GEOMETRIC STRUCTURE OF SPHERICALLY SYMMETRIC SPACETIME
IN MASSIVE GRAVITY THEORY

Mr. Supakorn Luekullaphawong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Physics
Department of Physics
Faculty of Science
Chulalongkorn University
Academic Year 2015

yright _of %}ulaiongkorn piversity
UNARtalay Lw\lmamfu‘uume@m‘wmuwuﬁmLLm 19ANEA 2554 N INALITNNT uﬂmﬂmm’mvﬁw (CUIR)

L‘JJ‘LALLWQ\WJ@?;IJZW@QH@ML@W%ﬂd%%ﬂﬂawuﬁwzﬁl\‘iEJ’]“L&“V]’N‘LIMW]WW]EI’]@EI
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



lassaiadiasvintinuasniaadInandauuinnsnaulunguuuadnunsin

WILANNT FONAN1NY

v
[ a v

"31/1mﬁwuﬁ‘ﬁmudawﬁwmmiﬁﬂmmwé’ﬂqmﬂ%@mﬂmmmamwwm%m
annirdnd el Nand
ANIEINENANENS PURINTAINMINENSY
Un1sfinwn 2558

AUANSYDIPNIAINTAUIUMINE S



Thesis Title GEOMETRIC STRUCTURE OF SPHERICALLY SYM-

By

METRIC SPACETIME IN MASSIVE GRAVITY THEORY
Mr. Supakorn Luekullaphawong

Field of Study Physics
Thesis Advisor Parinya Karndumri, Ph.D.
Thesis Co-Advisor Pitayuth Wongjun, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

..................................... Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

..................................... Chairman

(Assistant Professor Rattachat Mongkolnavin, Ph.D.)

..................................... Thesis Advisor

..................................... Thesis Co-Advisor

..................................... Examiner

..................................... External Examiner

(Khumphee Karwan, Ph.D.)



iv

Anns denannee: lassaiadasnadavesnanimaniaunassnauly

N wuladnunsIz. (GEOMETRIC STRUCTURE OF SPHERICALLY SYMMET-

RIC SPACETIME IN MASSIVE GRAVITY THEORY) ®.4iU3nwninenilnuswan :

0.07.U3RaN MRS, e UTnu inerdnussi . e.asfingns 2dduns,

@ Wi,

foyannnsdunamaniludagiu Fidui enansessidssiade
AN e rmgudduinsamiiluazannsaesuiesingnselidld ognsls
A mntenanl3Tsaasuenmilonniiswiuld Wy wdsnuile 5iAagldannsn
oS Umngnsalidiuiu wiiluanuihezduiisensesuedandiliae
nsthgu dusivs amitluinusuusi Fasdenngugdimguiludeduns)
# dwdunquiuuadnunsia Junidlunguifusnuouseaninannguidredu 7
goulvunTineuiilaliuaesiiing Fadeannguiduivnsnminll And1ndn un
Finoulifing uuudiassfiaunsnssuiensvereiivesenandeanuisagLaLe
Tae 0o 513 MUILARS waglnaidd Bondn fens537 wuednlunsdf S mguiday
aansaesUIeMIvEsfveaenanieauisald urluudnilinguiAdesanunen
ofunelusgiuaultiudsargiaunld wudeafunmsinguiduinsaminly

¥ 1
U W

asunglaregua wu Tussuugior dnluiefnwinadnuuadnunsiftussiuaiiy

b

v 14
U

Wiz Winnglunmsideassilae msfnwisuadnvesniaeinalagly
naasauInsvsinaslunguiifen s tunadnunin nnamaeildd aunsath
11M191ATVBIBUNALA AL IATIBNIINANGSINE INTBYATDIAING L5INUTTN
Taasvesnnwsldnvquiuuadnunsis wiloufunaildannguiduinsam
ylU Famnenmdn ngud #en3id wwadnunsid ansnansuluiunguidu

nsn1nialulaluszauaIulTuaIaNIE T

AeI Wand angilatondn

Un1s@nwn 2558 aNeilaye 9. NUINWINYIRNUS I



## 5572132923 : MAJOR PHYSICS

KEYWORDS : BLACKHOLE / MODIFIED GRAVITY / STATIC AND SPHER-
ICALLY SYMMETRIC / ACCELERATING EXPANSION OF THE UNIVERSE
/ FIERZ AND PUALI LENEARIZED GRAVITY

SUPAKORN LUEKULLAPHAWONG : GEOMETRIC STRUC-
TURE OF SPHERICALLY SYMMETRIC SPACETIME IN MASSIVE
GRAVITY THEORY. ADVISOR: PARINYA KARNDUMRI, Ph.D.,
CO-ADVISOR : PITAYUTH WONGJUN, PL.D., 57 pp.

Recent observations suggest that the universe is expanding with acceleration.
General relativity theory is supposed to be a theory to describe this phenomenon.
However, without introducing exotic matter such as dark energy, it cannot explain
this phenomenon. One possibility to explain this phenomenon is a modification of
general relativity which is usually called modified gravity theory. Massive gravity
theory is one of the modifications in which the massless spin-2 graviton acquires
masses in contrast to usual general relativity corresponding to massless graviton.
A model that can explain acceleration of the expanding universe is presented by
de Rham, Gabadadze, and Tolley and is called dRGT massive gravity theory.
Even though this massive gravity theory can explain the expanding universe with
acceleration, it must reduce to the usual explanation of local gravity scale such as
the solar system. In order to study consequences of massive gravity at local gravity
scale, the aim of this research is therefore to study spacetime geometry by using
the spherically symmetric solutions in this theory. By using these solutions, one
can find particle trajectories by analyzing the effective potential. From the data
of Mercury’s orbit, we found that the trajectory of Mercury obtained by massive
gravity theory is same as the result predicted from GR. It implies that the dRGT

massive gravity theory can reduce to GR at the local gravity scale.

Department : Physics Student’s Signature



Acknowledgements

[ am very delighted to express my gratitude and appreciation to their help in
leading my thesis to complete, especially my advisor, Dr. Parinya Karndumri and
co-advisor, Dr. Pitayuth Wongjun. They always give me insightful suggestions
and discussions. Their encouragements and supports also made me pass through
any obstrucles. This thesis cannot be complete without them. I would like to
thank Dr. Khumphee Karwan for his discussions and useful recommendations
and thanks to my partner laboratory, Mr. Lunchakorn Tannukij. My life as a

master student could never be this pleasant without them.

Above all, this thesis would not be finished without an encouragement, help
and financial support from my family. There is no word as to thank my father,
my mother, my sisters, my aunts, and my relatives for all the sacrifices they made
on my behalf. They keep supporting me even at hardship. Thus, I would like to
dedicate this work to them. I also want to express my thanks to all of my friends
and my special one, including the colleagues at Prompt International Institute
and every my partners, for making enjoyable moments and giving energy to my

life. Nevertheless, I have no regret being friend with them.



