG signal to power spectrogram. 

 
From Figure 3, each segmented data is transformed into a power spectrogram 

matrix, each of which is a 2 dimension matrix. 

 

 
Figure 4. Decompose power spectrogram of each channel by SVD. 

 

The matrix is extracted and converted to a row feature vector by using SVD. 
The number of features of each feature vector is equal to the number of columns of 
the power spectrogram matrix for each channel. Each feature vector of each channel 
is concatenated to form a sample of each subject. The process is illustrated in Figure 
4. Subsequently, each feature vector of each channel is combined to form a row matrix 
which is pattern of each subject. 
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4.3 Classification and Evaluation 

To predict the individual person, the classification approach is used to 
determine each class whose pattern belongs to high accuracy percentage. Each 
classifier is implemented by using 10-fold cross validation to increase the result 
reliability. The patterns of 20 subjects are split randomly into 10-fold cross validation. 
Trained data sets are allocated nine folds, while test data set takes up the remaining 
fold. The experiment runs 10 times. The result is shown in Figure 5.  

 

 
Figure 5. 10-fold cross validation. 

 
In Figure 5, each fold cross validation has the same indexing. The highlighted 

box of each fold is the test pattern. The remaining patterns of each fold are train 
patterns. To measure performance of the experimental results, each fold cross 
validation runs the number of correct patterns [42] or the correct recognition rate (CRR) 
as defined in Equation 10 and 11.  
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where f  denotes number of folds cross validation. classN  is the number of persons or 
classes. ( )in  is the number of correct recognitions of each person or class, that is the 
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number of the true positive of each class. Eventually, each fCRR  is averaged toCRR

. 
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This process selects five kinds of candidate classifiers using different 
classification methods, namely, probabilistic neural networks (PNN), Multilayer 
Perceptron (MLP), LM and BR, Radial Basis Function (RBF), and k-Nearest Neighbors (k-
NN). The process is described in the next section. 

 

4.4 Experimental Setup  

First of all, appropriate classifier to achieve the high accuracy must be 
determined as illustrated in Figure 6.  

 

 
Figure 6. Experiment of the proposed feature extraction and classifier. 

 

To find the minimum data points and shorter significant channels, the possible 
combinations of channels are deployed in experiment setup. Consequently, the 
experimental results are compared to using the methods described earlier in related 
work. This experiment is explained in Figure 7.  
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Figure 7. Experiment on finding minimum data length and significant channels in 
comparison to the related work. 
 

It is obvious that the highest classification accuracy of minimum important 
channels with possible minimum identification time is obtained. To confirm the shorter 
important channels and minimum identification time, the experimental results are 
tested with the outsiders by the proposed algorithm in Figure 8.  

 

 

Figure 8. Experiment on separating a person from outsider with minimum time and 
channels. 
 

The algorithm for classification between insider and outsider subjects 

For determining the minimum number of channels and the minimum time for 
person identification, it is essential to classify the unknown person (outsider group) 
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from the known person group (insider group). This experiment used the same data set 
as Preecha [10].  The data set consisting of 40 subjects was divided into 2 equal groups 
representing insider and outsider groups. The first 20 subjects are the insider group or 
known persons, and the remaining 20 subjects are the outsider group or unknown 
persons. The insider group is the trained set and the outsider group is the test set of 
this experiment.   

The algorithm for insider and outsider subject classification is proposed as 
follows:  

1. Finding and keeping three main values of each insider, mean, co-variance and 
max distance of each insider. The maximum distance, called a threshold value 
of each subject, is calculated by using mahalanobis distance. Let N

iS  be each 
sample of subject i. Let iS , cov

iS , and maxdist

iS  be the mean value, co-variance 
value, and max distance value of each subject i. This process is explained in 
Algorithm 1.  

2. Each pattern of each outsider subject is subtracted by insider mean value. Next, 
the result is multiplied by the eigenvector of insider, calculating from co-
variance. The result is divided by square root eigenvalue of the insider. If the 
result value is more than the insider threshold value, it is decided as outsider, 
otherwise it is an insider. Let N

jS be each sample of outsider subject j. This 
process follows the Algorithm 2.     
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Algorithm 1 GetMeanCovarianceAndMaxdist  

//comment N

iS  is an insider subject i and N is the number of samples from 1 to n// 

1. procedure GetMeanCovarianceAndMaxdist ( N

iS  )   

2. ( )N

i iS mean S  

3. ( )cov N

i iS cov S  

4. , cov

i i iEigVectorS EigenValueS S  

5. ( )isort EigVectorS  

6. For N

iS  do 

7.        ( ))N N

i i iSsubtract S S    

8.        ( * )N N

i i iSoutput EigVectorS Ssubtract  

9. For N

iSoutput  do 

10.       2(( / ( )) )N N

i i iSdist sum Soutput sqrt EigenValueS  

11. ( )N

i ismaxdist max Sdist   

12. return cov

i i iS S smaxdist  
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Algorithm 2 OutsiderSubjectDetection   

//comment N

jS  is an outsider subject j and N is the number of samples 1 to n // 

1. procedure Outsider Detection ( , , ,cov N

i i i jS S smaxdist S )  

2. , cov

i i iEigVectorS EigenValueS S  

3. ( )isort EigVectorS   

4.  For N

jS  do 

5.        ( ))N N

j j iSsubtract S S   

6.        ( * )N N

j i jSoutput EigVectorS Ssubtract  

7. For N

jSoutput   do  

8.      2(( / ( )) )N

j j isdist sum Soutput sqrt EigenValueS  

9.      If j isdist smaxdist    

10.            .N

jS prediction outsider  

11.      else  

12.           .N

jS prediction insider  

13. return  .N

jS prediction  
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Noise robustness of the proposed method is measured by adding two kinds of 
external noise affecting the EEG signals, namely, line noise and White Gaussian noise 
at SNR 5 and 20 dB, respectively.  This experiment is demonstrated in Figure 9.    

 

 
Figure 9. Experiment on noise robustness of the proposed method. 

 

Finally,   the experiment performs the proposed method on public database 
as mentioned. Result comparisons of the proposed method to other researches 
applying on the data set are shown in the next chapter.   



