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CHAPTER |
INTRODUCTION

1.1 Introduction

Chronic kidney disease (CKD) has become a worldwide public health problem
in the past 10 years [1]. The prevalence of CKD is high and likely to increase rapidly in
the coming decades, especially in the developing countries [1, 2], with an increase of
the risk factors such as diabetes, obesity, smoking, high blood pressure and
cardiovascular disease [3]. The number of CKD patients is also rising sharply. Although,
the symptoms in the early stage of CKD are absent, the CKD affects many parts of the
body, i.e., it causes a damage of the central nervous system, a decrease of the immune
response, retention of the fluids, resulting in the swelling of arms and legs, and
irreversible damage of the kidneys (end-stage kidney disease, ESKD) leading to kidney
transplantation [3]. Therefore, the screening tool for diagnosis of the CKD is necessary.
In the CKD diagnosis, there are several tests such as blood test, urine test, which are
to determine the biomarker concentration indicating CKD in blood and urine, imaging
test which is to ultrasound the kidneys to evaluate their structures and sizes, and
kidney biopsy which is to analyze the kidney tissue samples removed by a long and
thin needle inserted through the skin to find the cause of kidney problems [3]. The
two latter tests suit for the diagnosis in clinical laboratories. As for on-site diagnosis,
urine test is more applicable because it is easy to collect the samples without the use
of needles to draw blood samples which requires skilled users or it causes needles-
stick injuries. The urine test is also suitable for people who are afraid of blood drawing
and its cost is cheaper than the cost of the blood test with which medical devices are

needed in the sample collection.

Creatinine is a breakdown product of creatine and phosphocreatine which are
important compounds in the energy metabolism of muscle. As creatinine has no
function in the body, it is eliminated from the body by kidneys through glomerular
filtration and is excreted in urine at a constant rate. Abnormal concentration of

creatinine in urine and serum indicates kidney malfunction [4, 5] thus is one of the key



biomarkers used for assessing the kidney function. Moreover, the concentration of
creatinine in urine and serum can also indicate chronic heart failure [6], cancer [7, 8]
and muscular dystrophy [5, 9]. Normal concentration of creatinine in urine ranges from
2.48 to 22.92 mM [10] depending on the individual’s weight, diet and muscle mass
[11].

Various detection techniques have been used for the determination of
creatinine, such as, high performance liquid chromatography (HPLC) [12], capillary
electrophoresis (CE) [12, 13], tandem mass spectrometry [14], flow injection analysis
(FIA) [15], square-wave voltammetry (SWV) [16], electrochemical impedance
spectroscopy (EIS) [17], cyclic voltammetry (CV) [18], and surface-enhanced Raman
spectroscopy [19]. However, most of these techniques require expensive instruments,
skilled operators and long analysis time making them unsuitable for field monitoring.
Therefore, the development of simple, low-cost and portable sensors for on-site

analysis of creatinine is of particular interest.

Microfluidic paper-based analytical devices (UPADs) are an alternative tool for
various applications such as biochemical detection [20-22], immunological detection
[23-25] and molecular detection [26-28]. When compared to other methods, the uPADs
are inexpensive, easy to use, rapid, portable and disposable. Moreover, they require
only small amount (micro-scale) of reagent/sample and do not require external
instruments. The uPADs were first introduced by Whitesides and coworkers in 2007
[29]. A concept of the uPADs is to have hydrophilic micro-channels on the devices by
creating hydrophobic barriers which direct the flow of fluids in sample zones of the
devices to hydrophilic micro-channels where the reagents are immobilized, thereby
the chemical reactions occur. Several fabrication methods have been used to produce
the pPADs such as wax printing [30, 31], inkjet printing [32], photolithography [33], laser
treatment [34] and screen-printing [35] . There are also several detection methods
applicable for these uPADs, for examples, colorimetry [36, 37], electrochemistry [38],

fluorescence [39] and chemiluminescence [40].

This work aims to develop the simple, low-cost and portable uPADs for the

colorimetric determination of creatinine in urine samples. A wax printing was used as



the fabrication method because both wax and paper are cheap and readily available
materials. Besides, it is a rapid process and organic solvents are not required making it
environmental friendly. The developed uPADs consist of 2 parts; hydrophilic part and
hydrophobic part. Wax pattern serves as a hydrophobic barrier through which the
solution cannot penetrate and it directs the flow of solution. Consequently, solution
flows in the hydrophilic part via capillary action to the detection zones. The uPADs
developed in this work are based on Jaffé reaction which is widely used in clinical
laboratories for creatinine detection [41]. Creatinine reacts with picric acid in alkaline
medium to form creatinine-alkaline picrate complex. The product yields an orange
color which is clearly visible on pPADs. The change of color is analyzed using a digital
camera for quantitation. The color intensity of the colorimetric product which is related

to concentration of creatinine is quantified using ImageJ software.
1.2 Objectives of the research
There are three objectives for this research;

1. To develop inexpensive, easy to use and portable paper-based analytical

devices for the determination of creatinine in urine samples.

2. To develop sensitive and selective devices for the determination of

creatinine in urine samples.

3. To apply the developed devices for the determination of creatinine in urine

samples.
1.3 Scope of the research

The microfluidic paper-based analytical devices were designed and fabricated
to obtain a suitable platform for the determination of creatinine in urine samples.
Various experimental parameters were optimized to achieve the best analytical
performances. Under the optimum conditions, analytical performance characteristics
including range of linearity, limits of detection, limits of quantitation and reproducibility
were investigated. Moreover, various interfering substances were studied for selectivity

of the determination. The developed devices were then validated with the



conventional technique and finally applied for the determination of creatinine in urine

samples.



CHAPTER Il
THEORY AND LITERATURE REVIEWS

2.1 Metabolism of creatinine

Creatine is a molecule which requires amino acids, l-arginine, -methionine, and
glycine, for endogenously synthesis and it provides recycling of adenosine triphosphate
(ATP) which is a high-energy molecule providing energy in vertebrae. In the mechanism
shown in Figure 2.1, creatine is converted to phosphocreatine which is necessary for

the ATP production via the enzyme creatine kinase [9].

Creatinine is a breakdown product of creatine and phosphocreatine which are
important compounds in the energy metabolism of muscle. As creatinine has no
function in the body, it is eliminated from the circulatory system by kidneys through
glomerular filtration and is excreted in urine at a constant rate. Abnormal concentration
of creatinine in urine and serum indicates kidney malfunction [4, 5] thus is one of the
key biomarkers used for assessing the kidney function. Moreover, it is also indicative of
chronic heart failure [6], cancer [7, 8] and muscular dystrophy [5, 9]. However, normal
concentration of creatinine in urine ranges from 2.48 to 22.92 mM [10] depending on

weight, diet and muscle mass [11].
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Figure 2.1 A brief process for the occurrence of creatinine. Creatine is converted

to phosphocreatine via creatine kinase. Then, the breakdown of
creatine and phosphocreatine generates creatinine via nonenzymatic

process.

