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Recent observations suggest that the universe is expanding with acceleration.

General relativity theory is supposed to be a theory to describe this phenomenon.

However, without introducing exotic matter such as dark energy, it cannot explain

this phenomenon. One possibility to explain this phenomenon is a modification of

general relativity which is usually called modified gravity theory. Massive gravity

theory is one of the modifications in which the massless spin-2 graviton acquires

masses in contrast to usual general relativity corresponding to massless graviton.

A model that can explain acceleration of the expanding universe is presented by

de Rham, Gabadadze, and Tolley and is called dRGT massive gravity theory.

Even though this massive gravity theory can explain the expanding universe with

acceleration, it must reduce to the usual explanation of local gravity scale such as

the solar system. In order to study consequences of massive gravity at local gravity

scale, the aim of this research is therefore to study spacetime geometry by using

the spherically symmetric solutions in this theory. By using these solutions, one

can find particle trajectories by analyzing the effective potential. From the data

of Mercury’s orbit, we found that the trajectory of Mercury obtained by massive

gravity theory is same as the result predicted from GR. It implies that the dRGT

massive gravity theory can reduce to GR at the local gravity scale.
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CHAPTER I

Introduction

It is well-known that general relativity (GR) is one of pillars of modern

physics. It is also expected that general relativity could be used to explain the

dynamics of the universe. The recent observations suggest that the universe is

expanding with acceleration [1, 2]. The unknown object which drives the cosmic

acceleration is named as dark energy. The simplest way to describe this phe-

nomenon is to add cosmological constant Λ into Einstein action. This model is

an alternative model of dark energy. However, there is a problem in this model

in case of the energy to drive the cosmic acceleration which is addressed in terms

of vacuum energy. Since the cosmological constant model spreads throughout the

universe, it can be interpreted as vacuum energy. The vacuum energy density

evaluated by particle physics theory with Planck scale cutoff is about 1074 (GeV)4

which is around 10121 times larger than the observed energy density of cosmolog-

ical constant [3]. In order to solve this problem, scientists attempt to propose

dynamical models of dark energy such as scalar field namely quintessence which

denotes canonical scalar fields [3]. For more complicated models, there are various

efforts to construct dark energy model for examples, k-essence [4, 5], three-form

model [6, 7], and vector field model [8].

Instead of adding an exotic matter into the theory, one may obtain the

cosmic acceleration by modifying gravity. This is known as modified gravity the-

ory. The simplest model to modify gravity theory is f(R) gravity theory which

is the higher order invariants to the gravitational action coming from high-energy

physics and an attempt to generalize GR in the sense of cosmology and astro-
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physics [9, 10]. For other complicated models, there are many models studied by

theorists such as f(G) model [11], braneworld [12], DGP model [13], and massive

gravity theory [14,15,17–19]. In this research, we are interested in massive gravity

theory. From the particle physics point of view, general relativity corresponds to

a theory of massless spin-2 particle (graviton). Therefore, one of modifications

to general relativity is to add mass to the graviton resulting in massive gravity

theory.

In 1939, the first massive gravity theory was constructed by Fierz and Pauli.

They introduced the mass terms to the linearized perturbation of Einstein-Hilbert

action [14]. The linearized Einstein-Hilbert action known as linearized GR is in-

variant under guage transformation and corresponds to massless spin-2. The mass

terms added into the action break the gauge invariance. As a result, there are five

degrees of freedom in the theory, instead of two found in general relativity. The

Fierz-Pauli massive gravity theory successfully describes massive spin-2. How-

ever, in 1970 van Dam, Veltman, and Zakharov studied the Fierz-Pauli action by

adding a symmetric source into the action [15,16]. They discovered that there is a

discontinuity in the theory called vDVZ discontinuity when taking graviton mass

to be zero. Light bending angle resulting from massless limit of massive gravity

theory is different to one from the general relativity.

In 1972, Vainshtein [18] proposed the idea to explain this discontinuity. The

idea is that the non-linear perturbation is dominated over the linear perturbation

when mass of graviton is set to be zero. This suggests us that the non-linear

perturbation should be considered in the massless limit. Just about the same

time, Boulware and Deser also found a ghost mode (called BD ghost) when they

considered the non-linear massive gravity theory [17]. The massive gravity theory

has been continuously developed in order to alleviate this problem in the theory.

Until 2010, de Rham, Gabadadze, and Tolley proposed a viable model of massive

gravity theory without BD-ghost [19–21]. This is one of the main topics in this

thesis and we will discuss on this massive gravity theory in details later.

Most of modifications of general relativity are constructed in order to ex-
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plain gravity at the cosmological scale since general relativity with ordinary mat-

ter cannot correctly describe. However, at small scale such as our solar system

scale, some modified gravity theories cannot be reduced to general relativity. This

means that the theories cannot be used to explain local gravity or gravity at small

scale [23–28]. In a simple modified gravity model, there is a parameter region

of the model at which the universe can expand with acceleration. However, this

region is not compatible with local gravity constraints [29–31]. It is accordingly

worthwhile to investigate the compatibility of massive gravity theory with local

gravity constraints. As we have mentioned, one of viable model of massive grav-

ity theory without BD ghost is the de Rham-Gabadadze-Tolley (dRGT) massive

gravity theory. It was found that graviton mass in dRGT massive gravity can play

a role of cosmological constant driving the universe to expand with acceleration.

As the same strategy with usual modified gravity theory, dRGT massive gravity

theory should explain the local gravity such as the solar system.

Since most of astronomical objects in the universe are approximately spher-

ical object, it is able to assume that our system has the spherical symmetry. This

symmetry represents a general and simple form of solution. Therefore, the spher-

ically symmetric solution in gravity theory is a powerful tool to investigate the

particle’s trajectory around spherical object. In dRGT massive gravity theory,

spherically symmetric solutions are very complicated and not easy to compare

the result with one from general relativity [22]. This is due to the complicated

non-linear mass term. However, this can be simplified by choosing proper the

fiducial metric. We will use this solution to analyze the trajectory of a particle.

We will also investigate the compatibility of dRGT massive gravity theory with

local gravity constraints within small radius from a mass source with respect to

Vainshtein radius. At local gravity scale, it is well-known that many phenomena

can be predicted by Einstein’s gravity. It implies that the massive gravity theory

should predict these phenomena as the prediction in GR. Most of local gravity con-

straints come from the observations of the solar system. One of the most stringent

constraints is the variation of semi-major axis of the planetary motion [19]. This
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variation comes from the deviation of Newtonian potential. Generally, modified

gravity model will provide some corrections to Newtonian potential which may be

tested by observations. There are ten parameters for characterizing the Newto-

nian corrections from modified gravity models called “parametized post Newtonian

(PPN) parameters” [32]. Some of these parameters can be obtained by analyzing

spherically symmetric solutions.

By using the spherically symmetric solutions, we can find the effective poten-

tial and then analyze Mercury’s trajectories. As a result, there are the correction

terms of the effective potential corresponding to the graviton mass in the dRGT

massive gravity theory. At local gravity scale, the correction terms are suppressed

due to Vainshtein mechanism. We can check the result numerically by using the

Mercury’s information. We found that the trajectory of Mercury obtained by the

dRGT massive gravity theory is same as the result predicted by GR. It implies

that the dRGT massive gravity theory can reduce to GR at the local gravity scale.

This thesis is organized as follows. In Chapter II, we firstly review linearized

general relativity by using perturbation theory in order to obtain the second order

perturbed action and the linearized equation of motion. In Chapter III, we review

the Fierz-Pauli theory in which the mass term is added to the linaerized Einstein-

Hilbert action. The dVDZ discontinuity which is the problem of the Fierz-Pauli

massive gravity theory is also presented in this chapter. In Chapter IV, we will

review an introduction to the dRGT massive gravity theory which is one of a viable

model of massive gravity theory. The Vainshtein mechanism and the spherically

symmetric solution for this theory are also presented in this chapter. In Chapter

V, we will find the effective potential for a particle and analyze the particle’s

trajectory. Finally, the results are summarized in Chapter VI.



CHAPTER II

Linearized Perturbations

Massive gravity theory has been started by studying a generalization of

the linearized gravity theory. For the case of weak gravitational field, we can

derive solutions of general relativity (GR) by using the perturbation theory. The

Einstein field equation, which is the equation of motion in GR, is coupled non-

linear differential equations. It is very complicated to solve the equation by using

analytical method. As we have mentioned in the previous chapter, one of possible

way to solve this equation is to impose some symmetry to the system, for example

a spherical symmetry. However, the object in nature does not perfectly obey

spherical symmetry, it slightly deviates from one in spherical symmetry. This

allows us to use the perturbation theory to describe nature of gravity for such

object. Note that the background solution is not necessary to obey the spherical

symmetry. It can be any simple solutions but it should be associated with physical

situations, for example Minkowski metric is a solution for flat spacetime. By

using linearized gravity theory, one can describe the phenomena which cannot be

explained by using Newtonian theory such as the light deflection, gravitational

radiation, and the solar system. The linearized gravity is one of powerful tool to

study gravity at local gravity scale. We will briefly review some important ideas

and calculations in order to provide the basic concept for massive gravity theory.

Since the linearized gravity theory is based on perturbation theory of gen-

eral relativity, we will briefly review concepts of general relativity. In the case

of a very massive object which gives very strong gravitational field, results of the

general relativity differ from one in Newtonian gravity. The general relativity is
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also consistent with Lorentz symmetry involving boots and space rotation in flat

Minkowski space. The main equation in GR is the Einstein field equation which

describes relation between the geometry of spacetime and energy-momentum ten-

sor representing the mass and energy of gravitational source. The Einstein field

equation can be written as,

Gµν = Rµν −
1

2
Rgµν = 8πGTµν , (2.0.1)

where G is the gravitational constant. gµν is the metric tensor describing the

geometry of spacetime. Rµν and R are the Ricci tensor and Ricci scalar, both of

them contain the second derivatives of the metric tensor. We explicitly show their

definitions later. Therefore, these quantities associate with curvature of spacetime.

Tµν is the energy-momentum tensor. Gµν is the Einstein tensor corresponding to

spacetime curvature since it contains Rµν and R. Therefore, this equation shows

that the geometry of spacetime is curved by matter and vice versa the matter

is a effected by the geometry of spacetime. Both sides of this equation satisfy

the same identity that is the covariant derivatives of Gµν and Tµν is zero. The

vanishing of covariant derivatives of Tµν corresponds to conservations of energy

and momentum in the system.

Most of fundamental modern physics are based on field theory in which

the equations of motion are obtained by using variational principle. Since in

GR equation of motion is Einstein equation, one may have to find the action

corresponding to this equation through the variational principle. This action can

be written as

S =

∫
d4x

√
−g

[ 1

2κ
R + LM

]
(2.0.2)

where κ = 8πG and √
−g =

√
− det(gµν). The first part is known as Einstein-

Hilbert action. By varying this part with respect to the metric tensor, gµν , one

obtains Einstein tensor, Gµν/2κ. The second part is the matter Lagrangian, LM ,

describing matter field. By varying this term with respect to the metric tensor,

we will get the energy-momentum tensor. From field theory, a symmetry of the

action will provide a conserved quantity of the system. This action is invariant
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under general coordinate transformation which naturally provides the covariant

conservations of energy-momentum tensor. This is one of advantage points in

field theory approach of general relativity. It also provides us a reasonable way to

modify the general relativity, for example replacing R by a function of R which is

known as f(R) gravity theory.

2.1 The Second Order Perturbed Action

According to general relativity, the metric tensor, gµν , is a dynamical field

in the theory. Linearized gravity theory is a perturbation theory based on general

relativity. Therefore, one can decompose the metric tensor into background and

perturbed part as follows

g̃µν = gµν + hµν , (2.1.1)

where hµν is a small perturbation on the background metric, gµν . As we have

mentioned, the background metric can be any solution of Einstein solution. For

the simple one, it may be the Minkowski metric, gµν = ηµν , which is the solution

for R = 0 corresponding to flat spacetime. Here we will consider the general

solution in which the metric, in principle, corresponds to curved spacetime. The

quantities with tilde, X̃, is represented the full quantity including the perturbation

and background part while the quantities without tilde is the background part.

With this notation, Einstein-Hilbert action can be written as (the first term in

Eq.(2.0.2))

S =

∫
d4x

√
−g̃R̃ =

∫
d4x

√
−g̃g̃µνR̃µν , (2.1.2)

Note that we omit the constant, κ, in the action. However, we can add it when

we consider the source term. In this case, we will mention later. We will now

consider linearized gravity perturbations on curved spacetime. The second order

perturbed action must be considered in order to obtain the linearized equation of

motion when we use variational principle. From this action, there are three parts

including
√
−g̃, g̃µν , and R̃µν . Each part should be expanded up to the second

order in order to obtain the second order perturbation of the action. We can firstly
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find the inverse metric tensor which can be expresses as (see Appendix A.1 for

details),

g̃µν = gµν − hµν + hµρhνρ. (2.1.3)

The square root of determinant of the metric tensor can be expanded as follows

√
−g̃ =

√
−g + 1

2
h
√
−g + 1

8
h2
√
−g − 1

4
hµνhµν

√
−g,

=
√
−g +

√
−g̃

(1)
+
√
−g̃

(2)
(2.1.4)

where

√
−g̃

(1)
=

1

2
h
√
−g,√

−g̃
(2)

=
1

8
h2
√
−g − 1

4
hµνhµν

√
−g. (2.1.5)

The superscripts (1) and (2) represent the first and the second order of perturba-

tion, respectively. Now we will expand the Ricci tensor up to the second order of

perturbation. In order to define the Ricci tensor, one has to introduce an impor-

tant structure called Christoffel connection, sometimes called Christoffel symbol.