  

 

CHAPTER 5 

EXPERIMENTAL SETUP AND RESULTS 

The identification process of this work comprises the following six processes: 

5.1 Data collection 

5.2 Experiment of the proposed feature extraction and classifiers  

5.3 Experiment on determining minimum data, significant channels, and comparison  

5.4 Experiment on separating a person from outsiders using minimum time and 
channels 

5.5 Experiment on noise robustness of the proposed method 

5.6 Experiment on implementing the proposed method on additional data set 

 

5.1 Data Collection 

Data of the EEG signals in this research were obtained from research data sets 
of Preecha's work [28]  [29] [10] and PhysioBank [12]. These EEG signals of the first data 
set were recorded by Chulalongkorn Comprehensive Epilepsy Program (CCEP) of King 
Chulalongkorn Memorial Hospital. There are 40 normal subjects consisting of eighteen 
men and twenty two women. The age range of all subjects are between 12 and 40 
years. EEG signals of the subjects were recorded based on international 10-20 system 
defining the location of scalp electrodes. Sixteen electrodes placement corresponding 
to 10-20 system were attached on the scalp of each subject. In addition, the subjects 
were motionless and performed no task during collecting the EEG signals. Recording of 
the EEG signals was performed at the following locations: Fp1, F7, T3, T5, Fp2, F8, T4, 
T6, F3, C3, P3, O1, F4, C4, P4, and O2. To easily represent EEG locations in this 
experiment, all of the above locations are labeled as ch1, ch2 ... ch16, respectively, as 
shown in Figure 10.  
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Figure 10. The 10-20 international system 

 

In [28]  [29] [10] recording process, Mastoid area A1 and A2 were electrically 
linked and used as reference with mono-polar montage. The EEG amplifier was Grass 
model 8 plus. The sampling rate of this EEG signals recording was 200 Hertz. The EEG 
signals were digitized and were notch filtered at 50 Hertz by BMSI board using Stellate 
Harmony EEG software. The digitized EEG data were exported as EDF (European Data 
Format). Electromyography (EMG) and Electrocardiogram (ECG) signals were primarily 
removed from EEG signals. For each channel of each subject, 3,000 data points were 
collected in 15 seconds.  

Additional data set [11, 12] consisting of 109 subjects were also investigated for 
comparative purpose. The subjects were performed in resting state 1 minute with 
opened eyes, 1 minute closed eyes, three 2 minutes running of 4 tasks (2 motor and 
2 motor-imagery). The EEG signals of each subject were recorded with 64 EEG channels 
at a sampling rate of 160 Hz, international 10-10 system. Due to more EEG channels in 
the data set, only 16 EEG channels were chosen to comply with 10-20 International 
system with closed and opened eyes.  
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5.2 Experiment on Determination of Proper Classifier for Classification  

The aim of this experiment is to investigate an appropriate classifier to bestow 
high classification accuracy. This work used 3,000 data points for all 16 channels per 
subject. There were 20 subjects obtained in [28]. All signals in each channel were 
divided into 32, 64, and 128 data points for each subject. STFT was applied to transform 
the sample into a power spectrogram matrix by means of adjusting its various window 
lengths. The length of the data point signal and the length of STFT's window function 
were two important factors of the accuracy which needed to be precisely calculated. 
Basically, the window function length of STFT had to be smaller than the length of 
the data points expressed in power of two. The significant feature vector of each 
pattern was extracted from the matrix by means of SVD to a singular vector.  Then 
classifiers were applied to measure the classification accuracy. For reliability of the 
experimental results, 10-fold cross validation was performed. Five classifiers were 
implemented in this experiment to achieve the general classification performance for 
high accuracy. They are MLP-Levenberg Marquardt, MLP-Bayesian regularization, RBF, 
Probabilistic Neural Networks, and k-NN. 

For selecting parameter of Levenberg Marquardt (LM), the number of hidden 
neurons was set from 10 to 50 in step of 10. It was founded that the highest 
classification result of this approach was 99.56% with 40 hidden neurons and 64 data 
points having window function length of 8 data points. From the experiment, this 
method gave high accuracy results. However, it took a lot of time for the classification 
process. 

Bayesian regularization (BR) function was selected on account of different 
pattern classification technique. The number of hidden neurons varied from 10 to 30 
in step of 10. It was founded that the 20 hidden neurons led to the best classification 
accuracy. The result of this method gave an accuracy at 99.77% which was high 
achieved accuracy at 128 data points with window function length of 16 data points.  

For RBFN classifier, the number of hidden neurons and the standard deviation 
parameter affected an average accuracy of classification. In this practice, the number 
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of neurons was 20 and a spread parameter value varied from 100 to 300 in the step 
of 10. It was founded that the number of hidden neurons and spread parameters were 
20 and 240 to achieve high classification accuracy at 98.67% at 128 data points having 
window function length of 16 data points.                                                                             

For PNN classifier, the main parameter was the smoothing parameter which was 
used to adjust the classification to achieve accurate performance. The standard 
deviation values varied from 10 to 20 in step of 2. It was found that the best accuracy 
percentage was 99.83 when spread value was 12 unit at 64 data points having the 
window function length of 8 data points. The more spread value was, the less accuracy 
became.                                        

For using k-NN classifier, the k value of k-NN approach was set to 1, 3, 5, 7 and 
9 for accuracy of classification comparison. The classification accuracy was the highest 
if k value of k-NN was 1. It was founded that the best accuracy percentage was 99.83 
when k was 1 at 64 data points with the window function length of 8 data points. The 
classification accuracy and experiment results are shown in Table 3.     
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Table 3. Determination of the optimal parameters and the suitable classifiers 
with using 10-fold cross validation. 
Data Points Window 

Length 

MLP 

(LM) 

MLP 

(BR) 

RBF PNN k-NN 

128 64 98.88 99.44 97.67 99.55 99.55 

32 98.44 99.55 98.00 99.55 99.55 

16 99.00 99.77 98.67 99.78 99.78 

8 97.21 98.88 90.57 99.77 99.77 

64 32 98.64 99.51 96.73 99.45 99.29 

16 99.40 99.51 97.17 99.78 99.72 

8 99.56 99.29 93.15 99.83 99.83 

32 16 98.11 99.00 95.08 98.81 98.49 

8 96.80 98.41 89.54 99.24 99.11 

 

From Table 3, the highest accuracy is considered for classifier selection. It can 
be seen that PNN and k-NN obtain high average accuracy percentage which are 99.24 
and 99.11, respectively, when the data point length equals 32 or about 0.16 seconds. 
Both give the highest average accuracy 99.83 for data points which equal 64 or 0.32 
seconds. Furthermore, the data point length of 128 or 0.64 seconds is considered. 
Both classifiers bestow the same highest average accuracy of 99.78.  