2.2 Jaffé reaction

In 1886, a colorimetric method for the detection of creatinine, known as the
Jaffé reaction, was first developed by Max Jaffé [42]. Jaffé reaction is the reaction
between creatinine and picric acid in alkaline condition to form a creatinine-alkaline
picrate complex. The mechanism of the Jaffé reaction was proposed that picric acid
was attacked by the methylene anion of creatinine at the meta position to form the
Jaffé product as shown in Figure 2.2a [43]. This product yields an orange color (Figure
2.2b) which exhibits the maximum absorbance in the range of 480-520 nm as shown

in Figure 2.3 [42-44].

Despite the fact that the Jaffé reaction has been discovered for many years, it
is still popular and widely used as a routine detection of creatinine in urine for the

estimation of kidney function in clinical laboratories [45].
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Figure 2.2 (a) Reaction scheme for the Jaffé reaction. (b) Upon the addition of
creatinine into the alkaline picrate reagent, the color of the solution
changes from yellow to orange.
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Figure 2.3 The absorption spectra of the creatinine-alkaline picrate complex with

different concentrations of creatinine [5].



2.3 Microfluidic paper-based analytical devices

Microfluidic paper-based analytical devices (UPADs) are an alternative tool for
various applications such as biochemical assay [20-22], immunological assay [23-25]
and molecular assay [26-28]. The uPADs were pioneered by Whitesides and coworkers
in 2007 [29]. They developed patterned papers as a platform for the assay of glucose
and bovine serum albumin (BSA) in micro-scale of urine. These devices were fabricated
using photolithography method which was used to pattern photoresist onto a
hydrophilic chromatography paper to form hydrophobic walls (Figure 2.4). The
patterned paper provided control of fluids moving through capillary action in

hydrophilic micro-channels.
a) eanomAiog Aty B i. plasma oxidize
paper
ii. cut out pattern

l soak in photoresist paper
—— photoresist

i. prebake l . spot reagents
ii. align under a mask control ii. dry
mask .
glucose protein
assay assay
l i. expose to UV light
ii. postbake
=3 ”} 1cm

l i. develop
ii. wash with propan-2-ol

Figure 2.4 Fabrication process of the first uPADs by photolithography for

bioassays: (a) SU-8 photoresist was used to pattern the hydrophobic
wall onto the chromatography paper with the use of UV light and
organic solvent and (b) the patterned paper was prepared for the

assay of glucose and BSA [29].

Colorimetry was used as a detection technique for these assays. They
investigated the color change due to the enzymatic oxidation of iodide to iodine for

glucose assay and the color change due to the binding between tetrabromophenol



blue (TBPB) and proteins for protein assay. The change of color was an indicative for
the presence of the analytes and associated with the concentration of these analytes.
In the presence of glucose and BSA, the color changed from clear to brown and yellow

to blue, respectively (Figure 2.5).

a) b) |[glucose)/ [BSAY/
mM HM
glucose < e protein
assay assay 0 0
reagents reagents
e 25 p 0.38
1cm :
5.0 E x 0.75
10 { oz 15
50 ( 8| 7s
s0 (M. W s
Smm
Figure 2.5 The patterned paper with photoresist for glucose and protein assay.

(a) The patterned paper with test reagents on the test areas. The test
areas on the left, in the middle and on the right are used for the
glucose test, control test and protein test, respectively. (b) The
change of color on the devices with the use of different levels of

glucose and BSA in a synthetic urine [29].

In the field analysis, the particulates which can contaminate the assay did not
move into the test channels and did not interfere the detection demonstrated in Figure

2.6.
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c) 3 ! '

Figure 2.6 The assays with (a) dirt, (b) plant pollen and (c) graphite powder

contaminated in the synthetic urine [29].

The uPADs provided various advantages including inexpensiveness, rapidness,
ease of use, portability and disposability. Moreover, they require only small amount
(micro-scale) of reagent/sample and do not necessarily require external instruments

to enforce the fluids.
2.3.1 Types of paper for yPADs

There are several types of paper that can be used as a substrate for
UPADs. The criteria for paper selection depends on the application and fabrication
method of the devices [46]. Cellulose paper such as Whatman® filter is commonly
used as a substrate for yPADs because it is cheap and hydrophilic which allows the
penetration of fluid. Whatman No.1 filter paper is most intensively used because of
the medium retention and flow rate of fluids and its compatibility with many
fabrication methods [46]. Some applications or fabrication methods which require
solvents that swell the cellulose fiber and restrict the pore sizes need Whatman No.4
filter paper as a substrate because it has larger pore sizes, resulting in larger surface
area and faster flow rate [47]. Chromatography paper has a more uniform structure
that avoids the deformation of uPAD patterns and has no additives which can interfere

the assay, thus it suits for the electrochemical detection with screen-printed electrodes
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[48]. Polyester which is a cellulose substrate integrated with an inorganic filter is
suitable for surface chemical modification or deposition [49]. Additionally, hydrophobic
nitrocellulose membrane which provides smooth and uniform pore size is suitable for
the immobilization of enzymes, proteins, DNA and cells. For instance, antibodies are
immobilized via electrostatic interaction between the positive charge and the negative
charge of antibody carboxyl group and amino group on the membrane surface,

respectively [50].
2.3.2 Fabrication methods of the uPADs

There are two main fabrication methods of the pPADs, i.e., two-
dimensional (2D) and three-dimensional (3D) methods [51]. The 2D uPADs were
fabricated by creating hydrophobic walls onto the hydrophilic cellulose paper so the
fluid cannot penetrate and thus driven along the micro-channels through capillary
action. There are several methods to fabricate the 2D pPADs including wax printing [30,
31], inkjet printing [32], flexographic printing, photolithography [33], laser treatment
[34], plasma treatment, wax screen-printing, wet etching and screen-printing [35]. Here
are some works using different fabrication methods. In 2008, Abe et al. [52] developed
the pPADs fabricated using inkjet printing for the assay of total protein, pH and glucose

in urine. Figure 2.7 illustrates the fabrication process using the inkjet printing method.

filter paper

. 1) soak in 1.0 wt% poly(styrene) in toluene <@

-

' sensing area ' ' '

® o @

2) print toluene onto

: 3) print the
the poly(styrene)-soaked paper ~

" chemical sensing inks
sample inlet

Figure 2.7 Fabrication process by inkjet printing method for multianalyte sensors.
The PPAD comprises several sensing areas and a reference area,

connecting to a central sample inlet area.
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In 2010, Olkkonen et al. [53] employed flexographic printing as a
fabrication method of pPADs as shown in Figure 2.8. Polystyrene used as printing ink

was printed on the paper surface and it was allowed to move into the paper to form

hydrophobic walls.
(a)
Paper substrate
Printing
Anilox roll
(b)
Figure 2.8 (a) Polystyrene in toluene solution used as printing ink is collected in

the ink reservoir, preparing to transfer to the anilox roll. The anilox
roll then speeds up and rotates to dispense the ink. The plate roll
and the impression roll then start the printing process by rotation.
The ink on the printing plate which contains the printing pattern
shown in (b) is transferred onto the paper which is fixed on the

impression roll.