It is the structure which can be formed in the Ricci tensor, and it is defined as,

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgµρ − ∂ρgµν). (2.1.6)

The Christoffel symbol, Γρ
µν , is the important structure to define spacetime curva-

ture. It is helpful to simply define covariant derivatives. In curved spacetime, two

vectors from different spacetime points cannot be directly used to compare since

they are in different tangent space. The Christoffel connection is a connection

in the sense that it takes the vectors to the same tangent space through parallel

transport. The parallel transportation is transportation of a vector along a curve

in manifold by which its magnitude and angle between the vector and a tangent

space is preserved. The Christoffel symbol can be also written in background and

perturbation part up to the second order as (see more details in Appendix A.2).

Γ̃ρ
µν = Γρ(0)

µν + Γρ(1)
µν + Γρ(2)

µν , (2.1.7)
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where

Γρ(0)
µν =

1

2
gρλ(∂µgλν + ∂νgλµ − ∂λgµν),

Γρ(1)
µν =

1

2
gρλ(∇µhλν +∇νhλµ −∇λhµν),

Γρ(2)
µν = −1

2
hρλ(∇µhλν +∇νhλµ −∇λhµν). (2.1.8)

The covariant derivative of a rank-2 tensor, Tµν , is defined by

∇ρTµν = ∂ρTµν − Γλ
ρµTλν − Γλ

ρνTλµ. (2.1.9)

In order to obtain quantity representing in the spacetime curvature, one

has to introduce a curvature tensor which is known as the Riemann tensor. The

Riemann tensor is constructed from difference of a vector resulting from parallel

transport in different paths. If there is no curvature, the Riemann tensor is van-

ished, the transported vector will be the same. If the spacetime is curved, the

Riemann tensor is generally not zero. The Riemann tensor can be defined as

Rρ
σµν =∂µΓ

ρ
σν − ∂νΓ

ρ
σµ + Γρ

αµΓ
α
σν − Γρ

ανΓ
α
σµ. (2.1.10)

From the Riemann tensor defined above, we can see that there are the second

derivatives of the metric with respect to the spacetime coordinates. Therefore, it

represents a curvature of spacetime by meaning of differential geometry. We can

write the Riemann tensor in background and perturbation parts up to the second

order as follows (see Appendix A.3 for details)

R̃ρ
σµν = Rρ

σµν +∇µΓ
ρ(1)
σν −∇νΓ

ρ(1)
σµ +∇µΓ

ρ(2)
σν −∇νΓ

ρ(2)
σµ + Γρ(1)

αµ Γα(1)
σν − Γρ(1)

αµ Γα(1)
σµ .

(2.1.11)

The Ricci tensor relates to the Riemann tensor as follows

Rσν = Rρ
σρν (2.1.12)

We can write the Ricci tensor in background and perturbation parts up to the

second order as follows (see Appendix A.4 for details)

R̃σν = R(0)
σν +R(1)

σν +R(2)
σν , (2.1.13)
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where

R(0)
σν = Rσν ,

R(1)
σν = ∇ρΓ

ρ(1)
σν −∇νΓ

ρ(2)
σρ .

R(2)
σν = ∇ρΓ

ρ(1)
σν −∇νΓ

ρ(2)
σρ + Γρ(1)

αρ Γα(1)
σν − Γρ(1)

αν Γα(1)
σρ . (2.1.14)

We have already expanded all three parts in Eq.(2.1.2) up to the second order.

The Ricci scalar can be written in terms of the Ricci tensor as follows

R = gσνRσν . (2.1.15)

From this definition, the Ricci scalar can be expanded up to the second order as

(see Appendix A.5 for details)

R̃ = R(0) +R(1) +R(2), (2.1.16)

where

R(0) = R,

R(1) = gσνR(1)
σν − hσνRσν ,

= gσν∇ρΓ
ρ(1)
σν − gσν∇νΓ

ρ(1)
σρ − hσνRσν

R(2) = gσνR(2)
σν − hσνR(1)

σν + hσλhνλRσν

= gσν∇ρΓ
ρ(2)
σν − gσν∇νΓ

ρ(2)
σρ + gσνΓρ(1)

αρ Γα(1)
σν − gσνΓρ(1)

αν Γα(1)
σρ

− hσν∇ρΓ
ρ(1)
σν + hσν∇νΓ

ρ(1)
σρ + hσλhνλRσν . (2.1.17)

We now multiply the result, Eq.(2.1.16), to the first part,
√
−g̃, to expand up to

the second order of perturbation of
√
−g̃R̃ and then keep only the second order

terms. As a result, we obtain

(
√
−g̃R̃)(2) =

√
−gR(2) +

√
−g(1)R(1) +

√
−g(2)R. (2.1.18)

Therefore, the second order perturbed action in Eq.(2.1.2) can be rewritten by

substituting the results from Eq.(2.1.5) and Eq.(2.1.18) as follows

S(2) =

∫ √
−gd4x

[
R(2) +

1

2
hR(1) +

1

8
h2R− 1

4
hµνhµνR

]
. (2.1.19)
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We can substitute the Ricci scalar from Eq.(2.1.17) into Eq.(2.1.19) and rewrite

the action in terms of covariant derivative as,

S(2) =

∫ √
−gd4x

[
gσν∇ρΓ

ρ(2)
σν − gσν∇νΓ

ρ(2)
σρ + gσνΓρ(1)

αρ Γα(1)
σν − gσνΓρ(1)

αν Γαρ

− hσν∇ρΓ
ρ(1)
σν + hσν∇νΓ

ρ(1)
σρ + hσλhνλRσν +

1

2
hgσν∇ρΓ

ρ(1)
σν − 1

2
hgσν∇νΓ

ρ(1)
σρ

− 1

2
hhσνRσν +

1

8
h2R− 1

4
hµνhµνR

]
. (2.1.20)

From Eq.(2.1.20), we can use the equation from the background, Rµν− 1
2
gµνR = 0,

and then integrate by part of some terms in the above action. There are the surface

terms resulting from integrating by part which we can set to be zero by demanding

that the variation vanished at the surface (see more details in Appendix A.6). As

a result, the action becomes

S(2) =

∫ √
−gd4x

[
(∇ρh

σν − 1

2
gσν∇ρh)Γ

ρ(1)
σν + (

1

2
gσν∇νh−∇νh

σν)Γρ(1)
σρ

+ gσνΓρ(1)
αρ Γα(1)

σν − gσνΓρ(1)
αν Γα(1)

σρ +
1

4
R(hµνhµν −

1

2
h2)

]
. (2.1.21)

By substituting Γ
α(1)
µν from Eq.(2.1.8) into Eq.(2.1.21) and then simplifying the

above equation, we have

S(2) =

∫ √
−gd4x

[1
4
∇µh∇µh− 1

2
∇µh∇νhµν +

1

2
∇µhλν∇λhµν −

1

4
∇λhµν∇λhµν

+
1

4
R(hµνhµν −

1

2
h2)

]
. (2.1.22)

The second order perturbed action in Eq.(2.1.22) contains the kinetic terms which

are written in terms of covariant derivatives and the term looks like a mass term

given by the combination of all possible contractions of two power of hµν . Even

though there are mass terms, the theory still has guage symmetry, h′µν = hµν +

∇µξν +∇νξµ. The gauge symmetry provides 2 propagating degrees of freedom in

the theory so that the theory corresponds to the massless theory. We will show

explicitly how to count the propagating degrees of freedom in next section.

If we consider the action in flat Minkowski spacetime, we have gµν = ηµν .

It provides that the Christoffel symbols from Eq.(2.1.7) becomes zero, Γρ
µν = 0.

From Eq.(2.1.9), we see that the covariant derivatives can be reduced to partial
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derivatives because the geometry of spacetime will be no longer curved when we

consider in the flat Minkowski spacetime, ∇µ = ∂µ. For flat Minskowki spacetime,

it also implies that Rµν = 0 and then R = 0. As a result, we will get the second

order perturbed action in flat Minkowski spacetime as

S(2) =

∫
d4x

[1
4
∂µh∂µh− 1

2
∂µh∂νhµν +

1

2
∂µhλν∂λhµν −

1

4
∂λhµν∂λhµν

]
. (2.1.23)

From this action, there is no mass term explicitly in contrast to one in the curved

spacetime. One can check that this action is invariant under gauge transformation

[14],

h′µν = hµν + ∂µξν + ∂νξµ. (2.1.24)

where ξµ(x) is a spacetime dependent gauge parameter. Therefore, this is a theory

of massless spin-2 or massless graviton.

2.2 The Equations of Motion

As we have mentioned before, the equation of motion can be obtained by

varying the second order perturbed action with respect to the dynamical field

which, in this case, is hµν . From the action in curved spacetime in Eq.(2.1.22),

applying variational method, we have∫ √
−gd4x

[1
2
δ(∇µh∇µh)−

1

2
δ(∇µh∇νhµν) +

1

2
δ(∇µhλν∇λhµν)

−1

4
δ(∇λhµν∇λhµν) +

1

4
δR(hµνhµν −

1

2
h2)

]
= 0.

From δS = 0, the variation of second order perturbed action provides the linearized

equation of motion which can be written as

□hµν−∇α∇νhµα−∇α∇µhνα+g
µν∇α∇βhαβ+∇µ∇νh−gµν□h+R

2
(hµν− 1

2
gµνh) = 0

(2.2.2)

where □ ≡ ∇µ∇µ. One can reduce the equation of motion to one in flat Minkowski

spacetime by using the same manner as we have done in the action before. From
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the equation of motion in curved spacetime in Eq.(2.2.2), we can set gµν = ηµν

and then R = 0, ∇µ = ∂µ. As a result, Eq.(2.2.2) becomes

∂α∂
αhµν − ∂α∂νhµα − ∂α∂µhνα + ηµν∂α∂βhαβ + ∂µ∂νh− ηµν∂α∂

αh = 0. (2.2.3)

One can check that this equation of motion is still invariant under gauge transfor-

mation, h′µν = hµν +∂µξν +∂νξµ. For convenience, we can choose the gauge choice

as Lorentz gauge defined as

∂µh
µν = 0. (2.2.4)

From these gauge conditions, the equation of motion in Eq.(2.2.3) can be reduced

as

∂α∂
αhµν − ηµν∂α∂

αh = 0. (2.2.5)

By taking the trace to Eq.(2.2.5), we obtain

∂αh = 0. (2.2.6)

By substituting Eq.(2.2.4) and Eq.(2.2.6) into the equation of motion in Eq.(2.2.3),

we obtain

∂α∂
αhµν = 0. (2.2.7)

In order to preserve the Lorentz gauge, there give more conditions obtained by

using Eq.(2.2.4), Eq.(2.2.6), and the gauge transformation; namely h′µν = hµν +

∂µξν + ∂νξµ. These conditions can be written as

∂µ∂µξν = 0. (2.2.8)

From Eq.(2.2.7), we can see that it is a waves equation of the symmetric rank-2

tensor field which has 10 propagating degrees of freedom. However, we have two

constraint equations; from Eq.(2.2.4) which provides 4 conditions and Eq.(2.2.8)

which provides more 4 conditions. Therefore, the propagating degrees of freedom

are 10 − 4 − 4 = 2. It implies that there are 2 degrees of freedom in the case of

massless spin-2 field. It also corresponds to 2 polarizations of gravitational waves.
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Note that we are freedom to choose other gauge choices which they can provide

the same result. We choose the Lorentz gauge because it is simply to consider. If

we consider the theory in curved spacetime, the propagating degrees of freedom

are also 2. This is due to the gauge symmetry in the theory.

In this chapter, we found the second order perturbed action by expanding

the Einstein-Hilbert action. From this action, we obtained the linearized equation

of motion which invariant under the gauge transformation. We found that there

are 2 propagating degrees of freedom which corresponds the massless spin-2 theory.

Next chapter, we will study the massive gravity theory obtained by adding mass

terms into the linearized Einstein-Hilbert action. We will also calculate light

bending angle and show that the light bending angle in massive theory is different

from one in GR.



CHAPTER III

vDVZ Discontinuity

From the previous chapter, we now have the second order perturbed action

for massless theory, Eq.(2.1.23) in flat spacetime. The Fierz-Pauli (FP) theory is

a linear massive gravity theory. Therefore, the linear mass term must be added

into the action in Eq.(2.1.23) in order to obtain FP theory. In order to consider

the general form of Fierze and Pauli action, we consider the action for a massive

spin-2 particle in D-dimensional flat spacetime which can be written as

S =

∫
dDx

[
−1

2
∂λhµν∂

λhµν+∂µhνλ∂
νhµλ−∂µhµν∂νh+

1

2
∂λh∂

λh−1

2
m2(hµνh

µν−h2)
]
.

(3.0.1)

Since the FP theory is a linear massive gravity theory, the additional mass terms

in the action can be formed with two possible contractions of hµν as seen in the

above action. The relative coefficient of -1 between h2 and hµνhµν is known as the

Fierz-Pauli tuning. This Fierz-Pauli tuning is approached to eliminate a scalar

ghost term. We will discuss this issue later in details. In the previous chapter, the

massless action is invariant under gauge transformation. However, for the massive

action considering in this chapter, the mass term breaks gauge symmetry. This

massive theory has 5 degrees of freedom while the massless theory has 2 degrees

of freedom. We will show how can we obtain 5 degrees of freedom for the FP

massive theory in next section. From this action, we will add an external sourced

term and then find the equation of motion by varying this action. Then we will

show that the FP massive gravity theory has the vDVZ discontinuity. As we have

noticed before, the light bending angle calculated from the FP massive gravity

theory is not equal to one calculated from GR.
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3.1 General Solution to the Source Equation

In the previous chapter, one of the results of the GR theory is the gravita-

tional waves propagating in vacuum. Now we will consider how the gravitational

waves can be generated. Therefore, we have to add a source term into the action

of the FP massive theory. For convenience, we add the fixed symmetric external

source T µν(x) to the action Eq.(3.0.1) as follows

S =

∫
dDx

[
− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µh

µν∂νh+
1

2
∂λh∂

λh

− 1

2
m2(hµνh

µν − h2) + κhµνT
µν
]

(3.1.1)

where κ is introduced into the action again comparing to the action in Eq.(2.0.2),

but now it is put in front of the source term for convenience. By varying the above

action with respect to the dynamical field, hµν , the equation of motion is obtained

as

□hµν−∂λ∂µhλν −∂λ∂νhλµ+ηµν∂λ∂σhλσ+∂µ∂νh−ηµν□h−m2(hµν−ηµνh) = −κTµν .

