การสังเคราะห์อนุพันธ์แมนโซโนนเพื่อเป็นสารต้านแบคทีเรีย

นางสาวริตา ฮิรานี

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2559 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

SYNTHESIS OF MANSONONE DERIVATIVES AS ANTIBACTERIAL AGENTS

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2016 Copyright of Chulalongkorn University

Thesis Title	SYNTHESIS	OF	MANSONONE	DERIVATIVES	AS
	ANTIBACTER	RIAL A	AGENTS		
Ву	Miss Rita Ha	irani			
Field of Study	Chemistry				
Thesis Advisor	Assistant Pro	ofess	or Warinthorn (Chavasiri, Ph.D.	

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

......Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

_____Chairman

(Associate Professor Vudhichai Parasuk, Ph.D.)

Thesis Advisor

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

GHULALONGKORN ONIVEREXaminer

(Assistant Professor Pattara Thiraphibundet, Ph.D.)

......External Examiner

(Assistant Professor Veena Nukoolkarn, Ph.D.)

ริตา ฮิรานี : การสังเคราะห์อนุพันธ์แมนโซโนนเพื่อเป็นสารต้านแบคทีเรีย (SYNTHESIS OF MANSONONE DERIVATIVES AS ANTIBACTERIAL AGENTS) อ.ที่ปรึกษาวิทยานิพนธ์ หลัก: ผศ. ดร.วรินทร ชวศิริ, 151 หน้า.

ได้ทดสอบฤทธิ์ต้านแบคทีเรียของสาร 7 ชนิดที่แยกจากสิ่งสกัดหยาบไดคลอโรมีเทนของ แก่นไม้จันทน์ชะมด Mansonia gagei Drumm. คือ mansorin A (1), mansorin B (2), mansorin C (3), mansonone C (4), mansonone E (5), mansonone G (6), และ mansonone H (7) ต่อ เ ชี้ อ Staphylococcus aureus ATCC 25923, Streptococcus mutans ATCC 25175, Streptococcus sobrinus KCCM 11898, Propionibacterium acnes KCCM 41747 และ Salmonella typhi ATCC 422 พบว่า 6 แสดงฤทธิ์ที่ดี และเนื่องจากพบในปริมาณมากจึงได้ สังเคราะห์อนุพันธ์ของ mansonone G (G01 – G20) โดยดัดแปรหมู่ไฮดรอกซีที่ต่ำแหน่ง C6 และ นำไปทดสอบฤทธิ์การต้านแบคทีเรีย ทั้งนี้อนุพันธ์ G02 – G20 ได้ถูกสังเคราะห์ขึ้นเป็นครั้งแรก อนุพันธ์ของ mansonone G ส่วนใหญ่มีฤทธิ์ต้านแบคทีเรียดีกว่า 6 ซึ่งได้จากธรรมชาติ อนุพันธ์ G07 และ G08 ให้ค่า MIC ต่ำกว่า 6 ถึง 64 เท่า นอกจากนี้ได้ทดสอบฤทธิ์ต้านกระบวนการสร้างไขมัน พบว่า 4 และ 6 สามารถยับยั้งกระบวนการสร้างเซลล์ไขมันชนิด 3T3-L1 pre-adipocytes และเมื่อ นำอนุพันธ์ G15, G16 และ G17 มาทดสอบและศึกษากลไก พบว่าอนุพันธ์เหล่านี้มีฤทธิ์ต้าน กระบวนการสร้างไขมันเนื่องจากสามารถยับยั้งการผลิตสาร adiponectin.

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาควิชา เคมี สาขาวิชา เคมี ปีการศึกษา 2559

ลายมือชื่อนิสิต	
ลายมือชื่อ อ.ที่ปรึกษาหลัก	

5672207423 : MAJOR CHEMISTRY

KEYWORDS: MANSONIA GAGEI DRUMM. / MANSONONES / MANSONONE DERIVATIVES / ANTIBACTERIAL ACTIVITY / ANTI-ADIPOGENIC ACTIVITY

RITA HAIRANI: SYNTHESIS OF MANSONONE DERIVATIVES AS ANTIBACTERIAL AGENTS. ADVISOR: ASST. PROF. WARINTHORN CHAVASIRI, Ph.D., 151 pp.

Seven compounds isolated from the CH₂Cl₂ extract of *Mansonia gagei* Drumm. heartwoods, i.e. mansorin A (1), mansorin B (2), mansorin C (3), mansonone C (4), mansonone E (5), mansonone G (6), and mansonone H (7), were evaluated for their antibacterial activities towards Staphylococcus aureus ATCC 25923, Streptococcus mutans ATCC 25175, Streptococcus sobrinus KCCM 11898, Propionibacterium acnes KCCM 41747, and Salmonella typhi ATCC 422. 6 displayed good activity and was obtained in large amount among other mansonones, therefore some derivatives of mansonone G were carried out and their antibacterial activity were evaluated. Twenty mansonone G derivatives (G01 - G20) were obtained by modified the hydroxyl group at C6 of 6. Among these derivatives, G02 - G20 were identified as new semisynthetic compounds. In antibacterial activity, most of mansonone G derivatives showed better activity than 6. G07 and G08 displayed sixty-four times lower in MIC than its natural 6. Moreover, anti-adipogenic activity was also performed to all compounds. 4 and 6 possessed the suppression in 3T3-L1 pre-adipocytes differentiation. The suppression were also observed by G15, G16, and G17. Further investigation on their mechanism indicated that G15, G16, and G17 had potential activity in adipogenesis by suppressing the production of adiponectin.

Department: Chemistry Field of Study: Chemistry Academic Year: 2016

Student's Signature	
Advisor's Signature	

ACKNOWLEDGEMENTS

The author would like to express her gratitude towards Allah the almighty for all the grace and wonderful life that she got. She also would like to express appreciation to her advisor Assistant Professor Warinthorn Chavasiri Ph.D. for his advice, guidance and encouragement throughout the course of this research.

Appreciations were given to Asean Scholarship Chulalongkorn University 2013 which was supported her financially, throughout the course and Beasiswa Kaltim Cemerlang 2015 for supporting her financially at the end of her course time. The author also thankful for the experience that has been given to her for conducted research experience at Ewha Womans University which was financially supported by Overseas Research Experience Scholarship from Graduate School Chulalongkorn University. Appreciation was given to Thesis Grant Scholarship, for its funding support to author thesis research.

Author would extend her gratitude to Professor Eun Sook Hwang, from College of Pharmacy & Graduate School of Pharmaceutical Sciences at Ewha Womans University for her guidance while author doing her research experience in South Korea. Furthermore, author appreciation has been given to the Head of Department of Chemistry Associate Professor Vudichai Parasuk, Ph.D. Chulalongkorn University for his kindness and help. Author would also like to thank to all of committee members for their time and suggestion during final presentation.

Appreciation was given by author to Department of Chemistry staff member, for their assistance during the course time. To all members in Natural Product Research Unit and WC laboratory member, author are grateful for the experience and help that given to her during the research time. Respect and love to author family for their support and love during this course. Lastly, author would like to express her gratitude towards all of her friends for their endless support during her study in Chulalongkorn University.

CONTENTS

Page	
THAI ABSTRACTiv	
ENGLISH ABSTRACTv	
ACKNOWLEDGEMENTSvi	
CONTENTSvii	
List of Tables	
List of Figures	
List of Schemes	
List of Abbreviations	
CHAPTER I INTRODUCTION	
1.1 Naturally Occurring Naphthoquinones12	
1.2 Typical 1,2-Naphthoquinones from <i>Mansonia gagei</i> Drumm	
1.3 Mansonones, Typical 1,2-Naphthoquinones Derived from Other Plants	
1.4 Synthesis of Mansonones and Their Biological Activities	
1.5 Bacteria	
1.6 Chloramphenicol as One of Broad Spectrum Antibiotic	
1.7 Resistance of Antibiotics and Bacteria	
1.8 Adipose Tissue	
1.9 Adipogenesis	
1.10 Adipose Tissue Dysfunction	
1.11 The Aim of This Research	
CHAPTER II EXPERIMENTAL	
2.1 Plant Material	

2.2 Equipments and Instruments	33
2.3 Chemicals	33
2.4 Extraction of Plant Material	34
2.5 Separation and Purification of Chemical Constituents	34
2.6 Synthesis of Mansonone Derivatives	35
2.6.1 The Derivatization of Mansonone G into Its Ether Analogues	35
2.6.2 The Derivatization of Mansonone G into Its Ester Analogues	39
2.6.3 The Derivatization of Mansonone G with Epichlorohydrin	42
2.7 The Evaluation of Antibacterial Activity	43
2.7.1 Test Microorganisms	43
2.7.2 Preparation of Microbial Inoculum	43
2.7.3 Antibacterial Activity Test	43
2.7.4 Determination of Minimum Inhibitory Concentration (MIC) Value	44
2.8 The Evaluation of Anti-adipogenic Activity	44
2.8.1 Cell Culture	44
2.8.2 Differentiation of 3T3-L1 Cells in 24-Wells Plate	45
2.8.3 Oil Red O Staining	45
2.8.4 Preparation for Western Blot Analysis	45
2.8.4.1 Differentiation of 3T3-L1 Cells in 6-Wells Plate	45
2.8.4.2 Preparation for Protein Extraction	46
2.8.4.3 Cells Lysis for Protein Extraction	46
2.8.4.4 Determination of Protein Concentration by Bradford Protein	
Assay	46

Page

viii

Page

ix

2.8.4.5 Preparation of PAGE Gel	
2.8.4.6 Sample Preparation	
2.8.4.7 SDS-PAGE Electrophoresis	
2.8.4.8 Protein Transfer	
2.8.4.9 Western Blot Analysis	
CHAPTER III RESULTS AND DISCUSSION	50
3.1 Extraction of <i>Mansonia gagei</i> Heartwoods	50
3.2 Separation of the CH ₂ Cl ₂ Extract of <i>Mansonia gagei</i> Heartwoods	50
3.3 Structural Elucidation of Isolated Compounds	52
3.4 Preliminary Antibacterial Activity of Isolated Compounds	55
3.5 Synthesis of Mansonone G Derivatives	58
3.5.1 Ether Analogues of Mansonone G	59
3.5.2 Structural Elucidation of Ether Analogues of Mansonone G	60
3.5.3 Ester Analogues of Mansonone G	78
3.5.4 Structural Elucidation of Ester Analogues of Mansonone G	79
3.5.5 Mansonone G Derivatives from Epichlorohydrin	91
3.5.6 Structural Elucidation of G19 and G20	92
3.6 Antibacterial Activity of Mansonone Derivatives	95
3.7 Minimum Inhibitory Concentration (MIC) of Mansonones and Their	
Derivatives	
3.8 Anti-Adipogenic Activity	105
3.8.1 Preliminary Screening Anti-Adipogenic Activity	105
3.8.2 Anti-Adipogenic Activity of Candidate Compounds by Dose-	
Dependent Manner	

	Page
3.8.3 Expression of Adiponectin in Anti-Adipogenic Activity	
CHAPTER IV CONCLUSION	
REFERENCES	
APPENDIX	
VITA	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

List of Tables

Table	e Page
1.1	Comparisons of Gram positive and Gram negative bacteria cell walls25
1.2	Chloramphenicol target and pathway
1.3	The characteristics of white and brown adipose tissues
3.1	The fractionation of the CH_2Cl_2 extract of <i>M. gagei</i> heartwoods by quick
	column
3.2	Tentative ¹ H NMR chemical shifts assignment of compounds 1–3
3.3	Tentative ¹ H NMR chemical shift assignments of compounds 4–7
3.4	Inhibition zone of isolated compounds55
3.5	The yields and characteristics of ether analogues of mansonone G (G01–10)59
3.6	Tentative NMR chemical shift assignment of methyl ether mansonone G and
	G01
3.7	Tentative ¹ H NMR chemical shift assignments of G02–G0564
3.8	Tentative ¹³ C NMR chemical shift assignments of G02–G0565
3.9	Tentative ¹ H NMR chemical shift assignments of G06–G1071
3.10	Tentative ¹³ C NMR chemical shift assignments of G06–G1072
3.11	The yields and characteristics of ether analogues of mansonone G (G11–
	G18)
3.12	Tentative ¹ H NMR chemical assignments of G11–G1480
3.13	Tentative ¹³ C NMR chemical shift assignments of G11–G1481
3.14	Tentative ¹ H NMR chemical shift assignments of G15–G1886
3.15	Tentative ¹³ C NMR chemical shift assignments of G15, G16, and G1887

Table	e Page
3.16	The yields and characteristics of G19 and G209
3.17	Diameter of inhibition zone of mansonone G and its derivatives
3.18	MIC of natural mansonones and mansonone G derivatives
3.19	Percentage optical density of cells treated with isolated compounds and
	mansonone derivatives on anti-adipogenic activity10
3.20	The IC ₅₀ (μ M) of tested compounds in anti-adipogenic activity

List of Figures

Figur	re	Page
1.1	Core structures of 1,2 and 1,4-naphthoquinones	12
1.2	Some natural 1,4-naphthoquinones	15
1.3	Some natural 1,2-naphthoquinones	16
1.4	Naphthofuranone phytoalexins from <i>A. marina</i>	17
1.5	Mansonia gagei Drumm	18
1.6	Chemical constituents from <i>M. gagei</i> heartwoods	20
1.7	Structure of bacterial cell	23
1.8	Staining agents for bacterial	24
1.9.	The differences of cell walls of Gram positive and Gram negative bacteria.	24
1.10.	Colonies of <i>Staphylococcus aureus</i>	26
1.11	The morphology of <i>Streptococcus mutans</i> (24 hours broth culture)	27
1.12	The different origins of white and brown adipose tissues [112]	30
1.13	Adipogenesis (differentiation process) [115]	31
2.1	Dried heartwoods of <i>M. gagei</i>	33
2.2	Isolated compounds from the CH_2Cl_2 extract of <i>M. gagei</i> heartwoods	34
2.3	The structures of ether analogues of mansonone G	36
2.4	The structures of ester analogues of mansonone G	40
2.5	The structures of analogues of mansonone G with epichlorohydrin	42
2.6	Gel casting frame and casting stand [122]	47
3.1	The comparison of the polarity of mansonones C, E, G, and H	57
3.2	The ¹ H NMR spectrum of G01	62

Figure	Page
3.3 The ¹³ C NMR spectrum of G01	62
3.4 The ¹ H NMR spectrum of G02	66
3.5 The ¹³ C NMR spectrum of G02	66
3.6 The ¹ H NMR spectrum of G03	67
3.7 The ¹³ C NMR spectrum of G03	67
3.8 The ¹ H NMR spectrum of G04	68
3.9 The ¹³ C NMR spectrum of G04	68
3.10 The ¹ H NMR spectrum of G05	69
3.11 The ¹³ C NMR spectrum of G05	69
3.12 The ¹ H NMR spectrum of G06	73
3.13 The ¹³ C NMR spectrum of G06	73
3.14 The ¹ H NMR spectrum of G07	74
3.15 The ¹³ C NMR spectrum of G07	74
3.16 The ¹ H NMR spectrum of G08	75
3.17 The ¹³ C NMR spectrum of G08	75
3.18 The ¹ H NMR spectrum of G09	76
3.19 The ¹³ C NMR spectrum of G09	76
3.20 The ¹ H NMR spectrum of G10	77
3.21 The ¹³ C NMR spectrum of G10	77
3.22 The ¹ H NMR spectrum of G11	82
3.23 The ¹³ C NMR spectrum of G11	82
3.24 The ¹ H NMR spectrum of G12	83
3.25 The ¹³ C NMR spectrum of G12	

Figure	Page
3.26 The ¹ H NMR spectrum of G13	84
3.27 The ¹³ C NMR spectrum of G13	84
3.28 The ¹ H NMR spectrum of G14	85
3.29 The ¹³ C NMR spectrum of G14	85
3.30 The ¹ H NMR spectrum of G15	88
3.31 The ¹³ C NMR spectrum of G15	88
3.32 The ¹ H NMR spectrum of G16	89
3.33 The ¹³ C NMR spectrum of G16	89
3.34 The ¹ H NMR spectrum of G17	90
3.35 The ¹ H NMR spectrum of G18	90
3.36 The ¹ H NMR spectrum of G18	91
3.37 The ¹ H NMR spectrum of G19	92
3.38 The ¹³ C NMR spectrum of G19	93
3.39 The ¹ H NMR spectrum of G20	94
3.40 The ¹³ C NMR spectrum of G20	94
3.41 The relationship of the number of carbon atoms with antibacterial activity of G01–G05	, 98
3.42 The relationship of carbon atom numbers with antibacterial activity of compounds G07–G09 (3–10 carbon atoms)	101
3.43 The relationship of carbon atoms number and antibacterial activities of G11–G14	102
3.44 Performance of MIC determination in 96-well plate by resazurin assay	104
3.45 Cells images using scanner after ORO stain	106

Figure	Page
3.46 % OD of compounds in anti-adipogenic activity by dose-dependent manne	er 109
3.47 Adiponectin expression in anti-adipogenic activity of compounds 6, G15,	
G16, and G17	110

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

List of Schemes

Sche	eme	Page
3.1	Separation and purification of chemical constituents from the CH_2Cl_2 extract	t
	of <i>M. gagei</i> heartwoods	52
3.2	General procedure for the synthesis of mansonone G derivatives	58

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

List of Abbreviations

AA	=	acrylamide		
ADW	=	autoclaved deionized water		
APS	=	ammonium persulfate		
ATCC	=	American Type Culture Collection		
β	=	beta		
BaCl ₂	=	barium chloride		
BCS	=	Bovine Calf Serum		
BSA	=	Bovine Serum Albumin		
δ	=	delta		
°C	=	degree celcius		
CFU	=	colony-forming unit		
CDCl ₃	=	chloroform-d		
CH ₂ Cl ₂	=	dichloromethane		
CH ₃ I	=	methyl iodide		
C_2H_5Br	=	ethyl bromide		
C ₄ H ₉ Br	=	1-bromobutane		
$C_8H_{17}Br$	=	1-bromooctane		
$C_{12}H_{25}Br$	=	1-bromododecane		
CO ₂	=	carbondioxide		
d	=	doublet		
dd	=	doublet of doublet		
DMSO	=	dimethylsulfoxide		
DMEM	=	Dulbecco's Modified Eagle's Medium		
DTT	=	dithiothreitol		
DW	=	deionized water		
ECL	=	enhanced chemiluminescence		
ESI	=	electron spray ionization		
EtOAc	=	ethyl acetate		

EtOH	=	ethanol
FBS	=	Fetal Bovine Serum
g	=	gram
h	=	hour
HCl	=	hydrochloric acid
HRMS	=	high resolution mass spectra
H ₂ SO ₄	=	sulphuric acid
Hz	=	hertz
kg	=	kilogram
K ₂ CO ₃	=	potassium carbonate
КССМ	=	Korean Culture Center of Microorganisms
L	=	Liter
m	=	multiplet
mA	=	milli ampere
Mel	=	methyl iodide
MeOH	=	methanol
mg	=	milligram
μg	=	microgram
min	=	minute/minutes
mL	=	milliliter Chulalongkorn Universit
μL	=	microliter
mm	=	millimeter
mmol	=	millimol
mМ	=	millimolar
μM	=	micromolar
MF	=	Mac Farland
MHz	=	megahertz
MIC	=	minimum inhibitory concentration
MS	=	Mass Spectrophotometry
NaHCO ₃	=	sodium bicarbonate
NaOH	=	sodium hydroxide

Na ₂ SO ₄	=	sodium sulfate	
Na_3VO_4	=	sodium orthovanadate	
NC	=	nitrocellulose	
nm	=	nanometer	
NMR	=	Nuclear Magnetic Resonance	
ORO	=	oil red O	
PAGE	=	polyacrylamide gel	
PBS	=	Phosphate Buffer Saline	
PMSF	=	phenylmethylsulfonyl fluoride	
PPh_3	=	triphenylphospine	
rpm	=	revolution per minute	
S	=	singlet	
sec	=	second	
SDS	=	sodium dodecyl sulfate	
TBST	=	Tris-buffered saline, 0.1% Tween 20	
TEMED	=	tetramethylethylenediamine	
TLC	=	Thin Layer Chromatography	
V	=	voltage	

จุฬาลงกรณ์มหาวิทยาลัย

10

CHAPTER I

Nature has provided many things for humankind, including a source of therapeutic agents for thousands of years, which could obtain from plants, lichens, fungi, bacteria, algae, and animals. More than 50% of all the drugs in clinical use in the world are derived from natural products and their derivatives.[1] The term of natural products refers to secondary metabolites which are derived and isolated from natural sources.[2] Secondary metabolites are defined as chemical constituents which have a much more limited distribution in nature and can be obtained in only specific organisms or groups of organisms.[3] These metabolites are produced within the organisms and can be presumed as products of biochemical "side tracks" in the cells of organism and not required for daily functioning of the organism.[4] In consequence, secondary metabolites have many biological activities, thus, they have been used in traditional medicine treatment for centuries, and currently in cosmetics, fine chemicals, nutraceuticals, and pharmaceuticals.[5]

Plants, as one of natural products sources, have established the foundation of sophisticated traditional medicine systems and according to the earliest records from around 2900-2600 BCE, there were approximately 1000 plant-derived substances used in traditional medicine systems.[6] Moreover, the great civilizations of the ancient Chinese, Indians, and North Africans had documented the written evidence of the use of plants in wide variety of diseases treatments.[7] Up to now, the enormous majority of people still rely on their traditional medicinal plants for their daily healthcare needs.[8] Medicinal plants continue to be the main source of medication in developing countries.[9]

1.1 Naturally Occurring Naphthoquinones

One of secondary metabolites groups which widely can be found in nature are naphthoquinones. These compounds are known to have many biological activities and can be produced by many types of higher plants, fungi, animals, and microorganisms.[10, 11] Several pharmacological properties of naphthoquinones such as anticancer, antifungal, antimicrobial, antiviral, and antimalarial have been investigated.[12-16] The concern in these compounds has been expanded in recent years due to their pharmacological properties and the variety of their structural.[17]

Naphthoquinones are simple compounds having C_6-C_4 skeleton or naphthalene nucleus with two carbonyl groups on one nucleus and highly relative small molecules which have a diverse distribution in nature.[18, 19] There are two types of naphthoquinones *i.e.* 1,2-naphthoquinone (naphthalene skeleton substitute in position C1 and C2) and 1,4-naphthoquinone (naphthalene skeleton substitute in position C1 and C4).[18, 20]

Figure 1.1 Core structures of 1,2 and 1,4-naphthoquinones

As well as their monomers, typical 1,2-naphthoquinones (*ortho*-naphthoquinones) and 1,4-naphthoquinones (*para*-naphthoquinones) were isolated from natural products as dimer, trimer, and tetramer.[21-23] In addition, their furano and pyrano derivatives could also be obtained from natural products.[18]

Mostly, naphthoquinones are colored compounds (yellow, orange, and brown), and hence, they are important in dye pigmentation. In addition, they are usually soluble in acetic acid, acetone, alcohol, benzene, chloroform, and dimethyl sulfoxide, while some others are slightly soluble in hot water.[20] In nature, mainly naphthoquinones can be found in plants in which the biosynthesis can occur *via* variety of pathways including the acetate-malonate pathway, shikimate-succinyl CoA combined pathway and the shikimate-mevalonate pathway.[20] Some naphthoquinones are derived from pentaketides, hexaketides, and heptaketides.[19].

Naturally occurring naphthoquinones which have been determined in some families of plants such as Avicenniaceae, Bignoniaceae, Boraginaceae, Droseraceae, Ebenaceae, Juglandaceae, Nephentaceae, and Plumbaginaceae, mostly are typical 1,4naphthoquinones such as plumbagin, juglone, and lawsone.[20] The biological activities of these compounds have been investigated.

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a naturally occurring yellow pigment isolated from the plants in Plumbaginaceae, Drosceraceae, Ancistrocladaceae, and Dioncophyllaceae families.[24] According to de Paiva and coworkers, plumbagin isolated from *Plumbago scandens*, exhibited relatively specific activity against *Staphylococcus aureus*.[25] In addition, another study also reported that plumbagin isolated from *P. zeylanica* displayed activity as a drug for various bacterial infectious diseases.[26] This compound also has been reported exerted anticancer activity on non-small cell lung cancer, antidepressant-like activity in unstressed and stressed mice.[27, 28] Another pharmacological properties of this compound such as anti-inflammatory and anti-fibrotic activities have also been evaluated.[24, 29, 30]

Juglone (5-hydroxy-1,4-naphthoquinone), obtained from the red wood (*Caesalpinia sappan*), was found to exhibit strong inhibition against some oral pathogens such as *Porphyromonas sp., Streptococcus mutans, Actinobacillus viscosus, Streptococcus sobrinus*, and *Streptococcus salivarius*.[31] Another study reported that juglone isolated from *Juglans mandschurica* Maxim possessed antiproliferative and antitumor effects.[32, 33]

Lawsone (2-hydroxy-1,4-naphthoquinone), a natural pigment present in *Lawsonia inermis* or henna leaves, has been used since the Bronze Age for dying fingernails, hair, skin (including body art), leather, silk, and wool.[34] The antibacterial activity of this compound has been reported showing good antibacterial activity against two Gram-positive bacteria.[35] In addition, lawsone also reported to display remarkable inhibitory activity on the oxidative burst response of the whole blood, polymorphonuclear cells.[36]

Lapachol (2-hydroxy-3-(3'-methyl-2'-butenyl)-1,4-naphthoquinone) is a natural pigment isolated from *Tabebuia spp.*, Bignoniaceae family, has been investigated for its antimicrobial activity.[37, 38] This compound also can be found in other plant families such as Verbenaceae, Proteaceae, Leguminosae, and Sapotaceae.[39] It was known that lapachol exhibited anti-inflammatory effect, anthelmintic activity against *Toxocara canis* larvae, and anticancer activity.[40-42]

Shikonin, another typical 1,4-naphthoquinone, is a major bioactive compound isolated from Zicao (purple gromwell) or the dried root of Lithospermum erythrorhizon which usually used as a component of Chinese herbal medicine.[43] The antibacterial of shikonin has been evaluated and it showed that this compound exhibits greatest activity towards Pseudomonas aeruginosa, Escherichia antibacterial coli, Staphylococcus aureus, and Klebsiella pneumonia. This compound has been investigated for its anti-HIV therapeutic agent, anticancer agent.[43] Its anti-adipogenic activity was also been investigated and found that shikonin inhibits fat accumulation in 3T3-L1 adipocytes.[44] Moreover its mechanism study was also investigated and resulted that shikonin can inhibits adipogenesis by the modulation of WNT/ $m{m{\beta}}$ -catenin pathway, by blocking the mir-34a-FKBP1B pathway which signifies a promising potential agent to prevent obesity, by suppression of ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells.[45-47] Other study also reported its anti-adipogenic mechanism study via the modulation of adipogenesis, lipogenesis, and **β**-oxidation *in vivo*.[48]

Figure 1.2 Some natural 1,4-naphthoquinones

Several typical 1,2-napthoquinones have also been isolated from various plant families. A natural tetrahydropyran-fused 1,2-naphthoquinone named β -lapachone (3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione) could be attained from the heartwood of Bignoniaceae and Verbanaceae families.[49] β -lapachone was known as a natural derivative of lapachol which presented in a small amount in the woods of Lapacho tree or *Tabebuia* spp. (Bignoniaceae family) and also can be obtained from the synthesis of lapachol through the cyclization of the prenyl side chain of lapachol.[40] This compound is known to have antimicrobial activity and possess the most effective against *S. aureus* strains.[50] Other studies also reported that this compound exhibited potential anti-anthelmintic, anticancer, antitumor, antiinflammatory, antiplasmodial, and anti-*Trypanosoma cruzi* activities.[40, 51-55]

Another compound which has similar structure with β -lapachone is named biflorin (6,9-dimethyl-3-(4-methyl-3-pentenyl)naphtha[1,8-bc]pyran-7,8-dione).[56] This compound is known as a prenylated 1,2-naphthoquinone, isolated from the roots of *Capraria biflora* L., a perennial shrub belonging to Schophulariaceae family.[56-59] In addition, a dimer of biflorin (bisflorin) was also obtained from this species.[59] The antibacterial activity of biflorin has been investigated using the microdilution method for evaluating the minimum inhibitory concentration (MIC) against six bacterial strains including Gram-positive and Gram-negative bacteria.[17] Moreover, some biological activities of this compound have also been investigated such as antitumor, cytotoxicity, and antimutagenic activities.[58, 60, 61]

Dunnione, a natural dehydrofuran-fused 1,2-naphthoquinone, was first isolated from the leaves of *Streptocarpus dunnii* Mast., along with dehydrodunnione, 7hydroxydunnione, and 8-hydroxydunnione.[62, 63] This compound exhibited an unusually broad spectrum antifungal activity.[64]

Figure 1.3 Some natural 1,2-naphthoquinones

Naphthofuranone phytoalexins such as naphtho[1,2-b]furan-4,5-dione (**a**), 3hydroxy-naphtho[1,2-b]furan-4,5-dione (**b**), and 2-[2'-(2'-hydroxy)propyl]-naphtho[l,2b]furan-4,5-dione (**c**), isolated from *Avicennia marina* which is infected by a fungus *Phytophthora*, belong to typical 1,2-naphthoquinones.[65] These compounds are known as phytoalexins because of the compounds are formed after the infection of wound tissue of *Avicennia marina* seedlings by this fungus.

naphthofuranone phytoalexins

Figure 1.4 Naphthofuranone phytoalexins from A. marina

Another typical 1,2-naphthoquinones can be isolated from *Mansonia gagei* Drumm. heartwoods (Sterculaceae family) which is used as a material plant in this study.

1.2 Typical 1,2-Naphthoquinones from *Mansonia gagei* Drumm.

Thailand is a tropical country with a large variety of plants which can be found in the southern and northern parts of Thailand. Evergreen forest can be found in the southern part, while in the northern part is known as one of the richest areas of plants in the world.[9] This country has a long history of using medicinal plants which are known as *samunphrai*.[66] Many medicinal plants in Thailand have offered the basis for modern pharmaceuticals.[67] Recently, there has been a rising of interest in Thai medicinal plants due to their effectiveness and affordability.[66] In addition there is a consideration that utilization of traditional medicine is generally safer than modern medicine.

One of plants which are used as medicinal plants in Thailand is *M. gagei*. The extract of this plant yielded several mansonones belonging typical 1,2-naphthoquinones. This plant is a local plant growing in Thailand and belonging to Sterculaceae family.[68, 69] This plant (Figure 1.5) is known for its local name as *chan-cha-mod*, *chan-hom*, *chan-khao*, or *chan-pha-ma*.[68]

Figure 1.5 Mansonia gagei Drumm.

The characteristics of this plant *i.e.* the color of flower is white and cluster, the bark is white-grey and quite smooth, and the leaf has oblong-lanceolate shape about 3-6 cm wide and 8-14 cm long.[70] Based on folklore beliefs in Thailand, the heartwood of this plant can be used as antidepressant, antiemetic, cardiac stimulant, onilivertigo and refreshment agent.[68, 69]

According to some literatures, the biological activities and chemical constituents of *M. gagei* extract have been investigated. In 2002, Tiew reported that the CH₂Cl₂ extract of *M. gagei* heartwoods revealed good preliminary screening assays in cytotoxicity, antifungal, antioxidant, antithrombin, and anticancer properties.[71] Further investigation, several bioactive compounds were isolated from this extract such as dehydrooxopirezinone, mansorins (A, B, and C), mansonones (C, E, G, H, N, O, P and Q). In addition, four additional compounds together with some compounds isolated from the CH₂Cl₂ extract were isolated from EtOAc and MeOH extracts of this plant, 3-methoxy-4,5-dihydroxybenzaldehyde, mansoxetane, mansonones R and S. Moreover, all isolated compounds were evaluated for their biological activities. It can be concluded that mansonones (1,2-naphthoquinones) displayed higher activity than mansorins (coumarins) in cytotoxic and anticancer activities.

At the same year, Tiew and coworkers reported that the hexane and CH_2Cl_2 crude extracts of *M. gagei* were more biologically active than others in cytotoxicity against brine shrimp with LC_{50} values were 23.69 and 22.83 µg/mL, respectively.

According to the biological activity study, mansorin B and mansonone C gave promising results in the cytotoxicity test against brine shrimp.[69]

Moreover, in 2003, Tiew and coworkers also reported that mansonones C and E isolated from the CH_2Cl_2 extract of *M. gagei* heartwoods are the only active compounds against *Candida albicans* and *Cladosporium cucumerinum* with a minimal inhibitory amount of 0.15 and 2.5 µg, 0.6 and 0.6 µg, respectively. In addition, mansorins A and B were active against *C. cucumerinum* with a minimal inhibitory amount of 2.5 and 0.6 µg, respectively. On the other hand, mansonone C was found to be the only isolated compound against the larvae *Aedes aegypti* at 50 ppm and mansonone N was found to be the only isolated compound that exhibited the radical scavenging properties in DPPH.[68]

In 2004, Tiangthem studied the antihistamic activity of this plant and the results revealed that the CH_2Cl_2 extracts from the roots and leaves displayed high antihistamic activity with inhibition values are 96 and 81%, respectively.[70]

Furthermore, in 2007, El-Halawany and coworkers reported that the CHCl₃soluble fraction from the MeOH extract of heartwood of *M. gagei* showed potency as anti-estrogenic. Fourteen compounds including mansorins A and C, mansonones F, G, H, N, O, S, I, mansorins I, II and III, and acetovanilone were isolated. Mansorins I-III and mansonone I were new isolated compounds. Based on biological activity test, mansonones F and S displayed the most potent anti-estrogenic.[72]

Figure 1.6 Chemical constituents from *M. gagei* heartwoods

1.3 Mansonones, Typical 1,2-Naphthoquinones Derived from Other Plants

Naturally occurring typical 1,2-naphthoquinones (mansonones) can also be found in other species of plants. Bettolo and coworkers in 1965 have recognized several 1,2-naphthoquinones along with 1,4-naphthoquinones which designed as mansonones A-F, from the heartwoods of *M. altissima*.[73] Moreover, Tanaka and coworkers in 1966 investigated mansonones A, C, E, F, G, and H together with β sitosterol and β -sitosteryl palmitate from the acetone extract of *M. altissima* heartwood.[74] Following investigation, Galeffi and coworkers in 1969 discovered mansonone L together with mansonones C, E, F, G, H, and I.[75]

These compounds could also be found in other plant families such as Malvaceae and Ulmaceae. Mansonones D, E, F, G, and H were reported to be isolated from *Thespesia populnea* (Malvaceae family) by Puckhaber and Stipanovic in 2004.[76] Mansonone C, orange yellow rods, was isolated from *Ulmus glabra* heartwood (Ulmaceae family).[77] Mansonones E and F were also isolated from the dried root bark of *U. pumila*.[78]

1.4 Synthesis of Mansonones and Their Biological Activities

Several studies involved the synthesis of mansonone derivatives from both natural and synthesis procedures. El-Halawany and coworkers in 2007 derivertized mansonone G together with mansorin A from their natural compounds isolated from *M. gagei* heartwood extract.[79] The result showed that the phenolic hydroxyl group in mansonone G and mansorin A was not essential in anti-estrogenic acitivity. Furthermore, the result also indicated that acetyl mansonone G gave a promising potential for the synthesis of anti-estrogenic agents.