It can be considered that PNN and k-NN give the highest classification accuracy. 
It is evident that PNN and k-NN can be chosen as the suitable classifiers in this study. 
Due to its simplicity and less processing time, k-NN is used as the main classifier in the 
experiment. However, PNN may be used in real world applications.  

The next step is to decide the suitable length of data point signals, the length 
of STFT window function, and the minimum channel for the highest accuracy using the 
proposed method. The window function length needs to be adjusted. Channel 
combination and the classifier perform in the same manner. 
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5.3 Experiment on Determining Minimum Data, Significant Channels, and Comparison 

The objective is to investigate minimum channel combinations which give the 
highest classification accuracy. The same EEG data were used in this section. The 
experiment was divided into two parts. The first part called experiment A was 
implemented without cleaning the signals using ICA process. The second part called 
experiment B used the same data set incorporating ICA process following [10]. Both 
parts were divided into subgroups. Each subgroup was equally set the length of data 
point signals, namely, 32, 64, 128, and 256. All subgroups of each subject were 
conducted by selecting 2 to 8 channels out of 16 channels with binomial coefficient. 
Thus, each subgroup of each subject consisted of 120, 560, 1820, 4,368, 8008, 11,440, 
and 12,870 combinations for 16C2, 16C3, 16C4, 16C5, 16C6, 16C7, and 16C8, respectively. In 
addition, each combination was extracted features with varied length of STFT's window 
function and classified by k-NN setting k to 1 and 10-fold cross validation was used.     
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Table 4. Classification accuracy of 20 subjects with 2 to 8 channel combinations of 
an experiment A and experiment B (with ICA). 

Experiment A Data points Experiment B Data points 

#CH window 256 128 64 32 #CH window  256 128 64 32 

16 128 98.65       16 128 99.77       

64 98.85 99.56     64 99.77 99.89     

32 99.33 99.56 99.29   32 99.77 99.89 99.95   

16 99.55 99.78 99.73 98.49 16 99.77 99.89 99.95 99.97 

8 99.31 99.78 99.84 99.11 8 99.77 100 100 100 

8 128 99.33       8 128 99.77       

64 99.55 99.67     64 99.77 99.89     

32 99.55 99.78 99.19   32 99.77 99.89 100(139)   

16 99.77 99.89 99.89 97.88 16 99.77 100(12) 100(1270)   

8 99.78 100(104) 99.95 98.23 8 100(691) 100(1913) 100(7222) 100(2229) 

7 128 99.33       7 128 99.77       

64 99.55 99.56     64 99.77 99.89     

32 99.55 99.78 98.91   32 99.77 100(1) 100(16)   

16 99.77 99.89 99.89 97.34 16 99.77 100(18) 100(483) 100(617) 

8 100(1) 100(27) 99.84 98.04 8 100(482) 100(1154) 100(3639) 100(617) 

6 128 99.11       6 128 99.77       

64 99.33 99.34     64 99.77 99.89     

32 99.55 99.78 98.69   32 99.77 100(1) 99.95   

16 99.77 99.89 99.78 96.35 16 99.77 100(16) 100(58) 99.95 

8 99.77 100(1) 99.62 97.12 8 100(224) 100(474) 100(782) 100(77) 

5 128 98.65       5 128 99.77       

64 99.55 98.67     64 99.77 99.89     

32 99.55 99.67 97.01   32 99.77 99.89 99.78   

16 99.77 99.89 99.40 94.82 16 99.77 100(2) 99.95 99.54 

8 99.32 99.78 99.19 95.3 8 100(16) 100(92) 100(42) 100(6) 

4 128 97.54       4 128 99.77       

64 99.1 96.78     64 99.77 99.78     

32 99.55 99.23 94.56   32 99.77 99.89 99.41   

16 99.77 99.89 98.1 90.46 16 99.77 99.89 99.84 97.93 

8 98.87 99.22 97.77 91.77 8 100(12) 100(7) 99.95 99.79 
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Table 4. (continued). 
Experiment A Data points Experiment B Data points 

#CH window 256 128 64 32 #CH window  256 128 64 32 

3 128 94.12       3 128 99.55       

64 97.75 92.88     64 99.54 98.56     

32 99.08 97.77 86.85   32 99.77 99.55 95.33   

16 99.55 99.22 95.55 81.59 16 99.77 99.89 98.21 91.91 

8 97.68 98.09 94.84 84.33 8 99.78 99.89 99.62 98.42 

2 128 84.21       2 128 95.21       

64 93.41 79.01     64 96.1 88.31     

32 95.66 87.33 66.46   32 97.7 92.01 80.22   

16 97.25 94.91 82.39 61.54 16 98.88 96.69 87.56 73.34 

8 94.76 91.89 83.37 68.89 8 99.54 98.34 94.79 87.13 

 

From Table 4, there are three main factors directly affecting the accuracy: the 
number of channel combinations, data point’s length, and window function length of 
STFT. In other words, the figure in parentheses of 100 percentage means the number 
of combinations. The accuracy percentage of experiment A was 100 with 6 channel 
combinations which had only one combination. But for 4 channel combinations with 
window function length 8 of experiment B, it was founded that there were 12 possible 
combinations reaching 100 percent at 256 data points and 7 possible combinations 
reaching 100 percent at 128 data point signals. Each highlighted cell in experiment B 
corresponded to 100 percent of experiment A.  

From the experiment, experiment B gave higher accuracy than experiment A. 
Nevertheless, experiment B took more time than experiment A. Experiment B actually 
used all channels and all data points for ICA processing. This issue will be discussed in 
Discussion Section. 