(3.1.2)

For the case m = 0, taking ∂µ on the left hand side of Eq.(3.1.2) gives identically

zero, so we then get the conservation condition ∂µTµν = 0. For the case m ̸= 0,

we can take partial derivative, ∂µ, on Eq.(3.1.2), and then we have

∂µhµν − ∂νh =
κ

m2
∂µTµν . (3.1.3)

By substituting this equation into Eq.(3.1.2), we obtain the equation as

□hµν − ∂µ∂νh−m2(hµν − ηµνh) = −κTµν +
κ

m2

[
∂λ∂µTνλ + ∂λ∂νTµλ − ηµν∂∂T

]
,

(3.1.4)

where ∂∂T is defined for ∂µ∂νT µν . Taking the trace of Eq.(3.1.4), we obtain

h = − κ

m2(D − 1)
T − κ

m4

D − 2

D − 1
∂∂T. (3.1.5)

By plugging Eq.(3.1.5) into Eq.(3.1.3), we obtain

∂µhµν = − κ

m2(D − 1)
∂νT +

κ

m2
∂µTµν −

κ

m4

D − 2

D − 1
∂ν∂∂T. (3.1.6)
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Now we substitute Eq.(3.1.5) and Eq.(3.1.6) into the equation of motion, Eq.

(3.1.2). As a result, the Eq.(3.1.2) can be rewritten as

(∂2 −m2)hµν =− κ
[
Tµν −

1

D − 1

(
ηµν −

∂µ∂ν
m2

)
T
]

+
κ

m2

[
∂λ∂µTνλ + ∂λ∂νTµλ −

1

D − 1

(
ηµν + (D − 2)

∂µ∂ν
m2

)
∂∂T

]
.

(3.1.7)

In the case of conserved source, ∂µT µν = 0, we can reduce Eq.(3.1.7) to

(∂2 −m2)hµν = −κ
[
Tµν −

1

D − 1

(
ηµν −

∂µ∂ν
m2

)
T
]
. (3.1.8)

Therefore, we can see that the equation of motion in Eq.(3.1.2) implies the fol-

lowing three equations

(∂2 −m2)hµν =− κ
[
Tµν −

1

D − 1

(
ηµν −

∂µ∂ν
m2

)
T
]
,

∂µhµν =− κ

m2(D − 1)
∂νT,

h =− κ

m2(D − 1)
T. (3.1.9)

The first equation in Eq.(3.1.9) is the equation of motion while the second and

third equation are the constraint equations for hµν . By removing the source term

in Eq.(3.1.9), we can rewrite these equations as

(∂2 −m2)hµν = 0, (3.1.10a)

∂µhµν = 0, (3.1.10b)

h = 0. (3.1.10c)

Similarly, to the previous chapter, these equations can provide us how many the

propagating degrees of freedom in the theory are. The first equation, Eq.(3.1.10a),

represents as the waves equation. In D-dimensional spacetime, we know that the

symmetric rank-2 tensor field in the waves equation, Eq.(3.1.10a), has D(D+1)/2

degrees of freedom. The second one, Eq.(3.1.10b) which provides D constraints,

and third one, Eq.(3.1.10c) which provides 1 constraint, give totally D + 1 con-

straint equations. There are now only D(D − 1)/2 − 1 degrees of freedom which

correspond to number of degrees of freedom of the massive spin-2. In 4-dimensional



18

spacetime, there are therefore 5 degrees of freedom as we have mentioned at the

beginning of this chapter.

For the first equation in Eq.(3.1.9), it is an inhomogeneous differential equa-

tion. One possible way to obtain the solution for this equation is that we transform

the equation into the momentum space. Then we can algebraically solve for Fourier

transformation of hµν . The solution is just the integral over the momentum space

of the Fourier transformation which can be written as

hµν(x) = κ

∫
dDp

(2π)D
eipx

1

p2 +m2

[
Tµν(p)−

1

D − 1

(
ηµν +

pµpν
m2

)
T (p)

]
, (3.1.11)

where T µν(p) is the Fourier transformation of the source in Fourier space, T µν(p) =∫
dDxe−ixpT µν(x). However, we cannot solve the exact solution for hµν since the

exact form of the source is not given yet. In the next section, we will introduce

the specific form of source by which the above integral will be evaluated to obtain

the solution for hµν .

3.2 Solution for a Point Source

In order to obtain the result compatible to real physical situations, we will

consider the theory in 4-dimensional spacetime. Most of objects observed from

far away can be considered as a point. It is also easy in mathematic point of

view. Therefore, we can consider the gravitational source in Eq.(3.1.11) as a point

source. The energy-momentum tensor of a point mass M at rest at the origin can

be written as

T µν(x) =Mδµ0 δ
ν
0δ

3(x), T µν
p = 2πMδµ0 δ

ν
0δ(p

0). (3.2.1)

This source is conserved. By substituting Eq.(3.2.1) into Eq.(3.1.11) and then

integrating p0 part, we obtain the particular components of hµν as follows

h00(x) =
2M

3Mp

∫
d3p
(2π)3

eipx 1

p2 +m2
,

h0i(x) =0,

hij(x) =
M

3Mp

∫
d3p
(2π)3

eipx 1

p2 +m2

(
δij +

pipj
m2

)
. (3.2.2)
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In the weak field limit, h00 corresponds to the Newtonian potential. hij also relates

to gravitational potential through the diagonal parts. By using contour integral∫
d3p
(2π)3

eipx 1

p2 +m2
=

1

4π

e−mr

r
,∫

d3p
(2π)3

eipx pipj
p2 +m2

=− ∂i∂j

∫
d3p
(2π)3

eipx 1

p2 +m2

=
1

4π

e−mr

r

[ 1

r2
(1 +mr)δij −

1

r4
(3 + 3mr +m2r2)xixj,

]
(3.2.3)

where r ≡ √
xixj, we now have

h00(x) =
2M

3Mp

1

4π

e−mr

r
,

h0i(x) =0,

hij(x) =
M

3Mp

1

4π

e−mr

r

[1 +mr +m2r2

m2r2
δij −

1

m2r4
(3 + 3mr +m2r2)xixj,

]
.

(3.2.4)

For the solutions above, they are inconvenient to read off the Newtonian

potential. In order to simplify these solutions, we will discuss some essential

details. We see that the term pipj in the third equation of Eq.(3.2.2) will diverge

when we consider in the massless limit. Because there is gauge symmetry in

massless gravity theory, it implies that we can remove this diverging term by

using gauge transformation in order to avoid this problem. In the massive gravity

theory, we expect that this term can be eliminated by using gauge transformation

which will not effect to the physical properties of the system. Therefore, we can

simplify Eq.(3.2.4) as follows

h00(x) =
2M

3Mp

1

4π

e−mr

r
,

h0i(x) =0,

hij(x) =
M

3Mp

1

4π

e−mr

r
δij. (3.2.5)

The e−mr term is called Yukawa suppression factor which is characteristic of a

massive field.
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3.3 Solution for the Massless Graviton

We have obtained the solution of hµν for massive gravity theory. As we have

mentioned in the first chapter, the result in the massive gravity theory should be

reduced to one in the massless gravity theory in order to explain the well-known

phenomena which is can be explained by GR. Therefore, we will also calculate the

point source solution for the massless case in order to compare the results obtained

from both theories. For massless gravity theory, we can choose the Lorentz gauge,

∂µh
µν = 0, and then take mass in Eq.(3.1.2) to be zero. It provides the equations

of motion as

□hµν −
1

2
ηµν□h = −κTµν . (3.3.1)

Taking the trace of the above equation, we obtain □h = 2
D−2

κT . By substituting

this result to Eq.(3.3.1), we obtain

□hµν = −κ
[
Tµν −

1

D − 2
ηµνT

]
(3.3.2)

As the same method we used to evaluate Eq.(3.1.11), we transform Eq.(3.3.2) into

the momentum space. Then we can algebraically solve for Fourier transformation

of hµν . The solution will be in form of the integral over the momentum space of

the Fourier transformation. As a result, we obtain

hµν(x) = κ

∫
dDp

(2π)D
eipx

1

p2

[
Tµν(p)−

1

D − 1
ηµνT (p)

]
(3.3.3)

where Tµν(p) =
∫
dDxe−ip.xTµν(x), is the Fourier transform of the source.

Now we are considering the system in 4-dimension (D = 4) and the point source

of mass M at the origin referred from Eq.(3.2.1). By substituting Tµν(p) from Eq.

(3.2.1) into Eq.(3.3.3) and integrating over p0, we obtain the components of hµν
in the general integral form as

h00(x) =
M

2Mp

∫
d3p
(2π)3

eipx 1

p2
=

M

2Mp

1

4πr
,

h0i(x) =0,

hij(x) =
M

2Mp

∫
d3p
(2π)3

eipx 1

p2
δij =

M

2Mp

1

4πr
δij. (3.3.4)
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We obtain the general solutions of hµν in curved spacetime for both massive

and massless gravity theory. Next section, we will calculate the Newtonian poten-

tial by using the results from this section, and then calculate a light bending angle

in each theory. We will see that light ray is bent by the curvature of spacetime

determined from hµν . We also see how the value of light bending angle in each

case are different.

3.4 The vDVZ Discontinuity

Now we are considering system of a test particle moving in the field hµν to

predict some physical results. In general relativity, we know that a test particle

responds to the metric deviation as δgµν = 2
Mp
hµν [46].

δg00 =
2

Mp

h00 = −2ϕ, δg0i =
2

Mp

h0i = 0, δgij =
2

Mp

hij = −2ψδij. (3.4.1)

where ϕ = −GM
r

is the Newtonian potentian, ψ = γϕ, and γ is parametrized

post-Newtonial parameters. As we have mentioned in Chapter I, modified gravity

theory will provide some corrections to Newtonian potential which may be tested

by observations. There are ten parameters for characterizing the Newtonian cor-

rections from modified gravity models called parametized post Newtonian (PPN)

parameters. Some of these parameters can be obtained by analyzing spherically

symmetric solutions. In other words, it is an approximation in the Newtonian

theory to GR because GR can very well explain many phenomena at solar system

or local gravity scale. It implies that any modified gravity theory has to reduce

to GR at local gravity scale. As this discussion, we can find the parameters to

characterize the deviation from GR by parameterizing the metric as corrections

of Newtonian theory. Therefore, γ is one of ten PPN parameters which can be

used to calculate the light bending angle. Then the angle for the light bending at

impact parameter b from the source is given by

α = 2(1 + γ)
GM

b
. (3.4.2)
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For massless case, by comparing Eq.(3.3.4) and Eq.(3.4.1) in the components h00
and hij, we obtain

ϕ(r) = −GM
r
, ψ(r) = −GM

r
. (3.4.3)

where G = 1/8πM2
p . In this case, we have the PPN parameter γ = 1. The

magnitude of the light bending angle is,

α =
4GM

b
, (3.4.4)

For the massive graviton case, we can see in Eq.(3.2.5) which we have evaluated

before as follows

h00(x) =
2M

3Mp

1

4π

e−mr

r
,

h0i(x) =0,

hij(x) =
M

3Mp

1

4π

e−mr

r
δij. (3.4.5)

As we have noticed before, any modified gravity theory should be reduce to GR

at the local gravity scale. Since the massive gravity theory is a modified gravity

theory by which the mass of graviton is given to GR, it should be reduced to GR

by taking mass of graviton to be zero. From Eq.(3.4.5), we can find the massless

limit of massive gravity theory by taking mass to be zero. By taking mass to be

zero and then substituting Eq.(3.4.5) into Eq.(3.4.1), we obtain the solution for

massive gravity theory as follows

ϕ = −4

3

GM

r
ψ = −2

3

GM

r
δij. (3.4.6)

In the massive graviton case, we obtain the PPN parameter γ = 1
2

by using relation

ψ(r) = γϕ and ϕ(r) = −GM
r

. This provides some inconsistent signals from massive

gravity theory in massless limit which is different from GR. By substituting γ into

Eq.(3.4.2), The magnitude of the light bending angle is obtained as

α =
3GM

b
. (3.4.7)

We see that the light bending angle of both cases are different. In order to compare

these results obtained by both theories, we will make a reference value for the light
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bending angle to agree with GR by rescaling G → 4
3
G. The light bending angle

in the case of massive graviton will change to α = 4GM
b

. It implies that if we take

the same value of light bending angle, we will get the different value of G from

both theories. The difference of value of G will give a different value of ϕ so that

it should not occur because the value of Newtonian potential and light bending

angle which can be measured in laboratory must be the same for both theories.

This means that the results obtained from massless limit of the linearized

massive gravity theory are different from ones obtained by the linearized general

relativity. In fact, if we predict the same thing, it has to get the same result. When

we consider the result predicted by the massive gravity theory in massless limit, it

should give the same result predicted by GR. However, it breaks our intuition by

which the massive theory provides the result different from one obtained in GR.

This is known as vDVZ (van Dam, Veltman, Zakharov) discontinuity [15, 16].

