การดูคซับและการเปลี่ยนของแก๊สขนาคเล็กบนอนุภาคระดับนาโนเมตรของไทเทเนียมไดออกไซด์ และผิวของไทเทเนียมไดออกไซด์ดัดแปร

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2559 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ADSORPTION AND CONVERSION OF SMALL GASES ON TiO₂ NANOPARTICLES AND SURFACES OF MODIFIED TiO₂

Miss Waranyu Pipornpong

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2016 Copyright of Chulalongkorn University

Thesis Title	ADSORPTION AND CONVERSION OF
	AND SURFACES OF MODIFIED TiO ₂
Ву	Miss Waranyu Pipornpong
Field of Study	Chemistry
Thesis Advisor	Professor Vithaya Ruangpornvisuti, Dr.rer.nat.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

> _____Dean of the Faculty of Science (Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

COMMITTEE
Chairman
(Associate Professor Vudhichai Parasuk, Ph.D.)
Thesis Advisor
(Professor Vithaya Ruangpornvisuti, Dr.rer.nat.)
Examiner
(Professor Thawatchai Tuntulani, Ph.D.)
Examiner
(Assistant Professor Kanet Wongravee, Ph.D.)
External Examiner
(Associate Professor Chinapong Kritayakornupong, Dr.rer.nat.)

วรัญญู พิพรณ์พงษ์ : การดูดซับและการเปลี่ยนของแก๊สขนาดเล็กบนอนุภาคระดับนาโน เมตรของไทเทเนียมไดออกไซด์และผิวของไทเทเนียมไดออกไซด์ดัดแปร (ADSORPTION AND CONVERSION OF SMALL GASES ON TiO₂ NANOPARTICLES AND SURFACES OF MODIFIED TiO₂) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: ศ. ดร.วิทยา เรืองพรวิสุทธิ์, หน้า.

การดูคซับของก๊าซขนาดเล็กและปฏิกิริยาของก๊าซบนผิวที่ถูกคัดแปลงของไทเทเนียมไค ออกไซด์ คือผิว ZnOSL ที่อยู่บนอนาเทส (001) และผิวบนอนาเทส (001) ที่ถูกโคปด้วย แมงกานีสได้รับการศึกษาโดยวิธีดีเอฟที การคำนวณโดยใช้แบบจำลองทั้งแบบคลัสเตอร์ และแบบ พีริออดิก พบว่าตำแหน่ง Ti_{5c} และ O_{2c} บนอนาเทส TiO₂ (001) มีความว่องไวต่อคลัสเตอร์ . ปฏิกิริยาเปลี่ยนแก๊สการ์บอนมอนอกไซด์ด้วยแก๊สออกซิเจนเกิดเป็นแก๊ส ZnOSL ้ การ์บอนใดออกไซด์บนคอมโพสิต ZnOSL/TiO2 ใด้รับการศึกษา นอกจากนี้คลัสเตอร์ของ ZnOSL และ ZnOSL ที่ถูกโคปด้วยโลหะทรานสิชัน และอโลหะได้ถูกศึกษาเพื่อความเข้าใจ ้สมบัติของพื้นผิวดังกล่าว ผลการศึกษาการดูดซับของแก๊สขนาดเล็กบน Sc–ZnOSL พบการดูดซับ แก๊สซัลเฟอร์ไดออกไซด์เสถียรที่สุด และการดูดซับแก๊สไดไนโตรเจนออกไซด์โครงสร้างแบบ บริดจ์บน Sc–ZnOSL พบว่าช่องว่างพลังงานลดลงมากที่สุด จึงได้รับการแนะนำให้ใช้เป็นเป็น ้วัสคุตรวจจับแก๊ส ใค ใน โตรเจนออก ไซค์ หรือแก๊สซัลเฟอร์ ใคออก ไซค์ สำหรับระบบผิวอนาเทสที่ ถูกโคปด้วยแมงกานีสพบว่าเพิ่มความว่องไวของการดูดซับออกซิเจน และการ์บอนมอนอกไซด์ ้สำหรับปฏิกิริยาเปลี่ยนแก๊สคาร์บอนมอนอกไซค์เป็นก๊าซคาร์บอนไดออกไซค์ คังนั้นผลลัพธ์บ่งชื่ ว่าผิวที่ถูกดัดแปรของอนาเทส (001) สามารถใช้สำหรับปฏิกิริยาการเปลี่ยนแก๊ส คาร์บอนมอนอกไซค์ด้วยแก๊สออกซิเจนเกิดเป็นแก๊สคาร์บอนไดออกไซค์ได้

ภาควิชา เคมี สาขาวิชา เคมี ปีการศึกษา 2559

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก

5472849123 : MAJOR CHEMISTRY

KEYWORDS: DFT / ADSORPTION / GASES / ANATASE TIO2 (001) / ZNOSL / ZNOSL/TIO2 / MN-DOPED TIO2 (001)/ PERIODIC BOUNDARY CONDITION

WARANYU PIPORNPONG: ADSORPTION AND CONVERSION OF SMALL GASES ON TiO₂ NANOPARTICLES AND SURFACES OF MODIFIED TiO₂. ADVISOR: PROF. VITHAYA RUANGPORNVISUTI, Dr.rer.nat., pp.

Adsorptions of small gases and their reactions on modified anatase TiO₂ (001) as ZnOSL supported on anatase TiO₂ (001), (ZnOSL/TiO₂), and Mndoped TiO₂ (001) surfaces have been studied by density functional theory (DFT) method. The calculation models relied on both of clusters and periodic boundary conditions (PBCs). It was found that Ti_{5C} and O_{2c} sites on anatase TiO_2 (001) are active for ZnOSL supporting. The conversion of carbon monoxide by oxygen forming carbon dioxide gas over the ZnOSL/TiO₂ composite was studied. Moreover, ZnOSL, transition metals, and non-metals doped-ZnOSL clusters have studied to understand the properties of their surfaces. Resulting from the study of small gases on the Sc-ZnOSL, the most stable adsorption configuration is SO₂ adsorption. The most decreasing of energy gap for N₂O bridge-structured adsorption on Sc-ZnOSL was found. The Sc-ZnOSL used as N2O or SO2 sensing material was suggested. For the system of Mn-doped anatase (001) surface, Mn-doped anatase (001) surface enhances the activity of O₂ pre-adsorption and CO adsorption for CO to CO₂ conversion. Therefore, the results indicate that modified anatase (001) surface can be used for the conversion of carbon monoxide by oxygen gas forming carbon dioxide gas reaction.

Department:ChemistryField of Study:ChemistryAcademic Year:2016

Student's Signature	
Advisor's Signature	

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Professor Vithaya Ruangpornvisuti, my research supervisor, for his guidance, useful critiques of this research work, and helping me overcome myself. I would also like to offer my special thanks to my coach, Professor Cristiana Di Valentin for her valuable technical support, proceeding guidance and inspiration. I would like to thank all my research committees, for their advice and insightful comments. My sincere thanks also goes to Japan Student Services Organization (JASSO) for offering me the internship opportunities in Japan Advanced Institute of Science and Technology (JAIST) with a special experience from Professor Taisuke Ozaki and Dr. Chi-Cheng Lee. I would like to thank for financial support from Department of Chemistry, Chulalongkorn University providing my short-term research visitor scholarship at Nanyang Technological University (NTU) in the research group of Professor Hajime Hirao. My grateful thanks are also extended to Mr. Supho Phunnarungsi for his help in doing the data analysis and keeping my progress on schedule, to Ms. Benjawan Keawruksa for her cooperation, to Ms. Wiparat Hotarat, Mrs. Jiraporn Phanich, and Mr. Nontawat Ploysongsri for their valuable supports. I thank Ms. Thrissawan Traijitt and again, Mr. Supho Phunnarungsi for the sleepless nights we were working together.

Special thanks should be given to Dr. Daniele Selli, Mr.Daniele Perilli, Ms. Martina Datteo and all members in nanoqlab group for constructive supports, espectially, Ms. Costanza Ronchi for all the fun we have had during my last year of PhD. life.

Last but not least, I wish to thank my family including Mr. Niti Ruengcharoen for all supports and encouragement throughout my study. A last special gratitude I give to my Ph.D. life which let me becomes enlightened the purpose of my life.

CONTENTS

Page	9
THAI ABSTRACTiv	
ENGLISH ABSTRACTv	
ACKNOWLEDGEMENTSvi	
CONTENTSvii	
LIST OF TABLESxi	
LIST OF FIGURES xiii	
LIST OF ABBREVIATIONS AND SYMBOLSxx	
CHAPTER I INTRODUCTION1	
1.1 RESEARCH BACKGROUND AND RESEARCH RATIONALE	
1.1.1 TiO ₂	
1.1.2 Anatase TiO ₂ (001) surface	
1.1.3 ZnOSL cage	
1.1.4 Adsorption and catalytic properties of transition metal oxide7	
1.1.4.1 Type of transition metal oxide7	
1.1.4.2 Atomic coordination of surface	
1.1.4.3 Acidity and basicity of surface	
1.1.5 Doped metal oxide9	
1.1.5.1 LVD	
1.1.5.2 HVD	
1.1.5.3 SVD and FVD10	
1.1.6 Research rationale11	
1.2 OBJECTIVE	
1.3 SCOPE OF DISSERTATION	
1.4 EXPECTED RESULTS13	
CHAPTER II THEORETICAL BACKGROUND	
2.1 Ab initio Calculation14	
2.1.1 HF Method14	
2.2 DFT Method	

	Page
2.2.1 Hohenberg and Kohn DFT theorems (HK DFT)	16
2.2.2 The Kohn–Sham DFT theorems (KS DFT)	17
2.2.2.1 The KS Energy	17
2.2.2.2 KS Equation	19
2.2.2.1 LDA	20
2.2.2.2 GGA	21
2.2.2.3 Hybrid functional	22
2.2.3 Basis set	23
2.2.3.1 Minimal basis set	23
2.2.3.2 Split-valence basis set	23
2.2.4 Polarization function	24
2.2.5 Diffuse function	24
2.2.6 Effective core pseudopotential (ECP)	24
CHAPTER III FIRST–PRINCIPLES INVESTIGATION OF ZnO SODALITE–LIKE CAGE BINDING ONTO TiO ₂ (001) SURFACE AND ITS ABILITY FOR	
CO OXIDATION TO CO ₂	26
3.1 ABSTRACT	26
3.2 INTRODUCTION	26
3.3 METHODOLOGY	27
3.4 RESULTS AND DISCUSSION	30
3.4.1 Binding of ZnOSL cage on TiO ₂ surface	30
3.4.2 Adsorption structures of gases on the ZnOSL–TiO ₂ and reaction profile	31
3.5 CONCLUSION	36
3.6 SUPPLEMENTARY DATA	37
CHAPTER IV DFT INVESTIGATION ON MOLECULAR STRUCTURES OF METAL AND NONMETAL–DOPED ZnO SODALITE–LIKE CAGE AND	
THEIR ELECTRONIC PROPERTIES	38
4.1 ABSTRACT	38
4.2 INTRODUCTION	38

	Page
4.3 COMPUTATIONAL DETAILS	41
4.4 RESULTS AND DISCUSSION	43
4.4.1 Optimized structures of metal-doped ZnOSLs and their energy gapa	s43
4.4.2 Optimized structures of nonmetal–doped ZnOSLs and their energy gaps	50
4.4.3 Metal and nonmetal binding for doping reactions	55
4.4.4 NBO charge analysis for metal- and nonmetal-doped ZnOSL	57
4.5 CONCLUSION	60
4.6 SUPPLEMENTARY DATA	61
HAPTER V DFT INVESTIGATION ON ADSORPTION OF DI–, TRI– ANI ETRA–ATOMIC GASES ON Sc–DOPED ZnO SODALITE LIKE CAGE FC AS SENSING PURPOSE))R 67
5.1 ABSTRACT	67
5.2 INTRODUCTION	67
5.3 COMPUTATIONAL DETAILS	69
5.4 RESULTS AND DISCUSSION	70
5.4.1 Structure optimizations	70
5.4.2 Energetics and thermodynamics	76
5.4.3 Density of state and gap energy	78
5.4.4 NBO atomic charges	80
5.5 CONCLUSION	83
5.6 SUPPLEMENTARY DATA	84
THAPTER VI MECHANISM OF CO CONVERSION TO CO_2 OVER THE M OPED TiO ₂ (001) SURFACE UNDER O ₂ ATMOSPHERE	n– 86
6.1 ABSTRACT	86
6.2 INTRODUCTION	86
6.3 COMPUTATIONAL DETAILS	87
6.4 RESULTS AND DISCUSSION	88
6.4.1 Bulk structure of anatase TiO ₂	
6.4.2 The TiO ₂ (001) and Mn–doped surfaces	

Pag	ge
6.4.3 Adsorption of adsorbate gases on the Mn–doped TiO ₂ surface91	
6.4.3.1 Adsorption of oxygen on the Mn–doped TiO ₂ surface91	
6.4.3.2 Adsorption of CO on the Mn–doped TiO ₂ and oxygen–pre– adsorbed Mn–doped TiO ₂ surfaces	
6.4.4 The mechanism of the CO oxidation by O_2 to CO_2 on the Mn–TiO ₂ 95	
6.5 CONCLUSION100	
CHAPTER VII CONCLUSIONS	
REFERENCES	
VITA	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

LIST OF TABLES

		Page
Table 1.1	Structural parameters of anatase and rutile TiO ₂	4
Table 3.1	Binding of the ZnOSL cage onto the TiO_2 (001) surface to afford [ZnOSL/TiO ₂], its reaction for CO oxidation to CO ₂ , and all related adsorption reactions	33
Table 4.1	Energy gaps, energetics and dipole moment of undoped, metal- and nonmetal-doped ZnOSLs, computed at the B3LYP/LanL2DZ level of theory	48
Table 4.2	Energy gaps, energetics and dipole moment of high-spin undoped, metal- and nonmetal-doped ZnOSLs, computed at the B3LYP/LanL2DZ level of theory	49
Table 4.3	Energetic and thermodynamic properties of dopant atoms binding to Zn_V of $[ZnOSL + Zn_V]$ for metal doping and O_V of $[ZnOSL + O_V]$ for nonmetal doping, computed at the B3LYP/LanL2DZ level of theory	56
Table 4.4	Selected NBO charges (in e) of metal– and nonmetal–doped ZnOSLs, computed at the B3LYP/LanL2DZ level of theory	58
Table 4.5	Selected NBO charges (in e) of high–spin metal– and nonmetal–doped ZnOSLs, computed at the B3LYP/LanL2DZ level of theory	59
Table S4.1	Selected geometrical data for the metal–doped ZnOSLs, computed at the B3LYP/LanL2DZ level of theory	63
Table S4.2	Selected geometrical data for the undoped and nonmetal- doped ZnOSLs, computed at the B3LYP/LanL2DZ level of theory	66

		Page
Table 5.1	The shortest bond–distances between gas atoms and adsorption atom of the Sc–doped ZnOSL	75
Table 5.2	Energy gaps, adsorption energies and thermodynamic quantities of gas adsorptions on Sc-doped ZnOSL, computed at the B3LYP/GEN level of theory	77
Table 5.3	NBO charges of diatomic gases atoms, atoms nearby adsorption area of the Sc-doped ZnOSL and partial charge transfer (PCT) of Sc and neighboring Zn atom, computed at the B3LYP/GEN level of theory	81
Table 5.4	NBO charges of polyatomicgases atoms, atoms nearby adsorption area of the Sc-doped ZnOSL and partial charge transfer (PCT) of Sc and neighboring Zn atom, computed at the B3LYP/GEN level of theory	82
Table 6.1	Lattice parameters of the anatase TiO_2 crystals based (I41/amd space group), compared with other computed and observed results	93
Table 6.2	The adsorption energies (ΔE_{ads}) of gas adsorbed and co- adsorbed on un– and Mn–doped TiO ₂ (001) surfaces	94

LIST OF FIGURES

		Page
Figure 1.1	Structures of (a) anatase and (b) rutile TiO ₂	4
Figure 1.2	Structures of (a) clean (101) and (b) (001) surfaces. Ti and O	
	atoms are represented by grey and red spheres, with six-fold	
	Ti, five–fold Ti, three–fold O and two–fold O denoted as Ti_{6c} ,	
	Ti _{5c} , O _{3c} , and O _{2c} respectively	5
Figure 1.3	B3LYP/LanL2DZ-optimized structure of the ZnOSL cage.	
	Bond lengths and angles are in Å and degree, respectively	6
Figure 3.1	The molecular structures optimized using the periodic slab	
	model for (a) the anatase TiO_2 (001) surface and (b) the	
	ZnOSL cage adsorbed onto the TiO2 (001) surface. Left,	
	middle, and right are top, side, and front views, respectively.	
	For clarity, sketch drawing for the top view of ZnOSL on the	
	TiO_2 (001) surface is also shown at the left. Bond lengths are	
	in Å	29
Figure 3.2	Potential energy profiles for (a) association of ZnOSL cage	
	onto anatase TiO_2 (001) surface and (b) conversion reaction of	
	$CO + O_2$ to CO_2 on the ZnOSL/TiO ₂ . Bond lengths are in Å.	
	Relative energies are in kcal/mol	34
Figure 3.3	Potential energy profile for stepwise adsorption of CO ₂ onto	
	ZnOSL surface of ZnOSL/TiO ₂ . Bond lengths are in Å.	
	Relative energies are in kcal/mol	35
Figure S3.1	The optimized structures of (a) O atom and (b) O ₂ molecule	
	adsorbed onto ZnOSL surface of the ZnOSL/TiO2. Left and	
	right images are top and front views, respectively	37

Figure 4.1 The B3LYP/LanL2DZ–optimized structures of (a) Sc-, (b) Ti-, (c) V-, (d) Cr-, (e) Mn-, (f) Fe-, (g) Co-, (h) Ni-, (i) Cu-doped ZnOSLs, (j) undoped ZnOSL, (k) Pd-, (l) Ag-, (m) Pt- and (n) Au-doped ZnOSLs. The NBO charges for selected atoms are presented in e. **a**–**j**, **k** and **l**, and **m** and **n** are the fourth, fifth and sixth rows transition metal doping structures, respectively. All the metal-doped ZnOSLs are shown based on the periodic table as noted on the bottom left 44 side Figure 4.2 Plots of frontier orbitals of the low-spin (a) Sc-, (b) Ti-, (c) V–, (d) Cr-, (e) Mn-, (f) Fe-, (g) Co-, (h) Ni-, (i) Cudoped ZnOSLs, (j) undoped ZnOSL, (k) Pd-, (l) Ag-, (m) Ptand (n) Au-doped ZnOSLs. All the orbitals of metal-doped ZnOSLs are shown at the same positions of their corresponding structures shown in Figure 4.1 45 Figure 4.3 DOSs of the low-spin (a) Sc-, (b) Ti-, (c) V-, (d) Cr, (e) Mn-, (f) Fe-, (g) Co-, (h) Ni-, (i) Cu-doped ZnOSLs, (j) undoped ZnOSL, (k) Pd-, (l) Ag-, (m) Pt- and (n) Au-doped ZnOSLs. All the DOSs of metal-doped ZnOSLs are shown at the same positions of their corresponding structures shown in Figure 4.1 46 Figure 4.4 Plots of energy gaps of (a) the low-spin $(-\Box)$ and high-spin 50 $(-\circ-)$ metal-doped ZnOSLs and (b) Gibbs free energy changes of the binding of metal dopant to Zn vacancy of the low-spin (-D-) and high-spin (-O-) Zn vacancy defect surfaces of

ZnOSLs

Page

- Figure 4.5 B3LYP/LanL2DZ-optimized structures of the low-spin (a) B-, (b) C-, (c) N-doped ZnOSLs, (d) undoped ZnOSL, (e) Al-, (f) Si-, (g) P-, (h) Ga- and (i) Ge-doped ZnOSLs. The NBO charges for selected atoms are presented in e. All the nonmetal-doped ZnOSLs are shown based on the periodic 51 table as noted on the bottom right side Figure 4.6 Plots of the frontier orbitals of the low-spin (a) B-, (b) C-, (c) ZnOSLs, (d) undoped ZnOSL, (e) Al-, (f) Si-N-doped , (g) P-, (h) Ga- and (i) Ge-doped ZnOSLs. Left and right views are their HOMO and LUMO, respectively. All the orbitals of nonmetal-doped ZnOSLs are shown at the same positions of their corresponding structures shown in Figure 4.5 52 of Figure 4.7 DOSs the low-spin (a) B-, (b) C-, (c) N-doped ZnOSLs, (d) undoped ZnOSL, (e) Al-, (f) Si-, (g) P-, (h) Gaand (i) Ge-doped ZnOSLs. All the DOSs of nonmetal-doped
- ZnOSLs are shown at the same positions of their
corresponding structures shown in Figure 4.553Figure 4.8Plots of energy gaps of (a) the low-spin (-□-) and high-spin
- $(-\circ-)$ nonmetal-doped ZnOSLs and (b) Gibbs free energy changes of the binding of nonmetal dopant to O vacancy of the low-spin $(-\Box-)$ and high-spin $(-\circ-)$ O-vacancy defect surfaces of ZnOSLs
- Figure S4.1 Plots of frontier orbitals of the high-spin (a) Sc-, (b) Ti-, (c)
 V-, (d) Cr-, (e) Mn-, (f) Fe-, (g) Co-, (h) Ni-, (i) Cu-doped
 ZnOSLs, (j) undoped ZnOSL, (k) Pd-, (l) Ag-, (m) Pt- and
 (n) Au-doped ZnOSLs. All the orbitals of metal-doped
 ZnOSLs are shown at the same positions of their corresponding structures shown in Figure 4.1

54

61

Figure S4.2	DOSs of the high-spin (a) Sc-, (b) Ti-, (c) V-, (d) Cr-, (e)	
	Mn-, (f) Fe-, (g) Co-, (h) Ni-, (i) Cu-doped ZnOSLs, (j)	
	undoped ZnOSL, (k) Pd-, (l) Ag-, (m) Pt- and (n) Au-doped	
	ZnOSLs. All the DOSs of metal-doped ZnOSLs are shown at	
	the same positions of their corresponding structures shown in	
	Figure 4. 1	62
Figure S4.3	Plots of the frontier orbitals of the high-spin (a) B-, (b) C-	
	, (c) N-doped ZnOSLs, (d) undoped ZnOSL, (e) Al-, (f) Si-	
	, (g) P-, (h) Ga- and (i) Ge-doped ZnOSLs. Left and right	
	views are their HOMO and LUMO, respectively. All the	
	orbitals of non metal-doped ZnOSLs are shown at the same	
	positions of their corresponding structures shown in	
	Figure 4. 5	64
Figure S4.4	DOSs of the high-spin (a) B-, (b) C-, (c) N-doped	
	ZnOSLs, (d) undoped ZnOSL, (e) Al-, (f) Si-, (g) P-, (h) Ga-	
	and (i) Ge–doped ZnOSLs. All the DOSs of non metal–doped	
	ZnOSLs are shown at the same positions of their	
	corresponding structures shown in Figure 4.5	65
Figure 5.1	The B3LYP/GEN-optimized structures of (a) Sc-doped	
	ZnOSL, their adsorption structures with (b) H_2 (toward Sc), (c)	
	H_2 (toward O), (d) N_2 (toward Sc), (e) N_2 (toward Zn), (f) O_2	
	(toward Sc) and (g) O ₂ (toward Zn). Plots for their density of	
	states are located beside their images. NBO atomic charges are	
	in parentheses. Bond distances are in Å.	71

- Figure 5.2 The B3LYP/GEN–optimized structures of the Sc–doped ZnOSL adsorption with (a) CO (pointing C toward Sc), (b) CO (O toward Sc), (c) CO (C toward Zn), (d) CO (O toward Zn), (e) NO (N toward Sc), (f) NO (NO bond perpendicular to Sc), (g) NO (O toward Sc) and (h) NO (N toward Zn). Plots for their density of states are located beside their images. NBO atomic charges are in parentheses. Bond distances are in Å
- Figure 5.3 The B3LYP/GEN–optimized structures of the Sc–doped ZnOSL adsorption with (a) N₂O (pointing O toward Sc and N toward Zn), (b) N₂O (N toward Sc), (c) N₂O (O toward Zn and N toward Sc), (d) N₂O (N toward Zn), (e) NO₂ (O toward Sc and O' toward Zn), (f) NO₂ (O toward Sc), (g) NO₂ (N toward Zn). Plots for their density of states are located beside their images. NBO atomic charges are in parentheses. Bond distances are in Å
- Figure 5.4 The B3LYP/GEN-optimized structures of the Sc-doped ZnOSL adsorption with (a) H₂O (O toward Sc), (b) H₂O (O toward Zn), (c) CO₂ (O toward Sc), (d) CO₂ (C–O bond somewhat parallel to Sc–O bond, O toward Sc and C toward O), (e) CO₂ (C–O bond somewhat parallel to to Zn–O bond, O toward Zn and C toward O), (f) SO₂ (O toward Sc and other O toward Zn), (g) SO₂ (O toward Sc), (h) SO₂ (O toward Zn), (i) NH₃ (N toward Sc), (j) NH₃ (N toward Sc), I) Plots for their density of states are located beside their images. NBO atomic charges are in parentheses. Bond distances are in Å
- Figure 5.5Free energy profile of adsorptions of small gas over the Sc-
doped ZnOSL. Short symbols indicate atomic site(s) of the Sc-
doped ZnOSL of which full notations are defined in Table 5.1

72

73

74

78

Figure 5.6	Changes in energy gaps (in %) of the Sc-doped ZnOSL while	
	each gas is adsorbed. Adsorption sequences correspond to data	
	tabulated in Table 5.2	79
Figure S5.1	Plot of frontier orbitals' energies against adsorption structures	
	of Sc-doped ZnOSL with di-atomic gases. HOMO-LUMO	
	gaps are compared with the clean Sc-doped ZnOSL	84
Figure S5.2	The B3LYP/GEN-optimized structures of the Sc-doped	
	ZnOSL adsorption with (a) CO (pointing C toward Sc), (b) CO	
	(O toward Sc), (c) CO (C toward Zn), (d) CO (O toward Zn),	
	(e) NO (N toward Sc), (f) NO (NO bond perpendicular to Sc),	
	(g) NO (O toward Sc) and (h) NO (N toward Zn). Plots for	
	their density of states are located beside their images. NBO	
	atomic charges are in parentheses. Bond distances are in Å \ldots	85
Figure 6.1	The optimized-structures of (a) un-doped and (b) Mn-doped	
	anatase TiO ₂ (001) surfaces modeled by (2 \times 3) slab of nine	
	layers, containing altogether 18 Ti and 36 O atoms. Top and	
	side views are shown at the top and bottom images,	
	respectively and a second s	90
Figure 6.2	The adsorption structures of O ₂ on Mn–doped TiO ₂ surface as	
	(a) V-shape configuration $(O_2^{V}/Mn-TiO_2)$ and (b) I-shape	
	configuration ($O_2^{I}/Mn-TiO_2$). Their relative energies (ΔE_{rel})	
	are in kcal/mol and bond distances are in Å. Top and side	
	views are shown at the top and bottom images, respectively	92
Figure 6.3	Potential energy profile for CO oxidation to CO ₂ on V-shape	
	oxygen-pre-adsorbed on the Mn-TiO ₂ (001) (O_2^V/Mn -TiO ₂).	
	Potential energies are in kcal/mol and bond distances are in Å.	
	Top and side views are shown at the top and bottom images,	
	respectively	97

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University xix

Page

LIST OF ABBREVIATIONS AND SYMBOLS

TiO ₂	Titanium dioxide
ZnO	Zinc oxide
Anatase TiO ₂ (001)	Anatase titanium dioxide plane (001)
ZnOSL	Zinc oxide sodalite cage
PBCs	Periodic boundary conditions
DFT	Density functional theory
Ti _{6c}	Six-fold coordinated titanium atom
Ti _{5c}	Five-fold coordinated titanium atom
O _{3c}	Three-fold coordinated oxygen atom
O _{2c}	Two-fold coordinated oxygen atom
Zn _{3c}	Three-fold coordinated zinc atom
Eg	Band gap energy
B3LYP	Becke's three-parameter exchange and Lee-Yang-Parr
	correlation hybrid functional
LVD	Low–valence dopant
HVD	High-valence dopant
SVD	Same-valence dopant
FVD	Flexible –valence dopant
ZnOSL/TiO ₂	ZnOSL supported on anatase TiO_2 (001) surface
PBE	Perdew-Burke-Ernzerh of exchange
	correlation functional
$\Delta E_{ m ads}$	Adsorption energy
DOS	Electronic density of state

Eq.	Equation
$\Delta E_{ m reaction}$	Reaction energy
$\Delta E_{ m binding}$	Binding energy
Н	Enthalpy
G	Gibbs free energy
НОМО	Highest occupied molecular orbital
LUMO	Lowest unoccupied molecular orbital
SOMO	Singly occupied molecular orbital
TZVP	Triple-zeta valence with polarization quality
Mn-TiO ₂ (001)	Manganese doped anatase titanium dioxide plane (001)
Sc-ZnOSL	Scandium doped zinc oxide sodalite cage
ΔG°	Gibb's free energy
ΔH°	Enthalpy energy

จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER I INTRODUCTION

Metal oxides are the key role in many aspects of our dialy life, for example gas sensors [1-4], photocatalysts [5-7], and dye–sensitized solar cells [8, 9]. During the past few decades, there has been more concerned about air pollution crisis which causes health, environmental and economic problems. Nitrogen oxide (NO_x) and carbon monoxide (CO) are two examples of common air pollutants released from motor vehicles, electric utilities, and other industries. They are toxic and rapidly react with other chemicals forming more toxic chemicals and contributing to global warming.