In 2004, Shin and coworkers synthesized mansonone F derivatives by varying its substituent at C3 and investigated their anti-MRSA (anti-methicillin resistance *Staphylococcus aereus*) activity.[80] The results revealed that 1,2-quinone and tricyclic systems of mansonone F played important role in anti-MRSA activity. In addition, there was no significantly effect on antibacterial activity by derivatives containing alkyl and electron-withdrawing groups at C3 of mansonone F derivatives and the polar substituents at C3 eliminated the activity.

Another investigation continued to synthesize C6 and C9 analogues of mansonone F as well as evaluated the anti-MRSA activity by Suh and coworkers in

2006.[81] Most of these analogues displayed good or excellent anti-MRSA activity and specifically the 6-*n*-butyl mansonone F exhibited four times higher than that of vancomycin.

Moreover, mansonone F derivatives were further synthesized as topoisomerase inhibitors by Wu and coworkers in 2011.[82] Based on the evaluation, these derivatives were found to have strong activity as topoisomerase inhibitors, with much more significant inhibitions on topoisomerase II rather than topoisomerase I.

Another kind of mansonone, *i.e.* mansonone E, was synthesized as its derivatives by Huang and coworkers in 2013, which were prepared *via* coppercatalyzed azide-alkyne cycloaddition (CuAAC) click chemistry and evaluated their activity as topoisomerase inhibitors.[83] The results indicated that compounds with the substituents of the triazole showed important role for cytotoxicity.

1.5 Bacteria

Bacteria are single-cell microorganisms without chlorophyll having both DNA and RNA, as well as capable to exhibit all of fundamental life processes, such as growth, metabolism and reproduction.[84] They can be found in, on, and around most living and nonliving things.[85] They are neither plants nor animals and their cells differ somewhat from the cells of plants or animals. The bacteria cell walls are stronger per unit thickness than the cell wall of higher plants due to the chemical structure of the unit parts of bacteria cell wall which has covalent bond forming a strong networks.[86]

Bacteria belong to prokaryote organisms and has no real nucleus in cell, different with eukaryote organisms such as plants, animals, and fungi (including yeasts).[85, 87] The outer layer of bacteria cell is composed of two components, *i.e.* a rigid cell wall (containing muramic acid) and plasma membrane. While, the protoplasm is encountered at inside of outer layer, which consists of cytoplasm and cytoplasmic inclusions such as ribosomes, mesosomes, granules, vacuoles, and nuclear matter.[84] The structural features of bacterial cell are described in Figure 1.7.

Figure 1.7 Structure of bacterial cell

In microbiology, bacteria are classified based on the clinical laboratories finding,

such as:

- 1. The energy that the bacteria uses for surviving[88]
 - a. Photosynthetic bacteria (bacteria that use light energy)
 - b. Chemotrophic bacteria (bacteria that use energy from chemical reactions)
- 2. The shape of bacteria, scientists divide the bacteria into some groups[84, 85]
 - a. spherical cells, which are labeled as cocci (coccus) and they are described as staphylococci, streptococci, and diplococci.
 - b. cylindrical or rod-shaped cells, called bacilli (bacillus).
 - c. curved rods, known as vibrio which has vibratory motility as their characteristic.
 - d. spiral-shaped bacteria.
- 3. The oxygen demand for sustaining its life[88]
 - a. Aerobic bacteria (bacteria that need oxygen)
 - b. Anaerobic bacteria (bacteria that can grow without oxygen)
 - c. Bacteria that can life in a little oxygen condition
 - d. Facultative bacteria (bacteria that can life with and without oxygen condition)
- 4. The staining of the cell wall

Most of bacteria are colorless and have small size which measured in terms of micron,[84] therefore it is difficult to distinguish between groups of bacteria under microscope. There is a technique for distinguishing bacteria, *i.e.* the Gram staining, described by Hans Christian Joachim Gram in 1884.[84, 87] This technique is used for studying the morphologic appearance of bacteria in which the bacteria are divided into

two groups, *i.e.* Gram positive bacteria and Gram negative bacteria.[84] Gram positive bacteria being stained dark purple or violet when treated with Gentian violet then iodine/potassium iodide, while Gram negative bacteria can be visualized by eosin or fuschin being red.[87]

Figure 1.8 Staining agents for bacterial

The difference between Gram positive and Gram negative bacteria lies on their cell wall characteristics.[84] Gram positive bacteria have a cytoplasmic membrane surrounded by a tough and rigid mesh while Gram negative bacteria have a cytoplasmic membrane surrounded by a thin cell wall that is itself surrounded by a second lipid membrane called the outer membrane, which contains large amounts of lipopolysaccharide (LPS).[89]

Figure 1.9. The differences of cell walls of Gram positive and Gram negative bacteria

As comparison, the cell wall of Gram negative bacteria has a complex structure than Gram positive bacteria. The peptidoglycan layer of Gram positive bacteria is thicker than that in Gram negative bacteria. Gram negative bacteria cell wall contains higher lipids amount than that in Gram positive bacteria. The teichoic acids only present in Gram positive bacteria, in which this component constitute major surface antigens of this kind bacteria.[84] The comparisons of cell walls of Gram positive and Gram negative bacteria are presented in Table 1.1.

	Gram positive	Gram negative
Structure	Monolayer	Multilayer/complex
Thickness of peptidoglycan layer	15-25 nm	10-15 nm
Variety of amino acid	Few	Several
Aromatic and sulfur containing amino acids	Absent	Present
Lipids	Low (2-4%)	High (15-20%)
Teichoic acids	Present	Absent
Periplasmic space	Absent	Present
Result of enzyme digestion	Protoplast	Spheroplast

 Table 1.1 Comparisons of Gram positive and Gram negative bacteria cell walls

In this study, Gram positive and Gram negative bacteria were used as microorganisms tested, *i.e. Staphylococcus aureus* ATCC 25923, *Streptococcus sobrinus* KCCM 11898, *Streptococcus mutans* ATCC 25175, *Propionibacterium acnes* KCCM 41747, and *Salmonella typhi* ATCC 422.

a. Staphylococcus aureus

S. aureus (Figure 1.10) is an ovoid or spherical, non-motile, rarely capsulated, can produce golden yellow colonies, pathogenic, and belongs to Gram positive bacteria. It is known as aerob bacterium and can grow on simple media at optimum temperature 37°C and pH 7.4. This bacterium produces hemolysin which may cause a hemolysis. In addition, it can also produce a toxin which may cause nausea, vomiting and diarrhea.[84]

Figure 1.10. Colonies of Staphylococcus aureus

b. Streptococcus sobrinus

S. sobrinus belonging to Gram positive bacteria is one of phylogenetic mutans group which commonly associated with caries dental teeth.[90] *S. sobrinus* is also known as the most acidogenic bacteria among other oral streptococci.[91]

c. Streptococcus mutans

S. mutans (Figure 1.11) belongs to Gram positive bacteria, facultatively anaerobic, and non-capsulated coccus. In 1924, Clarke isolated *S. mutans* from human carious lesions and discovered that this bacterium has a significant contributor to
human dental caries.[92] *S. mutans* is known to be the main cariogenic organism in plaque due to its acid tolerant and also its ability in becoming numerically valuable in the total plaque population.[93] The acid tolerant of *S. mutans* was investigated by Belli in 1991, and found that *S. mutans* was able to develop the adaptive tolerance during prolonged growth at low pH which distinguished it from organisms not commonly associated with dental caries.[94]

Figure 1.11 The morphology of Streptococcus mutans (24 hours broth culture)

d. Propionibacterium acnes

P. acnes belongs to an anaerobic, non-spore-forming, Gram-positive, and pleomorphic rod whose end products of fermentation include propionic acid.[95, 96] This bacteria is known to cause human skin commensal and involves in the pathogenesis of acne.[97] Chronic inflammatory acne cannot be classified as an infectious disease due to this bacteria are normally present on the skin of a vast majority individuals.[98]

e. Salmonella typhi

S. typhi is a Gram negative and facultative anaerobe bacterium belonging to Enterobacteriaceae family.[99] This bacterium can cause typhoid fever in humans.[100] Typhoid fever is a systemic febrile illness and transmitted by fecal-oral route which mainly *via* contaminated food and water.[101]

1.6 Chloramphenicol as One of Broad Spectrum Antibiotic

Antibiotics produced by bacteria or fungi are small molecules that used for killing bacteria without harming the person or animal being treated. Antibiotics can be divided into whether they are capable to kill bacteria (bactericidal) or merely suppress the growth of bacteria (bacteriostatic).[89, 102] Moreover, they can also be classified according to the cellular component or system they affect.[102]

In this study, the antibiotic used as positive control was chloramphenicol. Chloramphenicol or D-(*threo*-2-dichloroacetamido-1-*p*-nitrophenyl-1,3-propanediol is one of the oldest and most potent of antibiotics used in chemotherapy.[103, 104]

At the beginning of finding this antibiotic, chloramphenicol was known as chloromycetin (contained both nitrogen and non-ionic chlorine) and isolated from filtrates of submerged aerated cultures of *Streptomyces* sp.[105] In addition, this antibiotic has a broad spectrum (can suppresses some Gram positive and Gram negative bacterial) and acts as a bacteriostatic agent. The target and pathway affected by chloramphenicol are presented in Table 1.2.[102]

Antibiotic type	Derivation	Species range	Primary target	Pathway affected
Phenicols	from <i>S. venezuelae</i>	Some Gram	50S	Protein
		positive and	ribosome	translation
		Gram negative		
		species		

Table 1.2 C	Chloramphenicol	target and	pathway
--------------------	-----------------	------------	---------

1.7 Resistance of Antibiotics and Bacteria

The invention of antibiotics which can cure infection diseases caused by bacteria, have helped humans to treat this disease. But over the past several decades, numerous species of bacteria have become increasingly resistant to antibiotics. In fact, this phenomenon has been a recognized reality almost since the antibiotic discovery era, but only within the past twenty years has the emergence of dangerous.[106]

1.8 Adipose Tissue

Adipose tissue is known as a metabolic organ which is important for wholebody insulin sensitivity and energy homeostatis.[107] It is characterized as fat storage depots with widely varying function, size, and structure.[108] There are two hormones produced exclusively in adipocytes *i.e.* leptin and adiponectin, which have several functions including the modulation of sensitivity to insulin and regulation of food intake.[109]

Indeed, there are two kinds of adipose tissues with different functions coexist in humans, *i.e.* white and brown adipose tissues (Figure 1.12). White adipose tissue (WAT) is mainly involved in energy storage and mobilization, whereas brown adipose tissue (BAT) is specialized in energy expenditure.[110] The relative amounts of both adipose tissues are genetically distinguished and rely on many factors such as age, sex, environmental temperature, and nutritional status.[111]

Figure 1.12 The different origins of white and brown adipose tissues [112]

The characteristics of white and brown adipose tissues summarized by Saely and coworkers (2012) are shown in Table 1.3.[113] White adipocytes are spherical cells which their sizes depending on the size of the singlet lipid droplet (consists of triglycerides). In addition, white adipocytes have a thin and elongated mitochondria which is variable in amount. While, brown adipocytes are multiple small vacuoles and contain abundant of mitochondria.

	White adipose tissue	Brown adipose tissue
Function	The storage of energy	The production of heat
Morphology	As single lipid droplet, and	As multiple small molecule,
	contains variable amount of	and contains abundant of
	mitochondria	mitochondria
Human data	Large amount are associated	Large amount are associated
	with increased risk of obesity-	with decreased risk of
	related disorders	obesity-related disorders
Impact of aging	Increases with age relative to	Decreases with age
	total body weight	

Table 1.3 The characteristics	of white and	brown	adipose	tissues
-------------------------------	--------------	-------	---------	---------

1.9 Adipogenesis

Adipose tissue expands by the increasing of the number and size of adipocytes and these adipocytes reach maturity and become functional *via* adipogenesis.[114] Adipogenesis (Figure 1.13) is defined as a specific differentiation process by which fat cells (adipocytes) are formed from their pre-adipocyte precursor cells.[45] This process is regulated by a number of transcriptions factors, such as peroxisome proliferatoractivated receptor $\mathbf{\gamma}$ (PPAR $\mathbf{\gamma}$) and CCAAT/enhancer binding proteins (CEBPs).[47]

Figure 1.13 Adipogenesis (differentiation process) [115]

1.10 Adipose Tissue Dysfunction

The metabolism of adipose tissue is closely linked to obesity. The obese state defined as a body mass index (BMI) \geq 30 kg/m²) is described by an excessive growth of adipose tissue mass, which displays in increased size (adipocyte hypertrophy), increased number (adipocyte hyperplasia), and increased intracellular lipids.[108] White adipose tissue is important for maintaining the energy homeostasis and highly influences obesity.[47]

It is also known that the obesity significantly contributes the risk of developing type 2 diabetes mellitus, hypertension, cardiovascular disease, stroke, fatty liver diseases, dementia, obstructive sleep apnea, and several types of cancer.[116, 117] In order to decrease the obesity, the substances that can inhibit adipogenesis are needed. Controlling adipogenesis is a potential strategy to prevent obesity. These substances are called as anti-adipogenic agents. In laboratory study, 3T3-L1 cell lines have been widely used as *in vitro* models on anti-adipogenic assay. This cell lines is originally derived from mouse embryos which can be differentiated into adipocytes which stimulated by dexamethasone, IBM, and insulin.[44]

1.11 The Aim of This Research

Nowadays, the discovery of new antibacterial agents is considerably as an important research due to some antibiotic resistance effect towards bacterial strains. In addition, since the number of studies in the field of adipose tissue has increased exponentially over the last decade due to the rising of obesity prevalence and its metabolic disorders caused the anti-adipogenic activity is also consider as an important study. One of well-known secondary metabolites with good antibacterial and anti-adipogenic activities is naphthoquinone groups.

According to the previous literature review, it seemed that mansonones isolated from *M. gagei* heartwoods were interesting for further investigation as well as their derivatives in antibacterial and anti-adipogenic activities. Previous studies reported that mansonones as well as their synthetic derivatives displayed antibacterial activity but no report before on antibacterial activity from mansonone G derivatives. Moreover, there is no report on anti-adipogenic activity of mansonones as well as their derivatives. Therefore, the aims of this research were summarized as follows:

- To isolate mansonones from *M. gagei* heartwoods.
- To synthesize mansonone derivatives.
- To determine their antibacterial and anti-adipogenic activities.

CHAPTER II EXPERIMENTAL

2.1 Plant Material

The dried heartwoods of *Mansonia gagei* Drumm. was bought from Tai Hua Chan, the herbal drug store in Bangkok, Thailand in December 2014.

Figure 2.1 Dried heartwoods of M. gagei

2.2 Equipments and Instruments

¹H and ¹³C NMR spectra were recorded in $CDCl_3$ or acetone-d₆ or otherwise stated and were analyzed by using a Bruker Ultrashield 400 Plus NMR spectrometer or a Varian Mercury NMR spectrometer with an Oxford YH400 magnet operating at 400 MHz for ¹H and 100 MHz for ¹³C. High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics microTOF using electron spray ionization (ESI).

2.3 Chemicals

All solvents used in this research were distilled prior to use except those which were reagent grades. Thin layer chromatography (TLC) was performed on aluminium sheets precoated with silica gel (Merck Kieselgel 60 PF_{254}). Silica gel (No. 7729, 7734, and 9385, Merck) was used as stationary phase on quick column chromatography and open column chromatography.

2.4 Extraction of Plant Material

The dried-powdered *M. gagei* heartwoods (10 kg) were extracted by maceration method, where sample soaked in CH_2Cl_2 for 3 days at room temperature and was repeated three times. Then, the extract was filtered and evaporated under vacuum to obtain dark-brown CH_2Cl_2 extract (276 g, 2.8% yield of the dried heartwood).

2.5 Separation and Purification of Chemical Constituents

The CH_2Cl_2 extract (200 g) was fractionated by silica gel quick column (No. 7729, Merck). A stepwise elution was conducted by hexane and followed by increasing the polarity with EtOAc and final with 10% MeOH in EtOAc. The fractions were combined according to TLC profiles to give 8 fractions (MGD1-MGD8).

MGD3, MGD4 and MGD5 were further separated on silica gel column (No. 7734, Merck) using stepwise system of hexane– CH_2Cl_2 , CH_2Cl_2 -EtOAc and EtOAc-MeOH of increasing polarity. Further separation of MGD3 yielded three compounds, *i.e.* mansorin A (1, 0.72 g), mansorin C (3, 0.03 g) and mansonone C (4, 0.08 g). While, mansorin B (2, 0.06 g) and mansonone E (5, 0.20 g) were obtained from MGD4. Mansonone H (7, 0.19 g) was isolated from MGD5. Mansonone G (6, 10.00 g) as a major compound was isolated from both MGD4 and MGD5. The structural identification of these compounds (Figure 2.2) were conducted by comparing spectroscopic data with previous reports.

Figure 2.2 Isolated compounds from the CH₂Cl₂ extract of *M. gagei* heartwoods

Mansorin A (**1**) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (s, 1H), 6.90 (s, 1H), 3.83 (s, 3H), 3.55 (m, 1H), 2.42 (s, 3H), 2.23 (s, 3H), and 1.37 (d, J = 7.1 Hz, 6H).

Mansorin B (**2**) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (s, 1H), 6.77 (s, 1H), 5.19 (s, 1H), 3.53 (m, 1H), 2.35 (s, 3H), 2.24 (s, 3H), and 1.42 (d, J = 7.0 Hz, 6H).

Mansorin C (**3**) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.31 (d, J = 7.6 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 4.41 (dd, J = 10.7, 4.1 Hz, 1H), 4.13 (dd, J = 10.8, 6.7 Hz, 1H), 3.17 (m, 1H), 2.43 (s, 3H), 2.07 (s, 3H), and 1.33 (d, J = 7.0 Hz, 3H).

Mansonone C (**4**) ¹H NMR (400 MHz, CDCl₃): **\delta** (ppm) 7.65 (s, 1H), 7.43 (d, J = 8.1 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 3.38 (m, 1H), 2.63 (s, 3H), 2.08 (d, J = 1.8 Hz, 3H), and 1.29 (d, J = 7.0 Hz, 1H).

Mansonone E (**5**) ¹H NMR (400 MHz, CDCl₃) : δ (ppm) 7.34 (d, J = 8.5 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 3.17 (m, 1H), 4.40 (dd, J = 10.1, 3.4 Hz, 1H), 4.22 (dd, J = 10.1, 4.3 Hz, 1H), 2.65 (s, 3H), 1.95 (s, 3H), and 1.36 (d, J = 7.1 Hz, 3H).

Mansonone G (**6**) ¹H NMR (400 MHz, acetone-d₆): **\delta** (ppm) 7.87 (s, 1H), 6.64 (s, 1H), 3.63 (m, 1H), 2.45 (s, 3H), 1.95 (s, 3H), and 1.34 (d, J = 7.0 Hz, 6H).

Mansonone H (**7**) ¹H NMR (400 MHz, acetone-d₆): δ (ppm) 6.84 (s, 1H), 4.48 (d, J = 10.9 Hz, 1H), 4.36 (dd, J = 10.9, 3.3 Hz, 1H), 3.32 (m, 1H), 2.52 (s, 3H), 1.86 (s, 3H), and 1.32 (d, J = 7.0 Hz, 3H).

2.6 Synthesis of Mansonone Derivatives

2.6.1 The Derivatization of Mansonone G into Its Ether Analogues

The derivatization of mansonone G into its ether analogues was performed using El-Halawany, *et al.* method.[79] Mansonone G (**6**, 122 mg, 0.5 mmol) was dissolved in acetone (15 mL), then K_2CO_3 (700 mg, 5 mmol) was added into the solution. CH₃I (0.75 mL, 12 mmol) was added while stirring and the mixture was refluxed for 5–8 h. The progress of the reaction was followed by TLC. After the reaction

was completed, the reaction mixture was extracted with EtOAc (15 mL, three times). The organic layer was dried over anhydrous Na₂SO₄, filtered the drying agent, evaporated the solvent, and purified by silica gel column (No. 9385, Merck) using hexane:EtOAc (4:1) to yield compound **G01** as orange powder (100 mg, 82% yield). The same procedure was conducted by changing CH₃I with C₂H₅Br (0.89 mL), C₄H₉Br (1.30 mL), C₈H₁₇Br (2.07 mL), C₁₂H₂₅Br (2.88 mL), benzyl bromide (1.43 mL), allyl bromide (1.04 mL), 3,3-dimethylallyl bromide (1.39 mL), geranyl bromide (2.4 mL), and cinnamyl bromide (to yield compounds **G02** (98 mg, 80%yield), **G03** (96 mg, 79% yield), **G04** (93 mg, 76% yield), **G05** (119 mg, 98%yield), **G06** (20.4 mg, 16.7%yield), **G07** (43 mg, 35.3%yield), **G08** (27 mg, 22.1%yield), **G09** (75.4 mg, 61.8% yield), and **G10** (84.1 mg, 68.9% yield), respectively. Compounds **G07** and **G08** were purified by hexane:CH₂Cl₂:EtOAc (5:2.5:0.5), while compound **G09** was purified using hexane:CH₂Cl₂:EtOAc (7:2.5:0.5). The structures of these ether analogues (Figure 2.3) were elucidated using NMR and MS analysis. Nine compounds were identified as new semisynthetic ether analogues, *i.e.* compounds **G02** – **G10**.

G01	$R = CH_3$	G06	R = benzyl
G02	R = C_H_	G07	R = allyl
603	2 5 R = C H	G08	R = 3,3-dimethylallyl
005	4 9	G09	R = geranyl
G04	$R = C_{8}H_{9}$	G10	R = cinnamyl
G05	$R = C_{12}H_{25}$		

Figure 2.3 The structures of ether analogues of mansonone G

G01 (methyl ether mansonone G). ¹H NMR (400 MHz, CDCl₃): $\boldsymbol{\delta}$ (ppm) 7.70 (s, 1H), 6.60 (s, 1H), 3.90 (3H), 3.58 (m, 1H), 2.62 (s, 3H), 2.04 (s, 3H), and 1.35 (d, J = 7.0 Hz, 6H). ¹³C NMR: $\boldsymbol{\delta}$ (ppm) 182.4, 180.4, 163.0, 146.3, 138.3, 134.9, 134.3, 122.8, 114.8, 55.3, 29.5, 23.5, 21.2, and 15.9.

G02 (ethyl ether mansonone G). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.70 (s, 1H), 6.58 (s, 1H), 4.13 (q, J = 6.96 Hz, 2H), 3.58 (m, 1H), 2.62 (s, 3H), 2.05 (s, 3H), 1.49 (t, J = 6.96 Hz, 3H), and 1.38 (d, J = 7.04 Hz, 6H). ¹³C NMR: δ (ppm) 182.4, 180.4, 162.5, 146.3, 138.2, 134.9, 134.3, 134.2, 122.7, 115.3, 63.9, 29.5, 23.5, 21.2, 15.9, and 14.4. HRMS (ESI): calcd for C₁₇H₂₁O₃ [M+Na]⁺: 295.1310, found 295.1309.

G03 (butyl ether mansonone G). ¹H NMR (400 MHz, CDCl₃) : δ (ppm) 7.69 (s, 1H), 6.58 (s, 1H), 4.04 (t, J = 6.32 Hz, 2H), 3.57 (m, 1H), 2.59 (s, 3H), 2.02 (s, 3H), 1.83 (m, 2H), 1.50 (m, 2H), 1.36 (d, J = 6.96 Hz, 6H), and 0.98 (t, J = 7.32 Hz, 3H). ¹³C NMR: δ (ppm) 182.4, 180.2, 162.6, 146.2, 138.2, 134.7, 134.2, 134.1, 122.5, 115.2, 68.0, 30.9, 26.7, 23.4, 21.1, 19.2, 15.8, and 13.5. HRMS (ESI): calcd for C₁₉H₂₄O₃ [M+Na]⁺: 323.1623, found 323.1621.

G04 (octyl ether mansonone G). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.71 (s, 1H), 6.59 (s, 1H), 4.04 (t, J = 6.44 Hz, 2H), 3.59 (m, 1H), 2.62 (s, 3H), 2.05 (s, 3H), 1.86 (m, 2H), 1.50 (m, 2H), 1.41 (d, J = 6.20 Hz, 6H), 1.32 (m, 8H), and 0.89 (t, J = 6.12 Hz, 3H). ¹³C NMR: δ (ppm) 182.5, 180.3, 162.6, 146.3, 138.2, 134.9, 134.3, 134.2, 122.6, 115.3, 68.4, 31.6, 29.0, 28.9, 26.8, 26.0, 23.6, 22.5, 21.2, 15.9, and 13.9. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 379.2249, found 379.2254.

G05 (dodecyl ether mansonone G). ¹H NMR (400 MHz, CDCl₃) : δ (ppm) 7.70 (s, 1H), 6.58 (s, 1H), 4.03 (t, J = 6.40 Hz, 3H), 3.59 (m, 1H), 2.60 (s, 3H), 2.03 (s, 3H), 1.84 (m, 2H), 1.48 (m, 2H), 1.37 (d, J = 7.00 Hz, 6H), 1.26 (m, 16H), 0.86 (t, J = 6.00 Hz, 3H). ¹³C NMR: δ (ppm) 182.3, 180.2, 162.6, 146.3, 138.2, 134.8, 134.2, 134.1, 122.5, 115.2, 68.0, 31.7, 29.4, 29.3, 29.1, 29.0, 28.8, 25.9, 23.5, 22.4, 21.2, 15.8, and 13.8. HRMS (ESI): calcd for $C_{27}H_{40}O_3$ [M+Na]⁺: 435.2875, found 435.2881.

G06 (benzyl ether mansonone G) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.72 (s, 1H), 7.42 (m, 5H), 6.70 (s, 1H), 5.16 (s, 2H), 3.63 (m, 1H), 2.62, (s, 3H), 2.06 (s, 3H), and 1.38 (d, J = 7.08 Hz, 6H). ¹³C NMR: δ (ppm) 182.6, 180.7, 162.4, 146.5, 138.5, 135.9, 135.3, 134.8, 134.7, 128.9, 128.5, 127.7, 123.4, 116.2, 70.8, 27.0, 23.8, 21.6, and 16.2. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 357.1467, found 357.1464.

G07 (allyl ether mansonone G) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.71 (s, 1H), 6.59 (s, 1H), 6.07 (m, 1H), 5.44 (m, 1H), 5.34 (m, 1H), 4.63 (d, J = 5.20 Hz, 2H), 3.60 (m, 1H), 2.61 (s, 3H), 2.05 (s, 3H), 1.39 (d, J = 7.08 Hz, 6H). ¹³C NMR (400 MHz, CDCl₃): δ (ppm) 182.6, 180.7, 162.3, 146.5, 138.5, 135.2, 134.6, 132.3, 123.2, 122.4, 118.4, 116.1, 69.3, 27.0, 23.8, 21.4, and 16.2. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 307.1310, found 307.1293.

G08 (3,3-dimethylallyl ether mansonone G) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.71 (s, 1H), 6.59 (s, 1H), 5.48 (t, J = 5.44 Hz, 1H), 4.60 (d, J = 6.64 Hz, 2H), 3.58 (m, 1H), 2.62 (s, 3H), 2.05 (s, 3H), 1.82 (s, 3H), 1.76 (s, 3H), and 1.36 (d, J = 7.04 Hz, 6H). ¹³C NMR: δ (ppm) 182.8, 180.7, 162.8, 146.6, 138.9, 138.6, 135.1, 134.8, 134.7, 123.0, 116.0, 65.5, 27.1, 25.9, 23.9, 23.8, 21.5, 18.5, and 16.2. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 335.1623, found 335.1624.

G09 (geranyl ether mansonone G) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.71 (s, 1H), 6.60 (s, 1H), 5.49 (t, J = 6.32 Hz, 1H), 5.09 (t, J = 5.80 Hz, 1H), 4.62 (d, J = 6.60 Hz, 2H), 3.57 (m, 1H), 2.63 (s, 3H), 2.05 (s, 3H), 2.12 (m, 2H), 1.75 (s, 3H), 1.67 (s, 3H), 1.61 (s, 3H), 1.37 (d, J = 6.96 Hz, 6H), and 1.25 (m, 2H). ¹³C NMR: δ (ppm) 182.5, 180.4, 162.4, 146.3, 141.9, 138.3, 134.9, 131.8, 128.3, 123.4, 122.2, 119.6, 118.5, 115.7, 65.2, 39.3, 29.5, 26.1, 25.5, 23.6, 21.2, 17.6, 16.5, and 15.9. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 403.2249, found 403.2252.

G10 (cinnamyl ether mansonone G) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.72 (s, 1H), 7.37 (m, 5H), 6.66 (s, 1H), 6.76 (m, 2H), 6.42 (m, 1H), 3.63 (m, 1H), 2.64 (s, 3H), 2.06 (s, 3H), 1.42 (d, J = 7.04 Hz, 6H). ¹³C NMR: δ (ppm) 182.7, 180.7, 162.2, 146.5, 138.5, 135.3, 134.8, 134.7, 134.1, 128.8, 128.4, 126.8, 123.3, 116.1, 69.3, 27.2, 23.9, 21.6, and 16.2. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 383,1623, found 383.1638.

2.6.2 The Derivatization of Mansonone G into Its Ester Analogues

The derivatization of mansonone G into its ester analogues was performed into two steps.[118] Firstly, PPh₃ 0.52 g (2 mmol) in CH_2Cl_2 (3 mL) was added into a mixture of *n*-butyric acid (1.05 mL, 1 mmol) and trichloroacetonitrile 0.37 g (2 mmol) in CH_2Cl_2 (3 mL) at room temperature. Then, the mixture was stirred for approximately 1 h.

The second step, mansonone G (6) 0.122 g (0.5 mmol) in CH_2Cl_2 (10 mL) and 4picoline 0.3 mL (3 mmol) were added to the previous mixture (in step 1). The mixture was refluxed and stirred at 38–40 °C for 3 h or until the reaction occurred completely (confirmed by TLC). After that, the organic layer was extracted with 10% HCl and saturated aqueous NaHCO₃, respectively. Furthermore, the organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated using rotatory vacuum evaporator. The product was purified by subjecting to silica gel column and eluted with hexane:EtOAc (4:1) to yield compound **G11** as orange powder (84 mg, 69%yield). The same procedure was conducted by changing *n*-butyric acid with caproic acid, caprylic acid, capric acid, benzoic acid, 2-chlorobenzoic acid, 2-methoxybenzoic acid, and 4-methoxybenzoic acid to yield compounds **G12** (15 mg, 12.3 %yield), **G13** (14 mg, 11.5 %yield), and **G14** (34 mg, 27.9 %yield), **G15** (84.4 mg, 69.2 %yield), **G16** (77.9 mg, 63.9 %yield), **G17** (34.1 mg, 27.9 %yield), and **G18** (42.6 mg, 34.9 %yield), respectively. All of these ester analogues were recognized as new semisynthetic compounds **(G11–G18)**.

Figure 2.4 The structures of ester analogues of mansonone G

G11 (mansonone G butanoate). ¹H NMR (400 MHz, CDCl₃) : δ (ppm) 7.72 (s, 1H), 6.86 (s, 1H), 3.47 (m, 1H), 2.61 (s, 3H), 2.61 (t, J = 7.28 Hz, 2H), 2.07 (s, 3H), 1.82 (m, 2H), 1.36 (d, J = 6.72 Hz, 6H), and 1.07 (t, J = 7.40 Hz, 3H). ¹³C NMR: δ (ppm) 181.7, 181.3, 171.4, 154.0, 144.5, 138.0, 137.0, 135.5, 135.2, 128.2, 127.7, 36.4, 26.8, 22.8, 21.9, 18.2, 16.0, and 13.6. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 337.1416, found 337.1431.

G12 (mansonone G hexanoate). ¹H NMR (400 MHz, CDCl₃) : δ (ppm) 7.63 (s, 1H), 6.78 (s, 1H), 3.39 (m, 1H), 2.54 (s, 3H), 2.54 (t, J = 7.28 Hz, 2H), 2.00 (s, 3H), 1.72 (m, 2H), 1.35 (m, 2H), 1.29 (d, J = 7.16 Hz, 6H), 1.14 (m, 2H), and 0.87 (t, J = 6.84 Hz, 3H). ¹³C NMR: δ (ppm) 181.7, 181.3, 171.6, 154.0, 144.6, 138.0, 137.0, 135.5, 135.3, 128.2, 127.8, 34.5, 31.3, 26.8, 24.3, 22.2, 22.3, 22.0, 16.0, and 13.9. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 365.1729, found 365.1731.

G13 (mansonone G octanoate). ¹H-NMR (400 MHz, CDCl₃) : δ (ppm) 7.64 (s, 1H), 6.78 (s, 1H), 3.39 (m, 1H), 2.54 (t, J = 7.24 Hz, 2H), 2.53 (s, 3H), 2.00 (s, 3H), 1.71 (m, 2H), 1.35 (m, 2H), 1.29 (d, J=7.08 Hz, 6H), 1,22 (m, 6H), 0.83 (t, J = 5.60 Hz, 3H). ¹³C-NMR: (ppm) 181.7, 181.3, 171.6, 154.0, 144.6, 138.0, 137.0, 135.5, 135.2, 128.2, 127.8, 34.6, 31.6, 29.0,

28.9, 26.8, 24.7, 22.8, 22.6, 22.0, 16.0, and 14.0. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 393.2042, found 393.2045.

G14 (mansonone G decanoate). ¹H-NMR (400 MHz, CDCl₃) : δ (ppm) 7.70 (s, 1H), 6.85 (s, 1H), 3.46 (m, 1H), 2.62 (t, J = 7.60 Hz, 2H), 2.60 (s, 3H), 2.07 (s, 3H), 1.75 (m, 2H), 1.40 (m, 2H), 1.35 (d, J = 7.08 Hz, 6H), and 1.29 (m, 10H), 0.87 (t, J = 6.08 Hz, 3H). ¹³C-NMR: δ (ppm) 181.8, 181.3, 171.6, 154.0, 144.6, 138.0, 136.9, 135.5, 135.3, 128.2, 127.8, 34.6, 31.8, 29.7, 29.4, 29.2, 29.1, 26.8, 24.7, 22.8, 22.6, 22.0, 16.0, and 14.1. HRMS (ESI): calcd for C₁₇H₂₁O₃ [M+Na]⁺: 421.2355, found 421.2359.