Contents

page
|Abstract (Thai)l ......................................................... iv
|Abstract (English)l ...................................................... A%
|Acknowledgementsi ...................................................... vi
.................................................................
IList of Figuresl ........................................................... ix
Chapter
II IntroductiorJ ........................................................ 1
|II Linearized Perturbations{ ........................................... 5
b.l The Second Order Perturbed Actiod ................ 7
I2.2 The Equations of Motionl ....................... 12
ITT VDVZ DiSCOMEAMUIEY - -+« v e enneeneeenee e e e e et e eaeeaneens 15
b.l General Solution to the Source Equatiod .............. 16
b.? Solution for a Point Source{ ...................... 18
B.?) Solution for the Massless Gravitod ................. 20
I3.4 The vDVZ Discontinuityl ....................... 21
IIV The dRGT Massive Gravityl ....................................... 24
|4.1 Action and Equations of Motiod ................... 25

|4.2 Spherically Symmetric Solutions and Vainshtein Mechanisn{ .27

|4.3 Analytical Solutions] ......................... 31




Chapter page
|V Particle’s Trajectoryl ............................................... 35
I5.1 Effective Potentia]l .......................... 36

I5.2 Equation of Particle’s Motion in the dRGT Massive Gravity Theoryl 39

|VI Conclusiod .......................................................... 46
App S P 55
|Appendix A Einstein’s Linearized Perturbatiod ................. 56
|A.1 The Metric Tensoxl .......................... 56
|A.2 The Christoffel Symboi ........................ 58
|A.3 The Riemann Curvature Tensor| ................... 59
|A.4 The Ricci Curvature Tensorl ..................... 61
|A.5 The Scalar Curvaturel ......................... 61
IA.6 The Linearized Actiod ........................ 62
IA.? The Equations of Motionl ....................... 65

..................................................................... 67



ix

List of Figures

Figure page

I5.1 Newtonian effective potential is plotted from Eq.(5.1.1). The solidl

|line shows the effective potential and dash line shows the tota]l

Ienergy per unit mass of the particle. We have set the Eq.(5.1.1) as]
V(r)=1/r2—3/r] . 37

I5.2 Plotting of unstable orbit of Mercury which is not the present radiud

bf Mercury. However, It represents the possibility to have thisi
kadius which is 4430 m) . . . ... 42

I5.3 Plotting of stable orbit of Mercury which is quite close to the ob-l

kervations. It is about 5.79 x 10 m| . . . .. . . ... ... ... 43




CHAPTER 1

Introduction

It is well-known that general relativity (GR) is one of pillars of modern
physics. It is also expected that general relativity could be used to explain the
dynamics of the universe. The recent observations suggest that the universe is
expanding with acceleration [, 2]. The unknown object which drives the cosmic
acceleration is named as dark energy. The simplest way to describe this phe-
nomenon is to add cosmological constant A into Einstein action. This model is
an alternative model of dark energy. However, there is a problem in this model
in case of the energy to drive the cosmic acceleration which is addressed in terms
of vacuum energy. Since the cosmological constant model spreads throughout the
universe, it can be interpreted as vacuum energy. The vacuum energy density
evaluated by particle physics theory with Planck scale cutoff is about 107 (GeV)4
which is around 10'2! times larger than the observed energy density of cosmolog-
ical constant [3]. In order to solve this problem, scientists attempt to propose
dynamical models of dark energy such as scalar field namely quintessence which
denotes canonical scalar fields [3]. For more complicated models, there are various
efforts to construct dark energy model for examples, k-essence [4, 5], three-form

model [6,]7], and vector field model [g].

Instead of adding an exotic matter into the theory, one may obtain the
cosmic acceleration by modifying gravity. This is known as modified gravity the-
ory. The simplest model to modify gravity theory is f(R) gravity theory which
is the higher order invariants to the gravitational action coming from high-energy

physics and an attempt to generalize GR in the sense of cosmology and astro-



physics [9,10]. For other complicated models, there are many models studied by
theorists such as f(G) model [L1], braneworld [12], DGP model [13], and massive
gravity theory [[14,[15,17-19]. In this research, we are interested in massive gravity
theory. From the particle physics point of view, general relativity corresponds to
a theory of massless spin-2 particle (graviton). Therefore, one of modifications
to general relativity is to add mass to the graviton resulting in massive gravity

theory.

In 1939, the first massive gravity theory was constructed by Fierz and Pauli.
They introduced the mass terms to the linearized perturbation of Einstein-Hilbert
action [14]. The linearized Einstein-Hilbert action known as linearized GR is in-
variant under guage transformation and corresponds to massless spin-2. The mass
terms added into the action break the gauge invariance. As a result, there are five
degrees of freedom in the theory, instead of two found in general relativity. The
Fierz-Pauli massive gravity theory successfully describes massive spin-2. How-
ever, in 1970 van Dam, Veltman, and Zakharov studied the Fierz-Pauli action by
adding a symmetric source into the action [15,16]. They discovered that there is a
discontinuity in the theory called vDVZ discontinuity when taking graviton mass
to be zero. Light bending angle resulting from massless limit of massive gravity

theory is different to one from the general relativity.

In 1972, Vainshtein [18] proposed the idea to explain this discontinuity. The
idea is that the non-linear perturbation is dominated over the linear perturbation
when mass of graviton is set to be zero. This suggests us that the non-linear
perturbation should be considered in the massless limit. Just about the same
time, Boulware and Deser also found a ghost mode (called BD ghost) when they
considered the non-linear massive gravity theory [17]. The massive gravity theory
has been continuously developed in order to alleviate this problem in the theory.
Until 2010, de Rham, Gabadadze, and Tolley proposed a viable model of massive
gravity theory without BD-ghost [19-21]. This is one of the main topics in this

thesis and we will discuss on this massive gravity theory in details later.

Most of modifications of general relativity are constructed in order to ex-



plain gravity at the cosmological scale since general relativity with ordinary mat-
ter cannot correctly describe. However, at small scale such as our solar system
scale, some modified gravity theories cannot be reduced to general relativity. This
means that the theories cannot be used to explain local gravity or gravity at small
scale [23-28|. In a simple modified gravity model, there is a parameter region
of the model at which the universe can expand with acceleration. However, this
region is not compatible with local gravity constraints [29-31]. It is accordingly
worthwhile to investigate the compatibility of massive gravity theory with local
gravity constraints. As we have mentioned, one of viable model of massive grav-
ity theory without BD ghost is the de Rham-Gabadadze-Tolley (ARGT) massive
gravity theory. It was found that graviton mass in dRGT massive gravity can play
a role of cosmological constant driving the universe to expand with acceleration.
As the same strategy with usual modified gravity theory, dRGT massive gravity

theory should explain the local gravity such as the solar system.