Due to these problems, metal oxides, such as titanium dioxide (TiO₂) and zinc oxide (ZnO), are very fascinating compounds using for adsorption and conversion the pollutant gases to the less toxic and/or non-toxic ones. TiO₂ and ZnO are two of the most widely used metal oxide, with a wide range of material applications [7, 10-12]. They also exhibit high surface reactivity and non-toxicity [12, 13]. They are well-known within the field of semiconductors, adsorption materials, and catalysts. They are substrates for metal doping and metal oxide supporting showing important catalytic properties [14-16]. As a result of their different band gaps, metal doping and metal oxide supporting affect to the electron transfer process. The electrons can move through the element or metal oxide and easily transfer to the gas adsorbate. Due to the fact that gas adsorption process is important for catalytic property of metal oxide catalyst surface. Their gas adsorption property is closely related to its application as catalyst [17]. Hence, doping and supporting can enhance catalytic property of metal oxide [18, 19].

As various TiO_2 and ZnO structures and their different surfaces may have different adsorption and reaction abilities, anatase TiO_2 and ZnO sodalite–like cage, (ZnOSL) surfaces have been selected to be investigated in this work. The reason is that anatase TiO_2 surface play more catalytically active compared with other TiO_2 polymorphs [20-22]. Additionally, anatase TiO_2 (001) surface and ZnOSL surfaces showed higher adsorption activities for small gases showing in prior researches [23-26].

Principally, adsorption and reaction of small gases on ZnOSL cluster model have studied to investigate the nature of novel surface. Non– and element doped– ZnOSL have been also examined. In addition, modified anatase TiO₂ surface by doping element and supporting with ZnOSL have studied to give more insight in enhancement of their catalytic activity. Both of cluster and periodic boundary conditions (PBCs) models of surfaces were studied with density functional theory (DFT).

The thesis contents, based on the publications, submission and preparations, are as follows:

Chapter III: First–principles investigation of ZnO sodalite–like cage binding onto TiO_2 (001) surface and its ability for CO oxidation to CO_2 [27]

Chapter IV: DFT investigation on molecular structures of metal and nonmetal-doped ZnO sodalite-like cage and their electronic properties [28]

Chapter V: DFT investigation on adsorption of di-, tri- and tetra-atomic gases on Scdoped ZnO sodalite like cage for gas sensing purpose

Chapter VI: Mechanism of CO conversion to CO_2 over the Mn–doped TiO₂ (001) surface under O_2 atmosphere

1.1 RESEARCH BACKGROUND AND RESEARCH RATIONALE

1.1.1 TiO₂

TiO₂ is also called as titanium (IV) oxide or Titania. The oxidation states of Ti and O are formally +4 and -2, respectively. In natural, TiO₂ has three main different polymorphs including anatase, rutile, and brookite. Brookite is rare in natural and difficult to synthesize in the laboratory. Brookite has been considered to be brittle, hence, it is the least studied TiO_2 [29]. Anatase and rutile are tetragonal, in which can be explained as chain of TiO₆ octahedra. In bulk TiO₂, the Ti⁴⁺ are six-fold coordinated (Ti_{6c}) to O²⁻. However, both structures have slightly different in bonding lengths and angles because of the different arrangement of atoms in their structures as depicted in Figure 1.1 [30]. Anatase has I4₁/amd space group with cell parameters of a=b=3.785 Å and c=9.514 Å. Rutile has P4₂/mnm space group with cell parameters of a=b=4.594 Å and c=2.959 Å [31]. Their structure parameters were shown in Table 1.1. These differences in lattice structural parameters cause different mass densities and electronic structures between them. Rutile is a major phase of TiO₂, while anatase and brookite are considered to be metastable phase and less dense than rutile. However, TiO₂ is preferable in anatase phase rather than the rutile phase at small particle size [31-33].

According to band structure, rutile and anatase have measured band gap energy (E_g) of 3.0, and 3.2 eV, respectively [31]. The band gap of anatase is wider than one of rutile. Nevertheless, indirect band gap of anatase exhibits higher photocatalysis activity. Moreover, surface energy of anatase is lowest compared with rutile and brookite causing anatase has stronger adsorption ability [30, 34, 35].

Figure 1.1 Structures of (a) anatase and (b) rutile TiO₂.

Table 1.1 Structural p	arameters of anatase	and rutile TiO ₂
------------------------	----------------------	-----------------------------

Structural parameters	Anatase	Rutile
Bravias lattice	Body-centered tetragonal	Primitive tetragonal
Space group	No. 141	No. 136
	I4 ₁ /amd	P4 ₂ /mnm
Lattice parameters [Å] ^a		
a Ch	3.785 GCOR UNVERSIT	4.594
b	3.785	4.594
С	9.514	2.959
Band gap energy [eV] ^b	3.2	3.0

^a Taken from reference [34].

^b Taken from reference [31].

1.1.2 Anatase TiO₂ (001) surface

There are two main kinds of anatase surface exposure, including (001), and (101) surfaces. Their structures were shown in

Figure 1.2 [26, 36]. The anatase TiO₂ (001) surface are not stable due to excess charge and unsaturated coordination of all five–fold coordinated Ti atoms (Ti_{5c}) and two–fold–coordinated O atoms (O_{2c}) containing in its surface [37-39]. Therefore, it is the most reactive surface using for gas adsorption and catalytic surface [26, 40-42]. Unfortunately, anatase TiO₂ (001) surface is minority facet in the equilibrium state of most synthesis cases. It is thermodynamically unfavourable because of its higher surface energy (0.90 J/ m²) compared with (101) (0.44 J/m²) facets [30, 35]. But the higher surface energy demonstrated that surfaces have good performance as catalyst and gas sensing [17]. Hence, researchers attempted to the synthesis high percentages of anatase TiO₂ (001). For the propose of enhancement the performances of TiO₂, It was successful synthesized nearly 100% exposed (001) facets [43, 44].

Figure 1.2 Structures of (**a**) clean (101) and (**b**) (001) surfaces. Ti and O atoms are represented by grey and red spheres, with six–fold Ti, five–fold Ti, three–fold O and two–fold O denoted as Ti_{6c} , Ti_{5c} , O_{3c} , and O_{2c} respectively.

1.1.3 ZnOSL cage

ZnO nanostructures exist in several forms, such as nanotubes, nanowires, nanorods, nanoclusters, and nanoparticles. It has been found that ZnO plays an important role as gas sensor [45-47]. In 2009, Castañeda, L. prepared the ZnO nanocages and proved that ZnO nanocages is suitable for gas sensor by experimental technique [48]. In order to find out the most stable ground state geometry, the structure and thermodynamic properties of Zn_nO_n (n=2–16) clusters was considered using DFT calculation. In case of n > 9, clusters prefer to form three–dimensional structures as cage like structures. The magic Zn_12O_{12} cluster have been theoretically indicated to be the most stable cluster at ground state [45, 49]. Also, it was successful synthesized since 2006 [50]. Kaewruksa, et al. stated that ZnOSL, Zn_12O_{12} cluster was stable. It can adsorb various gases; diatomic (H₂, N₂, O₂, CO, NO), triatomic (CO₂, N₂O, NO₂, H₂O, SO₂) and tetratomic (NH₃) gases, due to its symmetric spherical znO nanoparticle.

The coordinates of ZnOSL cage are composed of three–fold coordinated zinc atoms (Zn_{3c}), and three–fold coordinated oxygen atoms (O_{3c}), as shown in **Figure 1.3** [23].

JHULALONGKORN UNIVERSITY

Figure 1.3 B3LYP/LanL2DZ–optimized structure of the ZnOSL cage. Bond lengths and angles are in Å and degree, respectively.

1.1.4 Adsorption and catalytic properties of transition metal oxide

Transition metal oxides comprise of transition metal bounding to oxygen in which the O atom is the more strongly electronegative component. As a result of their stability at high temperature and corrosive condition, and surface properties, they offer advantage as gas sensing and catalytic materials, especially semiconductor transition metal oxide such as TiO₂ and ZnO [51]. In spite of the known obvious factors leading chemical sensing and catalytic properties, it is now still complicate for choosing gas sensing and catalytic materials [52].

Numerous researchers attempt to summarize the relationship between surface properties of transition metal oxide and gas adsorbate as a rule. However, many researches probably give inconsistent results. For instance, there are well–accepted that metal oxide d^5 , (Fe₂O₃, MnO), is much higher active than the activity of d^0 , (TiO₂, Sc₂O₃), and d^{10} (ZnO, Cu₂O) configurations. In contrast, metal oxide with d^0 and d^{10} are more active than d^5 configuration [53, 54].

From many research points, we can conclude that the major factors leading the adsorption and catalytic properties of transition metal oxide are as follows,

จหาลงกรณ์มหาวิทยาลัย

1.1.4.1 Type of transition metal oxide

The n-type semiconductor with moderate big energy gap, such as TiO_2 and ZnO, acts as better gas sensor. As a result of the less tendency to exchange lattice oxygen with oxygen in atmosphere, n-type semiconductor is stable [55-58].

1.1.4.2 Atomic coordination of surface

The degree of coordinative unsaturated atom measures the number of bond breaking on metal oxide surface. The more degree of coordinative unsaturated atom on surface causes bond breaking and destabilized ions. While the destabilization of the ions (particularly, transition metal ions) increases, the surface Gibb's energy increases. Correspondingly, the surface stability decreases. Hence, the more unsaturated coordination of atom on surface causes the active surface for gas adsorption and catalytic processes [59]. Different planes (facets) of transition metal oxide surface have therefore distinct adsorption and catalytic performances [37-39].

1.1.4.3 Acidity and basicity of surface

Surface of metal oxide comprises of acid–base sites. The cationic metal and anionic oxygen sites on the surface act as the Lewis acid and Lewis base sites, respectively. Cationic metal sites can accept electrons from gas adsorbate. Conversely, anionic oxygen sites can give their electrons to gas adsorbate. The catalytic activity of many metal oxide surfaces depends on the strength, the amount, and the distribution of Lewis cationic metal and anionic oxygen sites. Hence, the interaction on catalytic metal oxide surface may deal with acid–base interaction and electron transfer process. Adsorption of gas on the surface is able to perturb the adjacent sites and may cause the relaxation of the surface. In particular, chemisorption which is accompanied by charge exchange between gas adsorbate and metal oxide can change the appearance of surface charge and surface potential of metal oxide. Modification on surface, e.g. doping, can change the activity of cationic metal and anionic oxygen sites on surface as well [60-62].

Nevertheless, finding the best material does not only determining just by these factors but also other factors. Nowadays, there is no obvious rule explaining the adsorption and catalytic properties of transition metal oxide. Because of the specific performance of each oxides, researchers need to seek the most active transition metal oxide for each gas by one-to-one.

1.1.5 Doped metal oxide

The dopant in this thesis is foreign atom which is substituted into host metal oxide. Different dopant causes different effect on activity of metal oxide. In particular, their catalytic activity relates with the acidity or the basicity of oxides [19].

Due to its complex of definition, we have to firstly clarify the simplest definition of Lewis acid–base we use in this topic. Lewis acid is the compound that receives electron. Lewis base is the compound that donates electron. We only discuss oxidation catalytic activity of dopant substitution into binary metal oxide (with the formula M_xO_y), not including complex oxide (e.g., perovskites).

We can classify types of dopant-oxide pair into three types which include low-valence dopant (LVD), high-valence dopant (HVD), same-valence dopant (SVD), and flexible -valence dopant (FVD).

1.1.5.1 LVD

We call dopant as LVD when the valence of LVD is lower than the valence of cation the host oxide. The example in case of LVD in reducible host oxide is La^{3+} doped CeO₂. The La^{3+} dopant acts as Lewis acid when it is substituted into Ce⁴⁺ of CeO₂. It can activate neighboring oxygen in the CeO₂ host oxide and then activated oxygen becomes to oxygen vacancy. The unpaired electron was left behind and localize at vacancy site. The oxygen vacancy is now strong Lewis base [63]. So, LVD makes doped reducible host oxide more reactive and better oxidant compared with the pristine [64-66]. Despite LVD in irreducible oxide can make oxygen vacancy on the surface, the cation in the irreducible oxide cannot lower than its formal charge. Therefore, the oxide does not have electron–accepting impurities on surface. The oxygen vacancy is still Lewis base waiting to react with Lewis acid gas in the system [67].

1.1.5.2 HVD

HVD is dopant which its valence is more than the valence of cation in host oxide. So, doping HVD produces excess electrons on the surface. The amount of electrons depends on the difference between valence of HVD and cation in host oxide. HVD can donate its excess electrons to reducible oxide since their metal cation can be reduced. For example, Ti⁴⁺ in TiO₂ can be reduced to Ti³⁺ by substitution of Ta⁵⁺ dopant [68]. In an irreducible oxide such as ZnO, HVD such as Al³⁺ or Ti⁴⁺ cannot reduce Zn²⁺. There is one excess electron localizing on Al dopant. Similarly, there are two excess electrons localizing on Ti dopant. The HVD is Lewis base in the system of irreducible oxide. It can easily adsorb Lewis acid gas such as CO [69, 70].

1.1.5.3 SVD and FVD

The valence of SVD is equivalent to the valence of cation in host oxide. There is no obvious rule regarding the SVD in catalysis. However, most of researches have mentioned that SVD doped oxide is efficient catalyst, such as Sn^{4+} and Mn^{4+} doped TiO₂ [71, 72], Ti⁴⁺ and Zr⁴⁺ doped CeO₂ [73, 74].

FVD is dopant that has several stable oxides. For example, Nb₂O₅ is the most stable oxide of Nb. Likewise, NbO₂ and NbO are stable. Nevertheless, a particular valence cannot be assigned to Nb oxide. However, Nb can enhance the catalytic property of CeO₂ for (NO)_x reduction [75]. In case of V doped SnO₂, V₂O₅ and V₂O₃ are stable vanadium oxides. V₂O₅ acts as HVD but V₂O₃ acts as LVD when vanadium oxide is doped into SnO₂. So, it is complicate when we study the catalysis effect of FVD [76].

1.1.6 Research rationale

At present, reducing the concentration of pollutant gases in the atmosphere has quickly become one of the most urgent environmental issues. Using effective materials for adsorption of the pollutant gases is a type of climate engineering techniques. These techniques either directly remove toxic gases by adsorption, or alternatively seek to influence conversion reaction to remove these gases indirectly. Moreover, some natural gases are important precursors in chemical production, effective material sensor is one of the most interesting topics. To find both of gas removal and gas sensor materials, the researchers have to understand the adsorption and conversion reaction of the fundamental small gases.

Heterogeneous catalyst is the most catalyst used in these proposes. Due to the fact that the first step of heterogeneous catalyst is adsorption. Gas molecule adsorbs on the surface of catalyst. The catalyst and the molecule act as adsorbent and adsorbate, respectively. Doping TiO₂ crystal with metal or non-metal can enhance its chemical reactivity, catalytic performance and many important processes such as CO and NO_x conversion [77, 78]. In addition, many researchers use both of metal and non-metal on TiO₂ crystal support in the form of metal oxide nanocluster such as Fe₂O₃ [79], MnO_x [80], CuO [81], and V₂O₅ [82]. Lots of elements and metal oxides have not been studied clearly in some adsorption and conversion reaction mechanism.

We expect that we can study the activity of doping element and supporting metal oxide nanocluster on anatase TiO_2 (001) surface by DFT approach.

1.2 OBJECTIVE

Adsorptions of small gases and their reactions on non– and element–doped anatase TiO_2 (001), ZnOSL, and ZnOSL supported on anatase TiO_2 (001) surface (ZnOSL/TiO₂) surfaces have been investigated using DFT method. All the research studies are listed as following topics:

- First-principles investigation of ZnOSL binding onto TiO₂ (001) surface and its ability for CO oxidation to CO₂
- DFT studies of small gases adsorbed on the ZnO sodalite–like cage and its adsorption abilities
- Mechanism of CO conversion to CO₂ over the Mn–doped TiO₂(001) surface under O₂ atmosphere
- Gas adsorption over the Sc-doped zinc oxide sodalite like cage (Sc-ZnOSL) surface

1.3 SCOPE OF DISSERTATION

The calculation of the surface to be employed for adsorption studies can be performed by using two different approaches. ZnOSL has been investigated as the cluster model. The initial anatase TiO_2 (001) surface was defined by using crystallographic concepts. All surfaces were performed by creating a single slab cutting from the bulk cell.

In this work, adsorption and reaction of small gases such as H_2 , N_2 , CO, and O_2 have been comprehensively studied. Adsorption abilities, in terms of binding energies of these gases, have been analyzed and reported. Scope of this research is one–by–one corresponding to the research objectives:

- 1. Adsorption abilities of the ZnOSL-decorated TiO_2 (001) surface for adsorption of single and double molecules of CO and CO₂ have been determined. The reaction mechanism of CO to CO₂ interconversion on the ZnOSL-supported TiO₂ (001) surface has been investigated using hybrid density functional B3LYP. All DFT calculations were performed with the CRYSTAL06 computational code.
- 2. Structures, electronic properties, and charge transfer of metal– and nonmetal– doped ZnOSL cage have been calculated and analyzed using hybrid density

functional B3LYP/LanL2DZ. All DFT calculations were performed with the GAUSSIAN 09 program.

- 3. Adsorption abilities of small gases; diatomic; H₂, N₂, O₂, CO, NO, and polyatomic; H₂O, N₂O, NO₂, CO₂, SO₂, NH₃ gases, on the Sc–ZnOSL surface has been investigated using B3LYP/GEN method. The LANL2DZ basis set for Zn and Sc, and 6–31G+(d,p) for all other light atoms were employed. All DFT calculations were performed with the GAUSSIAN 09 program.
- Reaction mechanism of CO to CO₂ on the Mn–doped TiO₂ (001) surface has been investigated. All DFT calculations were performed with the CRYSTAL06 computational (1997)

1.4 EXPECTED RESULTS

- The reaction mechanism of the oxidation of CO to CO₂ over the ZnOSL/TiO₂ composite.
- 2. Material classification of various doped ZnOSLs into conducting and photocatalyst material based on energy gap comparison.
- 3. The strongest adsorption gas on the Sc–ZnOSL
- 4. Reaction mechanism of CO to CO_2 on the Mn-doped TiO₂ (001) surface

CHAPTER II THEORETICAL BACKGROUND

Molecular modelling based on quantum mechanical (QM) method is accurate tool using for chemical investigation. QM method is categorized into semi–empirical, ab initio and DFT calculations. These methods are applied to calculate molecular structures, chemical and physical properties of chemical systems and reactions.

Here, theoretical ideas behind DFT method are briefly discussed in this chapter [83, 84]

2.1 Ab initio Calculation

Ab initio method is the fundamental QM principle solving Schrödinger equation without appeal to fitting to experiment.

$$\hat{H}\Psi = E\Psi \tag{2.1}$$

where \hat{H} is Hamiltonian, E is the energy of an electron in orbital in independent– electron model, and Ψ is electronic wavefunction. Since there is no solution for many–electron systems, Hartree–Fock (HF) method is the starting point of ab initio method.

2.1.1 HF Method

The first step of HF method is one-electron wavefunction approximations known as orbitals. The simplest way to represent Ψ for many-electron systems is combination of all atomic orbitals in the system as linear combination of atomic

orbitals (LCAO). The plausible approximate polyelectronic wavefunction as product of one–electron wavefunctions is written and called Hartree product

$$\Psi_0 = \psi_0(1)\psi_0(2)\psi_0(3)...\psi_0(n) \tag{2.2}$$

Here function Ψ_0 depends on the coordinates of all electrons in the atom, $\Psi_0(1)$ is a function of the first electron, $\Psi_0(2)$ is a function of the second electron, etc., These one-electron wavefunctions. $\Psi_0(n)$ are the initial guess which can be expanded by basis set.

Due to the HF nonlinearities approximation, the equation is solved in the next step by iterative approach called self-consistent-field-procedure (SCF). The initial function, Ψ_0 , is selected and solved in Schrödinger equation. The first cycle calculation gives more accurate set of orbitals as

$$\Psi_0 = \psi_0(1)\psi_0(2)\psi_0(3)...\psi_0(n)$$
(2.3)

าลงกรณ์มหาวิทยาลัย

The SCF process is continued for k cycles until self–consistency is achieved. Then, the spin orbitals and configuration state functions can be constructed by HF equation. However, HF method ignores electron correlation in the system. The electrons in the system can move independently in a mean field potential. it is difficult to perform the accurate calculations with large basis sets containing many atoms and electrons. Also, wavefunction cannot measure observable feature of molecule or atom Hence, DFT has become more popular technique using for chemical system simulation.
2.2 DFT Method

DFT is based on electron probability density function or electron density function. The probability to find electron in a volume element, dxdydz is designated by $\rho(x, y, z)dxdydz$. Owing to relationship between $\rho(x, y, z)$ and component one– electron spatial wavefunctions, Ψ_i , the Ψ of HF is approximated as

$$\rho = \sum_{i=1}^{n} n_i \left| \Psi_i^2 \right| \tag{2.4}$$

2.2.1 Hohenberg and Kohn DFT theorems (HK DFT)

In 1920s, E. Fermi and L. H. Thomas developed DFT theorems by expressing the energy of the chemical system with electron probability density function namely Thomas–Fermi model. This concept was confirmed by Hohenberg and Kohn so called HK DFT. The first HK DFT demonstrates that electron density function, $F[\rho_0]$, can determine the ground state properties functional, f(x), e.g. energy, E_0 of a many– electron system.

$$E_{0} = F[\rho_{0}] = E[\rho_{0}]$$
(2.5)

In DFT, the electronic energy from a trial electron density, ρ_t , is the energy of the electrons moving under the nuclear potential called external potential, $\upsilon(r)$. The energy functional of exact ground state electron density, E_v , was stated by the second HK DFT.

$$E_{\nu}[\rho_{t}] \ge E[\rho_{0}] \tag{2.6}$$

where ρ_0 is exact ground state energy according to exact electronic density.

2.2.2 The Kohn–Sham DFT theorems (KS DFT)

According to KS DFT, many-body problem of interacting electrons in a static external potential is assumed as non-interacting electrons moving in an effective potential. There are two main basics behind the KS DFT. The first idea is expression of the molecular energy as a sum of small term. The second idea is using the initial guess of the electron density ρ in the KS equations to calculate an initial guess of the KS orbitals. Then, KS orbitals are refined by a process that similar to HF SCF method. The final KS orbitals are used to calculate an electron density which is used to calculate the energy.

2.2.2.1 The KS Energy

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

The ground state electronic energy is summation of kinetic energy, $\langle T[\rho_0] \rangle$, attraction between the nuclei and electrons, $\langle V_{Ne}[\rho_0] \rangle$, and electron–electron repulsion, $\langle V_{ee}[\rho_0] \rangle$

$$E_0 = \langle T[\rho_0] \rangle + \langle V_{Ne}[\rho_0] \rangle + \langle V_{ee}[\rho_0] \rangle$$
(2.7)

The nucleus-electron potential energy is defined as

$$\langle V_{Ne} \rangle = \sum_{i=1}^{2n} \sum_{nucleiA} - \frac{Z_A}{r_{iA}} = \sum_{i=1}^{2n} v(r_i)$$
 (2.8)

where $v(r_i)$ is the external potential for the attraction between electron *i* and nuclei. The density function ρ can be introduce into $\langle V_{Ne} \rangle$ by the fact that

$$\int \Psi \sum_{i=1}^{2n} f(r_i) \Psi dt = \int \rho(r) f(r) dr$$
(2.9)

where $f(r_i)$ is a function of the coordinates of the 2n electrons of a system and Ψ is the total wavefunction. $\langle V_{Ne} \rangle$ can be written as

$$\langle V_{Ne} \rangle = \int \rho_0(r) \upsilon(r_i) dr$$
 (2.10)

The deviation of the real kinetic energy from that of the reference system is defined by

HULALONGKORN HNIVERSITY

$$\Delta \langle T[\rho_0] \rangle = T[\rho_0] - T_r[\rho_0]$$
(2.11)

The $\Delta \langle V_{ee} \rangle$ is the deviation of the real electron-electron repulsion energy from classical charged-cloud coulomb repulsion energy. This classical electrostatic repulsion energy is the summation of the repulsion energies for pairs of infinitesimal volume elements $\rho(r_1)dr_1$ and $\rho(r_2)dr_2$ separated by distance r_{12} , as

$$\Delta \langle V_{ee}[\rho_0] \rangle \equiv \langle V_{ee}[\rho_0] \rangle - \frac{1}{2} \iint \frac{\rho_0(r_1)\rho_0(r_2)}{r_{12}} dr_1 dr_2$$
(2.12)

From above of all, good approximation for (2.7) is written as

$$E_{0} = \int \rho_{0}(r)\upsilon(r)dr + \langle T[\rho_{0}] \rangle + \frac{1}{2} \iint \frac{\rho_{0}(r_{1})\rho_{0}(r_{2})}{r_{12}}dr_{1}dr_{2} + \Delta \langle T_{r}[\rho_{0}] \rangle + \Delta \langle V_{ee}[\rho_{0}] \rangle$$
(2.13)

The summation of last two terms is called exchange–correlation energy, E_{xc}

$$E_{xc}[\rho_0] = \Delta \langle T_r[\rho_0] \rangle + \Delta \langle V_{ee}[\rho_0] \rangle$$
(2.14)

where $\Delta \langle T_r \rangle$ is the kinetic correlation energy of the electrons, $\Delta \langle V_{ee} \rangle$ is the potential correlation energy and the exchange energy.