G15 (mansonone G benzoate). ¹H-NMR (400 MHz, CDCl₃) : δ (ppm) 8.21 (d, J = 7.12 Hz, 2H), 7.70 (s,1H), 7.69 (t, J = 7.48 Hz, 1H), 7.56 (m, 2H), 6.98 (s, 1H), 3.53 (m, 1H), 2.63 (s, 3H), 2.09 (s, 3H), and 1.39 (d, J = 7.08 Hz, 6H). ¹³C-NMR: δ (ppm) 181.9, 181.5, 164.8, 154.4, 144.8, 138.0, 137.4, 135.7, 135.5, 134.3, 130.5, 129.0, 128.6, 27.1, 23.0, 22.1, and 16.2. HRMS (ESI): calcd for C₁₇H₂₁O₃ [M+Na]⁺: 371.1259, found 371.1262.

G16 (mansonone G 2-chloro benzoate). ¹H NMR (400 MHz, CDCl₃) : δ (ppm) 8.06 (d, *J* = 8.48 Hz, 1H), 7.74 (s, 1H), 7.55 (m, 2H),), 7.44 (m, 2H), 7.00 (s, 1H), 3.53 (m, 1H), 2.64 (s, 3H), 2.08 (s, 3H), and 1.38 (d, *J* = 7.20 Hz, 6H). ¹³C NMR: δ (ppm) 181.8, 181.5, 163.6, 154.0, 144.8, 138.0, 137.4, 135.9, 134.9, 133.9, 131.8, 128.6, 128.2, 127.1, 27.0, 23.0, 22.2, and 16.2. HRMS (ESI): calcd for C₁₇H₂₁O₃ [M+Na]⁺: 405.0870, found 405.0860.

G17 (mansonone G 2-methoxy benzoate). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.71 (s, 1H), 6.56 (s, 1H), 6.06 (m, 1H), 5.42 (m, 1H), 5.30 (m, 1H), 4.58 (d, J = 5.08 Hz, 2H), 3.46 (m, 1H), 2.52 (s, 3H), 2.14 (s, 3H), 1.39 (d, J = 7.08 Hz, 6H). ¹³C NMR (400 MHz, CDCl₃): δ (ppm) 182.6, 180.6, 161.4, 143.3, 140.3, 132.9, 132.3, 129.9, 119.3, 117.8, 114.1, 69.1, 32.4, 21.1, 18.1, and 16.1. HRMS (ESI): calcd for C₂₃H₃₂O₃ [M+Na]⁺: 307.1310, found 307.1293.

G18 (mansonone G 4-methoxy benzoate). ¹H NMR (400 MHz, CDCl₃) : δ (ppm) 8.15 (d, J = 8.76 Hz, 2H), 7.73 (s, 1H), 7.02 (d, J = 2.00 Hz, 2H), 6.96 (s, 1H), 3.91 (-OCH₃), 3.52 (m, 1H), 2.63 (s, 3H), 2.08 (s, 3H), and 1.38 (d, J = 7.08 Hz, 6H). ¹³C-NMR: δ (ppm) 182.0,

181.5, 164.5, 154.6, 144.7, 138.1, 137.5, 135.7, 135.4, 134.7, 133.8, 133.7, 132.7, 129.8, 129.6, 128.8, 121.2, 114.3, 55.7, 27.1, 23.0, 22.1, and 16.2. HRMS (ESI): calcd for C₁₇H₂₁O₃ [M+Na]⁺: 401.1365, found 401.1370.

2.6.3 The Derivatization of Mansonone G with Epichlorohydrin

The derivatization of mansonone G (**6**) with epichlorohydrin into its mansonone G epoxide was performed using Nouailhas, *et al.* method.[119] Mansonone G (**6**, 122 mg, 0.5 mmol) was dissolved in epichlorohydrin (4 mL) and refluxed until 98°C using two-neck round-bottomed flask. At this point temperature, an ethanolic solution of NaOH (10 mg, 0.25 mmol) in 95% EtOH (1 mL) was added dropwise using a dropping funnel. The progress of the reaction was monitored by TLC. After 2 h, the reaction mixture was cooled at room temperature and added 15 mL of acetone. The white salts released as by-products were filtered out. The acetone and non-reacted excess of epichlorohydrin were evaporated using a rotatory vacuum evaporator at 80°C. The reaction product was then redissolved in 15 mL of acetone, filtered, and the filtrate was evaporated at 80°C. This last step was repeated twice. Then, the reaction product was purified by silica gel column (No. 9385, Merck) using hexane:CH₂Cl₂:EtOAc (3:2.5:0.5) to obtain **G19** (63.2 mg, 51.8% yield) and **G20** (30 mg, 24.6% yield).

Figure 2.5 The structures of analogues of mansonone G with epichlorohydrin

G19. ¹H NMR (400 MHz, CDCl₃) : δ (ppm) 7.71 (s, 1H), 6.59 (s, 1H), 4.37 (dd, J = 2.8, 2.8 Hz, 1H), 3.99 (dd, J = 6.08, 6.08 Hz, 1H), 3.60 (m, 1H), 3.42 (m, 1H), 2.62 (s, 3H), 2.06 (s, 3H), and 1.38 (dd, J = 7.08 Hz, 6H). ¹³C NMR: δ (ppm) 182.6, 180.7, 162.1, 146.5, 138.4,

135.4, 134.6, 123.6, 115.9, 69.5, 49.9, 44.7, 29.8, 27.7, 23.8, 21.5, and 16.2. HRMS (ESI): calcd for C₁₈H₂₀O₄ [M+Na]⁺: 323.1259, found 323.1257.

G20. ¹H NMR (400 MHz, DMSO): δ (ppm) 7.76 (1H, s), 6.76 (1H, s), 5.58 (1H, s), 3.99 (t, J = 9.16 Hz, 4H), 2.39 (s, 3H), 1.81 (s, 3H), and 1.19 (d, J = 6.88 Hz, 6H). ¹³C NMR: δ (ppm) 181.7, 180.1, 162.1, 145.3, 138.0, 135.0, 134.2, 133.8 122.7, 116.0, 69.7, 68.6, 46.6, 26.3, 23.1, 21.2, 18.2, and 15.5. HRMS (ESI): calcd for C₁₈H₂₁ClO₄ [M+H]⁺: 336.1128, found 337.1237.

2.7 The Evaluation of Antibacterial Activity

2.7.1 Test Microorganisms

The test microorganisms belong to both Gram positive and Gram negative bacteria. Gram positive bacteria including *Staphylococcus aureus* ATCC 25923, *Streptococcus mutans* ATCC 25175, *Streptococcus sobrinus* KCCM 11898, and *Propionibacterium acnes* KCCM 41747 were employed in this bioassay, while *Salmonella typhi* ATCC 422 was used as representative for Gram negative bacteria. The bacteria were periodically sub-cultured and maintained in nutrient agar medium.

ุหาลงกรณมหาวทยาลัย

2.7.2 Preparation of Microbial Inoculum

Some colonies of each test organism were inoculated into nutrient broth (NB) and incubated at 37 \degree C for 18-24 h. Then, the turbidity produced was adjusted to match Mc Farland 0.5 standard (99.5 mL of 1% H₂SO₄ and 0.5 mL of 1.175% BaCl₂). Then this suspension of bacteria was used for antibacterial activity.

2.7.3 Antibacterial Activity Test

Antibacterial activity was determined by agar well diffusion method as described by Karuppiah and Mustaffa method with some modification.[120] Nutrient agar which contains 8 g nutrient broth and 20 g agar powder in 1 L distilled water, was

autoclaved at 121[°]C for 15 min. Then 25 mL nutrient agar was poured into a sterilized petri dish (9 mm diameter). The plates were left at room temperature for solidification. Tested bacterial suspension (0.5 MF, 100 μ L) was swabbed onto the agar surface. Wells (diameter 6 mm) were then punched in the agar using a sterile cork-borer. About 30 μ L of 1 mM compound was placed into the well. The clear zone was measured in mm after 18 – 24 h incubation at 37[°]C. All experiments were done in triplication and the results were expressed as average values. Chloramphenicol (0.5 mM) was used as a positive control and acetone (sample solvent) as a negative control.

2.7.4 Determination of Minimum Inhibitory Concentration (MIC) Value

Minimum inhibitory concentration (MIC) value of compound was determined by the method as described by Sawasdee with some modification.[121] The tested compound was dissolved in DMSO to prepare stock solutions of 1000 μ M. From this stock solution, the concentrations of compound were varied and prepared by using nutrient broth. Triplicate 50 μ L compounds each concentrations were placed into sterile 96-well plates. The suspension of bacteria (0.5 MF) were diluted 1:200 (~10⁶ CFU/Ml) using nutrient broth and 50 μ L added to the top well in each row. Plates were incubated at 37°C for 15 h, then 10 μ L of resazurin indicator (0.18%) was added to each well and determined after incubation for 2–3 h. Chloramphenicol was used as positive control.

2.8 The Evaluation of Anti-adipogenic Activity

2.8.1 Cell Culture

3T3-L1 cells were maintained in DMEM which supplemented with 10% of BCS. These cells ($1x10^{5}$ cells/10 mL) were maintained every two days in petridish (diameter 100 mm) and incubated in incubator at $37^{\circ}C$ supplemented with constant 5% CO₂.

2.8.2 Differentiation of 3T3-L1 Cells in 24-Wells Plate

In second day, 3T3-L1 cells were then seeding into 24-wells plate using DMEM supplemented with 10% of FBS. Each well contained $2x10^4$ cells/0.5 mL. After cells grown to confluence for 48 h, the medium was changed to 10% FBS/DMEM containing dexamethasone (1 μ M), insulin (5 μ g/mL), and rosiglitazone (10 μ M), to differentiate adipocytes (day 0). Medium was then replaced with 10% FBS/DMEM containing insulin (5 μ g/mL) after 48 h and refreshed with 10% FBS/DMEM every other day during differentiation. In order to investigate the effect of all isolated compounds (mansorins and mansonones) and several mansonone derivatives on adipogenesis, cells were treated with 10 μ M of compounds (dissolved in DMSO) and/or by varying the concentrations as 0, 1, 5, 10, 20, and 50 μ M for several candidate compounds, in differentiation day 0, day 2, day 4, and day 6. Cells were incubated in incubator at 37°C supplemented with constant 5% CO₂.

2.8.3 Oil Red O Staining

At differentiation day 7, cells were taken from incubator and washed with PBS, then followed by adding 10% formalin (1 mL) into each well at room temperature. The plates were wrapped with transparent plastic and aluminium foil. After a couple days of incubation, the formalin was discarded and washed the cells with 60% isopropanol. Then removed isopropanol and left the wells dried completely. Into dried wells, Oil Red O working solution was added and incubated for 10 min at room temperature. Stained cells were washed with distilled water 2 or 3 times and dissolved in 100% isopropanol for measuring the absorbance at 500 nm.

2.8.4 Preparation for Western Blot Analysis

2.8.4.1 Differentiation of 3T3-L1 Cells in 6-Wells Plate

In general, the procedure was the same as the differentiation of 3T3-L1 cells in 24-wells plate. For 6-well plate, the 3T3-L1 were seeding with the density of cells

 1×10^5 cells/2 mL/well. The cells were treated by compounds with various concentrations as 0, 1, 5, 10, 20, and 50 μ M, in differentiation day 0, day 2, day 4, and day 6. Cells were incubated in incubator at 37°C supplemented with constant 5% CO₂.

2.8.4.2 Preparation for Protein Extraction

At day 7, cells in 6-well plates were taken from incubator and followed by protein preparation procedure. For harvesting the detachment of cells, gently scrapped the cells using a plastic cell scrapper and then collected the cells into 15 mL centrifuge tube. These cells were then centrifuged at 1000 rpm, room temperature, for 3 min. After centrifugation finished, the supernatants were discarded and cold PBS (1 mL) was added into each tube, homogenized by pipetting 2 until 3 times. Remove the solution of cells into Eppendorf tubes completely and centrifuge at 5000 rpm, 4°C, for 3 min. Removed all PBS using pipet (in ice). These pellets can be stored in -70°C deep freezer before continued for the next step.

2.8.4.3 Cells Lysis for Protein Extraction

The pellets from deep freezer were moved into ice and added 50 μ L of lysis buffer containing DTT (1 mM), PMSF (1 mM), Na₃VO₄ (1 mM), and protease inhibitor. Incubate for 20 min in ice and vortex the tubes every 5 min for 5 sec. Then centrifuged at 12.000 rpm, 4°C, for 10 min.

2.8.4.4 Determination of Protein Concentration by Bradford Protein Assay

In order to determine the concentration of protein, a protein quantification assay was performed by using Bradford protein assay. Some Eppendorf tubes were prepared and pipetted 1 mL of Bradford reagent into each tube. A small volume (1 μ L) of lysate was used to perform this protein quantification assay. BSA (10 mg/mL) was added as 0, 1, 2, 4, and 8 μ L, for standard in this assay. After that measured the absorbance at 595 nm.

2.8.4.5 Preparation of PAGE Gel

7.5% polyacrylamide gel (running gel) was prepared by mixing 2400 μ L of ADW, 1250 μ L of 1.5 M Tris (pH 8.8), 1250 μ L of 30% AA, 50 μ L of 10% SDS, 50 μ L of 10% APS, and 5 μ L of TEMED, in a conical flask and shake. Put this mixture using pipet between the glass plates which already set up at the casting frame and casting stand (Figure 2.6) to about 34 inch below the short plate. A small layer of ADW was added on top of the gel. Incubation for 20 min to let it become gel.

Figure 2.6 Gel casting frame and casting stand [122]

While waiting the running gel become gel, the stacking gel was prepared by mixing 1400 μ L of ADW, 250 μ L of 1 M Tris (pH 6.8), 330 μ L of 30% AA, 20 μ L of 10% SDS, 20 μ L of 10% APS, and 2 μ L of TEMED, in a conical flask and shake. After running gel polymerized, then absorb the DW using filter paper and pipet stacking gel until overflow. Insert the well forming comb into the opening between the glass plates and incubate for 10 min.

2.8.4.6 Sample Preparation

The amount of protein sample according to protein quantification assay was mixed with sample buffer containing 2x Laemmli sample buffer and β -mercaptoethanol. Boiled the protein sample in 100°C water bath for 3 min and put in ice directly before pipet into gel.

2.8.4.7 SDS-PAGE Electrophoresis

The gel cassette from the casting stand was removed and placed in the electrophoresis tank with the short plate inside. Take out the well forming comb and pour enough running buffer into the tank as well as into the wells. Slowly loaded samples and protein marker into each well using pipet. Cover the top of tank with the lid aligning the electrodes (black or red) appropriately. Connect the electrophoresis tank to the power supply and allowed the samples to run at 15–20 mA, 180 V, for 1.5 h.

2.8.4.8 Protein Transfer

After SDS-PAGE electrophoresis finished, prepared transfer tank for protein transfer process which already filled with TBST. In addition, also prepared cassette, sponge, filter papers (2 pieces per gel), and NC membrane, which soaked in TBST for 15 min.

The gel from electrophoresis tank was taken carefully from the cassette. Remove the stacking gel buy cutting this gel and then covered with filter paper. At the opposite side of gel, cover with NC membrane, afterwards put filter paper on this membrane. Put this component between the sponges in the cassette and set to the clamp. Cover the top of tank with the lid aligning the electrodes (black or red) appropriately. Connect the transfer tank to the power supply and allowed the samples to run at 200 mA, 300 V, for 1 h.

2.8.4.9 Western Blot Analysis

The NC membrane was taken from the cassette carefully and mark the band showed by pencil or pen. Put this membrane into 10 – 15 mL of blotting buffer (3 % BSA in TBST containing 0.1% Tween 20) and shake for 30 min at room temperature. After discard BSA, 10 mL of adiponectin (1:1000 dilution) as primary antibody was added and incubated by shaking overnight at 4°C in cold room. Subsequently, removed the primary antibody and washed membrane with 10– 15 mL of 0.1% Tween 20/TBST, shake for 10 min at room temperature, and discard the solution. This step was repeated three times. After that rabbit antibody was added as secondary antibody and incubated for 1 h by shaking at room temperature. Then, washed the membrane with 10–15 mL of 0.1% Tween 20/TBST, shake for 10 min at room temperature, and discard the solution. This step was also repeated three times.

After that, put the membrane into developer cassette on transparent plastic, spread the ECL solution containing ECL1 and ECL2 onto the membrane, and covered the membrane with other transparent plastic. Then, developed the images on film in dark room.

. Chulalongkorn University

CHAPTER III RESULTS AND DISCUSSION

3.1 Extraction of Mansonia gagei Heartwoods

About 10 kg of dried powder of *M. gagei* heartwoods was extracted by soaking in CH_2Cl_2 at room temperature, leaving for three days, filtering, and evaporating. This step was repeated three times with fresh solvent. The crude CH_2Cl_2 extract was obtained as dark-brown (276 g, 2.76% yield of dried-powdered heartwoods).

3.2 Separation of the CH₂Cl₂ Extract of Mansonia gagei Heartwoods

A part of the CH_2Cl_2 extract of *M. gagei* heartwoods (200 g) was subjected to silica gel quick column. The column was initially eluted with hexane 100%, then followed by increasing polarity with a mixture of EtOAc in hexane (5–80%), EtOAc 100%, and final with a mixture of MeOH in EtOAc (5–10%). Approximately 1 L of solvent was collected for each fraction and then evaporated the solvent using vacuum rotary evaporator. The fractions were collected and combined based on TLC results, eight fractions (MGD1-MGD8) were obtained. The results of fractionation of the CH_2Cl_2 extract are shown in Table 3.1.

Chulalongkorn University

Eluent	Europhie u	Deveseration	Weight
(% volume by volume)	Fraction	Remarks	(g)
Hexane – 5% EtOAc/hexane	MGD1	Yellow oil	0.77
5% EtOAc/hexane	MGD2	Yellow-brown solid	2.37
5% – 20% EtOAc/hexane	MGD3	Red-brown solid	6.06
20% EtOAc/hexane	MGD4	Red-brown solid	11.33
20% – 60% EtOAc/hexane	MGD5	Brown solid	64.50
60% – 80%EtOAc /hexane	MGD6	Brown solid	16.70
80% EtOAc	MGD7	Brown solid	6.77
EtOAc – 10% MeOH/EtOAc	MGD8	Brown solid	29.34

 Table 3.1 The fractionation of the CH2Cl2 extract of *M. gagei* heartwoods by quick column

Fractions MGD3, MGD4 and MGD5 were further separated using silica gel column. The columns were eluted with step gradient of hexane-EtOAc and EtOAc-MeOH as solvent systems. There were seven isolated compounds obtained after further separation of fractions on silica gel column. Mansorin A (1, 716 mg), mansorin C (3, 32 mg) and mansonone C (4, 77 mg) were isolated from MGD3. The separation of MGD4 furnished mansorin B (2, 64 mg) and mansonone E (5, 207 mg). Mansonone G (6, 9.9 g) as a major compound of this extract was obtained from the precipitate formed by quick column and also from further separation of both MGD4 and MGD5. Mansonone H (7, 196 mg) was isolated from MGD5. In brief, the separation and purification of chemical constituents from the CH₂Cl₂ extract of *M. gagei* heartwoods are summarized in Scheme 3.1.

Scheme 3.1 Separation and purification of chemical constituents from the CH₂Cl₂ extract of *M. gagei* heartwoods

3.3 Structural Elucidation of Isolated Compounds

The structural identification of these compounds were conducted by comparing spectroscopic data with previous studies.[69, 71] The NMR spectral data of compounds **1–3** and compounds **4–7** are presented in Tables 3.2 and 3.3, respectively.

mansorin A (1) R = OCH₃ mansorin B (2): R = OH

mansorin C (3)

mansonone C (4) R = Hmansonone G (6) R = OH mansonone E (5) R = Hmansonone H (7) R = OH

Position	Chemical shift (ppm)				
1 0510011	Compound 1	Compound 2	Compound 3		
4	7.90 (s, 1H)	7.90 (s, 1H)	-		
6	-	_	7.00 (d, <i>J</i> = 7.6 Hz,		
			1H)		
7	6.90 (s, 1H)	6.77 (s, 1H)	7.31 (d, <i>J</i> = 7.6 Hz,		
		MILLE STATE	1H)		
9	3.55 (m, 1H)	3.53 (m, 1H)	3.17 (m, 1H)		
10	- ////		4.13 (dd, J = 6.7,		
			10.8 Hz, 1H)		
			4.41 (dd, J = 4.1,		
			10.7 Hz, 1H)		
3-CH₃	2.23 (s, 3H)	2.24 (s, 3H)	2.07 (s, 3H)		
6-OCH ₃	3.83 (s, 3H)	IRN UNIVERSITY	-		
6-OH	-	5.19 (s, 1H)	-		
8-CH ₃	2.42 (s, 3H)	2.35 (s, 3H)	2.43 (s, 3H)		
9-(CH ₃) ₂	1.37 (d, J = 7.1 Hz, 6H)	1.42 (d, <i>J</i> = 7.0 Hz,	1.33 (d, J = 7.0 Hz,		
		6H)	3H)		

Table 3.2 Tentative ¹H NMR chemical shifts assignment of compounds 1–3

Position	Chemical shift (ppm)				
	Compound 4	Compound 5	Compound 6	Compound 7	
4	7.65 (s, 1H)	-	7.87 (s, 1H)	-	
6	7.19 (d, J = 8.0	7.34 (d, J = 8.5	-	-	
	Hz, 1H)	Hz, 1H)			
7	7.43 (d, <i>J</i> = 8.1	7.00 (d, <i>J</i> = 7.6	6.64 (s, 1H)	6.84 (s, 1H)	
	Hz, 1H)	Hz, 1H)	- 11 B		
9	3.38 (m, 1H)	3.17 (m, 1H)	3.63 (m, 1H)	3.32 (m, 1H)	
10	_	4.22 (dd, J =		4.48 (d, J = 10.9	
		10.1, 4.3 Hz,	_	Hz, 1H)	
	8	1H)			
	จุพา	4.40 (dd, J =	ยาลัย	4.36 (dd, J =	
	CHUL	10.1, 3.4 Hz,	IERSITY	10.9, 3.3 Hz,	
		1H)		1H)	
3-CH ₃	2.08 (d, <i>J</i> = 1.8	1.95 (s, 3H)	1 95 (s. 3H)	1.86 (s, 3H)	
	Hz, 3H)		1.7.5 (3, 51.7		
8-CH ₃	2.63 (s, 3H)	2.65 (s, 3H)	2.45 (s, 3H)	2.52 (s, 3H)	
9-(CH ₃) ₂	1.29 (d, <i>J</i> = 7.0	1.36 (d, J = 7.1	1.34 (d, J = 7.0	1.32 (d, J = 7.0	
	Hz, 1H)	Hz, 3H)	Hz, 6H)	Hz, 3H)	

Table 3.3 Tentative ¹H NMR chemical shift assignments of compounds 4–7

3.4 Preliminary Antibacterial Activity of Isolated Compounds

All isolated compounds were examined for their antibacterial activity which was performed using agar well diffusion method. This protocol is one of common techniques to determine antibacterial activity. Four Gram positive bacteria (*Staphylococcus aureus* ATCC 25923, *Streptococcus mutans* ATCC 25175, *Streptococcus sobrinus* KCCM 11898, and *Propionibacterium acne* KCCM 41747) and a Gram negative bacteria (*Salmonella typhi* ATCC 422) were employed. All isolated compounds except for mansorin C (**3**) were prepared in acetone as 1 mM. Mansorin C (**3**) was not evaluated for its antibacterial activity due to its small quantity obtained. Chloramphenicol (0.5 mM) and acetone were used as positive and negative control, respectively. The results of antibacterial activity of isolated compounds are presented in Table 3.4.

Compound	Diameter of inhibition zone (mm)				
(1 mM)	S. aureus	S. mutans	S. sobrinus	P. acnes	S. typhi
	ATCC	ATCC	КССМ	КССМ	ATCC
	25923	25175	11898	41747	422
Mansorin A (1)	9.0±0.82	8.7±0.47	7.8±0.94	7.2±0.58	7.0±1.47
Mansorin B (2)	12.0±0.00	9.8±0.47	8.3±0.82	10.4±0.38	8.5±0.82
Mansonone C (4)	12.7±0.58	13.7±1.15	9.3±0.58	13.3±0.38	11.3±1.89
Mansonone E (4)	19.7±0.58	20.3±1.15	16.7±0.58	13.5±0.43	11.6±0.38
Mansonone G (5)	13.7±1.15	14.7±0.58	10.0±0.00	15.6±1.23	11.9±1.18
Mansonone H (6)	12.0±1.00	10.3±1.53	8.3±0.58	11.9±1.13	11.0±0.25
Chloramphenicol	20.7±0.58	20.7± 0.58	20.3±0.58	17.0±1.23	21.7±0.58
(0.5 mM)					

 Table 3.4 Inhibition zone of isolated compounds

Values are presented as mean ±SD of triplicate experiments

Diameter of inhibition zone including diameter of well (6 mm)

Note: 6.0 = No activity, 6.1 - 8.0 = Weak, 8.1 - 10.0 = Moderate, 10.1 - 13.0 = Good,

13.1 – 15.0 = Very good, >15 = Excellent

There were two kinds of secondary metabolites isolated from the CH_2Cl_2 heartwoods extract of *M. gagei, i.e.* coumarins and 1,2-naphthoquinones. As shown in Table 3.9, mansorins A (1) and B (2) as representative of coumarins displayed weak to good antibacterial activity against all bacteria, with diameter of inhibition zone (mm) ranging from 9.0 – 12.0 against *S. aureus*, 8.7 – 9.8 against *S. mutans*, 7.8 – 8.3 against *S. sobrinus*, 7.2 – 10.4 against *P. acnes*, and 7.0 – 9.5 against *S. typhi*. While mansonones exhibited moderate to excellent antibacterial activity with diameter of inhibition zone (mm) ranging from 12.0–19.7 against *S. aureus*, 10.3 – 20.3 against *S. mutans*, 8.0 – 15.7 against *S. sobrinus*, 11.9 – 15.6 against *P. acnes*, and 1.0 – 11.9 against *S. typhi*.

According to these results, mansonones exhibited relatively more effective activity than mansorins. Previous studies also reported the same trend of these two groups in other activities. It visualized that mansonones resulted better activity than mansorins in Brine Shrimp Lethality test, as well as in anticancer, antifungal, antithrombin, and anti-estrogenic.[71, 72] This result indicated that the quinone moiety (pharmacophoric element) in typical 1,2-naphthoquiones played significant role in biological activity. In addition, quinone-containing compounds have been well known to possess important physiological functions in animals and plants.[83]

Moreover, the results also showed that *S. typhi*, which was rather difficult to be inhibited. Previous studies reported that Gram-positive bacteria were easier to inhibit than Gram-negative bacteria.[123, 124] The difference of the cell wall structure and cell wall membrane properties of both Gram-positive and negative bacteria may be as the reason for this behavior. Gram-positive bacteria is known to have an outer peptidoglycan layer which could not be as an effective permeability barrier.[123] While the outer cell membrane of Gram-negative bacteria contains lipopolysaccharides (LPS) which can facilitate in creating a permeability barrier and protect the cells of bacteria.[124]

Among mansonones, it showed that mansonones E (**5**) and G (**6**) displayed higher activity than other mansonones with inhibition zone of 19.7 and 13.7 for *S. aureus*, 20.3 and 14.7 for *S. mutans*, 16.7 and 10.0 for *S. sobrinus*, 13.5 and 15.6 for *P.*

acnes, 11.6 and 11.9 for *S. typhi*, respectively. As described previously, it was known that the structures between mansonones C (**4**) and G (**6**), as well as between mansonones E (**5**) and H (**7**) were similar except for having the difference substituent only at C6. The different substituent attached to the structures of mansonones C (**4**) and G (**6**) as well as mansonones E (**5**) and H (**7**), contributed the different results in antibacterial activity. The substituents on the parent compounds were found to have great influence on bioactivity.

In comparison with the structures between mansonones C (4) and G (6), it was found that mansonone G (6) having an –OH group provided better activity than that having H, mansonone C (4). The presence of –OH group in mansonone G (6) made this compound more polar than mansonone C (4), and hence mansonone G (6) could be easier to disturb the permeability of membrane cell wall of bacteria. In contrast to mansonones E (5) and H (7), the presence of –OH group in mansonone H (7) did not promise to give better activity because it made mansonone H (7) being too polar and resulted rather difficult to diffuse to the membrane of bacteria cell wall. The comparison of polarity of these compounds are figured in Figure 3.1. In this case, it can be assumed that the polarity of compound gave the influence to the cell wall membrane permeability. The compound which was not too polar and not too nonpolar was required for disturbing the permeability of cell wall membrane of bacteria.

Figure 3.1 The comparison of the polarity of mansonones C, E, G, and H

3.5 Synthesis of Mansonone G Derivatives

Due to mansonone G showing good antibacterial activity against some bacteria, some derivatives were synthesized. In brief, the synthetic procedure for mansonone G derivatives is summarized in Scheme 3.2.

Reagents and conditions: a. alkyl halide, K_2CO_3 , acetone, reflux at $78^{\circ}C$, 5 – 8 h; b. Carboxylic acid, trichloroacetonitrile, CH_2Cl_2 , 4-picoline, reflux at $30^{\circ}C$ for 2 h; c. Epichlorohydrin, NaOH in EtOH, reflux at $90^{\circ}C$ for 2 h.

Scheme 3.2 General procedure for the synthesis of mansonone G derivatives

3.5.1 Ether Analogues of Mansonone G

According to Scheme 3.2, ten ether analogues of mansonone G (G01 – G10) were synthesized using El-Halawany, *et al.* method.[79] Several reagents such as K_2CO_3 , aliphatic alkyl and allyl halides in acetone were employed in the reaction under reflux condition at 78°C for 5 – 8 h.

The alkylation was performed using several alkyl or allyl halides, including methyl iodide, ethyl bromide, *n*-butyl bromide, octyl bromide, dodecyl bromide, allyl bromide, 3,3-dimethylallyl bromide, geranyl bromide, benzyl bromide, and cinnamyl bromide). After refluxed and further purification by silica gel column, the desired products were obtained as shown in Table 3.5.

	- /////////////////////////////////////			D
Ether analogues	Appearance	Weight (mg)	Yield (%)	Remarks
G01	Orange powder	100	82	Known
G02	Orange needle	98	80	New
G03	Orange powder	96	79	New
G04	Orange powder	93	76	New
G05	Orange powder	119	98	New
G06	Orange powder	62	50	New
G07	Orange powder	47	39	New
G08	Orange powder	61	50	New
G09	Orange powder	72	62	New
G10	Orange powder	49	40	New

Table 3.5 The yields and characteristics of ether analogues of mansonone G (G01–G10)

As presented in Table 3.5, the derivatives synthesized from the alkylation of mansonone G (**6**) with aliphatic alkyl halides could be achieved in good to excellent yields (**G01–G05**, 76–98%). While the reaction of mansonone G (**6**) with allyl halides provided the poor production (**G07** and **G08**, 39 and 50%, respectively) and geranyl

bromide in moderate yield (**G09**, 62%). For compounds **G06** and **G10** were obtained in poor yield (50 and 40%, respectively).

3.5.2 Structural Elucidation of Ether Analogues of Mansonone G

The structural identification of these compounds were conducted by NMR and MS analysis. Amongst these ether analogues, **G02–G10** were identified as new semisynthetic compounds, while **G01** was a known compound.

G01 (methyl ether mansonone G) was obtained as an orange powder from the methylation of mansonone G (6) by MeI in the presence of K₂CO₃. The ¹H NMR spectrum (Figure 3.2) of this compound exhibited the signals of an isopropyl group at $\delta_{\rm H}$ 3.58 and 1.35 ppm, two singlets of methyl groups at $\delta_{\rm H}$ 2.0 4 and 2.62 ppm, an aromatic proton at $\delta_{\rm H}$ 6.60 ppm and an olefinic proton at $\delta_{\rm H}$ 7.70 ppm. The presence of O-CH₃ signal was assigned at $\delta_{\rm H}$ 3.83 ppm which replaced the hydroxyl group in mansonone G. Moreover, according to its ¹³C NMR spectrum (Figure 3.3), O-CH₃ group was assigned at $\delta_{\rm C}$ 55.3 ppm. The comparison of ¹H NMR spectra of G01 with methyl ether mansonone of G is depicted in Table 3.6. According to the spectral data from previous study, it can be concluded that G01 was methyl ether mansonone G.

G01

G01				
	Chemical shift (ppm)			
Position	Methyl ether	C01		
	mansonone G [79]	601		
	$\delta_{\scriptscriptstyle H}$	$\delta_{\scriptscriptstyle H}$	δ	
1	-	-	182.4	
2	-	-	180.4	
3	-	-	134.9	
4	7.71 (s, 1H)	7.70 (s, 1H)	146.3	
4a		<u></u>	134.3	
5		- 1	134.3	
6	-////		163.0	
7	6.60 (s, 1H)	6.60 (s, 1H)	114.8	
8	- / / / / /	-	138.3	
8a	- Alexandre	-	122.8	
O-CH ₃	3.91	3.90	55.3	
9	3.59 (m, 1H)	3.58 (m, 1H)	26.6	
3-CH ₃	2.06 (s, 3H)	2.04 (s, 3H)	15.9	
8-CH ₃	2.64 (s, 3H)	2.62 (s, 3H)	21.2	
9-(CH ₃) ₂	1.37 (d, J = 6.9 Hz, 6H)	1.35 (d, J = 7.0 Hz, 6H)	23.5	

Table 3.6 Tentative NMR chemical shift assignment of methyl ether mansonone G and

Figure 3.2 The ¹H NMR spectrum of G01

Figure 3.3 The ¹³C NMR spectrum of G01
G02–G05, four aliphatic ether analogues of mansonone G were attained from the alkylation of mansonone G (**6**) with EtBr, *n*-butyl bromide, octyl bromide and dodecyl bromide in the presence of K_2CO_3 , respectively. The yield and appearance were recorded as presented in Table 3.5. Their ¹H and ¹³C NMR spectra of these new semisynthetic compounds are collected in Figures 3.4-3.11 and their tentative chemical shift assignments are presented in Tables 3.7-3.8.