We have firstly studied the massive gravity theory by adding mass terms

into the linearized Einstein-Hilbert action which we have mentioned in Chapter

II. By varying this massive action, it provides the linearized equations of motion.

We obtained the solution of hµν by solving the equation of motion. As a result,

we calculated the light bending angle for massive gravity theory and then com-

pared the result to one obtained from GR. When we take graviton mass to be

zero, the result from massive gravity theory differs from the one obtained by GR.

Therefore, we have seen the discontinuity in this linear Fierz-Pauli theory called

vDVZ discontinuity. This vDVZ discontinuity can be explained by using idea of

Vainshtein in which the non-linearized action should be considered. For this idea,

it is found that the theory suffers from ghost instability found by Boulware and

Deser. As we have noticed in Chapter I, one of the interesting model of non-linear

massive gravity theory without instabilities is dRGT massive gravity theory. The

Vainshtein mechanism and the dRGT massive gravity theory will be considered

in next chapter. We then find the analytical solutions in dRGT massive gravity

theory in order to find the particle’s trajectory in the Chapter V.



CHAPTER IV

The dRGT Massive Gravity

Is the graviton possible to obtain a mass? It is possible, it can be evaluated

by theoretical and experimental bounds [47]. By adding mass to the graviton, it is

a choice to explain the accelerating expansion of the universe. It is found that the

mass of graviton can play a role of the cosmological constant. Therefore, at large

scales, the massive gravity theory can explain cosmological acceleration. However,

we have shown that the massive gravity theory encounters the vDVZ discontinuity.

As we have mentioned in the previous chapter, this vDVZ discontinuity arises by

adding FP mass term to the linearized gravity theory. By considering non-linear

massive gravity theory, this discontinuity can be explained. This idea is proposed

by Vainshtein in 1972.

Just about the same time, Boulware and Deser (BD) found that the non-

linear massive gravity theory is suffered from instability. This instability is oc-

curred due to an additional scalar ghost mode in the non-linear FP massive gravity

theory, called BD-ghost. It is the sixth degree of freedom additionally to 5 degrees

of freedom for massive gravity theory mentioned in Chapter III. Therefore, there

are some attempts trying to explain these problems. They can explain the origin

of this ghost by using the effective field approach and introducing the Stükelberg

fields. The Stükelberg fields play a role of the additional scalar and vector gravi-

ton polarization [48] and make the action to be covariant. In order to solve this

problem, the non-linear action has to contain well-constructed mass terms so that

the BD-ghost will be not appeared. This well-constructed mass terms will be

represented in this chapter.
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In this chapter, we will firstly introduce the covariant non-linear massive

gravity without BD-ghost known as dRham, Gabadadze, and Tolley (dRGT) mas-

sive gravity theory. By using spherical symmetry, we will show that Vainshtein

mechanism can work in dRGT massive gravity theory. In other words, the result

from dRGT massive gravity theory in the massless limit can be reduced to one

from GR. By using the simple form of the fiducial metric, we then find an analyt-

ical solution in this theory. We will use this solution in order to cosider particle’s

trajectory in Chapter V.

4.1 Action and Equations of Motion

In this section, we will consider the dRGT massive gravity theory in details.

The action which is proposed by de Rham, Gabadadze, and Tolley will be de-

fined by specifying the form of mass terms. We begin this section by introducing

Einstein-Hilbert action with the covariant Fierz-Pauli mass term. Therefore, the

covariant FP action can be written as

S =

∫ √
−gdx4

[
R−m2

gU2

]
, (4.1.1)

mg is a parameter in unit of mass representing mass of graviton. U2 = (HµνH
µν −

H2) is the potential function for the graviton mass term. Un denotes the interaction

terms at the nth order in terms of Hµν . The tensor Hµν is a covariantization of

the metric perturbations, namely [19]

gµν = ηµν + hµν ≡ Hµν + ∂µϕ
α∂νϕ

βηαβ (4.1.2)

where ϕα are four scalar Stückelberg fields [36]. The action is invariant under

transformations [48]

x′µ = xµ + ξµ (4.1.3)

ϕα(x′) = ϕα(x) + ξν∂νϕ
α(x). (4.1.4)

We can see that one important role of Stückelberg field is to restore generalized

coordinate transformation. Now we see explicitly that this action has the sym-

metry under general coordinate transformation. Therefore we can choose a gauge
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corresponding to this symmetry as ϕα = xα namely unitary gauge. We can show

that this unitary gauge can be reduced to the FP massive theory. By substituting

the unitary gauge condition, ϕα = xα, into Eq.(4.1.2), we obtain gµν = ηµν + hµν

as the perturbed metric in FP massive theory reviewed in Chapter II.

As we mentioned before, Vainshtein proposed that the non-linear terms

should be added into the action in order to eliminate discontinuity in the linear

FP massive gravity theory. From this idea, the non-linear terms are dominated

when mass goes to zero. A broad class of non-linear theories of massive gravity is

plagued by BD ghost [17]. These non-linear terms should be specific. Otherwise,

the BD-ghost terms will appear in the action. The same as FP-tuning idea, de

Rham, Gabadadze, and Tolley found that BD-ghost can be systematically removed

in the decoupling limit to all orders in the perturbation theory known as dRGT

massive gravity theory [19–21]. The dRGT non-linear massive gravity action can

be written as

S =

∫ √
−gdx4

[
M2

pR−m2
g

(
α2U2 + α3U3 + α4U4

)]
. (4.1.5)

The terms of potential can be constructed [19] by tuning at each powers of Hµν

which is written in terms of other tensor, Kµν as

U2 =
[
K
]2 − [

K2
]
,

U3 =
[
K
]3 − 3

[
K
][
K2

]
+ 2

[
K2

]
,

U4 =
[
K
]4 − 6

[
K
]2[K2

]
+ 8

[
K
][
K3

]
+ 3

[
K2

]2 − 6
[
K4

]
(4.1.6)

where

Kµ
ν = δµν −

(√
I− g−1H

)µ

ν
= δµν −

√
gµσfαβ∂σϕα∂νϕβ. (4.1.7)[

K
]

denotes the trace of Kµ
ν , namely

[
K
]
= Kµ

µ. The interaction terms are sym-

metrical polynomials of K. The coefficients in the combinations are chosen to

make the equation of motion have no higher derivative terms. The metric tensor

gµν is the observable metric describing the five degrees of freedom of the massive

graviton. fαβ is the fiducial metric or the reference metric determining the form

of the solution to the theory. It is the non-dynamical metric then plays the role

of Lagrange multiplier.
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In order to obtain the equation of motion, the action in Eq.(4.1.5) is varied

with respect to metric gµν , and then we have

Gµν +m2
gXµν = 0, (4.1.8)

where Xµν is the effective energy-momentum tensor obtained by varying the po-

tential terms Eq.(4.1.5) with respect to gµν ,

Xµν = Kµν −Kgµν − α
(
K2

µν −KKµν +
1

2
gµνU2

)
+ 3β

(
K3

µν −KK2
µν +

1

2
KµνU2 −

1

6
gµνU3

)
. (4.1.9)

We have chosen to rescale the parameters by making α2 = 1 and redefine the

two remaining parameters α3 and α4 of the graviton potential in Eq.(4.1.5) by

introducing two new parameter α and β, given as

α3 =
α− 1

3
, α4 =

β

4
+

1− α

12
. (4.1.10)

Then, we use the Bianchi identities to obtain the constraint equation as

∇µXµν = 0. (4.1.11)

Most of astronomical objects can be approximately sphere. Therefore, we

then try to explain an astronomical phenomena by finding the spherically sym-

metric solutions from Eq.(4.1.8) and Eq.(4.1.11). The form of the solutions can be

divided into two parts depending on the form of the fiducial metric. For first part,

the fiducial metric is the flat Minkowski metric. We use this solution to show how

Vainshtein mechanism can work in dRGT massive gravity theory. The solution

in the second part represents an analytic solution. We will use this solution to

calculate the particle’s trajectory in next chapter.

4.2 Spherically Symmetric Solutions and Vain-

shtein Mechanism

Since most objects in the universe are seem likely as spherical objects, we

can assume that the system has the spherical symmetry. In this section, we will
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obtain the the simple and useful solution by imposing spherical symmetry. The

most general form of the physical metric corresponding to static and spherically

symmetric conditions can be written as

ds2 = −b(r)dt2 + 2d(r)dtdr + a(r)dr2 + c(r)2dΩ2. (4.2.1)

The fiducial metric is chosen in flat Minkowski form with spherical coordinate as

ds2 = −dt2 + dr2 + r2dΩ2, (4.2.2)

where dΩ2 denotes the solid angle as dΩ2 = dθ2 + sin2 θdφ2. By using this ansatz,

the solutions for Eq.(4.1.8) and Eq.(4.1.11) are found and classified into two

branches: d(r) = 0 or c(r) = c0r where c0 is a constant depending on the pa-

rameters α and β [33–35]. The most interesting branch is d(r) = 0 since it is

simpler to analyze. Therefore, we choose to analyze the solution in this branch,

d(r) = 0, for this thesis.

We firstly review the linearized metric in order to show the discontinuity in

the linear dRGT massive gravity theory and then consider the non-linear metric

to show how the Vainshtein mechanism can work. It is convenient to redefine

the functions in the physical metric in Eq.(4.2.1) to satisfy perturbation form as

follows

b(r) = (1 +N(r)), a(r) = (1 + F (r))−1/2, c(r) = (1 +H(r))−1. (4.2.3)

In order to simplify the metric, we will change the radial coordinate as ρ = r
1+H(r)

.

Therefore, the linearized metric is expressed as

ds2 = −(1 + n)dt2 + (1− f)dρ2 + ρ2dΩ2 (4.2.4)

where f(ρ) = F (r(ρ))−2h(ρ)−2ρh′(ρ), n(ρ) = 2N(r(ρ)), h(ρ) = H(r(ρ)) and the

prime denotes derivative with respect to ρ. At the linear order of the functions

n(ρ), f(ρ), and h(ρ), by using Eq.(4.1.8) and Eq.(4.1.11), we obtain the equations

for the functions, n(ρ), f(ρ), and h(ρ) in terms of radial coordinate ρ as follow



29

[22, 33],

0 = (m2
gρ

2 + 2)f + 2ρ(f ′ +m2
gρ

2h′ + 3m2
gρh), (4.2.5)

0 =
1

2
m2

gρ
2(n− 4h)− ρn′ − f, (4.2.6)

0 = f +
1

2
ρn′. (4.2.7)

From these equations, we rearrange each function in form of homogeneous differ-

ential equation as follows

ρ2n′′ + 2ρn′ −m2
gρ

2n = 0. (4.2.8)

In order to solve this equation, we can change the variable such that n = ñ
ρ
, where

ñ is a new variable. By substituting this relation into Eq.(4.2.8), we obtain

ñ′′ −m2
gñ = 0. (4.2.9)

From above equation, it is found that the solution for ñ is in form of ke−mgρ, where

k is an integration constant. Therefore, we obtain the solutions for n and f as

follows

n = −8GM

3ρ
e−mgρ, (4.2.10)

f = −4GM

3ρ
(1 +mρ)e−mgρ. (4.2.11)

In order to obtain the solution which can be reduced to Newtonian theory, we can

fix the integration constant so that M is a mass of a point source and G is the

Newtonian constant. As a result, it is found that the post-Newtonian parameter

γ = 1/2 obtained by using γ = f/n is γ = 1/2(1 +mgρ) as we have mentioned in

Chapter III. These solutions disagree with solutions from GR as well as the Solar

system observations (γ = 1 in GR and observations give 1 − γ ⋍ 10−5 [39]) so

that the theory encounters vDVZ discontinuity. By analyzing the massless limit

approximations, the equation of motion can be truncated to linear order in f and

n, but not in h. These suggest us that we have to consider higher order of h in

the equation of motion [33].
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Therefore, we have to consider the non-linear behaviour of h as mg → 0. By

keeping non-linear terms in h, Eq.(4.1.8) and Bianchi identities in Eq.(4.1.11) can

be written as

f = −2
GM

ρ
− (mgρ)

2
(
h− αh2 + βh3

)
, (4.2.12)

n′ = 2
GM

ρ2
−m2

gρ
(
h− βh3

)
, (4.2.13)

0 =
3

2
β2h5(ρ)−

(
α2 + 2β

)
h3(ρ) + 3

(
α + βA(ρ)

)
h2(ρ)− 3

2
h(ρ)− A(ρ), (4.2.14)

where

A(ρ) ≡ (ρv/ρ),

ρv ≡ (GM/m2
g)

1/3. (4.2.15)

We call ρv as the Vainshtein radius. From Eq.(4.2.12), Eq.(4.2.13), and Eq.