2.2.2.2 KS Equation

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

From the second HK theorem, KS equation is utilized by variation principle. Due to the fact that electron density of the reference system is same as that of real system, so

$$\rho_0 = \rho_r = \sum_{i=1}^{2n} \left| \Psi_i^{KS}(1) \right|^2$$
(2.15)

where the Ψ_i^{KS} are the KS spatial orbital. Varying E_0 which respect to the Ψ_i^{KS} subjects to the constraint that these remain orthonormal lead to the KS equation.

$$\left[-\frac{1}{2}\nabla_{i}^{2}-\sum_{nucleiA}\frac{Z_{A}}{r_{iA}}+\int\frac{\rho(r_{2})}{r_{2}}dr_{2}+\upsilon_{xc}(1)\right]\Psi_{i}^{KS}(1)=\varepsilon_{i}^{KS}\Psi_{i}^{KS}(1)$$
(2.16)

where ε_i^{KS} are the KS energy levels and $\nu_{xc}(1)$ is the exchange correlation potential. The functional derivative of $E_{xc}[\rho(r)]$ with respect to $\rho(r)$ represents as exchange– correlation potential

$$v_{xc}(r) = \frac{\delta E_{xc}[\rho(r)]}{\delta \rho(r)}$$
(2.17)

The KS equation can be written as

$$\hat{h}^{KS}(1)\Psi_{i}^{KS}(1) = E_{i}^{KS}(1)\Psi_{i}^{KS}(1)$$
(2.18)

The approximated DFT for the exchange–correlation energy can be classified into the local density approximation (LDA) and generalized gradient approximation (GGA)

2.2.2.1 LDA

The LDA exchange–correlation energy function, E_{xc}^{LDA} , can be given the same density in homogeneous electron gas model as

$$E_{xc}^{LDA} = E_{xc}^{LDA} + E_{c}^{LDA}$$

$$(2.19)$$

The correlation part, E_c^{IDA} , can be calculated by very complicated function of Vosko, Wilk, and Nusair (VWN). When the X α method was developed to neglect the exchange contribution, E_c^{IDA} which is written as

$$E_{xc}^{IDA} \approx E_{x}^{X\alpha} = -\frac{9}{8} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \alpha \int \left[\rho(r)\right]^{\frac{4}{3}} dr$$
(2.20)

For one or more unpaired electrons, LDA was improved to local spin density approximation (LSDA). LSDA is unrestricted LDA method which can give better results than LDA.

2.2.2.2.2 GGA

In contrast to LDA, non-local functional GGA represents the exchangecorrelation functional both of electron density, and its gradient which is derivative of the density.

Chulalongkorn University

$$E_{xc}^{GGA}\left[\rho^{\alpha}\rho^{\beta}\right] = \int f(\rho^{\alpha}(r), \rho^{\beta}(r), \nabla\rho^{\alpha}(r), \nabla\rho^{\beta}(r))dr \qquad (2.21)$$

The exchange–correlation energy functional can be written as summation of an exchange energy functional and correlation energy functional, both negative, i.e. $E_{xc} = E_x + E_c$ The $|E_x|$ is much bigger than $|E_c|$. The popular functionals are Lee, Yang and Parr (LYP) and Perdew functionals.

Hybrid functional is DFT exchange–correlation energy which is improved by HF exchange calculated term but based on KS orbitals

$$E_{x}^{HF} = -\sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle \Psi_{i}^{KS}(1) \Psi_{j}^{KS}(2) \left| \frac{1}{r_{ij}} \right| \Psi_{i}^{KS}(2) \Psi_{j}^{KS}(1) \right\rangle$$
(2.22)

The weighted contribution of the expression for E_x^{HF} gives a HF/DFT exchange– correlation functional. Nowaday, Becke3 LYP (B3LYP) is one of the most popular hybrid functional expressing as

$$E_{xc}^{B3LYP} = (1 - a_0 - a_x)E_x^{LSDA} + a_0E_x^{HF} + a_xE_x^{B88} + (1 - a_c)E_c^{VWN} + a_cE_c^{LYP} \quad (2.23)$$

Here E_x^{LSDA} is the kind accurate pure LSDA, E_x^{HF} is the KS orbitals based HF exchange energy functional, E_x^{B88} is the Becke 88 exchange functional. The E_c^{VWN} is the VWN function, and E_c^{LYP} is the LYP correlation functional. The parameters give the best fit of the calculated energy to molecular atomization energies. This is thus gradient–corrected hybrid functional.

Basis set is a set of mathematical basis functions representing the molecular orbitals. Linear combination of functions including the weights or coefficients describes molecular orbitals. It is composed of finite number of atomic orbitals within the system. This approximated molecular orbital is called LCAO approach. Moreover, the basis functions are described by the electron distribution around atom in the system.

2.2.3.1 Minimal basis set

A minimal basis set is composed of one Slater functions for each inner–shell and valence–shell atomic orbitals of each atom. There are two kinds of minimal basis sets which are Slater type orbital (STO), and Gaussian type orbital (GTO). The essential idea of the minimal basis set is that one basis function for every atomic orbital is selected to describe the free atom. The most common uses are the STO–nG basis sets, n = 3, 4, 5, and 6. The GTO was introduced in Gaussian product theorem.

Chulalongkorn University

2.2.3.2 Split-valence basis set

A split–valence basis set describes two (or more) GTOs for each valence atomic orbital but only one GTO for each inner–shell (core) atomic orbital. There are many kinds of split–valence basis sets depending on the number of GTOs used for each valence atomic orbitals. For example, Polarization effect can be occurred when orbitals share qualities of its orbitals to each other. Their charge distribution causes a polarization effect because of the distortion of the shape of atomic orbital. Polarized basis sets are represented by asterisk (*) at the end of a basis set. One asterisks (*) or (d) denotes that polarization has been taken into p orbitals which was modified by adding a d orbital. Two asterisks (**) or (d,p) denote that polarized basis set has been taken into s orbital which was modified by adding a p orbital.

For instance, $6-31G^*$ or 6-31G(d) basis set for carbon atom have 1s function represented by six Gaussian, and inner 2s, $2p_x$, $2p_y$ and $2p_z$ ($2s' 2p'_x$, $2p'_y$, $2p'_z$) function, each composed of three Gaussian, and an outer 2s, $2p_x$, $2p_y$ and $2p_z$ ($2s' 2p''_x$, $2p''_y$, $2p''_z$) function, each composed of one Gaussian, and six 3d functions. That is totally 15 functions: (1s, 2s' 2p', 2p', 2p', 2p', 2p'', 2p'', 2p'', 3d, 3d, 3d, 3d, 3d, 3d).

2.2.5 Diffuse function

There are loosely bond electrons in anion or excited atoms. They cause the energy in the tail of the wave function more important. To take responsible for this effect, diffuse functions are used to clarify the properties of the tail. Diffuse basis sets are denoted by the '+' signs. One (+) represents that p orbital is considered, while (++) represents that both p and s orbital are considered.

2.2.6 Effective core pseudopotential (ECP)

The ECP is to replace the inner electrons of atom as one core and take account only the valence electrons. Thus, pseudopotentials are modified to the Hamiltonian. Following this approach, LanL2DZ (a split valence basis) is one of ECP basis sets which consist of double basis set and effective core potential for calculating valence electrons and inner shell electrons, respectively. This potential is suitable for transition metals. It was confirmed with similar results compared with all electrons calculation.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER III

FIRST–PRINCIPLES INVESTIGATION OF ZnO SODALITE– LIKE CAGE BINDING ONTO TiO₂ (001) SURFACE AND ITS ABILITY FOR CO OXIDATION TO CO₂

Waranyu Pipornpong, Vithaya Ruangpornvisuti

This article has been published in Journal of Materials Science,

Volume 49, Issue 21, page 7620–7624 year: 2014.

3.1 ABSTRACT

The binding of ZnOSL onto the anatase TiO_2 (001) surface to form ZnOSL/TiO₂ composite was investigated using the periodic DFT–B3LYP method. The strong binding for the ZnOSL onto TiO_2 (001) surface to form ZnOSL/TiO₂ composite was found, the binding energy of which is –70.78 kcal/mol. The reaction mechanism of the oxidation of carbon monoxide by oxygen to form carbon dioxide gas over the ZnOSL/TiO₂ composite was investigated. The reaction energies for all reaction steps are reported.

UNIVERSITY

3.2 INTRODUCTION

The ground state of $(ZnO)_n$ clusters (n = 1-20) was explored experimentally by mass spectroscopy [61]. The ground states of $(ZnO)_n$ clusters (n = 1-9) [62] and their excitation states [9] were studied using DFT and time-dependent density functional theory (TDDFT) method, respectively. The optical properties of $(ZnO)_n$ clusters (n = 2-12) were studied using DFT method [41]. In our previous work, the structure of ZnOSL cage, $(ZnO)_{12}$ cluster, and its adsorption configurations with gases H₂, N₂, O₂, CO, NO, CO₂, N₂O, NO₂, H₂O, SO₂, and NH₃ were studied using the DFT method. Electronic properties of all adsorption structures were investigated, and adsorption energies (ΔE_{ads}) of single molecules of CO ($\Delta E_{ads} = -10.29$ kcal/mol) and CO₂ ($\Delta E_{ads} = -7.86$ kcal/mol) on the ZnOSL cage were obtained [23]. Due to adsorption data, interconversion of CO to CO₂ on the ZnOSL cage has interested us to study its reaction mechanism. As clean TiO₂ surfaces [24, 26, 85-88] and TiO₂-supported metal surfaces [89-91] can adsorb and interact with CO, other metal oxides supported by TiO₂ surface as catalytic promoter could act as good catalyst for CO to CO₂ interconversion. Therefore, the ZnOSL cage immobilized on active TiO₂ surface, the ZnOSL-decorated TiO₂ surface as catalyst could facilitate the CO to CO₂ interconversion. Nevertheless, only a small number of works has been done on ZnO/TiO₂ nanocomposites and their properties. Quite a few of them have been studied such as the study of the optical band gap of the nano-hybrid TiO₂/ZnO [92] and the crystalline phase of ZnO/TiO₂ as photocatalyst [93].

In this work, we have studied the binding of ZnOSL onto anatase TiO₂ (001) surface in order to immobilize the ZnOSL by TiO₂ (001) surface and interconversion of CO + O₂ to CO₂ on the ZnOSL–decorated TiO₂ (001) surface using periodic DFT computations. Therefore, adsorption abilities of the ZnOSL–decorated TiO₂ (001) surface for adsorption of single and double molecules of CO and CO₂, and other adsorptions related with O₂, in terms of adsorption and reaction energies have been determined. The reaction mechanism of CO to CO₂ interconversion on the ZnOSL–decorated TiO₂ (001) surface has been investigated, and its reaction steps have been reported.

3.3 METHODOLOGY

All DFT computations of two-dimensional periodic slab model have been carried out using the CRYSTAL06 computational code [94], based on the expansion of the crystalline orbitals as a linear combination of a basis set consisting of atom-centered Gaussian orbitals. The Kohn-Sham orbitals as Gaussian-type-orbital basis sets of double zeta quality as an 411(311d)G and an 8-411d11G contraction scheme have been, respectively, employed for the titanium [95] and oxygen [96] atoms on

TiO₂ (001) surface. Basis sets for zinc and oxygen are an 86–411d31G [97] and an 8–411d11G [95], respectively. Basis sets for carbon and oxygen atoms for adsorbent gases employed in these calculations are a 6–31d1G [98] and a 6–31d1G [98], respectively. The hybrid functional, B3LYP including Becke's three–parameter exchange [99] and Lee–Yang–Parr correlation [100], has been employed.

Our optimized bulk lattice parameters for TiO₂ are a = 3.8192 Å and c = 9.6658 Å, which are quite close to the experimental results of 3.872 and 9.616 Å, respectively [101]. The Monkhorst–Pack scheme for $8 \times 8 \times 8$ k–point mesh in the Brillouin zone was applied for anatase TiO₂ crystal. The anatase TiO₂ (001) surface was modeled by a (3×3) slab of nine TiO₂ layers, containing altogether 27 Ti and 54 O atoms. In geometry optimizations of two–dimensional periodic slab, the two lowest TiO₂ layers were fixed at their bulk positions, while the positions of all Ti and O atoms were allowed to relax.

The tolerances for geometry optimization convergence have been set to the default values [94], and the coulomb–exchange screening tolerances were set to (6, 6, 6, 6, 12). All slab calculations have been performed with a Monkhorst–Pack [101] k–point grid with shrinking factors (2, 2). There are two binding sites for the anatase TiO_2 (001) surface: twofold–coordinated O atom (O_{2C}) and fivefold–coordinated Ti atom (Ti_{5C}), see **Figure 3.1(a)**. ZnOSL binds with O_{2C} and Ti_{5C} as shown in **Figure 3.1(b)**.

Figure 3.1 The molecular structures optimized using the periodic slab model for (**a**) the anatase TiO_2 (001) surface and (**b**) the ZnOSL cage adsorbed onto the TiO_2 (001) surface. Left, middle, and right are top, side, and front views, respectively. For clarity, sketch drawing for the top view of ZnOSL on the TiO_2 (001) surface is also shown at the left. Bond lengths are in Å

The binding energy ($\Delta E_{\text{binding}}$) of ZnOSL adsorbed onto TiO₂ (001) surface and the adsorption energies (ΔE_{ads}) of single molecule adsorption on the ZnOSL of ZnOSL–TiO₂ surface have been obtained using, (3.1) and (3.2), respectively:

$$\Delta E_{\text{binding}} = E(\text{ZnOSL-TiO}_2) - [E(\text{ZnOSL}) + E(\text{TiO}_2)]$$
(3.1)

where $E(\text{ZnOSL}-\text{TiO}_2)$ is the energy of the ZnOSL $-\text{TiO}_2$, and E(ZnOSL) and $E(\text{TiO}_2)$ are the energies of free ZnOSL and clean TiO₂ (001) surface, respectively.

$$\Delta E_{ads}(Gas) = E(Gas/ZnOSL-TiO_2) - [E(ZnOSL-TiO_2) + E(Gas)]$$
(3.2)

where $E(Gas/ZnOSL-TiO_2)$ is the total energy of gas molecule adsorbed on the ZnOSL-TiO₂, and E(Gas) and $E(ZnOSL-TiO_2)$ are the total energies of free adsorbate Gas and free ZnOSL-TiO₂ surface, respectively.

For the reaction step, reaction energy ($\Delta E_{\text{reaction}}$) was computed by the energy difference between product(s) and reaction(s) such as an example for CO adsorbed on the CO/ZnOSL–TiO₂ to afford 2CO/ZnOSL–TiO₂, using (3.3)

$$\Delta E_{\text{reaction}} = E(2\text{CO}/\text{ZnOSL}-\text{TiO}_2) - [E(\text{CO}/\text{ZnOSL}-\text{TiO}_2) + E(\text{CO})]$$
(3.3)

where $E(CO/CO/ZnOSL-TiO_2)$ and $E(CO/ZnOSL-TiO_2)$ are total energies of single and double CO molecules adsorbed on the ZnOSL-TiO₂, respectively. E(CO) is the total energy of free CO molecule.

The optimized structures of atomic and molecular oxygen adsorbed onto ZnOSL surface of the ZnOSL/TiO₂ are shown in **Figure S3.1** (in supplementary data).

A M 10/01/19/09/01/19/00 10/00

UHULALONGKORN UNIVERSIT

3.4 RESULTS AND DISCUSSION

3.4.1 Binding of ZnOSL cage on TiO₂ surface

The optimization for binding structure of the ZnOSL cage onto the anatase TiO_2 (001) surface (denoted by ZnOSL/TiO₂) was carried out using periodic DFT computations. As there are only two faces of the ZnOSL (tetragonal and hexagonal) for binding to the TiO₂ (001) surface, only two possible binding configurations were used as initial geometries in their structure optimization process. Only one structure of the ZnOSL/TiO₂ was found as shown in **Figure 3.1(b)**. Interaction between the

ZnOSL and TiO₂ (101) surface was investigated but binding between them was not found. This can be described that TiO₂ (101) is a corrugated surface (saw tooth) and cannot fit with the ZnOSL surface. All possible initial configurations of ZnOSL bound to TiO₂ (001) surface were examined, but only one configuration of ZnOSL–TiO₂ as shown in **Figure 3.1** was found.

The binding energy of ZnOSL adsorbed onto the anatase TiO₂ (001) surface, $\Delta E_{\text{binding}} = -70.78 \text{ kcal/mol was obtained}$. The binding sites of the anatase TiO₂ (001) surface based on the ZnOSL adsorption are two Ti_{5c} and two O_{2c} atoms which bind to two oxygen atoms (O1 and O3) and two zinc atoms (Zn1 and Zn2) in hexagonal ring of the ZnOSL, respectively, see line–drawing picture in **Figure 3.1(b)**. The binding characteristic of the ZnOSL on the anatase TiO₂ (001) surface is that the ZnOSL using its hexagonal face toward the plane according two bonds of O2c–Ti5c of the TiO₂ (001) surface, see the sketch drawing for the top view of ZnOSL on the TiO2 (001) surface in **Figure 3.1(b)**. The bond distances which correspond with binding sites are Zn1–O_{2c} = 2.03 Å, Zn2–O_{2c} = 2.07 Å, O1–Ti_{5c} = 2.01 Å, and O3– Ti_{5c} = 2.01 Å, see **Figure 3.1(b)**. Average of these four bond distances could represent the plane–to–plane distance of 2.03 Å.

3.4.2 Adsorption structures of gases on the $ZnOSL-TiO_2$ and reaction profile

Adsorption of CO and O₂, and CO₂ on the ZnOSL was studied [23], and its results show that binding strengths of these gases are not significantly different from their adsorptions on the ZnOSL of the ZnOSL–TiO₂. Nevertheless, study of oxidation mechanism of 2CO + O₂ to 2CO₂ on the ZnOSL supported by TiO₂ (001) aims to utilize the ZnOSL/TiO₂ composite as a good–quality catalyst for the ZnOSL cage immobilized on the TiO₂ surface. The adsorption energies of O₂ ($\Delta E_{ads} = -$ 14.09 kcal/mol) and CO ($\Delta E_{ads} = -10.29$ kcal/mol) [23] are not much different, and either O₂ or CO can adsorb on the ZnOSL. Although O₂ and CO can competitively be adsorbed on the ZnOSL, reaction of O₂/ZnOSL + 2CO \rightarrow ZnOSL + 2CO₂ is not possible except for 2CO/ZnOSL + O₂ \rightarrow ZnOSL + 2CO₂. The reason is that the concerted reaction for two CO molecules simultaneously reacting with pre–adsorbed oxygen molecule to form transition–state structure is hardly ever possible. Therefore, only the reaction of $2CO/ZnOSL + O_2 \rightarrow 2CO_2$ is promising. All configurations of single and double molecular CO adsorptions on the ZnOSL of the ZnOSL–TiO₂ were examined, but only one configuration of CO/[ZnOSL–TiO₂] for single molecular adsorption and only one configuration of $2(CO)/[ZnOSL–TiO_2]$ for double molecular adsorption were found.

The adsorption structures of single and double molecules of CO and CO₂, and reaction of O₂ on double CO adsorption on the ZnOSL of the ZnOSL–TiO₂ were obtained. The adsorption energies of single CO and single CO₂ on the ZnOSL–TiO₂ are -7.97 and -5.21 kcal/mol, respectively.

The reaction mechanism for CO interconversion to CO₂ on the ZnOSL of the ZnOSL–TiO₂ is composed of five reaction steps: The first step is the adsorption of CO on the ZnOSL of the ZnOSL–TiO₂, CO + [ZnOSL/TiO₂] \rightarrow CO/[ZnOSL/TiO₂]. The second step is the adsorption of the second CO molecule on the ZnOSL of the ZnOSL–TiO₂, CO + CO/[ZnOSL/TiO₂] \rightarrow 2CO/[ZnOSL/TiO₂]. The third step is the collision of O₂ to two CO molecules pre–adsorbed on the ZnOSL of the ZnOSL TiO₂ to afford the 2CO₂/[ZnOSL/TiO₂], O₂ + 2CO/[ZnOSL/TiO₂] \rightarrow 2CO₂/[ZnOSL/TiO₂]. The kinetic of this step could follow an Eley–Rideal mechanism, because the O₂ molecule collides with two CO molecules pre–adsorbed on the ZnOSL the ZnOSL the ZnOSL/TiO₂] \rightarrow [ZnOSL/TiO₂] + 2CO₂. Reaction energies for all reaction steps are listed in.**Table 3.1.** The energy of –179.76 kcal/mol for the overall reaction, 2CO + O₂ + [ZnOSL/TiO₂] \rightarrow [ZnOSL/TiO₂] + 2CO₂, was obtained. The potential energy profile for the CO interconversion to CO₂ on the ZnOSL of the ZnOSL–TiO₂ is shown in **Figure 3.2**.

Table 3.1 Binding of the ZnOSL cage onto the $TiO_2(001)$ surface to afford [ZnOSL/TiO₂], its reaction for CO oxidation to CO₂, and all related adsorption reactions.

$\Delta E_{ m reaction}^{ m a}$
-70.78
-7.97
-7.08
-172.22
-7.52
-179.76
-5.21
-2.31

Chulalongkorn University

^a In kcal/mol .

Figure 3.2 Potential energy profiles for (**a**) association of ZnOSL cage onto anatase TiO₂ (001) surface and (**b**) conversion reaction of $CO + O_2$ to CO_2 on the ZnOSL/TiO₂. Bond lengths are in Å. Relative energies are in kcal/mol.

To compare with CO oxidation on the Au– and Pt–supported TiO₂(110), either on the interfacial sites of Au₁₁/TiO₂(110)_OH or Au₈Pt₃/TiO₂(110)_OH or Pt₁₁/TiO₂(110)_OH or the Pt site of Au₈Pt₃/TiO₂(110)_OH, their reaction steps are composed of (1) the step of co–adsorption of CO and O₂ on their adsorption sites and (2) the conversion step via their transition state to afford CO₂ molecule [102]. Even though, the CO oxidation by lattice oxygen either on the surface outside or inside the wall of V₂O₅ (5, 5) nanotubes, the two–step reaction as similar as on the Au– and Pt– supported TiO₂(110) was found [103].

The adsorption energies of CO₂ on the ZnOSL of the ZnOSL–TiO₂ to form $CO_2/[ZnOSL/TiO_2]$ or $2CO_2/[ZnOSL/TiO_2]$ were obtained, and potential energy profile due to these adsorption energies is shown in **Figure 3.3.** It shows the first, $CO_2 + [ZnOSL/TiO_2] \rightarrow CO_2/[ZnOSL/TiO_2]$, and the second adsorptions of CO₂ on

ZnOSL of the ZnOSL–TiO₂, CO₂ + CO₂/[ZnOSL/TiO₂] \rightarrow 2CO₂/[ZnOSL/TiO₂], of which stepwise adsorption energies are -5.21 and -2.31 kcal/mol, respectively. It may be concluded that CO₂ adsorbed on the ZnOSL/TiO₂ is somewhat weak interaction.

Figure 3.3 Potential energy profile for stepwise adsorption of CO_2 onto ZnOSL surface of ZnOSL/TiO₂. Bond lengths are in Å. Relative energies are in kcal/mol.

3.5 CONCLUSION

The ZnOSL adsorbed onto $TiO_2(001)$ surface and its ability for CO to CO₂ interconversion were studied using the B3LYP method. All possible initial configurations of ZnOSL bound to TiO₂ (001) surface were examined, but only one configuration of ZnOSL-TiO₂ was found. The strong binding for the ZnOSL onto TiO₂ (001) surface to form ZnOSL/TiO₂ was found, the binding energy of which is -70.78 kcal/mol. The binding between the ZnOSL and the TiO₂ (001) surface was found that the ZnOSL employs its hexagonal face toward the plane which is constructed from two O_{2c}-Ti_{5c} bonds of the TiO₂ (001) surface and its average planeto-plane distance of 2.03 Å was found. All configurations of single and double molecular CO adsorptions on the ZnOSL of the ZnOSL-TiO2 were examined, but only one configuration of CO/[ZnOSL-TiO₂] for single molecular adsorption and only one configuration of 2(CO)/[ZnOSL-TiO₂] for double molecular adsorption were found. The reaction mechanism for CO to CO₂interconversion on the ZnOSL of the ZnOSL-TiO₂ is composed of five reaction steps. The stepwise adsorption energies of the first and second CO_2 adsorptions are -5.21 and -2.31 kcal/mol, respectively. The energy of -179.76 kcal/mol for the overall reaction of $2CO + O_2 + O_2$ $[ZnOSL/TiO_2] \rightarrow [ZnOSL/TiO_2] + 2CO_2$ was obtained. The adsorption energies of CO_2 on the ZnOSL of the ZnOSL-TiO₂ to form $CO_2/[ZnOSL/TiO_2]$ or $2CO_2/[ZnOSL/TiO_2]$ were obtained.

3.6 SUPPLEMENTARY DATA

Figure S3.1 The optimized structures of (a) O atom and (b) O_2 molecule adsorbed onto ZnOSL surface of the ZnOSL/TiO₂. Left and right images are top and front views, respectively.

CHAPTER IV

DFT INVESTIGATION ON MOLECULAR STRUCTURES OF METAL AND NONMETAL–DOPED ZnO SODALITE–LIKE CAGE AND THEIR ELECTRONIC PROPERTIES

Waranyu Pipornpong, Benjawan Kaewruksa, Vithaya Ruangpornvisuti

This article has been published in Structural Chemistry,

Volume 27, Issue 3, page 773–784 year: 2015.