Position	δ _H (ppm)				
FOSICION	G02	G03	G04	G05	
4	7.64 (s, 1H)	7.64 (s, 1H),	7.71 (s, 1H)	7.64 (s, 1H)	
7	6.51 (s, 1H)	6.59 (s, 1H)	6.59 (s, 1H)	6.52 (s, 1H)	
9	3.57 (m, 1H)	3.56 (m, 1H)	3.59 (m, 1H)	3.53 (m, 1H)	
3-CH ₃	1.98 (s, 3H)	1.98 (s, 3H)	2.10 (s, 3H)	1.97 (s, 3H)	
8-CH ₃	2.55 (s, 3H)	2.55 (s, 3H)	2.62 (s, 3H)	2.54 (s, 3H)	
9-(CH ₃) ₂	1.32 (d, J = 6.20	1.31 (d, J = 6.20	1.41 (d, J = 6.20	1.31 (d, J = 6.92	
	Hz, 6H).	Hz, 6H),	Hz, 6H)	Hz, 6H)	
6-OR	-CH ₂ CH ₃	-(CH ₂) ₃ CH ₃	-(CH ₂) ₇ CH ₃	-(CH ₂) ₁₁ CH ₃	
	4.08 (q, J = 6.96	3.99 (t, <i>J</i> = 6.48	4.04 (t, J = 6.44	3.97 (t, J = 6.40	
	Hz, 2H)	Hz, 2H)	Hz, 2H)	Hz, 2H)	
	1.43 (t, J = 6.96	1.01 (t, <i>J</i> = 7.36	1.86 (m, 2H)	1.78 (m, 2H),	
	Hz, 3H)	Hz, 3H), and	1.50 (m, 2H)	1.43 (m, 2H),	
		0.95 (m, 4H)	1.32 (m, 8H)	1.22 (m, 16H)	
	(Participation)		0.89 (t, J = 6.12	0.80 (t, J = 6.04	
	-		Hz, 3H)	Hz, 3H).	

Table 3.7 Tentative ¹H NMR chemical shift assignments of G02–G05

จุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

Desition	δ c (ppm)					
POSICION	G02	G03	G04	G05		
1	182.6	182.6	182.6	182.6		
2	180.5	180.5	180.5	180.4		
3	162.6	162.8	162.8	162.8		
4	146.5	146.5	146.5	146.5		
4a	138.3	138.4	138.4	138.4		
5	135.1	135.0	135.0	135.0		
6	134.5	134.4	134.5	134.4		
7	134.3	134.4	134.3	134.3		
8	122.9	122.7	122.8	122.8		
8a	115.5	115.5	115.5	115.5		
6-OR	14.6, 16.1, 21.3,	13.7, 16.0, 19.4,	14.1, 16.1, 21.4,	14.1, 16.0, 21.4,		
	23.7, 26.9, 64.1	21.4, 23.7, 26.9,	22.6, 23.7, 26.2,	22.6, 23.7,26.2,		
		31.1, 68.3	27.0, 29.0, 29.2,	29.0, 29.2, 29.3,		
	(S)		31.8, 68.6	29.5, 29.5, 29.6		
	_			31.9, 68.6		

Table 3.8 Tentative ¹³C NMR chemical shift assignments of G02–G05

จุหาลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSITY

Figure 3.4 The ¹H NMR spectrum of G02

Figure 3.5 The ¹³C NMR spectrum of G02

Figure 3.6 The ¹H NMR spectrum of G03

Figure 3.7 The ¹³C NMR spectrum of G03

Figure 3.8 The ¹H NMR spectrum of G04

Figure 3.9 The ¹³C NMR spectrum of G04

Figure 3.10 The ¹H NMR spectrum of G05

Figure 3.11 The ¹³C NMR spectrum of G05

For **G06–G10**, the synthesis for these five new semisynthetic compounds was carried out by the same fashion as those for **G02–G05**, except for using benzyl bromide, allyl bromide, 3,3-dimethylallyl bromide, geranyl bromide, and cinnamyl bromide, respectively. Their yield and characteristics were collected as in Table 3.5. The ¹H and ¹³C NMR spectra of all new semisynthetic compounds are displayed in Figures 3.12-3.21. and their chemical shift assignments are shown in Tables 3.9 and 3.10, respectively.

 $CH_3 O$ R = benzyl G06 R = allyl G07 R = 3,3-dimethylallyl H_{2} G08 H₃C^PCH₃ G09 R = geranyl G10 R = cinnamyl

Position	$δ_{ extsf{H}}$ (ppm)						
FOSICION	G06 G07		G08	G09	G10		
4	7.72 (s, 1H)	7.71 (s, 1H),	7.71 (s, 1H)	7.71 (s, 1H)	7.72 (s, 1H)		
7	6.70 (s, 1H)	6.59 (s, 1H)	6.59 (s, 1H)	6.60 (s, 1H)	6.66 (s, 1H)		
9	3.63 (m, 1H)	3.60 (m, 1H)	3.58 (m, 1H)	3.57 (m, 1H)	3.63 (m, 1H)		
3-CH ₃	2.06 (s, 3H)	2.05 (s, 3H)	2.05 (s, 3H)	2.05 (s, 3H)	2.06 (s, 3H)		
8-CH ₃	2.62 (s, 3H)	2.61 (s, 3H)	2.62 (s, 3H)	2.63 (s, 3H)	2.64 (s, 3H)		
9-(CH ₃) ₂	1.38 (d, J =	1.39 (d, J =	1.36 (d, J =	1.37 (d, J =	1.42 (d, J =		
	7.08 Hz, 6H).	7.08 Hz, 6H),	7.04 Hz, 6H)	6.96 Hz, 6H).	7.04 Hz, 6H)		
6-OR	benzyl	allyl	3,3-	geranyl	cinnamyl		
	5.16 (s, 2H)	4.63 (d, <i>J</i> =	dimethylallyl	1.25 (m, 2H)	4.80 (m, 2H),		
	7.42 (m, 5H)	5.20 Hz, 2H),	1.76 (s, 3H)	1.61 (s, 3H)	6.76 (m, 1H),		
		5.34 (m, 1H)	1.82 (s, 3H)	1.67 (s, 3H)	6.42 (m, 1H),		
		5.44 (m, 1H)	4.60 (d, J =	1.75 (s, 3H)	7.37 (m, 5H)		
		6.07 (m, 1H)	6.64 Hz, 2H),	2.12 (m, 2H),			
		8 - mart	5.48 (t, J =	4.62 (d, J =			
			5.44 Hz, 1H)	6.60 Hz, 2H),			
		าหาลงกรณ์ม	หาวิทยาลัย	5.09 (t, J =			
	C	IULALONGKOR	n University	5.80 Hz, 1H),			
				5.49 (t, J =			
				6.32 Hz, 1H)			

Table 3.9 Tentative 1 H NMR chemical shift assignments of G06–G10

Position	${f \delta}$ c (ppm)						
FOSICION	G06	G07	G08	G09	G10		
1	182.6	182.6	182.8	182.5	182.7		
2	180.7	180.7	180.7	180.4	180.7		
3	135.9	135.2	134.8	134.9	135.3		
4	146.5	146.5	146.6	146.3	146.5		
4a	134.8	132.3	134.7	131.8	134.7		
5	127.7	123.2	123.0	123.4	126.8		
6	162.4	162.3	162.8	162.4	162.2		
7	116.2	116.1	116.0	115.7	116.1		
8	138.5	138.5	138.6	141.9	138.5		
8a	123.4	122.4	120.5	122.2	123.3		
9	27.0	27.0	27.1	29.5	27.2		
3-CH3	16.2	16.2	16.2	15.9	16.2		
8-CH3	21.6	21.4	21.5	21.2	21.6		
9-(CH3)2	23.8	23.8	23.8	23.6	23.9		
6-OR	benzyl	allyl	3,3-	geranyl	cinnamyl		
	70.8, 128.5,	69.3,	dimethylallyl	16.5, 17.6,	69.3, 128.4,		
	128.9,	118.4,	18.5, 23.9,	25.5, 26.1,	128.8,		
	134.7,	134.6	25.9, 65.5,	39.3, 65.2,	134.1,		
	135.3		135.1, 138.9	118.5,	134.8, 135.3		
				119.6,			
				128.3, 138.3			

 Table 3.10 Tentative ¹³C NMR chemical shift assignments of G06–G10

Figure 3.12 The ¹H NMR spectrum of G06

Figure 3.13 The ¹³C NMR spectrum of G06

Figure 3.14 The ¹H NMR spectrum of G07

Figure 3.15 The ¹³C NMR spectrum of G07

Figure 3.16 The ¹H NMR spectrum of G08

Figure 3.17 The ¹³C NMR spectrum of G08

Figure 3.18 The ¹H NMR spectrum of G09

Figure 3.19 The ¹³C NMR spectrum of G09

Figure 3.20 The ¹H NMR spectrum of G10

Figure 3.21 The ¹³C NMR spectrum of G10

3.5.3 Ester Analogues of Mansonone G

The synthesis of ester analogues of mansonone G (**G11–G18**), was performed *via* two steps. In this reaction, PPh₃, trichloroacetonitrile, carboxylic acid, 4-picoline in CH₂Cl₂ were used to furnish the ester analogues of mansonone G (Scheme 3.2). Eight diverse carboxylic acids were used including *n*-butyric acid, caproic acid, caprylic acid, capric acid, benzoic acid, 2-chlorobenzoic acid, 2-methoxybenzoic acid and 4-methoxybenzoic acid. After refluxed, further extraction and purification by silica gel column, eight desired products were obtained as ester analogue of mansonone G (**6**). All of these ester analogues were recognized as new semisynthetic compounds (**G11–G18**). The yields and characteristics of the ester analogues of mansonone G are presented in Table 3.11.

616)				
Ether	Remarks	Weight (mg)	Yield (%)	Remarks
analogues				
G11	Orange brown oil	84	69	New
G12	Orange brown oil	15	12	New
G13	Orange brown oil	14	79	New
G14	Orange brown oil	34	76	New
G15	Orange powder	84.4	98	New
G16	Orange powder	77.9	50	New
G17	Orange powder	34.1	39	New
G18	Orange powder	42.6	50	New

 Table 3.11 The yields and characteristics of ether analogues of mansonone G (G11–G18)

The reaction of mansonone G with *n*-butyric acid gave product in moderate yield (G11, 69%), while for the others (G12–G14) were in poor yield (12–28%).

3.5.4 Structural Elucidation of Ester Analogues of Mansonone G

All eight ester analogues were identified as new semisynthetic compounds and their structures were confirmed by NMR and MS analysis. The 1 H and 13 C NMR spectra of aliphatic ester analogues of mansonone G are presented in Tables 3.12 and 3.13, respectively, while those for aromatic ester analogues are presented in Tables 3.14 and 3.15, respectively.

Desition	Chemical shift (ppm)				
POSITION	G11	G 12	G 13	G14	
4	7.72 (1H, s)	7.63 (1H, s)	7.64 (1H, s)	7.70 (1H, s)	
7	6.86 (1H, s)	6.78 (1H, s)	6.78 (1H, s)	6.85 (1H, s)	
9	3.47 (1H, m)	3.39 (1H, m)	3.39 (1H, m)	3.46 (1H, m)	
3-CH ₃	2.07 (3H, s)	2.00 (3H, s)	2.00 (3H, s)	2.07 (3H, s)	
8-CH ₃	2.61 (3H, s)	2.54 (3H, s)	2.53 (3H, s)	2.60 (3H, s)	
9-(CH ₃) ₂	1.36 (6H, d,	1.29 (6H, d,	1.29 (6H, d,	1.35 (6H, d,	
	<i>J</i> =6.72 Hz)	<i>J</i> =7.16 Hz)	J=7.08 Hz)	<i>J</i> =7.16 Hz)	
6-COOR	-(CH ₂) ₂ -CH ₃	-(CH ₂) ₄ -CH ₃	-(CH ₂) ₆ -CH ₃	-(CH ₂) ₈ -CH ₃	
	2.61 (2H, t,	1.14 (2H, m),	2.54 (2H, t,	2.62 (2H, t,	
	J=7.28 Hz),	1.72 (2H, m),	<i>J</i> =7.24 Hz)	<i>J</i> =7.60 Hz)	
	1.82 (2H, m),	1.35 (2H, m),	1.35 (2H, m),	1.75 (2H, m),	
	1.07 (3H, t,	2.54 (2H, t,	1.71 (2H, m),	1.40 (2H, m),	
	<i>J</i> =7.40 Hz)	J=7.28 Hz)	1,22 (6H, m)	1,29 (10H, m)	
		0.87 (3H, t,	0.83 (3H, t,	0.87 (3H, t,	
		J=6.84 Hz)	J=5.60 Hz)	J=6.08 Hz)	

Table 3.12 Tentative ¹H NMR chemical assignments of G11–G14

จุฬาลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSITY

Desition	Chemical shift (ppm)				
POSITION	G11	G12	G13 G14		
1	181.3	181.33	181.32	181.33	
2	181.7	181.74	181.73	181.75	
3	137.0	136.94	136.96	136.94	
4	138.0	137.97	137.99	137.96	
4a	135.5	135.54	135.54	135.54	
5	135.2	135.25	135.23	135.25	
6	154.0	153.97	153.98	153.98	
7	127.7	127.76	127.75	127.77	
8	144.5	144.57	144.55	144.57	
8a	128.2	128.22	128.22	128.22	
9	26.8	26.78	26.77	26.78	
3-CH ₃	16.0	16.04	16.02	16.03	
8-CH ₃	22.8	22.85	22.84	22.84	
9-(CH ₃) ₂	21.9	21.95	21.95	21.96	
6-COOR	-(CH ₂) ₂ -CH ₃	-(CH ₂) ₄ -CH ₃	-(CH ₂) ₆ -CH ₃	-(CH ₂) ₈ -CH ₃	
	13.6, 18.2, 36.4,	13.9, 22.3,	14.0, 22.6, 24.7,	14.1, 22.6, 24.7,	
	171.4	24.3, 31.3,	28.9, 29.1, 31.7,	29.1, 29.2, 29.4,	
		34.5, 171.6	34.6, 171.6	29.7, 31.8, 34.6,	
				171.6	

 Table 3.13 Tentative ¹³C NMR chemical shift assignments of G11–G14

Figure 3.22 The ¹H NMR spectrum of G11

Figure 3.23 The ¹³C NMR spectrum of G11

Figure 3.24 The ¹H NMR spectrum of G12

Figure 3.25 The $^{\rm 13}{\rm C}$ NMR spectrum of G12

Figure 3.26 The ¹H NMR spectrum of G13

Figure 3.27 The ¹³C NMR spectrum of G13

Figure 3.28 The ¹H NMR spectrum of G14

Figure 3.29 The ¹³C NMR spectrum of G14

Desition	Chemical shift (ppm)				
POSICION	Position G15		G 16 G 17		
4	7.74 (s, 1H)	7.74 (s, 1H	7.74 (s, 1H)	7.70 (s, 1H)	
7	6.98 (s, 1H)	7.01 (s, 1H)	6.98 (s, 1H)	6.96 (s, 1H)	
9	3.53 (m, 1H)	3.53 (m, 1H)	3.56 (m, 1H)	3.52 (m, 1H)	
3-CH ₃	2.09 (s, 3H)	2.08 (s, 3H)	2.07 (s, 3H)	2.08 (s, 3H)	
8-CH ₃	2.63 (s, 3H)	2.64 (s, 3H)	2.61 (s, 3H)	2.63 (s, 3H)	
9-(CH ₃) ₂	1.39 (d, J = 7.12	1.37 (d, J = 7.16	1.38 (d, J =	1.38 (d, J =	
	Hz, 6H)	Hz, 6H)	7.16 Hz, 6H)	7.08 Hz, 6H)	
6-COOR	7.59 (m, 2H),	7.44 (m, 1H),	3.94 (s, 3H),	3.91 (s, 3H),	
	7.69 (t, J = 7.48	7.55 (m, 2H),	7.07 (m, 1H),	7.02 (d, J =	
	Hz, 2H), 8.21 (d, 8.06 (d, J =		7.58 (m, 1H),	8.80 Hz, 2H),	
	J = 7.12 Hz, 2H)	Hz, 1H)	8.03 (d, J =	8.15 (d, J =	
			7.92 Hz, 1H)	8.76 Hz, 2H)	

Table 3.14 Tentative ¹H NMR chemical shift assignments of G15–G18

Desition	Chemical shift (ppm)				
POSITION	G 15	G 16	G 18		
1	181.9	181.8	181.9		
2	181.5	181.5	181.6		
3	137.4	137.4	137.5		
4	144.8	144.8	144.7		
4a	135.5	135.5	135.4		
5	135.7	135.9	135.7		
6	154.4	153.9	154.6		
7	128.6	127.1	127.9		
8	138.1	138.1	138.1		
8a	129.0	128.2	128.8		
9	27.1	27.0	27.1		
3-CH ₃	16.2	16.2	16.2		
8-CH ₃	23.0	23.0	23.0		
9-(CH ₃) ₂	22.1	22.2	22.1		
6-COOR	129.0, 130.5, 134.3,	131.8, 128.6,	55.7, 127.9, 129.6,		
	137.4, 138.0, 164.8	134.0, 163.6	129.8, 132.7, 133.7,		
	CHULALONGKO	rn University	133.8, 134.7, 164.5,		
			164.5		

Table 3.15 Tentative ¹³C NMR chemical shift assignments of G15, G16, and G18

Figure 3.30 The ¹H NMR spectrum of G15

Figure 3.31 The ¹³C NMR spectrum of G15

Figure 3.32 The ¹H NMR spectrum of G16

Figure 3.33 The $^{\rm 13}{\rm C}$ NMR spectrum of G16

Figure 3.34 The ¹H NMR spectrum of G17

Figure 3.35 The ¹H NMR spectrum of G18

Figure 3.36 The ¹H NMR spectrum of G18

3.5.5 Mansonone G Derivatives from Epichlorohydrin

Another typical mansonone G derivatives were carried out using epichlorohydrin in the presence of NaOH. In this reaction, mansonone G (**6**) was reacted with excess of epichlorohydrin and an ethanolic solution of NaOH. After purification using silica gel column, the desired products (**G19** and **G20**) were obtained.

NaOH acted as a strong base resulted in the conversion of epichlorohydrin into epoxypropanol intermediate, which was further reacted with mansonone G (6) to form mansonone G oxirane. **G19**, could be occurred by following two-step mechanisms: a) the formation of chlorohydrin intermediate and b) dehydrohalogenation of chlorohyrin to glycidyl ether. The yield and appearance of **G19–G20** are presented in Table 3.16

Compound	Appearance	Weight (mg)	Yield (%)	Remarks
G19	Orange powder	63	52	New
G20	Orange powder	30	25	New

Table 3.16 The yields and characteristics of G19 and G20

3.5.6 Structural Elucidation of G19 and G20

G19 was obtained as orange powder. Its ¹H NMR spectrum (Figure 3.37) displayed the signal of 7.71 (s, 1H), 6.59 (s, 1H), 4.37 (dd, J = 2.8, 2.8 Hz, 1H), 3.99 (dd, J = 6.08, 6.08 Hz, 1H), 3.60 (m, 1H), 3.42 (m, 1H), 2.96 (t, J = 4.52 Hz, 1H), 2.78 (dd, J = 2.6, 2.6 Hz, 1H), 2.62 (s, 3H), 2.06 (s, 3H), and 1.40 (dd, J = 3.2, 3.2 Hz, 6H). The ¹³C NMR spectrum (Figure 3.38) showed several signals at $\delta_{\rm C}$ 182.6, 180.7, 162.1, 146.5, 138.4, 135.4, 134.6, 123.6, 115.9, 69.5, 49.9, 44.7, 29.8, 27.2, 23.8, 21.5, and 16.2 ppm. Its HRMS (ESI): calculated for C₁₈H₂₀O₄ [M+Na]⁺: 323.1259, found 323.1257.

Figure 3.37 The ¹H NMR spectrum of G19

Figure 3.38 The ¹³C NMR spectrum of G19

G20 was also obtained as yellow powder and its ¹H NMR spectrum displayed chemical shift at 7.76 (s, 1H), 6.76 (s, 1H), 5.58 (s, 1H), 3.99 (t, J = 9.16 Hz, 3H), 3.64 (m, 2H), 3.53 (m, 1H), 2.39 (s, 3H), 1.81 (s, 3H), and 1.19 (d, J = 6.88 Hz, 6H). ¹³C NMR: δ_{c} (ppm) 181.7, 180.1, 162.1, 145.3, 138.0, 135.0, 134.2, 133.8 122.7, 116.0, 69.7, 68.6, 46.6, 26.3, 23.1, 21.2, 18.2, and 15.5. HRMS (ESI): calculated for C₁₈H₂₁O₄Cl [M+H]⁺: 325.1416, found 337.1237.

G20

Figure 3.39 The ¹H NMR spectrum of G20

Figure 3.40 The ¹³C NMR spectrum of G20

3.6 Antibacterial Activity of Mansonone Derivatives

All mansonone G analogues were then evaluated for their antibacterial activity as presented in Table 3.17. Most of mansonone G derivatives possessed better activity than their natural compound, mansonone G (**6**). These results signified that the changing of –OH group at position C6 of mansonone G (**6**) become other functional groups would give the influence on the antibacterial activity. Other previous study in typical 1,2-naphthoquinones reported that the derivatives of these groups displayed potential activity in antibacterial assay. Suh and coworkers in 2006, synthesized mansonone F analogues by varying substituent at C6 and C9 for investigation of the anti-MRSA activity, resulted that most of the analogues displayed good or excellent anti-MRSA activity especially 6-*n*-butyl mansonone F.[81] In 2016, Souza and coworkers reported that biflorin derivatives (typical 1,2-naphthoquinones) including its methyloxime and ethyloxime exhibited similar or even better activity than that of biflorin against *Enterococcus faecalis* (ATCC 4083), *Escherichia coli* (27), and *Staphylococcus aureus* (ATCC 25923 and 358).

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Compound		Diameter	of inhibition z	one (mm)	
(1mM)	S. aureus	S. mutans	S. sobrinus	P. acnes	S. typhi
	ATCC	ATCC	КССМ	КССМ	ATCC
	25923	25175	11898	41747	422
Mansonone G (6)	13.7±1.15	14.7±0.58	10.0±0.00	15.6±1.23	11.9±1.18
G01	15.3±0.58	11.3±1.15	10.7±1.15	13.2±0.76	10.7±1.18
G02	16.0±1.00	18.0±1.00	14.3±0.58	13.3±0.00	10.8±0.43
G03	18.0±0.00	18.3±0.58	15.7±0.58	13.6±1.01	12.0±1.80
G04	20.0±0.00	20.0±1.73	16.7±1.15	14.6±1.13	16.3±1.26
G05	9.0±0.00	9.0±1.00	8.0±0.00	11.9±1.13	11.5±0.25
G06	21.7±0.58	18.3±0.58	17.0±0.53	17.0±0.93	13.9±0.88
G07	23.0±0.00	17.3±0.58	15.7±0.58	13.8±1.66	14.5±0.43
G08	21.7±1.53	17.7±0.58	16.0±0.00	13.6±0.29	16.3±0.76
G09	14.0±0.45	16.2±0.14	11.5±0.00	11.1±1.01	14.0±0.42
G10	11.0±0.75	13.1±1.28	12.7±0.14	12.8±0.95	13.9±0.14
G11	18.0±1.00	12.7±1.53	13.7±0.58	13.0±0.66	10.7±1.04
G12	14.7±0.58	12.0±0.00	12.7±0.58	11.3±1.09	8.7±0.52
G13	8.7±0.58	10.3±1.15	11.3±0.58	11.6±0.76	9.6±1.26
G14	7.0±0.00	9.7±0.58	10.7±0.58	11.4±0.52	9.2±0.80
G15	19.7±0.58	14.7±0.58	15.3±1.15	13.1±1.01	11.6±0.30
G16	11.7±1.15	14.3±0.58	14.3±1.53	13.2±0.72	14.8±1.51
G17	17.3±1.15	15.3±0.58	17.3±1.53	12.1±1.28	13.2±1.15
G18	10.0±1.00	15.0±0.00	14.0±0.00	10.8±1.09	12.8±1.04
G19	18.3±0.58	13.7±1.15	13.0±0.00	13.2±0.85	12.7±0.88
G20	14.5±1.31	11.5±1.17	11.1±0.76	12.9±1.44	13.1±0.95
Chloramphenicol	20.7±0.58	25.7± 0.58	25.3±1.52	30.0±0.90	24.8±0.75
(0.5 mM)					

 Table 3.17 Diameter of inhibition zone of mansonone G and its derivatives

Values are presented as mean ±SD of triplicate experiments

Diameter of inhibition zone including diameter of well (6 mm)

Note: 6.0 = no activity, 6.1 - 8.0 = weak, 8.1 - 10.0 = moderate, 10.1 - 13.0 = good, 13.1 - 15.0 = very good, >15 = excellent

The diameter inhibition zone (mm) of mansonone G derivatives were ranging from 7.0 – 23.7 against *S. aureus*, 9.0 – 20.0 against *S. mutans*, 8.0 – 16.7 against *S. sobrinus*, 11.1 – 17.1 against *P. acnes*, and 8.2 – 16.3 against *S. typhi*. These results indicated that mansonone G derivatives displayed broad spectrum in antibacterial activity because of their abilities to inhibit the growth of both Gram-positive and negative bacteria.

Moreover, their potential activities would contribute to the development of infectious drug discovery which dramatic increase due to of antibiotic resistance. In this study, two strains bacteria belong to Gram-positive bacteria can cause skin disease, *i.e. S. aureus* and *P. acnes*. Several mansonone G derivatives (G01, G02, G03, G04, G06, G07, G08, G11, G15, G17, and G19) showed excellent activities towards *S. aureus*, in contrast to *P.* acnes, only G06 displayed excellent activity. It seemed that *P. acnes* which known can cause acnes, was rather difficult to inhibit than *S. aureus*. The results indicated that these derivatives possibly preferred to cure staphylococcal skin infection such as wound infection, dermatitis, scabies, cellulitis, and impetigo. On the other hand, the abilities of some mansonone G derivatives against *S. aureus* would give a way in discovery of anti-methicillin-resistant *S. aureus* (anti-MRSA) drug.

In addition several mansonone G derivatives (G02, G03, G04, G06, G07, G08, G09, and G17) also showed excellent activities towards *S. mutans*, and these compounds except for G02 and G09 towards *S. sobrinus*. The results showed that these derivatives were easier to inhibit *S. mutans* than *S. sobrinus*, which both bacteria are known to have major role in oral disease.

Furthermore, only **G04** and **G08** exhibited excellent activities towards *S. typhi* which is known to contribute a typhoid fever. The difficulty to inhibit this kind of bacteria caused by the characteristic of its membrane cell wall which have discussed in previous chapter.

Based on the antibacterial activity results, the ether analogues of mansonone G showed a correlation between the numbers of alkyl chain length with the antibacterial activity. Mansonone G derivatives with aliphatic substituents including one, two, four, eight, and twelve carbon atoms exhibited the increasing of the radius of inhibition zone with the number of carbon atoms in the chain from one to eight (G01 – G04), in which G04 revealed the highest inhibition among aliphatic ether analogues with its diameter of inhibition 20.0 against *S. aureus* and *S. mutans*, 15.7 against *S. sobrinus*, 14.6 against *P. acnes*, and 16.3 against *S. typhi* (Table 3.13). While the ether analogue of mansonone G containing twelve carbon atoms (G05) displayed a descending order in antibacterial activity. The relationship between these numbers of carbon atoms and antibacterial activity are described in Figure 3.41

Figure 3.41 The relationship of the number of carbon atoms with antibacterial activity of G01–G05

These results showed that by increasing alkyl chain length of ether analogues of mansonone G from one carbon atom (methyl, **G01**) to eight carbon atoms (octyl, **G04**), could increase their antibacterial activities. The increasing of alkyl chain length was assumed to have a contribution to the extent of membrane interference. The increasing of alkyl chain length on ether analogues made the compounds more hydrophobic in which could facilitate the access to the lipophilic cell wall microbial.
Some studies reported that the increasing the hydrophobicity of compound resulted in increasing the activity. In 1994, Kanazawa and coworkers revealed that the phosphonium salts with long alkyl chains upto 18 carbon atoms were found to display high levels of antibacterial activity.[125] Birnie and coworkers in 2000 found the relationship between antimicrobial activity with increasing chain length of *N*-alkyl betaines and *N*-alkyl-*N*,*N*-dimethylamine oxides homologs.[126] Sahariah and coworkers in 2015 reported that there was the relationship between antibacterial activity and the length of the alkyl chain, as it increased from methyl to hexyl of *N*alkyl chitosan derivatives.[127] In another investigation by Altay and coworkers at the same year reported that cationic pyridinium polymer with hexyl unit presented the highest bactericidal activity towards *E. coli*.[128]

However, after increased the carbon atoms numbers to twelve (**G05**), the activity was reduced. This result indicated that the ether analogues exponentially increased the activity until eight carbon atoms (**G04**) as the optimum of the activity. This phenomenon is known as a "cut of effect" which often displays a non-linear dependence on chain length that is quasi parabolic due to the decreasing of activity for the more lipophilic substances.[129] This effect can occur *via* some previous proposed hypothesis which have been summarized by Devinsky, *et. al.*[129] as follows:

- 1. Limited solubility by Janoff, *et. al.* and Pringle, *et. al.*, in 1981.[130, 131] In this case, the higher alkyl chain lengths will reduce the activity due to the limitation of membrane partition coefficient (lipid/aqueous). The coefficient partition between membrane as the site of action and aqueous phase, increases less rapidly with the chain length than the aqueous solubility decreases, until a point is reached at which the optimum attainable concentration at the site of action is significantly lower than that required to affect the maximum of biological activity.
- 2. Limited volume by Franks and Lieb in 1986.[132]

After binding at site of action of membrane which has a limited volume, the compound could act in which the volume becomes full by increasing the chain length and a decrease in binding occurs.

3. Compartment theory by Hansch and Fujita (1964), Lien, *et. al.* (1968), Balaz, *et. al.* (1988).[133-135]

The phenomenon of "cut off effect" caused by the partition in time through several compartments, *e.g.* a series of lipid bilayers separated by aqueous layers, as the compound get through to the site of action.

- Pertubartion theory by Lee (1976).[136]
 The phenomenon of "cut off effect" happens due to the interaction between long chain amphiphilic substances with the site of action.
- 5. Physical theory by Devinsky, et. al (1978).[137]

This phenomenon relates to the physical properties of compound (*e.g.* stereochemistry).

This similar phenomenon also occurred for ether analogues containing allyl, prenyl or geranyl substituents (three, five, and ten carbon atoms with unsaturation portion), the activity increased from three to five carbon atoms (**G07** – **G08**), then decreased at ten carbon atoms (**G09**). **G07** and **G08** exhibited better activity than **G09** for some bacterial strain with their inhibition zone respectively 23.0 and 23.7 against *S. aureus*, 16.0 and 16.7 against *S. sobrinus*, 14.8 and 15.0 against *P. acnes*. The results also pointed out that the presence of double bonds in **G07** and **G08** also played an important role in antibacterial activity. The relationship of the number of carbon atoms of allyl and/or prenyl ether analogues of mansonone G are presented in Figure 3.42.

Figure 3.42 The relationship of carbon atom numbers with antibacterial activity of compounds G07–G09 (3–10 carbon atoms)

Previous study reported that chalcones bearing prenyl or geranyl groups as well as their derivatives were found to inhibit Gram-positive bacteria.[138] The other study revealed that by replacing the *iso*prenyl group with a geranyl group of thiourea derivative was found to reduce antibacterial activity.[139] These previous studies supported the finding result in this research in which ether analogues of mansonone G containing geranyl substituent (**G09**) would decrease the activity.

Furthermore, for **G06** and **G10** which contained benzyl and cinnamyl substituents gave the different results. **G06** displayed better activity than **G10**. It could be described that even though **G10** had a double bond but its antibacterial activity was slightly lower than **G06**. Previous study reported that all of the synthesized compounds substituted benzyl ether derivatives exhibited good to moderate activity against Gram positive bacteria.[140]

Aliphatic ester analogues of mansonone G (G11–G14) showed slightly lower inhibition compared to aliphatic ether analogues. In contrast with ether analogues, the increasing of alkyl chain length from four to ten carbon atoms (G11–G14) caused the decreasing of the activity, in which the alkyl chain containing four carbon atoms (G11) displayed the highest activity, then followed by the decreasing activity with six, eight, and ten carbon atoms (G12, G13, and G14). G11 exhibited good to excellent activities. The higher alkyl chain lengths more than four carbon atoms in aliphatic ester analogues of mansonone G made the compounds more hydrophobic which may cause the limitation of partition coefficient in membrane cell, and further this compounds rather difficult to penetrate into membrane cell wall. The relationship of carbon atoms number and antibacterial activities of compounds **G11–G14** are shown in Figure 3.43.

Figure 3.43 The relationship of carbon atoms number and antibacterial activities of

G11-G14

In addition, aromatic ester analogues of mansonone G (G15–G18) were presented antibacterial activities towards both Gram positive and negative bacteria. In this group, the presence of aromatic substituents influenced the activity. Based on Table 3.14, G15 and G17 exhibited excellent activities against *S. aureus* and *S. sobrinus*. Moreover G17 also displayed excellent activity towards *S. mutans*. In this case, the presence of electron donating group such as a methoxy group at *ortho* position in aromatic induced antibacterial activity. This result slightly different from that bearing a methoxy group at *para* position (G18) with lessen activity. While the presence of electron withdrawing substituent such as chloro group at *ortho* position (G16) gave moderate to very good activities.

In comparison between aliphatic and aromatic ester analogues of mansonone G, in general the results showed that aromatic ester analogues were better than aliphatic esters. Investigation by Al-Abdullah, *et. al.* in 2014 revealed that the increasing

102

the lipophilicity of compounds by replacing the aliphatic substituents with aromatics improved antibacterial activity.[141]

Mansonone G derivatives which derived from epichlorohydrin (G19 and G20) exhibited from good to excellent activities. G19 displayed better activities towards *S. aureus, S. mutans, S. sobrinus,* and *P. acnes,* than G20. The results suggested that the epoxide substituent in G19 have the influence to enhance antibacterial activity.

In this antibacterial activity test, chloramphenicol as a control positive was used towards all bacteria tested due to the broad spectrum of this antibiotic. The diameter of inhibition zone of this control positive was ranging from 20.7 to 30.0 mm.

3.7 Minimum Inhibitory Concentration (MIC) of Mansonones and Their Derivatives

Four natural mansonones (4–7) along with several analogues which exhibited high activity for each bacterial strains were picked up to determined their MIC. MIC is considered as a standard to determine the susceptibility of bacteria to antibacterial agents.[142] In order to determine the MIC of these analogues, a broth microdilution was performed in 96-well plate. In addition, resazurin was employed as an indicator of bacteria growth. Resazurin is a blue-purple non-fluorescent and non-toxic dye that then changes the color become pink and fluorescent when reduced to resorufin which is further reduced to hydroresorufin (uncolored and non-fluorescent).[143, 144]

resazurin

resorufin

Figure 3.44 Performance of MIC determination in 96-well plate by resazurin assay

The MIC of four natural mansonones (4–7) and several mansonone G derivatives are presented in Table 3.18. Amongst mansonones, the data indicated that mansonone E (5) showed the lowest MIC against *S. aureus*, *S. sobrinus*, and *S. mutans*. **G07** and **G08** exhibited the lowest MIC (0.975 μ M) among other analogues and natural mansonones against *S. aureus*. This compound also showed sixty-four times lower in MIC than its natural mansonone G (6, 31.25 μ M). Moreover, **G04** exhibited lower MIC (15.6 μ M) than **3** against *S. sobrinus*. Other analogues such as **G02** showed potential antibacterial agent against *S. mutans*, *P. acnes*, and *S. typhi* with MICs of 7.8, 15.6, and 3.9 μ M, respectively.