Since most of astronomical objects in the universe are approximately spher-
ical object, it is able to assume that our system has the spherical symmetry. This
symmetry represents a general and simple form of solution. Therefore, the spher-
ically symmetric solution in gravity theory is a powerful tool to investigate the
particle’s trajectory around spherical object. In dRGT massive gravity theory,
spherically symmetric solutions are very complicated and not easy to compare
the result with one from general relativity [22]. This is due to the complicated
non-linear mass term. However, this can be simplified by choosing proper the
fiducial metric. We will use this solution to analyze the trajectory of a particle.
We will also investigate the compatibility of dRGT massive gravity theory with
local gravity constraints within small radius from a mass source with respect to
Vainshtein radius. At local gravity scale, it is well-known that many phenomena
can be predicted by Einstein’s gravity. It implies that the massive gravity theory
should predict these phenomena as the prediction in GR. Most of local gravity con-
straints come from the observations of the solar system. One of the most stringent

constraints is the variation of semi-major axis of the planetary motion [19]. This



variation comes from the deviation of Newtonian potential. Generally, modified
gravity model will provide some corrections to Newtonian potential which may be
tested by observations. There are ten parameters for characterizing the Newto-
nian corrections from modified gravity models called “parametized post Newtonian
(PPN) parameters” [32]. Some of these parameters can be obtained by analyzing

spherically symmetric solutions.

By using the spherically symmetric solutions, we can find the effective poten-
tial and then analyze Mercury’s trajectories. As a result, there are the correction
terms of the effective potential corresponding to the graviton mass in the dRGT
massive gravity theory. At local gravity scale, the correction terms are suppressed
due to Vainshtein mechanism. We can check the result numerically by using the
Mercury’s information. We found that the trajectory of Mercury obtained by the
dRGT massive gravity theory is same as the result predicted by GR. It implies
that the dRGT massive gravity theory can reduce to GR at the local gravity scale.

This thesis is organized as follows. In Chapter II, we firstly review linearized
general relativity by using perturbation theory in order to obtain the second order
perturbed action and the linearized equation of motion. In Chapter III, we review
the Fierz-Pauli theory in which the mass term is added to the linaerized Einstein-
Hilbert action. The dVDZ discontinuity which is the problem of the Fierz-Pauli
massive gravity theory is also presented in this chapter. In Chapter IV, we will
review an introduction to the dRGT massive gravity theory which is one of a viable
model of massive gravity theory. The Vainshtein mechanism and the spherically
symmetric solution for this theory are also presented in this chapter. In Chapter
V, we will find the effective potential for a particle and analyze the particle’s

trajectory. Finally, the results are summarized in Chapter VI.



CHAPTER II

Linearized Perturbations

Massive gravity theory has been started by studying a generalization of
the linearized gravity theory. For the case of weak gravitational field, we can
derive solutions of general relativity (GR) by using the perturbation theory. The
Einstein field equation, which is the equation of motion in GR, is coupled non-
linear differential equations. It is very complicated to solve the equation by using
analytical method. As we have mentioned in the previous chapter, one of possible
way to solve this equation is to impose some symmetry to the system, for example
a spherical symmetry. However, the object in nature does not perfectly obey
spherical symmetry, it slightly deviates from one in spherical symmetry. This
allows us to use the perturbation theory to describe nature of gravity for such
object. Note that the background solution is not necessary to obey the spherical
symmetry. It can be any simple solutions but it should be associated with physical
situations, for example Minkowski metric is a solution for flat spacetime. By
using linearized gravity theory, one can describe the phenomena which cannot be
explained by using Newtonian theory such as the light deflection, gravitational
radiation, and the solar system. The linearized gravity is one of powerful tool to
study gravity at local gravity scale. We will briefly review some important ideas

and calculations in order to provide the basic concept for massive gravity theory.

Since the linearized gravity theory is based on perturbation theory of gen-
eral relativity, we will briefly review concepts of general relativity. In the case
of a very massive object which gives very strong gravitational field, results of the

general relativity differ from one in Newtonian gravity. The general relativity is



also consistent with Lorentz symmetry involving boots and space rotation in flat
Minkowski space. The main equation in GR is the Einstein field equation which
describes relation between the geometry of spacetime and energy-momentum ten-
sor representing the mass and energy of gravitational source. The Einstein field

equation can be written as,

(2.0.1)

ns

1
G/W = RMV — iRg‘“’ = &rGT,

where G is the gravitational constant. g, is the metric tensor describing the
geometry of spacetime. R, and R are the Ricci tensor and Ricci scalar, both of
them contain the second derivatives of the metric tensor. We explicitly show their
definitions later. Therefore, these quantities associate with curvature of spacetime.
T,, is the energy-momentum tensor. G, is the Einstein tensor corresponding to
spacetime curvature since it contains R, and R. Therefore, this equation shows
that the geometry of spacetime is curved by matter and vice versa the matter
is a effected by the geometry of spacetime. Both sides of this equation satisfy
the same identity that is the covariant derivatives of G, and T}, is zero. The
vanishing of covariant derivatives of 7}, corresponds to conservations of energy

and momentum in the system.

Most of fundamental modern physics are based on field theory in which
the equations of motion are obtained by using variational principle. Since in
GR equation of motion is Einstein equation, one may have to find the action
corresponding to this equation through the variational principle. This action can

be written as

S = /d%\/—_g[iR + L] (2.0.2)

where k = 87G and /—g = /—det(g,,). The first part is known as Einstein-
Hilbert action. By varying this part with respect to the metric tensor, g,,, one
obtains Einstein tensor, G, /2r. The second part is the matter Lagrangian, £y,
describing matter field. By varying this term with respect to the metric tensor,
we will get the energy-momentum tensor. From field theory, a symmetry of the

action will provide a conserved quantity of the system. This action is invariant



under general coordinate transformation which naturally provides the covariant
conservations of energy-momentum tensor. This is one of advantage points in
field theory approach of general relativity. It also provides us a reasonable way to
modify the general relativity, for example replacing R by a function of R which is

known as f(R) gravity theory.