Preecha’s research [28] [29] [10] implemented ICA as the feature extraction and 
artificial neural networks as the main classifier for person identification. For 20 subjects, 
there were 16 EEG channels. Each channel consisted of 3000 data point signals. In 
order to investigate the minimal channel to obtain high average accuracy of person 
identification, 2 to 7 channel combinations were performed. According to experimental 
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results of Preecha’s works, the best identification accuracy percentages of each 
channel combination were 61.67, 90.52, 98.85, 99.87, 99.97, and 100. The parietal lobe 
of the brain was identified as the significant location of identification. 
 
Table 5. Comparison accuracy percentage of this experimental results with those of 
Preecha. 

 The number of channel combination 

 2 3 4 5 6 7 8 

Preecha 61.67 90.52 98.85 99.87 99.97 100 N.A. 

Experiment A (128, 8) 91.89 98.09 99.22 99.78 100 100 100 

Experiment A (128, 16) 94.80 99.22 99.88 99.88 99.88 99.88 99.88 

Experiment B (128, 8) 98.34 99.88 100 100 100 100 100 

Experiment B (128, 16) 96.68 99.88 99.88 100 100 100 100 

 
The results of the 2 to 7 channel combinations were compared with those of 

Preecha’s experiments to evaluate the accuracy of the proposed approach. 128 data 
point length was used with window function length of 8 and 16 data points in both 
experiments. From Table 5, the accuracy percentage of the proposed experimental 
results was fairly low in 2 channel combinations. Nevertheless, these accuracy 
percentages were still higher than those experimental results of Preecha. The 
proposed experimental results could be summarized that identification of 20 subjects 
using 2 to 8 channel combinations had higher accuracy percentage than all Preecha 
experimental results. In addition, the identification time with deploying the proposed 
approach was less than that of Preecha [10] in all channel combinations.   
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Table 6. The accuracy percentage of 2 channel combinations at 128 data points with 
window function length of 8 data points using 10-fold cross validation. 

2 channels Average 
accuracy 

3 4 91.89 

1 11 91.00 

1 12 90.67 

4 16 90.44 

1 4 90.34 

 

Table 7. The accuracy percentage of 3 channel combinations at 128 data points with 
window function length of 8 data points using 10-fold cross validation. 

3 channels Average 
accuracy 

1 3 11 98.098 

1 4 9 98.018 

3 4 6 97.893 

3 4 16 97.772 

1 9 11 97.674 
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Table 8. The accuracy percentage of 4 channel combinations at 128 data points with 
window function length of 8 data points using 10-fold cross validation. 

4 channels Average 
accuracy 

1 4 11 16 99.22 

1 4 9 12 99.11 

1 4 12 16 99.00 

1 9 11 13 99.00 

1 4 9 13 99.00 

1 9 11 12 99.00 

1 9 10 11 99.00 

 
Table 9. The accuracy percentage of 5 channel combinations at 128 data points with 
window function length of 8 data points using 10-fold cross validation. 

5 channels Average 
accuracy 

1 6 9 10 12 99.78 

1 4 6 9 11 99.78 

1 6 9 11 16 99.77 

3 6 9 10 16 99.77 

1 3 5 11 13 99.77 
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Table 10. The accuracy percentage of 6 channel combinations at 128 data points 
with window function length of 8 data points using 10-fold cross validation. 

6 channels Average 
accuracy 

1 5 6 9 11 16 100 

1 3 4 6 9 10 99.891 

1 3 6 8 9 12 99.891 

1 6 8 9 10 12 99.891 

1 6 9 10 12 15 99.891 

1 6 9 10 12 16 99.891 

3 6 9 10 15 16 99.891 

1 3 6 9 10 16 99.89 

1 3 6 9 11 16 99.89 
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Table 11. The accuracy percentage of 7 channel combinations at 128 data points 
with window function length of 8 data points using 10-fold cross validation. 

7 channels Average 
accuracy 

1 2 3 4 6 10 16 100 

1 2 3 6 10 11 16 100 

1 2 3 6 10 15 16 100 

1 2 5 6 9 10 12 100 

1 3 4 5 6 10 15 100 

1 3 4 6 9 10 16 100 

1 3 5 6 9 10 16 100 

1 3 5 6 9 11 12 100 

1 3 5 6 11 13 15 100 

1 3 6 8 9 12 16 100 

1 3 6 9 10 11 12 100 

1 3 6 9 10 11 16 100 

1 3 6 9 10 12 16 100 

1 3 6 9 10 14 16 100 

1 3 6 9 11 12 16 100 

1 3 6 9 11 13 16 100 

1 3 6 9 12 14 16 100 

1 4 5 6 12 15 16 100 

1 4 5 9 10 11 12 100 

1 5 6 9 10 11 16 100 

 

 

 

  



 

 

42 

Table 11. (continued). 

7 channels Average 
accuracy 

1 5 6 9 10 13 16 100 

1 5 6 9 11 13 16 100 

1 5 6 10 12 13 15 100 

1 6 9 10 11 13 16 100 

1 6 9 10 13 15 16 100 

3 5 6 9 10 11 12 100 

3 5 6 9 10 11 16 100 
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Table 12. The accuracy percentage of 8 channel combinations at 128 data points 
with window function length of 8 data points and using 10-fold cross validation. 

8 channels Average 
accuracy 

1 2 3 4 5 6 10 12 100 

1 2 3 4 6 9 10 12 100 

1 2 3 4 6 9 10 16 100 

1 2 3 4 6 9 11 12 100 

1 2 3 4 6 9 12 16 100 

1 2 3 4 6 10 13 16 100 

1 2 3 5 6 8 10 16 100 

1 2 3 5 6 8 12 16 100 

1 2 3 5 6 9 10 12 100 

1 2 3 5 6 9 11 12 100 

1 2 3 5 6 10 13 16 100 

1 2 3 6 9 10 11 16 100 

1 2 3 6 9 10 12 16 100 

1 2 3 6 9 11 12 15 100 

1 2 3 6 10 11 13 16 100 

1 2 5 6 8 9 10 12 100 

1 2 5 6 8 12 15 16 100 

1 2 5 6 9 10 11 12 100 

1 2 5 6 9 10 12 13 100 

1 2 5 6 9 12 13 16 100 

1 2 5 6 10 12 15 16 100 

1 2 5 6 10 13 15 16 100 

1 2 5 6 10 13 15 16 100 

1 2 6 9 10 13 14 16 100 
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Table 12. (Continued). 