Compound	N	linimum Inhi	bitory Concent	ration (MIC, μ	M)
	S. aureus	P. acnes	S. sobrinus	S. mutans	S. typhi
	ATCC	KCCM	КССМ	ATCC	ATCC
	25923	41747	11898	25175	422
Mansonone C (4)	62.5	62.5	31.25	15.6	31.25
Mansonone E (5)	31.25	31.25	15.6	3.9	15.6
Mansonone G (6)	62.5	31.25	31.25	31.25	15.6
Mansonone H (7)	250	125	62.5	62.5	31.25
G02		62.5	31.25	62.5	-
G03	15.6	15.6	125	7.8	3.9
G04	15.6	31.25	31.25	31.25	31.25
G06	15.6	62.5	125	31.25	62.5
G07	0.975	31.25	15.6	31.25	62.5
G08	0.975	31.25	31.25	31.25	62.5
G09	- 8	-	-50	-	125
G11	62.5		าวิทยาลัย	-	-
G15	62.5			-	-

Table 3.18 MIC of natural mansonones and mansonone G derivatives

3.8 Anti-Adipogenic Activity

3.8.1 Preliminary Screening Anti-Adipogenic Activity

In order to screen for promising candidates possessing anti-adipogenic activity, all compounds including natural and semisynthetic were evaluated, except for mansorin C (**3**) due to its limited amount. To date, there have been no previous studies on the anti-adipogenic activity of mansorins and mansonones and their derivatives.

To investigate the effects of these compounds on anti-adipogenic activity, confluent 3T3-L1 pre-adipocytes cell lines were treated with the absence (vehicle) and presence of 10 μ M compound during differentiation (day 0 – 6). Every 2 day, cells were

observed under light microscope to notice the viability of cells. The compounds that made cells die were categorized as toxic compounds. According to the observation, mansonone E (5) and some mansonone derivatives: G01, G04, G06, G08, G10, G18, and G19, were found to be very toxic to the cells because all cells were died after treatment. Moreover, certain compounds: G02, G03, G05, and G07 could also be categorized as toxic compounds. While some other compounds such as mansorin A (1), mansorin B (2), mansonone H (7), G09, G11, G12, G13, G14, and G20, did not show any significant suppression or toxic effect to the cells.

On day 7, the cells were fixed with 10% formalin and incubated for 2 days. Fixation has purpose to preserve cellular architecture and composition of cells in the tissue to let them to withstand further step.[145] On day 9, the differentiated adipocytes were stained with Oil Red O solution, and the cells images (Figure 3.45) were scanned by scanner. Subsequently, the lipid contents were quantified spectrophotometrically at 500 nm. The results were expressed as % optical density (Table 3.19). All experiments were done in duplicate.

Figure 3.45 Cells images using scanner after ORO stain

Compound	% optical density	Remarks
Mansorin A (1)	100	Not suppressed, not toxic
Mansorin B (2)	100	Not suppressed, not toxic
Mansonone C (4)	53.0	Suppressed, not toxic
Mansonone E (5)	-	Very toxic
Mansonone G (6)	46.0	Suppressed, not toxic
Mansonone H (7)	100	Not suppressed, not toxic
G01		Very toxic
G02	58.1	Suppressed, toxic
G03	48.8	Suppressed, toxic
G04		Very toxic
G05	80	Suppressed, toxic
G06		Very toxic
G07	60	Suppressed, toxic
G08	R Carlos Carlos	Very toxic
G09	100	Not suppressed, not toxic
G10	จุ <mark>พา</mark> ลงก ร ณ์มหาวิทยาลัเ	Very toxic
G11	100	Not suppressed, not toxic
G12	100	Not suppressed, not toxic
G13	100	Not suppressed, not toxic
G14	100	Not suppressed, not toxic
G15	37.6	Suppressed, not toxic
G16	34.7	Suppressed, not toxic
G17	46.7	Suppressed, not toxic
G18	-	Very toxic
G19	-	Very toxic
G20	100	Not suppressed, not toxic
Vehicle	100.0	Not suppressed, not toxic

 Table 3.19 Percentage optical density of cells treated with isolated compounds and mansonone derivatives on anti-adipogenic activity

The percentage of optical density (%OD) described for the amount of lipid accumulation. The higher % OD, the higher adipogenesis to form lipid. Vehicle with no treated compound exhibited 100 % OD. According this result, it showed that mansonones presented better activity than mansorins due to no suppression exhibited by neither mansorins A (1) nor B (2). In addition, mansonones C (4) and G (6) showed lower % OD indicating significantly reduce lipid accumulation in 3T3T-L1 during differentiation day. While for other mansonones such as mansonone E (5), due to the structure of this compound containing ether linkage, hence very toxic to the cells at the first day of differentiation day. In contrast with mansonone H (7), even though its structure had ether linkage, but the presence of -OH group at other position made this compound not toxic to the cells and did not suppress the adipogenesis.

Most of ether derivatives of mansonone G were toxic to the cells even some compounds showed the suppression, except **G09** due to this compound containing more than one of double bond of allyl. While for aliphatic ester derivatives of mansonone G (**G11** – **G14**), no compound displayed any suppression in adipogenesis. In contrast to aromatic ester derivatives of mansonone G, some of these compounds (**G15** – **G17**) exhibited suppression in adipogenesis.

3.8.2 Anti-Adipogenic Activity of Candidate Compounds by Dose-Dependent Manner

According preliminary screening of twenty-five compounds including natural and semisynthetic, five compounds (4, 6, G15, G16, and G17) were picked up as candidates for further investigation in anti-adipogenic activity by dose-dependent manner (varying the concentrations as 0, 1, 5, 10, and 20 μ M). In general, this assay was the same as preliminary screening in anti-adipogenic activity. The results are presented in Figure 3.46.

Figure 3.46 % OD of compounds in anti-adipogenic activity by dose-dependent

manner

Based on Figure 3.16, it showed that by increasing the concentration, the antiadipogenic was also increased. By calculating the linear equation of each compound, the IC₅₀ (μ M) of each compound in anti-adipogenic activity could be obtained as shown in Table 3.20.

Table 3.20 The IC₅₀ (μ M) of tested compounds in anti-adipogenic activity

Compound	IC ₅₀ (μΜ)
Mansonone C (4)	15.4
Mansonone G (6)	14.0
G15	10.0
G16	10.4
G17	12.6

The data in Table 3.20 presented that mansonone G (6) had lower IC_{50} than mansonone C (4). In addition the data also indicated that G15, G16, and G17 exhibited lower IC_{50} as 10.0, 10.4, and 12.6 μ M, respectively than that of natural compound

(mansonone G, 6). This data suggested for further investigation for preliminary mechanism study of compounds mansonone G (6), G15, G16, and G17, in antiadipogenic activity.

3.8.3 Expression of Adiponectin in Anti-Adipogenic Activity

Adiponectin is known as one of adipogenesis-related factor which is secreted from adipocytes during adipogenesis. In order to determine the mechanism action of compounds **6**, **G15**, **G16**, and **G17**, in anti-adipogenic activity, adiponectin was introduced after 6 days differentiation by western blot analysis. The result is presented in Figure 3.47.

Figure 3.47 Adiponectin expression in anti-adipogenic activity of compounds 6, G15, G16, and G17

Based on Figure 3.47, even though mansonone G (6) did not show significant decreasing of adiponectin level, but its derivatives such as compound **G16** displayed the best suppression of adiponectin. Other compounds such as **G15** and **G17** exhibited little suppression of adiponectin. This result suggesting that compounds **G15–G17** have potential inhibition in adipogenesis by suppressing the production of adiponectin.

CHAPTER IV

During the course of this study, the CH_2Cl_2 extract of *Mansonia gagei* Drumm. heartwoods was chosen as plant material due to the interesting compounds isolated from this extract (1,2-naphthoquinone and coumarin-based compounds) as well as their great biological activities reported previously. Three naturally occurring coumarins named mansorin A (1), mansorin B (2), and mansorin C (3), together with four naturally occurring 1,2-naphthoquinones named mansonone C (4), mansonone E (5), mansonone G (6), and mansonone H (7), have been isolated from this extract and investigated for their antibacterial and anti-adipogenic activities.

In antibacterial activity test, agar well diffusion method was performed against both Gram positive and negative bacteria including *Staphylococcus aureus* ATCC 25923, *Streptococcus mutans* ATCC 25175, *Streptococcus sobrinus* KCCM 11898, *Propionibacterium acnes* KCCM 41747, and *Salmonella typhi* ATCC 422.

According to the antibacterial activity of these isolated compounds, it can be seen that in general mansonones exhibited better activity than mansorins. In addition, it also gave the information that mansonones E (**5**) and G (**6**) presented higher activity than others. Attributable to mansonone G (**6**) displayed good activity and was obtained in large amount among other mansonones, therefore some derivatives of mansonone G were carried out and examined for their antibacterial activity.

Derivatization of mansonone G (6) was performed into three domain analogues which known as ether, and ester analogues of mansonone G, and mansonone G analogues derived from epichlorohydrin. For ether analogues, ten derivatives known as methyl ether mansonone G (G01), ethyl ether mansonone G (G02), butyl ether mansonone G (G03), octyl ether mansonone G (G04), dodecyl ether mansonone G (G05), benzyl ether mansonone G (G06), allyl ether mansonone G (G07), 3,3dimethylallyl ether mansonone G (G08), geranyl ether mansonone G (G09), and cinnamyl ether mansonone G (G10) were manipulated. For ester analogues, eight analogues of mansonone G have been synthesized, which identified as mansonone G butyrate (G11), mansonone G hexanoate (G12), mansonone G octanoate (G13), mansonone G decanoate (G14), mansonone G benzoate (G15), mansonone G 2-chloro benzoate (G16), mansonone G 2-methoxy benzoate (G17), and mansonone G 4-methoxy benzoate (G18). The reaction between mansonone G with epichlorohydrin yielded two compounds G19 and G20. Amongst these derivatives, G02 – G20 are reported for the first time as new semisynthetic compounds.

The antibacterial activity of these compounds indicated that several mansonone G derivatives exhibited better activity than that of natural compound (mansonone G, 6). G07 and G08 showed the lowest MIC (0.975 μ M) among other mansonone G derivatives and natural mansonones towards *S. aureus*. These derivatives also displayed sixty-four times lower in MIC than its natural mansonone G (6, 31.25 μ M).

For the anti-adipogenic activity, mansonone C (4) and mansonone G (6) possessed the suppression in 3T3-L1 pre-adipocytes differentiation with IC₅₀ 15.4 and 14.0 μ M, respectively. In addition, some mansonone G derivatives including G15, G16, and G17 exhibited the suppression with IC₅₀ 10.0, 10.4, and 12.6 μ M, respectively. In order to investigate their mechanism action in anti-adipogenic, western blot analysis was performed for evaluating the expression of adiponectin. The results showed that G16 displayed the highest suppression of adiponectin production. This result also suggesting that G15 – G17 have good activity in adipogenesis by suppressing the production of adiponectin.

REFERENCES

- [1] Farnsworth, N.R., and Morris, R. W. Higher plants-the sleeping giant of drug development. <u>American Journal of Pharmacy</u> 147 (1976): 46-52.
- Sarker, S.D., Latif, Z., and Gray, A.I. <u>Natural products isolation</u>. Second ed. Vol. Methods in Biotechnology. Totowa: Humana Press, 2005.
- [3] Dewick, P.M. <u>Medicinal natural products: A biosynthetic approach</u>. USA: John Wiley & Sons, Ltd, 2011.
- [4] Bernhoft, A. A brief review on bioactive compounds in plants. in Bernhoft, A. (ed.)<u>Bioactive compounds in plants – benefits and risks for man and animals</u>, pp. 11-17. Novus forlag, Oslo: The Norwegian Academy of Science and Letters, 2008.
- [5] Bourgaud, F., Gravot, A., Milesi, S., and Gontier, E. Production of plant secondary metabolites: a historical perspective. <u>Plant Science</u> 161(5) (2001): 839-851.
- [6] Newman, D.J.a.C., G. M. . <u>Natural products as drugs and lead to drugs: the historical perspective</u>. Natural product chemistry for drug discovery. Cambridge: RSC Publishing, 2010.
- [7] Phillipson, J.D. Phytochemistry and medicinal plants. <u>Phytochemistry</u> 56(3) (2001): 237-243.
- [8] Gurib-Fakim, A. Medicinal plants: traditions of yesterday and drugs of tomorrow.
 <u>Mol Aspects Med</u> 27(1) (2006): 1-93.
- [9] Mahidol, C., Prawat, H., Prachyawarakorn, H., and Ruchirawat, S. Investigation of some bioactive Thai medicinal plants. <u>Phytochemistry Reviews</u> 1 (2002): 11.
- [10] Seigler, D.S. <u>Plant Secondary Metabolism</u>. Massachusetts: Kluwer Academic, 1998.
- [11] Thomson, R.H. <u>Naturally occurring quinones</u>. Second ed. New York: Academic Press, 1971.
- [12] Didry, N., Pinkas, M., and Dubreuil, L. Antimicrobial activity of some naphtoquinones found in plants. <u>Annales Pharmaceutiques Francaises</u> 44(1) (1986): 73-78.

- [13] Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones a review. <u>RSC Advances</u> 5(26) (2015): 20309-20338.
- [14] Sendl, A., Chen, J.L., Jolad, S. D., Stoddart, C., Rozhon, E., Kernan, , Nanakorn,
 W., and Balick, M. Two new naphthoquinones with antiviral activity from *Rhinacanthus nasutus*. Journal of Natural Products 59 (1996): 808 - 811.
- [15] Likhitwitayawuid, K., Kaewamatawong, R., Ruangrungsi, N., and Krungkrai, J.
 Antimalarial naphthoquinones from *Nepenthes thorelii*. <u>Planta Medica</u> 64 (1998): 237 241.
- [16] Gafner, S., Wolfender, J.-L., Nianga, M., Stoeckli-Evans, H., and Hostettmann, K.
 Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots.
 <u>Phytochemistry</u> 42(5) (1996): 1315-1320.
- [17] Souza, L.G.d.S., et al. Synthesis, antibacterial and cytotoxic activities of new biflorin-based hydrazones and oximes. <u>Bioorganic & Medicinal Chemistry Letters</u> 26(2) (2016): 435-439.
- [18] Hook, I., Mills, C., and Sheridan, H. Bioactive naphthoquinones from higher plants. in Atta-ur-Rahman (ed.)<u>Studies in natural products chemistry</u>, pp. 119-160. Oxford: Elsevier Science & Technology, 2014.
- [19] Eyong, K.O., Kuete, V., and Efferth, T. Quinones and benzophenones from the medicinal plants of Africa. in Kuete, V. (ed.)<u>Medicinal plant research in Africa</u>, pp. 351-391. Oxford: Elsevier, 2013.
- [20] Babula, P., Adam, V., Havel, L., and Kizek, R. Noteworthy secondary metabolites naphthoquinones – their occurrence, pharmacological properties and analysis <u>Current Pharmaceutical Analysis</u> 5(1) (2009): 47-68.
- [21] Uc-Cachón, A.H., et al. Naphthoquinones isolated from *Diospyros anisandra* exhibit potent activity against pan-resistant first-line drugs *Mycobacterium tuberculosis* strains. <u>Pulmonary Pharmacology & Therapeutics</u> 27(1) (2014): 114-120.
- [22] Crosby, I.T., et al. Antiviral agents 2. Synthesis of trimeric naphthoquinone analogues of conocurvone and their antiviral evaluation against HIV. <u>Bioorganic</u> <u>& Medicinal Chemistry</u> 18(17) (2010): 6442-6450.

- [23] Yoshihira, K., Tezuka, M., and Natori, S. Naphthoquinone derivatives from *Diospyros* spp.: bisisodiospyrin, a tetrameric naphthoquinone. <u>Tetrahedron Letters</u> 11(1) (1970): 7-10.
- [24] Luo, P., et al. Anti-inflammatory and analgesic effect of plumbagin through inhibition of nuclear factor-_KB activation. <u>Journal of Pharmacology and</u> <u>Experimental Therapeutics</u> 335(3) (2010): 735-742.
- [25] de Paiva, S.R., Figueiredo, M.R., Aragão, T.V., and Kaplan, M.A.C. Antimicrobial activity in vitro of plumbagin isolated from *Plumbago* species. <u>Memórias do</u> <u>Instituto Oswaldo Cruz</u> 98(7) (2003): 959 - 961.
- [26] Jeyachandran, R., Mahesh, A., Cindrella, L., Sudhakar, S., and Pazhanichamy, K. Antibacterial activity of plumbagin and root extracts of *Plumbago zeylanica* L. <u>Acta Biologica Cracoviensia</u> 51(1) (2009): 17-22.
- [27] Gomathinayagam, R., Sowmyalakshmi, S., Mardhatillah, F., Kumar, R., Akbarsha,
 M.A., and Damodaran, C. Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. <u>Anticancer Research</u> 28 (2008): 785 792.
- [28] Dhingra, D. and Bansal, S. Antidepressant-like activity of plumbagin in unstressed and stressed mice. <u>Pharmacological Reports</u> 67(5) (2015): 1024-1032.
- [29] Checker, R., Sharma, D., Sandur, S.K., Khanam, S., and Poduval, T.B. Antiinflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes. <u>International Immunopharmacology</u> 9 (2009): 949-958.
- [30] Wei, Y., et al. Anti-fibrotic effect of plumbagin on CCl₄. <u>Cellular Physiology and</u> <u>Biochemistry</u> 35 (2015): 1599-1608.
- [31] Jeon, J.-H., Lee, C.-H., Kim, M.K., and Lee, H.-S. Antibacterial effects of juglone and its derivatives against oral pathogens. <u>Journal of the Korean Society for</u> <u>Applied Biological Chemistry</u> 52(6) (2009): 720-725.
- [32] Xu, H.-L., et al. Anti-proliferative effect of Juglone from *Juglans mandshurica* Maxim on human leukemia cell HL-60 by inducing apoptosis through the mitochondria-dependent pathway. <u>European Journal of Pharmacology</u> 645 (2010): 14-22.

- [33] Fang, F., et al. Juglone exerts antitumor effect in ovarian cancer cells. <u>Iranian</u> Journal of Basic Medical Sciences 18(6) (2015): 544-548.
- [34] Ashnagar, A.S., A. Isolation and characterization of 2-hydroxy-1,4naphthoquinone (lawsone) from the powdered leaves of henna plant marketed in Ahwaz city of Iran. <u>International Journal of ChemTech Research</u> 3(4) (2011): 1941-1944.
- [35] Rahmoun, N.M., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M., Villemin,
 D., and Choukchou-Braham, N. Antibacterial and antifungal activity of lawsone
 and novel naphthoquinone derivatives. <u>Médecine et maladies infectieuses</u> 42
 (2012): 270 275.
- [36] Saeed, S.M.G., et al. A new method for the isolation and purification of lawsone from *Lawsonia inermis* and its ROS inhibitory activity. <u>Pakistan Journal of Botany</u> 45(4) (2013): 1431-1436.
- [37] Souza, M.A., et al. The antimicrobial activity of lapachol and its thiosemicarbazone and semicarbazone derivatives. <u>Memórias do Instituto</u> <u>Oswaldo Cruz</u> 108(3) (2013): 342 - 351.
- [38] Guiraud, P., Steiman, R., Campos-Takaki, G.M., Seigle-Murand, F., and Simeon de Buochberg, M. Comparison of antibacterial and antifungal activities of lapachol and β -lapachone. <u>Planta Medica</u> 60(373 - 374) (1994).
- [39] Fonseca, S.G.d.C., Braga, R.M.C., and Pereira de Santana, D. Lapachol: chemistry, pharmacology and assay methods. <u>Revista Brasileira de Farmácia</u> 84(1) (2003): 9-16.
- [40] Mata-Santos, T., et al. Anthelmintic activity of lapachol, β-lapachone and its derivatives against *Toxocara canis* larvae. <u>Rev Inst Med Trop Sao Paulo</u> 57(3) (2015): 197-204.
- [41] De Almeida, E.R., Da Silva, F.A.A., Dos Santos, E.R., and Lopes, C.A.
 Antiinflammatory action of lapachol. <u>Journal of Ethnopharmacology</u> 29(2) (1990): 239 - 241.

- [42] Epifano, F., Genovese, S., Fiorito, S., Mathieu, V., and Kiss, R. Lapachol and its congeners as anticancer agents: a review. <u>Phytochemistry Reviews</u> 13(1) (2014): 37-49.
- [43] Chen, X., et al. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. <u>Antimicrobial Agents and Chemotheraphy</u> 47(9) (2003): 2810 2816.
- [44] Lee, H., Kang, R., and Yoon, Y. Shikonin inhibits fat accumulation in 3T3-L1 adipocytes. <u>Phytotheraphy Research</u> 24(3) (2010): 344-51.
- [45] Lee, H., et al. Shikonin inhibits adipogenesis by modulation of the WNT/ β catenin pathway. Life Sciences 88(7–8) (2011): 294-301.
- [46] Jang, Y.J., Jung, C.H., Ahn, J., Gwon, S.Y., and Ha, T.Y. Shikonin inhibits adipogenic differentiation via regulation of mir-34a-FKBP1B. <u>Biochemical and Biophysical</u> <u>Research Communications</u> 467(941 - 947) (2015).
- [47] Gwon, S.Y., Ahn, J.Y., Jung, C.H., Moon, B.K., and Ha, T.Y. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells. <u>BMC Complementary and Alternative Medicine</u> 13(1) (2013): 1-8.
- [48] Gwon, S.Y., et al. Shikonin protects against obesity through the modulation of adipogenesis, lipogenesis, and β -oxidation in vivo. Journal of Functional Foods 16 (2015): 484-493.
- [49] De Moura, K.C.G., et al. Studies on the trypanocidal activity of semi-synthetic pyran[b-4,3]naphtho[1,2-d]imidazoles from β -lapachone. European Journal of Medicinal Chemistry 39(7) (2004): 639-645.
- [50] Macedo, L., Fernandes, T., Silveira, L., Mesquita, A., Franchitti, A.A., and Ximenes,
 E.A. β-Lapachone activity in synergy with conventional antimicrobials against methicillin resistant Staphylococcus aureus strains. <u>Phytomedicine</u> 21(1) (2013): 25-29.
- [51] Pardee, A.B., Li Yz Fau Li, C.J., and Li, C.J. Cancer therapy with beta-lapachone. <u>Current Cancer Drug Targets</u> 2(3) (2002): 227 - 242.

- [52] Moon, D.-O., Choi, Y.H., Kim, N.-D., Park, Y.-M., and Kim, G.-Y. Anti-inflammatory effects of β-lapachone in lipopolysaccharide-stimulated BV2 microglia. <u>International Immunopharmacology</u> 7(4) (2007): 506-514.
- [53] Ferreira, S.B., et al. Synthesis and anti-Trypanosoma cruzi activity of βlapachone analogues. <u>European Journal of Medicinal Chemistry</u> 46(7) (2011): 3071-3077.
- [54] Gupta, D., et al. β-lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells. Experimental Hematology 30(7) (2002): 711-720.
- [55] Perez-Sacau, E., Estevez-Braun, A., Ravelo, A.G., Yapu, D.G., and Turba, A.G. Antiplasmodial activity of naphthoquinones related to lapachol and betalapachone. <u>Chemistry & Biodiversity</u> 2 (2005): 264 - 274.
- [56] Montenegro, R.C., Burbano, R.R., Da Silva, M.N., Lemos, T.G., and Vasconcellos,
 M.C. Biflorin, a naphthoquinone, inhibitsegfr in breast cancer cells. <u>Medicinal</u> <u>Chemistry</u> 3(1) (2013): 179-182.
- [57] Wisintainer, G.G.N.D.S., et al. *O*-naphthoquinone isolated from *Capraria biflora* L. induces selective cytotoxicity in tumor cell lines. <u>Genetics and Molecular</u>
 <u>Research</u> 14(4) (2015): 17472 17481.
- [58] Wisintainer, G.G.N.S., et al. Biflorin: an *o*-naphthoquinone of clinical significance. <u>Anais da Academia Brasileira de Ciências</u> 86 (2014): 1907-1914.
- [59] Fonseca, A.M., Pessoa, O.D.L., Silveira, E.R., Monte, F.J.Q., Braz-Filho, R., and Lemos, T.L.G. Total assignments of 1H and 13C NMR spectra of biflorin and bisbiflorin from *Capraria biflora*. <u>Magnetic Resonance in Chemistry</u> 41(12) (2003): 1038-1040.
- [60] Vasconcellos, M.C., et al. Antitumor activity of biflorin, an *o*-naphthoquinone isolated from *Capraria biflora*. <u>Biological & Pharmaceutical Bulletin</u> 30(8) (2007): 1416 1421.
- [61] Vasconcellos, M.C., et al. Evaluation of the cytotoxic and antimutagenic effects of biflorin, an antitumor 1,4 o-naphthoquinone isolated from *Capraria biflora* L. <u>Archives of Toxicology</u> 84 (2010): 799 810.

- [62] Inoue, K., Ueda, S., Nayeshiro, H., and Inouyet, H. Quinones of streptocarpus dunnii. <u>Phytochemistry</u> 22(3) (1983): 737-741.
- [63] Bian, J., et al. Synthesis and evaluation of (±)-dunnione and its ortho-quinone analogues as substrates for NAD(P)H:quinone oxidoreductase 1 (NQO1).
 <u>Bioorganic & Medicinal Chemistry Letters</u> 25(6) (2015): 1244-1248.
- [64] Khambay, B.P., Batty, D., Jewess, P.J., Bateman, G.L., and Hollomon, D.W. Mode of action and pesticidal activity of the natural product dunnione and of some analogues. <u>Pest Management Science</u> 59 (2003): 174 -182.
- [65] Sutton, D.C., Gillan, F.T., and Susic, M. Naphthofuranone phytoalexins from the grey mangrove, *Avicennia marina*. <u>Phytochemistry</u> 24(12) (1985): 2877-2879.
- [66] Cheeptham, N. and Towers, G.H.N. Light-mediated activities of some Thai medicinal plant teas. <u>Fitoterapia</u> 73(7–8) (2002): 651-662.
- [67] Siriwatanametanon, N., Fiebich, B.L., Efferth, T., Prieto, J.M., and Heinrich, M. Traditionally used Thai medicinal plants: In vitro anti-inflammatory, anticancer and antioxidant activities. <u>Journal of Ethnopharmacology</u> 130(2) (2010): 196-207.
- [68] Tiew, P., Ioset, J.R., Kokpol, U., Chavasiri, W., and Hostettmann, K. Antifungal, antioxidant and larvicidal activities of compounds isolated from the heartwood of *Mansonia gagei*. <u>Phytotherapy Research</u> 17(2) (2003): 190-193.
- [69] Tiew, P., Puntumchai, A., Kokpol, U., and Chavasiri, W. Coumarins from the heartwoods of *Mansonia gagei* Drumm. <u>Phytochemistry</u> 60(8) (2002): 773-776.
- [70] Tiengtham, P. <u>Chemical constituents and their biological activities of the roots</u> and the leaves of <u>Mansonia gagei</u> Drumm. Degree of Master of Science in Chemistry, Department of Chemistry Chulalongkorn University, 2004.
- [71] Tiew, P. <u>Bioactive compounds from Mansonia gagei Drumm.</u> Doctoral of Philosophy in Chemistry Department of Chemistry Chulalongkorn University, 2002.
- [72] El-Halawany, A.M., Chung, M.H., Ma, C.-M., Komatsu, K., Nishihara, T., and Hattori,
 M. Anti-estrogenic activity of mansorins and mansonones from the heartwood of *Mansonia gagei* Drumm. <u>Chemical and Pharmaceutical Bulletin</u> 55(9) (2007): 1332-1337.

- [73] Bettòlo, G.B.M., Casinovi, C.G., and Galeffi, C. A new class of quinones: sesquiterpenoid quinones of *Mansonia altissima* chev. <u>Tetrahedron Letters</u> 6(52) (1965): 4857-4864.
- [74] Tanaka, N., Yasue, M., and Imamura, H. The quinonoid pigments of *Mansonia altissima* wood. <u>Tetrahedron Letters</u> 7(24) (1966): 2767-2773.
- [75] Galeffi, C., Delle Monache, E.M., Casinovi, C.G., and Bettòlo, G.B.M. A new quinone from the heartwood of *Mansonia altissima* Chev: mansonone L. <u>Tetrahedron Letters</u> 10(40) (1969): 3583-3584.
- [76] Puckhaber, L.S. and Stipanovic, R.D. Thespesenone and dehydrooxoperezinone-6-methyl ether, new sesquiterpene quinones from *Thespesia populnea*. Journal of Natural Products 67 (2004): 1571-1573.
- [77] Krishnamoorthy, V. and Thomson, R.H. Mansonone C in Elm wood. <u>Phytochemistry</u> 10(7) (1971): 1669-1670.
- [78] Wang, D., Xia, M.Y., Cui, Z., Tashiro, S., S., O., and Ikejima, T. Cytotoxic effects of mansonone E and F isolated from *Ulmus pumila*. <u>Biological and Pharmaceutical</u> <u>Bulletin</u> 27(7) (2004): 1025 - 1030.
- [79] El-Halawany, A.M., Salah El Dine, R., and Hattori, M. Anti-estrogenic activity of mansonone G and mansorin A derivatives. <u>Pharm Biol</u> 51(8) (2013): 948-954.
- [80] Shin, D.Y., et al. Syntheses and anti-MRSA activities of the C3 analogs of mansonone F, a potent anti-bacterial sesquiterpenoid: insights into its structural requirements for anti-MRSA activity. <u>Bioorganic & Medicinal Chemistry Letters</u> 14 (2004): 4519-4523.
- [81] Suh, Y.G., et al. The structure-activity relationships of mansonone F, a potent anti-MRSA sesquiterpenoid quinone: SAR studies on the C6 and C9 analogs. <u>Bioorganic & Medicinal Chemistry Letters</u> 16 (2006): 142-145.
- [82] Wu, W.B., et al. Synthesis and evaluation of mansonone F derivatives as topoisomerase inhibitors. <u>European Journal of Medicinal Chemistry</u> 46 (2011): 3339-3347.
- [83] Huang, Z.-H., et al. Design, synthesis and biological evaluation of novel mansonone E derivatives prepared via CuAAC click chemistry as topoisomerase
 II inhibitors. <u>European Journal of Medicinal Chemistry</u> 68 (2013): 58-71.

- [84] Gupte, S. <u>The short textbook of medical microbiology (including parasitology)</u>.
 10th ed. New Delhi: Jaypee Brothers Medical Publisher (P) LTD, 2010.
- [85] Hollar, S. Introduction to biology : A closer look at bacteria, algae, and protozoa.
 First ed. New York: Britannica Educational Publishing in association with Rosen Educational Services, 2012.
- [86] Koch, A.L. <u>The bacteria: their origin, structure, function, and antibiosis</u>. Netherland: Springer, 2007.
- [87] Andersoon, R.J., Groundwater, P.W., Todd, A., and Worsley, A.J. <u>Antibacterial</u> <u>agents : chemistry, mode of action, mechanisms of resistance and clinical</u> <u>applications</u>. United Kingdom: John Wiley & Sons, 2012.
- [88] Wiwanitkit, V. <u>Escherichia coli infections</u>. First ed.: Internet Medical Publishing, 2011.
- [89] Hauser, A.R. <u>Antibiotic basics for clinicians : the ABCs of choosing the right</u> <u>antibacterial agent</u>. Second ed. Philadelphia: Lippincott William & Wilkins, 2013.
- [90] Berlutti, F., Catizone, A., Ricci, G., Frioni, A., Natalizi, T., Valenti, P., Polimeni, A. Streptococcus mutans and Streptococcus sobrinus are able to adhere and invade human gingival fibroblast cell line. <u>International Journal of</u> <u>Immunopathology and Pharmacology</u> 23(4) (2010): 1253-1260.
- [91] Nascimento, M.M., Lemos, J.A., Abranches, J., Goncalves, R.B., and Burne, R.A.
 Adaptive acid tolerance response of *Streptococcus sobrinus*. <u>J Bacteriol</u> 186(19) (2004): 6383-6390.
- [92] Clarke, J.K. On the Bacterial Factor in the Etiology of Dental Caries. <u>British</u> journal of experimental pathology 5(3) (1924): 141-147.
- [93] Loesche, W.J. Role of Streptococcus mutans in human dental decay. <u>Microbiological Reviews</u> 50(4) (1986): 353-380.
- [94] Belli, W.A., Marquis, R.E. Adaptation of *Streptococcus mutans* and *Enterococcus hirae* to acid stress in continuous culture. <u>APPLIED AND ENVIRONMENTAL MICROBIOLOGY</u> 57(4) (1991): 1134 1138.
- [95] Perry, A.L. and Lambert, P.A. Propionibacterium acnes. <u>Lett Appl Microbiol</u> 42(3)(2006): 185-8.

- [96] Park, H.J., et al. Clinical significance of *Propionibacterium acnes* recovered from blood cultures: analysis of 524 episodes. <u>J Clin Microbiol</u> 49(4) (2011): 1598-601.
- [97] Kirschbaum, J.O. and Kligman, A.M. THe pathogenic role of corynebacterium acnes in acne vulgaris. <u>Archives of Dermatology</u> 88(6) (1963): 832-833.
- [98] Ajay Bhatia, J.-F.M., and David H. Persing. Propionibacterium acnes and chronic diseases. in Knobler S.L., O.C.S., Lemon S.M., Najafi, M. (ed.)<u>The Infectious</u> <u>Etiology of Chronic Diseases: Defining the Relationship, Enhancing the Research, and Mitigating the Effects</u>. Washington (DC): National Academies Press, 2004.
- [99] Zhang, X.L., Jeza Vt Fau Pan, Q., and Pan, Q. Salmonella typhi: from a human pathogen to a vaccine vector. <u>Cellular & Molecular Immunology</u> 5(2) (2008): 91-97.
- [100] Organization, W.H. <u>Background document: The diagnosis, treatment and prevention of typhoid fever</u>. Biologicals, D.o.V.a., Editor. 2003, World Health Organization: Switzerland.
- [101] Kidgell, C., et al. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. <u>Infection, Genetics and Evolution</u> 2 (2002): 39-45.
- [102] Kohanski, M.A., Dwyer, D.J., and Collins, J.J. How antibiotics kill bacteria: from targets to networks. <u>Nature Reviews Microbiology</u> 8(6) (2010): 423-35.
- [103] Jardetzky, O. Studies on the mechanism of action of chloramphenicol. I. The conformation of chloramphenicol in solution. <u>The Journal of Biological</u> <u>Chemistry</u> 238(2498-2508) (1963).
- [104] Corbett, M.D. and Chipko, B.R. Synthesis and antibiotic properties of chloramphenicol reduction products. <u>Antimicrobial Agents and Chemotheraphy</u> 13(2) (1978): 193-198.
- [105] Bartz, Q.R. Isolation and characterization of chloromycetin. <u>Journal of Biological</u> <u>Chemistry</u> 172(2) (1948): 445-450.
- [106] Fair, R.J. and Tor, Y. Antibiotics and bacterial resistance in the 21st century. <u>Perspective in Medicinal Chemistry</u> 6 (2014): 25-64.