2.1 The Second Order Perturbed Action

According to general relativity, the metric tensor, g,,, is a dynamical field
in the theory. Linearized gravity theory is a perturbation theory based on general
relativity. Therefore, one can decompose the metric tensor into background and

perturbed part as follows

G = Guv + Py, (2.1.1)

where h,, is a small perturbation on the background metric, g,,. As we have
mentioned, the background metric can be any solution of Einstein solution. For
the simple one, it may be the Minkowski metric, g,, = 71,,, which is the solution
for R = 0 corresponding to flat spacetime. Here we will consider the general
solution in which the metric, in principle, corresponds to curved spacetime. The
quantities with tilde, X, is represented the full quantity including the perturbation
and background part while the quantities without tilde is the background part.
With this notation, Einstein-Hilbert action can be written as (the first term in
Fa.(2.0.4))

S = /d4a;\/—_§,R: /d‘*x\/—_ggWRW, (2.1.2)
Note that we omit the constant, x, in the action. However, we can add it when
we consider the source term. In this case, we will mention later. We will now
consider linearized gravity perturbations on curved spacetime. The second order
perturbed action must be considered in order to obtain the linearized equation of
motion when we use variational principle. From this action, there are three parts
including /—g, §*, and }:?W. Each part should be expanded up to the second

order in order to obtain the second order perturbation of the action. We can firstly



find the inverse metric tensor which can be expresses as (see Appendix A.1 for
details),
g = g"" — W + WY (2.1.3)

The square root of determinant of the metric tensor can be expanded as follows
— 1 1, |
V —9 = \/__g+ éh\/__g—f— gh \/__g_ Zhﬂ huu\/__a
—(1) =(2)
— \/__g + \/__g + \/__g (2.1.4)

where
—(1) 1
—4g = §h\/ - Y
-2 1, 1.
[~ = gh V=g — Z_lhﬂ hyuwN/—g- (2.1.5)

The superscripts (1) and (2) represent the first and the second order of perturba-
tion, respectively. Now we will expand the Ricci tensor up to the second order of
perturbation. In order to define the Ricci tensor, one has to introduce an impor-
tant structure called Christoffel connection, sometimes called Christoffel symbol.

It is the structure which can be formed in the Ricci tensor, and it is defined as,
o 1 op
F/.Ll/ = 59 (8ugup + augup - 3,;9“1/)- (216)

The Christoffel symbol, I'f, is the important structure to define spacetime curva-
ture. It is helpful to simply define covariant derivatives. In curved spacetime, two
vectors from different spacetime points cannot be directly used to compare since
they are in different tangent space. The Christoffel connection is a connection
in the sense that it takes the vectors to the same tangent space through parallel
transport. The parallel transportation is transportation of a vector along a curve
in manifold by which its magnitude and angle between the vector and a tangent

space is preserved. The Christoffel symbol can be also written in background and

perturbation part up to the second order as (see more details in Appendix A.2).

I, =100 4 1ol 4 700 (2.1.7)

v pvo



where

1
FZE?) = Qgp)\<a,ug)\l/ + aug)\u - a)\g;w>7

1
Fz(yl) = égp/\(vuh)\u + VVh)\u - v/\huu)a

1
FZS?) = _§hp)\(vuh)\u + Vil = V). (2.1.8)
The covariant derivative of a rank-2 tensor, 7),,, is defined by
Vpr,y - apr,u - F;\#T)\V - F;\VT)\;L‘ (219)

In order to obtain quantity representing in the spacetime curvature, one
has to introduce a curvature tensor which is known as the Riemann tensor. The
Riemann tensor is constructed from difference of a vector resulting from parallel
transport in different paths. If there is no curvature, the Riemann tensor is van-
ished, the transported vector will be the same. If the spacetime is curved, the

Riemann tensor is generally not zero. The Riemann tensor can be defined as

RS, =0,I%, — 9,18, + 17 ', —T% ¢ (2.1.10)

ouY ap~ ov av: op®

From the Riemann tensor defined above, we can see that there are the second
derivatives of the metric with respect to the spacetime coordinates. Therefore, it
represents a curvature of spacetime by meaning of differential geometry. We can
write the Riemann tensor in background and perturbation parts up to the second

order as follows (see Appendix A.3 for details)

RP — (1) _ (1) (2) _ (2) (W) _ pel)pa1)
Ry, = 1% + V#Fgu VVFg'u + Vurgu VVFg,u + Fgu FUV Fg,u Fau :

ouv ouy
(2.1.11)
The Ricci tensor relates to the Riemann tensor as follows
R,, = Rf,’p,, (2.1.12)

We can write the Ricci tensor in background and perturbation parts up to the

second order as follows (see Appendix A.4 for details)

R,, = RY) + R{) + R® (2.1.13)

ov)
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where

RS;?,) - Raua
R - 9,080 - 9,050

R() = v, ) — v, 120 4 peltirat) — petipat, (2.1.14)

We have already expanded all three parts in Eq() up to the second order.

The Ricci scalar can be written in terms of the Ricci tensor as follows
R=¢"R,,. (2.1.15)

From this definition, the Ricci scalar can be expanded up to the second order as

(see Appendix A.5 for details)

R=RY 4+ RYW + R®, (2.1.16)
where

RO =R,
RY = g™ Ry — h™ Ry,
_ gauvprgg) . gauvyl—\g(pl) —W°'R,,
R® = g7 RY) — b7 R.) + h"*h{ Ry,
_ g‘”’VpF{jEf) o g”"v,,rg§?> +g‘”’F§(pl)P§£1) o QUVFQ(VI)F?,()D

— 17V, I8 + b7V, T + h R Ry, (2.1.17)

We now multiply the result, Eq.(), to the first part, v/—g, to expand up to
the second order of perturbation of \/—g§R and then keep only the second order

terms. As a result, we obtain

(V—gR)® = /=gR® + /=g RV + /=g"R. (2.1.18)

Therefore, the second order perturbed action in Eq() can be rewritten by

substituting the results from Eq() and Eq() as follows

1 1 1
S@ = / J—gd'z [R@) + ShRY + ShR Zh“”hwR} . (2.1.19)
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We can substitute the Ricci scalar from Eq. () into Eq. () and rewrite

the action in terms of covariant derivative as,
S0 = [ g [T — gV AV — g T
1 1
ov ov oAV ov ov
— W7V, + W70 + W7 WS Ry, + Shg™ V05 = Shg™ VTG0

1 ov 1 2 1 %
— Shh" Ry + SW*R— <h PR (2.1.20)

From Eq.(), we can use the equation from the background, R, — % 9wl =0,
and then integrate by part of some terms in the above action. There are the surface
terms resulting from integrating by part which we can set to be zero by demanding
that the variation vanished at the surface (see more details in Appendix A.6). As

a result, the action becomes
ov 1 ov 1 ov ov
5@ / VEGAE[(V,h = gV T + (507 Y — V)T
1 1
+ g7 TE T — g™ TITEY + RN hy — 5}#)} . (2.1.21)

By substituting Ffjl(,l) from Eq.(R.1.8) into Eq. () and then simplifying the

above equation, we have
(2) 4 1 I 1 I v 1 WA 1 A pv
S® = [ \/=gd ‘”[ZV WV = SV RV s, + SV Vb, = £V Vb,

1 1
- nv T K2
+ ROy = Sh )]. (2.1.22)

The second order perturbed action in Eq() contains the kinetic terms which
are written in terms of covariant derivatives and the term looks like a mass term
given by the combination of all possible contractions of two power of h,,. Even
though there are mass terms, the theory still has guage symmetry, h), = h,, +
V& + V&, The gauge symmetry provides 2 propagating degrees of freedom in
the theory so that the theory corresponds to the massless theory. We will show

explicitly how to count the propagating degrees of freedom in next section.