In 2010, Lu et al. [30] developed the YPADs for immobilization of
protein. The uPADs were fabricated in nitrocellulose (NC) membrane using wax printing.

The fabrication steps were demonstrated in Figure 2.9.
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NC membrane
Cross section view

o Wax is printed onto the
Step 1 Printing surface of NC membrane

wax
Wax melt and penetrate
through NC membrane

nitrocellulose

Wax patterned
NC membrane

Figure 2.9 Fabrication steps for wax printing of the NC membrane-based devices

for immobilization of protein. There are 2 fabrication steps. Step 1:
Printing the wax onto the NC membrane surface using a wax printer.
Step 2: Baking the patterned NC membrane using an oven at 125 °C

for 5 min. The overall fabrication process was done within 10 min.

In 2011, Dungchai et al. [54] used wax-screen printing as a fabrication
method of the yPADs for the simultaneous assay of glucose and total iron in serum.

The fabrication process is shown in Figure 2.10.
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Cross-section

[ L osuossuninii paper
1. Printing with solid wax l

2. Melting wax into paper l
usingahotplate ¥V e solid wax
Ee— - ot plate
l ................ wax barrier
——
Figure 2.10 Fabrication process by wax-screen printing. There are two steps for

fabrication. Step 1: printing designed patterns on the paper surface
with solid wax by a screen-printing method. Step 2: melting the solid
wax into the paper using a hot plate thus generating hydrophobic

barriers.

In 2013, Nie et al. [55] proposed a laser cutting method to fabricate
the YPADs. This fabrication process, illustrated in Figure 2.11, is to pattern hollow
microstructures serving as hydrophobic barriers in  paper using CO, laser

cutting/engraving machine.

Laser ‘ Pattern predesigned on PC

Hollow microstructure-patterned paper
Figure 2.11 Principle of laser cutting method. This fabrication method is based on

the cutting due to the heat produced by laser. The pattern-
predesigned paper is burnt through its thickness.

The fabrication methods for the uPADs are summarized in Table 2.1.
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Table 2.1 The main advantages and disadvantages of different fabrication

methods for the uPADs [51].

Fabrication Advantages Disadvantages
methods
Wax printing —  Simple and fast - Requires expensive
- Eco-friendly wax printers

— Low-cost materials

Requires heating step

Inkjet printing - Rapid - Not suitable for high
- High resolution of throughput
patterns production

- Inexpensive thermal

inkjet printers

Photolithography - Rapid - Requires organic
- High resolution of solvents
patterns - Requires expensive

photoresists

Flexographic - Requires less - Requires more than

printing amounts of one print of
samples/ reagents polystyrene solution

Plasma treatment - Inexpensive -  Gets a bigger pattern
patterning agent due to the over
(alkyl ketene dimer) stretch of a substrate

under a mask

Laser treatment - Selective - Do not allow fluids
modification for flow laterally
surface structure - Requires extra coating

for fluid flow

Wet etching - Low-cost materials Requires
customization of

printing apparatus
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Fabrication Advantages Disadvantages
methods
Wax screen- - Low-cost printing Requires patterned
printing screens mesh

Screen-printing

- Eco-friendly
- Simple

Low resolution of
patterns
Requires other

printing screens

In addition to the 2D uPADs, the 3D uPADs were fabricated by stacking

different layers of paper and double-sided adhesive tape, causing the fluid to flow

within the layers of paper. For instance, Martinez et al. [56] fabricated the 3D pPADs

for testing of four different samples. As the fluids flowed laterally and vertically, they

flowed across one another without mixing. The 3D uPAD was shown in Figure 2.12.

a Patterned ﬂ b P I

Patterned paper with
connecting channels

Figure 2.12

cellulose
powder channel

| photoresist
in paper

tape channe

channel
1 mm

(a) The 3D uPAD consists of 3 layers; the top layer is a patterned paper

with 4 channels, the middle layer is a double-sided adhesive tape

containing cellulose powder-filled holes and the bottom layer is a

patterned paper with connecting channels. (b) Photograph of an

assembled PPAD with four dye solutions. The photograph was

captured at 4 min after adding the solutions at the inlets. The right
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photographs are cross sections of the 3-D yPAD displaying a channel

connecting each layer of papers.

In this work, wax printing was used as a fabrication method of the
HMPADs because both wax and paper are inexpensive, disposable and readily available.
Besides, the fabrication process is rapid, easy to operate and organic solvents are not
required. Wax printing is also suitable for mass production because of a few number

of steps.
2.3.3 Detection methods of the uPADs

Since its introduction, the pPADs have been applied to detect a wide
range of analytes. When sample solutions in sample zones reach detection zones of
the pPADs, the reactions between analytes and substrates immobilized on the uPADs
occur. The signals which are developed can be detect by several techniques such as
colorimetry [36, 37], electrochemistry [38], fluorescence [39], chemiluminescence (CL)
[40], electrochemiluminescence (ECL) [57], photoelectrochemistry (PEC) [58], etc. A

comparison of these detection techniques is displayed in Table 2.2.

Table 2.2 The main advantages and disadvantages of different detection methods

of the pPADs [51].

Detection methods Advantages Disadvantages
Colorimetry - Equipment-minimal - Interference from
- Visible to the naked other substances
eyes — Low sensitivity
Electrochemistry - Insensitive to -

ambient illumination
conditions

— Insensitive to

impurities
Fluorescence - Easy readout with a - Interference from
camera-equipped other substances

cellular phone - Low sensitivity
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Detection methods Advantages Disadvantages
Chemiluminescence - Independent of - Requires expensive
ambient light chemiluminescence
- High sensitivity reader
Electrochemilumi- - Combination of the advantages and disadvantages
nescence from the luminescence and electrochemistry
Photoelectrochemistry — Combination of the advantages and disadvantages

from the optical methods and electrochemistry

Colorimetry is a method in which its investigation is based on a color
change, resulting from enzymatic or chemical reaction between reagents and analyte.
Recently, colorimetry has been most intensively used as a detection method of the
MPADs because it is simple and colorimetric signal can be read easily. When the color
changes, the color intensity is recorded by scanners or digital cameras and quantitative
analysis is then carried out by measuring the color intensity using image analysis
software. The designs of various PYPADs integrated with colorimetric detection are

shown in Figure 2.13.
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Test zone Loading zone

Titration at pH 10
(Ca?* and Mg?*)

Endpoint: 40 mM
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1.2: pH arcas (phenol red)
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£.6.7: Nitrite arcas.