- [107] Lefterova, M.I. and Lazar, M.A. New developments in adipogenesis. <u>Trends in</u> <u>Endocrinolgy and Metabolism</u> 20(3) (2009): 107-114.
- [108] Ford, N.A., DiGiovanni, J., and Hursting, S.D. <u>Metabolic perturbations associated</u> with adipose tissue dysfunction and the obesity–cancer link. Adipose tissue and cancer. New York: Springer, 2013.
- [109] Stephens, J.M. The fat controller: adipocyte development. <u>PLoS Biology</u> 10(11) (2012): 1-3.
- [110] Dani, C. and Billon, N. <u>Adipose tissue biology</u>. New York: Springer, 2012.
- [111] Fantuzzi, G. and Mazzone, T. <u>Adipose tissue and adipokines in health and</u> <u>disease</u>, ed. Bendich, A. New Jersey: Humana Press, 2007.
- [112] Enerback, S. Brown adipose tissue in humans. <u>International Journal of Obesity</u> 34(S1) (2010): S43-S46.
- [113] Saely, C.H., Geiger, K., and Drexel, H. Brown versus white adipose tissue : a minireview. <u>Gerontology</u> 58(1) (2012): 15-23.
- [114] Ali, A.T., Hochfeld, W.E., Myburgh, R., and Pepper, M.S. Adipocyte and adipogenesis. <u>European Journal of Cell Biology</u> 92(6–7) (2013): 229-236.
- [115] Camp, H.S., Ren, D., and Leff, T. Adipogenesis and fat-cell function in obesity and diabetes. <u>TRENDS in Molecular Medicine</u> 8(9) (2002).
- [116] Bluher, M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. <u>Best Practice & Research Clinical Endocrinology & Metabolism</u> 27 (2013): 163-177.
- [117] Bjorndal, B., Burri, L., Staalesen, V., Skorve, J., and Berge, R.K. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. <u>Journal of Obesity</u> (2011): 1-15.
- [118] Chaysripongkul, S. <u>Reagent development for the preparation of acid chloride</u> for synthesis of bioactive compound. Master of Science, Department of Chemistry Chulalongkorn University, 2003.
- [119] Nouailhas, H., Aouf, C., Le Guerneve, C., Caillol, S., Boutevin, B., and Fulcrand,H. Synthesis and properties of biobased epoxy resins. part 1. Glycidylation of

flavonoids by epichlorohydrin. <u>Journal of Polymer Science Part A: Polymer</u> <u>Chemistry</u> 49(10) (2011): 2261-2270.

- [120] Karuppiah, P. and Mustaffa, M. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. <u>Asian Pacific Journal of Tropical Biomedicine</u> 3(9) (2013): 737-742.
- [121] Sawasdee, S. <u>Screening for Antimicrobial Substance Producing Actinomycetes</u> <u>from Soil Master, Microbiology Prince of Songkla, 2012.</u>
- [122] Bio-Rad. <u>Mini-PROTEAN®Tetra Cell, Instruction Manual</u>. Bio-Rad Laboratories, Inc.: USA.
- [123] Shahwar, D., Raza, M.A. In vitro antibacterial activity of extracts of *Mimusops elengi* against gram positive and gram negative bacteria. <u>African Journal of Microbiology Research</u> 3(8) (2009): 458-462.
- [124] Ahmad Barudin, N.H., Sreekantan, S., Ong, M.T., and Lai, C.W. Synthesis, characterization and comparative study of nano-Ag–TiO2 against Gram-positive and Gram-negative bacteria under fluorescent light. <u>Food Control</u> 46 (2014): 480-487.
- [125] Kanazawa, A., Ikeda, T., and Endo, T. Synthesis and antimicrobial activity of dimethyl- and trimethyl-substituted phosphonium salts with alkyl chains of various lengths. <u>Antimicrobial Agents and Chemotherapy</u> 38(5) (1994): 945-952.
- [126] Birnie, C.R., Malamud, D., and Schnaare, R.L. Antimicrobial Evaluation of N-Alkyl Betaines and N-Alkyl-N,N-Dimethylamine Oxides with Variations in Chain Length. <u>Antimicrobial Agents and Chemotherapy</u> 44(9) (2000): 2514-2517.
- [127] Sahariah, P., et al. Impact of Chain Length on Antibacterial Activity and Hemocompatibility of Quaternary N-Alkyl and N,N-Dialkyl Chitosan Derivatives. <u>Biomacromolecules</u> 16(5) (2015): 1449-1460.
- [128] Altay, E., Yapaöz, M.A., Keskin, B., Yucesan, G., and Eren, T. Influence of alkyl chain length on the surface activity of antibacterial polymers derived from ROMP. <u>Colloids and Surfaces B: Biointerfaces</u> 127 (2015): 73-78.
- [129] Devinsky, F., Kopecka-Leitmanova, A., Sersen, F., and Balgavy, P. Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the

homologous series of N,N-dimethylalkylamine oxides. <u>Journal of Pharmacy and</u> <u>Pharmacology</u> 42 (1990): 790-794.

- [130] Janoff, A.S., Pringle, M.J., and Miller, K.W. Correlation of general anesthetic potency with solubility in membranes. <u>Biochimica et Biophysica Acta (BBA) -</u> <u>Biomembranes</u> 649(1) (1981): 125-128.
- [131] Pringle M. J., B., K. B., Miller, K. W. Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? <u>Molecular Pharmacology</u> 19 (1981): 49-55.
- [132] Franks N. P., L., W. R. Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. <u>Biophysics</u> 83 (1986): 5.
- [133] Hansch, C. and Fujita, T. p-**σ**-**π** Analysis. A method for the correlation of biological activity and chemical structure. Journal of the American Chemical <u>Society</u> 86(8) (1964): 1616-1626.
- [134] Lien, E.J.C., Hansch, C., and Anderson, S.M. Structure-activity correlations for antibacterial agents on gram-positive and gram-negative cells. <u>Journal of</u> <u>Medicinal Chemistry</u> 11(3) (1968): 430-441.
- [135] Baláž, Š., Šturdík, E., Rosenberg, M., Augustín, J., and Škára, B. Kinetics of drug activities as influenced by their physico-chemical properties: Antibacterial effects of alkylating 2-furylethylenes. <u>Journal of Theoretical Biology</u> 131(1) (1988): 115-134.
- [136] Lee, A.G. Interactions between anesthetics and lipid mixtures. Normal alcohols.<u>Biochemistry</u> 15(11) (1976): 2448-2454.
- [137] Devinsky, F., Lacko, I., and Krasnec, L. Amine oxides. I. Synthesis, ¹H-n.m.r., and infrared spectra of 4-alkylmorpholine-N-oxides. <u>Chemical Papers</u> 32(1) (1978): 10.
- [138] Sugamoto, K., Matsusita, Y.-i., Matsui, K., Kurogi, C., and Matsui, T. Synthesis and antibacterial activity of chalcones bearing prenyl or geranyl groups from *Angelica keiskei*. <u>Tetrahedron</u> 67(29) (2011): 5346-5359.
- [139] Vega-Perez, J.M., et al. Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: synthesis and in vitro antimicrobial and cytotoxic activities. <u>European Journal of Medicinal Chemistry</u> 58 (2012): 591-612.

- [140] Güven, Ö.Ö., Erdoğan, T., Göker, H., and Yıldız, S. Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers. <u>Bioorganic & Medicinal Chemistry Letters</u> 17(8) (2007): 2233-2236.
- [141] Al-Abdullah, E.S., Asiri, H.H., Lahsasni, S., Habib, E.E., Ibrahim, T.M., and El-Emam, A.A. Synthesis, antimicrobial, and anti-inflammatory activity, of novel Ssubstituted and N-substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols. <u>Drug</u> <u>Design, Development and Therapy</u> 8 (2014): 505-518.
- [142] Andrews, J.M. Determination of minimum inhibitory concentrations. <u>Journal of</u> <u>Antimicrobial Chemotheraphy</u> 48 (2001): 5-16.
- [143] Sarker, S.D., Nahar, L., and Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. <u>Methods</u> 42 (2007): 321-324.
- [144] Guerin, T.F., Mondido, M., McClenn, B., and Peasley, B. Application of resazurin for estimating abundance of contaminant-degrading micro-organisms. <u>Lett Appl</u> <u>Microbiol</u> 32(5) (2001): 340-345.
- [145] Thavarajah, R., Mudimbaimannar, V.K., Elizabeth, J., Rao, U.K., and Ranganathan,
 K. Chemical and physical basics of routine formaldehyde fixation. Journal of
 <u>Oral and Maxillofacial Pathology : JOMEP</u> 16(3) (2012): 400-405.

CHULALONGKORN UNIVERSITY

Appendix 8. HRMS (ESI) of G02

			N	lass S	Spect	rum List	Report			
Analysis Info Analysis Nan Method Sample Nam	o ne OSCU Tune e G-02 G-02	DSCU581109001.d Acquisitio Fune_low_POS_Natee20130403.m Operator G-02 Instrume G-02				Acquisition Da Operator Instrument	on Date 11/9/2015 11:24:41 AM Administrator nt micrOTOF 72			
Acquisition Parameter Source Type ESI Scan Range n/a Scan Begin 50 m/z Scan End 3000 m/z			Ion Polarity Positive Capillary Exit 180.0 V Hexapole RF 150.0 V Skimmer 1 45.0 V Hexapole 1 24.3 V			Set Corrector Fill 50 V Set Pulsar Pull 337 V Set Pulsar Push 337 V Set Reflector 1300 V Set Filght Tube 9000 V Set Detector TOF 2093 V				
Inter v1	ns. n6					05 4000		+N	1S, 0.4-0.4	min #(24-25
1	.5				2	95.1309				
1	.0									
	-									
0	.5									
					1					
	-	100		200	,. , k,	300	400	500	·····	, , , , , , , , , , , , , , , , , , ,
#	m/z	1	1%	S/N	FWHM	Res.				
2	217 1232 218.1173	2145	0.1	104.7	0.0454	4784 4049				
3	227.1099	2974	0.2	26.9	0.0531	4280				
5	246.1280	4718	0.3	42.9	0.0680	3534				
6	255.1379	2152	0.1	19.3	0.0566	4507				
7	273.1485	287951	18.3	2642.1	0.0596	4582				
9	275.1543	5765	0.4	52.4	0.0601	4574				
10	294.9321	4394	0.3	39.7	0.1906	1547				
11	295.1309	1576832	100.0	14448.3	0.0676	4366				
13	295.7817	2449	0.2	21.9	0.2652	1115				
14	295 9543	2117	0.1	18.9	0.1073	2759				
16	297.1359	28450	1.8	260.1	0.0625	4855				
17	298.1384	2910	0.2	26.1	0.0589	5066				
18	311.1035	29378	1.9	268.3	0.0643	4837				
20	313.1153	3439	0.2	30.9	0.0898	3488				
21	421.2330	2230	0.1	20.4	0.0925	4554				
23	428.6918	3243	0.4	30.1	0.0850	5036				
24	522.5939	2814	0.2	27.5	0.1001	5220				
25	550.6259	2528	0.2	25.0 79.5	0.1116	4936 4700				
27	568.2717	2833	0.2	28.6	0.1236	4599				
28	1884.8452	2348	0.1	35.7	0.0286	65836				
30	2363 3279	2200	0.1	34.9	0.0317	71267				
ruker Dalton	ics DataAn	alysis 3.3			printed	1: 11/10/20	15 2:15:34 PM		Page	l of 1

Appendix 9. HRMS (ESI) of G03

				Ν	Aass	Spec	ctru	m List F	Report			
Analysis Inf Analysis Na Method Sample Nan	fo me ne	OSCU581109002.c Tune_low_POS_Na <mark>G-03</mark> G-03			d atee20130403.m				Acquisition Date Operator Instrument	11/9/2015 11:28:07 AM Administrator micrOTOF 72		
Acquisition Parameter Source Type ESI Scan Range n/a Scan Begin 50 m/z Scan End 3000 m/z			Ion Polarity Capillary Exit Hexapole RF Skimmer 1 Hexapole 1			ositive 0.0 V 0.0 V .0 V .3 V	Set Correcto Set Pulsar P Set Pulsar P Set Reflecto Set Flight Tu Set Detector	50 V 337 V 337 V 1300 V 9000 V 2093 V				
Inte x	ns. 106						323 16	21		+	MS, 0.4-0.4	min #(24-2
1	25											
1	00											
0	75											
0	50											
0	25											
0	00	· · · · · · ·	·····		245.1	182			· · · ·		623.3	3379
		1	00	2	00	3	00	400	500		600	m
#		m/z	I	1%	S/N	FWHM	Res.					
1	202	2 1013	3957 25935	0.3	30.7	0.0465	4351					
3	227	7 1089	5040	0.3	36.3	0.0538	4219					
4 5	24:	5.1182 5.1211	102135	1.1	/11.2 113.5	0.0530	4627 4754					
6	295	5.1382	7092	0.5	42.8	0.0930	3174					
8	302	2.1831	74688	5.1	450.6	0.0649	4655					
9	303	3.1869 2.9440	10563 4044	0.7	62.9 22.4	0.0769	3943 1119					
11	323	3.1621	1454878	100.0	8383.4	0.0726	4450					
13	325	5.1668	32506	2.2	185.6	0.0705	4611					
14 15	339	9.1356).1388	236050 42462	16.2 2.9	234.9	0.0726	4670 4650					
16 17	341	1.1389	22531	1.5	123.9	0.0781	4368					
18	372	2.3455	4796	0.3	21.5	0.0825	4146					
19 20	381	2022	9216 7012	0.6	50.0 38.5	0.0965	3949 4703					
21	413	8.2570	13631	0.9	76.8	0.0990	4173					
22 23	429	.2773	4242 4068	0.3	23.5	0.1333	3220 3253					
24	470	2366	6732	0.5	39.6	0.1021	4604					
26	522	.5948	8697	0.6	54.7	0.1043	5010					
27	550 623	3379	8397 21645	0.6	54.5 165.0	0.1143 0.1278	4819 4877					
29 30	624 641	3424	8571	0.6	64.6	0.1380	4524					
Bruker Daltor	nics [DataAn	alysis 3.3			print	ed:	11/10/2015	2:16:03 PM		Page	1 of 1

Analysis Inf Analysis Nar Method Sample Nar Acquisition Source Type	ne (
Acquisition Source Type	ne (OSCU581109003.d Tune_low_POS_Natee2 G-04 G-04			DSCU581109003.d une_low_POS_Natee20130403.m 5-04		Acquisition Date Operator Instrument	11/9/2015 11:31:53 AM Administrator micrOTOF 72				
scan Range Scan Begin Scan End	Param	ameter ESI n/a 50 m/z 3000 m/z			lon Polarity Positive ESI Ion Polarity Positive \/a Capillary Exit 150.0 V 50 m/z Hexapole RF 150.0 V 3000 m/z Skimmer 1 45.0 V Hexapole 1 24.3 V			Set Corrector Fill 50 V Set Pulsar Pull 337 V Set Pulsar Push 337 V Set Reflector 1300 V Set Flight Tube 9000 V Set Detector TOF 2093 V				
Inte x1	ns. 06					379.22	254			+	MS, 0.4-0.4n	nin #(23-2
1.	25					010.21						
1.	00											
0.	75											
0.	50									735 4	1530	
0.	25	245 1102							735.4550			
	1	00	200) 	300		400	500	600 7	00	800	
#		m/z		1.%	S/N		Por					
1	217.1	240	6908	0.5	55.2	0.0466	4658					
3	357.2	431	290047	21.3	1824.8	0.0757	4718					
4 5	358.2	459	65969 10582	4.8	414.7 65.9	0.0746 0.0795	4803 4520					
6	371.2	148	7411	0.5	46.3	0.0868	4278					
8	379.2	254	1364482	100.0	8710.6	0.0835	4542					
10	380.2	268 291	323011 41647	23.7	2062.8	0.0777	4895 5125					
11	393.2	029	35445	2.6	227.6	0.0814	4833					
13	395.1	991	378433	27.7	2440.7	0.0848	4662					
14 15	396.20	010 996	88162 36798	6.5 2.7	568.3	0.0788	5027 4733					
16 17	398.20	018	7188	0.5	45.6	0.0890	4476					
18	411.20	073	7585	0.6	48.6	0.0921	4442 4198					
19 20	413.23	382 362	10276 12029	0.8	66.2 85.0	0.1089	3794 5296					
21	546.83	395	9806	0.7	69.1	0.1027	5326					
22	554.82	280	16142	1.0	153.2	0.1018	5447					
24 25	555.32	275 141	7264 9485	0.5	51.1	0.1129	4918 5357					
26	735.45	530	324176	23.8	2197.0	0.1554	4734					
28	737.45	584	38453	2.8	258.8	0.1512	4871 4879					
29 30	738.45	597 297	7464 10088	0.5 0.7	48.7 66.3	0.1494 0.1611	4944 4651					
ruker Daltor	ics Da	taAna	alysis 3.3			print	ted: 11/	0/2015 2	2:16:29 PM		Page 1	of 1
			N	lass	Spec	ctrun	n List R	eport				
--	---	--	--	---	--	--	---------------------------------------	---	-----------------------------------	--	---------------	
Analysis Info Analysis Name Method Sample Name	OSCU Tune G-05 G-05	J58110900 low_POS)4.d _Natee2	2013040	3.m			Acquisition Date Operator Instrument	11/9 Adm micr	0/2015 11:3 ninistrator OTOF	5:40 AM 72	
Acquisition Pa Source Type Scan Range Scan Begin Scan End	rameter ESI n/a 50 m/ 3000	z m/z		lon Pola Capillar Hexapo Skimme Hexapo	arity ry Exit ble RF er 1 ble 1	Pos 250 150 45.0 24.3	itive .0 V .0 V .0 V .3 V	Set Correcto Set Pulsar Pi Set Pulsar Pi Set Reflector Set Reflector Set Flight Tu Set Detector	r Fill ull ush be TOF	50 V 337 V 337 V 1300 V 9000 V 2093 V		
Intens x10 ⁶ 1.0 0.8 0.6 0.4	Intens x10 ⁶ 1.0 0.8 0.6 0.4 0.2 245.1238				435.	2881				+MS, 1.	8min #(10	
0.2		24	5 1238						8-	47.5730		
0.0	0.0 100 200 3			300	400	5	600	700	800	900	m	
# 1 2 3 4 4 4 6 4 9 4 10 4 11 4 12 4 13 4 14 12 4 15 4 15 4 16 6 17 6 18 20 8 21 8 22 8 23 8 24 8 25 8 26 8 27 8 28 3 30 8	m/z 17 1283 145 1238 143 3069 14 3104 35 2881 35 8448 36 2911 37 2929 38 2949 49 2652 51 2609 52 2633 53 2617 54 2631 65 2424 38 4160 38 9197 39 4179 47 5730 48 5756 49 5796 63 5494 64 5508 65 5790 65 5579 65 5579 81 5576 82 5562 83 5562 83 5562 83 5562 83 5562	l 5051 19509 65937 18717 1092111 3689 315189 93500 291017 80994 29387 6930 3614 12048 10233 5437 51098 30112 9153 55778 3596 30112 9153 55778 3596 35778 3596 34830 8598 38622 38598 38622 38598 38622 3444	$\begin{array}{c} 1\% \\ 0.5 \\ 1.8 \\ 6.0 \\ 1.7 \\ 100.0 \\ 0.3 \\ 2.8 \\ 9.9 \\ 2.6 \\ 6.7 \\ 1.0 \\ 0.5 \\ 0.9 \\ 2.7 \\ 0.6 \\ 0.3 \\ 0.5 \\ 0.9 \\ 0.5 \\ 0.9 \\ 0.5 \\ 0.9 \\ 0.5 \\ 0.9 \\ 0.5 \\ 0.9 \\ 0.5 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.4 $	S/N 43.3 166.6 554.4 30.6 2687.5 2502.2 58.8 42.8 79.5 2502.2 58.8 30.5 2502.2 58.8 30.5 2502.2 58.8 30.5 30.5 42.7 432.3 254.2 76.5 47.7 29.2 124.1 71.5 31.5 31.5 145.0 83.9 39.1 27.8	FWHM 0 0613 0 0663 0 0908 0 0908 0 0908 0 0932 0 0983 0 0932 0 0983 0 0932 0 0988 0 0932 0 0988 0 0932 0 1011 0 0968 0 0942 0 1011 0 0968 0 1095 0 1011 0 1085 0 1254 0 1254 0 1755 0 1756 0 1755 0 1756 0 1756 0 1766 0 1778 0 1964 0 1964	Res. 33645 3545 4550 4447 1536 4652 4652 4452 4453 4664 4483 5118 4463 4463 4509 5150 6093 5150 48841 4830 48841 4735 4592 4592 4592 4592 4592 4592 4592 459						
Bruker Daltonics	ker Daltonics DataAnalysis 3.3			print	ed:	11/10/2015 2	:17:07 PM		Page 1	of 1		

				N	lass	Spec	trum L	ist Re	port		
Analysis Inf	0					3					
Analysis Nar	ne	OSRH	59032400	1.d					Acquisition Date	3/24/2016 1:1	15:37 PM
Method		Tune_	wide_POS	Tawa	tchai_05F	eb2016	.m		Operator	Administrator	
Sample Nam	ne	G-06 G-06							Instrument	micrOTOF	72
Acquisition	Para	ameter							Set Correcto	r Fill 50 V	
Source Type Scan Range		ESI n/a			Ion Pola Capillan	rity Exit	Positive		Set Pulsar P	ull 337 V	
Scan Begin		50 m/z			Hexapol	e RF	400.0 V		Set Reflector	1300 V	
Scan End		3000 n	1/Z		Skimmer Hexapole	r 1 e 1	70.0 V 25.0 V		Set Flight Tu Set Detector	be 9000 V TOF 2295 V	
Inte	ns.									+MS, 0.6-0.	6min #(34-3
	2.0					357.146	1				
1	1.0										
(0.5									001 0040	
C	0.0 ¹	100	200)	300		400	500	600	700	800 m
#	1/	m/z	1225	1%	S/N	FWHM	Res.				
2	33	35.1610	15549	0.2	47.2	0.0627	5348				
3	33	36.1640	4179	0.2	12.3	0.0646	5200				
4	35	56.9071	5543 14081	0.3	16.6	0.1649	1704				
6	35	57.1464	2059834	100.0	6352.1	0.0787	4536				
7	35	57.6480	11487	0.6	34.9	0.3802	941				
9	35	58.1479	540101	26.2	1665.2	0.0678	5280				
10	35	58.4771	5046	0.2	15.1	0.2031	1765				
12	36	59.1504 50.1526	8753	0.4	236.1	0.0675	5054				
13	37	1.1258	8672	0.4	26.2	0.0721	5146				
14	37	3.1201 74.1227	26301	1.3	- 21.4	0.0714	5225				
16	52	1.2295	8378	0.4	25.2	0.0964	5409				
17	52	21.7278	5691	0.3	16.9	0.0912	5719				
18	69	2.3377	63061	6.3 3.1	427.0	0.1425	4852				
20	69	3.3400	16285	0.8	52.7	0.1449	4786				
21	107	5.7154	4200	0.2	13.0	0.0229	46961				
23	144	3.2741	4371	0.2	12.8	0.0364	39657				
24	192	0.6318	4294	0.2	12.4	0.0300	64128				
25 26	233	9.2694	4935 4242	0.2	13.9	0.0325	71936				
27	259	6.9527	4849	0.2	14.5	0.0334	77716				
28	279	9.0710	4195	0.2	12.6	0.0373	75012				
30	293	8 0561	4042	0.2	11.8	0.0376	78214				
Bruker Daltor	nics I	DataAna	alysis 3.3			printe	ed: 3/24	/2016 3:45	03 PM	Page	e 1 of 1

			N	lass	Spec	trum	n List	Report			
Analysis Info Analysis Name Method Sample Name	e OSCU Tune_ G-07 G-07	Ion Polarit Capillary E // Low_POS_Natee20130403.r Ion Polarit Capillary E // Low_POS_Natee20130403.r // L	i.m			Acquisi Operato Instrum	tion Date 5/8 or Adr ent mic	/2016 3:08: ninistrator crOTOF	33 PM 72		
Acquisition P Source Type Scan Range Scan Begin Scan End	arameter ESI n/a 50 m/z 3000 m	Ma RH590508002.d ow_POS_Natec201 //z S //z S ///z S ///2 S ////2 S ///2 S ////2 S ////2 S ///2 S ////2 S ////2 S ////2 S ////2 S ////2 S ////2 S /		lon Pola Capillary Hexapol Skimmer Hexapol	rity / Exit e RF r 1 e 1	Posi 180. 150. 45.0 24.3	tive 0 V 0 V V V	S S S S S S	et Corrector Fill et Pulsar Pull et Pulsar Push et Reflector et Flight Tube et Detector TOF	50 V 337 V 337 V 1300 V 9000 V 2295 V	
intens x10 1.(3. 6 5 0					285.1	492			+MS, 1.0-1.0r	nin #(57-58)
0.5	5			231.	1019		307.1293		413 2654		
#	100 m/z	150	2	чи, ли, ни 00 S/N	250	Res	300	350	400	450	 m/z
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	188.0858 197.0943 201.0909 202.1064 203.1047 215.1061 216.1124 217.1164 225.0933 229.0896 231.1019 238.0398 243.1036 244.1092 245.1171 257.1558 249.1092 245.1171 257.1558 286.1522 287.1533 301.1404 307.1293 308.1322 323.1032 324.1054 413.2654 622.0312 922.0119	21622 32873 70337 90518 79931 66868 29035 21073 58257 108834 21688 61634 37168 34300 67037 1438555 286376 36684 26026 549544 103311 104344 21464 39775 88366 88281	1.5 2.3 4.9 1.4 6.6 5.6 4.6 2.0 7.6 1.5 4.0 7.6 2.4 4.7 100.0 19.9 2.6 1.8 38.2 7.3 1.5 2.8 1.5 2.8 1.5 6.1	30.2 30.2 46.4 99.9 28.6 136.0 114.4 95.6 41.5 29.9 83.7 157.0 30.9 89.2 53.5 49.4 97.6 2137.9 425.2 53.8 38.2 825.0 154.5 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6 62.4 157.2 31.6	0.0642 0.0530 0.0560 0.0560 0.0568 0.0557 0.0594 0.0658 0.0672 0.0579 0.0595 0.0645 0.06615 0.0645 0.0664 0.0654 0.0655 0.0654 0.0655 0.0654 0.0655 0.0654 0.0655 0.0656 0	2928 3717 3590 2507 3744 3418 3408 3989 4004 3798 3987 4289 4004 3798 3987 4289 4423 4612 4720 4874 5035 4837 5023					
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	217.1164 225.0933 229.0896 231.1019 238.0398 243.1036 244.1092 245.1171 257.1558 285.1492 286.1522 287.1533 301.1404 307.1293 308.1322 323.1032 324.1054 413.2654 622.0312 922.0119 923.0125	29235 21073 58257 108834 21688 61634 37168 34300 67037 1438555 286376 36684 26026 549544 103311 104344 21464 39775 88366 88281 19599 31736	2.0 1.5 4.0 7.6 2.4 4.7 100.0 19.9 1.8 38.2 7.3 1.5 2.8 6.1 6.1 1.4 2.2	41.5 29.9 83.7 157.0 30.9 89.2 53.5 49.4 97.6 2137.9 425.2 53.8 825.0 154.5 157.2 31.6 62.4 157.2 171.8 37.2 63.4	0.0594 0.0658 0.0672 0.0579 0.0595 0.0640 0.0616 0.0645 0.0665 0.0665 0.0664 0.0663 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0654 0.0654 0.0654 0.0654 0.0654 0.0655 0.05550 0.05550 0.055500000000	3654 3418 3408 3989 4004 3798 3987 4289 4584 4423 4612 4720 4720 4720 4874 5035 4837 5073 5073 5073					

Appendix 13. HRMS (ESI) of G07

Analysis Info			1	lass	spe	ctrun	n List F	Report		
Analysis Name	OSPH	5003240	12 d					Acquisition Date	2/24/2016 1	19-24 DM
Method	Tune	wide PO	S Tawa	atchai (5Eeb20	16 m		Operator	Administrat	. 10.34 PIVI
Sample Name	G-08			_				Instrument	micrOTOF	72
	G-08								indio i oi	12
Acquisition Pa	arameter							Set Correcto	r Fill 50 V	
Source Type Scan Range	ESI n/a			Ion Po	plarity	Posi	itive	Set Pulsar P	ull 337 V	
Scan Begin	50 m/z			Hexap	ole RF	400	0 V	Set Reflector	1300	/
Scan End	3000 m	n/z		Skimn	ner 1 pole 1	70.0	V	Set Flight Tu Set Detector	be 9000 V	1
Intens.	1			TICAL		20.0		Get Detector	+MS_0.9-	1 0min #/56-50
x10 ⁵					33	5.1624			100, 0.5-	1.011111 #(50-55
2	-									
5										
2										
1									647.3639	
	Į					386	.1477	511.2083		
	100		200		300		400	500	600	700 m/
#	m/z	1	1%	S/N	FWHM	Res.				
1	145.0541	4038	1.1	9.3	0.0097	14995				
2	335.1624	365792	100.0	958.4	0.0670	5004				
3	330.1652	11828	21.3	204.3	0.0673	4995				
5	349.1446	5568	1.5	14.3	0.0757	4613				
6	351.1411	48715	13.3	128.1	0.0717	4895				
7	352.1440	11304	3.1	29.4	0.0754	4671				
8	353.1403	4703	1.3	12.0	0.0802	4404				
10	357.1424	4/54	1.3	12.1	0.0857	4168				
11	386 6484	8129	22	42.9	0.0707	2450				
12	511.2083	6765	1.8	18.0	0.0961	5318				
13	527.1886	4480	1.2	11.8	0.1110	4749				
14	647.3639	63594	17.4	179.4	0.1343	4820				
15	648.3682	27790	7.6	78.1	0.1367	4745				
16	049.3/14	/346	2.0	20.3	0.1312	4951				
18	951 9801	3965	1.4	10.3	0.0209	42538				
19 1	207.1383	4496	1.2	11.8	0.0236	51211				
20 1	443.0416	5082	1.4	13.1	0.0262	55155				
21 1	443.2671	3914	1.1	10.1	0.0347	41576				
22 1	699.9605	3976	1.1	10.4	0.0280	60729				
23 1	864 4760	4385	1.2	10.5	0.0298	55184				
25 2	339.2655	5535	1.5	14.5	0.0330	70974				
26 2	339.4641	3985	1.1	10.4	0.0607	38520				
27 2	531.2638	4675	1.3	12.4	0.0352	71846				
28 2	938 0360	4115	1.1	11.0	0.0453	63274				
30 2	938.2840	3986	1.3	10.6	0.0377	71883				

Appendix 15. HRMS (ESI) of G09

				Mas	s Spe	ectru	m List	Rep	ort			
Analysis Inf Analysis Nar Method Sample Nam	o me OSC Tune ne G-09 G-09	URH5905 _low_PO	08001. S_Nate	d e201304	403.m			Ac Op Ins	equisition Date perator strument	5/8/20 Admir micrC	016 3:13:1 nistrator 0TOF	3 PM 72
Acquisition Source Type Scan Range Scan Begin Scan End	Parameter ESI n/a 50 m 3000	/z m/z		lon F Capi Hexa Skim Hexa	olarity Ilary Exit pole RF mer 1 pole 1	Pe 18 15 45 24	50.0 V 50.0 V 50.0 V 5.0 V 4.3 V		Set Correcto Set Pulsar P Set Pulsar P Set Reflecto Set Flight Tu Set Detector	r Fill ull ush r be TOF	50 V 337 V 337 V 1300 V 9000 V 2295 V	
Inte x1	ns. 05 5 4 3 2 1 307.1297				3	81 2415	403.2252	419.2093	435 2017		+MS, 0	2min #(1
	300	320	340		50	380	400	420	453.2017 451.20	075 460	480	m
# 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 223 24 225 227 28	m/z 307 1297 319 1669 331 1777 343 1863 349 1925 367 2229 374 2142 383 2439 395 2217 395 2217 403 2252 404 2278 405 2303 411 2155 417 2040 419 2093 420 2114 421 2102 429 2279 435 2017 451 2075 453 2204 453 2204 454 2231 474 2633 488,3013	I 68940 2680 1893 1553 2565 1923 1970 1213 56300 4617 20486 529352 138685 529352 138685 22774 9446 18113 28499 263834 70581 23123 10572 83425 10524 87022 4001 2789 1957	$\begin{array}{c} 1\%\\ 13.0\\ 0.5\\ 0.4\\ 0.3\\ 0.5\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.9\\ 9\\ 9\\ 3.9\\ 9\\ 100.0\\ 26.2\\ 1.6\\ 0.9\\ 4.9\\ 10.0\\ 26.2\\ 1.6\\ 0.9\\ 1.6\\ 0.9\\ 0.2\\ 0.4\\ 0.5\\ 0.5\\ 0.4\\ 0.5\\ 0.5\\ 0.4\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5$	S/N 110,9 4,4 3,1 2,6 4,3 2,3 3,2 0 95,6 6,4 3,3 3,3 2,0 95,6 7,8 3,3 2,0 95,6 7,8 3,3 2,0 95,6 7,8 3,3 2,0 95,6 7,8 3,3 2,0 95,6 7,8 3,3 3,3 2,0 95,6 7,8 3,3 3,3 2,0 95,6 7,8 3,3 3,3 2,0 95,6 7,8 3,3 3,3 3,3 2,0 95,6 7,8 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3	FwHM 0.0649 0.0988 0.7704 0.1123 0.0777 0.825 0.0269 0.0757 0.0892 0.0757 0.0892 0.0797 0.0814 0.0806 0.0878 0.0860 0.0866 0.0866 0.0866 0.0866 0.0866 0.0866 0.0866 0.0866 0.0878 0.0999 0.0877 0.0999 0.0877 0.0999 0.0877 0.0997 0.0977 0.0977 0.0977 0.0977 0.0977 0.0977 0.0077 0.007777 0.00777	Ros. 4733 3232 4703 3057 4519 2496 4450 13933 5034 4295 5030 4982 4953 4944 4683 4292 4665 4791 4215 4931 4748 4116 4303 6995 13054						
Bruker Daltor	ics DataAr	alysis 3.3	1		pr	inted:	5/8/2016	3:35:38	PM		Page 1	of 1