If we consider the action in flat Minkowski spacetime, we have g,, = 7.
It provides that the Christoffel symbols from Eq. () becomes zero, I, = 0.
From Eq.(), we see that the covariant derivatives can be reduced to partial
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derivatives because the geometry of spacetime will be no longer curved when we
consider in the flat Minkowski spacetime, V,, = 0,,. For flat Minskowki spacetime,
it also implies that R,, = 0 and then R = 0. As a result, we will get the second

order perturbed action in flat Minkowski spacetime as
(2) 4 1 " 1 Wi, Qv 1 W, AV 1 A uv
s = [4 x[zﬁ B = 50" WO By + S0R™ Orhyy = 70°h Dl | (2:1.23)

From this action, there is no mass term explicitly in contrast to one in the curved
spacetime. One can check that this action is invariant under gauge transformation
i),

hiw = huu + augu + aufw (2‘1‘24)

where £, () is a spacetime dependent gauge parameter. Therefore, this is a theory

of massless spin-2 or massless graviton.

2.2 The Equations of Motion

As we have mentioned before, the equation of motion can be obtained by
varying the second order perturbed action with respect to the dynamical field
which, in this case, is h,,. From the action in curved spacetime in Eq. (),

applying variational method, we have
4 1 o 1 o v 1 wi Av
V=gd x[§5(v hV,h) = S0(VH RV by) + S8(V*h™ V)
1 A pv 1 uv 1 2 _
1SV RN hy,) + ORI Dy, = Sh )] — 0.

From 05 = 0, the variation of second order perturbed action provides the linearized

equation of motion which can be written as

1
O™ — VOV bt — VOV hE + g VOV P b+ VIV h— gﬂvmh+§(h“”—§gwfh) =0

2
(2.2.2)
where [ = V,V#. One can reduce the equation of motion to one in flat Minkowski

spacetime by using the same manner as we have done in the action before. From
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the equation of motion in curved spacetime in Eq.()7 we can set g, = N

and then R =0, V, = 0,. As a result, Eq() becomes
Do 0B — 9% Wt — OB, 4+ " 0“OP hog + 00" — ' 0,0°h = 0. (2.2.3)

One can check that this equation of motion is still invariant under gauge transfor-
mation, h;“, = hy + 0,8 +0,,. For convenience, we can choose the gauge choice

as Lorentz gauge defined as
o = 0. (2.2.4)

From these gauge conditions, the equation of motion in Eq() can be reduced

as
Oa0“R* — 0t 0,0%h = 0. (2.2.5)
By taking the trace to Eq.(R.2.5), we obtain
Oah = 0. (2.2.6)

By substituting Eq() and Eq() into the equation of motion in Eq.(2.2.3),

we obtain
0n, 0“hH = 0. (2.2.7)

In order to preserve the Lorentz gauge, there give more conditions obtained by
using Eq. (), Eq.(R.2.6), and the gauge transformation; namely %), = h,, +

0,y + 0,&,. These conditions can be written as
0"0,&, = 0. (2.2.8)

From Eq.(), we can see that it is a waves equation of the symmetric rank-2
tensor field which has 10 propagating degrees of freedom. However, we have two
constraint equations; from Eq() which provides 4 conditions and Eq.(R.2.§8)
which provides more 4 conditions. Therefore, the propagating degrees of freedom
are 10 —4 — 4 = 2. It implies that there are 2 degrees of freedom in the case of

massless spin-2 field. It also corresponds to 2 polarizations of gravitational waves.
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Note that we are freedom to choose other gauge choices which they can provide
the same result. We choose the Lorentz gauge because it is simply to consider. If
we consider the theory in curved spacetime, the propagating degrees of freedom

are also 2. This is due to the gauge symmetry in the theory.

In this chapter, we found the second order perturbed action by expanding
the Einstein-Hilbert action. From this action, we obtained the linearized equation
of motion which invariant under the gauge transformation. We found that there
are 2 propagating degrees of freedom which corresponds the massless spin-2 theory.
Next chapter, we will study the massive gravity theory obtained by adding mass
terms into the linearized Einstein-Hilbert action. We will also calculate light
bending angle and show that the light bending angle in massive theory is different

from one in GR.



CHAPTER 111

vDVZ Discontinuity

From the previous chapter, we now have the second order perturbed action
for massless theory, Eq() in flat spacetime. The Fierz-Pauli (FP) theory is
a linear massive gravity theory. Therefore, the linear mass term must be added
into the action in Eq() in order to obtain FP theory. In order to consider
the general form of Fierze and Pauli action, we consider the action for a massive

spin-2 particle in D-dimensional flat spacetime which can be written as

S = / dPx [—%aAhwakh“”qLaﬂhy,\a”h“’\—8Hh“”8,,h+%8Ah8’\h—%mQ(hwh’“’—hz) :
(3.0.1)
Since the FP theory is a linear massive gravity theory, the additional mass terms
in the action can be formed with two possible contractions of h,, as seen in the
above action. The relative coefficient of -1 between h? and hyh* is known as the
Fierz-Pauli tuning. This Fierz-Pauli tuning is approached to eliminate a scalar
ghost term. We will discuss this issue later in details. In the previous chapter, the
massless action is invariant under gauge transformation. However, for the massive
action considering in this chapter, the mass term breaks gauge symmetry. This
massive theory has 5 degrees of freedom while the massless theory has 2 degrees
of freedom. We will show how can we obtain 5 degrees of freedom for the FP
massive theory in next section. From this action, we will add an external sourced
term and then find the equation of motion by varying this action. Then we will
show that the FP massive gravity theory has the vDVZ discontinuity. As we have
noticed before, the light bending angle calculated from the FP massive gravity

theory is not equal to one calculated from GR.
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3.1 (General Solution to the Source Equation

In the previous chapter, one of the results of the GR theory is the gravita-
tional waves propagating in vacuum. Now we will consider how the gravitational
waves can be generated. Therefore, we have to add a source term into the action

of the FP massive theory. For convenience, we add the fixed symmetric external

source T (x) to the action Eq() as follows

1 1
S = [ d°z| — Z0\h R + 0,k \O” W — OO,k + ~O0\hO D
g 2
1
2

m? (b b — h?) + Kb, T (3.1.1)

where k is introduced into the action again comparing to the action in Eq.(),
but now it is put in front of the source term for convenience. By varying the above
action with respect to the dynamical field, A, the equation of motion is obtained

as

Oy — 050,k — 06O, 1y + 1w 0206 ™ + 0,0, b — 1 b —m? (R = ush) = — KT,

(3.1.2)
For the case m = 0, taking 0" on the left hand side of Eq() gives identically
zero, so we then get the conservation condition 0*T),, = 0. For the case m # 0,

we can take partial derivative, 0", on Eq.(), and then we have

K

O hyy = Oyh = —0"T,,,. (3.1.3)