8 channels Average 
accuracy 

1 2 6 9 10 13 15 16 100 

1 3 4 5 6 7 10 16 100 

1 3 4 5 6 8 11 16 100 

1 3 4 5 6 9 10 11 100 

1 3 4 5 6 9 10 15 100 

1 3 4 5 6 9 10 16 100 

1 3 4 5 6 9 11 13 100 

1 3 4 5 6 9 12 16 100 

1 3 4 5 6 10 11 16 100 

1 3 4 5 6 10 13 15 100 

1 3 4 5 6 10 15 16 100 

1 3 4 5 6 12 15 16 100 

1 3 4 5 9 10 11 12 100 

1 3 4 6 9 10 14 16 100 

1 3 5 6 7 9 11 12 100 

1 3 5 6 8 9 10 12 100 

1 3 5 6 8 9 10 16 100 

1 3 5 6 8 9 12 13 100 

1 3 5 6 8 9 12 16 100 

1 3 5 6 8 10 15 16 100 

1 3 5 6 8 11 15 16 100 

1 3 5 6 9 10 11 12 100 

1 3 5 6 9 10 11 16 100 

1 3 5 6 9 10 13 16 100 

1 3 5 6 9 10 15 16 100 

1 3 5 6 9 11 12 13 100 
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Table 12. (Continued). 

8 channels Average 
accuracy 

1 3 5 6 9 11 12 15 100 

1 3 5 6 10 11 13 16 100 

1 3 5 6 10 11 15 16 100 

1 3 5 6 10 13 15 16 100 

1 3 5 8 10 12 13 16 100 

1 3 6 7 8 9 12 16 100 

1 3 6 7 9 10 11 16 100 

1 3 6 7 9 10 12 16 100 

1 3 6 8 9 10 12 16 100 

1 3 6 8 9 11 12 16 100 

1 3 6 8 9 12 13 16 100 

1 3 6 8 9 12 14 16 100 

1 3 6 8 9 14 15 16 100 

1 3 6 9 10 11 12 16 100 

1 3 6 9 10 11 14 16 100 

1 3 6 9 10 12 14 16 100 

1 3 6 9 10 14 15 16 100 

1 3 6 9 11 12 14 16 100 

1 3 6 9 11 14 15 16 100 

1 4 5 6 9 10 11 16 100 

1 4 5 6 9 10 13 16 100 

1 4 5 6 11 12 15 16 100 

1 4 5 6 12 13 15 16 100 

1 4 5 6 12 14 15 16 100 

1 5 6 7 9 10 12 16 100 

1 5 6 8 9 10 12 15 100 
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Table 12. (Continued). 

8 channels Average 
accuracy 

1 5 6 8 9 10 13 16 100 

1 5 6 8 9 11 13 16 100 

1 5 6 8 9 12 13 16 100 

1 5 6 8 11 12 15 16 100 

1 5 6 9 10 11 12 13 100 

1 5 6 9 10 11 12 15 100 

1 5 6 9 10 11 13 16 100 

1 5 6 9 10 11 15 16 100 

1 5 6 9 10 12 13 15 100 

1 5 6 9 10 12 13 16 100 

1 5 6 9 10 13 14 16 100 

1 5 6 9 10 13 15 16 100 

1 5 6 9 10 14 15 16 100 

1 5 6 9 11 12 13 15 100 

1 5 6 9 11 12 13 16 100 

1 5 6 9 11 13 14 16 100 

1 5 6 9 11 13 15 16 100 

1 5 6 10 11 12 15 16 100 

1 5 6 10 11 13 15 16 100 

1 5 6 10 12 13 15 16 100 

1 5 6 11 12 13 15 16 100 

1 5 6 11 12 14 15 16 100 

2 5 6 8 9 10 12 15 100 

2 5 6 8 12 13 15 16 100 

3 4 5 6 9 10 11 12 100 

3 4 5 6 9 10 12 16 100 
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Table 12. (Continued). 

8 channels Average 
accuracy 

3 5 6 8 9 10 11 16 100 

3 5 6 9 10 11 12 15 100 

3 5 6 10 11 13 15 16 100 

 

Table 6 to Table 12 show the best accuracy percentage of 2, 3, 4, 5, 6, 7 and 
8 channel combinations with 10-fold cross validation and 128 data points using k-NN, 
k = 1 having the highest accuracy percentage of 98.09, 99.22, 99.78, 100, and 100, 
respectively. For 8 channel combinations, there are 104 combinations that achieve the 
average accuracy at 100 percent. The results are summarized in Table 13.  

 
Table 13. The highest result of each channel combination in the 20 subject insider. 

Channel combination Channel number Highest accuracy % 

8 (104 combinations) 100 

7 (27 combinations) 100 

6 1, 5, 6, 9, 11, 16 100 

5 1, 6, 9, 10, 12 99.78 

4 1, 4, 11, 16 99.22 

3 1, 3, 11 98.00 

2 3, 4 91.80 

 
 From Table 13, the highest accuracy of each channel combination adopted 
the reflection coefficient of AR approach of Maiorana’s study. The results of Maiorana 
were compared with the proposed method and Preecha’s work as shown in Table 
14.  
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Table 14. Comparison of the highest result from each channel combinations in the 
20 subject insider group with 128 data points 10-fold cross validation using AR 
method in Maiorana [27] and ICA method in Preecha [10]. 

Channel 
combination 

Channel number Highest percentage accuracy 

Proposed 

% (SD) 

Maiorana  

%/order th (SD) 

Preecha 

% 

7 (27 combinations) 100 (0) 100/36 (0) 

(2 combinations) 

(ch 1,3,6,9,11,12,16 
order 42) 

(ch3,5,6,9,10,11,16 
order 36) 

100 

6 1, 5, 6, 9, 11, 16 100 (0) 99.77/47 (0.47) 99.97 

5 1, 6, 9, 10, 12 99.78 (0.68) 98.88/46 (0.74) 99.87 

4 1, 4, 11, 16 99.22 (0.74) 99.22/34 (1.17) 98.85 

3 1, 3, 11 98.00 (1.83) 98.89/44 (1.15) 90.52 

2 3, 4 91.80 (1.53) 94.76/44/(2.23) 61.67 

 
Table 14 shows the result accuracy percentage of 3 channel combinations of 

the proposed method that are slightly different from using AR approach, but are 
higher than those of Preecha’s work.  Although the 4 channel combination results of 
the proposed method are equal to AR, the standard deviation is less than AR. In 6 
channel combinations, the results yield the highest accuracy at 100 percent 
classification. For 7 channel combinations, all three approaches reach 100 percent.    
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Table 15. The time consumption of the proposed method with 100 % and Maiorana 
[27] method  for 6 to 8 channel combinations for insider group using 128 data point. 