8: Reference area

Figure 2.13 A variety of designs of uPADs integrated with colorimetric detection

[59-64].
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234 Applications of the uPADs

Since the PPADs were originated in 2007 [51], they have been
developed and applied to test many kinds of analyte because of their portability,
simplicity, inexpensiveness and ease of use. Furthermore, they are beneficial for the
use of disease diagnosis with affordable price in developing countries. The uPADs have
been used in many applications such as health diagnostic, environmental monitoring,
biochemical analysis and food quality control. An overview of researches for each kind

of applications was exemplified herein.
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2.4 Literature reviews

In 2009, Songjareon et al. [10] determined urinary creatinine using a microfluidic
system integrated with a portable miniature fibre optic spectrometer. The method was
based on a kinetic Jaffé reaction which is the reaction between creatinine and alkaline
picrate, generating an orange-red color of creatinine-alkaline picrate complex. The
reaction exhibited the absorption wavelength at 510 nm and it was investigated on
poly(dimethylsiloxane) (PDMS) microchip. A linear range was in the range of 0-40 me/L
with a limit of detection of 3.3 mg/L. UV-Vis spectrophotometry based on Jaffé reaction

was used to validate the proposed method.

In 2013, Tymecki et al. [80] developed a photometric device equipped with a
paired emitter detector diode (PEDD) for assaying of creatinine in serum and urine using
Jaffé method. The PEDD device was integrated with LED-based emitter and LED-based
detector at the wavelength of 505 nm and 525 nm, respectively, and also integrated
with multicommutated flow analysis (MCFA) system. The PEDD-based MCFA system for
the assay of creatinine provided the determination of creatinine concentrations in

submillimolar range with a limit of detection at ppm level.

In 2015, Talalak et al. [81] developed enzymatic paper-based analytical devices
(enz-PADs) for colorimetric detection of creatinine in urine. The method was based on
the formation of hydrogen peroxide (H,O,) by conversion of creatinine using
creatininase, creatinase and sarcosine oxidase. The generated H,O, reacts with 4-
amino-phenazone and  2,4,6-triiodo-3-hydroxybenzoic  acid  thus generating
guinoneimine which is a pink-red color. A linear range for the determination of
creatinine was in the range of 2.5-25 mg/dL with a limit of detection of 2.0 mg/dL.
Alkaline picrate method was used to compare to the proposed method for the analysis
of creatinine. The fabrication of the enz-PADs and the procedure of creatinine assay

are displayed in Figure 2.14.
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Fabrication of the enz-PADs and procedure of creatinine assay.

In 2015, Debus et al. [5] proposed two home-made platforms based on a CD
Spectroscope (CDS) and Computer Screen Photo-assisted Technique (CSPT) for
creatinine assay in human urine (Figure 2.15). CDS and CSPT systems for the assay of
creatinine exhibited a linear range from 160 uM to 1.6 mM with limits of detection of
89 M and 111 pM, respectively. The performance of both systems was validated using

capillary electrophoresis.
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Figure 2.15 Scheme for CSPT and CDS based on Jaffé reaction.

In 2016, Sittiwong and Unob [82] developed a paper-based platform for
detection of creatinine in urine. As shown in Figure 2.16, creatinine was extracted via
an ion-exchange mechanism using 3-propylsulfonic acid trimethoxysilane coated on

the paper as a reagent. The extracted creatinine was then detected by Jaffé reaction,
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resulting in the formation of a yellow-orange color of creatinine alkaline picrate
complex. A linear range for the detection of creatinine was in the range of 10-60 mg/L

with a limit of detection of 4.2 mg/L. The proposed method was validated using the

spectrophotometric method.

3-propylaulfonic acid

trimethoxysilane
++ 4
""" % + 5t W
------------ bk s A 2 'I'_
------ Creatinine in SO
acidified sarmple
Paper platform
E
3
=]
. a
(@] /i :

o 10 20 1] 40 1) 2]

Creatinine concentration (mg L)

Figure 2.16 Procedure for creatinine detection using the paper platform.
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EXPERIMENTAL

3.1 Chemicals and apparatus

3.1.1 Chemicals

Table 3.1 List of chemicals used in this work.
Chemicals Suppliers
Picric acid Sigma-Aldrich, Germany
Creatinine
Urea

Bovine serum albumin (BSA)

Magnesium sulfate (MgSO,) Merck, Germany
Sodium hydroxide (NaOH)

Potassium chloride (KCl)

Sodium sulfate (Na,SO,)

Sodium dihydrogen phosphate monohydrate

(NaH,PO4-H,0)

Ascorbic acid (AA) BDH, UK
Sodium oxalate (Na,C,04)

Disodium hydrogen phosphate (Na,HPO,)

Glucose (Glc) Carlo Erba, France

Sodium chloride (NaCl)

Calcium chloride (CaCl,) M&B, UK

Sodium bicarbonate (NaHCO5)

Trisodium citrate dihydrate (Na;CgHsO7-2H,0) Fisher Scientific, UK
Ammonium chloride (NH,Cl) Ajax Finechem, Australia

Uric acid (UA) Wako, Japan
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Table 3.2 List of the apparatus used in this work.
Apparatus Suppliers
UV-Visible spectrophotometer (HP HEWLETT PACKARD Agilent, UK
8453)
Digital camera (Canon EOS 1000D) Canon

Whatman No.1 qualitative filter paper
Wax printer (Xerox ColorQube 8570)
Vortex mixer (MIXER UZUSIO VTX-3000L)
Balance

Hot plate (C-MAG HS 10)

Centrifuge (Hettich UNIVERSAL 320 R)
Centrifuge tubes

Microtubes

Micropipettes and tips

Quartz cuvette

Glasswares

GE Healthcare
Xerox, Japan
LMS

Mettler Toledo
IKA

Hettich
Plasmed
Plasmed

Eppendorf, Germany

3.2 Preparations of chemicals

3.2.1 Preparation of colorimetric reagent solution

3.2.11

0.04 M picric acid solution

A 0.04 M picric acid solution was prepared by dissolving

0.09164 ¢ of picric acid in 10 mL of DI water.
3.2.1.2

2 M sodium hydroxide solution

A 2 M sodium hydroxide solution was prepared by

dissolving 0.80000 ¢ of sodium hydroxide in 10 mL of DI water.
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3.2.1.3 Alkaline picrate reagent solution

An alkaline picrate reagent solution was prepared by
mixing the 0.04 M picric acid solution and the 2 M sodium hydroxide solution in the
ratio of 1:1.