By substituting this equation into Eq.(), we obtain the equation as

Oy — 0,0, — m2 (b, — Mawh) = —K T + % (020, Ty + 020, Tyn — 1, 00T,
(3.1.4)
where 00T is defined for 0,0, T*". Taking the trace of Eq.(), we obtain

K Kk D—

By plugging Eq() into Eq.(), we obtain

K K k D—2
- 9,7+ —0"T,, — ——— T. 1.
w2 (D = 1)8,, + m28 w 1(9,,88 (3.1.6)

Oy = — mi D —
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Now we substitute Eq. () and Eq.(B.1.6) into the equation of motion, Eq.

() As a result, the Eq() can be rewritten as
1 0,0,
e O Ul

+ (0T + 00, Ty 00,

m2

(mw +(D—2) )aaT] .

D—1
(3.1.7)

In the case of conserved source, 9, 7" = 0, we can reduce Eq() to

1 9,0,

(0% — m2)hy,, = —K[T,W - (n,w -2 )T} (3.1.8)

Therefore, we can see that the equation of motion in Eq() implies the fol-

lowing three equations

2V __ L (OO
(07 =)y = “[T”” D—1<”“” m? )T}
Y
1 -
s == 5T

K

The first equation in Eq() is the equation of motion while the second and

third equation are the constraint equations for h,,. By removing the source term

in Eq.(), we can rewrite these equations as

(0% —m*)h,, = 0, (3.1.10a)
0"h,,, =0, (3.1.10D)
h=0. (3.1.10c)

Similarly, to the previous chapter, these equations can provide us how many the
propagating degrees of freedom in the theory are. The first equation, Eq.()7
represents as the waves equation. In D-dimensional spacetime, we know that the
symmetric rank-2 tensor field in the waves equation, Eq.(), has D(D+1)/2
degrees of freedom. The second one, Eq() which provides D constraints,
and third one, Eq. () which provides 1 constraint, give totally D + 1 con-
straint equations. There are now only D(D — 1)/2 — 1 degrees of freedom which

correspond to number of degrees of freedom of the massive spin-2. In 4-dimensional
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spacetime, there are therefore 5 degrees of freedom as we have mentioned at the

beginning of this chapter.

For the first equation in Eq.(), it is an inhomogeneous differential equa-
tion. One possible way to obtain the solution for this equation is that we transform
the equation into the momentum space. Then we can algebraically solve for Fourier
transformation of h,,. The solution is just the integral over the momentum space

of the Fourier transformation which can be written as

d"p e 1 1 Puby
(1) :,i/ e o 1) = 55— (o + P2 )], 311)

where T (p) is the Fourier transformation of the source in Fourier space, T*"(p) =

[ dPze~PTr (z). However, we cannot solve the exact solution for h,, since the
exact form of the source is not given yet. In the next section, we will introduce
the specific form of source by which the above integral will be evaluated to obtain

the solution for hy,.

3.2 Solution for a Point Source

In order to obtain the result compatible to real physical situations, we will
consider the theory in 4-dimensional spacetime. Most of objects observed from
far away can be considered as a point. It is also easy in mathematic point of
view. Therefore, we can consider the gravitational source in Eq() as a point
source. The energy-momentum tensor of a point mass M at rest at the origin can

be written as
T (z) = M56‘5553(x), T;‘” = 27rM§6‘5g5(p0). (3.2.1)

This source is conserved. By substituting Eq() into Eq() and then

integrating py part, we obtain the particular components of h,, as follows

2M dp . 1
h — 1px
00(1‘) 3Mp (27T)36 p2 I m27
hol(l') :0,

M [ d&p 1 Pip;
hai(z) = ipx (51-- i J). 2.2
J(x) 3Mp / (27’(‘)36 p2 + m2 J + mQ (3 )
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In the weak field limit, hgy corresponds to the Newtonian potential. h;; also relates

to gravitational potential through the diagonal parts. By using contour integral
/ Pp o 1 1 e™
€ ?
(2m)3 p?+m? Tir 7
d3p 67jpx plpj — a a i 1
(271')3 2 + m2 2 + m2

1
|:T2 (14 mr)d;; F(B + 3mr + m2r2)xixj,]

47'('7“

(3.2.3)

where r = | /7;7;, we now have

2M 1 e7™
hoo(z) =2 =
o0() SM,dr 1
h()l(l’) :0,
M 1 e ™ 1+ mr+m?r?
hzj<£L'> :3M E , [ m27’2 61']' m2 4(3+3m7"+m T )wixj,].

(3.2.4)

For the solutions above, they are inconvenient to read off the Newtonian
potential. In order to simplify these solutions, we will discuss some essential
details. We see that the term p;p; in the third equation of Eq() will diverge
when we consider in the massless limit. Because there is gauge symmetry in
massless gravity theory, it implies that we can remove this diverging term by
using gauge transformation in order to avoid this problem. In the massive gravity
theory, we expect that this term can be eliminated by using gauge transformation

which will not effect to the physical properties of the system. Therefore, we can

simplify Eq() as follows

2M 1 e7™"
h — _
@) =g
hol(JT) —O,
M 1 e ™
](‘I) 3Mp 47T r J (3 5)

The e™™" term is called Yukawa suppression factor which is characteristic of a

massive field.
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3.3 Solution for the Massless Graviton

We have obtained the solution of h,, for massive gravity theory. As we have
mentioned in the first chapter, the result in the massive gravity theory should be
reduced to one in the massless gravity theory in order to explain the well-known
phenomena which is can be explained by GR. Therefore, we will also calculate the
point source solution for the massless case in order to compare the results obtained
from both theories. For massless gravity theory, we can choose the Lorentz gauge,
0, = 0, and then take mass in Eq() to be zero. It provides the equations
of motion as

1
Ohp — 577W,Dh = —KT),. (3.3.1)

Taking the trace of the above equation, we obtain Lk = %FLT. By substituting

this result to Eq.(), we obtain

Ohy, = —/@-[TW - WT} (3.3.2)

b
D -2
As the same method we used to evaluate Eq.(), we transform Eq() into
the momentum space. Then we can algebraically solve for Fourier transformation
of hy,. The solution will be in form of the integral over the momentum space of

the Fourier transformation. As a result, we obtain

dPp ipe 1 1
@) = [ o5 5 [Twe) = g T() (3.3.3)
where T, (p) = [ d”xe~ T, (z), is the Fourier transform of the source.