4.1 ABSTRACT

The optimized structures of the ZnOSLs doped by single metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Ag, Pt and Au) and single nonmetal atoms (B, C, N, Al, Si, P, Ga and Ge) were obtained using DFT/B3LYP method. The energetics and thermodynamic properties for doping processes of single metal atom to Zn_V of the Zn vacancy defect ZnOSL surface, $(ZnOSL + Zn_V)$ and nonmetal atom to O_V of the O vacancy defect ZnOSL surface, $(ZnOSL + O_V)$ were obtained. The binding abilities of transition metal dopants to Zn_V of $[ZnOSL + Zn_V]$ and nonmetal dopants to O_V of $[ZnOSL + O_V]$ surfaces are in orders: Cr > Ti > Sc > V > Fe > Mn > Ni >Co > Pt > Zn > Cu > Pd > Au > Ag and O > N > C > P > Si > Ge > Ga > B > Al, respectively. Energy gaps and NBO partial charges for low-spin and high-spin states of metal and nonmetal-doped ZnOSLs and their analyses are reported.

4.2 INTRODUCTION

The ground states of the ZnO diatomic molecule were investigated using photoelectron spectroscopic method [60], and the $(ZnO)_n$ clusters (n = 20) experimentally were explored using mass spectroscopic method [61]. The ground

states [62] and their excitation states [9] of small–sized (ZnO)_n clusters with n = 1–15 were studied using DFT and time–dependent DFT (TDDFT) methods, respectively. The low–spin structures and electronic properties of various sizes of (ZnO)_n clusters (n = 9–64) [29], (n = 2–18, 21) [14], (n = 1–32) [15], (n = 2–18) [16], (n = 24, 28, 36 and 48) [104], (n = 1–32) [33], and Zn₃O_m (m = 3–5) [42] were theoretically characterized using various computational methods, and the optical properties of (ZnO)_n clusters (n = 2–12) were studied using DFT method [41]. The zinc oxide clusters were studied by mass spectroscopic method, and the clusters of (ZnO)₃₄, (ZnO)₆₀, and (ZnO)₇₈ were found as the magic number clusters [40]. One of the (ZnO)₆₀ cluster as the sodalite–based structure was found [105]. The ZnOSL as (ZnO)₁₂ cluster and its adsorption configurations with small gases were studied by DFT method, and it was found that energy gaps of gas–adsorbed ZnOSLs depend on the adsorbate gases [23]. Moreover, energy gaps of ZnO clusters were found to decrease when their size was increased [106].

Nevertheless, electronic, magnetic, and catalytic properties of metal–doped ZnO were extensively widely explored in order to be used for chemical and physical applications. Energy gaps of Ag–doped ZnO [17] and Fe–doped ZnO [53] were found to be decreased when compared to their un–doped structures. Ag–doped ZnO nanoparticles (Ag–doped ZnONPs) were studied, and effect of Ag dilute doping on the structural, optical, and photocatalytic properties of ZnO nanoparticles was investigated [54]. Cu–doped ZnO nanosheet (ZnONS) was studied, and it was found that Cu atom prefers to substitute for Zn site and is able to induce a local magnetic moment of 1.00 μ B per unit in ZnONS [63].

Co-doped ZnO nanocrystals were found to show ferromagnetism and ferromagnetic properties at room temperature, and their ordering strengthens were varied with the Co concentration [64]. The ferromagnetism was also found on V-doped ZnO nanowires [80]. The Co-doped and Co-/Mn-co-doped ZnO nanocrystals were studied, and Co-/Mn-co-doped ZnO was found to be magneto-electronic material [107]. Electronic structure and optical properties of Ga-doped ZnO with various concentrations of Ga were studied, and it was found that the donor

concentration and optical band gap of Ga-doped ZnO increase with an increase in Ga content [69].

The Ni–doped ZnO was studied for its structural and electronic properties [71] magnetic properties and photoemission [72], and gas sensors [65]. The Mn–, Cu– and Co–doped (ZnO)₁₂ clusters were studied, and it was found that their band gaps decrease due to p–d hybridization orbitals of the dopant atom with the orbitals of the oxygen atom [66]. Geometries, electronic structures, and magnetic properties of Sc–, Ti–, V–, Cr–, Mn–, Fe–, Co–, Ni–, and Cu–doped ZnO monolayers were studied, and the results show that the doping of Cr, Mn, Fe, Co, Ni, and Cu atoms can induce magnetization, whereas there is no magnetism in the Sc–, Ti–, and V–doped ZnO monolayers [67]. Moreover, Co– and Cu–doped zinc–blended ZnO nanocrystals were found to be magnetic semiconductor [108] and ferromagnetic, respectively [73].

The magnetic properties of N–doped $(ZnO)_n$ clusters (n = 1-16) were studied, and the total energy calculations suggest that N is more stable at the O site than at the Zn site in $(ZnO)_n$ clusters and induces a magnetic moment of 1 µB/N atom [109]. The electronic structure and magnetic properties of N–doped ZnO with and without Zn vacancy were investigated, and the results suggest that N–doped ZnO is a weak ferromagnetism [74]. The optoelectronic properties of Ga– and Al–doped ZnO thin films were found to have the good conductivity and transparence [75]. The C–doped ZnO thin films were studied, and they were found to be ferromagnetic [76]. C–doped $(ZnO)_n$ (n = 1-12) clusters were studied, and it was found that the substitutional C impurity is more favorable than interstitial C impurity in C–doped $(ZnO)_n$ clusters [110].

Nevertheless, the electronic properties of the ZnOSL cage can be improved by doping single atom of elements for metal and nonmetal atoms. In this work, structures of ZnOSL cage and its metal and nonmetal doping structures have been studied, and their electronic and thermodynamic properties have been investigated. Two types of dopants, as atoms of transition metals and nonmetal, have been selected. Their energy gaps and charge transfer for dopants in metal– and nonmetal–doped ZnOSLs have been analyzed and reported. Predictions for their properties have been presented.

4.3 COMPUTATIONAL DETAILS

Full optimizations of structures of ZnOSL cage (Zn₁₂O₁₂ cluster) and its metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Ag, Pt and Au) and nonmetal (B, C, N, Al, Si, P, Ga and Ge) doping were carried out using DFT method. Doping principle is on a replacement of single metal atom to single Zn atom or single nonmetal atom to single O atom of ZnOSL cage. As all Zn and all O atoms of the ZnOSL cage are equivalent, and any position of Zn (or O) atom in ZnOSL doped with single metal (or nonmetal) atom must give a single structure. Therefore, metal–doped structure obtained by replacing single Zn atom at any position with single metal (dopant) atom must be only one structure and replacing single O atom at any position with nonmetal (dopant) must be also only one structure.

For metal doping system, total electronic states for low-spin Ti-, Cr-, Fe-, Ni-, Pd,- and Pt-doped ZnOSL as singlet state (spin multiplicity = 1) and Sc-, V-, Mn-, Co-, Cu-, Ag-, and Au-doped ZnOSL as doublet state (spin multiplicity = 2) were applied. Triplet state for high-spin Ti-, Cr-, Fe-, Ni-, Pd-, and Pt-doped ZnOSL and quartet state for high-spin Sc-, V-, Mn-, Co-, Cu-, Ag-, and Au-doped ZnOSL were employed. For nonmetal doping system, low-spin C-, Si-, and Ge-doped ZnOSL as singlet state and low-spin B-, N-, Al-, P-, and Ga-doped ZnOSL as doublet state were applied of which high-spin surfaces were treated as triplet and quartet states, respectively.

The calculations have been performed with hybrid density functional B3LYP, Becke's three–parameter exchange functional with the Lee–Yang–Parr correlation functional, B3LYP [99, 100, 111] using the Los Alamos LanL2DZ split–valence basis set [40–42]. All structures were fully optimized without any constrains and characterized by computed vibration frequency. Enthalpies (H) and Gibbs free energies (G) of all compounds were derived from their vibration frequency computations at 298.15 K and standard pressure [112].

The energy gaps referring the energy difference between highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)

orbitals ($E_{\text{HOMO-LUMO}} = E_{\text{g}}$) or the singly occupied molecular orbital (SOMO) and LUMO orbitals ($E_{\text{SOMO-LUMO}} = E_{\text{g}}$) were also investigated at the same level of theory. In addition, natural bond orbital (NBO) analysis implemented in the GAUSSIAN 09 program [113] was applied for calculations of all compounds. The molecular graphics of all compounds were generated with the MOLEKEL 4.3 program [114]. The electronic density of states (DOSs) for all studied structures was plotted by the GaussSum 2.1.4 program [115].

Metal– or nonmetal–doped ZnOSL is defined as replacing Zn or O atom of ZnOSL by metal dopant (D) or non–metal dopant (D'), respectively. Therefore, metal or nonmetal doping process can be defined as an introduction of single metal into a vacancy of Zn vacancy defect ZnOSL ([ZnOSL + Zn_V]) or single non–metal atom into a vacancy of O vacancy defect ZnOSL ([ZnOSL + O_V]), respectively. Doping process for metal and metal–doped ZnOSLs, denoted as D–doped ZnOSL and D'– doped ZnOSL, respectively, can be written as (4.1) and (4.2)

$$[ZnOSL + Zn_V] + D \longrightarrow D-doped ZnOSL$$
(4.1)

$$[ZnOSL + O_V] + D' \rightarrow D' - doped ZnOSL$$
(4.2)

หาลงกรณ์มหาวิทยาลัย

The binding energies ($\Delta E_{\text{binding}}$), enthalpies ($\Delta H^{\circ}_{\text{binding}}$), and Gibbs free energies ($\Delta G^{\circ}_{\text{binding}}$) were, respectively, computed from total energies, enthalpies, and free energies of metal– and nonmetal–doped ZnOSLs, and their corresponding components are shown in (4.3)–(4.8)

$$\Delta E_{\text{binding}} = E(\text{D-doped ZnOSL}) - \{E([\text{ZnOSL} + \text{Zn}_V]) + E(\text{D})\}$$
(4.3)

$$\Delta H^{o}_{\text{binding}} = H(\text{D-doped ZnOSL}) - \{H([\text{ZnOSL} + \text{Zn}_{V}]) + H(\text{D})\}$$
(4.4)

$$\Delta G^{o}_{\text{binding}} = G(\text{D-doped ZnOSL}) - \{G([\text{ZnOSL} + \text{Zn}_{V}]) + G(\text{D})\}$$
(4.5)

$$\Delta E_{\text{binding}} = E(D'-\text{doped } ZnOSL) - \{E([ZnOSL+O_V]) + E(D')\}$$
(4.6)

$$\Delta H^{o}_{\text{binding}} = H(D'-\text{doped ZnOSL}) - \{H([\text{ZnOSL}+O_V]) + H(D')\}$$
(4.7)

$$\Delta G^{o}_{\text{binding}} = G(D'-\text{doped ZnOSL}) - \{G([ZnOSL + O_V]) + G(D')\}$$
(4.8)

where E, H and G are total energy, enthalpy and Gibbs free energy of the individual components of the binding processes.

4.4 RESULTS AND DISCUSSION

4.4.1 Optimized structures of metal-doped ZnOSLs and their energy gaps

The B3LYP/LanL2DZ-optimized structures of Sc-, Ti-, V-, Cr-, Mn-, Fe-, Co-, Ni-, Cu-, Pd-, Ag-, Pt-, and Au-doped ZnOSLs of which formulae are therefore ScZn₁₁O₁₂, TiZn₁₁O₁₂, VZn₁₁O₁₂, CrZn₁₁O₁₂, MnZn₁₁O₁₂, FeZn₁₁O₁₂, $CoZn_{11}O_{12}$, $NiZn_{11}O_{12}$, $CuZn_{11}O_{12}$, $PdZn_{11}O_{12}$, $AgZn_{11}O_{12}$, $PtZn_{11}O_{12}$, and Au $Zn_{11}O_{12}$, respectively, are shown in **Figure 4.1** The Zn–doped ZnOSL is identical to undoped ZnOSL as shown in Figure 4.1(j). The V-doped ZnOSL is the most distorted structure as compared with undoped ZnOSL, see Figure 4.1(c). The plots of frontier orbitals of the metal-doped ZnOSLs are shown in Figure 4.2 and their DOSs are shown in Figure 4.1. SOMOs and HOMOs of all metal-doped ZnOSL are located around dopant atom except for Sc-doped ZnOSL, because its SOMO is distributed almost over the whole molecule see Figure 4.2(a). HOMO of undoped ZnOSL, and Figure 4.2(j) being consistently distributed over the whole molecule was found. LUMOs in all doped and undoped ZnOSLs are distributed almost over the whole molecules, except V-, Ni-, Pd-, and Pt-doped ZnOSLs of which LUMOs are located around their dopant atom. Plots of the frontier orbitals and DOSs of the high-spin state of metal-doped ZnOSLs are, respectively, shown in Figure S4.1 and Figure S4.2 in supplementary data. It shows that LUMOs of the high-spin metaldoped ZnOSLs and undoped ZnOSL are distributed over the entire molecule.

Figure 4.1 The B3LYP/LanL2DZ-optimized structures of (**a**) Sc-, (**b**) Ti-, (**c**) V-, (**d**) Cr-, (**e**) Mn-, (**f**) Fe-, (**g**) Co-, (**h**) Ni-, (**i**) Cu-doped ZnOSLs, (**j**) undoped ZnOSL, (**k**) Pd-, (**l**) Ag-, (**m**) Pt- and (**n**) Au-doped ZnOSLs. The NBO charges for selected atoms are presented in **e**. **a**-**j**, **k** and **l**, and **m** and **n** are the fourth, fifth and sixth rows transition metal doping structures, respectively. All the metal-doped ZnOSLs are shown based on the periodic table as noted on the bottom left side.

Figure 4.2 Plots of frontier orbitals of the low-spin (a) Sc-, (b) Ti-, (c) V-, (d) Cr-, (e) Mn-, (f) Fe-, (g) Co-, (h) Ni-, (i) Cu-doped ZnOSLs, (j) undoped ZnOSL, (k) Pd-, (l) Ag-, (m) Pt- and (n) Au-doped ZnOSLs. All the orbitals of metal-doped ZnOSLs are shown at the same positions of their corresponding structures shown in **Figure 4.1**

Figure 4.3 DOSs of the low-spin (**a**) Sc-, (**b**) Ti-, (**c**) V-, (**d**) Cr-, (**e**) Mn-, (**f**) Fe-, (**g**) Co-, (**h**) Ni-, (**i**) Cu-doped ZnOSLs, (**j**) undoped ZnOSL, (**k**) Pd-, (**l**) Ag-, (**m**) Pt- and (**n**) Au-doped ZnOSLs. All the DOSs of metal-doped ZnOSLs are shown at the same positions of their corresponding structures shown in **Figure 4.1**

The selected geometrical parameters are shown in **Table S4.1**, in supplementary data. It shows that O1–D, O2–D, and O3–D bond distances of all the ZnOSLs doped by first–row transition metal are shorter than undoped ZnOSL, but bond distances of all the second– and third–row transition–metal–doped ZnOSLs are longer. These results correspond with atomic radii of dopants.

The energy gaps, energetics, binding strength, and dipole moment of low- and high-spin states of undoped and metal (D)-doped ZnOSLs are shown in Table 4.1 and Table 4.2, respectively. Plots of energy gaps of the low-spin and high-spin metal-doped ZnOSLs and Gibbs free energy changes of binding of single atom of metal dopant toward Zn_V of the low-spin and high-spin [ZnOSL + (Zn_V]) surfaces are shown in Figure 4.4. It shows that energy gaps of all low-spin transition-metaldoped ZnOSLs are smaller than their corresponding high-spin ones, except for V-, Cu- and Zn-doped ZnOSLs (for the first-row transition metal dopants), Ag- (the second-row transition metal dopant) and Au-doped (the third-row transition metal dopant) clusters of which values are in reversed orientation. The metal-doped ZnOSLs which have remarkably low energy gaps are in the following order: low-spin $Sc - < Ti - < Cr - doped ZnOSLs < high-spin Cu - < Zn - \approx Ag - \approx Au - doped ZnOSLs;$ their values are enclosed by blue dashed line as shown in Figure 4.4(a). Free energy changes of doping reactions for high-spin metal-doped ZnOSLs are more favorable than their low-spin states, except Cr-doped ZnOSL of which values for both states are hardly ever changed. Based on low-lying energy gap, the energy gaps of metaldoped ZnOSLs are in increasing order: Sc (D: 1.15 eV) < Ti (S: 1.22 eV) < Cr (S: 1.45 eV > V (Q: 1.55 eV > Cu (Q: 1.63 eV > Au (Q: 1.75 eV > Ag (Q: 1.77 eV < Zn (T: 1.78 eV < Mn (D: 2.38 eV < Pd (D: 2.52 eV < Pt (D: 2.67 eV < Fe (S: 2.69 eV) < Ni (S: 3.00 eV) < Co (D: 3.37 eV); S (singlet), D (doublet) and Q (quartet) symbols in parentheses are spin states of molecules. The energy gaps of high-spin V-, Cu-, Ag-, Au-doped and undoped ZnOSLs were found to be smaller than their low-spin structures by 1.09, 2.26, 2.01, 1.89, and 2.26 eV, respectively. It may be concluded that Sc-, Ti-, and Cr-doped ZnOSLs can be used as conducting materials because of their low energy gaps and V-, Cu-, Ag-, and Audoped and undoped ZnOSLs may be employed as photocatalysts.

Metal-doped ZnOSL	$E_{ m g}^{~~ m a}$	$\Delta E_{\rm g}^{\ b}$	DM ^c	Nonmetal-doped ZnOSL	$E_{ m g}^{~ m a}$	$\Delta E_{\rm g}^{\ \rm b}$	DM ^c
Sc-doped ZnOSL	1.15	-2.89	1.931	B-doped ZnOSL	2.42	-1.62	1.128
Ti-doped ZnOSL	1.22	-2.82	2.399	C-doped ZnOSL	2.02	-2.02	0.744
V-doped ZnOSL	2.64	-1.40	1.060	N-doped ZnOSL	4.06	0.02	0.456
Cr-doped ZnOSL	1.45	-2.59	0.839	ZnOSL	4.04	0.00	0.000
Mn-doped ZnOSL	2.38	-1.66	2.612	Al-doped ZnOSL	1.64	-2.40	0.702
Fe-doped ZnOSL	2.69	-1.34	1.216	Si-doped ZnOSL	1.68	-2.36	1.206
Co-doped ZnOSL	3.37	-0.67	1.607	P-doped ZnOSL	3.55	-0.49	0.599
Ni-doped ZnOSL	3.00	-1.04	2.405	Ga-doped ZnOSL	1.63	-2.41	0.678
Cu-doped ZnOSL	3.89	-0.15	1.612	Ge-doped ZnOSL	1.64	-2.39	0.838
ZnOSL	4.04	0.00	0.000				
Pd-doped ZnOSL	2.52	-1.51	2.579				
Ag-doped ZnOSL	3.78	-0.26	1.750				
Pt-doped ZnOSL	2.67	-1.37	3.041				
Au-doped ZnOSL	3.64	-0.40	2.411				

Table 4.1 Energy gaps, energetics and dipole moment of undoped, metal-nonmetal-doped ZnOSLs, computed at the B3LYP/LanL2DZ level of theory.

^a In eV.

^b Defined as $E_g(D-ZnOSL) - E_g(ZnOSL)$.

^c Dipole moment, in Debye.

Metal-doped ZnOSL	$E_{ m g}^{\ a}$	$\Delta E_{\rm g}^{\ b}$	DM ^c	Nonmetal-doped ZnOSL	$E_{\rm g}^{\ a}$	$\Delta E_{\rm g}^{\ \rm b}$	DM ^c
Sc-doped ZnOSL	0.98	-0.80	0.364	B-doped ZnOSL	2.59	0.81	1.431
Ti-doped ZnOSL	1.30	-0.48	2.248	C-doped ZnOSL	3.48	1.70	1.043
V-doped ZnOSL	1.55	-0.23	1.220	N-doped ZnOSL	1.71	-0.07	2.713
Cr-doped ZnOSL	2.20	0.42	1.625	ZnOSL	1.78	0.00	0.001
Mn-doped ZnOSL	3.07	1.29	2.220	Al-doped ZnOSL	2.49	0.71	0.646
Fe-doped ZnOSL	3.42	1.64	1.585	Si-doped ZnOSL	3.07	1.29	1.364
Co-doped ZnOSL	3.75	1.97	0.800	P-doped ZnOSL	1.68	-0.10	1.991
Ni-doped ZnOSL	3.98	2.20	0.705	Ga-doped ZnOSL	2.43	0.65	0.610
Cu-doped ZnOSL	1.63	-0.15	2.166	Ge-doped ZnOSL	2.96	1.18	1.341
ZnOSL	1.78	0.00	1.364				
Pd-doped ZnOSL	3.45	1.67	1.490				
Ag-doped ZnOSL	1.77	-0.01	1.704				
Pt-doped ZnOSL	2.74	0.96	2.853				
Au-doped ZnOSL	1.75	-0.02	1.746				

Table 4.2 Energy gaps, energetics and dipole moment of high–spin undoped, metal–

 and nonmetal–doped ZnOSLs, computed at the B3LYP/LanL2DZ level of theory.

^a In eV.

^b Defined as $E_g(D-ZnOSL) - E_g(ZnOSL)$.

^c Dipole moment, in Debye.

Figure 4.4 Plots of energy gaps of (a) the low–spin ($-\Box$ –) and high–spin ($-\odot$ –) metal–doped ZnOSLs and (b) Gibbs free energy changes of the binding of metal dopant to Zn vacancy of the low–spin ($-\Box$ –) and high–spin ($-\odot$ –) Zn vacancy defect surfaces of ZnOSLs.

4.4.2 Optimized structures of nonmetal-doped ZnOSLs and their energy gaps

The B3LYP/LanL2DZ–optimized structures of the low–spin B–, C–, N–, Si–, Al–, P–, Ga–, and Ge–doped ZnOSLs of which formulae are therefore $Zn_{12}O_{11}B$, $Zn_{12}O_{11}C$, $Zn_{12}O_{11}N$, $Zn_{12}O_{11}Si$, $Zn_{12}O_{11}Al$, $Zn_{12}O_{11}P$, $Zn_{12}O_{11}Ga$, and $Zn_{12}O_{11}Ge$, respectively, are shown in **Figure 4.5**. Plots of frontier orbitals of the low–spin state nonmetal–doped ZnOSLs are shown in **Figure 4.6** and their DOSs are shown in **Figure 4.7**.

Figure 4.5 B3LYP/LanL2DZ–optimized structures of the low–spin (a) B–, (b) C–, (c) N–doped ZnOSLs, (d) undoped ZnOSL, (e) Al–, (f) Si–, (g) P–, (h) Ga– and (i) Ge–doped ZnOSLs. The NBO charges for selected atoms are presented in e. All the nonmetal–doped ZnOSLs are shown based on the periodic table as noted on the bottom right side.

Figure 4.6 Plots of the frontier orbitals of the low–spin (a) B–, (b) C–, (c) N–doped ZnOSLs, (d) undoped ZnOSL, (e) Al–, (f) Si–, (g) P–, (h) Ga– and (i) Ge–doped ZnOSLs. Left and right views are their HOMO and LUMO, respectively. All the orbitals of nonmetal–doped ZnOSLs are shown at the same positions of their corresponding structures shown in **Figure 4.5**

Figure 4.7 DOSs of the low–spin (a) B–, (b) C–, (c) N–doped ZnOSLs, (d) undoped ZnOSL, (e) Al–, (f) Si–, (g) P–, (h) Ga– and (i) Ge–doped ZnOSLs. All the DOSs of nonmetal–doped ZnOSLs are shown at the same positions of their corresponding structures shown in **Figure 4.5**

SOMOs and HOMOs of all nonmetal-doped ZnOSL are located around dopant atom except for N-doped ZnOSL of which SOMO is inconsistently distributed over the molecule. LUMOs of all doped are located around their dopant atom, except N- and P-doped ZnOSLs of which LUMOs are distributed almost over the whole molecules. This means that N- and P-doped ZnOSLs are able to share LUMOs around their molecules to react with adsorbate. Plots of frontier orbitals and DOSs of the high-spin nonmetal-doped ZnOSLs are, respectively, shown in **Figure S4.3** and **Figure S4.4** in supplementary data. The selected geometrical parameters are shown in **Table S4.2** in

supplementary data which shows that Zn1–D, Zn2–D, and Zn3–D bond distances of all nonmetal–doped ZnOSLs are longer than the undoped ZnOSL. Plots of energy gaps of the low–spin and high–spin metal–doped ZnOSLs and Gibb's free energy changes of binding of nonmetal dopant atom to O_V of the low–spin and high–spin O vacancy defect surfaces of ZnOSLs are shown in **Figure 4.8**

Figure 4.8 Plots of energy gaps of (a) the low–spin $(-\Box-)$ and high–spin $(-\odot-)$ nonmetal–doped ZnOSLs and (b) Gibbs free energy changes of the binding of nonmetal dopant to O vacancy of the low–spin $(-\Box-)$ and high–spin $(-\odot-)$ O–vacancy defect surfaces of ZnOSLs

It shows that energy gaps of low–spin B–, Al–, and G–(group IIIB) and C–, Si– and Ge–(group IVB)–doped ZnOSLs are smaller than their high–spin structures but low–spin N– and P–(group VB) and O– (group VIB)– doped ZnOSLs are larger than their high–spin structures. Based on low–lying energy gap, the energy gaps of nonmetal–doped ZnOSLs are in decreasing order: B (D: 2.42 eV) > C (S: 2.02 eV) > O (T: 1.78 eV) \approx N (Q: 1.71 eV) > Si (S: 1.68 eV) \approx P (Q: 1.68 eV) > Al (D: 1.64 eV) \approx Ge (S: 1.64 eV) \approx Ga (D: 1.63 eV); S (singlet), D (doublet), T (triplet), and Q (quartet) symbols in parentheses are spin states of molecules. The most preferred doping process are binding of B, Al, and Ga (group IIIB elements) single atom toward O_v position of high–spin oxygen vacancy ZnOSLs, see **Figure 4.8(b).** It can be concluded that energy gaps of all the low–spin transition–metal–doped ZnOSLs are smaller than nonmetal–doped ZnOSL except for the undoped ZnOSL $(E_g = 4.04 \text{ eV})$ of which the gap is approximately equal to N–doped ZnOSL $(E_g = 4.06 \text{ eV})$. For the high–spin system, energy gaps of Sc–, Ti–, V–, Cu–, Ag–, and Au–doped ZnOSLs are smaller than undoped ZnOSL $(E_g = 1.78 \text{ eV})$. The energy gaps of high–spin N– and P–doped ZnOSLs were found to be smaller than undoped ZnOSL

4.4.3 Metal and nonmetal binding for doping reactions

The energetics and thermodynamic properties of dopant atom binding to Zn_v of $[ZnOSL + Zn_v]$ and O_v of $[ZnOSL + O_v]$ are shown in **Table 4.3**. The binding abilities of these dopants to Zn vacancy for metal doping system and O vacancy for nonmetal doping system are in orders: Cr > Ti > Sc > V > Fe > Mn > Ni > Co > Pt > Zn > Cu > Pd > Au > Ag and O > N > C > P > Si > Ge > Ga > B > Al, respectively. Binding reactions for low–spin and high–spin state of all metal– and nonmetal–doped ZnOSLs are exothermic and spontaneous processes. The most favored binding reaction for metal doping is the binding of Cr and Ti for low–spin and high–spin state, respectively. The most favored binding reaction for nonmetal doping is binding of O and Ga for low–spin and high–spin state, respectively.