3.2.2 Preparation of creatinine solution

A 1 mM stock creatinine solution was prepared by dissolving 1.13 mg

of creatinine in 10 mL of DI water.

3.2.3 Preparation of solutions for the investigation of selectivity of the

creatinine determination
3.2.3.1 25 mM urea solution

A 25 mM urea solution was prepared by dissolving 7.51 mg
of urea in 5 mL of DI water.

3.2.3.2 5 mM uric acid (UA) solution

A 5 mM uric acid solution was prepared by dissolving 4.20
mg of uric acid in 5 mL of DI water.

3.23.3 5 mM trisodium citrate (Na;C4Hs0;) solution

A 5 mM trisodium citrate solution was prepared by
dissolving 7.36 mg of trisodium citrate dihydrate in 5 mL of DI water.

3.23.4 5 mM potassium chloride (KCl) solution

A 5 mM potassium chloride solution was prepared by
dissolving 1.86 mg of potassium chloride in 5 mL of DI water.

3.2.3.5 5 mM ammonium chloride (NH,Cl) solution

A 5 mM ammonium chloride solution was prepared by

dissolving 1.34 mg of ammonium chloride in 5 mL of DI water.
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3.2.3.6 5 mM calcium chloride (CaCl,) solution

A 5 mM calcium chloride solution was prepared by
dissolving 2.77 mg of calcium chloride in 5 mL of DI water.

3.2.3.7 5 mM magnesium sulfate (MgSO,) solution

A 5 mM magnesium sulfate solution was prepared by
dissolving 3.01 g of magnesium sulfate in 5 mL of DI water.

3.2.3.8 5 mM sodium bicarbonate (NaHCO;) solution

A 5 mM sodium bicarbonate solution was prepared by
dissolving 2.10 mg of sodium bicarbonate in 5 mL of DI water.

3.2.3.9 5 mM sodium oxalate (Na,C,0,) solution

A 5 mM sodium oxalate solution was prepared by
dissolving 3.35 mg of sodium oxalate in 5 mL of DI water.

3.2.3.10 5 mM sodium sulfate (Na,SO,) solution

A 5 mM sodium sulfate solution was prepared by
dissolving 3.55 mg of sodium sulfate in 5 mL of DI water.

3.2.3.11 5 mM ascorbic acid (AA) solution

A 5 mM ascorbic acid solution was prepared by dissolving
4.40 mg of ascorbic acid in 5 mL of DI water.

3.23.12 5 mM glucose (Glu) solution

A 5 mM glucose solution was prepared by dissolving 4.50
mg of glucose in 5 mL of DI water.

3.2.3.13 5 mM bovine serum albumin (BSA) solution

A 5 mM albumin solution was prepared by dissolving

1.66092 ¢ of bovine serum albumin in 5 mL of DI water.
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3.2.4 Preparation of artificial urine

The artificial urine solution was prepared by mixing the following
substances which their concentrations are within the normal ranges of human urine.
Table 3.3 shows the components and their concentrations in the artificial urine

prepared in DI water.

Table 3.3 Components and their concentrations in the artificial urine [83].

Composition Concentration (mM)
Urea 400
UA 1.00
Na3CgHs07-2H,0 5.00
NaCl 54.00
KCL 30.00
NH,4Cl 15.00
CaCl, 3.00
MgSO, 2.00
NaHCO; 2.00
Na,C204 0.10
Na,SOq4 9.00
NaH,PO4-H,0 3.60
Na,HPOq4 3.60
AA 11.50
Glc 16.75

3.3 Design and fabrication of yPADs

The uPADs (Figure 3.1) were designed using Microsoft PowerPoint. A pattern of
the pPADs that is hydrophilic part comprised a sample zone and eight detection zones
so as to obtain eight replicates of measurement simultaneously and hydrophobic part
comprised the blue color with red, green and blue (RGB) values of 0, 153 and 255,

respectively. The size of each device is approximately 2.50 x 2.50 cm and the diameters
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of the sample zone and detection zone are 1.20 cm and 0.40 cm, respectively. After
the design of the YPADs, they were fabricated using wax printing as fabrication method.
For the fabrication process (Figure 3.2), a masking pattern was printed onto the surface
of Whatman No.1 filter paper using a wax printer (Xerox ColorQube 8570). The wax-
patterned paper was heated using a hot plate at 175°C for 40 s, then the wax was
melted and penetrated through the paper thereby generating a hydrophobic barrier.
The heated paper was subsequently covered with a transparent tape at the back side
to prevent leakage of solution through the paper. This fabrication method is simple,

fast and suitable for high throughput production with 48 devices per batch.

A A6 K XK K
A A6 A K K K
A A K K K K

*'*"* '*"* '*‘ : Detection zone
**’**** S Samplezone
e EE L Ed
A K A e K K
****** 2.50cm

Figure 3.1 Design of the uPAD:s.

1.20cm

A
4

Figure 3.2 Fabrication process of the uPADs.

3.4 Colorimetric detection of creatinine

The experimental procedure is schematically demonstrated in Figure 3.3. To
prepare the colorimetric reagent solution, 0.04 M picric acid and 2 M sodium hydroxide
were mixed together (alkaline picrate reagent solution). Firstly, 1.50 uL of alkaline

picrate reagent solution was dropped onto each detection zone, followed by a 50 pL
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addition of creatinine standard solution onto the sample zone. The solution is then
directed to the detection zones by capillary action and allowed to incubate for 25
min. Finally, the images of uPADs were captured using a digital camera (Canon EOS

1000D) in a light-controlled box. For blank test, DI water was used as a blank solution.

(a) (b) ()

Figure 3.3 The experimental procedure for the colorimetric determination of
creatinine. (a) Alkaline picrate reagent solution was added onto each
detection zone of the UPAD. (b) Creatinine solution was then added
onto the sample zone and flow to the detection zones. (c) The

reaction color changed from yellow to orange.