Now we are considering the system in 4-dimension (D = 4) and the point source
of mass M at the origin referred from Eq() By substituting 7,,(p) from Eq.
() into Eq() and integrating over py, we obtain the components of h,,

in the general integral form as

, / i M 1
ooz ~2M, p2 2M,, 477’
hOz( ) - 7

d3 ol M1
€PX by = 0. 3.3.4
iy () 2M 2" = 90, dr (3.34)
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We obtain the general solutions of A, in curved spacetime for both massive
and massless gravity theory. Next section, we will calculate the Newtonian poten-
tial by using the results from this section, and then calculate a light bending angle
in each theory. We will see that light ray is bent by the curvature of spacetime
determined from h,,. We also see how the value of light bending angle in each

case are different.

3.4 The vDVZ Discontinuity

Now we are considering system of a test particle moving in the field h,, to

predict some physical results. In general relativity, we know that a test particle

responds to the metric deviation as dg,, = Mlphuv [6].
(5—2h—2¢(5—2h—0(5—2h—2w(5 (3.4.1)
goo = Mp 00 — ) goi = Mp 0: — Y Gij = Mp i i <.

where ¢ = —% is the Newtonian potentian, ©» = v¢, and ~ is parametrized

post-Newtonial parameters. As we have mentioned in Chapter I, modified gravity
theory will provide some corrections to Newtonian potential which may be tested
by observations. There are ten parameters for characterizing the Newtonian cor-
rections from modified gravity models called parametized post Newtonian (PPN)
parameters. Some of these parameters can be obtained by analyzing spherically
symmetric solutions. In other words, it is an approximation in the Newtonian
theory to GR because GR can very well explain many phenomena at solar system
or local gravity scale. It implies that any modified gravity theory has to reduce
to GR at local gravity scale. As this discussion, we can find the parameters to
characterize the deviation from GR by parameterizing the metric as corrections
of Newtonian theory. Therefore, v is one of ten PPN parameters which can be
used to calculate the light bending angle. Then the angle for the light bending at

impact parameter b from the source is given by

GM

a=2(1+ 7)T (3.4.2)
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For massless case, by comparing Eq() and Eq() in the components hg

and h;;, we obtain

o(r) = —GM, Y(r) = _GM (3.4.3)

r T

where G = 1/87TM:3. In this case, we have the PPN parameter v = 1. The

magnitude of the light bending angle is,

_4GM
- ==,

(0%

(3.4.4)

For the massive graviton case, we can see in Eq() which we have evaluated

before as follows

2M 1 e7™
hool®) =53 e
p
hQZ(IE) —O,
M 1 e ™
) = =5 4.
() (.ZU) 3Mp 47T r 1) (3 5)

As we have noticed before, any modified gravity theory should be reduce to GR
at the local gravity scale. Since the massive gravity theory is a modified gravity
theory by which the mass of graviton is given to GR, it should be reduced to GR
by taking mass of graviton to be zero. From Eq. (), we can find the massless
limit of massive gravity theory by taking mass to be zero. By taking mass to be
zero and then substituting Eq() into Eq.(), we obtain the solution for

massive gravity theory as follows

4GM 2GM

¢=-3—— ¥= —=—4;. (3.4.6)

In the massive graviton case, we obtain the PPN parameter v = % by using relation
Y(r) = v¢ and ¢(r) = — <. This provides some inconsistent signals from massive
gravity theory in massless limit which is different from GR. By substituting ~ into
Eq.(), The magnitude of the light bending angle is obtained as

_ 3GM
===

(0%

(3.4.7)

We see that the light bending angle of both cases are different. In order to compare

these results obtained by both theories, we will make a reference value for the light
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bending angle to agree with GR by rescaling G — %G. The light bending angle

in the case of massive graviton will change to a = 4GTM. It implies that if we take
the same value of light bending angle, we will get the different value of G from
both theories. The difference of value of G’ will give a different value of ¢ so that
it should not occur because the value of Newtonian potential and light bending

angle which can be measured in laboratory must be the same for both theories.

This means that the results obtained from massless limit of the linearized
massive gravity theory are different from ones obtained by the linearized general
relativity. In fact, if we predict the same thing, it has to get the same result. When
we consider the result predicted by the massive gravity theory in massless limit, it
should give the same result predicted by GR. However, it breaks our intuition by
which the massive theory provides the result different from one obtained in GR.

This is known as vDVZ (van Dam, Veltman, Zakharov) discontinuity [15,16].

We have firstly studied the massive gravity theory by adding mass terms
into the linearized Einstein-Hilbert action which we have mentioned in Chapter
I1. By varying this massive action, it provides the linearized equations of motion.
We obtained the solution of h,, by solving the equation of motion. As a result,
we calculated the light bending angle for massive gravity theory and then com-
pared the result to one obtained from GR. When we take graviton mass to be
zero, the result from massive gravity theory differs from the one obtained by GR.
Therefore, we have seen the discontinuity in this linear Fierz-Pauli theory called
vDVZ discontinuity. This vDVZ discontinuity can be explained by using idea of
Vainshtein in which the non-linearized action should be considered. For this idea,
it is found that the theory suffers from ghost instability found by Boulware and
Deser. As we have noticed in Chapter I, one of the interesting model of non-linear
massive gravity theory without instabilities is dRGT massive gravity theory. The
Vainshtein mechanism and the dRGT massive gravity theory will be considered
in next chapter. We then find the analytical solutions in dRGT massive gravity

theory in order to find the particle’s trajectory in the Chapter V.



CHAPTER 1V

The dRGT Massive Gravity

Is the graviton possible to obtain a mass? It is possible, it can be evaluated
by theoretical and experimental bounds [47]. By adding mass to the graviton, it is
a choice to explain the accelerating expansion of the universe. It is found that the
mass of graviton can play a role of the cosmological constant. Therefore, at large
scales, the massive gravity theory can explain cosmological acceleration. However,
we have shown that the massive gravity theory encounters the vDVZ discontinuity.
As we have mentioned in the previous chapter, this vDVZ discontinuity arises by
adding FP mass term to the linearized gravity theory. By considering non-linear
massive gravity theory, this discontinuity can be explained. This idea is proposed

by Vainshtein in 1972.