Table 4.3 Energetic and thermodynamic properties of dopant atoms binding to Zn_V of $[ZnOSL + Zn_V]$ for metal doping and O_V of $[ZnOSL + O_V]$ for nonmetal doping, computed at the B3LYP/LanL2DZ level of theory.

Binding reaction	Gi	round sta	ate	Spin-polarized state			
	$\Delta E^{\rm o}_{\rm binding}{}^{\bf a}$	$\Delta H^{o}_{binding}^{a}$	$\Delta G^{\mathrm{o}}{}_{\mathrm{binding}}{}^{\mathbf{a}}$	$\Delta E^{\rm o}_{\rm binding}^{a}$	$\Delta H^{o}_{binding}^{a}$	$\Delta G^{^{\mathrm{o}}}{}^{^{\mathrm{binding}}}{}^{\mathbf{a}}$	
Metal doped							
$[ZnOSL + Zn_V] + Sc \rightarrow Sc-doped ZnOSL$	-177.59	-177.68	-173.30	-241.12	-242.70	-230.57	
$[ZnOSL + Zn_V] + Ti \rightarrow Ti-doped ZnOSL$	-184.86	-185.24	-179.99	-297.41	-298.06	-287.54	
$[ZnOSL + Zn_V] + V \rightarrow V\text{-doped } ZnOSL$	-160.27	-160.74	-155.79	-239.66	-239.30	-232.24	
$[ZnOSL + Zn_V] + Cr \rightarrow Cr$ -doped ZnOSL	-250.26	-250.77	-245.07	-254.36	-255.83	-242.28	
$[ZnOSL + Zn_V] + Mn \rightarrow Mn$ -doped ZnOSL	-145.65	-145.88	-141.03	-236.84	-238.23	-225.58	
$[ZnOSL + Zn_V] + Fe \rightarrow Fe-doped ZnOSL$	-148.34	-148.67	-143.25	-232.23	-233.69	-219.72	
$[ZnOSL + Zn_V] + Co \rightarrow Co-doped ZnOSL$	-119.87	-120.36	-114.64	-251.90	-252.41	-242.38	
$[ZnOSL + Zn_V] + Ni \rightarrow Ni-doped ZnOSL$	-125.38	-126.13	-119.73	-192.15	-193.14	-181.13	
$[ZnOSL + Zn_V] + Cu \rightarrow Cu-doped ZnOSL$	-101.37	-101.86	-96.16	-281.09	-281.15	-273.09	
$[ZnOSL + Zn_V] + Zn \rightarrow ZnOSL^b$	-105.23	-105.57	-100.05	-186.28	-188.18	-174.61	
$[ZnOSL + Zn_V] + Pd \rightarrow Pd-doped ZnOSL$	-85.23	-85.59	-80.12	-144.69	-145.85	-131.17	
$[ZnOSL + Zn_V] + Ag \rightarrow Ag-doped ZnOSL$	-71.69	-71.92	-66.79	-278.73	-278.99	-268.33	
$[ZnOSL + Zn_V] + Pt \rightarrow Pt-doped ZnOSL$	-107.97	-108.28	-102.98	-146.16	-147.73	-133.46	
$[ZnOSL + Zn_V] + Au \rightarrow Au\text{doped }ZnOSL$	-73.51	-73.72	-68.55	-209.71	-210.14	-199.43	
Nonmetal doped							
$[ZnOSL + O_V] + B \rightarrow B-doped ZnOSL$	-35.12	-35.40	-30.96	-131.90	-132.91	-122.53	
$[ZnOSL + O_V] + C \longrightarrow C-doped ZnOSL$	-63.72	-64.44	-58.59	-119.76	-120.65	-110.28	
$[ZnOSL + O_V] + N \rightarrow N-doped ZnOSL$	-81.64	-82.41	-76.44	-65.90	-65.99	-58.05	
$[ZnOSL + O_V] + O \longrightarrow ZnOSL^b$	-110.98	-111.79	-105.63	-119.79	-121.49	-109.38	
$[ZnOSL + O_V] + Al \rightarrow Al-doped ZnOSL$	-24.11	-24.40	-19.56	-136.79	-136.80	-128.03	
$[ZnOSL + O_V] + Si \longrightarrow Si-doped ZnOSL$	-49.08	-49.24	-44.66	-89.06	-89.29	-80.01	
$[ZnOSL + O_V] + P \rightarrow P\text{-doped } ZnOSL$	-61.83	-62.03	-56.81	-49.43	-49.82	-38.91	
$[ZnOSL + O_V] + Ga \rightarrow Ga-doped ZnOSL$	-44.72	-44.93	-39.93	-150.10	-149.95	-141.23	
$[ZnOSL + O_V] + Ge \rightarrow Ge-doped ZnOSL$	-45.28	-45.30	-40.91	-81.50	-81.50	-72.30	

^a In kcal/mol.

^b Identical to undoped ZnOSL cage.

4.4.4 NBO charge analysis for metal- and nonmetal-doped ZnOSL

The selected NBO charges (in e) of low–spin and high–spin undoped and metal–doped ZnOSLs are shown in **Table 4.4** and **Table 4.5**, respectively. It shows that in both low–spin and high–spin metal–doped ZnOSLs, charge transfers from dopant to the rest part of molecule for all the metal–doped ZnOSLs as compared with atomic charge of Zn atom in undoped ZnOSL are preferred. On the other hand, in both low–spin and high–spin nonmetal–doped ZnOSLs, charge transfers from molecule of nonmetal–doped ZnOSL to its dopant as compared with partial charge of O atom in undoped ZnOSL are preferred. All the metal dopant atoms are as electron acceptor but all the nonmetal dopant atoms are electron donor.

Doped ZnOSL	Par	tial cha	rge ^a	PC	T ^b
-	01	02	03	Dopant	
Metal doped					
Sc-doped ZnOSL	-1.452	-1.467	-1.467	1.574	-0.070
Ti-doped ZnOSL	-1.294	-1.304	-1.306	0.849	-0.795
V-doped ZnOSL	-1.341	-1.347	-1.347	1.176	-0.468
Cr-doped ZnOSL	-1.401	-1.390	-1.390	0.966	-0.678
Mn-doped ZnOSL	-1.466	-1.485	-1.485	1.187	-0.457
Fe-doped ZnOSL	-1.433	-1.443	-1.443	1.060	-0.584
Co-doped ZnOSL	-1.521	-1.479	-1.479	1.178	-0.466
Ni-doped ZnOSL	-1.519	-1.404	-1.404	1.023	-0.621
Cu-doped ZnOSL	-1.572	-1.500	-1.491	1.252	-0.392
Zn-doped ZnOSL ^c	-1.644	-1.643	-1.644	1.644	0.000
Pd-doped ZnOSL	-1.393	-1.338	-1.390	0.826	-0.818
Ag-doped ZnOSL	-1.266	-1.123	-1.247	0.808	-0.836
Pt-doped ZnOSL	-1.337	-1.299	-1.306	0.638	-1.006
Au-doped ZnOSL	-1.223	-1.114	-1.232	0.690	-0.954
Non metal doped					
B-doped ZnOSL	1.541	1.483	1.541	-1.355	0.288
C-doped ZnOSL	1.593	1.574	1.593	-1.547	0.096
N-doped ZnOSL	1.616	1.608	1.616	-1.576	0.067
O-doped ZnOSL ^c	1.644	1.644	1.644	-1.643	0.000
Al-doped ZnOSL	1.386	1.303	1.385	-0.828	0.815
Si-doped ZnOSL	1.479	1.424	1.479	-1.164	0.479
P-doped ZnOSL	1.529	1.495	1.529	-1.299	0.344
Ga-doped ZnOSL	1.391	1.312	1.391	-0.843	0.800
Ge-doped ZnOSL	1.459	1.388	1.459	-1.091	0.552

Table 4.4 Selected NBO charges (in e) of metal- and nonmetal-doped ZnOSLs,computed at the B3LYP/LanL2DZ level of theory.

^a In e.

^b Partial charge transfer, defined as difference between partial charge of dopant and Zn of undoped ZnOSL for metal doping system or O of undoped ZnOSL for nonmetal doping system.

^c Identical to undoped ZnOSL cage.

Doped ZnOSL	Par	tial cha	rge ^a	PCT ^a		
	01	02	03	Dopant		
Metal doped						
Sc-doped ZnOSL	-1.452	-1.478	-1.473	1.350	-0.224	
Ti-doped ZnOSL	-1.313	-1.319	-1.319	1.313	-0.261	
V-doped ZnOSL	-1.421	-1.417	-1.417	1.103	-0.471	
Cr-doped ZnOSL	-1.448	-1.436	-1.436	1.051	-0.523	
Mn-doped ZnOSL	-1.439	-1.395	-1.395	0.997	-0.577	
Fe-doped ZnOSL	-1.489	-1.491	-1.474	1.163	-0.411	
Co-doped ZnOSL	-1.539	-1.541	-1.541	1.321	-0.253	
Ni-doped ZnOSL	-1.530	-1.539	-1.539	1.304	-0.270	
Cu-doped ZnOSL	-1.153	-1.334	-1.335	1.219	-0.355	
Zn-doped ZnOSL ^c	-1.536	-1.617	-1.534	1.574	0.000	
Pd-doped ZnOSL	-1.405	-1.446	-1.441	0.987	-0.587	
Ag-doped ZnOSL	-1.031	-1.252	-1.249	0.841	-0.733	
Pt-doped ZnOSL	-1.328	-1.408	-1.407	0.826	-0.748	
Au-doped ZnOSL	-1.210	-1.246	-1.245	0.674	-0.900	
	Zn1	Zn2	Zn3	Dopant		
Non metal doped						
B-doped ZnOSL	1.535	1.508	1.535	-1.370	0.256	
C-doped ZnOSL	1.594	1.559	1.594	-1.507	0.119	
N-doped ZnOSL	1.412	1.509	1.404	-0.860	0.766	
O-doped ZnOSL ^c	1.584	1.585	1.581	-1.626	0.000	
Al-doped ZnOSL	1.363	1.302	1.363	-0.772	0.854	
Si-doped ZnOSL	1.483	1.413	1.483	-1.125	0.501	
P-doped ZnOSL	1.351	1.416	1.351	-0.658	0.968	
Ga-doped ZnOSL	1.356	1.299	1.356	-0.756	0.870	
Ge-doped ZnOSL	1.457	1.384	1.457	-1.044	0.582	

Table 4.5 Selected NBO charges (in e) of high-spin metal- and nonmetal-dopedZnOSLs, computed at the B3LYP/LanL2DZ level of theory

a In e.

b Partial charge transfer, defined as difference between partial charge of dopant and Zn of undoped ZnOSL for metal doping system or O of undoped ZnOSL for nonmetal doping system.

c Identical to undoped ZnOSL cage.

4.5 CONCLUSION

.The optimized structures of the low-spin ZnOSLs doped by single transitionmetal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Ag, Pt and Au) and single nonmetal atoms (B, C, N, Al, Si, P, Ga and Ge) were obtained using DFT/B3LYP method. The binding abilities of these dopants to Zn vacancy for metal doping system and 0 vacancy for nonmetal doping system in orders: are Cr > Ti > Sc > V > Fe > Mn > Ni > Co > Pt > Zn > Cu > Pd > Au > Agand O > N > C > P > Si > Ge > Ga > B > Al, respectively. The metal-doped ZnOSLs which have remarkably low energy gaps are in following order: low-spin Sc- < Ti-< Cr–doped ZnOSLs < high–spin Cu–< Zn– \approx Ag– \approx Au–doped ZnOSLs. It may be concluded that the Sc-, Ti-, and Cr-doped ZnOSLs can be conducting material, and the V-, Cu-, Ag-, and Au-doped and undoped ZnOSLs can be employed as photocatalysts. Based on low-lying energy gap, energy gaps of nonmetal-doped ZnOSLs are in order: B (D: 2.42 eV) > C (S: 2.02 eV) > O (T: 1.78 eV) \approx N (Q: $1.71 \text{ eV} > \text{Si} (\text{S: } 1.68 \text{ eV}) = P (\text{Q: } 1.68 \text{ eV}) > \text{Al} (\text{D: } 1.64 \text{ eV}) \approx \text{Ge} (\text{S: } 1.64 \text{ eV}) \approx \text{Ga}$ (D: 1.63 eV).

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

4.6 SUPPLEMENTARY DATA

Figure S4.1 Plots of frontier orbitals of the high–spin (a) Sc–, (b) Ti–, (c) V–, (d) Cr–, (e) Mn–, (f) Fe–, (g) Co–, (h) Ni–, (i) Cu–doped ZnOSLs, (j) undoped ZnOSL, (k) Pd–, (l) Ag–, (m) Pt– and (n) Au–doped ZnOSLs. All the orbitals of metal–doped ZnOSLs are shown at the same positions of their corresponding structures shown in **Figure 4.1**.

Figure S4.2 DOSs of the high-spin (a) Sc-, (b) Ti-, (c) V-, (d) Cr-, (e) Mn-, (f) Fe-, (g) Co-, (h) Ni-, (i) Cu-doped ZnOSLs, (j) undoped ZnOSL, (k) Pd-, (l) Ag-, (m) Pt- and (n) Au-doped ZnOSLs. All the DOSs of metal-doped ZnOSLs are shown at the same positions of their corresponding structures shown in Figure 4. 1.

Doped ZnOSL	Bond	l distance	e (Å)	Bond angle(deg.)				
Metal doped:	O1–D ^{a,b}	O2–D ^{a,b}	$O3-D^{a,b}$	O1–D–O2 ^{a,b}	O2–D–O3 ^{a,b}	O3–D–O1 ^{a,b}		
Sc-doped ZnOSL	1.8994	1.9406	1.9408	112.09	90.95	112.07		
Ti-doped ZnOSL	1.8418	1.8586	1.8597	127.22	98.58	127.32		
V-doped ZnOSL	1.9574	1.9640	1.9640	116.16	90.73	116.16		
Cr-doped ZnOSL	1.8579	1.9272	1.9272	123.56	85.58	123.56		
Mn-dopedZnOSL	1.8527	1.9247	1.9247	123.68	88.38	123.68		
Fe-doped ZnOSL	1.8456	1.9076	1.9065	118.64	90.29	118.56		
Co-doped ZnOSL	1.8825	1.8957	1.8957	126.57	89.08	126.57		
Ni-doped ZnOSL	1.8815	1.8730	1.8731	132.99	89.22	133.17		
Cu-doped ZnOSL	1.8964	1.9420	1.9414	129.27	89.35	129.04		
ZnOSL	1.9112	1.9847	1.9854	123.37	90.88	123.36		
Pd-doped ZnOSL	2.0433	2.0432	2.0853	111.36	84.30	157.98		
Ag-doped ZnOSL	2.1204	2.2399	2.1855	117.12	82.11	144.61		
Pt-doped ZnOSL	2.0071	2.0587	2.0662	138.79	79.21	140.91		
Au-doped ZnOSL	2.0755	2.2977	2.1525	122.35	79.93	150.98		

Table S4.1 Selected geometrical data for the metal-doped ZnOSLs, computed at theB3LYP/LanL2DZ level of theory.

^a O1, O2 and O3 are atoms on the ZnOSL which are defined in **Figure 4.1**.

^b D is atom of dopant which is doped on the ZnOSL.

Figure S4.3 Plots of the frontier orbitals of the high–spin (**a**) B–, (**b**) C–, (**c**) N–doped ZnOSLs, (**d**) ZnOSL, (**e**) Al–, (**f**) Si–, (**g**) P–, (**h**) Ga– and (**i**) Ge–doped ZnOSLs. Left and right views are their HOMO and LUMO, respectively. All the orbitals of non metal–doped ZnOSLs are shown at the same positions of their corresponding structures shown in **Figure 4.5**.

Figure S4.4 DOSs of the high-spin (a) B-, (b) C-, (c) N-doped ZnOSLs, (d) ZnOSL, (e) Al-, (f) Si-, (g) P-, (h) Ga- and (i) Ge-doped ZnOSLs. All the DOSs of non metal-doped ZnOSLs are shown at the same positions of their corresponding structures shown in Figure 4.5.

Doped ZnOSL	Bond distance (Å)			B	ond angle(dea	l angle(deg.)		
Nonmetal doped	Zn1–D ^{a,b}	Zn2–D ^{a,b}	Zn3–D ^{a,b}	Zn1–D–Zn2 ^{a,b}	Zn2–D–Zn3 ^{a,b}	Zn3–D–Zn1 ^{a,b}		
B-doped ZnOSL	2.3309	2.1708	2.3311	118.78	118.75	74.15		
C-doped ZnOSL	2.1215	2.0832	2.1212	115.57	115.60	88.75		
N-doped ZnOSL	2.0453	1.9834	2.0454	116.01	116.04	88.09		
ZnOSL	1.9847	1.9101	1.9844	116.42	116.44	88.84		
Al-doped ZnOSL	2.7575	2.5948	2.7575	107.95	107.99	65.22		
Si-doped ZnOSL	2.5147	2.5016	2.5147	104.60	104.60	80.91		
P-doped ZnOSL	2.5020	2.4394	2.5021	100.07	100.08	75.16		
Ga-doped ZnOSL	2.7391	2.5653	2.7389	109.46	109.51	65.97		
Ge-doped ZnOSL	2.5689	2.5732	2.5689	102.37	102.36	81.25		

Table S4.2 Selected geometrical data for the undoped and nonmetal-doped ZnOSLs,

 computed at the B3LYP/LanL2DZ level of theory.

^a Zn1, Zn2 and Zn3 are atoms on the ZnOSL which are defined in **Figure 4.1**.

^b D is atom of dopant which is doped on the ZnOSL.

CHAPTER V

DFT INVESTIGATION ON ADSORPTION OF DI-, TRI- AND TETRA-ATOMIC GASES ON Sc-DOPED ZnO SODALITE LIKE CAGE FOR GAS SENSING PURPOSE

Waranyu Pipornpong, Supho Phunnarungsi, Vithaya Ruangpornvisuti

This article has been submitted

5.1 ABSTRACT

Structural optimizations for adsorption configurations of di-, tri- and polyatomic gases on Sc–ZnOSL were carried out using the DFT/B3LYP/GEN method. Energetics, enthalpies and Gibbs free energies of gas adsorptions were obtained. Adsorption of SO₂ on the Sc–ZnOSL was found to be the most energetically preferred configuration. Use of the Sc–ZnOSL as SO₂ storage material was suggested. Since, energy gaps for the Sc–ZnOSL and its adsorption configurations were analyzed as a function of electrical conductivity, it was found that the largest decrease of energy gap was taken placed after bridge–structured adsorption of N₂O on the Sc–ZnOSL. The Sc–ZnOSL used as N₂O or SO₂ sensing material was suggested.

5.2 INTRODUCTION

There are various fundamental gases in the atmosphere not only useful gases but also toxic gases. Hence, gas adsorption material has been getting more and more concerning topic that many researchers focus for many decades. The great interest material using for gas sensor is metal oxide nanoparticle (NP) such as SnO₂, ZnO, TiO₂, ZrO₂, and CeO₂ [116-118]. Among metal oxide NP, ZnO nanoparticle (ZnONP) is very attractive material because of its large surface-to-volume ratio, large specific surface area and outstanding charge carrier transfer [119, 120]. Moreover, different morphology of ZnONP showed different selectivity. Hamedani, et.al reported that CO highly responded to flower-like ZnO, while methane highly responded to the ZnO nanorod [121]. ZnONP particularly showed a distinctly gas selectivity while compared to the films [122]. Kukreja L.M. and et.al. synthesized ZnO nanoparticle as $(ZnO)_n$ cluster with n=1-20 and experimentally proven by mass spectroscopy [123]. Also, Castañeda, L. can prepared the ZnO nanocages which suitable for gas sensors by simple experimental technique [48]. Recently, theoretical calculation have been explored the geometric structure and electronic properties of (ZnO)_n cluster with various sizes [104, 124-128]. Many researchers founded that (ZnO)₁₂ as ZnOSL is more favorable phase than other ZnO polymorphs [128-130]. Due to ZnOSL, it is stable and has many active sites on symmetric cage. Despite its dominant features like shape-selective property and well-defined microporous network making them attractive for catalysis, it has been less mentioned. In our previous work, the structure of ZnOSL was optimized and its good adsorption configurations with various gases were reported [23]. We also showed that doping ZnOSL with different metal and non-metal affect to the energy gap of ZnOSL [131]. Furthermore, the experimental results showed that gas sensors based on doping ZnO, such as Pt, Pd and Ag enhanced the gas adsorption activity by reducing the energy gap [132-134], but they are expensive. The Al-doped ZnOSL optimization was selective for CO gas molecule due to the energy gap decreasing and resistivity change. According to the experimental work, increasing the Al doping concentration enhanced the CO adsorption activity [135]. Various doping were reported; however, Sc–ZnOSL had the smallest energy gap compared with others [131]. Moreover, Sc ion particle size exactly fits to the size of Zn ion [136]. There is no report about the gas adsorption on Sc–ZnOSL. Here we perform DFT calculation to investigate the adsorption properties of di-atomic (H₂, N₂, O₂, CO, NO), tri-atomic (CO₂, N₂O, NO₂, H₂O, SO₂), and tetra-atomic (NH₃) gases on Sc-doped ZnOSL using density functional theory. The adsorption energies, thermodynamic properties and charge transfer from various active sites have been reported.

5.3 COMPUTATIONAL DETAILS

Full optimizations of structure of Sc–ZnOSL cage (ScZn₁₁O₁₂ cluster) and adsorption configurations of gases H₂, N₂, O₂, CO, NO, CO₂, N₂O, NO₂, H₂O, SO₂ and NH₃ on the Sc–ZnOSL were carried out using density functional theory (DFT) method. Optimizations for single molecule adsorptions of NO and NO₂, their total electronic states of doublet (spin multiplicity = 2) state were employed. DFT calculations have been performed with hybrid density functional B3LYP, the Becke's three–parameter exchange functional [99] with the Lee–Yang–Parr correlation functional [100], using the Los Alamos LanL2DZ split–valence basis set [137-139] for zinc atom and 6–31G(d,p) basis set [140] for remaining atoms. Calculations were performed with the GAUSSIAN 09 program [141]. All optimized structures and their electronic properties referred in this paper were obtained using the B3LYP/GEN calculations which GEN keyword was used to specify basis sets to atoms as mentioned above.

The adsorption energy (ΔE_{ads}) for single molecule of gas adsorbed on the Sc– ZnOSL cluster has been obtained using (5.1)

เหาลงกรณ์มหาวิทยาลัย

 $\Delta E_{ads} (gas) = E(gas/Sc-ZnOSL) - [E(Sc-ZnOSL) + E(gas)]$ (5.1)

where E(gas/Sc-ZnOSL) is the total energy of gas molecule adsorbed on the Sc-ZnOSL cluster, E(gas) and E(Sc-ZnOSL) are the total energies of isolated gas adsorbate and free Sc-ZnOSL cluster, respectively.

Adsorption configuration of gas molecule on the Sc-doped ZnOSL specified by underline symbol is denoted by i.e. <u>CO/Sc</u>-ZnOSL where CO gas adsorbed on the Sc-ZnOSL by pointing C atom toward Sc atom of Sc-ZnOSL. This notation means also that CO is located close to Sc atom which [C...Sc] distance is the shortest length.

5.4 RESULTS AND DISCUSSION

5.4.1 Structure optimizations

The B3LYP/GEN-optimized structures of Sc-ZnOSL and their adsorption structures with diatomic gases, H₂, N₂, O₂, CO and NO are shown in Figure 5.1 and Figure 5.2. The B3LYP/GEN-optimized structures of Sc-doped ZnOSL and their adsorption structures with triatomic gases N₂O and NO₂, H₂O, CO₂, SO₂ and tetraatomic gas NH₃ are shown in Figure 5.3 and Figure 5.4. The shortest bonddistances between gas atoms and adsorption atom of the Sc-doped ZnOSL are shown in Table 5.1. There are two configurations of adsorption structures of Sc-doped ZnOSL and homonuclear diatomic gases, H_2 , N_2 and O_2 (Figure 5.1). One is the configuration of pointing their atom toward Sc dopant and the other is toward to O atom of Sc-doped ZnOSL. The adsorption structures of hetero diatomic gases, CO and NO, are consist of four configurations as shown in Figure 5.2 and their interaction distances are shown in Table 5.1. There are four configurations of adsorption structures of the Sc–doped ZnOSL and N_2O as pointing its (a) O toward Sc and N toward Zn, (b) N toward Sc, (c) O toward Zn and N toward Sc and (d) N toward Zn which correspond to their structures shown in Figure 5.3. Three configurations of the Sc-doped ZnOSL and NO₂ were found shown in Figure 5.3 as pointing its (e) O toward Sc and O' toward Zn, (f) O toward Sc and (g) N toward Zn. Two adsorption configurations of NH₃ (triatomic gas) on the Sc-doped ZnOSL were found.

Figure 5.1 The B3LYP/GEN–optimized structures of (a) Sc–doped ZnOSL, their adsorption structures with (b) H₂ (toward Sc), (c) H₂ (toward O), (d) N₂ (toward Sc), (e) N₂ (toward Zn), (f) O₂ (toward Sc) and (g) O₂ (toward Zn). Plots for their density of states are located beside their images. NBO atomic charges are in parentheses. Bond distances are in Å.

Figure 5.2 The B3LYP/GEN-optimized structures of the Sc-doped ZnOSL adsorption with (a) CO (pointing C toward Sc), (b) CO (O toward Sc), (c) CO (C toward Zn), (d) CO (O toward Zn), (e) NO (N toward Sc), (f) NO (NO bond perpendicular to Sc), (g) NO (O toward Sc) and (h) NO (N toward Zn). Plots for their density of states are located beside their images. NBO atomic charges are in parentheses. Bond distances are in Å.