Channel 
combina
tion 

Channel 
number 

Proposed method  

(second) 

Maiorana  (AR method) 

(second) 

  128 
data 
points 

Average of 
proposed 
method 
time x 
channels 

classific
ation 

Total 
time 

(second) 

Filter 
time 
with 

3000 
data 
points 

Average of 
AR method 
time (128 
data points) 
x channels 

classific
ation 

Total 
time 

 

8 (104 
combinations) 

0.64 0.003x8 0.0003 0.6643 15 (s) 0.0044x8 0.004 15.0392 

7 (27 
combinations) 

0.64 0.003x7 0.0003 0.6613 15 (s) 0.0044x7 0.004 15.0348 

6 1, 5, 6, 9, 
11, 16 

0.64 0.003x6 0.0003 0.6583 

 

15 (s) 0.0044x6 0.004 15.0304 

 

Table 15 shows the time consumption calculated from recording, feature 
extraction, and classification of test pattern. The minimum 6, 7, 8 channel 
combinations attain the identification time of 0.65, 0.66, 0.66 seconds, respectively, 
which are less than AR method. 

 

5.4 Experiment on Separating a Person from Outsiders Using Minimum Time and 
Channels 

The insider group was deployed as the trained set and the outsider group was 
the test set. Each sample size of the data set and the test set had 128 data points 
having the length of window function of 8. Algorithm 1 and 2 were used to classify 
each outsider person one by one from each insider person. The experimental results 
showed the accuracy percentage of the outsider samples belonging to each insider 
person. For instance, subject 21 in Table 16 with 3 channel combinations (19)100 
means wrongly identified subject 21 who was predicted as subject 19 with 100 
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percentage of the outsider’s samples. The number in parentheses is the incorrect 
subject identified. 

Consider the previous experimental results, the classification of 6 channel 
combinations were ch 1, ch 5, ch 6, ch 9, ch 11, and ch 16 reaching 100 percent 
accuracy in experiment A using 128 data points with the window function length of 8 
data points. The 128 data points became the proper length of EEG signals that yielded 
less identification time for the best insider subject classification. 

From the experimental results, it can be seen that using 2 and 3 channel 
combinations cannot classify each outsider person from the insider person. For 
example, using 2 channel combinations, subject number 21 was predicted as subject 
number 19 with accuracy percentage 100. The 3 channel combinations did not 
improve satisfactory classification results because some outsider persons were 
predicted as the insider persons since more than ten outsider persons who were 
completely classified as the insider person.  

Hence, further investigation on classification was conducted. The combined 
results of 6, 7, and 8 channels having 100 percent indicated that all outsiders were 
completely classified from insider. Therefore, 4 and 5 channel combinations were 
concentrated in order to find the minimum channels to classify the outsiders. The 
results are summarized in Table 17 and Table 18.  
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Table 16. The accuracy percentage of outsider classification tested with the 
highest accuracy 2, 3, 4, 5, 6, 7, and 8 channel combinations. 

Subject 

number 

Channel combination 

2 3 4 5 6 7 8 

[3,4] [1,3,11] [1,4,11,16] [1,6,9,10,12] [1,5,6,9,11,
16] 

27 
combina

tions 

104 
combina

tions 

21 (19) 100 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

22 (19) 60.00 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

23 (5) 44.44 (17) 2.22 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

24 (5) 60.00 (15) 4.44 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

25 (17) 26.67 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

26 (17) 44.47 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

27 (5) 93.33 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

28 (5)  100 (17) 4.44 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

29 (17) 93.33 (17) 33.33 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

30 (5) 68.89 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

31 (5) 82.22 (15) 4.44 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

32 (14) 28.89 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

33 (19) 66.67 (19) 11.11 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

34 (19) 40.00 (19) 11.11 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

35 (19) 35.57 (19) 13.33 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

36 (18) 57.78 (19) 13.33 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

37 (17) 35.56 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

38 (17) 84.44 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

39 (5) 28.89 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

40 (5) 88.89 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 
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Table 17. The accuracy percentage of outsider classification tested with the optimum 
number of 4 channel combinations. 

Subject 

number 

4 Channel combination 

[1,4, 
11,16] 

[1,4,
9,12] 

[1,4,  
12,16] 

[1,9, 
11,13] 

[1,4,9
,13]  

[1,9, 
11,12] 

[1,9, 
10,11] 

21 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

22 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

23 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

24 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

25 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

26 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

27 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

28 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

29 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

30 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

31 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

32 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

33 (-) 0 (-) 0 (-) 0 (-) 0 (19) 
2.22 

(-) 0 (-) 0 

34 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

35 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

36 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

37 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

38 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

39 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

40 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

 

  



 

 

53 

Table 18. The accuracy percentage of outsider classification tested with the optimum 
number of 5 channel combinations. 

Subject 

number 

5 Channel combination 

[1,6,9 
10,12] 

[1,4,6,
9,11] 

[1,6,9 
11,16] 

[3,6,9, 
11,16] 

[1,3,5 
11,13] 

21 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

22 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

23 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

24 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

25 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

26 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

27 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

28 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

29 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

30 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

31 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

32 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

33 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

34 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

35 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

36 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

37 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

38 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

39 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

40 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 

   

Table 17 demonstrates that the first four optimum 4 channel combinations 
achieve complete outsider classification. However, the channel combinations of ch 1, 
ch 4, ch 9, ch 13 give a slight misclassification of subject number 33. Table 18 
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demonstrates that the first five optimum 5 channel combinations achieve complete 
outsider classification.  