Analysis Info Analysis Name OSCURH590508003.d Analysis Name Oscurato_low_POS_Natee20130403.m Acquisition Date 5/8/2016.3.16.58 PM Sample Name G-10 C-10 Set Corrector Fill 50 //2016.3.16.58 PM Acquisition Parameter Set Corrector Fill 50 //2016.3.16.58 PM Administrator Scan Range E51 Ion Polarity Pastine Set Pulsar Pulsa 337 //2016.3.16.58 PM Scan Beign 50 m/z Set Method Set Pulsar Pulsa 337 //2016.3.16.58 PM Scan Beign 50 m/z Set Method Set Pulsar Pulsa 337 //2016.3.16.58 PM Scan Beign 50 m/z Set Method Set Pulsar Pulsa 337 //2016.3.16.58 PM Scan Beign 50 m/z Set Method Set Pulsar Pulsa 337 //2016.3.16.58 PM Scan Beign 50 m/z Set Method Set Pulsar Pulsar Pulsa 337 //2016.3.16.58 PM 125 1000 100 200 m/z Set Pulsar Pulsar Pulsa 337 //2016.3.16.58 PM 1225 125 125 126 11 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016.001.01 //2016					Ν	lass	Spec	ctrur	n List I	Report			
Acquisition Parameter Esl Ion Polanity Positive Set Corrector Fill 50 V Scan Range 50 m/z Set Datas Pull 337 V Set Pulsar Puls 337 V Scan Begin 50 m/z Set Miner 45.0 V Set Pulsar Puls 337 V Scan End 300 m/z Set Miner 45.0 V Set Pulsar Puls 337 V Scan End 300 m/z Set Miner 45.0 V Set Pulsar Puls 337 V Scan End 300 m/z Set Miner 45.0 V Set Pulsar Puls 337 V Scan Park 100 24.3 V Set Pulsar Puls 9000 V Set Detector TOP 2295 V 125 225 285.1465 400 500 600 600 202 200 300 400 500 600 600 202 2113 1267 10 9185 0668 3042 217131 112267 0.00 600 202 2131 3267 1.0 20.6 0574 3782	Analysis Inf Analysis Nar Method Sample Nam	o ne (1 ie (DSCL Fune_ 3-10 3-10	JRH59050 _low_POS	8003.d _Natee	2013040	13.m			Acquisition Date Operator Instrument	5/8/ Adn mici	2016 3:16: ninistrator rOTOF	58 PM 72
Intense x105 +MS. 0.5-0.5min #(29) 1.25 383.1638 100	Acquisition Source Type Scan Range Scan Begin Scan End	Paran	neter ESI n/a 50 m/ 3000	z m/z		lon Pol Capilla Hexapo Skimmo Hexapo	arity ry Exit ble RF er 1 ble 1	Po 18 15 45 24	sitive 0.0 V 0.0 V 0 V 3 V	Set Correct Set Pulsar F Set Pulsar F Set Reflecto Set Flight Tu Set Detector	or Fill Pull Push r ube r TOF	50 V 337 V 337 V 1300 V 9000 V 2295 V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inter	ns.									+	MS, 0.5-0.5	min #(29-3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.	25						38	3.1638				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	00											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.	76											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.	10											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.	50											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1	25				285.1	465						
# m/z I % S/N FWHM Res. 1 2010998 12743 1.1 21.2 0.0569 3536 2 2021313 26028 2.1 4.38 0.0499 4052 3 203.1119 11120 0.9 18.5 0.0668 3042 4 217.1213 12267 1.0 20.6 0.0574 3782 5 231.1035 13692 1.1 2.3 0.0565 4089 6 245.1167 103250 8.5 179.6 0.0524 4530 9 257.1652 18641 1.6 32.5 0.0503 4892 8 251.0670 42048 3.5 73.1 0.0552 4550 10 266.097 15079 1.2 2.61 0.0584 4865 11 267.0990 9842 0.8 16.8 0.0668 4001 12 285.1465 159717 1.3.2 285.0 <td>0.</td> <td>100</td> <td></td> <td>20</td> <td>50</td> <td>di yenyek</td> <td>300</td> <td></td> <td>400</td> <td>500</td> <td>e</td> <td>500</td> <td>, · . , . , m</td>	0.	100		20	50	di yenyek	300		400	500	e	500	, · . , . , m
# m/z I 1% S/N FWHM Res. 1 201098 12743 1.1 21.2 0.0569 3536 2 2021313 26028 2.1 4.38 0.0499 4052 3 2031119 11120 0.9 18.5 0.0668 3042 4 217.1213 12267 1.0 20.6 0.0574 3782 5 231.1035 13692 1.1 23.2 0.0564 4089 6 245.1167 103250 8.5 179.6 0.0524 4631 7 246.1205 18941 1.6 32.5 0.0503 4892 8 251.0670 42048 3.5 73.1 0.0524 4550 10 266.0871 1302 2.85 0.0586 4865 11 276.0950 9842 0.8 16.8 0.0684 4865 12 285.1465 159717 3.2 285.0 0.0582 <td></td>													
2 2021313 26028 2.1 4.38 0.0499 4052 3 203.1119 11120 0.9 18.5 0.0668 3042 4 217.1213 12267 1.0 20.6 0.0574 3782 5 231.1035 13692 1.1 23.2 0.0566 4089 6 245.1167 103250 8.5 179.6 0.0529 4631 7 246.1205 18841 1.6 32.5 0.0503 4892 8 251.0670 42048 3.5 73.1 0.0552 4550 9 257.1662 13602 1.1 23.4 0.0608 4201 12 265.0465 159717 13.2 2850 0.0582 4913 14 307.1297 33747 2.8 60.5 0.0646 4752 15 317.1688 10462 0.8 1.7 0.0725 4995 18 322.43 32.7 61.7 0.0726 4915 17 382.1638 10112 20.0 2310	#	201.0	m/z	12743	1 %	S/N	FWHM	Res.					
3 213.1119 11120 0.9 18.5 0.0668 3042 4 217.1213 12267 1.0 20.6 0.0574 3782 5 231.1035 13692 1.1 23.2 0.0565 4089 6 245.1167 103250 8.5 179.6 0.0529 4631 7 246.1205 18841 1.6 32.5 0.0503 4892 8 251.0670 42048 3.5 73.1 0.0524 4550 9 257.1662 13602 1.1 23.4 0.0608 4221 10 266.0897 15079 1.2 2.61 0.0584 4550 11 267.0990 9842 0.8 16.8 0.0686 4001 12 285.1465 159717 13.2 286.0 0.0684 4752 13 286.1497 32434 2.7 57.4 0.0582 4913 14 307.1297 33477 2.8 60.5 0.0646 4752 15 317.1688 10162 <td< td=""><td>2</td><td>202.1</td><td>313</td><td>26028</td><td>2.1</td><td>43.8</td><td>0.0499</td><td>4052</td><td></td><td></td><td></td><td></td><td></td></td<>	2	202.1	313	26028	2.1	43.8	0.0499	4052					
5 231 1035 13692 1.1 232 0.0665 4089 6 245.1167 103250 8.5 179.6 0.0529 4631 7 246.1205 18941 1.6 325 0.0503 4892 8 251.0670 42048 3.5 73.1 0.0552 4550 9 257.1662 13602 1.1 23.4 0.0609 4221 10 266.0897 15079 1.2 26.1 0.0584 4560 11 257.0990 9842 0.8 16.8 0.0668 4001 12 285.1465 159717 13.2 285.0 0.0584 4550 13 286.1497 32434 2.7 57.4 0.0582 4913 14 307.1297 33747 2.8 60.5 0.0646 4752 15 317.1688 10162 0.8 1.7 0.0277 4933 16 361.1801 123060 1.1 230.3 0.0720 5018 17 362.1831 33224 <t< td=""><td>3</td><td>203.1</td><td>213</td><td>11120 12267</td><td>0.9</td><td>18.5</td><td>0.0668</td><td>3042 3782</td><td></td><td></td><td></td><td></td><td></td></t<>	3	203.1	213	11120 12267	0.9	18.5	0.0668	3042 3782					
7 246,120 13841 1.6 32.5 0.0323 4892 8 251,0670 42048 3.5 73.1 0.0552 4550 9 257,1662 13602 1.1 23.4 0.0609 4221 10 266,0897 15079 1.2 26.1 0.0584 4560 11 257,0990 9842 0.8 16.8 0.0668 4001 12 285,1465 159717 13.2 286.0 0.0582 4913 13 286,1497 32434 2.7 57.4 0.0582 4913 14 307,1297 33747 2.8 60.5 0.0046 4752 15 317,1688 10162 0.8 1.7 0.0725 4995 18 382,9041 8444 0.7 15.3 0.3023 1267 19 333,1638 1213392 100.0 2310.3 0.0726 4815 20 344.1657 38 86.2 0.0777 4943 22 399.1378 245891 2.3	5	231.1	035	13692	1.1	23.2	0.0565	4089					
8 251 10670 42048 3.5 73.1 0.0552 4550 9 257 1662 13602 11 23.4 0.0609 4221 10 266.0897 15079 1.2 26.1 0.0584 4560 11 257.1662 159717 13.2 28.6 0.0568 4001 12 285.1465 159717 13.2 28.6 0.0568 4065 13 286.1497 32434 2.7 57.4 0.0582 4913 14 307.1297 33747 2.8 60.5 0.0646 4752 15 317.1688 10162 0.8 1.7 0.0725 5995 16 361.1801 123060 10.1 230.3 0.0725 5995 18 382.9051 8444 0.7 15.3 0.3023 1267 19 333.1638 121.3392 100.0 2310.3 0.0775 4943 22 399.1378 245891 20.3 472.6 0.0810 4926 23 <t< td=""><td>7</td><td>246.1</td><td>205</td><td>18941</td><td>1.6</td><td>32.5</td><td>0.0529</td><td>4892</td><td></td><td></td><td></td><td></td><td></td></t<>	7	246.1	205	18941	1.6	32.5	0.0529	4892					
10 266.0897 15079 1.2 26.1 0.0568 4500 11 267.0990 9842 0.8 16.8 0.0668 4001 12 285.1465 159717 13.2 285.0 0.0588 4865 13 286.1497 32434 2.7 57.4 0.0582 4913 14 307.1297 33747 2.8 60.5 0.0646 4752 15 317.1688 10162 0.8 17.9 0.0677 4683 16 361.1801 123060 10.1 230.3 0.0725 5995 18 382.9081 8444 0.7 15.3 0.3023 1267 19 333.1638 1213392 100.0 2310.3 0.0795 4815 20 384.1657 3.8 8.6.2 0.0779 4943 22 399.1378 245891 2.3 52.0 0.813 4933 22 399.1378 245891 2.3 52.0 0.814 4933 22 399.1378 245891 2.3 </td <td>8</td> <td>251.0</td> <td>662</td> <td>42048</td> <td>3.5</td> <td>73.1 23.4</td> <td>0.0552</td> <td>4550 4221</td> <td></td> <td></td> <td></td> <td></td> <td></td>	8	251.0	662	42048	3.5	73.1 23.4	0.0552	4550 4221					
11 235,1465 1597 13.2 236.0 0.0586 4865 13 286,1497 32434 2.7 57.4 0.0582 4913 14 307,1297 33747 2.8 60.5 0.0646 4752 15 317,1688 10162 0.8 17.9 0.6677 4683 16 361,1801 123060 10.1 230.3 0.0720 5018 16 361,1801 123060 10.1 230.3 0.0725 4995 18 382,9081 8444 0.7 15.3 0.3023 1267 19 333,1538 1213392 100.0 2310.3 0.0796 4815 20 384,1657 3.8 86.2 0.0779 4943 22 399,1378 245891 20.3 472.6 0.0810 4933 22 399,1378 245891 2.3 52.0 0.813 4933 25 4003,2263 13885 1.1 2.6 0.0813 4933 25 743,3425 34265 0.	10	266.0	897	15079	1.2	26.1	0.0584	4560					
13 286.1497 32434 2.7 57.4 0.0582 4913 14 307.1297 33747 2.8 60.5 0.0646 4752 15 317.1688 10162 0.8 17.9 0.0677 4683 16 361.1801 123060 10.1 230.3 0.0720 5018 17 362.1831 33224 2.7 61.7 0.0725 4995 18 382.9081 8444 0.7 15.3 0.3023 1267 19 333.1538 1213392 100.0 2310.3 0.0796 4815 20 384.1657 3.8 86.2 0.0779 4943 21 385.1686 45570 3.8 86.2 0.0719 4943 22 399.1378 245891 20.3 472.6 0.0810 4926 23 400.1404 64309 5.3 12.3 10.0784 5107 24 401.1412 27356 2.3 52.0 0.0813 4933 25 703.3425 340384 1.6<	12	285.1	465	159717	13.2	285.0	0.0586	4865					
15 317.1688 10162 0.8 17.9 0.0677 4683 16 361.1801 123060 10.1 230.3 0.0720 5018 17 362.1831 33224 2.7 61.7 0.0725 4995 18 382.9081 8444 0.7 15.3 0.3023 1267 19 383.1638 1213392 100.0 2310.3 0.0796 4815 20 344.1657 305122 25.1 5608 0.0761 5051 21 356.1686 45570 3.8 86.2 0.0774 4943 22 399.1378 245891 20.3 472.6 0.0810 4926 23 400.1404 64309 5.3 12.1 10.784 5107 24 401.1412 27356 2.3 52.0 0.0813 4933 25 403.2263 13865 1.1 26.1 0.0818 4929 26 743.3425 340384 28.1 768.5 0.1482 5015 27 744.3458 1	13	286.1	497 297	32434 33747	2.7	57.4 60.5	0.0582	4913 4752					
17 362.1831 33224 2.7 61.7 0.0725 4995 18 382.9081 8444 0.7 15.3 0.3023 1267 19 383.1638 1213392 100.0 2310.3 0.0796 4815 20 384.1657 305122 25.1 580.8 0.0761 5051 21 385.1686 45570 3.8 86.2 0.0779 4943 22 399.1378 245891 20.3 472.6 0.0810 4926 23 400.1404 64309 5.3 123.1 0.0784 5107 24 401.1412 27356 2.3 52.0 0.0813 4929 26 743.3425 340384 28.1 768.5 0.1482 5015 27 744.3458 176693 14.6 398.5 0.1482 5018 28 745.3491 50561 4.2 113.3 0.1485 5018 29 746.3513 10288 0.8 22.2 0.1587 4704	15 16	317.1	688 801	10162	0.8	17.9	0.0677	4683					
18 332 9081 8444 0.7 15.3 0.3023 1267 19 333.1638 1213392 100.0 2310.3 0.0796 4815 20 384.1657 305122 25.1 580.8 0.0761 5051 21 335.1686 45570 3.8 86.2 0.0779 4943 22 399.1378 245891 20.3 472.6 0.0810 4926 23 400.1404 64309 5.3 123.1 0.0784 5107 24 401.1412 27356 2.3 52.0 0.0813 4933 25 403.2263 13885 1.1 2.6.1 0.0818 4929 26 743.3425 340384 28.1 768.5 0.1482 5015 27 744.3458 176693 14.6 398.5 0.1482 5018 28 745.3491 50561 4.2 113.3 0.1485 5018 29 746.3513 10228 0.8 2.2 0.1587 4704 <td>17</td> <td>362.1</td> <td>831</td> <td>33224</td> <td>2.7</td> <td>61.7</td> <td>0.0725</td> <td>4995</td> <td></td> <td></td> <td></td> <td></td> <td></td>	17	362.1	831	33224	2.7	61.7	0.0725	4995					
20 384.1657 305122 25.1 580.8 0.0761 5051 21 385.1686 45570 3.8 86.2 0.0779 4943 22 399.1378 245891 20.3 472.6 0.0810 4926 23 400.1404 64309 5.3 123.1 0.0784 5107 24 401.1412 27356 2.3 52.0 0.0813 4933 25 403.2263 13885 1.1 2.61 0.0818 4929 26 743.3425 340384 28.1 765.5 0.1482 5015 27 744.3458 176693 14.6 398.5 0.1482 5018 28 745.3491 50561 4.2 113.3 0.1485 5018 29 746.3513 10228 0.8 22.2 0.1587 4704	18	382.9	638	8444 1213392	100.0	15.3 2310.3	0.3023	1267 4815					
22 399 1378 245891 20.3 472.6 0.0810 4945 23 400 1404 64309 5.3 123.1 0.0784 5107 24 401.1412 27356 2.3 52.0 0.0813 4933 25 403.2263 13886 1.1 2.61 0.0814 4929 26 743.3425 340384 28.1 768.5 0.1482 5015 27 744.3458 176693 14.6 398.5 0.1497 4972 28 745.3491 50561 4.2 113.3 0.1485 5018 29 746.3513 10228 0.8 22.2 0.1587 4704	20	384.1	657	305122	25.1	580.8	0.0761	5051					
23 400.1404 64309 5.3 12.3 1 0.0784 5107 24 401.1412 27356 2.3 52.0 0.0813 4933 25 403.2263 13885 1.1 261 0.0818 4929 26 743.3425 340384 28.1 768.5 0.1482 5015 27 744.3458 176693 14.6 398.5 0.1497 4972 28 745.3491 50561 4.2 113.3 0.1485 5018 29 746.3513 10288 0.8 22.2 0.1587 4704	22	399.1	378	245891	20.3	472.6	0.0810	4926					
25 403.2263 13885 1.1 26.1 0.0818 4929 26 743.3425 340384 28.1 768.5 0.1482 5015 27 744.3458 176693 14.6 398.5 0.1497 4972 28 745.3491 50561 4.2 113.3 0.1485 5018 29 746.3513 102288 0.8 22.2 0.1587 4704	23 24	400.1	404 412	64309 27356	5.3 2.3	123.1 52.0	0.0784	5107 4933					
27 744.3458 176693 14.6 398.5 0.1497 4972 28 745.3491 50561 4.2 113.3 0.1485 5018 29 746.3513 10288 0.8 22.2 0.1587 4704	25 26	403.2	263	13885	1.1	26.1	0.0818	4929					
28 745.3491 50561 4.2 113.3 0.1485 5018 29 746.3513 10288 0.8 22.2 0.1587 4704	27	744.3	458	176693	14.6	398.5	0.1497	4972					
	28 29	745.3	491 513	10288	4.2 0.8	113.3 22.2	0.1485 0.1587	5018 4704					
30 763.4035 11657 1.0 25.4 0.1503 5079	30	763.4	035	11657	1.0	25.4	0.1503	5079					
					1.0	20.4	0.1000	5075					
3ruker Daltonics DataAnalysis 3.3 printed: 5/8/2016 3:37:57 PM Page 1 of 1	3ruker Dalton	ics Da	itaAn	alysis 3.3			print	ed:	5/8/2016 3	:37:57 PM		Page	1 of 1

			N	lass	Spec	trum L	ist Repo	ort		
Analysis Info Analysis Name Method Sample Name	OSCI Tune <u>-</u> G-11 G-11	JRH59050 _low_POS	8004.d _Natee2	2013040)3.m		Ac Op Ins	quisition Date erator trument	5/8/2016 3 Administra micrOTOF	8:21:56 PM ator 72
Acquisition Par Source Type Scan Range Scan Begin Scan End	ameter ESI n/a 50 m/ 3000	z m/z		lon Pol Capilla Hexapo Skimm Hexapo	arity ry Exit ole RF er 1 ole 1	Positive 120.0 V 150.0 V 45.0 V 24.3 V		Set Corrector Set Pulsar Pu Set Pulsar Pu Set Reflector Set Flight Tut Set Detector	Fill 50 V ull 337 ush 337 1300 De 9000 TOF 2295	
Intens. x10 ⁶									+MS, 1.6	6-1.6min #(96-9
1.0					3	15.1603				
0.8							337.1431			
0.6								370	0.2043	
0.2						1		353.1170		
0.01	260	2/8	280		300	320	340	360	380	
#	m/z	1	۱%	S/N	FWHM	Res.				
1 25 2 25	5.1596 7.1725	2946 5115	0.3 0.5	5.0 10.0	0.0566 0.0523	4505 4921				
3 26 4 26	1.1134 7.0983	4574 24946	0.4 2.4	8.9 49.1	0.0570 0.0536	4579 4979				
5 27 6 27	5.1223 3.1086	2895 32685	0.3 3.1	5.7 64.9	0.0563 0.0552	4890 5034				
7 28 8 29	5.1476 1.5576	17448 1850	1.7 0.2	34.9 3.7	0.0584 0.0132	4884 22147				
9 29 10 30	7.1982 3.1553	3929 4093	0.4 0.4	7.9 8.3	0.0622 0.0853	4779 3556				
11 31 12 31	5.1603 5.1633	1050683 208792	100.0 19.9	2157.5 429.1	0.0661 0.0644	4771 4906				
13 31 14 32	7.1665 5.1574	35596 1169	3.4 0.1	73.2 2.4	0.0641 0.1101	4947 2954				
15 33 16 33	2.1831 7.1431	4773 643668	0.5 61.3	10.0 1348.8	0.0665	4998 4866				
17 33 18 33	3.1460 9.1505	126004 19207	12.0 1.8	264.3 40.3	0.0684 0.0733	4943 4627				
19 34 20 35	7.1659 3.1170	3725 246112	0.4 23.4	7.9 519.9	0.0925 0.0714	3752 4949				
21 36 22 36	1.1774 8.1848	6219 2717	0.6 0.3	13.2 5.8	0.0895 0.0933	4035 3891				
23 370 24 37	0.2043 1.2063	516553 123879	49.2 11.8	1097.9 263.4	0.0749 0.0746	4943 4974				
25 37 26 38	.1997	2502 5658	0.2	5.3 12.1	0.1206	3127 3573				
27 389	.0636 5.1921	4628	0.4	9.9 2.4	0.0878	4431 5627				
29 399	.7438	1500	0.1	3.2	0.0162	24679				
Bruker Daltonics	DataAn	alysis 3.3			print	ed: 5/8/2	016 3:39:09 F	M	Pa	age 1 of 1

				Mas	s Spe	ectri	um List	Repor	t			
Analysis Info Analysis Name Method Sample Name	OSCI Tune G-12 G-12	JRH5905 _wide_PC	08005. 0S_Nat	d ee2013	0403.m			Acqu Oper Instru	isition Date ator ument	5/8/2 Admi micr0	016 3:28 nistrator DTOF	39 PM 72
Acquisition Par Source Type Scan Range Scan Begin Scan End	ESI n/a 50 m/ 3000	'z m/z		lon F Capi Hexa Skim Hexa	Polarity Ilary Exit pole RF mer 1 pole 1		Positive 150.0 V 400.0 V 70.0 V 25.0 V		Set Corrector Set Pulsar Pu Set Pulsar Pu Set Reflector Set Flight Tul Set Detector	Fill JII JSh De TOF	50 V 337 V 337 V 1300 V 9000 V 2295 V	
Intens. x105											+MS,	0.5min #(30
3						365.17	31					
1-					343.18	383	398.2309					
			29	6.8798			ah dan		501.24	80		
2	00	250	, ,	300	3	بـــللإناسي 50	400	450	500	,	550	m/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.1847 15.1731 16.1755 7.1968 11.1510 15.1655 7.1661 18.2309 18.2309 18.2309 19.1877 0.1873 3.2066 5.1689 1.2632 3.2700 1.2480 5.4017 6.4063 7.3885 5.4016 9.4008 0.4289 1.4044 5.4112 5.4016 9.4008 0.4289 1.4044 5.4115 5.4016 9.4008 0.4289 1.4044 5.4115 5.4016 1.4055 1.405	38821 321623 321623 54357 29700 49088 100411 98774 23091 31838 35254 17345 23081 83977 49266 23081 83978 39620 23917 22648 21734 21570 17098	$\begin{array}{c} 12.1\\ 10.0\\ 22.9\\ 10.5\\ 16.9\\ 9.2\\ 15.3\\ 31.2\\ 9.9\\ 15.3\\ 30.7\\ 7.2\\ 9.9\\ 15.5\\ 5.5\\ 5.5\\ 6.7\\ 7.2\\ 26.1\\ 12.3\\ 7.4\\ 7.4\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 6.7\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5$	71.5 558.9 558.9 101.2 55.0 91.9 188.8 42.8 59.7 63.3 3.0 9.3 3.9 40.7 49.4 69.8 41.2 33.0 33.4 49.5 40.7 149.4 69.8 41.2 33.7 149.4 69.8 41.2 33.7 149.4 53.3 37.1 24.8 53.3 37.1 24.8 53.3 37.1 24.8 54.5 55.0 55.0 55.0 55.0 55.0 55.0 55.0	0.0714 0.0690 0.0735 0.0772 0.0798 0.0771 0.0994 0.0974 0.0994 0.0994 0.1517 0.0886 0.0936 0.1000 0.1039 0.1339 0.1338 0.1411 0.1604 0.1647 0.1660 0.2063 0.1748 0.1743 0.2061	5030 5292 5394 5785 4990 4976 5166 5166 5166 5162 4490 44218 4222 4832 4832 4832 4832 4832 4832 4432 44						
Bruker Daltonics	DataAn	alysis 3.3			pr	inted:	5/8/2016 3	8:39:41 PM			Page	1 of 1

				Mass	Spe	ctru	m Li	st Re	epor	t			
Analysis Inf Analysis Nar Method Sample Nam	ne OSR Tune Tune G-13 G-13	H5903240 _wide_P0	003.d DS_Tav	vatchai_()5Feb201	16.m			Acqu Opera Instru	isition Da ator ment	ate 3/2 Adr mic	4/2016 1:2 ninistrator rOTOF	1:51 PM 72
Acquisition Source Type Scan Range Scan Begin Scan End	Paramete ESI n/a 50 m 3000	r /z m/z		lon Po Capill Hexap Skimn Hexap	plarity ary Exit pole RF ner 1 pole 1	Po 20 40 70 25	0.0 V 0.0 V 0.0 V 5.0 V			Set Corre Set Pulsa Set Pulsa Set Refle Set Fligh Set Dete	ector Fill ar Pull ar Push ector t Tube ctor TOF	50 V 337 V 337 V 1300 V 9000 V 2295 V	
Inte x1	ns.											+MS, 0.6-0.6	6min #(36-37
~ 1					39	93.2045							
	6-												
	4												
	2-											763.4	549
	100	20	10	300		400	a	500		600	70	50	800 m/;
#	m/z	1	۱%	S/N	FWHM	Res.							
1	371.2186	9451 6168	1.3	25.9	0.0763	4862							
3	393.2045	737064	100.0	2074.4	0.0765	5141							
4	394.2068 395.2096	184041 28792	25.0	517.5	0.0728	5413 5241							
6	407.1892	10306	1.4	28.4	0.0962	4234							
7	409.1793	102955	14.0	289.8	0.0787	5201							
9	411.1845	11821	1.6	32.6	0.0917	4485							
10	425.2045	13150	1.8	36.4	0.1003	4239							
12	441.2219	9652	1.3	26.6	0.1256	3512							
13	443.1973	7312	1.0	20.0	0.1014	4369							
15	742.4694	10279	1.4	26.6	0.1587	4914							
16 17	751.4304	6303	0.9	16.0	0.1512	4970							
18	764.4577	58436	7.9	159.7	0.1664	4595							
19	765.4589	16863	2.3	45.3	0.1789	4279							
20	780.4404	8722	1.2	23.2	0.1803	4324							
22	781.4634	26846	3.6	74.0	0.1701	4594							
24	795.4760	36723	5.0	103.0	0.1780	4469							
25 26	796.4815	19736	2.7	54.9	0.1763	4517							
27	798.4507	13437	1.8	37.1	0.1789	4463							
28 29	811.4561	28438 14627	3.9	80.8	0.1880	4315							
30	813.4566	11428	1.6	31.9	0.1948	4176							
ruker Dalton	nics DataAr	nalysis 3.3	3	_	prin	nted:	3/24/2	016 3:44	4:16 PM	Л		Page	1 of 1

			1	Mas	s Spe	ectri	um List	t Repo	rt			
Analysis Info Analysis Name Method Sample Name	OSCI Tune G-14 G-14	JRH5905 _wide_P0	08006.d 0S_Taw	l atchai_	05Feb2	016.m		Acqu Oper Instr	uisition Date rator ument	5/8/2 Adm micr(2016 3:32:3 inistrator OTOF	33 PM 72
Acquisition Pa Source Type Scan Range Scan Begin Scan End	rameter ESI n/a 50 m/ 3000	z m/z		lon F Capi Hexa Skim Hexa	Polarity Ilary Exit apole RF mer 1 apole 1		Positive 180.0 V 400.0 V 70.0 V 25.0 V		Set Corrector Set Pulsar Pu Set Pulsar Pu Set Reflector Set Flight Tul Set Detector	r Fill JII Jsh De TOF	50 V 337 V 337 V 1300 V 9000 V 2295 V	
Intens.											+MS, 0	.2min #(14
x10 ⁵ 3 1 2 200						421.	2359					
			296.8806				half farme	525.3	194	627	.3835667.3	805
2	200	250	300	33	50	400	450	500	550 (500	650	m/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 2479 99,2521 00,2554 401,2439 13,2429 14,2456 15,2478 19,2395 21,2389 31,2453 33,2667 35,2323 37,2114 38,2160 41,2309 49,2565 53,2567 25,3194 27,5412 38,5383 19,5252 20,5271 21,5347	9770 129079 36482 14335 30157 93311 12833 9445 310877 83309 16358 9716 52469 14987 10726 11076 52469 14987 10220 17057 10757 30090 11565 15086 19057 99057 99057 99057 20057 2	$\begin{array}{c} 3.1\\ 41.5\\ 11.7\\ 4.6\\ 9.7\\ 3.7\\ 4.6\\ 3.3\\ 3.4\\ 3.3\\ 3.6\\ 3.3\\ 3.6\\ 3.5\\ 5.5\\ 5$	17.4 237.8 662.9 55.1 153.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 2	0.0811 0.0759 0.0770 0.0890 0.0926 0.0926 0.0812 0.08812 0.08812 0.0987 0.0991 0.1004 0.0870 0.0858 0.1073 0.1038 0.1038 0.10765 0.1271 0.1376 0.1271 0.1376 0.1271 0.1265 0.1271 0.1265 0.1271 0.1813 0.1765 0.1990	4776 5260 5195 4509 4223 4077 4813 5205 5268 4367 4334 5227 4334 4350 4357 4334 4350 4334 4328 3399 5021 3581 3410 4550 4519 4214 4300 4519 4500 4519 5025 5025 5025 5025 5025 5025 5025 502						
Bruker Daltonics	DataAn	alysis 3.3	i		pr	inted:	5/8/2016	3:42:23 PN	1		Page 1	of 1

			Ν	Aass	Spec	ctrum Lis	st Repor	t		
Analysis Info										
Analysis Name	OSRH	5903240	04.d				Acqu	isition Date	3/24/2016 1	24.51 PM
Method	Tune	wide PO	S Tawa	atchai 0	5Feb201	6 m	Oper	ator	Administrate	.24.011 M
Sample Name	G-15		-				Instru	ment	micrOTOF	72
	G-15						in our o			12
Acquisition Pa	arameter							Set Corrector	Fill 50 V	
Source Type	ESI			Ion Pol	arity	Positive		Set Pulsar Pu	JII 337 ∨	
Scan Begin	50 m/z			Hexap	ny Exit	200.0 V		Set Pulsar Pu	ush 337 V	,
Scan End	3000 n	n/z		Skimm	er 1	70.0 V		Set Flight Tul	be 9000 \	/
				Hexapo	ole 1	25.0 V		Set Detector	TOF 2295 \	/
Intens.								,	+MS, 0.3-	0.3min #(18-19
1.0	-				37	71.1262				
0.8	1									
0.0										
0.6	-									
0.4										
0.2										0004
0.0	100	· · · · · · · · ·				, I, L,	542.1	965	719.	2981
	100		200	3	00	400	500	600	700	m/
#	m/z	1	1%	S/N	FWHM	Res.				
1	357.1460	6626	0.7	16.0	0.0768	4649				
2	370.8786	5627	0.6	13.5	0.3074	1207				
3	371.6322	5106	100.0	2353.9	0.0729	5094				
5	372.1287	221887	23.4	550.5	0.0718	5183				
6	373.1315	35167	3.7	86.8	0.0722	5165				
7	387.1007	45802	4.8	113.5	0.0747	5185				
8	388.1027	11687	1.2	28.6	0.0745	5212				
10	393 2056	8228	0.6	13.9	0.0872	4463				
11	421.2195	5102	0.5	12.1	0.1159	3636				
12	435.2273	4889	0.5	11.6	0.1064	4090				
13	451.2306	4754	0.5	11.3	0.1042	4329				
14	456.0650	7784	0.8	18.9	0.0871	5237				
15	465.2439	4622	0.5	10.9	0.1254	3709				
17	495 2519	4404	0.5	10.5	0.1337	3406				
18	537.1955	7984	0.8	19.5	0.1077	4989				
19	542.1965	17548	1.9	43.9	0.0924	5865				
20	542.6991	11967	1.3	29.7	0.0945	5743				
21	543.1991	5350	0.6	12.8	0.0984	5519				
22	615 2452	5011	0.5	12.0	0.1807	3061				
23	631,2223	9792	1.0	25.5	0.1196	5146				
25	719.2981	52626	5.6	148.0	0.1488	4835				
26	720.2999	26022	2.7	72.9	0.1460	4935				
27	721.3011	7408	0.8	20.3	0.1463	4930				
28 1	443.0456	4578	0.5	11.1	0.0269	53591				
30 2	596.9709	4734	0.5	12.5	0.0342	74455				

Appendix 22. HRMS (ESI) of G16

			Ν	Aass	Spec	ctrun	n Lis	t Repo	rt			
Analysis Info Analysis Nam Method Sample Name	ne OSRH Tune_ e G-16 G-16	159032400 wide_PO	05.d S_Tawa	atchai_0	5Feb2016	6.m		Acq Ope Inst	uisition Date rator rument	3/24/2016 Administra micrOTOF	1:27:50 P tor 72	M
Acquisition I Source Type Scan Range Scan Begin Scan End	Parameter ESI n/a 50 m/z 3000 r	r n/z		lon Pol Capilla Hexapo Skimm Hexapo	arity ry Exit ble RF er 1 ble 1	Pos 200 400 70.0 25.0	itive 0 V 0 V 0 V		Set Correcto Set Pulsar P Set Pulsar P Set Reflecto Set Flight Tu Set Detector	r Fill 50 V ull 337 V ush 337 V r 1300 be 9000 TOF 2295		
Inten x10	Intens x105 4 3 2 1 100 200			405.0	860				+MS, 0.4	-0.5min #(2	6-28	
								594,13426	65 1707	787.2001		
	100	200)	300	400	*	500	600	700	800	900	m/
# 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 29 30	m/z 393 2053 405 0080 406 0885 408 0862 409 0906 413 2598 421 0590 422 0639 423 0591 495 2591 593 1337 593 6337 594 6339 594 6339 594 6339 595 1358 649 1901 665 1707 788 2017 788 2017 788 1917 788 1917 790 1981 790 1991 791 1988 792 1973 1443 2633 2036 0393 2339,2625 2531 2534 2531 2534	4791 446312 109450 150693 36134 6304 5395 38228 9959 4810 9564 6788 1229 4810 9564 6036 6852 8012 113145 55204 37053 21657 7717 5596 4784 4855 5383 5001 4810	$\begin{array}{c} 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	S/N 11.66 1126.7 276.0 380.3 90.8 15.4 13.1 96.4 24.7 31.7 24.7 32.0 158.8 15.2 17.8 21.1 326.0 158.8 15.2 21.7 326.0 158.8 243.4 106.3 61.7 21.4 14.7 12.2 13.4 12.2	FWHM 0.1032 0.0759 0.0759 0.0728 0.0773 0.0737 0.0731 0.0732 0.0733 0.0731 0.0732 0.0733 0.0731 0.0732 0.0733 0.0732 0.0733 0.1252 0.1306 0.1435 0.1435 0.1426 0.1425 0.1426 0.1426 0.1426 0.1426 0.1426 0.1426 0.1426 0.0298 0.0334 0.0344 0.0360	Res. 3809 5337 5580 5265 5535 5570 5749 5791 3976 5635 5485 5270 3976 56407 55485 5255 5485 5255 5485 5255 5485 5255 5481 53716 45421 53716 84871 6319 968371 6319 6319 73504 7350 7350 7350 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 7370 73504 73504 73504 73504 73504 73504 73504 73504 73504 73504 73504 73504 73507 73504 73507 73504 73507 7350						
Bruker Daltoni	cs DataAna	alysis 3.3			print	ed:	3/24/20	16 3:43:22 F	PM	Pa	ge 1 of 1	