3.5 Image processing for quantitation

To quantify the intensity of the developed color, ImageJ software was utilized.
For the image processing (Figure 3.4), a color threshold was applied and hue was
adjusted (100 - 255) in order to remove the wax backeround. The images were then
converted to 8-bit and inverted; the darkness of color was proportional to the color
intensity. After the inversion, the color intensity was measured at each detection zone
and an average of the eight color intensity values was calculated. The average color

intensity value was then subtracted by an average baseline intensity value (Al).
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3.6 Optimization of concentrations of colorimetric reagent solution

Concentrations of picric acid and sodium hydroxide solution were optimized to
provide the highest values of color intensity. A 0.4 mM creatinine standard solution

was used as the test solution.
3.6.1 Picric acid solution

Concentrations of picric acid solution were investigated in the
concentrations of 0.01, 0.02, 0.03, 0.04 and 0.05 M. The alkaline picrate reagent
solutions were prepared by mixing these picric acid solutions and 2 M sodium

hydroxide solutions in the ratio of 1:1 in the individual microtubes.
3.6.2 Sodium hydroxide solution

Concentrations of sodium hydroxide solution were investigated in the
concentrations of 1, 2, 3, 4 and 5 M. The alkaline picrate reagent solutions were
prepared by mixing these sodium hydroxide solutions and 0.04 M picric acid solutions

in the ratio of 1:1 in the individual microtubes.
3.7 Optimization of ratios of picric acid to sodium hydroxide

Ratios of picric acid to sodium hydroxide were optimized to provide the highest
values of color intensity. The ratios of picric acid to sodium hydroxide were investigated
at 5:1, 4:1, 3.1, 2:1, 1:1. 1:2, 1:3, 1:4, 1.5, 1:6 and 1:7, and 0.4 mM creatinine standard

solutions were tested.
3.8 Effect of reaction time

The effect of reaction time was studied to provide the optimal reaction time
for the determination of creatinine. In this experiment, the optimal concentration of
alkaline picrate reagent solution and three concentrations (0.4, 0.7 and 1 mM) of

creatinine standard solutions were tested.
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3.9 Analytical performance

3.9.1 Linear range, limit of detection (LOD) and limit of quantitation

(LOQ)

Under the optimal conditions, a calibration curve was constructed by
plotting the concentrations of creatinine standard solutions against the subtracted
color mean intensity (Al), thus the linear range of creatinine determination was

obtained. The LOD and LOQ were calculated from the following formula:
35Dplank

S
10SDp(ank

LOD=

LOQ=
S

Where SDyank is the standard deviation from three replications of

blank measurements (n=3) and S is the slope of the calibration curve.
3.9.2 Reproducibility of the uPADs

The reproducibility of uPADs was evaluated in the term of relative
standard deviation (RSD) of the subtracted color mean intensity values from seven
UPADs and different concentrations (0.2, 0.6 and 1 mM) of creatinine standard solution

were tested. The %RSD was calculated as follows:

sD

%RSD=— X100
X

Where SD is the standard deviation of seven values of subtracted
color mean intensity and X is the average of seven values of subtracted color mean

intensity.
3.9.3 Selectivity

To assess the selectivity of creatinine determination, several
substances commonly found in urine were investigated. Urea solution which is the
main component in urine was prepared in the concentration of 25 mM (50 times of

creatinine concentration used in this experiment) and UA, Na;CgHs07-2H,0, KCL, NH,CL,
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CaCl,, MgSOq4, NaHCO5, Na,C,04, Na,SO4, AA and Glc solutions were prepared in the
concentrations of 5 mM (10 times of creatinine concentration used in this experiment)
[83]. Moreover, albumin which is a protein slightly existing in urine [84] was also tested
in the concentration of 5 mM (5 times of creatinine concentration used in this

experiment).

Furthermore, the effect of other substances in urine on creatinine
determination was also determined by comparing between the subtracted color mean
intensity of 1 mM creatinine standard solution with the substances found in urine and
those of 1 mM creatinine standard solution. The studied substances in the synthetic
urine sample [83] comprised of 16 mM urea [85], 0.04 mM UA, 0.2 mM Naz;C¢Hs0,-2H,0,
2.2 mM NaCl, 1.2 mM KCL, 0.6 mM NH4CL, 0.12 mM CaCl,, 0.08 mM MgSQq, 0.08 mM
NaHCOs, 4 pM Na,C,04, 0.36 mM Na,SOy, 0.14 mM NaH,PO4-H,0, 16 uM Na,HPO,, 0.46
mM AA [86] and 0.67 mM Glc [87].

3.10 Determination of creatinine in artificial urine samples

Prior to the analysis of real samples, the developed pYPADs were applied to
determine creatinine in the prepared artificial urine samples. In this experiment,
creatinine standard solutions were spiked in the concentrations of 0.4, 0.6 and 0.8 mM
into the artificial urine samples. The %recovery was calculated from the following
formula:

Cspiked sample - Cunspiked sample

%Recovery= c X100
added

Where C is the concentration of analyte in a sample.
3.11 Determination of creatinine in urine samples

To determine creatinine in urine samples, human urine samples were collected
from healthy volunteers. The urine samples were centrifuged at 5000 rpm for 30 min
and diluted at least 25-fold with DI water. The analytical performance of the proposed

method was examined using the spiked method by spiking creatinine standard
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solutions at the concentrations of 0.15, 0.30 and 0.45 mM into the urine samples. The

%recovery was then calculated.
3.12 Validation of the proposed method

To validate the accuracy of the proposed method, the conventional Jaffé
method was used [41, 88]. The solution containing 2.5 mL of creatinine standard
solution or diluted urine samples, 1 mL of 0.04 M picric acid and 1 mL of 0.75 M
sodium hydroxide was incubated at room temperature for 30 min before

determination using a UV-Visible spectrophotometer at the absorbance of 490 nm.



CHAPTER IV
RESULTS AND DISCUSSION

4.1 UV-Vis absorption spectrum of the creatinine-alkaline picrate complex

Upon the addition of creatinine to the alkaline picrate reagent solution, the
color of the solution changed from yellow to orange due to the interaction of the
methylene anion of creatinine to the picric acid at the meta position, resulting in the
formation of a creatinine-alkaline picrate complex [43]. This solution of creatinine-
alkaline picrate complex exhibited a maximum absorption wavelength at 490 nm.
Figure 4.1 shows the spectrum of the creatinine-alkaline picrate complex obtained

from a UV-Vis spectrophotometer.

0.9
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Figure 4.1 The UV-Vis absorption spectrum of the creatinine-alkaline picrate

complex.
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4.2 Optimization of the concentrations of colorimetric reagent solution

The concentrations of colorimetric reagent solution, i.e., picric acid and sodium
hydroxide solutions were investigated. In this experiment, several yPADs were prepared
by adding the mixture of 0.01, 0.02, 0.03, 0.04 and 0.05 M picric acid solution and 2 M
sodium hydroxide solution onto the detection zones of individual uPADs. On the other
hand, the concentration of picric acid solution was fixed (0.04 M) and the
concentrations of sodium hydroxide solution were varied (1, 2, 3, 4 and 5 M). The
colorimetric product was formed with the introduction of 0.4 mM creatinine. The
results, demonstrated in Figure 4.2, show that the concentrations of picric acid and
sodium hydroxide solution at 0.04 M and 2 M provided the highest color intensity.
Therefore, these concentrations were used for the colorimetric detection of creatinine

in the following experiments.