 

5.5 Experiment on Noise Robustness of the Proposed Method 

This experiment evaluated noise robustness of the proposed method. Two 
kinds of noise, line noise and White Gaussian noise, were simulated and added to the 
signals 128 data point length with 5 to 8 and 16 channel combinations. Most line noises 
occurred in general power supply devices and White Gaussian noise was found in 
external electronic devices. Both occurred inevitably in natural environment. The 
original signals were added with line noise to measure line noise robustness. The 
signals were then combined with white Gaussian noise having SNR 5 and 20 dB to 
measure the noise robustness. The combined signals were processed by the proposed 
method to obtain the highest classification accuracy of each person.   

From Table 19, most classification accuracy of 16 channel combinations with 
the above white Gaussian noise are not different from the original accuracy. However, 
the accuracy of the added line noise signals drops slightly at window length 16 and 
32. The  accuracy of 5 to 8 channel combinations with adding Gaussian noise SNR 20 
dB are not different from the original accuracy, while most accuracy of the same set 
up having SNR 5 dB drops slightly as compare with the original accuracy of most 
window lengths. Nevertheless, all accuracy of the added line noise signals for 5 to 8 
channel combinations decrease in comparison with the original. The experimental 
results of adding white Gaussian noise show that the data point length 128 and window 
function length at least 8 yield a consistent classification accuracy. While the accuracy 
comparison of adding line noise with the original signal drops slightly at the window 
length of 16. It can be summarized that the proposed method is still consistently 
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accurate with white Gaussian noise. However, appropriate parameters setting of the 
added line noise signal are attributive to robustness. 

     

Table 19. The highest average accuracy percentage of noise robustness of the 
proposed method with 128 data point length from 10-fold cross validation. 

#CH 
window 
function 

#128 data points  (added noise) 

(no noise) (SNR 20dB) (SNR 5dB)  (line noise) 

16 64 99.558 99.558 98.78 99.33 

32 99.558 99.558 99.558 99.55 

16 99.78 99.78 99.78 99.56 

8 99.775 99.775 99.775 98.44 

8 64 99.67 99.67 99.006 99.01 

32 99.779 99.779 99.67 99.22 

16 99.889 99.889 99.889 99.44 

8 100 100 100 98.34 

7 64 99.562 99.562 98.681 99.11 

32 99.779 99.779 99.67 99.00 

16 99.889 99.889 99.889 99.22 

8 100 100 100 97.78 

6 64 99.338 99.337 98.124 96.56 

32 99.779 99.779 99.559 97.22 

16 99.889 99.889 99.889 99.00 

8 100 100 100 92.79 

5 64 98.671 98.569 96.681 97.45 

32 99.67 99.558 99.558 97.00 

16 99.889 99.889 99.889 97.00 

8 99.783 99.779 99.448 90.66 
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5.6 Experiment on Implementing the Proposed Method on the Other Data Set 

This experiment implemented the proposed method on the data set [12] to 
obtain the short processing time and percentage accuracy. The opened and closed 
eyes task being resting state were chosen in this experiment. First of all, EEG signals of 
each subject were cleaned at 60 Hz. The data set was segmented at 6.4, 7, 8, and 9 
seconds, namely, 1024, 1120, 1280, and 1440 data points, respectively. The window 
function length was set at 16, 32, 64, 128, and 256. 10-fold cross validation and k-NN 
were used to evaluate and classify the data set. The experimental results were 
summarized in Table 20 and Table 21.  

 

Table 20. The percentage accuracy of 109 subjects closed eyes with 16 EEG channels 
and k=1 at 10-fold cross validation. 

 Data point 

Window length 1440 1280 1120 1024 

256 97.39(1.69) 98.10(0.89) 94.77(1.25) 97.83(0.78) 

128 97.99(1.24) 98.43(0.71) 97.77(1.01) 98.43(0.78) 

64 97.92(0.86) 97.97(0.91) 97.83(1.26) 97.89(1.02) 

32 97.76(1.18) 97.39(1.01) 97.14(1.01) 97.35(1.29) 

16 95.40(1.75) 96.34(1.06) 96.16(1.13) 96.17(1.52) 

 
Table 21. The percentage accuracy of 109 subjects opened eyes with 16 EEG 
channels and k=1 at 10-fold cross validation. 
 Data point 

Window length 1440 1280 1120 1024 

256 97.69(1.06) 98.42(0.78) 95.85(0.84) 97.30(1.22) 

128 98.68(0.82) 99.07(1.02) 98.07(0.99) 98.85(1.14) 

64 98.83(1.17) 99.20(0.68) 98.58(0.86) 98.70(0.86) 

32 98.62(0.93) 98.56(0.80) 98.06(0.73) 98.43(0.77) 

16 96.70(1.06) 96.97(0.97) 96.63(0.81) 96.64(0.87) 

 
From Table 20 and Table 21, the highest percentage accuracy of 109 subjects 

closed eyes task is 98.43 at 1024 data points. The highest accuracy of opened eyes 
task is 99.20 percent at 1280 data points. It is evident from the results of both 
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experiments that the highest accuracy occurs when subjects are opened eyes. 
However, processing time is longer than closed eyes task. Both results give higher 
accuracy than the work of DelPozo et al. [25], having 91.60 and 94.72 percent using 
the same data set. In addition, the number of subjects in this experiment is more than 
DelPozo’s  et al  work [25], having only 20 subjects. It appears from this experiment 
that the proposed method correctly identifies persons and obtains high accuracy using 
EEG biometrics. 

  

 



  

 

CHAPTER 6 

DISCUSSION 

6.1 Analysis of Method Computational Complexity  

AR parameter estimation in this study is based on Burg approach using least 
squares estimation to obtain the z parameter from l data samples. Marple’s  work [43] 
reviewed that the computational complexity of AR was ( )O lz  in theory. Most order 
values of AR model, or z, are greater than 36 in this work due to more features in each 
pattern. In addition, N is 3000 data points recording in 15 seconds, which is the same 
as Maiorana’s  work [27] performing band pass filter on whole signal. Therefore, the 
computational time of this study is N+O(lz). 