Figure 5.3 The B3LYP/GEN–optimized structures of the Sc–doped ZnOSL adsorption with (**a**) N_2O (pointing O toward Sc and N toward Zn), (**b**) N_2O (N toward Sc), (**c**) N_2O (O toward Zn and N toward Sc), (**d**) N_2O (N toward Zn), (**e**) NO_2 (O toward Sc and O' toward Zn), (**f**) NO_2 (O toward Sc), (**g**) NO_2 (N toward Zn). Plots for their density of states are located beside their images. NBO atomic charges are in parentheses. Bond distances are in Å.

Figure 5.4 The B3LYP/GEN–optimized structures of the Sc–doped ZnOSL adsorption with (**a**) H_2O (O toward Sc), (**b**) H_2O (O toward Zn), (**c**) CO_2 (O toward Sc), (**d**) CO_2 (C–O bond somewhat parallel to Sc–O bond, O toward Sc and C toward O), (**e**) CO_2 (C–O bond somewhat parallel to to Zn–O bond, O toward Zn and C toward O), (**f**) SO₂ (O toward Sc and other O toward Zn), (**g**) SO_2 (O toward Sc), (**h**) SO_2 (O toward Zn), (**i**) NH_3 (N toward Sc), (**j**) NH_3 (N toward Zn). Plots for their density of states are located beside their images. NBO atomic charges are in parentheses. Bond distances are in Å.

Configuration	guration Bond ^{a,b} Bond Configurati distance ^c		Configuration	Bond ^{a,d}	Bond distance ^c
	Diatomic	gases		Polyatomi	c gases
H ₂ :			H ₂ O:		
H ₂ / <u>Sc</u> -ZnOSL	H1…Sc	2.53	H2O/Sc-ZnOSL	O4…Sc	2.25
H ₂ /Sc-ZnOSL	H1…O	2.44	H2O/Sc-ZnOSL	O4…Zn, H1…O	2.22, 1.90
N ₂ :			N ₂ O:		
N_2/\underline{Sc} -ZnOSL	N1…Sc	2.39	N2O/Sc-ZnOSL	O4…Sc, N2…Zn	2.12, 2.45
N ₂ /Sc- <u>Zn</u> OSL	N1…Zn	2.64	N2O/Sc-ZnOSL	N2…Sc	2.09
O ₂ :			N2O/Sc-ZnOSL	O4…Zn, N2…Sc	2.18, 2.30
O2/Sc-ZnOSL	O4…Sc	2.47	N2O/Sc-ZnOSL	N2…Zn	2.48
O2/Sc-ZnOSL	O4…Zn	2.80	NO ₂ :		
CO:			NO2/Sc-ZnOSL	O4…Sc, O5…Zn	2.16, 2.33
<u>C</u> O/ <u>Sc</u> -ZnOSL	C…Sc	2.43	NO2/Sc-ZnOSL	O4…Sc	2.07
OC/Sc-ZnOSL	O4…Sc	2.35	<u>N</u> O ₂ /Sc- <u>Zn</u> OSL	N…Zn	2.53
<u>C</u> O/Sc- <u>Zn</u> OSL	C…Zn	2.45	CO ₂ :		
OC/Sc-ZnOSL	O4…Zn	2.66	CO2/Sc-ZnOSL	O4…Sc	2.33
NO:			CO2/Sc-ZnOSL	04…Sc, C…O1	2.36, 3.01
<u>N</u> O/ <u>Sc</u> -ZnOSL	N…Sc	2.07	CO2/Sc-ZnOSL	O4…Zn, C…O3	2.43, 2.80
NO/Sc-ZnOSL	O4…Sc, N…Sc	2.13, 2.37	SO ₂ :		
NO/Sc-ZnOSL	O4…Sc	1.99	SO2/Sc-ZnOSLe	O4…Sc, O5…Zn	2.15, 2.19
<u>N</u> O/Sc- <u>Zn</u> OSL	N…Zn	2.16	SO2/Sc-ZnOSL	O4…Sc	2.15
			SO2/Sc-ZnOSL	O4…Zn	2.13
			NH ₃ :		
			<u>NH₃/Sc</u> -ZnOSL	N…Sc	2.35
			<u>N</u> H ₃ /Sc- <u>Zn</u> OSL	N…Zn	2.21

Table 5.1 The shortest bond–distances between	veen gas atoms and adsorption atom of the
Sc-doped ZnOSL.	

^a Bond distance (A···S) between atom A of gas and atom S of the Sc–ZnOSL surface.

^b Atomic labels are defined in **Figure 5.1**.

^c In Å.

^d Atomic labels are defined in **Figure 5.3**.

^e The strongest adsorption structure.

5.4.2 Energetics and thermodynamics

Energy gaps, adsorption energies and thermodynamic quantities of gas adsorptions on Sc-doped ZnOSL are shown in **Table 5.2.** Based on adsorption energies, all homonuclear diatomic gases, H₂, N₂, and O₂ as pointing their atoms toward to Sc dopant atom of the Sc-doped ZnOSL were found to be strongest adsorptions. The adsorption strengths of homonuclear diatomic gases on the Sc-doped ZnOSL are in order: O₂ ($\Delta E_{ads} = -40.65$) >> N₂ ($\Delta E_{ads} = -6.79$) > H₂ ($\Delta E_{ads} = -0.19$ kcal/mol). Adsorption configurations with highest strengths of CO and NO on the Sc-doped ZnOSL are <u>CO/Sc</u>-ZnOSL and <u>NO/Sc</u>-ZnOSL of which C of CO and N of NO point toward Sc dopant atom in the Sc-doped ZnOSL, respectively. The adsorption strengths of heteronuclear diatomic gases on the Sc-doped ZnOSL are in order: NO ($\Delta E_{ads} = -39.04$) >> CO ($\Delta E_{ads} = -10.83$ kcal/mol).

Water adsorption on the Sc-ZnOSL, the adsorption configuration of H₂O/Sc-ZnOSL was found to be most stable structure and its adsorption energy of -22.20 kcal/mol. There are four configurations of adsorption structures of N₂O on the Sc-ZnOSL and their stabilities are in order: N_2O/Sc -ZnOSL ($\Delta E_{ads} = -27.91$) > N_2O/Sc - $\underline{Zn}OSL \ (\Delta E_{ads} = -22.41) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{Sc} - \underline{Zn}OSL \ (\Delta E_{ads} = -18.55) > \underline{N_2O}/\underline{$ =-1.25 kcal/mol). Three configurations (NO₂/Sc-ZnOSL, NO₂/Sc-ZnOSL and NO₂/Sc-ZnOSL) of NO₂ adsorbed on the Sc-ZnOSL were obtained which adsorption energies of the second and third configurations are respectively -27.72 and -27.41 kcal/mol but the first one is unstable structure. All three adsorption configurations (CO2/Sc-ZnOSL, CO2/Sc-ZnOSL and CO2/Sc-ZnOSL) of CO2 on the Sc-ZnOSL were found to be weak adsorption interactions. Three adsorption configurations $(SO_2/Sc-ZnOSL, SO_2/Sc-ZnOSL and SO_2/Sc-ZnOSL)$ of SO₂ on the Sc-ZnOSL are very stable of which adsorption energies are -63.57, -57.30 and -32.58 kcal/mol, respectively. Two adsorption configurations (NH₃/Sc–ZnOSL and NH₃/Sc–ZnOSL) of NH₃ only one tetraatomic gas, on the Sc-ZnOSL were found that their adsorption energies are -26.91 and -17.74 kcal/mol, respectively.

Free energies of adsorptions of studied gases on the Sc–ZnOSL are shown in **Table 5.2** and the free energy profile of the Sc–doped ZnOSL and its adsorption structures with small gases is shown in **Figure 5.5**. It shows that SO₂ adsorbed on the Sc–ZnOSL is the most preferable spontaneous process and may suggest that the Sc–ZnOSL can be used as SO₂ storage material.

Table 5.2 Energy gaps, adsorption energies and thermodynamic quantities of gas adsorptions on Sc–doped ZnOSL, computed at the B3LYP/GEN level of theory.

Configuration	$E_{\rm g}{}^{\rm a}$	$\Delta E_{\rm g}^{\ \rm b}$	$\Delta E_{\rm ads}$ c	$\Delta H_{\rm ads}^{\rm d}$	$\Delta G_{ m ads}^{ m d}$	Configuration	$E_{\mathrm{g}}{}^{\mathrm{a}}$	$\Delta E_{\rm g}^{\ \rm b}$	$\Delta E_{\rm ads}$ ^c	$\Delta H_{\rm ads}$ ^d	$\Delta G_{ m ads}$ ^d
Sc–ZnOSL	1.19			2000							
H ₂ :						H ₂ O:					
H2/Sc-ZnOSL	1.44	21.01	-0.19	-0.50	4.80	H2O/Sc-ZnOSL	1.33	11.76	-22.20	-22.31	-14.31
H2/Sc-ZnOSL	1.19	0.00	0.50	0.16	5.36	H2O/Sc-ZnOSL	1.09	-8.40	-13.64	-14.27	-4.57
N ₂ :						N ₂ O:					
N2/Sc-ZnOSL	0.56	-52.94	-6.79	-6.58	0.91	N2O/Sc-ZnOSL	2.16	81.51	-27.91	-27.79	-17.28
N2/Sc-ZnOSL	1.06	-10.92	-0.15	0.39	5.58	N2O/Sc-ZnOSL	1.03	-13.45	-18.55	-17.99	-9.97
O ₂ :						N2O/Sc-ZnOSL	1.92	61.34	-22.41	-22.41	-11.42
O2/Sc-ZnOSL	1.52	27.73	-40.65	-40.67	-33.39	N2O/Sc-ZnOSL	1.05	-11.76	-1.25	-1.23	7.65
O2/Sc-ZnOSL	1.13	-5.04	-37.97	-37.87	-31.76	NO ₂ :					
CO:						NO2/Sc-ZnOSL	1.12	-5.88	0.035	0.720	8.239
<u>C</u> O/ <u>Sc</u> –ZnOSL	0.62	-47.90	-10.83	-10.73	-2.33	NO2/Sc-ZnOSL	0.79	-33.61	-27.72	-27.37	-17.72
CO/Sc-ZnOSL	0.51	-57.14	-5.60	-5.30	2.51	<u>NO2/Sc-Zn</u> OSL	0.61	-48.74	-27.41	-27.42	-15.67
<u>C</u> O/Sc- <u>Zn</u> OSL	0.94	-21.01	-3.38	-3.09	4.40	CO ₂ :					
CO/Sc-ZnOSL	1.11	-6.72	-0.11	0.49	6.04	CO2/Sc-ZnOSL	1.41	18.49	-8.97	-8.47	-1.67
NO:						CO2/Sc-ZnOSL	1.53	28.57	-8.17	-7.78	-0.04
NO/Sc-ZnOSL	0.97	-18.49	-39.04	-39.04	-29.64	CO2/Sc-ZnOSL	1.12	-5.88	-3.40	-2.95	4.79
NO/Sc-ZnOSL	1.08	-9.24	-34.71	-34.62	-25.53	SO ₂ :					
NO/Sc-ZnOSL	0.91	-23.53	-34.87	-34.72	-26.11	SO2/Sc-ZnOSL	1.95	63.87	-63.57	-63.47	-51.57
<u>N</u> O/Sc- <u>Zn</u> OSL	0.68	-42.86	-14.72	-14.58	-5.65	SO2/Sc-ZnOSL	1.67	40.34	-57.30	-56.93	-46.71
						SO2/Sc-ZnOSL	1.13	-5.04	-32.58	-32.36	-20.95
						NH ₃ :					
						<u>N</u> H ₃ / <u>Sc</u> -ZnOSL	1.47	23.53	-26.91	-27.12	-19.24
						$\underline{N}H_3/Sc-\underline{Zn}OSL$	1.01	-15.13	-17.74	-18.03	-9.33

^a In eV.

^b Percentage of energy-gap change compared with clean Sc-ZnOSL.

^c Based on zero–point energy correction, in kcal/mol.

^d At 298.15 K, in kcal/mol.

Figure 5.5 Free energy profile of adsorptions of small gas over the Sc–doped ZnOSL. Short symbols indicate atomic site(s) of the Sc–doped ZnOSL of which full notations are defined in **Table 5.1**.

5.4.3 Density of state and gap energy

Density of states (DOSs) of the B3LYP/GEN–optimized structures of Sc–doped ZnOSL and their adsorption structures with H₂, N₂ and O₂ (**Figure 5.1**), CO and NO (**Figure 5.2**), N₂O and NO₂ (**Figure 5.3**), H₂O, CO₂, SO₂, NH₃ (**Figure 5.4**) were obtained. The energy gaps of all adsorption structures and their changes (*Eg*) with respect to clean Sc–ZnOSL are shown in **Table 5.2**. Plot of changes in energy gaps of the Sc–ZnOSL during gas adsorptions, illustrated in **Figure 5.6**, shows that N₂O gives highest positive change in energy gap (81.51%) on the Sc–ZnOSL. The second highest positive change in energy gap (63.87%) of the N₂O adsorbed on the Sc–

ZnOSL was found. It may suggest that the Sc–ZnOSL can be working as N_2O or SO_2 detecting material by measurement in change of its resistance.

Other way around, N₂, CO, NO and NO₂ are candidates to give competitively high negative changes in energy gap on the Sc–ZnOSL and magnitudes of electric conductance due to theses four gases adsorbed on the Sc–ZnOSL are in order: $CO(-57.14\%) > N_2(-52.94\%) > NO_2(-48.74\%) > NO(-42.86\%)$. The Sc–ZnOSL is hardly ever used to significantly detect these gases in their mixtures.

Figure 5.6 Changes in energy gaps (in %) of the Sc–doped ZnOSL while each gas is adsorbed. Adsorption sequences correspond to data tabulated in **Table 5.2**.

NBO atomic charges of the B3LYP/GEN–optimized structures of the Sc– ZnOSL and their adsorption structures with H₂, N₂ and O₂ (**Figure 5.1**), CO and NO (**Figure 5.2**), N₂O and NO₂ (**Figure 5.3**), H₂O, CO₂, SO₂, NH₃ (**Figure 5.4**) were obtained. NBO charges of gases atoms, atoms nearby adsorption area of the Sc– ZnOSL and partial charge transfer (PCT) of Sc and neighboring Zn atom are shown in **Table 5.3** and **Table 5.4**. As PCTs of both Sc and neighboring Zn of the Sc–ZnOSL adsorbed by N₂O and SO₂ result high positive values which are respectively (Sc =0.028e, Zn=0.066e) and (Sc=0.038e, Zn=0.084e), their adsorption structures can be reasonably described as ON₂/Sc–ZnOSL (ΔE_{ads} =–27.94 kcal/mol) and SO₂/Sc– ZnOSL (ΔE_{ads} =–63.57 kcal/mol), respectively. All partial charges of Sc dopant in the Sc–ZnOSL are regularly larger than neighboring Zn atom.

Configuration				NBO j	partial cha	arge ^a			PC	CT ^c
	O_1	Sc	O_2	Zn	O ₃		Gas ^b			
						Atom #1	Atom #2	Atom #3	Sc	Zn
Sc-ZnOSL	-1.401	1.610	-1.412	1.451	-1.567	_	_	_	_	_
H ₂ :						H1	H2			
$H_2/\underline{Sc}-ZnOSL$	-1.376	1.562	-1.388	1.444	-1.566	0.040	0.019	-	-0.048	-0.007
$H_2/Sc-\underline{Zn}OSL$	-1.401	1.611	-1.415	1.461	-1.571	0.003	-0.001	-	0.001	0.010
$H_2/Sc-ZnOSL$	-1.400	1.612	-1.415	1.461	-1.582	0.029	-0.033	-	0.002	0.010
N_2 :						N1	N2			
N_2/\underline{Sc} -ZnOSL	-1.372	1.535	-1.380	1.450	-1.566	-0.095	0.090	-	-0.075	-0.001
$N_2/Sc-\underline{Zn}OSL$	-1.399	1.593	-1.415	1.444	-1.570	-0.019	-0.075	-	-0.017	-0.007
O ₂ :						04	O5	_		
O_2/\underline{Sc} -ZnOSL	-1.375	1.547	-1.385	1.440	-1.565	-0.020	0.123	-	-0.063	-0.011
$O_2/Sc-\underline{Zn}OSL$	-1.400	1.607	-1.415	1.454	-1.571	-0.021	0.052	-	-0.003	0.003
CO:						С	04			
<u>C</u> O/ <u>Sc</u> -ZnOSL	-1.369	1.408	-1.375	1.465	-1.567	0.465	-0.432	-	-0.202	0.014
OC/Sc-ZnOSL	-1.375	1.595	-1.385	1.445	-1.566	0.610	-0.605	-	-0.015	-0.006
<u>C</u> O/Sc- <u>Zn</u> OSL	-1.400	1.578	-1.407	1.355	-1.559	0.541	-0.445	_	-0.032	-0.096
OC/Sc-ZnOSL	-1.400	1.605	-1.416	1.467	-1.572	0.584	-0.556	-	-0.005	0.016
NO						N	04			
<u>N</u> O/ <u>Sc</u> –ZnOSL	-1.379	1.467	-1.393	1.584	-1.568	-0.022	-0.297	_	-0.143	0.133
ON/Sc-ZnOSL	-1.371	1.498	-1.387	1.587	-1.567	-0.081	-0.506	-	-0.112	0.136
<u>O</u> N/ <u>Sc</u> -ZnOSL	-1.385	1.617	-1.399	1.585	-1.567	-0.038	-0.622	_	0.007	0.134
<u>N</u> O/Sc- <u>Zn</u> OSL	-1.403	1.766	-1.369	1.396	-1.534	-0.165	-0.298	-	0.156	-0.055

Table 5.3 NBO charges of diatomic gases atoms, atoms nearby adsorption area of the Sc–doped ZnOSL and partial charge transfer (PCT) of Sc and neighboring Zn atom, computed at the B3LYP/GEN level of theory.

^a In e.

^b Atoms in gas, in e.

^c Partial charge transfer, defined as a difference of between adsorption–site metal atom of adsorption and non–adsorption states, in e.

Table 5.4 NBO charges of polyatomicgases atoms, atoms nearby adsorption area of the Sc–doped ZnOSL and partial charge transfer (PCT) of Sc and neighboring Zn atom, computed at the B3LYP/GEN level of theory.

Configuration				NBO	partial ch	arge ^a			PO	CT ^c
	O 1	Sc	O_2	Zn	O ₃		Gas ^b			
						Atom #1	Atom #2	Atom #3	Sc	Zn
Sc-ZnOSL	-1.401	1.610	-1.412	1.451	-1.567	-	-	_	-	-
H ₂ O:						04	H1	H2		
H2O/Sc-ZnOSL	-1.382	1.594	-1.393	1.446	-1.566	-1.001	0.549	0.547	-0.016	-0.005
H2O/Sc-ZnOSL	-1.401	1.633	-1.401	1.466	-1.577	-1.037	0.552	0.524	0.023	0.015
N_2O :						N2	N1	04		
ON2/Sc-ZnOSL	-1.400	1.638	-1.375	1.517	-1.558	-0.206	0.201	-0.631	0.028	0.066
N2O/Sc-ZnOSL	-1.374	1.529	-1.391	1.587	-1.567	-0.496	0.306	-0.421	-0.081	0.136
<u>O</u> N ₂ /Sc- <u>Zn</u> OSL	-1.396	1.616	-1.356	1.501	-1.545	-0.337	0.271	-0.571	0.006	0.050
N2O/Sc-ZnOSL	-1.401	1.571	-1.411	1.443	-1.564	-0.109	0.455	-0.293	-0.039	-0.008
NO ₂ :						04	Ν	05		
NO2/Sc-ZnOSL	-1.400	1.648	-1.364	1.532	-1.555	-0.572	0.361	-0.464	0.038	0.081
NO2/Sc-ZnOSL	-1.380	1.577	-1.394	1.585	-1.567	-0.586	0.258	-0.314	-0.033	0.134
<u>NO₂/Sc-ZnOSL</u>	-1.397	1.718	-1.399	1.427	-1.556	-0.287	0.368	-0.287	0.108	-0.024
CO ₂ :						04	С	05		
CO2/Sc-ZnOSL	-1.376	1.576	-1.390	1.438	-1.566	-0.568	1.105	-0.444	-0.034	-0.013
CO ₂ /Sc-ZnOSL	-1.391	1.568	-1.388	1.453	-1.565	-0.579	1.105	-0.441	-0.042	0.002
CO2/Sc-ZnOSL	-1.400	1.622	-1.410	1.462	-1.586	-0.581	1.094	-0.479	0.012	0.011
SO ₂ :						04	S	05		
$SO_2/Sc-ZnOSL$	-1.400	1.646	-1.367	1.535	-1.550	-0.971	1.228	0.930	0.036	0.084
SO2/Sc-ZnOSL	-1.363	1.503	-1.377	1.583	-1.567	-0.949	1.199	-0.872	-0.107	0.132
SO2/Sc-ZnOSL	-1.405	1.787	-1.341	1.513	-1.536	-0.991	1.179	-0.954	0.177	0.062
NH ₃ :						Ν	H1	H2		
<u>NH₃/Sc</u> -ZnOSL	-1.378	1.582	-1.389	1.442	-1.566	-1.193	0.436	0.436	-0.028	-0.009
<u>N</u> H ₃ /Sc- <u>Zn</u> OSL	-1.403	1.556	-1.402	1.441	-1.556	-1.205	0.438	0.430	-0.054	-0.010

^a In e.

^b Atoms in gas, in e.

^c Partial charge transfer, defined as a difference of between adsorption–site metal atom of adsorption and non–adsorption states, in e.

5.5 CONCLUSION

Adsorption of diatomic (H₂, N₂, O₂, CO and NO), triatomic (N₂O, NO₂, H₂O, CO₂, and SO₂) and polyatomic (NH₃) gases on Sc–ZnOSL was studied using the B3LYP/GEN method. Energies, enthalpies and Gibbs free energies of gas adsorptions were obtained. Adsorption strengths of diatomic gases on the Sc–ZnOSL are in order: O₂ ($\Delta E_{ads} = -40.65$) > NO ($\Delta E_{ads} = -39.04$) >> CO ($\Delta E_{ads} = -10.83$ >> N₂ ($\Delta E_{ads} = -6.79$) > H₂ ($\Delta E_{ads} = -0.19$ kcal/mol). Adsorption strengths of tri- and tetraatomic gases the Sc–ZnOSL (the most stable configurations) are in order: SO₂/Sc–ZnOSL ($\Delta E_{ads} = -63.57$) > N₂O/Sc–ZnOSL ($\Delta E_{ads} = -27.91$) \approx NO₂/Sc–ZnOSL ($\Delta E_{ads} = -27.72$) > NH₃/Sc–ZnOSL ($\Delta E_{ads} = -26.91$ kcal/mol). It can be concluded that SO₂ adsorbed on the Sc–ZnOSL is the most energetically preferred configuration and the Sc–ZnOSL can be working as N₂O or SO₂ detecting material. It may suggest that the Sc–ZnOSL can be working as N₂O or SO₂ detecting material by measurement in change of its resistance.

5.6 SUPPLEMENTARY DATA

Figure S5.1 Plot of frontier orbitals' energies against adsorption structures of Scdoped ZnOSL with di-atomic gases. HOMO-LUMO gaps are compared with the clean Sc-doped ZnOSL.

จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure S5.2 Plot of frontier orbitals' energies against adsorption structures of Scdoped ZnOSL with tri– and tetra gases. HOMO–LUMO gaps are compared with the clean Sc–doped ZnOSL.

CHAPTER VI

MECHANISM OF CO CONVERSION TO CO₂ OVER THE Mn– DOPED TiO₂ (001) SURFACE UNDER O₂ ATMOSPHERE

Waranyu Pipornpong, Vithaya Ruangpornvisuti This article has been submitted

6.1 ABSTRACT

Mechanisms of CO oxidation by O_2 over the Mn–doped TiO₂ (001) surface to afford CO₂ was investigated using periodic DFT method. Two similar mechanisms of different structures of oxygen pre–adsorbed on the Mn–doped TiO₂ surface were found that are energetically preferred reactions. The both mechanisms were found to consist of five reaction steps of which overall reaction, $2CO+O_2 \rightarrow 2CO_2$ and reaction energies (–199.69 kcal/mol) are obtained.

6.2 INTRODUCTION

There are many types of CO conversion catalysts such as precious metal particles or their supported on metal oxide [142-146]. Many researchers focus on the efficiency of metal oxide such as MnO_2 [147, 148], CuO [149] and ZnO [150], due to its ability to exchange lattice oxygen with the gas phase. One of the most thermally stable metal oxides is TiO₂. Two main polymorphs of TiO₂, rutile and anatase, have been studied in experimental and theoretical researches as CO conversion catalyst [151-154]. The high adsorption reactivity and high catalytic efficiency of anatase (001) are influenced by its higher surface area and density of surface [20, 155, 156]. Furthermore, atoms of Ti_{5c} on the (001) surface are able to enhance the catalytic reactivity in heterogeneous reactions [157, 158].

Anatase (001) has been extensively improved by doping with transition metal (M-TiO₂). The results of doping enhance the catalytic performance of anatase in the conversion reactions [19, 159, 160]. In our previous works, we found that conversion of CO to CO₂ occurred on oxygen vacancy defect of anatase surface [152, 153]. The dopants were selected based on the findings of McFarland's study [19]. The cation dopant with ionic radius and electronegativity close to those of Ti⁴⁺cation is the most suitable dopant owing to less distortion inside TiO₂. This explanation demonstrated that Mn doping (Mn–TiO₂) is particularly outstanding attributed to the resemblance in charge and radii of Ti and Mn ions [161-163]. Furthermore, the Mn–TiO₂ catalyst was also prepared by many techniques such as hydrothermal treatment [164], solvothermal synthesis [165] and sol-gel method [166]. A series of Mn/TiO, catalysts were prepared and investigated for the catalytic CO oxidation reaction and found to exhibit the best catalytic activity for CO oxidation [167]. In the present work, the CO oxidation with O₂ on Mn-TiO₂ to yield CO₂ has, therefore, been investigated using periodic DFT method. Mechanism depending on adsorption configurations of Mn- $TiO_2(001)$ surface with CO, O_2 and CO₂ for CO oxidation to CO₂ has been resolved.

6.3 COMPUTATIONAL DETAILS

Ghulalongkorn University

The crystal model was extracted from an experimental bulk of anatase structure [168]. All DFT calculations were performed and investigated using CRYSTAL06 computational code [168] based on DFT/PBE. The basis sets, the Hay–Wadt "small–core" ECPs with the 411(311d)G level of contraction [169] and the triple–zeta valence with polarization quality (TZVP) [170] have been respectively employed for the titanium and oxygen on the TiO₂ (001) surface. Charges of Ti and O were set as Ti⁴⁺, and O^{2–}, respectively. Broyden's convergence accelerator tool for geometry optimization convergence was used. The convergence threshold for energy change between optimization steps was set as default at 10^{-6} a.u. Consequently, anatase (001) clean surface was created with nine layers from slab cut (~5.64 Å of
thickness) as shown in **Figure 6.1(a).** To perform $Mn-TiO_2$ surface, one Ti atom on the anatase (001) surface was substituted by one Mn atom. The Hay–Wadt "small– core" ECPs with the 411(311d)G level of contraction basis set [89] was set for Mn atom. Since Mn^{4+} was the key role of catalysis process [19, 163, 164, 171], only top three layers were allowed to relax whereas the bottom six layers were constrained at the bulk position in optimization process.