@ 12
10

Al
= N R =

0 001 002 0.03 004 005 0.06
Concentrations of picric acid (mM)

(b)) 12

Al
S N A O ®

0 1 2 3 4 5 6
Concentrations of sodium hydroxide (mM)

Figure 4.2 Optimization of the concentrations of (a) picric acid and (b) sodium

hydroxide.
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4.3 Optimization of ratios of picric acid to sodium hydroxide

The ratios of picric acid to sodium hydroxide were optimized to provide the
best analytical performance. In this experiment, the optimal concentrations of picric
acid and sodium hydroxide solution were used. The effect of sodium hydroxide on the
assay was investigated by varying the volumes of sodium hydroxide while the volume
of picric acid was constant. The results (Figure 4.3a) show that the subtracted color
mean intensities (Al) were not significantly different with the different ratios of picric
acid to sodium hydroxide because the sodium hydroxide solution was in excess. When
the volumes of picric acid solution were increased and the volume of sodium
hydroxide kept constant, the results (Figure 4.3b) show that the subtracted color mean
intensities decreased due to a decrease in alkaline condition. Therefore, the optimal

ratio of picric acid to sodium hydroxide is 1:1.

(a) 15 1
12 3
o] — T+
=
6 1
3 4
0
1A 1:2 3 14 15 16 L
Ratio of picric acid to sodium hydroxide
®) 12
10
8
. 6
<
4
2
0
P j 1:1 2:1 3:1 4:1 5.11
Ratio of picric acid to sodium hydroxide

Figure 4.3 Optimization of ratios of picric acid to sodium hydroxide.
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4.4 Effect of reaction time

Under the optimal concentrations of colorimetric reagent solution, the reaction
time of the colorimetric reaction was investigated by adding creatinine solutions at the
concentrations of 0.4, 0.7, 1 mM onto the sample zones of the prepared YPADs. The
reaction time was instantly recorded when the creatinine solution reached detection
zones, then the pPADs were captured using a digital camera for 30 min at 1-min
intervals. As shown in Figure 4.4, the color intensity was developed in proportional
with time until 24 min and was almost steady after 25 min. Accordingly, the optimal

reaction time of the colorimetric reaction for creatinine determination was defined at

25 min.
25 1
20 ] i ” at s ®
15 - e
= " ’
10 4 _-' au® B
5 oot
0-""l""l""l""ll"'l""l""l
0 5 10 15 20 25 30 35
Reaction time (min)
“04mM ®*0.7mM ® 1 mM
Figure 4.4 Effect of reaction time on the determination of creatinine. Three

concentration levels of creatinine were studied.
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The optimal conditions for the determination of creatinine are summarized in

Table 4.1.

Table 4.1 Optimal conditions for the determination of creatinine.

Experimental parameter Studied range Optimal condition
Concentration of picric acid 0.01-0.05 M 0.04 M
Concentration of sodium hydroxide 1-5M 2M
Ratio of picric acid to sodium hydroxide 1:1-1.7 1:1

1:1-5:1
Reaction time 1-30 min 25 min

4.5 Linear range, limit of detection and limit of quantitation

Under the optimal conditions, a calibration curve (Figure 4.5) was constructed
by plotting the concentrations of creatinine standard solutions against the subtracted
color mean intensity. A wide linear range for the determination of creatinine was
obtained in the range of 0.2-1 mM (R*=0.99857) with a limit of detection and a limit of
quantitation of 0.08 mM and 0.26 mM, respectively. The limit of detection was
obtained from three times the standard deviations of the color intensity from the blank
divided by the slope of the calibration curve and the limit of quantitation was obtained
from ten times the standard deviations of the color intensity from the blank divided
by the slope of the calibration curve. As shown in Figure 4.6, the color intensity of the
creatinine-alkaline picrate complex which is clearly visible at the detection zones of

the pPADs is proportional to the concentrations of creatinine.
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Figure 4.5 Calibration curve for the determination of creatinine. The linear range

was 0.2-1 mM with the limit of detection and the limit of quantitation

of 0.08 mM and 0.26 mM, respectively.

Concentrations of creatinine (mM)

0 0.2 0.4 0.6 0.8 1.0

Figure 4.6 Color scheme of the Jaffé reaction with creatinine concentrations of

0.2, 0.4, 0.6, 0.8 and 1 mM. The color intensity of the creatinine-
alkaline picrate complex which is clearly visible at the detection

zones of the pPADs is proportional to the concentrations of creatinine.
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4.6 Reproducibility of the uPADs

The reproducibility of the uPADs was evaluated in the term of relative standard
deviation (RSD) of the subtracted color mean intensity values from seven uPADs and
different concentrations (0.2, 0.6 and 1 mM) of creatinine standard solution were
tested. The results, demonstrated in Figure 4.7, show that this method provided a good
precision with %RSD of 2.85, 1.10 and 1.64% for the determination of creatinine at 0.2,
0.6 and 1 mM, respectively.

25 4
20 A
15 4
&
10 -
5 -
O 4
1 2 3 4 5 6 7
UPAD No.
H02mM ®0.6mM ®1mM
Figure 4.7 Reproducibility of the pPADs with several uPADs and different

concentrations of creatinine. The %RSDs are 2.85, 1.10 and 1.64% for

the determination of creatinine at 0.2, 0.6 and 1 mM, respectively.

4.7 Selectivity

To investigate the selectivity of the colorimetric determination of creatinine,
various substances commonly found in urine [83] including urea, UA, Na;C4HsO7-2H,0,
KCL, NH4CL, CaCl,, MgSQOg4, NaHCO3, Na,C,0O4, Na,SO4, AA and Glc were tested. In addition,
albumin which is a protein slightly existing in urine [84] was also tested by adding 50
uL of these solutions onto sample zones of the individual yPADs. The reaction time
was instantly recorded when the solutions reached detection zones. After 25-min

incubation, the YPADs were captured using a digital camera and the images were



a8

analyzed by ImageJ software in order to quantify the color intensity. The subtracted

color mean intensities of the creatinine standard and other substances were shown in

Figure 4.8 and 4.9. As clearly seen, only creatinine can change the reaction color from

yellow to orange. Therefore, the proposed method was evidently selective for the

determination of creatinine in urine samples.
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Figure 4.8

Selectivity of the determination of creatinine. 50 uL of 0.5 mM
creatinine, 25 mM urea and 5 mM UA, Na;C¢Hs07-2H,0, KCl, NH,CL,
CaCly, MgSOq4, NaHCO;, Na,Cy,O4, Na,SO4, AA and Glc were tested.
According to the photographs of the pPADs, only creatinine can

change reaction color from yellow to orange.
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Figure 4.9 Selectivity of the determination of creatinine. 50 pL of 1 mM
creatinine and 5 mM albumin were tested. According to the
photographs of the uPADs, only creatinine can change reaction color

from yellow to orange.