Basically, ICA approach needs long data length to obtain the quality of data set 
decomposition. From practical consideration of Chen [44] stated that for the number 
of data samples each channel used, ICA had to perform   2N d M , where N  is the 
number of data samples, d is a constant more than or equal to 20, and M is the 
number of sources or channels. Thus, the longer data sample length is used for 
decomposition, the better outcome is performed for these approaches. Boscolo et al. 
[45] and Albera et al. [46] showed that SOBIrob, SOBI, InfoMax, FastICA, JADE, ERICA and 
SIMBEC computational complexity were approximated to )( 3O N . Theoretically, 
computational complexity of multilayer-perceptron neural networks is ( ( ))

p p
O tH o i  

for training time and O(1) for testing time, where, ip is input size, H is the hidden units, 
op is the outputs, and t is the number of training epochs. 

Computational complexity of the nearest neighbor is ( )
n n n

O k p q  for both 
training and testing time, where kn is the number of nearest neighbor, pn is the number 
of patterns, qn is the number of attributes of a pattern. In this study, kn is 1 and qn is 
constant. Therefore, the computational complexity of the nearest neighbor is ( )

n
O p . 

The computational complexities are summarized in Table 22. 
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Table 22. Time Analysis. 
Time Proposed method Maiorana (AR) [27] 

method 
Preecha's method  

Input 
l N  l N    2N d M  

Feature 
extraction 

( log ) ( )2O l l + O pq  Filter(Bandpass) time (15 s) 

N + ( )O lz   
)( 3O N  

Classification 

(Testing time) 

( )
n

O p  ( )
n

O p  (1)O  

 

In Table 22, both classifiers are in linear time complexity depending on their 
variables. The time complexity evaluation of Preecha's input took 3000 data points 
consuming about 15 seconds with ICA process. Owing to conditions of the experiment, 
all subjects need to be in resting state with opened eyes. Actually, the data samples 
should be at least 20 * 162 or about 5120 data points to corresponding to Onton [44]. 
Hence, these data points are enough to be used in the experiment to obtain high 
classification accuracy. However, if the number of data samples of ICA, N=dXM2, is 
considered, the data samples will still be conformed to the condition where d is 
constant. The ICA time complexity is )( 3O N . However, this is not appropriate for real 
time applications.  

The proposed method applies STFT and SVD to perform feature extraction. 
The first method is STFT whose computational complexity is ( log )O l l , where l is the 
length of segmented data points less than N . The second method is SVD whose 
computational complexity is )( 2O pq , where p is the number of rows is and q is the 
number columns of power spectrogram matrix. Each matrix has constant matrix size 
because of STFT. So, the computational complexity is ( log ) ( )2O l l + O pq which is less 
than that of Maiorana and Preecha’s researches, i.e., N+ ( )O lz and )( 3O N .     
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6.2 Relative Relevant Minimum Channels to Human Brain Lobes 

To discuss the important of minimum channels for leading to high identification 
accuracy, the experimental results of 7 and 8 channel combinations accuracy at 100 
percent are considered. Each channel needs be organized into the same function 
group. Del Pozo et al. [17] summarized that topological grouping of channels could be 
divided into five areas, namely, frontal, parietal, central, temporal, and occipital area. 
In addition, the temporal area is divided into left and right to easily segment their 
functions. The areas are illustrated in Figure 11. The experimental results are shown in 
Figure 12 and Figure 13. 

 

 
Figure 11. Topological grouping of channels on a human brain. 
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Figure 12. Histogram of relative relevant brain lobes with 7 channel combinations 

(128 data points and 8 data points of window function length). 
 

 

 
Figure 13. Histogram of relative relevant brain lobes with 8 channel combinations 

(128 data points and 8 data points of window function length). 
 

From the histograms in Figure 12 and Figure 13, frontal and occipital areas 
perform better than other areas. Consider the number of channels in each area, it can 
be seen that frontal area will be used for person identification. Furthermore, this area 
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complies with subject’s brain network under resting state [13]. The frontal area 
processes many activities such as Attention, Judgment, Motor Planning, Emotional, and 
Verbal expression which are different for each individual. The accuracy percentage of 
using 6 channels in frontal area is 98.89. It is enough for identification. However, by 
combining the occipital area to improve higher accuracy, the accuracy percentage 
reaches 100. Therefore, the frontal area is the most meaningful area for person 
classification. The results are presented in Table 23. 

 

Table 23. Accuracy percentage of using 6 channels 128 data points in Frontal area 
and combined Frontal and Occipital area. 

Area Channel Number Accuracy percentage 

Frontal 1,2,5,6,9,13 98.89 

Frontal and Occipital 1,2,5,6,9,13,12,16 100 

 



  

 

CHAPTER 7 

CONCLUSION 

In this work, feature extraction method based on STFT and SVD was proposed, 
along with the appropriate classifiers to achieve the highest person classification 
accuracy. In the experiment, each EEG signal was converted to power spectrogram 
matrix using STFT. Then, SVD was used to extract the singular values matrix from the 
STFT matrix, which were subsequently used as feature to classify a person. The 
appropriate length of EEG data points and the window function length of STFT were 
evaluated. Four kinds of classifiers were appraised, namely, MLP, RBF, PNN, and k-NN. 
The experiment indicated that PNN and k-NN were the suitable classifiers for person 
identification because both gave the average highest accuracy near 100% with 16 EEG 
channels. To investigate the minimum channel for subject identification, the 
experiment performed combinations of all channels on signals that were classified by 
using k-NN. The combinations were 2, 3, 4, 5, 6, 7, and 8 channels. Furthermore, the 
experimental results showed that between 2 and 7 channel combinations gave higher 
personal identification accuracy than the results of Maiorana [27] and Preecha [10, 28]. 
Moreover, the practical classification experiment using 6, 7, and 8 channel 
combinations yielded the accuracy of 100 percent of 20 subjects and completely 
classified unknown person who did not belong to the database with only identification 
time of 0.66 seconds. The proposed method was performed on the data set with only 
closed and opened eyes task in resting state. The average accuracy of this data set 
was 98 percent with 109 subjects. These results were higher than those of the previous 
work [25].  The success was attributive to frontal and occipital lobes which were likely 
to be significant for classification in real time. Thus, the proposed approach is very 
promising for person identification with high performance to be applied in real time 
and real life systems.   
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