(4.2.14), there are the terms depending on h3 and h5. These terms make the

equation of motion complicated to solve. Therefore, in order to simply solve these

equations for f and n, we can take β = 0 to eliminate the terms proportional to

h5. In this case with assumption ρ≪ ρv, the solutions are obtained as

n = −2GM

ρ

(
1 +

1

4α

( ρ
ρv

)2)
,

f = −2GM

ρ

(
1− 1

2α

( ρ
ρv

))
. (4.2.16)

As a result, it is found that there is no discontinuity appearing in the solution

when we consider the non-linear of h within ρ≪ ρv. This is the Vainshtein mech-

anism for dRGT massive gravity theory at which the theory can reduce to general

relativity at local gravity scale (within Vainshtein radius). For more general so-

lution which β ̸= 0, the solution for h is more complicated. We must solve the

fifth order equation of h in Eq.(4.2.14). The solution of h will be substituted into

the others, Eq.(4.2.12) and Eq.(4.2.13), in order to solve differential equation for

functions of n and f . It implies that it is hardly to solve for the exact solution or

analytical solution. However, we can choose other form of the fiducial metric in

order to solve for analytical solution. We will find this solution in the next section.
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4.3 Analytical Solutions

In the previous section, the spherically symmetric solution, obtained by

setting β = 0, is not general but it is easy to show how Vainshtein mechanism

can work. However, we would like to find a general solution, in order to calculate

particle’s trajectory in next chapter. Therefore, we will try to find the analytical

solutions in this theory. We still restrict our consideration in the diagonal branch

of the physical metric, d(r) = 0, static condition, and spherical symmetry. For

convenience, we will choose the function c(r) of the physical metric in Eq.(4.2.1)

as c(r) = r and then the physical metric can be written as

ds2 = −n(r)dt2 + dr2

f(r)
+ r2dΩ2. (4.3.1)

From the previous section, we used the fiducial metric as the flat Minkowski metric,

fµν = ηµν . We found that we cannot find the analytical solution by using this form

of the fiducial metric. Therefore, we can choose a suitable fiducial metric in order

to solve for analytical solution. This fiducial metric can be written as [36–38]

fαβ = diag(0, 0, c2, c2 sin2 θ) (4.3.2)

From the ansatz in Eq.(4.3.1) with the fiducial metric in Eq.(4.3.2), we can find

the components of Einstein tensor, Eq.(4.1.8 ). These components of Einstein

tensor can be obtained as

Gt
t =

f ′

r
+
f

r2
− 1

r2
, (4.3.3)

Gr
r =

f(rn′ + n)

nr2
− 1

r2
, (4.3.4)

Gθ
θ = Gϕ

ϕ = f ′
( n′

4n
+

1

2r

)
+ f

(n′′

2n
+

n′

2nr
− (n′)2

4n2

)
. (4.3.5)

The components of effective energy-momentum tensor, Xµν , in Eq.(4.1.9) with

this ansatz can be written as

Xr
r = X t

t = −
(α(3r − c)(r − c)

r2
+

3β(r − c)2

r2
+

3r − 2c

r

)
, (4.3.6)

Xθ
θ = Xϕ

ϕ =
α(2c− 3r)

r
+

3β(r − c)2

r
+
c− 3r

r
. (4.3.7)
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There are specific values of the parameter c in which this effective energy-momentum

tensor behaves like a cosmological constant. An interesting case is c = 0. This

simplifies the components of the effective energy-momentum tensor to depend only

on the parameters of the theory or, in other words to be constant. For c = 0, the

tensor Xν
µ in Eq.(4.3.6) will be proportional to the identity matrix. This means

that the mass terms are all constants at the Lagrangian level and correspond to

the cosmological constant term. Now, we will substitute all components of Ein-

stein tensor and effective energy-momentum tensor into Eq.(4.1.8). The modified

Einstein equations can be written as

f ′

r
+
f

r2
− 1

r2
= m2

g

(α(3r − c)(r − c)

r2
+

3β(r − c)2

r2
+

3r − 2c

r

)
, (4.3.8)

f(rn′ + n)

nr2
− 1

r2
= m2

g

(α(3r − c)(r − c)

r2
+

3β(r − c)2

r2
+

3r − 2c

r

)
, (4.3.9)

f ′
( n′

4n
+

1

2r

)
+ f

(n′′

2n
+

n′

2nr
− (n′)2

4n2

)
= −m2

g

(α(2c− 3r)

r
+

3β(r − c)2

r
+
c− 3r

r

)
.

(4.3.10)

From Eq.(4.3.8), it is a differential equation of only function f . Therefore, we can

solve this differential equation for f(r) to obtain solution as

f(r) = 1− 2MG

r
+

Λ

3
r2 + γr + ζ, (4.3.11)

where M is the mass of the gravitational source and we redefine the parameters

for convenience as

Λ =3m2
g(1 + α + β), (4.3.12)

γ =− cm2
g(1 + 2α + 3β), (4.3.13)

ζ =c2m2
g(α + 3β), (4.3.14)

Λ plays a role of the cosmological constant depending on the graviton mass mg

which is not surprisingly. The mass of graviton also serves as the cosmological

constant in the self-expanding cosmological solution in dRGT massive gravity

theory [42, 43]. This solution can give rise to known solutions in GR as follows.

In the case of mg = 0, we have the Schwarzschild solution. For c = 0 which makes

γ = ζ = 0, The solution can be determined according to the value of α and β. If
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(1 + α + β) < 0, the solution is in the form of Schwarzschild-de-Sitter while the

case (1+α+ β) > 0, on the other hand, provides the Schwarzschild-anti-de-Sitter

solution. By evaluating Eq.(4.3.8) minus by Eq.(4.3.9), we also obtain

n′f = f ′n. (4.3.15)

This equation shows that the functions f and n differ by a constant. Actually, we

can choose the constant to obtain a solution such that

n(r) = f(r) = 1− 2MG

r
+

Λ

3
r2 + γr + ζ. (4.3.16)

We can see that the solution obtained in this section is exact and analytic. There-

fore, it is useful to use this form of the spherically symmetric solution for analyze

the particle’s trajectory. We will consider this issue in next chapter.

By comparing the form of solutions in this section and one in the previous

section, we found that the solution in dRGT massive gravity theory hardly depends

on the choice of the fiducial (reference) metric; changing to other forms of the

fiducial metric will significantly affect the solution. This dependency is one of the

important properties of massive gravity. For example, one cannot have a nontrivial

flat cosmological solution with a Minkowski fiducial metric in a cosmological point

of view [41], only the open FLRW solution is allowed [42] where the FLRW solution

with arbitrary geometry exists when the FLRW fiducial metric is considered [43].

By generalizing the form of the fiducial metric, a nontrivial cosmological solution

can be found [44].

We have shown that the non-linear dRGT massive gravity can explain the

vDVZ discontinuity by adding the higher order mass terms into the covariant

FP massive gravity action. This shows how Vainshtein mechanism can work in

dRGT massive gravity theory. A broad class of non-linear massive gravity theory

provided the BD-ghost making the theory unstable. In order to eliminate the

BD-ghost, we can introduce well-constructed mass terms into the action. This

specific mass terms can be constructed by tuning at each power of Hµν including

Stückelberg field. The dRGT massive gravity theory is such a theory without
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BD-ghost. By imposing static condition and spherical symmetry, we obtain the

analytical solution for dRGT massive gravity theory. The dRGT solution differs

from GR solution such that it has additional terms parametrized by the graviton

mass and other parameters of the theory. In next chapter, we will use this solution

to find the effective potential and consider the particle’s trajectory around the

gravitational point source especially in the our solar system. If this theory can

provide prediction of the Mercury’s trajectory as GR provides, it means that this

theory is possible to reduce to GR at the local gravity scale.



CHAPTER V

Particle’s Trajectory

As we have learned in the previous chapter, there is the discontinuity called

vDVZ discontinuity in the linear massive gravity theory. By using Vainshtein

mechanism, it was found that the non-linear massive gravity theory must be con-

sidered in order to explain the vDVZ discontinuity [18]. This mechanism shows

that the higher order in hµν is dominated inside a characteristic radius called the

Vainshtein radius. However, non-linearity of the massive gravity theory provides

the BD-ghost found by Boulware and Deser [17]. These BD-ghost terms lead the

theory to be unstable. dRGT massive gravity theory is introduced by adding the

well-constructed non-linear mass terms into the action in order to eliminate the

BD-ghost. From the dRGT massive gravity theory, we found that the analytical

solution is different from the solution obtained in GR. At the local gravity scale,

the solution obtained in dRGT massive gravity theory must be reduced to one

obtained in GR in order to explain the well-known phenomena. Therefore, we

can consider the trajectory of an object around the gravitational source such as

Mercury’s trajectory in our solar system in order to show that the dRGT massive

gravity theory can explain the phenomena at the local gravity scale as GR can.

In this chapter, we will analyze the particle’s trajectory by using the effective

potential. We firstly introduce the effective potential which can be determined by

using the Killing vector theorem and by considering together with the dRGT

massive gravity solution (4.3.11). As a result, we then categorize the effective

potential into three interesting cases.
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5.1 Effective Potential

If we consider a particle moving under influence a conservative force, the

total energy per unit mass can be written in terms of kinetic and potential terms.

Some of kinetic terms can be rearranged to be potential terms by imposing the

constraint obtained from the symmetry of the system. The effective potential is an

expression combining these terms with the original potential terms. For example,

the effective potential of a particle for Newtonian theory can be written as

V (r) =
L2

2r2
− GM

r
, (5.1.1)

where L is the angular momentum per unit mass and M is the mass of a gravi-

tational source. L in the first term of Eq.(5.1.1) is obtained by the constraint of

the system, dϕ/dτ = L/r2. The second term in Eq.(5.1.1) is the original potential

term. From this effective potential, it can be plotted as a function of r as shown

in Fig.5.1. By using this effective potential, we can analyze how a particle moves

around the gravitational source. By considering the effective potential in Fig.5.1,

if the total energy per unit mass is equal to the minimum of the effective potential,

the particle will move around the source as a circular orbit. If the total energy

per unit mass is more than the minimum of effective potential and less than zero,

there will be maximum and minimum radius at which the particle moves as an

elliptical orbit. If the total energy per unit mass is more than or equal to zero,

the orbit of the particle is unbound which means that the particle will not orbit

around the source.

We firstly find the constants of the particle’s motion. One way to find these

constants is to use the Killing vector theorem. The Killing vector theorem provides

the concept of conservation of energy and angular momentum corresponding to the

symmetry of the system. By considering the physical metric tensor corresponding

to spherically symmetric solution of dRGT massive gravity theory as we have

mentioned before, it can be written as

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2 (5.1.2)
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effective potential
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1
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Figure 5.1: Newtonian effective potential is plotted from Eq.(5.1.1). The solid line

shows the effective potential and dash line shows the total energy per unit mass

of the particle. We have set the Eq.(5.1.1) as V (r) = 1/r2 − 3/r.

where f(r) was found in the previous chapter in Eq.(4.3.11) as follows

f(r) = 1− 2MG

r
+

Λ

3
r2 + γr + ζ

As we noticed before, a simple way to find the constants of motion is obtained by

using the Killing vector theorem. We will use the four Killing vectors, one for time

translation and three for the spherical symmetry. These will provide the constant

of the motion for a free particle; if Kµ is a Killing vector, the theorem provides

−Kν dx
µ

dτ
gµν = constant. (5.1.3)

Because of the symmetries, we can reduce some of the terms involving these sym-

metries to the familiar form. Invariance under time translations provides the con-

servation of energy, while invariance under spatial rotations gives the conservation

of the three components of angular momentum. We can think that the angular

momentum is a three-vector with a component of magnitude and two components

of direction. The conservation of directions indicates that the particle will move

in a plane. We can choose the plane in which the particle moves to easily solve
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the problem by rotating the coordinates. It implies that we can choose the plane

θ = π
2

which make sin θ = 1. Thus, two remaining Killing vectors correspond to

the energy and magnitude of angular momentum can be expressed as

E = −Kµdx
ν

dτ
gµν ,

E = f(r)
dt

dτ
(5.1.4)

and

L = −Rµ
dxµ

dτ
,

L = r2
dϕ

dτ
, (5.1.5)

where Kµ = (1, 0, 0, 0) and Rµ = (0, 0, 0, r2 sin θ) = (0, 0, 0, r2). These conserved

quantities which are the energy (E) and angular momentum per unit mass of the

particle (L) give a convenient way to understand the orbits of a particle. In order

to obtain the effective potential, we have to use the constraint of geodesic equation

which can be written as

ε = −gµν
dxµ

dτ

dxν

dτ
, (5.1.6)

where ε = 0 for massless particle and ε = −1 for massive particle. By considering

the metric tensor Eq.(5.1.2) and then expanding Eq.(5.1.6) for massive particle,

ϵ = −1, we obtain

−f(r)
( dt
dτ

)2

+
1

f(r)

(dr
dτ

)2

+ r2
(dθ
dτ

)2

+ r2
(dϕ
dτ

)2

= −1,

−f(r)
( E

f(r)

)2

+
1

f(r)

(dr
dτ

)2

+ r2
(L
r2

)2

= −1,

−E2 +
(dr
dτ

)2

+
L2

r2
f(r) = −f(r),(dr

dτ

)2

+
L2

r2
f(r) + f(r)− E2 = 0,(dr

dτ

)2

+
(L2

r2
+ 1

)
f(r) = E2. (5.1.7)

By substituting Eq.(4.3.11) into Eq.(5.1.7), we obtain(dr
dτ

)2

+ 1− 2MG

r
+

Λr2

3
+ γr + ζ +

L2

r2
− 2MGL2

r3
+

ΛL2

3
+
γL2

r
+
ζL2

r2
= E2,

1

2

(dr
dτ

)2

+
Λr3

6
+ γr + (γL2 − 2MG)

1

2r
+ (1 + ζ)

L2

2r2
− MGL2

r3
=
E2

2
− ΛL2

2
− ζ

2
.

(5.1.8)
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In order to find the effective potential, we can group the terms in Eq.(5.1.8) into

three parts. The first part represents the kinetic term. The second part is the

effective potential which includes the terms depending on r. The last part contains

the constant terms corresponding to the total energy per unit mass.

1

2

(dr
dτ

)2

+ Veff (r) = K (constant), (5.1.9)

where

Veff =
Λr2

6
+
γr

2
+ (γL2 − 2MG)

1

2r
+ (ζ + 1)

L2

2r2
− MGL2

r3
. (5.1.10)

We now obtain the effective potential per unit mass of a particle. In order to

analyze the particle’s trajectory in the dRGT massive gravity theory, the effective

potential must be written in terms of the original parameters in dRGT massive

gravity theory such as α, β, and mg. By substituting Λ, γ, and ζ from Eq.