6.4 RESULTS AND DISCUSSION

6.4.1 Bulk structure of anatase TiO₂

The lattice structure of anatase TiO₂ belongs to 141/amd space group and consists of Ti_{6c}, O_{2c}, and O_{3c} in TiO₂ bulk. The O_{2c} is called bridging oxygen. With full optimization performing with 8×8×8 shrinking factors, optimized coordinates in the anatase conventional cell of Ti and O were (0, 0, 0) and (0, 0, 2.06562), respectively. The optimized lattice parameters of the bulk anatase TiO₂, a = b = 3.77596 Å, c = 9.58085 Å, and $\alpha = \beta = \gamma = 90^{\circ}$ were obtained.

HULALONGKORN UNIVERSITY

6.4.2 The TiO₂ (001) and Mn-doped surfaces

The anatase TiO₂ (001) surface represent a large portion of the surface of polycrystalline TiO₂ which was utilized as it is the lowest energy surface of anatase TiO₂, therefore (001) surface was widely investigated [172, 173]. The optimized–structure of anatase TiO₂(001) surface modeled by (2×3) slab of nine layers, containing altogether 18 Ti and 36 O atoms are shown in **Figure 6.1(a)**. It shows Ti_{5c} and O_{2c} on slab cut layer.

The Mn–doped anatase TiO₂ (001) surface represented by doping Mn into the titanium–vacancy (V_{Ti}) on the TiO₂(001) surface (denoted by [TiO₂+ V_{Ti}]) can be presented as following reaction equations.

$$\mathrm{TiO}_2 \rightarrow [\mathrm{TiO}_2 + V_{\mathrm{Ti}}] + \mathrm{Ti}$$
(5.1)

$$Mn + [TiO_2 + V_{Ti}] \rightarrow Mn - TiO_2$$
(5.2)

After doping Mn on the TiO₂(001) surface, the structure of Mn–TiO₂ anatase TiO₂ (001) surface was re–optimized by relaxing the three upper layers of slab surface. The optimized–structure Mn–doped TiO₂ (001) surface is shown in **Figure 6.1(b)**. It was found that Ti⁴⁺ of the topmost (001) layer was easily replaced with Mn⁴⁺ as depicted in **Figure 6.1(b)**. Investigation results showed that the atomic positions of re– optimized Mn–TiO₂ surface was closely to un–doped TiO₂ (001) surface. The binding energy ($\Delta E_{\text{binding}}$) for Mn bound to [TiO₂+V_{Ti}], *E*(Mn–TiO₂)– {*E*[TiO₂+V_{Ti}]+*E*(Mn⁴⁺)}, of –750.28 kcal/mol was obtained.

Figure 6.1 The optimized-structures of (**a**) un-doped and (**b**) Mn-doped anatase TiO_2 (001) surfaces modeled by (2 × 3) slab of nine layers, containing altogether 18 Ti and 36 O atoms. Top and side views are shown at the top and bottom images, respectively.

6.4.3 Adsorption of adsorbate gases on the Mn–doped TiO₂ surface

6.4.3.1 Adsorption of oxygen on the Mn–doped TiO₂ surface

Two optimized adsorption structures of oxygen molecule adsorbed on the Mn– doped TiO₂ surface were found. There are two configurations of O₂ adsorbed on the Mn–doped TiO₂ surface, one is the V–shape configuration (denoted by O₂^V/Mn–TiO₂) and the other is the I–shape configuration (denoted by O₂^I/Mn–TiO₂), as shown in **Figure 6.2.** The V–shape configuration (O₂^V/Mn–TiO₂) was found to be more stable than the I–shape configuration (O₂^I/Mn–TiO₂) by 18.35 kcal/mol. Accordingly, adsorption strengths of two configurations of O₂ adsorbed on the Mn–TiO₂ are in order: O₂^V/Mn–TiO₂ ($\Delta E_{ads} = -102.35$ kcal/mol) > O₂^I/Mn–TiO₂ ($\Delta E_{ads} = -84.00$ kcal/mol) of which adsorption strengths are larger than the O₂ adsorbed on the un– doped TiO₂ ($\Delta E_{ads} = -68.13$ kcal/mol), see **Table 6.2**. Only one conformation of CO gas adsorbed on the Mn–TiO₂ ($\Delta E_{ads} = -66.08$ kcal/mol) was found and the adsorption strengths is much less than the adsorption of O₂^V/Mn–TiO₂ and O₂^I/Mn–TiO₂ as shown in **Table 6.2**. For adsorption strengths of oxygen atom on un– and the Mn– doped TiO₂ are in order: O/Mn–TiO₂ ($\Delta E_{ads} = -216.50$ kcal/mol) > O/TiO₂ ($\Delta E_{ads} = -$ 187.70 kcal/mol).

Figure 6.2 The adsorption structures of O₂ on Mn–doped TiO₂ surface as (**a**) V–shape configuration (O_2^{V}/Mn –TiO₂) and (**b**) I–shape configuration (O_2^{I}/Mn –TiO₂). Their relative energies (ΔE_{rel}) are in kcal/mol and bond distances are in Å. Top and side views are shown at the top and bottom images, respectively.

Methods	Lattice parameters ^a		
	а	С	
DFT/PBE	3.776	9.581	
DFT+U ^b	3.806	9.679	
DFT/PBE ^c	3.794	9.515	
DFT/B3LYP ^d	3.736	9.981	
Exp. ^e	3.785	9.513	
Exp. ^f	3.785	9.514	
Exp. Mn–TiO ₂ ^f	3.785	9.304	
Exp. ^g	3.786	9.504	
Exp. Mn–TiO ₂ $(0.02 \text{ wt\% Mn})^{\text{g}}$	3.784	9.492	
Exp. Mn–TiO ₂ (0.04 wt% Mn) g	3.804	9.468	
Exp. Mn–TiO ₂ $(0.06 \text{ wt\% Mn})^{\text{g}}$	3.760	9.440	
Exp. Mn–TiO ₂ (0.08 wt% Mn) g	3.780	9.428	

Table 6.1 Lattice parameters of the anatase TiO₂ crystals based (I41/amd space group), compared with other computed and observed results.

GHULALONGKORN UNIVERSITY

^a The lattice constants (a, c) are in Å.

- ^b Computed with the DFT+U method, taken from reference. [174]
- ^c Computed with the DFT/PBE method, taken from reference. [175]
- ^c Computed with the DFT/B3LYP method, taken from reference. [159]
- ^e Experimental data, taken from reference. [91]
- ^f Experimental data, taken from reference. [176]
- ^g Experimental data, taken from reference. [166]

ΔE_{ads}^{a}					
Adsorbates	TiO ₂ -	Mn–TiO ₂			
		V-conf.	I– conf.	perfect conf.	
Mono adsorption:					
O ₂	-68.13	-102.35	-84.00	_b	
0	-187.70	-216.50 °	-216.50 °	_b	
СО	-27.19	b	b	-66.08	
СО	d	-7.07 ^e	-7.20 ^f	_b	
СО	-6.33 ^g	-5.81 ^h	-2.09 ⁱ	_b	
Co-adsorption:					
CO/O2 ^j	d	-109.42 ^k	-91.20	_b	
CO/O ¹	-194.03	-222.31	-218.59 ^k	_b	

Table 6.2 The adsorption energies (ΔE_{ads}) of gas adsorbed and co–adsorbed on un– and Mn–doped TiO₂ (001) surfaces.

^a In kcal/mol.

^b No adsorption is obtained.

^c The same configuration.

^d Unreliable value is obtained.

^e CO located over the Mn atom of the O₂/Mn–TiO₂.

- ^f CO located over the Ti atom of the O₂/Mn–TiO₂.
- ^g ΔE_{ads} is defined as E(CO/O-slab) [E(O-slab) + E(CO)].
- ^h CO located over the Mn atom of the O/Mn–TiO₂.
- $^{\rm i}$ CO located over the Ti atom of the O/Mn–TiO2.

^j ΔE_{ads} of co–adsorption is defined as $E(CO/O_2/slab) - [E(slab) + E(O_2) + E(CO)]$.

^k Computed based on a theoretical equation, $\Delta E_{ads}(CO/O_2/slab) = -\Delta E_{ads}(CO/slab) + \Delta E_{ads}(O_2/slab).$

¹ ΔE_{ads} of co–adsorption is defined as E(CO/O-slab)-[E(slab)+E(O)+E(CO)].

6.4.3.2 Adsorption of CO on the Mn–doped TiO₂ and oxygen–pre–adsorbed Mn– doped TiO₂ surfaces

The adsorption strength of CO adsorbed on the Mn–TiO₂ is obviously much less than the O₂ adsorbed on the Mn–TiO₂, as shown in **Table 6.2.** Nevertheless, the CO adsorptions on the Mn–TiO₂ are stronger than on the TiO₂ ($\Delta E_{ads} = -27.19$ kcal/mol). The CO adsorbs on two different configurations of oxygen molecule–pre– adsorbed Mn–doped TiO₂ surfaces which are O₂^V/Mn–TiO₂ and O₂^I/Mn–TiO₂ are quite weak.

The optimized configurations of CO adsorbed on the O_2^{V}/Mn –TiO₂ and O_2^{I}/Mn –TiO₂ surfaces as CO/O₂^V/Mn–TiO₂ and CO/O₂^I/Mn–TiO₂ surfaces of which adsorption energies (-7.07 and -7.20 kcal/mol, respectively) are quite close to each other. It was found that co–absorption energies of CO and O₂ on the Mn–TiO₂ surface as CO/O₂^V/Mn–TiO₂ and CO/O₂^I/Mn–TiO₂ configurations are -109.42 and -91.20 kcal/mol, respectively. For the co–absorption energies of CO molecule and O atom on the Mn–TiO₂ surface as CO/O/Mn–TiO₂ and CO/O/Mn–TiO/Mn–TiO/Mn–TiO/Mn–TiO/Mn–TiO/Mn

หาลงกรณ์มหาวิทยาลัย

6.4.4 The mechanism of the CO oxidation by O₂ to CO₂ on the Mn–TiO₂

The oxidation reaction of CO conversion CO₂ on the Mn–TiO₂ by O₂ was found to be two mechanisms of which are composed of five elementary steps. The preferred mechanism of the CO oxidation by O₂ to CO₂ on the Mn–TiO₂ undertakes via the formation of the O₂^V/Mn–TiO₂ conformation as the first step of reaction; adsorption energy of O₂ on the Mn–TiO₂ surface of –102.35 kcal/mol was found. The second step, the O₂^V/Mn–TiO₂ conformation can weakly adsorb CO molecule to form CO/ O₂^V/Mn–TiO₂, CO+ O₂^V/Mn–TiO₂ \rightarrow CO/ O₂^V/Mn–TiO₂ of which reaction energy is –7.07 kcal/mol. The CO was found to be located over the Mn atom of the Mn–TiO₂ by pointing its C atom toward Mn atom of which bond distance (OC…Mn) is 2.04 Å. The bond distance between C atom of CO and nearby O atom of O₂ (OC···O) is 2.44 Å. The third step is to form CO₂ while desorb from the O/Mn–TiO₂ surface which can weakly adsorb the second CO gas to form CO/O/Mn–TiO₂ structure as the forth step. The last step, the second CO₂ was formed and desorb from the Mn–TiO₂ surface. The energy profile for the oxidation reaction between CO and O₂ to afford CO₂ via the O_2^{V}/Mn –TiO₂ conformation is shown in **Figure 6.3**

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 6.3 Potential energy profile for CO oxidation to CO_2 on V–shape oxygen–pre– adsorbed on the Mn–TiO₂ (001) (O_2^{V}/Mn –TiO₂). Potential energies are in kcal/mol and bond distances are in Å. Top and side views are shown at the top and bottom images, respectively.

The other mechanism of the CO oxidation by O₂ to CO₂ on the Mn–TiO₂ undertakes via the formation of the O₂^I/Mn–TiO₂ conformation as the first step of reaction; adsorption energy of O₂ on the Mn–TiO₂ surface of –84.00 kcal/mol was found. The second step, the O₂^I/Mn–TiO₂ conformation can weakly adsorb CO molecule to form CO/O₂^I/Mn–TiO₂, CO+ O₂^I/Mn–TiO₂ \rightarrow CO/O₂^I/Mn–TiO₂ of which reaction energy is –7.20 kcal/mol. The CO was found to be located over the Ti atom of the Mn–TiO₂, which close to the Mn atom, by pointing its C atom toward neighboring Ti atom of which bond distance (OC···Ti) is 2.40 Å. The bond distance between C atom of CO and nearby O atom of O₂ (OC···O) is 2.51 Å. The third step is to form CO₂ while desorb from the O/Mn–TiO₂ surface which can weakly adsorb the second CO gas to form CO'/O/Mn–TiO₂ structure as the forth step. The last step, the second CO₂ was formed and desorb from the Mn–TiO₂ surface. The energy profile for the oxidation reaction between CO and O₂ to afford CO₂ via the O₂^I/Mn–TiO₂ conformation is shown in **Figure 6.4**.

Figure 6.4 Potential energy profile for CO oxidation to CO_2 on I–shape oxygen–pre– adsorbed on the Mn–TiO₂ (001) (O_2^{I}/Mn –TiO₂). Potential energies are in kcal/mol and bond distances are in Å. Top and side views are shown at the top and bottom images, respectively.

6.5 CONCLUSION

The binding energy for Mn bound to $[\text{TiO}_2+V_{\text{Ti}}]$ and mechanisms of CO oxidation by O₂ over the Mn–doped TiO₂(001) surface to afford CO₂ was investigated using periodic DFT method. The binding energy for Mn bound to $[\text{TiO}_2+V_{\text{Ti}}]$, of – 750.28 kcal/mol was obtained. There are two similar mechanisms of different structures of oxygen pre–adsorbed on the Mn–doped TiO₂ surface were found that are energetically preferred reactions of which overall reaction, $2\text{CO}+\text{O}_2 \rightarrow 2\text{CO}_2$ and reaction energies (–199.69 kcal/mol) are obtained. The Mn–doped TiO₂(001) was therefore suggested to be the efficient catalyst to conversion of CO to CO₂.

CHAPTER VII CONCLUSIONS

We have studied the properties of modified anatase TiO_2 (001). Due to the reason that ZnOSL show strong binding onto anatase TiO₂ (001) surface, it was immobilized by anatase TiO₂ (001) surface. Interconversion of $CO + O_2$ to CO_2 on the ZnOSL-decorated TiO₂ (001) surface was investigated using periodic DFT computations at the B3LYP level. The reaction mechanism for CO to CO₂ on the ZnOSL of the ZnOSL-TiO₂ is composed of five reaction steps. The stepwise adsorption energies of the first and second CO_2 adsorptions are -5.21 and -2.31 kcal/mol, respectively. The energy of -179.76 kcal/mol for the reaction of $2CO + O_2$ to 2CO₂ over the ZnOSL was obtained. Moreover, the optimized and electronic structures of doped ZnOSLs by single transition-metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Ag, Pt and Au) and single nonmetal atoms (B, C, N, Al, Si, P, Ga and Ge) doped ZnOSL were studied. The binding abilities of these dopants to Zn vacancy for metal doping system and O vacancy for nonmetal doping system are in orders: Cr > Ti > Sc > V > Fe > Mn > Ni > Co > Pt > Zn > Cu > Pd > Au > Agand O > N > C > P > Si > Ge > Ga > B > Al, The respectively. Sc-ZnOSL has remarkably lowest energy gap. The adsorption abilities of diatomic gases on the Sc-ZnOSL surface are in the order: $O_2/\underline{Sc}-ZnOSL > \underline{NO}/\underline{Sc}-ZnOSL > \underline{CO}/\underline{Sc}-ZnOSL > \underline{NO}/\underline{Sc}$ $N_2/Sc-ZnOSL > H_2/Sc-ZnOSL$, respectively. The adsorption abilities of polyatomic gases on the Sc–ZnOSL surface were in the orders: SO_2/Sc –ZnOSL > N_2O/Sc – $ZnOSL > NO_2/Sc-ZnOSL > NH_3/Sc-ZnOSL > H_2O/Sc-ZnOSL > CO_2/Sc-ZnOSL$, respectively. It was found that the Sc active site is the stronger adsorption site than Zn site. In particular, the SO₂ is the most preferred adsorbed gas on the Sc–ZnOSL. The most decreasing of energy gap for bridge-structured adsorption of N₂O on Sc-ZnOSL was found. Hence, the Sc-ZnOSL can be used as N₂O or SO₂ sensing material. Finally, the conversion reaction on Mn-doped TiO₂ (001) was studied. For Mn-doped TiO₂ (001), Mn⁴⁺ strongly binds to $[TiO_2+V_{Ti}]$ surface because its charge to radius ratio is closely to Ti^4 on the surface. The Mn-doped TiO_2 is suggested to be the efficient material for CO conversion via oxygen pre-adsorbed. Two similar mechanisms are energetically preferred reactions of which overall reactions are 2CO+O₂ \rightarrow 2CO₂.

It can be concluded that the adsorption and reaction of small gases can occur on those modified anatase TiO_2 (001). The doping and supporting modification can enhance the chemical properties of anatase TiO_2 (001) surfaces. These studies could be useful for sensing and catalysis material application.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

REFERENCES

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University [1] T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, N. Yamazoe, Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides, Journal of Molecular Catalysis A: Chemical, 155 (2000) 193-200.

[2] I.D. Kim, A. Rothschild, Nanostructured metal oxide gas sensors prepared by electrospinning, Polymers for Advanced Technologies, 22 (2011) 318-325.

[3] G. Neri, Metal oxide nanostructures for solid state gas sensors: A recent patent survey, Recent Patents on Materials Science, 4 (2011) 146-158.

[4] S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, P.S. Patil, Sensitive and selective NO_2 gas sensor based on WO_3 nanoplates, Sensors and Actuators, B: Chemical, 240 (2017) 426-433.

[5] Z.G. Zhao, M. Miyauchi, Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts, Angewandte Chemie - International Edition, 47 (2008) 7051-7055.

[6] Y.H. Hu, A highly efficient photocatalyst-hydrogenated black TiO_2 for the photocatalytic splitting of water, Angewandte Chemie - International Edition, 51 (2012) 12410-12412.

[7] M. Batzill, Fundamental aspects of surface engineering of transition metal oxide photocatalysts, Energy & Environmental Science, 4 (2011) 3275-3286.

[8] L. Ke, S.B. Dolmanan, L. Shen, P.K. Pallathadk, Z. Zhang, D.M. Ying Lai, H. Liu, Degradation mechanism of ZnO-based dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 94 (2010) 323-326.

[9] J.M. Matxain, J.M. Mercero, J.E. Fowler, J.M. Ugalde, Electronic excitation energies of ZniOi clusters, Journal of the American Chemical Society, 125 (2003) 9494-9499.

[10] S. Kanno, T. Arato, A. Kato, H. Yamashita, S. Azuhata, S. Tamata, Decomposition of CFC113 over TiO_2 -based catalysts, Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, (1996) 135.

[11] X. Chen, S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chemical Reviews, 107 (2007) 2891-2959.

[12] A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 176 (2011) 1409-1421.

[13] M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield, Energetics of nanocrystalline TiO₂, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002) 6476-6481.

[14] A.C. Reber, S.N. Khanna, J.S. Hunjan, M.R. Beltran, Rings, towers, cages of ZnO, European Physical Journal D, 43 (2007) 221-224.

[15] A.A. Al-Sunaidi, A.A. Sokol, C.R.A. Catlow, S.M. Woodley, Structures of zinc oxide nanoclusters: As found by revolutionary algorithm techniques, Journal of Physical Chemistry C, 112 (2008) 18860-18875.

[16] B. Wang, S. Nagase, J. Zhao, G. Wang, Structural growth sequences and electronic properties of zinc oxide clusters $(ZnO)_n$ (n=2-18), Journal of Physical Chemistry C, 111 (2007) 4956-4963.

[17] S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles, Journal of Alloys and Compounds, 640 (2015) 408-415.

[18] Y. Liao, C. Xie, Y. Liu, H. Chen, H. Li, J. Wu, Comparison on photocatalytic degradation of gaseous formaldehyde by TiO_{2} , ZnO and their composite, Ceramics International, 38 (2012) 4437-4444.

[19] E.W. McFarland, H. Metiu, Catalysis by Doped Oxides, Chemical Reviews, 113 (2013) 4391-4427.

[20] A. Vittadini, M. Casarin, A. Selloni, Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review, Theoretical Chemistry Accounts, 117 (2007) 663-671.

[21] M. Sowmiya, K. Senthilkumar, Dissociation of N_2O on anatase TiO₂ (001) surface – The effect of oxygen vacancy and presence of Ag cluster, Applied Surface Science, 389 (2016) 1220-1232.

[22] X.-Q. Gong, A. Selloni, Reactivity of Anatase TiO₂ Nanoparticles: The Role of the Minority (001) Surface, The Journal of Physical Chemistry B, 109 (2005) 19560-19562.

[23] B. Kaewruksa, W. Pipornpong, B. Wanno, V. Ruangpornvisuti, Density functional studies of small gases adsorbed on the ZnO sodalite-like cage and its adsorption abilities, Computational and Theoretical Chemistry, 1020 (2013) 100-107.

[24] R. Wanbayor, V. Ruangpornvisuti, Adsorption of di-, tri- and polyatomic gases on the anatase TiO_2 (001) and (101) surfaces and their adsorption abilities, Journal of Molecular Structure: THEOCHEM, 952 (2010) 103-108.

[25] G. Shukri, W.A. Diño, H.K. Dipojono, M.K. Agusta, H. Kasai, Enhanced molecular adsorption of ethylene on reduced anatase TiO_2 (001): Role of surface O-vacancies, RSC Advances, 6 (2016) 92241-92251.

[26] R. Wanbayor, V. Ruangpornvisuti, Adsorption of CO, H_2 , N_2O , NH_3 and CH_4 on the anatase TiO₂ (0 0 1) and (1 0 1) surfaces and their competitive adsorption predicted by periodic DFT calculations, Materials Chemistry and Physics, 124 (2010) 720-725.

[27] W. Pipornpong, V. Ruangpornvisuti, First-principles investigation of ZnO sodalite-like cage binding onto TiO2 (001) surface and its ability for CO oxidation to CO2, Journal of Materials Science, 49 (2014) 7620-7624.

[28] W. Pipornpong, B. Kaewruksa, V. Ruangpornvisuti, DFT investigation on molecular structures of metal and nonmetal-doped ZnO sodalite-like cage and their electronic properties, Structural Chemistry, 27 (2016) 773-784.

[29] M. Zhao, Y. Xia, Z. Tan, X. Liu, L. Mei, Design and energetic characterization of ZnO clusters from first-principles calculations, Physics Letters, Section A: General, Atomic and Solid State Physics, 372 (2007) 39-43.

[30] U. Diebold, The surface science of titanium dioxide, Surface Science Reports, 48 (2003) 53-229.

[31] C.J. Howard, T.M. Sabine, F. Dickson, Structural and thermal parameters for rutile and anatase, Acta Crystallographica Section B, 47 (1991) 462-468.

[32] H. Zhang, J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, Journal of Materials Chemistry, 8 (1998) 2073-2076.

[33] X. Cheng, F. Li, Y. Zhao, A DFT investigation on ZnO clusters and nanostructures, Journal of Molecular Structure: THEOCHEM, 894 (2009) 121-127.

[34] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO_2 films, Scientific Reports, 4 (2014) 4043.

[35] M. Lazzeri, A. Vittadini, A. Selloni, Structure and energetics of stoichiometric TiO₂ anatase surfaces, Physical Review B, 63 (2001) 155409.

[36] F.H. Tian, X. Wang, W. Zhao, L. Zhao, T. Chu, S. Yu, Adsorption of 2-propanol on anatase TiO_2 (101) and (001) surfaces: A density functional theory study, Surface Science, 616 (2013) 76-84.

[37] X. Han, X. Wang, S. Xie, Q. Kuang, J. Ouyang, Z. Xie, L. Zheng, Carbonate ions-assisted syntheses of anatase TiO_2 nanoparticles exposed with high energy (001) facets, RSC Advances, 2 (2012) 3251-3253.

[38] D.-N. Pei, L. Gong, A.-Y. Zhang, X. Zhang, J.-J. Chen, Y. Mu, H.-Q. Yu, Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction, Nature Communications, 6 (2015) 8696.

[39] L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng, K. Yang, Y. Li, Engineering Coexposed $\{001\}$ and $\{101\}$ Facets in Oxygen-Deficient TiO₂ Nanocrystals for Enhanced CO₂ Photoreduction under Visible Light, ACS Catalysis, 6 (2016) 1097-1108.

[40] A. Dmytruk, I. Dmitruk, I. Blonskyy, R. Belosludov, Y. Kawazoe, A. Kasuya, ZnO clusters: Laser ablation production and time-of-flight mass spectroscopic study, Microelectronics Journal, 40 (2009) 218-220.

[41] L. Li, Z. Zhou, X. Wang, W. Huang, Y. He, M. Yang, First-principles study of static polarizability, first and second hyperpolarizabilities of small-sized ZnO clusters, Physical Chemistry Chemical Physics, 10 (2008) 6829-6835.

[42] K.D.D. Gunaratne, C. Berkdemir, C.L. Harmon, A.W. Castleman, Investigating the relative stabilities and electronic properties of small zinc oxide clusters, Journal of Physical Chemistry A, 116 (2012) 12429-12437.

[43] J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D. Luan, S. Madhavi, F.Y.C. Boey, L.A. Archer, X.W. Lou, Constructing hierarchical spheres from large ultrathin anatase TiO_2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage, Journal of the American Chemical Society, 132 (2010) 6124-6130.

[44] C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {001} and {100} facets, Chemical Communications, 47 (2011) 4400-4402.

[45] J. Beheshtian, A.A. Peyghan, Z. Bagheri, Adsorption and dissociation of Cl_2 molecule on ZnO nanocluster, Applied Surface Science, 258 (2012) 8171-8176.

[46] N.L. Hadipour, A. Ahmadi Peyghan, H. Soleymanabadi, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors, Journal of Physical Chemistry C, 119 (2015) 6398-6404.

[47] S. Aslanzadeh, Transition metal doped ZnO nanoclusters for carbon monoxide detection: DFT studies, Journal of Molecular Modeling, 22 (2016) 160.