Furthermore, the effect of other substances in urine on creatinine
determination was also determined by adding various contaminants commonly found
in urine into 1 mM creatinine solution. The color intensity of 1 mM creatinine with
interfering substances was compared to the color intensity of 1 mM creatinine. The
results reported in Figure 4.10 show that the studied substances in the artificial urine
sample [83] comprising of 16 mM urea [85], 0.04 mM UA, 0.2 mM Na;C4Hs507-2H,0, 2.2
mM NaCl, 1.2 mM KCL, 0.6 mM NH4CL, 0.12 mM CaCl,, 0.08 mM MgSQy, 0.08 mM NaHCOs,
4 uM Na,C,04, 0.36 MM Na,SOy, 0.14 mM NaH,PO4H,0, 16 uM Na,HPO,4, 0.46 mM AA
[86] and 0.67 mM Glc [87] did not significantly interfere the creatinine quantification

because the difference of the color intensities was less than 5%.
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Figure 4.10 Comparison between the subtracted color mean intensity of 1 mM
creatinine standard solution with the substances found in urine and
those of 1 mM creatinine standard solution. The photographs show
the reaction colors at the detection zones of the UPADs. The color

intensities are not significantly different.
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4.8 Determination of creatinine in artificial urine samples

The developed devices were applied to determine creatinine in artificial urine
samples in order to show the analytical performance of the assay prior to the
determination of real samples. The creatinine standard solutions were spiked in the
concentrations of 0.4, 0.6 and 0.8 mM into the artificial urine samples. Table 4.2 exhibits
the %recoveries and %RSDs of creatinine which are in the acceptable ranges of 97.37-

100.12% and 0.86-3.16%, respectively.

Table 4.2 The recovery results of the proposed method for the determination of

creatinine in artificial urine samples (n = 3).

Artificial urine Added (mM) Found (mM) Recovery (%) RSD (%)

Artificial urine 1 0 0.193 + 0.006 - 3.16
0.4 0.593 + 0.015 99.96 2.46
0.6 0.786 + 0.010 98.21 1.22
0.8 0.972 + 0.008 97.37 0.86
Artificial urine 2 0 0.199 + 0.005 - 2.51
0.4 0.601 + 0.010 100.12 1.59
0.6 0.790 + 0.009 98.40 1.10
0.8 0.997 + 0.009 99.66 0.95
Artificial urine 2 0 0.203 + 0.006 - 3.01
0.4 0.593 + 0.013 97.68 2.16
0.6 0.792 + 0.010 98.24 1.31

0.8 0.994 + 0.014 98.94 1.38
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4.9 Determination of creatinine in urine samples

To assess its applicability, the developed devices were used for the
determination of creatinine in human urine samples. The analytical performance of
the proposed method was examined using the spiked method by spiking creatinine
standard solutions at the concentrations of 0.15, 0.30 and 0.45 mM into the urine
samples. Table 4.3 exhibits the %recoveries and %RSDs of creatinine which are in the
range of 91.06-102.86% and 1.27-5.77%, respectively. It was indicated that the
proposed method was reliable. To demonstrate the accuracy of the proposed method,
the concentrations of creatinine found in urine samples were compared to those
obtained from the standard Jaffé method, i.e., UV-Vis spectrophotometry. From a
paired t-test result at 95% confidence interval, the concentration results of the
proposed method shown in Table 4.4 were in good agreement with those from the
standard method (teicutated Was below tgiical (2.776)). Therefore, the proposed method

is applicable for determination of creatinine in urine samples.
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Table 4.4 Concentration of creatinine in urine samples using the proposed

method and the standard method (n = 3).

Urine samples Concentration of creatinine in urine samples (mM)
Proposed method Spectrophotometric method
Sample 1 9.043 + 0.369 9.602 + 0.014
Sample 2 10.492 + 0.527 10.727 £ 0.205
Sample 3 13.766 + 0.249 14.239 + 0.037
Sample 4 9.541 + 0.303 9.425 + 0.086
Sample 5 6.317 + 0.246 6.490 + 0.016

Moreover, concentrations of creatinine in uncentrifuged urine samples were
determined and compared with those in centrifuged urine samples so as to reduce
the sample preparation step which is time-consuming. The results, displayed in Figure
4.11, show that there is no significant difference for each sample. Therefore, this
proposed method can be done without centrifugation which can reduce time for

sample preparation and suits for on-site analysis.

16.406
<18 A 16.565

14

10

Concentrations of creatinine (mM
S N A O

samplel sample2 sample3

B Centrifuged urine samples
¥ Uncentrifuged urine samples

Figure 4.11 Concentrations of creatinine in centrifuged and uncentrifuged urine

samples. Three urine samples were analyzed.



CHAPTER V
CONCLUSIONS

The low-cost, simple and portable uPADs for the determination of creatinine
in urine samples were successfully developed. In this work, the reagent and sample
solutions required only are in the micro-scale amount and the external instruments
are not necessary. The fabrication process of the developed devices is rapid and easy.
The materials were also eco-friendly and readily available. The pPADs detection
scheme was based on a simple Jaffé reaction which gave an orange product. In the
presence of creatinine, a change of color at the detection zones can be easily observed
by the naked eyes or simply processed with a digital camera. Under the optimal
conditions, the calibration curve was constructed and a wide linear range was obtained
in the range of 0.2-1 mM (R*=0.99857) with the limit of detection and the limit of
quantitation of 0.08 mM and 0.26 mM, respectively. In addition, the proposed method
provided a good reproducibility and selectivity. The accuracy of the proposed method
was not significantly different from the UV-Visible spectrophotometric method by a
paired t-test at 95% confidence interval. Finally, the yPADs were successfully applied
for the determination of creatinine in urine samples and were demonstrated a great

potential to be used for clinical laboratory.
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Table Al Physiological ranges of compositions of normal human urine [83].
Composition Concentration (mM)
Urea 200
UA 1.00
Creatinine 4.00
Na;CsHsO; 5.00
NaCl 54.00
KCl 30.00
NH,Cl 15.00
CaCl, 3.00
MgSOy, 2.00
NaHCO; 2.00
Na,C,0q4 0.10
Na,SOq4 9.00
NaH,PO4 3.60

NazHPOLl 0.40
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APPENDIX B
PRECISION AND ACCURACY

Table B1 Acceptable values for reproducibility obtained from AOAC guidelines
for single laboratory [89].

Concentration of analyte RSD (%)

100% 2

10% 3

1% q

0.1% 6

0.01% 8

10 pg/g (ppm) 11

1 pg/s 16

10 pg/kg (ppb) 32

Table B2 Acceptable recovery obtained from AOAC guidelines for single
laboratory [89].

Concentration of analyte Recovery (%)

100% 98-101

10% 95-102

1% 92-105

0.10% 90-108

0.01% 85-110

10 pg/g (ppm) 80-115

1 ug/e 75-120

10 pg/ke (ppb) 70-125
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