(4.3.12), Eq.(4.3.13), and Eq.(4.3.14) respectively into Eq.(5.1.10), we will obtain

the desired effective potential for the particle’s trajectory. We will consider this

effective potential containing these parameters in the next section.

5.2 Equation of Particle’s Motion in the dRGT

Massive Gravity Theory

From the effective potential, we can consider the contribution of graviton

mass to the particle’s trajectory. In order to compare the strength of the effective

potential due to dRGT massive gravity theory with that due to GR, we can ignore

the effect of angular momentum or, in order words, we can set angular momentum

to be zero. The effective potential for vanishing angular momentum can be written

as

Veff =
Λr2

6
+
γr

2
− MG

r
. (5.2.1)

When the first and the third terms in Eq.(5.2.1) is in the same order, it provides

the characteristic radius for the massive gravity theory. This characterisic radius is
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r3 = rs/m
2
g ≡ r3v. rv is known as the Vainshtein radius and rs is the Schwarzschild

radius, (rs = 2GM). When r is greater than the Vainshtein radius, the first term

in Eq.(5.2.1) dominates. It implies that we are considering the system at the

cosmological scale. When r is less than the Vainshtein radius, the third term in

Eq.(5.2.1) dominates. It implies that we are considering the system at the local

gravity scale. By considering the second and the third terms in Eq.(5.2.1) to be

in the same order, we found that c and rv is also in the same order. Therefore, we

will rewrite the effective potential in Eq.(5.1.10) in terms of α, β, rs, and rv. By

substituting Λ, γ, and ζ from Eq.(4.3.12), Eq.(4.3.13), and Eq.(4.3.14) respectively

into Eq.(5.1.10) and rearranging Eq.(5.1.10), we obtain

Veff =
rs
2rv

[
(1 + α + β)

( r
rv

)2

− (1 + 2α + 3β)
( r
rv

)
−
[
1 + (1 + 2α + 3β)

L2ϵ

rvrs

](rv
r

)
+
[
ϵ(α + 3β) + 1

]L2rv
rsr2

− L2rv
r3

]
, (5.2.2)

where ϵ = c2m2
g. If we consider the system at the cosmological scale (r ≫ rv),

the first two terms will dominate. By considering this effective potential at the

cosmological scale, we can see that force, F = −∇Veff , will be negative when (1+

α + β) > 0. This shows that particles are attracted. This attraction corresponds

to a collapsing universe whose spacetime is the anti-de-Sitter (AdS) spacetime.

The force will be positive when (1 + α + β) < 0. It can imply that the universe

is expanding which corresponds to the de-Sitter (dS) spacetime. Normally, if the

effective potential has only the first term, we cannot find the stable orbit at the

cosmological scale. However, the second term can provide the stable orbital radius

at the cosmological scale when (1 + α + β) > 0 and (1 + 2α + 3β) > 0.

In order to consider the system at the local gravity scale such as the scale of

solar system, we will consider the orbital radius of a particle which is very smaller

than the Vainshtein radius (r ≪ rv). Therefore, the first two terms in Eq.(5.2.2)

will be negligible. By this condition, we obtain

Veff =
rs
2rv

[
−
[
1+(1+2α+3β)

L2ϵ

rvrs

](rv
r

)
+
[
ϵ(α+3β)+1

]L2rv
rsr2

− L2rv
r3

]
. (5.2.3)

From this effective potential, we will consider in three cases. For the first case,

angular momentum goes to zero. The second case, angular momentum goes to
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infinity but L2ϵ/rvrs approaches zero. This case represents the particle orbiting

around the source but it is not fast enough to make the term L2ϵ/rvrs dominates.

The last one, also angular momentum goes to infinity but L2ϵ/rvrs is close to one.

It implies that the graviton mass will affect the effective potential.

For the first case, we obtain the effective potential as

Veff = − rs
2r
. (5.2.4)

This case is interesting because this effective potential is the same as one obtained

in GR. When we consider the vanishing angular momentum particle, it is found

that the effective potential and then the motion of a particle are not affected

by graviton mass. Therefore, the effective potential obtained in dRGT massive

gravity theory can be reduced to one in GR. In other words, we cannot distinguish

the dRGT massive gravity theory from GR via a gravitational experiment on a

test particle with zero angular momentum.

For the second case, L→ ∞ and L2ϵ/rvrs ∼ 0, we obtain

Veff = − rs
2r

+
L2

2r2
− L2rs

2r3
. (5.2.5)

This case, angular momentum goes to infinity but is not enough to make the term

L2ϵ/rvrs contributes significantly to the effective potential. It is found that the

effective potential is the same as one obtained in GR. The radius of the circular

orbit of this particle can be solved by using dVeff/dr = 0. We can easily obtain

the possible radii as

r =
L2 ± L

√
L2 − 3r2s
rs

. (5.2.6)

Since we are considering the case of high angular momentum, we can estimate the

solutions as

r =
L2 ± L2(1− 3r2s/2L

2)

rs

r =
2L2

rs
,
3

2
rs (5.2.7)

or,

r =
L2

GM
, 3GM.
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For r = 3GM , it provides the unstable circular orbit corresponding to the maxi-

mum point of the effective potential as shown in Fig.5.2 for the case of the Mer-

cury. For r = L2/GM , it provides the stable circular orbit corresponding to the

minimum point of the effective potential as shown in Fig.5.3 for the case of the

Mercury.

5000 10 000 15 000 20 000
r(m)

-1.0×106

-500 000

500 000

1.0×106

1.5×106

Ueff

Figure 5.2: Plotting of unstable orbit of Mercury which is not the present radius

of Mercury. However, It represents the possibility to have this radius which is

4430 m.

Moreover, we can find a minimum value of angular momentum which can

still provide the circular orbit. By taking the value under discriminant in Eq.

(5.2.6) to be zero, we obtain

L =
√
12GM. (5.2.8)

The radius of the circular orbit corresponding to this value of angular momentum

is

r = 6GM. (5.2.9)

In particular, a circular orbit is not possible for L <
√
12GM . For r = 6GM , it is

also the smallest possible radius of stable circular orbit in Schwarzschild solution.
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Figure 5.3: Plotting of stable orbit of Mercury which is quite close to the obser-

vations. It is about 5.79× 1010 m.

For the third case, L → ∞ and L2ϵ/rvrs ∼ 1. The effective potential for

this case can be written as

Veff =
rs
2rv

[
−
[
1+(1+2α+3β)

L2ϵ

rvrs

](rv
r

)
+
[
ϵ(α+3β)+1

]L2rv
rsr2

−L2rv
r3

]
. (5.2.10)

This case, angular momentum goes to infinity and is enough to make the term

L2ϵ/rvrs contributes significantly to the effective potential. It is found that this

effective potential contains the correction terms which invloves the parameters of

the dRGT massive gravity theory; namely α, β, and graviton mass in term of ϵ.

These parameters can be tuned to fit with observational data, as well as we can

reduce this case to that of the GR when mass of graviton goes to zero. The circular

radius for this case can be written as

r =
XL2 ±XL2

√
1− 3r2sY /X2L2

rsY
, (5.2.11)

where X = 1 + αϵ + 3βϵ and Y = 1 + ϵL2

rvr2s
+ 2αϵL2

rvr2s
+ 3βϵL2

rvr2s
. We found that the

circular radius not only depend on angular momentum and but also depend on

the parameters of the dRGT massive gravity theory. We also found stable and
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unstable orbits as in GR case. The circular radii can be estimated as

r =
XL2 ±XL2(1− 3r2sY /2X2L2)

rsY
,

r =
2XL2

rsY
,
3

2

rs
X
. (5.2.12)

When graviton mass goes to zero, these circular radii obtained in dRGT massive

gravity theory can be reduced to those obtained in GR. Moreover, we can interpret

the condition on the angular momentum as in the case of the GR by considering

discriminant of Eq.(5.2.11). The minimum value of angular momentum in this

case can be found as

L =

√
3Y

X
rs. (5.2.13)

The radius of the circular orbit corresponding to this value of angular momentum

can be written as

r =
3rs
X

=
6GM

X
. (5.2.14)

If L <
√
3Y rs/X, a circular orbit will not occur. Therefore, r = 6GM/X is

smallest possible radius of stable circular orbit in dRGT massive gravity theory.

We can calculate the angular momentum of the particle which provides the

result in dRGT massive gravity theory significantly different to the result in GR.

That is

L3

rs
∼ 1

m2
g

∼ 1044 (eV )−2. (5.2.15)

Particularly, if L3/rs is considerably more than 1044 (eV )−2, we can use the cor-

responding particle to observe clear-cut effects due to the dRGT massive gravity

theory.

We have now analyzed the dRGT massive gravity theory by considering

an effective potential of a particle in order to compare the particle’s trajectory

obtained in dRGT massive gravity theory with one obtained in GR. In the first

case, we consider the effective potential for the particle which has no angular

momentum at the local gravity scale. This effective potential can be reduced
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to one obtained in GR. This case shows that in the massive gravity theory the

particle which has no angular momentum will be attracted to the gravitational

source similarly to what will occur in GR. The second case corresponding to high

angular momentum situation while ϵ is very small so that L2ϵ/rvrs ∼ 0, it is found

that the dRGT massive gravity theory can explain the Mercury’s trajectory as GR

can. It implies that in this sense the dRGT massive gravity theory can recover

the result obtained in GR in such a limit. The third case corresponds to very high

angular momentum situation while ϵ is still very small so that L2ϵ/rvrs ∼ 1. The

effective potential has the correction terms involving the dRGT massive gravity

parameters which can be tuned to fit with the observational data. We finally find

the condition for the particle’s angular momentum; namely L3/rs > 1044 (eV )−2,

by which the dRGT massive gravity theory prediction is significantly different

from one predicted in GR.



CHAPTER VI

Conclusion

As we have reviewed and discussed, the linear massive gravity theory has

been started by Fierz and Pauli in 1939. They introduced the mass terms to

the the linearized Einstein-Hilbert action. The additional mass terms in massive

gravity theory make the theory has five degrees of freedom in the Fierz-Pauli (FP)

theory, instead of two degrees of freedom found in general relativity (GR). The

FP massive gravity theory successfully describes massive spin-2 theory. In 1970

van Dam, Veltman, and Zakharov studied FP massive gravity theory by adding a

symmetric source into the action. In Chapter III, we have derived the linearized

equation of motion by varying the massive gravity action. We then obtained

the solution of hµν by solving the linearized equation of motion. As a result, we

calculated the light bending angle in the massive gravity theory and then compared

the result to one obtained in GR. The result from linear massive gravity theory

in massless limit differs from the one obtained in GR. Therefore, we have seen

the appearance of discontinuity in this linear massive gravity theory called vDVZ

discontinuity. The vDVZ discontinuity can be explained by considering non-linear

massive gravity theory. This idea was proposed by Vainshtein in 1972. However,

just about the same time, Boulware and Deser (BD) found that a broad class

of non-linear massive gravity theories suffers from an instability. This instability

is occured due to an additional scalar ghost mode in the non-linear FP massive

gravity theory, called BD-ghost. It is the sixth degree of freedom in addition to 5

degrees of freedom for massive gravity theory. In Chapter IV, we presented some

attempts trying to explain these problems. The explanation of the origin of this

ghost can be found by using the effective field theory approach and introducing the
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Stükelberg fields. In order to solve this problem, the action has to contain well-

constructed non-linear mass terms so that the BD-ghost will not appear. Such an

action was proposed by de Rham, Gabadadze, and Tolley in 2010. They found such

mass terms of massive gravity theory which is known as dRGT massive gravity

theory. We know that the general relativity can very well explain phenomena at

local gravity scale such as those in our solar system. In Chapter IV, we have

seen how Vainshtein mechanism can work in dRGT massive gravity theory. We

consider this theory by imposing a static condition and spherical symmetry so

that we obtained an analytic solution for dRGT massive gravity theory. At the

local gravity scale the solution obtained in dRGT massive gravity theory can be

reduced to one obtained in GR. It is found that this solution is expressed in terms

of the parameters α, β, and, ϵ. This solution, Eq.(4.3.1) can be written as

ds2 = −n(r)dt2 + dr2

f(r)
+ r2dΩ2,

where n(r) = f(r), and the function f(r) in this solution can be written as

f(r) = 1− 2MG

r
+

Λ

3
r2 + γr + ζ,

where

Λ =3m2
g(1 + α + β),

γ =− cm2
g(1 + 2α + 3β),

ζ =c2m2
g(α + 3β),

The terms in the function (f(r)) containing mass of graviton can be thought of

as correction terms. Λ which is the coefficient in front r2-term plays a role of

cosmological constanct. This solution can give rise to known solutions in GR as

follows. In the case of mg = 0, we have the Schwarzschild solution. For c = 0 which

makes γ = ζ = 0, the solution can be classified according to the value of α and

β. If (1 + α + β) < 0, the solution is in the form of Schwarzschild-de-Sitter while

the case that (1+α+β) > 0, on the other hand, provides the Schwarzschild-anti-

de-Sitter solution. From the Vainshtein mechanism, a chacteristic radius can be

found which is known as Vainshtein radius (rv) where r3v = rs/m
2
g. This radius can
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distinguish the non-linear regime (r ≪ rv) from the linear regime (r ≫ rv) where

the non-linear terms will be suppressed inside this radius. We then discussed this

solution in order to consider the particle’s trajectory and possible further studies

in Chapter V. At the local gravity scale, we expected that the solution obtained

in dRGT massive gravity theory must be reducible to one obtained in GR in

order to explain the well-known phenomena. Therefore, we have considered the

trajectory of an object around a gravitational source such as Mercury’s trajectory

in our solar system in order to show that the dRGT massive gravity theory can

explain the phenomena at the local gravity scale as GR can. We have analyzed

the particle’s trajectory by using the effective potential. This effective potential

can be determined from the corresponding geodesic equation with the help of the

Killing vector theorem. The effective potential can be written as

Veff =
rs
2rv

[
(1 + α+ β)

( r
rv

)2

− (1 + 2α + 3β)
( r
rv

)
−

[
1 + (1 + 2α + 3β)

L2ϵ

rvrs

](rv
r

)
+
[
ϵ(α + 3β) + 1

]L2rv
rsr2

− L2rv
r3

]
.