Analysis Info OSRH590324006.d Method Tune_wide_POS_Tawatchai_05Feb2016.m Sample Name G-17 G-17 G-17 Acquisition Parameter Ion Polarity Positive Scan Range n/a Capillary Exit 200.0 V Scan Begin 50 m/z Skimmer 1 70.0 V Scan End 3000 m/z Skimmer 1 70.0 V Mexapole 1 25.0 V 401.1362 401.1362 1 145.0582 4615 0.8 9.6 0.0091 15862 2 401.1362 51694 1000 1382.4 0.073 5191 3 402.1382 136253 24.7 34.1 1.073 5473 4 403.1407 23191 4.2 57.7 0.0740 5445 5 5 1.145 13971 2.5 0.073 5191 3 402.1382 136253 24.7 0.736 5743 4 403.1407 23191 4.2 57.7 0.0740 5445 5 5 1377 <th>Acquisition Date 3/24/2016 1:31:07 PM Operator Administrator Instrument micrOTOF 72 Set Corrector Fill 50 V Set Pulsar Pull 337 V Set Reflector 1300 V Set Flight Tube 9000 V Set Detector TOF 2295 V +MS. 0.5-0.5min #(30-3) 661.2152 600 700 800 m/</th>	Acquisition Date 3/24/2016 1:31:07 PM Operator Administrator Instrument micrOTOF 72 Set Corrector Fill 50 V Set Pulsar Pull 337 V Set Reflector 1300 V Set Flight Tube 9000 V Set Detector TOF 2295 V +MS. 0.5-0.5min #(30-3) 661.2152 600 700 800 m/
Analysis Name OSRH590324006.d Method Tune_wide_POS_Tawatchai_05Feb2016.m Sample Name G-17 Acquisition Parameter Source Type ESI Ion Polarity Positive Scan Range n/a Capillary Exit 200.0 V Scan Bange 50 m/z Hexapole F 400.0 V Scan End 3000 m/z Skimmer 1 70.0 V Hexapole 1 25.0 V Intens 1 145 0582 4615 0.8 9.6 0.0091 15862 2 401 1362 551694 100.0 1382.4 0.0773 5191 3 402 1382 136253 24.7 341.1 0.0735 5473 4 403 1407 23191 4.2 57.7 0.0740 5445 5 417 1099 54875 9.9 137.1 0.0789 5286 6 418 1145 13971 2.5 34.6 0.0805 5192 7 419 1150 8530 1.5 20.9 0.0728 5754 8 495 2090 0.0728 5754 8 495 2090 0.0728 5754 8 495 2090 4518 0.8 10.7 0.1264 3967 9 643 2374 6538 1.1 15.1 0.1294 4973 10 645 2379 4580 0.8 10.7 0.1264 5138 11 659 2181 4904 0.9 11.5 0.1120 5888 12 661 2152 7751 1.4 18.7 0.1174 5532 13 679 2233 5446 1.0 12.8 0.1208 5624 14 776 2837 5845 1.1 14.2 0.5115 5138 11 659 2181 4904 0.9 11.5 0.1120 5888 12 661 2152 7751 1.4 18.7 0.1174 5532 13 679 2233 5446 1.0 12.8 0.1208 5624 14 776 2837 5845 1.1 14.2 0.1511 5139 15 776 7816 5023 0.9 12.1 0.1394 5573 16 779 2927 39124 7.0 9 1016.7 0.1434 55434 17 780 2962 198095 35.9 514.6 0.1422 5866 18 781 2978 56037 10.2 145.0 0.1415 5522 19 782 2997 11922 2.2 30.1 0.1423 5497 20 795 2671 1928 35.9 12.1 0.1394 5573 16 779 2927 39124 7.0 9 1016.7 0.1434 55434 17 780 2962 198095 35.9 514.6 0.1422 5866 18 781 2978 56037 10.2 145.0 0.1415 5522 19 782 2997 11922 2.2 30.1 0.1423 5497 20 795 2671 1928 3.6 50.8 0.1429 5564 17 780 2962 198095 35.9 514.6 0.1422 5486 18 781 2978 56037 10.2 145.0 0.1415 5522 19 782 2997 11922 2.2 30.1 0.1423 5497 20 795 2743 5580 1.1 145 50.151 5511 13 679 2033 3997 6148 1.1 164 0.1857 5510	Acquisition Date 3/24/2016 1:31:07 PM Operator Administrator Instrument micrOTOF 72 Set Corrector Fill 50 V Set Pulsar Push 337 V Set Reflector 1300 V Set Reflector TOF 2295 V +MS. 0.5-0.5min #(30-3 779.2927 661.2152 600 700 800 m
Method Tune_wide_POS_Tawatchai_06Feb2016.m Sample Name G-17 Acquisition Parameter Ion Polarity Positive Scan Range n/a Capillary Exit 200 0 V Scan End 3000 m/z Skimmer 1 70.0 V Scan End 3000 m/z Skimmer 1 70.0 V Mexapole 1 25.0 V 401.1362 4 3 4 4 1 145 0582 4615 0.8 9.6 0.0091 15862 2 4011362 51694 1000 1382.4 0.073 5191 3 402.1382 136253 24.7 34.11 0.0735 5473 4 403.1407 23191 4.2 57.7 0.0740 5445 5 417.1099 5487 9.9 10.71 0.0789 5286 6 418.1145 13971 2.5 34.6 0.0805 5192 7 4199 5330 1.5 20.9 0.0728	Operator Instrument Administrator micrOTOF 72 Set Corrector Fill 50 V 54 Pulsar Pull 337 V 58 Pulsar Push 58 Push
Sample Name G-17 Acquisition Parameter Ion Polarity Positive Scan Range n/a Capillary Exit 200.0 V Scan Begin 50 m/z Skimmer 1 70.0 V Scan End 3000 m/z Skimmer 1 70.0 V Hexapole 1 25.0 V 400.1 1362 Intens. 401.1362 401.1362 Intens. 1145 0582 4615 0.8 96 0.0091 15862 I 145 0582 4615 0.8 96 0.0091 15862 I 145 0582 4615 0.8 96 0.0091 15862 I 145 0582 100.0 1382.4 0.073 5191 I 145 013971 2.5 346 0.0805 519	Instrument micrOTOF 72 Set Corrector Fill 50 V 337 V Set Pulsar Push 337 V 337 V Set Reflector 1300 V Set Reflector Set Detector TOF 2295 V +MS. 0.5-0.5min #(30-3) 779.2927 661.2152 600 700
Acquisition Parameter Source Type Scan Range Scan Bagin Scan Begin Scan End ESI of m/z 3000 m/z Ion Polarity Capilary Exit Skimmer 1 Positive 200 0 V Scan End 3000 m/z Skimmer 1 70.0 V Hexapole 1 25.0 V Intens x105 5 4 3 2 1 401.1362 1 145.0582 4615 0.8 9.6 0.0091 15862 2 401.1362 5164 100 7300 400 500 # m/z 1 1% S/N FWHM Res. 1 145.0582 4615 0.8 9.6 0.0091 15862 2 4011.382 136253 24.7 341.1 0.0735 5473 3 402.1382 136253 24.7 341.1 0.0735 5473 4 403.1407 23191 4.2 57.7 0.0740 5445 5 417.1099 5487 9.9 0.0728 5754 5 44952.609 4518 0.8 0.8 0.8 0.888 </th <th>Set Corrector Fill 50 V Set Pulsar Push 337 V Set Pulsar Push 337 V Set Reflector 1300 V Set Filight Tube 9000 V Set Detector TOF 2295 V +MS. 0.5-0.5min #(30-3) 779.2927 661.2152 600 700 800</th>	Set Corrector Fill 50 V Set Pulsar Push 337 V Set Pulsar Push 337 V Set Reflector 1300 V Set Filight Tube 9000 V Set Detector TOF 2295 V +MS. 0.5-0.5min #(30-3) 779.2927 661.2152 600 700 800
Source Type Scan Range Scan Begin Scan End ESI n/a 3000 m/z Ion Polarity Capilary Exit Persponsibility Skimmer 1 Hexapole 1 Positive 200 V Intens Scan End 50 m/z 3000 m/z Hexapole 1 25.0 V Intens Scan End 401.1362 401.1362 Intens Scan End 401.1362 5 Intens Scan End 100 200 300 400 500 Intens Scan End 1 1562 4 1 1 5 Intens Scan End 1 1 100 200 300 400 500 Intens Scan End Intens Scan End Intens Scan End Intens Scan End 5 5 Intens Scan End Intens Scan End Intens Scan End 5 5 5 Intens Scan End Intens Scan End Intens Scan End 5 5 5 Intens Scan End Intens Scan End Intens Scan End 5 5 5 Intens Scan End Intens Scan End Intens Scan End 5 5 5 Intens Scan End Intens Scan End<	Set Dulsar Push 337 V Set Pulsar Push 337 V Set Pulsar Push 337 V Set Reflector 1300 V Set Flight Tube 9000 V Set Detector TOF 2295 V +MS. 0.5-0.5min #(30-3) 779.2927 661.2152 600 700 800 m
Scan Range n'a Capilary Exit 200.0 V Scan Begin 50 m/z Hexapole RP 400.0 V Scan End 3000 m/z Skimmer 1 70.0 V Scan End 3000 m/z Skimmer 1 70.0 V Hexapole 1 25.0 V 401.1362 4 3 401.1362 5 4 401.1362 1 145.0582 4615 0.8 9.6 0.0091 15862 2 4011.1362 55164 100.0 100 500 # m/z 1 1% S/N FWHM Res. 1 145.0582 4615 0.8 9.6 0.0091 15862 2 401.1362 551684 100.0 1382.4 0.073 5191 3 402.1382 136253 24.7 382.4 0.0735 5473 4 403.1407 23191 4.2 57.7 0.0740 5445 5 417.109 5437 9.9 13.7 0.0789 5286 6 418.1145 139	Set Pulsar Push 337 V Set Reflector 1300 V Set Flight Tube 9000 V Set Detector TOF 2255 V +MS. 0.5-0.5min #(30-3) 779.2927 661.2152 600 700 800 m
Scan End 3000 m/z 1000 m/z Skimmer 1 700.0 v Intens. x105 4 3 4 3 4 3 4 3 4 1 1362 4 4 3 4 1 1362 4 4 3 4 1 1362 4 1 1 1362 5 4 4 3 2 1 4 1 1 145 0582 4615 0.8 9.6 0.0091 15862 2 401 1362 551694 100.0 1382.4 0.0735 5191 3 402.1382 136253 24.7 34.11 0.0735 5473 4 403.1407 23191 4.2 57.7 0.0740 5445 5 5192 7 419.150 5465 9.9 10.7089 5286 6 418.1145 13971 2.5 34.6 0.0805 5192 7 419.150 8367 9 9 643.2374 6338 <	Set Flight Tube 9000 V Set Detector TOF 2295 V +MS. 0.5-0.5min #(30-3) 779.2927 661.2152 600 600 700 800 m.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Set Detector TOF 2295 V +MS. 0.5-0.5min #(30-3 779.2927 661.2152 600 700 800 m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+MS. 0.5-0.5min #(30-3 779.2927 661.2152 600 700 800 m
$ \begin{array}{c} 5\\ 4\\ 3\\ 2\\ 1\\ 1\\ 1\\ 100\\ 200\\ 300\\ 400\\ 500\\ \hline \\ $	779.2927 661.2152 600 700 800 m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	779.2927 661.2152 600 700 800 m
# m/z I 1% S/N FWHM Res. 1 145 0562 4615 0.8 9.6 0.0091 15862 2 401 1362 551694 100.0 1382.4 0.0773 5191 3 402 1382 136253 24.7 341.1 0.0735 5473 4 403 1407 23191 4.2 57.7 0.0740 5445 5 417.1099 54875 9.9 137.1 0.0785 5743 4 403.1407 23191 4.2 57.7 0.0740 5445 5 417.1099 54875 9.9 137.1 0.0785 5754 8 495.2609 4518 0.8 10.248 3967 9 643.2374 6338 1.1 15.1 0.1244 4973 10 645.2379 4580 0.8 10.7 0.1266 5138 11 659.2181 4904 0.9 11.5 0.1120 5888 12 661.2152	661.2152 600 700 800 m/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	601.2152 600 700 800 m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	661.2152 600 700 800 m/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	661.2152 600 700 800 m/
# m/z I 1% S/N FWHM Res. 1 145 0552 4615 0.8 9.6 0.0091 15862 2 401 1362 551694 100.0 1382.4 0.0773 5191 3 402 1382.3 1362.3 24.7 341.1 0.0735 5473 4 403 1407 23191 4.2 57.7 0.0740 5445 5 417.1099 54875 9.9 137.1 0.0789 5286 6 418.1145 13971 2.5 34.6 0.0805 5192 7 419.1150 8530 1.5 20.9 0.0728 5754 8 4952609 4518 0.8 10.8 0.1248 3967 9 643.2374 6338 1.1 151 0.1294 4973 10 6445.2379 4580 0.8 10.7 0.1214 5632 13 679.2	661.2152 600 700 800 m/
100 200 300 400 500 # m/z I 1% S/N FWHM Res. 1 145.0582 4615 0.8 9.6 0.0091 15862 2 401<1362	600 700 800 m/
# m/z I 1% S/N FWHM Res. 1 145 0582 4615 0.8 9.6 0.0091 15862 2 401 1362 551694 100.0 13824 0.0735 5191 3 402 1382 136253 24.7 341.1 0.0735 5473 4 403 1407 23191 4.2 57.7 0.0740 5445 5 417.1099 54875 9.9 137.1 0.0789 5286 6 418.1145 13971 2.5 34.6 0.0805 5192 7 419.150 8530 1.5 20.9 0.0728 5754 8 4952.609 4518 0.8 10.8 0.1248 3967 9 643.2374 6338 1.1 15.5 0.1248 3967 9 645.2379 4580 0.8 10.7 0.1248 3967 9 643.2374 </td <td></td>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3 402.1382 13654 0.00 1362.1 0.0735 5473 4 403.1407 23191 4.2 57.7 0.0740 5445 5 417.1099 54875 9.9 137.1 0.0735 5473 5 417.1099 54875 9.9 137.1 0.0736 5286 6 418.1145 13971 2.5 34.6 0.0805 5192 7 419.150 8530 1.5 20.9 0.0728 5754 8 4952.6009 4518 0.8 10.8 0.1248 3967 9 643.2374 6338 1.1 15.1 0.1248 3967 9 643.2374 6538 1.1 15.0 1.1248 3967 9 643.2374 6538 1.1 15.0 1.120 5888 12 661.2152 7751 1.4 18.7 0.1174 5632 13 679.2233 5446 1.0 <td< td=""><td></td></td<>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
5 417.1099 54875 9.9 137.1 0.0789 5286 6 418.1145 13971 2.5 346 0.0805 5192 7 419.1150 8530 1.5 20.9 0.0728 5754 8 495.2609 4518 0.8 10.8 1.1248 3967 9 643.2374 6338 1.1 15.1 0.1248 3967 10 645.2379 4580 0.8 10.7 0.1256 5138 11 659.2181 4904 0.9 11.5 0.1120 5888 12 661.2152 7751 1.4 18.7 0.1174 5632 13 679.2233 5446 1.0 1.2.8 0.1208 5624 14 776.2857 5845 1.1 1.4.2 0.5111 5139 15 776.76.76 5023 0.9 12.1 0.1394 5573 16 779.2927 391254 70.9 1016.7 0.1434 5434 17 782.2997 11922 2.2	
7 419.1150 85371 2.5 34.6 0.0005 5192 7 419.1150 8530 1.5 2.09 0.0728 5754 8 495.2609 4518 0.8 10.8 0.1248 3967 9 643.2374 6338 1.1 15.1 0.1294 4973 10 645.2379 4580 0.8 10.7 0.1256 5138 11 659.2181 4904 0.9 11.5 0.1120 5888 12 6612152 7751 1.4 18.7 0.1174 5632 13 679.2233 5445 1.0 12.8 0.1208 5624 14 776.7816 5023 0.9 12.1 0.1344 5434 17 780.2962 18805 35.9 514.6 0.1422 5486 18 781.2978 56037 10.2 145.0 0.1415 5522 19 782.2979 1192.2 2.0 10.1423 5497 20 795.2671 19698 3.6 50.8	
8 495.2609 4518 0.8 10.8 0.1248 3967 9 643.2374 6338 1.1 15.1 0.1294 4973 10 645.2379 4580 0.8 10.7 0.1256 5138 11 659.2181 4904 0.9 11.5 0.1120 5888 12 661.2152 7751 1.4 18.7 0.1174 5632 14 776.2837 5845 1.1 14.2 0.1511 5139 15 776.7816 5023 0.9 12.1 0.1344 5434 17 780.2962 198095 35.9 514.6 0.1422 5486 18 781.2978 5037 10.2 145.0 0.1415 5552 19 782.297 11922 2.2 3.0 1.4123 5497 20 795.2671 19698 3.6 50.8 0.1423 5497 20 795.2671 19698 3.6	
9 643.2374 6338 1.1 15.1 0.1294 4973 10 645.2379 4580 0.8 10.7 0.1256 5138 11 659.2181 4904 0.9 11.5 0.1120 5888 12 661.2152 7751 1.4 18.7 0.1174 5632 13 679.2233 5446 1.0 12.8 0.1208 5624 14 776.2837 5845 1.1 14.2 0.1511 5139 15 7776.7816 5023 0.9 12.1 0.1394 5573 16 779.2927 391254 70.9 106.7 0.1424 5434 17 780.2962 198095 35.9 514.6 0.1422 5486 18 781.2978 56037 10.2 145.0 0.1415 5552 19 782.2997 11922 2.2 30.1 0.1423 5497 20 795.2671 19698 3.6 <td></td>	
11 659.281 4904 0.9 10.7 0.1236 5138 12 661.2152 7751 1.4 18.7 0.1174 5632 13 679.2233 5446 1.0 12.8 0.1208 5624 14 776.2837 5845 1.1 14.2 0.1511 5139 15 776.7816 5023 0.9 12.1 0.1394 5573 16 779.2927 391254 70.9 10.67 0.1434 5434 17 780.2962 198095 35.9 514.6 0.1422 5486 18 781.2978 56037 10.2 145.0 0.1415 5522 19 782.2997 11922 2.2 30.1 0.1423 5497 20 795.2671 19698 3.6 50.8 0.1423 5564 21 796.2706 9830 1.8 24.9 0.1498 5317 22 797.2743 5880 1.1 16.4 0.1857 5510 21 1023.3997 6148	
12 661 2152 7751 1 4 18.7 0.1174 5632 13 679 2233 5446 1.0 12.8 0.1208 5624 14 776 2837 5845 1.1 14.2 0.1511 5139 15 776 7816 5023 0.9 12.1 0.1394 5573 16 779 2927 391254 70.9 1016.7 0.1422 5486 17 780 2962 198095 35.9 514.6 0.1422 5486 18 781 2978 56037 10.2 145.0 0.1415 5522 19 782 2979 11922 2.2 30.1 0.1423 5497 20 795 2671 19698 3.6 50.8 0.1429 5664 21 796 2706 9830 1.8 24.9 0.1498 5317 22 797 2743 5880 1.1 14.5 0.1551 5141 23 1023 3997 6148	
13 679 2233 5446 1.0 12.8 0.1208 5624 14 776 2837 5845 1.1 14.2 0.1511 5139 15 776 7816 5023 0.9 12.1 0.1394 5573 16 779 2927 391254 70.9 1016.7 0.1434 5434 17 780 2962 198095 35.9 514.6 0.1422 5486 18 781 2978 56037 10.2 145.0 0.1415 5522 19 782 2997 11922 2.2 30.1 0.1423 5497 20 795 2671 19958 36 50.8 0.1429 5564 21 796 2766 9830 1.8 24.9 0.1498 5317 22 797 2743 5880 1.1 14.5 0.1551 5141 23 1023 3997 6148 1.1 16.4 0.1857 5510	
14 776 7816 5045 1.1 14.2 0.111 5139 15 776 7816 5023 0.9 12.1 0.1394 5573 16 779.2927 391254 70.9 1016.7 0.1434 5434 17 780.2962 198095 35.9 514.6 0.1422 5486 18 781.2978 56037 10.2 145.0 0.1415 5522 19 782.2997 11922 2.2 30.1 0.1423 5697 20 795.2671 19958 3.6 50.8 0.1429 5564 21 796.2706 9830 1.8 24.9 0.1498 5317 22 797.2743 5880 1.1 14.5 0.1551 5141 23 1023.3997 6148 1.1 16.4 0.1857 5510 24 1029.26020 10.2 4.0 0.2 0.2 1024	
16 779 2927 391254 70.9 1016.7 0.1434 5434 17 780 2962 198095 35.9 514.6 0.1422 5486 18 781 2978 56037 10.2 145.0 0.1412 5497 19 782 2997 11922 2.2 30.1 0.1423 5497 20 795 2671 19958 3.6 50.8 0.1429 5564 21 796 2706 9830 1.8 24.9 0.1498 5317 22 797 2743 5880 1.1 14.5 0.1551 5141 23 1023 3997 6148 1.1 16.4 0.1857 5510	
17 780 2962 198095 35.9 514.6 0.1422 5486 18 781 2978 56037 10.2 145.0 0.1412 5497 19 782 2997 11922 2.2 30.1 0.1423 5497 20 795 2671 19698 3.6 50.8 0.1429 5564 21 796 2706 9830 1.8 24.9 0.1498 5317 22 797 2743 5880 1.1 14.5 0.1551 5141 23 1023 3997 6148 1.1 16.4 0.1857 5510	
10 162.276 20037 10.2 145.0 0.1413 5022 19 782.2997 11922 2.2 30.1 0.1423 5497 20 795.2671 19698 3.6 50.8 0.1423 5497 20 795.2671 19698 3.6 50.8 0.1429 5564 21 796.2706 9830 1.8 24.9 0.1439 5317 22 797.2743 5880 1.1 14.5 0.1551 5141 23 1023.3997 6148 1.1 16.4 0.1857 5510	
20 795 2671 19698 3.6 50.8 0.1429 5564 21 796 2706 9830 1.8 24.9 0.1498 5317 22 797 2743 5880 1.1 1.45 0.1551 5141 23 1023 3997 6148 1.1 16.4 0.1857 5510	
21 796.2706 9830 1.8 24.9 0.1498 5317 22 797.2743 5880 1.1 14.5 0.1551 5141 23 1023.3997 6148 1.1 16.4 0.1857 5510 24 1020.3997 6148 1.2 1.4 1.4 1.4	
23 1023.3997 6148 1.1 16.4 0.1857 5510 24 1023.3997 6148 1.2 0.101 501 501	
24 1020 2826 0024 4.6 24.2 04024 5204	
24 1039.3836 9024 1.6 24.2 0.1931 5381	
25 1040.3828 6168 1.1 16.3 0.1840 5653	
20 1443.0419 5334 1.0 14.4 0.0269 53693 27 1443.2683 4551 0.8 12.2 0.0357 40418	
28 1864 1966 4471 0.8 10.7 0.0293 63586	
29 2036.0338 4409 0.8 10.4 0.0298 68309 30 2339 2561 5674 1.0 13.4 0.0230 60000	
30 2335.2301 3014 1.0 13.4 0.0338 69023	

				Mas	s Spe	ectrum	List R	eport		
Analysis Info Analysis Nam Method Sample Name	e OSCI Tune G-18 G-18	JRH5905 _wide_PC	08007.)S_Tav	d vatchai_	05Feb20	016.m		Acquisition Date Operator Instrument	5/8/2016 3:35 Administrator micrOTOF	:55 PM 72
Acquisition F Source Type Scan Range Scan Begin Scan End	Parameter ESI n/a 50 m/ 3000	z m/z		lon F Capi Hexa Skim Hexa	Polarity Ilary Exit apole RF imer 1 apole 1	Posit 180.0 400.0 70.0 25.0	iive 0 V 0 V V V	Set Correcto Set Pulsar Pi Set Reflector Set Reflector Set Flight Tul Set Detector	Fill 50 V Jll 337 V Jsh 337 V 1300 V De 9000 V TOF 2295 V	
Inten x10	s.)5								+MS,	0.3min #(19
	4 3 2 1					401.137	0			
	1						Lunder and a	517.2298		
	200	250)	300	350	400	450	500 550	600	650 m/
2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	307.1562 379.1545 380.1566 381.1598 388.0419 389.0403 399.0403 399.1652 399.1569 401.1370 402.1396 402.1396 402.1396 403.1448 413.2661 414.2697 417.1163 421.2266 433.1375 434.1828 435.1526 441.2943 449.1573 449.3555 451.1432 465.2419 775.3369 758.3420 779.3200 780.3284 812.3757 844.4194	13/61 60297 17494 88952 43952 10547 28434 12408 128266 447513 113663 19770 34189 9267 26847 13534 113534 13534 13534 13534 13534 13534 13534 13534 13535 13555 10105 51160 28744 9260 12815	3.1 13.5 3.9 2.0 9.8 2.4 6.4 2.9 100.0 100.0 100.0 2.4 4.4 7.6 0.0 2.5 2.6 2.7 2.1 4.4 2.3 7.1 4.2.3 11.4 2.9	230 0 1035 2 296 1 477 7 756 1 756 1 48.7 7 781 3 15.6 4 46.4 2 33 9 594 4 46.6 2 23.3 1 9.5 4 46.6 4 23.3 1 9.5 4 42.6 1 42.6 3 19.8 1 19.8 1 10.4 0 53.9 1 10.4 5 39 1 10.4 5 10.4 1 10.5 5 10.5 1 10.5 10.5 1 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	0.0784 0.0742 0.0772 0.0982 0.0751 0.0751 0.0778 0.0779 0.0779 0.0779 0.0779 0.0779 0.0779 0.0749 0.0860 0.0837 0.0900 0.0837 0.0900 0.1120 0.1235 0.1355 0.1357 0.1653 0.1763 0.1763 0.1763 0.1855	4685 5111 4924 3882 5170 4940 5102 3046 4044 5164 5372 4690 4963 4949 4637 4294 4637 4294 4637 3906 3429 4493 3289 4493 3289 4493 32624 4493 32624 4493 32624 44551 4551				
}ruker Daltonio	cs DataAn	alysis 3.3			pri	nted: 5	/8/2016 3:42	2:56 PM	Page	1 of 1

			Ν	lass	Spec	ctrum	List Re	epor	t			
Analysis Info	D											
Analysis Name OSRH590324007.d Method Tune_wide_POS_Tawa						Acqui	sition Date	3/24	2016 1:33	3:51 PM		
		atchai_08	Feb201	6.m		Opera	ator	Adm	Administrator			
Sample Nam	e G-19 G-19							Instru	ment	micr	DTOF	72
Acquisition	Parameter	1							Set Corrector	Fill	50 V	
Source Type Scan Range	ESI			Ion Pol	arity ov Exit	Positive			Set Pulsar Pu	III	337 V	
Scan Begin	50 m	z		Hexapo	ble RF	400.0 V			Set Reflector	1511	1300 V	
Scan End	3000	m/z		Skimme Hexapo	er 1 ble 1	70.0 V 25.0 V			Set Flight Tub Set Detector	De TOF	9000 V 2295 V	
Inter	ns.									+1	AS, 1.5-1.5	min #(88-91
XT	00				323.12	57						
1.2	20											
1.0	75											
0.1	50											
0.0	25											
0.0	,		· · · · · ·	,			470.2	2027	e	623.29	72	
	10)	200		300	40	0	500	60	00	70)0 m/
#	m/z	1	1%	S/N	FWHM	Res.						
1	301.1424	45552 9795	3.5	22.0	0.0600	5018						
3	320.1171	14313	1.1	32.4	0.0647	4947						
4	321.1316	6935	0.5	15.5	0.0675	4757						
5	323,1257	1314398	100.0	3021.2	0.2301	1403 4747						
7	324.1283	259770	19.8	596.8	0.0637	5088						
8	325.1312	37084	2.8	84.8	0.0651	4998						
9	328.1043	7951	1.4	40.7	0.0652	5033 4738						
11	329.1193	18664	1.4	42.5	0.0637	5165						
12	329 6213	7156	0.5	16.0	0.0680	4850						
13	339.0997	84998	6.5	195.6	0.0656	5168						
15	341.1040	10374	0.8	23.4	0.0734	4650						
16	377.1966	7251	0.6	16.4	0.1020	3699						
17	393.1970	6715	0.5	15.3	0.1059	3712						
10	407.2183	7428	0.5	14.3	0.0926	3980						
20	421.2321	7681	0.6	17.8	0.1047	4024						
21	462.2124	24222	1.8	58.6	0.0811	5697						
22	462.7150	17257	1.3	41.6	0.0822	5628						
23	470.2027	106541	8.1	261.3	0.0830	5666						
25	470.7040	62107	4.7	152.1	0.0859	5477						
26	471.2067	23141	1.8	56.2	0.0891	5291						
27	478.1920	7177	0.9	28.3	0.0902	5299						
29	623.2972	50891	3.9	133.2	0.1376	4531						
30	624.3009	19834	1.5	51.6	0.1495	4177						

			N	lass	Spec	ctrur	n List	t Repor	t			
Analysis Info Analysis Name Method Sample Name	OSCU Tune_ G-20 G-20	RH59050 low_POS	08008.d _Natee2	0130403	3.m			Acqu Opera Instru	isition Date ator iment	5/8/2 Adm micr	2016 3:41:01 PM inistrator OTOF 72	
Acquisition Pa Source Type Scan Range Scan Begin Scan End	arameter ESI n/a 50 m/z 3000 n	n/z		lon Pola Capillary Hexapol Skimme Hexapol	rity y Exit le RF r 1 le 1	Po: 120 150 45. 24.	sitive 0.0 V 0.0 V 0 V 3 V		Set Correcto Set Pulsar F Set Pulsar F Set Reflecto Set Flight Tu Set Detector	or Fill Pull Push or ube r TOF	50 V 337 V 337 V 1300 V 9000 V 2295 V	
Intens ×10 ⁵ 6	5. 					33	37.1237				+MS, 0.2min #	12
2	-		202.131	2	285 14	88		392.1680	482	4290		
	100	150	200	250	200.14	300	350	400	450	500	550	m/:
# 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 17 18 20 21 22 23 24 25 26 27 28 29 30 1	m/2 202 1312 337 1237 338 1271 339 1213 340 1241 351 1034 351 1034 361 1056 371 1292 375 0848 392 1680 393 1589 394 1636 482 4290 673 2283 690 2721 698 2280 697 2272 698 2280 697 2272 698 2280 677 228 698 2280 711 2059 713 2181 728 2810 729 2819 730 2846 731 2786 732 2810 051 3570	28531 626428 121109 209741 40316 22170 55284 19195 15848 15716 82540 26569 31016 17845 16339 17239 14968 176410 71063 125780 46183 29788 21998 18310 73831 39850 58423 27627 73831 39850	$\begin{array}{c} 1 \ \% \\ 4.6 \\ 100.0 \\ 19.3 \\ 33.5 \\ 6.4 \\ 3.5 \\ 8.8 \\ 3.1 \\ 2.5 \\ 13.2 \\ 4.2 \\ 5.0 \\ 2.8 \\ 2.6 \\ 2.8 \\ 2.6 \\ 2.4 \\ 28.2 \\ 11.3 \\ 20.1 \\ 7.4 \\ 4.7 \\ 3.5 \\ 2.9 \\ 11.8 \\ 4.4 \\ 9.3 \\ 4.4 \\ 2.6 \\ 2.4 \end{array}$	S/N 44.3 1040.3 200.7 348.2 66.4 36.5 31.7 26.1 141.5 28 32.0 26.1 141.5 28 32.0 26.8 28.0 24.1 297.6 119.0 241.5 29.2 120.6 119.0 211.5 29.2 120.6 149.5 29.2 120.5 29.2 120.5 35.5 29.2 120.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29	FWHM 0.0428 0.0705 0.0686 0.0686 0.0705 0.0706 0.0776 0.0750 0.0750 0.0750 0.0900 0.0825 0.1067 0.1067 0.10844 0.0999 0.1459 0.1386 0.1485 0.1485 0.1445 0.1485 0.1485 0.1485 0.1485 0.1481 0.1548 0.2037	Ress. 4728 4780 4917 4876 5089 4613 5089 4663 5089 4663 3683 4674 4613 5046 4751 3683 4672 4613 5046 4070 5052 4935 4935 4507 4732 5046 4567 4732 5161						
Bruker Daltonic	s DataAna	alysis 3.3			print	ted:	5/8/2016	3:43:39 PM			Page 1 of 1	

VITA

Miss Rita Hairani was born on February 13th, 1984 in Samarinda, Indonesia. She received a Bachelor degree with very satisfactory grade from Chemistry departement at Mulawarman University in 2006. She pursued her master degree at Graduate school of Forestry with very satisfactory grade in 2013. She awarded by Indonesian government scholarship, throughout her master degree course at Mulawarman University. She is a master candidate studying Organic Chemistry at Chulalongkorn University. During the study time, She was awarded by ASEAN Scholarship from Chulalongkorn University and at the end of her study in 2015 she was awarded by "Beasiswa Kaltim cemerlang" scholarship from local government in Indonesia. In April to June 2016, Miss Rita Hairani has opportunity to have research experience at Ewha Womans University in South Korea and was funding by Overseas Research Experience Scholarship from Graduate School Chulalongkorn University.

> จุฬาลงกรณ์มหาวิทยาลัย Hulalongkorn University