[48] L. Castañeda, Synthesis and characterization of ZnO micro- and nano-cages, Acta Materialia, 57 (2009) 1385-1391.

[49] I.A. Sarsari, S.J. Hashemifar, S. Hadi, First-principles study of ring to cage structural crossover in small ZnO Clusters, Journal of Physics: Condensed Matter, 24 (2012) 505502.

[50] S. Wu, N. Yuan, H. Xu, X. Wang, Z.A. Schelly, Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles, Nanotechnology, 17 (2006) 4713-4718.

[51] G. Korotcenkov, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sensors and Actuators B: Chemical, 107 (2005) 209-232.

[52] G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice?, Materials Science and Engineering: B, 139 (2007) 1-23.

[53] A. Catellani, A. Ruini, G. Cicero, A. Calzolari, First principles description of the electronic properties of doped ZnO, Physica Status Solidi (B) Basic Research, 250 (2013) 2106-2109.

[54] S.A. Siddiqui, M.M. Abdullah, Quantum chemical study of Fe doped ZnO nanoclusters, Micro and Nanosystems, 5 (2013) 14-21.

[55] M.J. Madou, S.R. Morrison, 3 - Solid/Gas Interfaces, in: Chemical Sensing with Solid State Devices, Academic Press, San Diego, 1989, pp. 67-104.

[56] M.J. Madou, S.R. Morrison, 5 - Catalysis Background, in: Chemical Sensing with Solid State Devices, Academic Press, San Diego, 1989, pp. 159-196.

[57] M.J. Madou, S.R. Morrison, 12 - Gas Sensors Based on Semiconductor Powders, in: Chemical Sensing with Solid State Devices, Academic Press, San Diego, 1989, pp. 479-516.

[58] M.J. Gordon, S. Gaur, S. Kelkar, R.M. Baldwin, Low temperature incineration of mixed wastes using bulk metal oxide catalysts, Catalysis Today, 28 (1996) 305-317.

[59] Chapter 4 Surface Coordinative Unsaturation, in: H.K. Harold (Ed.) Studies in Surface Science and Catalysis, Elsevier, 1989, pp. 53-71.

[60] J.H. Kim, X. Li, L.S. Wang, H.L. De Clercq, C.A. Fancher, O.C. Thomas, K.H. Bowen, Vibrationally resolved photoelectron spectroscopy of MgO- and ZnO- and the low-lying electronic states of MgO, MgO-, and ZnO, Journal of Physical Chemistry A, 105 (2001) 5709-5718.

[61] L.M. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp, K. Dreisewerd, Cluster formation in UV laser ablation plumes of ZnSe and ZnO studied by time-of-flight mass spectrometry, Applied Physics A: Materials Science and Processing, 78 (2004) 641-644.

[62] J.M. Matxain, J.E. Fowler, J.M. Ugalde, Small clusters of II-VI materials: Zn_iS_i , i = 1-9, Physical Review A - Atomic, Molecular, and Optical Physics, 61 (2000) 532011-532018.

[63] F. Li, C. Zhang, M. Zhao, Magnetic and optical properties of Cu-doped ZnO nanosheet: First-principles calculations, Physica E: Low-Dimensional Systems and Nanostructures, 53 (2013) 101-105.

[64] A. Kaushik, B. Dalela, R. Rathore, V.S. Vats, B.L. Choudhary, P.A. Alvi, S. Kumar, S. Dalela, Influence of Co doping on the structural, optical and magnetic properties of ZnO nanocrystals, Journal of Alloys and Compounds, 578 (2013) 328-335.

[65] A.P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, F. Iacomi, Study on Nidoped ZnO films as gas sensors, Applied Surface Science, 280 (2013) 598-604.

[66] O.V. Bovgyra, R.V. Bovgyra, M.V. Kovalenko, D.I. Popovych, A.S. Serednytski, The density functional theory study of structural and electronical properties of zno clusters, Journal of Nano- and Electronic Physics, 5 (2013).

[67] J. Ren, H. Zhang, X. Cheng, Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers, International Journal of Quantum Chemistry, 113 (2013) 2243-2250.

[68] F.C. Zhang, J.T. Dong, W.H. Zhang, Z.Y. Zhang, Ferromagnetism of V-doped ZnO nanowires, Chinese Physics B, 22 (2013).

[69] H.C. Wu, Y.C. Peng, C.C. Chen, Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations, Optical Materials, 35 (2013) 509-515.

[70] J. Zhang, K.L. Yao, Z.L. Liu, G.Y. Gao, First principles calculations of Codoped zinc-blende ZnO magnetic semiconductor, Physica B: Condensed Matter, 405 (2010) 1447-1451.

[71] B.U. Haq, R. Ahmed, A. Afaq, A. Shaari, M. Zarshenas, Structural and electronic properties of Ni-doped ZnO in zinc-blende phase: A DFT investigations, in: AIP Conference Proceedings, 2012, pp. 54-57.

[72] Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, K. Ibrahim, Structural, magnetic properties and photoemission study of Ni-doped ZnO, Solid State Communications, 135 (2005) 430-433.

[73] X.F. Li, J. Zhang, B. Xu, K.L. Yao, Half-metallic ferromagnetism in Cu-doped zinc-blende ZnO from first principles study, Journal of Magnetism and Magnetic Materials, 324 (2012) 584-587.

[74] Y.F. Chen, Q.G. Song, H.Y. Yan, The electronic structures and magnetic properties of N-doped ZnO with and without Zn vacancy, Computational and Theoretical Chemistry, 983 (2012) 65-68.

[75] Z.Z. Li, Z.Z. Chen, W. Huang, S.H. Chang, X.M. Ma, The transparence comparison of Ga- and Al-doped ZnO thin films, Applied Surface Science, 257 (2011) 8486-8489.

[76] X. Wang, X. Chen, R. Dong, Y. Huang, W. Lu, Ferromagnetism in carbon-doped ZnO films from first-principle study, Physics Letters, Section A: General, Atomic and Solid State Physics, 373 (2009) 3091-3096.

[77] A. Folli, S.B. Campbell, J.A. Anderson, D.E. MacPhee, Role of TiO₂ surface hydration on NO oxidation photo-activity, Journal of Photochemistry and Photobiology A: Chemistry, 220 (2011) 85-93.

[78] J. Ma, H. Wu, Y. Liu, H. He, Photocatalytic removal of NO_x over visible light responsive oxygen-deficient TiO₂, Journal of Physical Chemistry C, 118 (2014) 7434-7441.

[79] F. Mazille, A. Lopez, C. Pulgarin, Synergistic effect of TiO_2 and iron oxide supported on fluorocarbon films. Part 2: Long-term stability and influence of reaction parameters on photoactivated degradation of pollutants, Applied Catalysis B: Environmental, 90 (2009) 321-329.

[80] M. Zhang, C. Li, L. Qu, M. Fu, G. Zeng, C. Fan, J. Ma, F. Zhan, Catalytic oxidation of NO with O_2 over FeMnO_x/TiO₂: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study, Applied Surface Science, 300 (2014) 58-65.

[81] M. Liu, X. Qiu, M. Miyauchi, K. Hashimoto, Cu(II) Oxide Amorphous Nanoclusters Grafted Ti³⁺ Self-Doped TiO₂: An Efficient Visible Light Photocatalyst, Chemistry of Materials, 23 (2011) 5282-5286.

[82] H.Y. Kim, H.M. Lee, H. Metiu, Oxidative Dehydrogenation of Methanol to Formaldehyde by a Vanadium Oxide Cluster Supported on Rutile $TiO_2(110)$: Which Oxygen is Involved?, The Journal of Physical Chemistry C, 114 (2010) 13736-13738.

[83] N.I. Levine, Quantum Chemistry., in, University of New York, Prentice Hall, 2000.

[84] E.G. Lewars, Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics, 2011.

[85] P. Bera, M.S. Hegde, Catal. Lett., 79 (2002) 75.

[86] P. Bera, S. Malwadkarb, A. Gayena, C.V.V. Satyanarayanab, B.S. Raob, M.S. Hegde, Catal. Lett., 96 (2004) 213.

[87] P. Bera, K.R. Priolkar, P.R. Sarode, M.S. Hegde, S. Emura, R. Kumashiro, N.P. Lalla, Chem. Mater., 14 (2002) 3591.

[88] T. Bredow, L. Giordano, F. Cinquini, G. Pacchini, Phys. Rev. B., 70 (2004) 035419.

[89] T. Bredow, K. Jug, R.A. Evarestov, Electronic and magnetic structure of ScMnO3, Physica Status Solidi (B) Basic Research, 243 (2006) R10-R12.

[90] N. Bronsted, Chem. Rev., 5 (1928) 231.

[91] J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, J.V. Smith, Structuralelectronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, Journal of the American Chemical Society, 109 (1987) 3639-3646.

[92] O.V. Buyevskaya, D. Wolf, M. Baerns, Catal. Today, 62 (2000) 91.

[93] C. Cacho, O. Geiss, J. Barrero-Moreno, V.D. Binas, G. Kiriakidis, L. Botalico, D. Kotzias, Studies on photo-induced NO removal by Mn-doped TiO2 under indoorlike illumination conditions, Journal of Photochemistry and Photobiology A: Chemistry, 222 (2011) 304-306.

[94] J.T. Calla, R.J. Davis, J. Phys. Chem. B, 109 (2005) 2307.

[95] S.A.C. Carabineiro, A.M.T. Silva, G. Dražić, P.B. Tavares, J.L. Figueiredo, Gold nanoparticles on ceria supports for the oxidation of carbon monoxide, Catalysis Today, 154 (2010) 21-30.

[96] J.L. Carreon-Macedo, J.N. Harvey, J. Am. Chem. Soc., 126 (2004) 5789.

[97] S. Carrettin, A. Corma, M. Iglesias, F. Sanchez, Appl. Catal., A, 291 (2005) 247.

[98] J.S. Chen, X.W. Lou, Electrochem. Commun., 11 (2009) 2332.

[99] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, 98 (1993) 5648-5652.

[100] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density, Physical Review B, 37 (1988) 785-789.

[101] J.S. Chen, T. Zhu, C.M. Li, X.W. Lou, Angew. Chem., Int. Ed., 50 (2011) 650.

[102] S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Angew. Chem., Int. Ed., 52 (2013) 13567.

[103] X. Chen, S. Mao, Chem. Rev., 107 (2007) 2891.

[104] B. Wang, X. Wang, G. Chen, S. Nagase, J. Zhao, Cage and tube structures of medium-sized zinc oxide clusters $(ZnO)_n$ (n=24, 28, 36, and 48), Journal of Chemical Physics, 128 (2008).

[105] B. Wang, X. Wang, J. Zhao, Atomic structure of the magic $(ZnO)_{60}$ cluster: First-principles prediction of a sodalite motif for ZnO nanoclusters, Journal of Physical Chemistry C, 114 (2010) 5741-5744.

[106] D.K. Pandey, P.S. Yadav, S. Agrawal, B.K. Agrawal, Structural and electronic properties of ZnO nanoclusters: A B3LYP DFT study, in: Advanced Materials Research, 2013, pp. 29-33.

[107] J. Dai, C. Meng, Q. Li, First-principles study on the magnetism of Mn and Co codoped ZnO, Physica B: Condensed Matter, 409 (2013) 5-9.

[108] Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires, Journal of Nanomaterials, 2012 (2012).

[109] N. Kapila, V.K. Jindal, H. Sharma, J. Phys. Condens. Matt., 23 (2011).

[110] H. Sharma, R. Singh, First-principles investigation into ferromagnetism in C-doped zinc oxide clusters $(ZnO)_n$; n = 1-12, International Journal of Nanoscience, 10 (2011) 577-580.

[111] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, 38 (1988) 3098-3100.

[112] J.W. Ochterski, Thermochemistry in Gaussian, Gaussian, Inc, (2000).

[113] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2009, Gaussian 09, Revision D.01, Gaussian, Inc Wallingford CT, (2009) 2009.

[114] P. Flükiger, H.P. Lüthi, S. Portmann, MOLEKEL 43 Swiss center for scientific computing Manno, Switzerland, (2000).

[115] N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, Cclib: A library for packageindependent computational chemistry algorithms, Journal of Computational Chemistry, 29 (2008) 839-845.

[116] H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensors and Actuators, B: Chemical, 192 (2014) 607-627.

[117] S. Das, V. Jayaraman, SnO₂: A comprehensive review on structures and gas sensors, Progress in Materials Science, 66 (2014) 112-255.

[118] Y. Peng, W. Yu, W. Su, X. Huang, J. Li, An experimental and DFT study of the adsorption and oxidation of NH_3 on a CeO₂ catalyst modified by Fe, Mn, La and Y, Catalysis Today, 242, Part B (2015) 300-307.

[119] X.W. Sun, Y. Yang, Zno nanostructures and their applications, 2011.

[120] B.L. Zhu, C.S. Xie, D.W. Zeng, W.L. Song, A.H. Wang, Investigation of gas sensitivity of Sb-doped ZnO nanoparticles, Materials Chemistry and Physics, 89 (2005) 148-153.

[121] N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi, Y. Mortazavi, Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH₄ and ethanol, Sensors and Actuators B: Chemical, 156 (2011) 737-742.

[122] J. Eriksson, V. Khranovskyy, F. Söderlind, P.O. Käll, R. Yakimova, A.L. Spetz, ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities, Sensors and Actuators, B: Chemical, 137 (2009) 94-102.

[123] L.M. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp, K. Dreisewerd, Cluster formation in UV laser ablation plumes of ZnSe and ZnO studied by time-of-flight mass spectrometry, Applied Physics A, 78 (2004) 641-644.

[124] H.-p. Chen, J.-n. Ding, N.-y. Yuan, X.-q. Wang, C.-l. Chen, D. Weng, First-principle study of interaction of H2 and H2O molecules with $(ZnO)_n$ (n=3–6) ring clusters, Progress in Natural Science: Materials International, 20 (2010) 30-37.

[125] D.K. Pandey, P.S. Yadav, S. Agrawal, B.K. Agrawal, Structural and electronic properties of ZnO nanoclusters: A B3LYP DFT study, in: Advanced Materials Research, 2013, pp. 29-33.

[126] H. Zhao, X. Chen, R. Dong, W. Lu, The stability and optical gap of Zinc Oxide clusters $(ZnO)_n$ (n = 2-18), Journal of Nanoscience and Nanotechnology, 12 (2012) 138-142.

[127] C. Caddeo, G. Malloci, F. De Angelis, L. Colombo, A. Mattoni, Optoelectronic properties of (ZnO)₆₀ isomers, Physical Chemistry Chemical Physics, 14 (2012) 14293-14298.

[128] A.C. Reber, S.N. Khanna, J.S. Hunjan, M.R. Beltran, Rings, towers, cages of ZnO, The European Physical Journal D, 43 (2007) 221-224.

[129] M. Alberto Flores-Hidalgo, D. Glossman-Mitnik, D.H. Galvan, D. Barraza-Jimenez, Computational study of cage like $(ZnO)_{12}$ cluster using hybrid and hybrid meta functionals, Journal of the Chinese Chemical Society, 60 (2013) 1082-1091.

[130] B. Wang, X. Wang, J. Zhao, Atomic Structure of the Magic (ZnO)₆₀ Cluster: First-Principles Prediction of a Sodalite Motif for ZnO Nanoclusters, The Journal of Physical Chemistry C, 114 (2010) 5741-5744.

[131] W. Pipornpong, B. Kaewruksa, V. Ruangpornvisuti, DFT investigation on molecular structures of metal and nonmetal-doped ZnO sodalite-like cage and their electronic properties, Structural Chemistry, (2015).

[132] C. Siriwong, C. Liewhiran, N. Wetchakun, S. Phanichphant, Characterization and photocatalytic activity of Pd-doped ZnO nanoparticles synthesized by flame spray pyrolysis, in: 2008 2nd IEEE International Nanoelectronics Conference, INEC 2008, 2008, pp. 869-874.

[133] O.A. Yildirim, H.E. Unalan, C. Durucan, Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO: Ag) nanoparticles: Structural, optical, and photocatalytic properties, Journal of the American Ceramic Society, 96 (2013) 766-773.

[134] H.M. Chiu, T.H. Yang, Y.C. Hsueh, T.P. Perng, J.M. Wu, Fabrication and characterization of well-dispersed plasmonic Pt nanoparticles on Ga-doped ZnO nanopagodas array with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 163 (2015) 156-166.

[135] M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors, Sensors and Actuators B: Chemical, 196 (2014) 413-420.

[136] L. Michael, S. Christian, B. Gabriele, B. Tammo, H. Holger, B. Rolf, P. Andreas, S. Daniel, G. Marius, Degenerate interface layers in epitaxial scandium-doped ZnO thin films, Journal of Physics D: Applied Physics, 46 (2013) 065311.

[137] W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, The Journal of Chemical Physics, 82 (1985) 284-298.

[138] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitale, The Journal of Chemical Physics, 82 (1985) 299-310.

[139] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, The Journal of Chemical Physics, 82 (1985) 270-283.

[140] W.J. Hehre, K. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules, The Journal of Chemical Physics, 56 (1972) 2257-2261.

[141] M.J. Frisch, et al., Gaussian 09, Revision D.01, in, Gaussian, Inc., Wallingford, CT, 2014.

[142] P.V. Gosavi, R.B. Biniwale, Catalytic preferential oxidation of carbon monoxide over platinum supported on lanthanum ferriteeceria catalysts for cleaning of hydrogen, Journal of Power Sources, 222 (2013) 1-9.

[143] P. Kast, M. Friedrich, F. Girgsdies, J. Kröhnert, D. Teschner, T. Lunkenbein, M. Behrens, R. Schlögl, Strong metal-support interaction and alloying in Pd/ZnO catalysts for CO oxidation, Catalysis Today, 260 (2016) 21-31.

[144] J.L. Ayastuy, E. Fernández-Puertas, M.P. González-Marcos, M.A. Gutiérrez-Ortiz, Transition metal promoters in CuO/CeO₂ catalysts for CO removal from hydrogen streams, International Journal of Hydrogen Energy, 37 (2012) 7385-7397.

[145] G. Dong, J. Wang, Y. Gao, S. Chen, A novel catalyst for CO oxidation at low temperature, Catalysis Letters, 58 (1999) 37-41.

[146] Y.H. Kim, E.D. Park, H.C. Lee, D. Lee, Selective CO removal in a H₂-rich stream over supported Ru catalysts for the polymer electrolyte membrane fuel cell (PEMFC), Applied Catalysis A: General, 366 (2009) 363-369.

[147] S. Ching, D.A. Kriz, K.M. Luthy, E.C. Njagi, S.L. Suib, Self-assembly of manganese oxide nanoparticles and hollow spheres. Catalytic activity in carbon monoxide oxidation, Chemical Communications, 47 (2011) 8286-8288.

[148] N.D. Ivanova, S.V. Ivanov, E.I. Boldyrev, G.V. Sokol'skii, I.S. Makeeva, Highperformance manganese oxide catalysts for CO oxidation, Russian Journal of Applied Chemistry, 75 (2002) 1420-1423.

[149] U.R. Pillai, S. Deevi, Room temperature oxidation of carbon monoxide over copper oxide catalyst, Applied Catalysis B: Environmental, 64 (2006) 146-151.

[150] P.J. Møller, S.A. Komolov, E.F. Lazneva, E.H. Pedersen, CO₂ - intermediates in the CO/ZnO(0001) interface, Surface Science, 323 (1995) 102-108.

[151] M. Ferus, L. Kavan, M. Zukalová, A. Zukal, M. Klementová, S. Civiš, Spontaneous and Photoinduced Conversion of CO2 on TiO₂ Anatase (001)/(101) Surfaces, The Journal of Physical Chemistry C, 118 (2014) 26845-26850.

[152] W. Pipornpong, R. Wanbayor, V. Ruangpornvisuti, Adsorption CO_2 on the perfect and oxygen vacancy defect surfaces of anatase TiO_2 and its photocatalytic mechanism of conversion to CO, Applied Surface Science, 257 (2011) 10322-10328.

[153] R. Wanbayor, P. Deák, T. Frauenheim, V. Ruangpornvisuti, First principles theoretical study of the hole-assisted conversion of CO to CO_2 on the anatase $TiO_2(101)$ surface, Journal of Chemical Physics, 134 (2011).

[154] H.Y. Kim, H.M. Lee, R.G.S. Pala, V. Shapovalov, H. Metiu, CO Oxidation by Rutile $TiO_2(110)$ Doped with V, W, Cr, Mo, and Mn, The Journal of Physical Chemistry C, 112 (2008) 12398-12408.

[155] T. Sun, Y. Wang, H. Zhang, P. Liu, H. Zhao, Adsorption and oxidation of oxalic acid on anatase TiO_2 (0 0 1) surface: A density functional theory study, Journal of Colloid and Interface Science, 454 (2015) 180-186.

[156] X.H. Yang, Z. Li, C. Sun, H.G. Yang, C. Li, Hydrothermal stability of {001} faceted anatase TiO₂, Chemistry of Materials, 23 (2011) 3486-3494.

[157] A. Vittadini, A. Selloni, F.P. Rotzinger, M. Grätzel, Structure and energetics of water adsorbed at TiO_2 anatase (101) and (001) surfaces, Physical Review Letters, 81 (1998) 2954-2957.

[158] H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO_2 single crystals with a large percentage of reactive facets, Nature, 453 (2008) 638-641.

[159] R. Wanbayor, V. Ruangpornvisuti, A periodic DFT study on binding of Pd, Pt and Au on the anatase TiO_2 (0 0 1) surface and adsorption of CO on the TiO_2 surfacesupported Pd, Pt and Au, Applied Surface Science, 258 (2012) 3298-3301.

[160] E. Escamilla-Roa, V. Timón, A. Hernández-Laguna, DFT study of the adsorption of Ni on Anatase (0 0 1) surface, Computational and Theoretical Chemistry, 981 (2012) 59-67.

[161] T. Ye, S. Li, X. Wu, M. Xu, X. Wei, K. Wang, H. Bao, J. Wang, J. Chen, Solgel preparation of efficient red phosphor $Mg_2TiO_4:Mn^{4+}$ and XAFS investigation on the substitution of Mn^{4+} for Ti^{4+} , Journal of Materials Chemistry C, 1 (2013) 4327-4333. [162] K.S. Siddhapara, D.V. Shah, Study of photocatalytic activity and properties of transition metal ions doped nanocrystalline TiO_2 prepared by sol-gel method, Advances in Materials Science and Engineering, 2014 (2014).

[163] L. Wang, J. Fan, Z. Cao, Y. Zheng, Z. Yao, G. Shao, J. Hu, Fabrication of predominantly Mn^{4+} -Doped TiO₂ nanoparticles under equilibrium conditions and their application as visible-light photocatalyts, Chemistry - An Asian Journal, 9 (2014) 1904-1912.

[164] L. Wang, X. Zhang, P. Zhang, Z. Cao, J. Hu, Photoelectric conversion performances of Mn doped TiO2 under 420 nm visible light irradiation, Journal of Saudi Chemical Society, 19 (2015) 595-601.

[165] M.-V. Sofianou, M. Tassi, V. Psycharis, N. Boukos, S. Thanos, T. Vaimakis, J. Yu, C. Trapalis, Solvothermal synthesis and photocatalytic performance of Mn^{4+} -doped anatase nanoplates with exposed {0 0 1} facets, Applied Catalysis B: Environmental, 162 (2015) 27-33.

[166] A.K. Tripathi, M.C. Mathpal, P. Kumar, M.K. Singh, M.A.G. Soler, A. Agarwal, Structural, optical and photoconductivity of Sn and Mn doped TiO_2 nanoparticles, Journal of Alloys and Compounds, 622 (2015) 37-47.

[167] K.Z. Hedjazi, R.; Cui, R.; Liu, N.; Chen, B., Synthesis of TiO_2 with diverse morphologies as supports of manganese catalysts for CO oxidation, Appl Petrochem Res, 6 (2016) 89–96.

[168] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V.R. Saunders, C.M. Zicovich-Wilson, CRYSTAL: A computational tool for the ab initio study of the electronic properties of crystals, Zeitschrift fur Kristallographie, 220 (2005) 571-573.

[169] S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel, Bulk properties and electronic structure of SrTiO₃, BaTiO₃, PbTiO₃ perovskites: An ab initio HF/DFT study, Computational Materials Science, 29 (2004) 165-178.

[170] M.F. Peintinger, D.V. Oliveira, T. Bredow, Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations, Journal of Computational Chemistry, 34 (2013) 451-459.

[171] Y.F. Zhao, C. Li, S. Lu, R.X. Liu, J.Y. Hu, Y.Y. Gong, L.Y. Niu, Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO2: Experiment and simulation, Journal of Solid State Chemistry, 235 (2016) 160-168.

[172] A. Selloni, Crystal growth: Anatase shows its reactive side, Nature Materials, 7 (2008) 613-615.

[173] M. Lazzeri, A. Vittadini, A. Selloni, Erratum: Structure and energetics of stoichiometric TiO_2 anatase surfaces (Physical Review B (2001) 63 (155409)), Physical Review B - Condensed Matter and Materials Physics, 65 (2002) 1199011.

[174] D. Ren, H. Li, X. Cheng, Tailoring the electronic and optical properties of anatase TiO_2 by (S, Nb) co-doping from a DFT plus U calculation, Solid State Communications.

[175] N.H. Linh, T.Q. Nguyen, W.A. Diño, H. Kasai, Effect of oxygen vacancy on the adsorption of O_2 on anatase TiO₂(001): A DFT-based study, Surface Science, 633 (2015) 38-45.

[176] M.V. Sofianou, M. Tassi, V. Psycharis, N. Boukos, S. Thanos, T. Vaimakis, J. Yu, C. Trapalis, Solvothermal synthesis and photocatalytic performance of Mn^{4+} -doped anatase nanoplates with exposed {001} facets, Applied Catalysis B: Environmental, 162 (2015) 27-33.

VITA

PERSONAL DATA

Name Waranyu Pipornpong

Date of birth 23 April 1988

E-mail waranyu.lab@gmail.com

ACADEMIC EDUCATION AND SCHOLARSHIP

2011 - 2017 Ph.D. in Physical chemistry, Chulalongkorn University.

2010 B.Sc., Chulalongkorn University.

2004 – 2006 The Promotion of Academic Olympiads and Development of Science Education Foundation under the Patronage of Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra

ACADEMIC EXPERIENCES

2012 Short-term research visitor scholarship at Japan Advanced Institute of Science and Technology (JAIST) from Japan Student Services Organization (JASSO)

2016 Presentation at the PACCON 2016, Thailand

2016 Presentation at the E-MRS 2016 Spring Meeting, France

2016 Short-term research visitor scholarship at Nanyang Technological University (NTU)

2017 Short-term research visitor at Department of Materials science, University of Milano-Biccoca (UNIMIB)

REWARD

2010 Best Bechelor's research from Department of Chemistry, Faculty of Science, Chulalongkorn University

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University