As a result, at the local gravity scale we then categorized the particle’s motion

into three interesting cases. In the first case, we considered the effective potential

for the particle which has no angular momentum. This effective potential can be

reduced to one obtained in GR. This case shows that in the massive gravity theory

the particle which has no angular momentum will be attracted to the gravitational

source similarly to what will occur in GR. The second case corresponds to high

angular momentum situation while ϵ is very small so that L2ϵ/rvrs ∼ 0. It is found

that the dRGT massive gravity theory can explain the Mercury’s trajectory as GR

can. It implies that in this sense the dRGT massive gravity theory can recover

the result obtained in GR in such a situation. The third case corresponds to very

high angular momentum situation while ϵ is still very small so that L2ϵ/rvrs ∼ 1.

We can show this effective potential for this case again as follows

Veff =
rs
2rv

[
−

[
1 + (1 + 2α + 3β)

L2ϵ

rvrs

](rv
r

)
+
[
ϵ(α+ 3β) + 1

]L2rv
rsr2

− L2rv
r3

]
.

We can see that this effective potential has the correction terms involving the

dRGT massive gravity parameters which can be tuned to fit with the observational
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data. We finally find the condition for the particle’s angular momentum; namely

L3/rs > 1044 (eV )−2, by which the prediction of dRGT massive gravity theory is

significantly different from one predicted in GR.

The further studies can possibly involve these correction terms such as find-

ing constraint of the parameters in the theory from the observations. One can also

perform the same analyzes on a more complicated system such as a system with a

spinning or charged source. Though, this theory is not the theory of everything,

it provides a plenty of insights on the nature of the universe. The massive gravity

theory may be more useful than Einstein’s general relativity theory in some situ-

ations. We now are waiting for the further evidences and knowledges to develop

this modified gravity theory to be more accurate.
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APPENDIX A

Einstein’s Linearized

Perturbation

In this appendix, we discuss how to derive a linearized Einstein’s action on

curved space we refer to in chapter II.

A.1 The Metric Tensor

Starting to collect the second order perturbation from metric tensor. The

metric tensor g̃µν obeys the relation

g̃µν g̃ρν = δµν , (A.1.1)

we have the metric tensor can be written as background and perturbed part as

g̃µν = gµν + hµν and we assume the inverse metric tensor as

g̃µν = gµν − hµν + fµν , (A.1.2)

where fµν is any second order metric that need to find. we can rewrite Eq.(A.1.1)

as

(gµν − hµν + fµν) (gρν + hρν) = δµν ,

δµν − hµρhρν + fµ
ν + fµρhρν = δµν .

We keep only second order term

fµ
ν = hµρhρν ,

fµν = hµρhνρ.
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so, we obtain

g̃µν = gµν − hµν + hµρhνρ. (A.1.5)

Moreoever, we can evaluate the second order of
√
−g̃ by using Taylor ex-

pansion of
√
−g̃ =

√
− det( ˜gµν) =

√
− det(gµν + hµν) ≡ F (gµν + hµν), that is

F (gµν + hµν) = F (gµν) +
1

2

∂F

∂g̃µν
|g̃µν=gµν .hµν +

1

2

∂2F

∂g̃µν∂g̃αβ
|g̃µν=gµν .h

µνhαβ + ...

(A.1.6)

We will interprete the solution of each term, the first on is

∂F

∂g̃µν
=
∂
√
−g̃

∂g̃µν
. (A.1.7)

In order to evaluate Eq.(A.1.7), we have to introduce the formula as follows

ln(det(M)) = Tr(lnM), (A.1.8)

where M is any metric tensor. When we take differentiate on this correlation, and

M is g, we obtain

1

g
δg = gµνδgµν ,

∂g

∂gµν
= ggµν ,

∂
√
−g̃

∂g̃µν
=

−1

2
√
−g

∂g

∂gµν
,

=
−
√
−g

2(−g)
ggµν .

∴ ∂
√
−g̃

∂g̃µν
=

1

2
gµν

√
−g, (A.1.10)

By substituting Eq(A.1.10) into Eq(A.1.7) which firstly has been differentiated

with respect to g̃αβ, we obtain

∂2F

∂g̃µν∂g̃αβ
=

1

2
gµν

√
−g

∂gαβ
+

1

2

√
−g ∂g

µν

∂gαβ
,

=
1

2
gµν(

1

2
gαβ

√
−g) + 1

2

√
−g ∂g

µν

∂gαβ
. (A.1.11)
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From identity of metric tensor, we have

gµνgµσ = δνσ,

∂

∂gαβ
(gµνgµσ) = 0,

∂gµν

∂gαβ
.gµσ + gµν

∂gµσ
∂gαβ

= 0.

Taking gγσ on both sides of an above eqaution

∂gµν

∂gαβ
δγµ = −gµνgγσδµαδσβ ,

∂gγν

∂gαβ
= −gανgγβ,

∂gµν

∂gαβ
= −gανgµβ. (A.1.13)

By substituting Eq.(A.1.13) into Eq.(A.1.11), we obtain

∴ ∂2F

∂g̃µν∂g̃αβ
=

1

4
gµνgαβ

√
−g − 1

2
gανgµβ

√
−g. (A.1.14)

By substituting quation Eq.(A.1.7) and Eq.(A.1.14) into Eq.(A.1.6) to find out
√
−g,

√
−g̃ =

√
−g + 1

2
h
√
−g + 1

8
h2
√
−g − 1

4
hµνhµν

√
−g. (A.1.15)

A.2 The Christoffel Symbol

The Christoffel symbol, Γρ
µν , which is the important structure to defines-

pacetime curvature. It is defined as

Γ̃ρ
µν =

1

2
g̃ρλ(∂µg̃λν + ∂ν g̃λµ − ∂λg̃µν), (A.2.1a)

=Γρ
µν +

1

2
gρλ(∂µhλν + ∂νhλµ − ∂λhµν)−

1

2
hρλ(∂µgλν + ∂νgλµ − ∂λgµν),

− 1

2
hρλ(∂µhλν + ∂νhλµ − ∂λhµν +

1

2
hργhλγ(∂µgλν + ∂νgλµ − ∂λgµν).

(A.2.1b)



59

We can use the covariant derivative of rank 2-tensor, ∇ρTµν = ∂ρTµν − Γλ
ρµTλν −

Γλ
ρνTλµ, to simplify the Christoffel symbol. We obtain

∇ρhλν = ∂σhλν − Γρ
σλhρν − Γρ

σνhρλ, (A.2.2a)

∇νhλσ = ∂νhλσ − Γρ
νλhρσ − Γρ

νσhρλ, (A.2.2b)

∇λhσν = ∂λhσν − Γρ
λσhρν − Γρ

λνhρσ. (A.2.2c)

Eq.(A.2.2a)+Eq.(A.2.2b)-Eq.(A.2.2c), we get

∂σhλν + ∂νhλσ − ∂λhσν = ∇σhλν +∇νhλσ −∇λhσν − 2Γρ
σνhρλ. (A.2.3)

From Eq.(A.2.1b)

Γ̃ρ
µν =Γρ

µν +
1

2
gρλ(∇µhλν +∇νhλµ −∇λhµν + 2Γρσνhρλ)−

1

2
hρλ(2Γρ

µνgρλ),

− 1

2
hρλ(∇µhλν +∇νhλµ −∇λhµν + 2Γρ

µνhρλ) +
1

2
hργhλγ(2Γ

ρ
µνgρλ),

=Γρ
µν +

1

2
gρλ(∇µhλν +∇νhλµ −∇λhµν)−

1

2
hρλ(∇µhλν +∇νhλµ −∇λhµν).

Therefore, we can rewrite the Christoffel symbol in terms of Christoffel symbol up

to second order as follows

Γ̃ρ
µν = Γρ(0)

µν + Γρ(1)
µν + Γρ(2)

µν , (A.2.5)

where

Γρ(0)
µν =

1

2
gρλ(∂µgλν + ∂νgλµ − ∂λgµν), (A.2.6a)

Γρ(1)
µν =

1

2
gρλ(∇µhλν +∇νhλµ −∇λhµν), (A.2.6b)

Γρ(2)
µν =− 1

2
hρλ(∇µhλν +∇νhλµ −∇λhµν). (A.2.6c)

A.3 The Riemann Curvature Tensor

The Riemann curvature tensor or Riemann-Christoffel tensor is the tensor

which shows the curvature of Riemannian manifolds. We can calculate it by using

definition as
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R̃ρ
σµν =∂µΓ̃

ρ
σν − ∂νΓ̃

ρ
σµ + Γ̃ρ

αµΓ̃
α
σν − Γ̃ρ

ανΓ̃
α
σµ, (A.3.1)

=∂µΓ
ρ(0)
σν + ∂µΓ

ρ(1)
σν + ∂µΓ

ρ(2)
σν − ∂νΓ

ρ(0)
σµ − ∂νΓ

ρ(1)
σµ − ∂νΓ

ρ(2)
σµ ,

+
(
Γρ(0)
αµ + Γρ(1)

αµ + Γρ(2)
αµ

)(
Γα(0)
σν + Γα(1)

σν + Γα(2)
σν

)
,

−
(
Γρ(0)
αν + Γρ(1)

αν + Γρ(2)
αν

)(
Γα(0)
σµ + Γα(1)

σµ + Γα(2)
σµ

)
,

=Rρ
σµν + ∂µΓ

ρ(1)
σµ − ∂νΓ

ρ(1)
σµ + ∂µΓ

ρ(2)
σν − ∂νΓ

ρ(2)
σµ ,

+ Γρ(0)
αµ Γα(1)

σν + Γρ(0)
αµ Γα(2)

σν + Γρ(1)
αµ Γα(0)

σν + Γρ(1)
αµ Γα(1)

σν + Γρ(2)
αµ Γα(0)

σν ,

− Γρ(0)
αν Γα(1)

σµ − Γρ(0)
αν Γα(2)

σµ − Γρ(1)
αν Γα(0)

σµ − Γρ(1)
αν Γα(1)

σµ − Γρ(2)
αν Γα(0)

σµ . (A.3.2)

We can write the terms of partial derivatives in form of covariant derivatives

by using definition of the covariant derivatives of a tensor shown as

∇µT
µ1
ν1ν2

= ∂µT
µ1
ν1ν2

+ Γµ1

µλT
λ
ν1ν2

− Γλ
µν1
T µ1

λν2
− Γλ

µν1
T µ1

λν1
, (A.3.3)

By making the term of partial derivatives to be a subject, we obtain

∂µT
µ1
ν1ν2

= ∇µT
µ1
ν1ν2

− Γµ1

µλT
λ
ν1ν2

+ Γλ
µν1
T µ1

λν2
+ Γλ

µν1
T µ1

λν1
. (A.3.4)

Therefore, we obtain

∂µΓ
ρ(1)
σν =∇µΓ

ρ(1)
σν − Γρ

µλΓ
λ(1)
σν + Γλ

µσΓ
ρ(1)
λν + Γλ

µνΓ
ρ(1)
λσ (A.3.5a)

∂νΓ
ρ(1)
σµ =∇νΓ

ρ(1)
σµ − Γρ

νλΓ
λ(1)
σµ + Γλ

νσΓ
ρ(1)
λµ + Γλ

νµΓ
ρ(1)
λσ . (A.3.5b)

Eq.(A.3.5a)-Eq.(A.3.5b), we have

∂µΓ
ρ(1)
σν − ∂νΓ

ρ(1)
σµ = ∇µΓ

ρ(1)
σν −∇νΓ

ρ(1)
σµ − Γρ

µλΓ
λ(1)
σν + Γλ

µσΓ
ρ(1)
λν + Γρ

νλΓ
λ(1)
σµ − Γλ

νσΓ
ρ(1)
λµ .

(A.3.6)

The second order terms are rearranged in the same way,

∂µΓ
ρ(2)
σν =∇µΓ

ρ(2)
σν − Γρ

µλΓ
λ(2)
σν + Γλ

µσΓ
ρ(2)
λν + Γλ

µνΓ
ρ(2)
λσ , (A.3.7a)

∂νΓ
ρ(2)
σµ =∇νΓ

ρ(2)
σµ − Γρ

νλΓ
λ(2)
σµ + Γλ

νσΓ
ρ(2)
λµ + Γλ

νµΓ
ρ(2)
λσ . (A.3.7b)

Eq.(A.3.7a)-Eq.(A.3.7b), we have

∂µΓ
ρ(2)
σν − ∂νΓ

ρ(2)
σµ = ∇µΓ

ρ(2)
σν −∇νΓ

ρ(2)
σµ − Γρ

µλΓ
λ(2)
σν + Γλ

µσΓ
ρ(2)
λν + Γρ

νλΓ
λ(2)
σµ − Γλ

νσΓ
ρ(2)
λµ .

(A.3.8)
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By substituting Eq.(A.3.6) and Eq.(A.3.8) into Eq.(A.3.2), we obtain

R̃ρ
σµν = Rρ

σµν +∇µΓ
ρ(1)
σν −∇νΓ

ρ(1)
σµ +∇µΓ

ρ(2)
σν −∇νΓ

ρ(2)
σµ + Γρ(1)

αµ Γα(1)
σν − Γρ(1)

αν Γα(1)
σµ .

(A.3.9)

This is the Riemann curvature tensor using to calculate the Ricci tensor which is

represented in the next section.

A.4 The Ricci Curvature Tensor

The Ricci curvature tensor or Ricci tensor, it shows the way of measuring to

which the geometry. The Ricci tensor is determined by a trace of Riemann tensor

as follows

R̃σν = R̃ρ
σρν , (A.4.1)

R̃σν = Rσν +∇ρΓ
rho(1)
σν −∇νΓ

ρ(1)
σρ +∇ρΓ

ρ(2)
σν −∇νΓ

ρ(2)
σρ + Γρ(1)

αρ Γα(1)
σν − Γρ(1)

αν Γα(1)σρ.

we can rewrite the previous equation in background and pertuerbation part up to

the second order as follows

R̃σν = R(0)
σν +R(1)

σν +R(2)
σν , (A.4.2)

where

R(0)
σν =Rσν , (A.4.3a)

R(1)
σν =∇ρΓ

rho(1)
σν −∇νΓ

ρ(1)
σρ , (A.4.3b)

R(2)
σν =∇ρΓ

ρ(2)
σν −∇νΓ

ρ(2)
σρ + Γρ(1)

αρ Γα(1)
σν − Γρ(1)

αν Γα(1)σρ. (A.4.3c)

A.5 The Scalar Curvature

The scalar curvature or Ricci scalar, it is the Lagrangian density for Einstein-

Hilbert action. It is defined as the trace of Ricci tensor. That is

R̃ = g̃σνR̃σν , (A.5.1)
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and we know that

g̃σν = gσν − hσν + hσλhνλ. (A.5.2)

We now have

R̃ =R + gσνR(1)
σν + gσνR(2)

σν − hσνRσν − hσνR(1)
σν + hσλhνλRσν ,

=R + gσνR(1)
σν − hσνRσν + gσνR(2)

σν − hσνRσν + hσλhνλRσν .

We can rewrite it as

R̃ = R(0) +R(1) +R(2), (A.5.4)

where

R(0) =R, (A.5.5a)

R(1) =gσνR(1)
σν − hσνRσν

=gσν∇ρΓ
ρ(1)
σν − gσν∇νΓ

ρ(1)
σρ − hσνRσν , (A.5.5b)

R(2) =gσνR(2)
σν − hσνRσν + hσλhνλRσν ,

=gσν∇ρΓ
ρ(2)
σν − gσν∇νΓ

ρ(2)
σρ + gσνΓρ(1)

αρ Γα(1)
σν − gσνΓρ(1)

αν Γα(1)
σρ ,

− hσν∇ρΓ
ρ(1)
σν + hσν∇νΓ

ρ(1)
σρ + hσλhνλRσν . (A.5.5c)

A.6 The Linearized Action

From Eq.(2.1.19), the second order perturbed action can be rewritten by

substituting the results in Eq.(A.1.15), Eq.(A.3.9), and Eq.(A.5.4) as follows

S(2) =

∫ √
−gd4x

[
gσν∇ρΓ

ρ(2)
σν − gσν∇νΓ

ρ(2)
σρ + gσνΓρ(1)

αρ Γα(1)
σν − gσνΓρ(1)

αν Γαρ,

− hσν∇ρΓ
ρ(1)
σν + hσν∇νΓ

ρ(1)
σρ + hσλhνλRσν +

1

2
hgσν∇ρΓ

ρ(1)
σν − 1

2
hgσν∇νΓ

ρ(1)
σρ ,

− 1

2
hhσνRσν +

1

8
h2R− 1

4
hµνhµνR

]
. (A.6.1)

From Eq.(A.6.1), we can use the equation from background, Rµν − 1
2
gµνR = 0

or Rµν = 1
2
gµνR, and then integrate by part of some terms in this above action.

There are the surface terms resulting from integrating by part which we can set
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them to be zero by demanding that the variation vanished at the surface. As a

serult, we can rewrite some terms as

hσλhνλRσν −
1

2
hhσνRσν +

1

8
h2R− 1

4
hµνhµνR =

1

2
hσλhνλgσνR− 1

4
hhσνgσνR

+
1

8
h2R− 1

4
hµνhµνR,

=
1

2
hσλhσλR− 1

4
hhR +

1

8
h2R

− 1

4
hµνhµνR,

=
1

4
hµνhµνR− 1

8
h2R,

=
1

4
R(hµνhµν −

1

2
h2). (A.6.2)

We then integrate some terms in Eq.(A.6.1), we obtain

hσν∇ρΓ
ρ(1)
σν =∇ρ(h

σνΓρ(1)
σν )−∇ρh

σνΓρ(1)
σν , (A.6.3)

hσν∇νΓ
ρ(1)
σρ =∇ν(h

σνΓρ(1)
σρ )−∇νh

σνΓρ(1)
σρ , (A.6.4)

1

2
gσνh∇ρΓ

ρ(1)
σν =∇ρ(

1

2
gσνhΓρ(1)

σν )− 1

2
gσν∇ρhΓ

ρ(1)
σν , (A.6.5)

1

2
gσνh∇νΓ

ρ(1)
σρ =∇ν(

1

2
gσνhΓρ(1)

σρ )− 1

2
gσν∇νhΓ

ρ(1)
σρ . (A.6.6)

By substituting the above equations into Eq.(A.6.1), we can rewrite Eq.(A.6.1)

without the surface terms as follows

S =

∫ √
−gd4x

[
(∇ρh

σν − 1

2
gσν∇ρh)Γ

ρ(1)
σν + (

1

2
gσν∇νh−∇νh

σν)Γρ(1)
σρ

+gσνΓρ(1)
αρ Γα(1)

σν − gσνΓρ(1)
αν Γα(1)

σρ +
1

4
R(hµνhµν −

1

2
h2)

]
. (A.6.7)

In order to simplify this action, we can use definition of Christoffel symbol

in Eq.(A.2.6a), Eq.(A.2.6b), and Eq.(A.2.6c) to substitute into Eq.(A.6.7). Then,
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the first, second, third, and forth terms in Eq.(A.6.7) can be rewritten as

(∇ρh
σν − 1

2
gσν∇ρh)Γ

ρ(1)
σν =(∇ρh

σν − 1

2
gσν∇ρh)

1

2
gρλ(∇σhλν +∇νhλσ −∇λhσρ),

=(∇λhσν − 1

2
gσν∇λh)(∇σhλν +∇νhλσ −∇λhσρ),

=
1

2
∇λhσν∇σhλν +

1

2
∇λhσν∇νhλσ −

1

2
∇λhσν∇λhσν ,

− 1

4
∇λh∇νhλν −

1

4
∇λh∇σhλσ +

1

4
∇λh∇λh. (A.6.8)

(
1

2
gσν∇νh−∇νh

σν)Γρ(1)
σρ =(

1

2
gσν∇νh−∇νh

σν)
1

2
gρλ(∇σhλρ +∇ρhλσ −∇λhσρ),

=(
1

2
gσν∇σh− 1

2
∇νh

σν)(∇σh+∇λhλσ −∇ρhσρ),

=
1

4
∇σh∇σh+

1

4
∇σh∇λhλσ −

1

4
∇σh∇ρhσρ,

− 1

2
∇νh

σν∇σh− 1

2
∇νh

σν∇λhλσ +
1

2
∇νh

σν∇ρhσρ.

(A.6.9)

By adding Eq.(A.6.8) with Eq.(A.6.9), we obtain the following equation,

(∇ρh
σν − 1

2
gσν∇ρh)Γ

ρ(1)
σν + (

1

2
gσν∇νh−∇νh

σν)Γρ(1)
σρ =

1

2
∇σh∇σh−∇λh∇νhλν

+∇λhσν∇σhλν −
1

2
∇λhσν∇λhσν .

(A.6.10)

gσνΓρ(1)
αρ Γα(1)

σν =
1

4
gσνgρλgαβ(∇αhλρ +∇ρhλα −∇λhαρ)(∇σhβν +∇νhβσ −∇βhσν),

=
1

4
(∇αh+∇λhλα −∇ρhαρ)(∇σh

ασ +∇νh
αν −∇αh),

=
1

2
∇αh∇νh

αν − 1

4
∇αh∇αh. (A.6.11)

gσνΓρ(1)
αρ Γα(1)

σρ =
1

4
gσνgρλgαβ(∇αhλν +∇νhλα −∇λhαν)(∇σhβρ +∇ρhβσ −∇βhσρ),

=
1

4
(∇αh

σρ +∇σhρα −∇ρhσα)(∇σhβρ +∇ρhβσ −∇βhσρ),

=
1

4
(∇αh

σρ∇σh
α
ρ +∇αh

σρ∇ρh
α
σ −∇αh

σρ∇αhσρ +∇σhρα∇σh
α
ρ

+∇σhρα∇ρh
α
σ −∇σhρα∇αhσρ −∇ρhσα∇σh

α
ρ −∇ρhσα∇ρh

α
σ

+∇ρhσα∇αhσρ),

=
1

2
∇αhσρ∇σhαρ −

1

4
∇ρhσα∇ρhασ. (A.6.12)
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By substracting Eq.(A.6.11) with Eq.(A.6.12), we obtain the following equation,

gσνΓρ(1)
αρ Γα(1)

σν − gσνΓρ(1)
αρ Γα(1)

σρ =
1

2
∇αh∇νh

αν − 1

4
∇αh∇αh

− 1

2
∇αhσρ∇σhαρ

1

4
∇ρhσα∇ρhασ. (A.6.13)

We can rewrite Eq.(A.6.7) by substituting Eq.(A.6.10) and Eq.(A.6.13) as follows

S =

∫ √
−gd4x

[1
2
∇σh∇σh−∇λh∇νhλν +∇λhσν∇σhλν

− 1

2
∇λhσν∇λhσν

1

2
∇αh∇νh

αν − 1

4
∇αh∇αh− 1

2
∇αhσρ∇σhαρ +

1

4
∇ρhσα∇ρhασ

]
,

=

∫ √
−gd4x

[1
4
∇νh∇νh− 1

2
∇µh∇νhµν +

1

2
∇µhλν∇λhµν −

1

4
∇λhµν∇λhµν

+
1

4
R(hµνhµν −

1

2
h2)

]
. (A.6.14)

A.7 The Equations of Motion

From Eq.(A.6.14), we now write it again as follows∫ √
−gd4x

[1
2
δ(∇µh∇µh)−

1

2
δ(∇µh∇νhµν) +

1

2
δ(∇µhλν∇λhµν)

−1

4
δ(∇λhµν∇λhµν) +

1

4
δR(hµνhµν −

1

2
h2)

]
= 0. (A.7.1)

We will expand the terms in Eq.(A.7.1). These terms can be expanded as

δ(
1

4
∇µh∇µh) =

1

4
∇µδh.∇µh+

1

4
∇µh.∇µδh,

=
1

2
∇µh.∇µδh,

=∇µ(
1

2
∇µh.δh)− 1

2
∇µ∇µh.δh,

=∇µ(
1

2
∇µh.δh)− 1

2
gαβ∇µ∇µh.δhαβ, (A.7.2)

δ(
1

2
∇µh∇νhµν) =

1

2
∇µδh.∇νhµν +

1

2
∇µh.∇νδhµν ,

=∇µ(
1

2
∇νhµνδh) +∇ν(

1

2
∇µhδhµν),

− 1

2
gαβ∇µ∇νhµνδhαβ −

1

2
∇α∇βhδhαβ, (A.7.3)
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δ(
1

2
∇µhλν∇λhµν) =

1

2
∇µδhλν .∇λhµν +

1

2
∇µhλν∇λδhµν ,

=∇µ(
1

2
∇λhµν .δh

λν) +∇λ(
1

2
∇µhλν .δhµν),

− 1

2
∇µ∇λhνµ.δhλν −

1

2
∇λ∇µhλν .δhµν , (A.7.4)

δ(
1

4
∇λhµν∇λhµν) =

1

4
∇λδhµν .∇λhµν +

1

4
∇λhµν .∇λδhµν ,

=
1

2
∇λhµν∇λδhµν ,

=∇λ(
1

2
∇λhµν .δhµν)−

1

2
∇λ∇λhλνδhµν , (A.7.5)

δ(
1

4
R(hµνhµν −

1

2
h2)) =

1

4
δ(Rhµνhµν)−

1

8
δ(Rh2),

=
1

4
hµνhµνδR +

1

4
Rhµνδhµν +

1

4
Rhµνδh

µν − 1

8
δRh2 − 1

8
Rδh2,

=
R

2
(hµνδhµν − gαβhδhαβ). (A.7.6)

By substituting Eq.(A.7.2) to Eq.(A.7.6) into Eq.(A.7.1), we obtain∫ √
−gd4x

[1
2
gαβ□hδhαβ +

1

2
gαβ∇µ∇νhµνδhαβ +

1

2
∇α∇βhδhαβ −

1

2
∇µ∇λhνµδhλν

− 1

2
∇λ∇µhνλ.δhµν +

1

2
□hµνδhµν +

R

2
(hµνδhµν − gαβhδhα)

]
= 0.

∫ √
−gd4x

[
− 1

2
gµν□h+

1

2
gµν∇α∇βhαβ +

1

2
∇µ∇νh− 1

2
∇α∇νhµα

− 1

2
∇α∇µhνα +

1

2
□hµν + R

2
(hµν − gµνh)

]
δhµν = 0.

This integration is equal to zero so that the term in the bracket must be zero. We

have

−1

2
gµν□h+

1

2
gµν∇α∇βhαβ +

1

2
∇µ∇νh− 1

2
∇α∇νhµα − 1

2
∇α∇µhνα +

1

2
□hµν

+
R

2
(hµν − gµνh) = 0. (A.7.7)

By rearranging above equation, we obtain

□hµν−∇α∇νhµα−∇α∇µhνα+g
µν∇α∇βhαβ+∇µ∇νh−gµν□h+R

2
(hµν−gµνh) = 0.

(A.7.8)
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