Just about the same time, Boulware and Deser (BD) found that the non-
linear massive gravity theory is suffered from instability. This instability is oc-
curred due to an additional scalar ghost mode in the non-linear FP massive gravity
theory, called BD-ghost. It is the sixth degree of freedom additionally to 5 degrees
of freedom for massive gravity theory mentioned in Chapter III. Therefore, there
are some attempts trying to explain these problems. They can explain the origin
of this ghost by using the effective field approach and introducing the Stiikelberg
fields. The Stiikelberg fields play a role of the additional scalar and vector gravi-
ton polarization [48] and make the action to be covariant. In order to solve this
problem, the non-linear action has to contain well-constructed mass terms so that
the BD-ghost will be not appeared. This well-constructed mass terms will be

represented in this chapter.
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In this chapter, we will firstly introduce the covariant non-linear massive
gravity without BD-ghost known as dRham, Gabadadze, and Tolley (dARGT) mas-
sive gravity theory. By using spherical symmetry, we will show that Vainshtein
mechanism can work in dRGT massive gravity theory. In other words, the result
from dRGT massive gravity theory in the massless limit can be reduced to one
from GR. By using the simple form of the fiducial metric, we then find an analyt-
ical solution in this theory. We will use this solution in order to cosider particle’s

trajectory in Chapter V.

4.1 Action and Equations of Motion

In this section, we will consider the dRGT massive gravity theory in details.
The action which is proposed by de Rham, Gabadadze, and Tolley will be de-
fined by specifying the form of mass terms. We begin this section by introducing
Einstein-Hilbert action with the covariant Fierz-Pauli mass term. Therefore, the

covariant FP action can be written as

S = /\/—_gdx4 [R - mjug} , (4.1.1)
my is a parameter in unit of mass representing mass of graviton. Uy = (H,,, H" —
H?) is the potential function for the graviton mass term. U, denotes the interaction
terms at the n'” order in terms of H w- The tensor H,, is a covariantization of

the metric perturbations, namely [19]

Guw = T + Py = Hyy + 8,0°0,0 1as (4.1.2)

where ¢* are four scalar Stiickelberg fields [3G]. The action is invariant under

transformations [4§]
't =gt + ¢t (4.1.3)
() = ¢ (x) + €0,0"(2). (4.1.4)
We can see that one important role of Stiickelberg field is to restore generalized

coordinate transformation. Now we see explicitly that this action has the sym-

metry under general coordinate transformation. Therefore we can choose a gauge
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corresponding to this symmetry as ¢® = 2 namely unitary gauge. We can show
that this unitary gauge can be reduced to the FP massive theory. By substituting
the unitary gauge condition, ¢* = 2%, into Eq.(.1.9), we obtain g,, = 7., + hu

as the perturbed metric in FP massive theory reviewed in Chapter II.

As we mentioned before, Vainshtein proposed that the non-linear terms
should be added into the action in order to eliminate discontinuity in the linear
FP massive gravity theory. From this idea, the non-linear terms are dominated
when mass goes to zero. A broad class of non-linear theories of massive gravity is
plagued by BD ghost [17]. These non-linear terms should be specific. Otherwise,
the BD-ghost terms will appear in the action. The same as FP-tuning idea, de
Rham, Gabadadze, and Tolley found that BD-ghost can be systematically removed
in the decoupling limit to all orders in the perturbation theory known as dRGT
massive gravity theory [19-21]. The dRGT non-linear massive gravity action can

be written as
S = /\/—gd‘]fl [M;R—m§<ozgug—|—oz32/{3+044Z/l4)]. (415)

The terms of potential can be constructed [19] by tuning at each powers of H,,

which is written in terms of other tensor, K, as

Us = [K]° = 3[K] [K°] + 2],

s
I
=

1" = 6[K)*[K?] +8[K] [K*] +3[K?]° - 6[K] (4.1.6)

where

K = o — (\/}1 - g—1H>5 — g \/g“‘ffagﬁagzﬁa&,qbﬁ. (4.1.7)

[Iq denotes the trace of K, namely [IC} = Kf. The interaction terms are sym-
metrical polynomials of K. The coefficients in the combinations are chosen to
make the equation of motion have no higher derivative terms. The metric tensor
guv is the observable metric describing the five degrees of freedom of the massive
graviton. f,p is the fiducial metric or the reference metric determining the form
of the solution to the theory. It is the non-dynamical metric then plays the role

of Lagrange multiplier.
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In order to obtain the equation of motion, the action in Eq.(4.1.5) is varied

with respect to metric g,,,, and then we have
Guw +m2 X, =0, (4.1.8)

where X, is the effective energy-momentum tensor obtained by varying the po-

tential terms Eq() with respect to g,
1
X/u/ = K:‘LW — /ng, — oz(lew — ’CK;/W + §gm,1/{2>

1 1
+38(K5, = K2, + 5Kulh — 6g,u,u?,). (4.1.9)

We have chosen to rescale the parameters by making as, = 1 and redefine the
two remaining parameters a3 and «y4 of the graviton potential in Eq. () by

introducing two new parameter o and [, given as

a—1 B 11—«

= = - 4.1.1
BT (4.1.10)
Then, we use the Bianchi identities to obtain the constraint equation as
VX, =0. (4.1.11)

Most of astronomical objects can be approximately sphere. Therefore, we
then try to explain an astronomical phenomena by finding the spherically sym-
metric solutions from Eq() and Eq() The form of the solutions can be
divided into two parts depending on the form of the fiducial metric. For first part,
the fiducial metric is the flat Minkowski metric. We use this solution to show how
Vainshtein mechanism can work in dRGT massive gravity theory. The solution
in the second part represents an analytic solution. We will use this solution to

calculate the particle’s trajectory in next chapter.

4.2 Spherically Symmetric Solutions and Vain-

shtein Mechanism

Since most objects in the universe are seem likely as spherical objects, we

can assume that the system has the spherical symmetry. In this section, we will
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obtain the the simple and useful solution by imposing spherical symmetry. The
most general form of the physical metric corresponding to static and spherically

symmetric conditions can be written as
ds® = —b(r)dt* + 2d(r)dtdr + a(r)dr® + c(r)?dQ?. (4.2.1)
The fiducial metric is chosen in flat Minkowski form with spherical coordinate as
ds* = —dt* + dr* + r*dQ?, (4.2.2)

where dQ? denotes the solid angle as d)?> = d#? + sin® fdp?. By using this ansatz,
the solutions for Eq.({.1.8) and Eq. () are found and classified into two
branches: d(r) = 0 or ¢(r) = cor where ¢y is a constant depending on the pa-
rameters « and £ [33-85]. The most interesting branch is d(r) = 0 since it is

simpler to analyze. Therefore, we choose to analyze the solution in this branch,

d(r) = 0, for this thesis.

We firstly review the linearized metric in order to show the discontinuity in
the linear dRG'T massive gravity theory and then consider the non-linear metric
to show how the Vainshtein mechanism can work. It is convenient to redefine
the functions in the physical metric in Eq.(4.2.1)) to satisfy perturbation form as

follows

b(r) = (14+N(r), a(r)=1+F@)"? cr)=0+Hr)". (4.2.3)

In order to simplify the metric, we will change the radial coordinate as p = #(T)
Therefore, the linearized metric is expressed as
ds® = —(1+n)dt* + (1 — f)dp* + p*dQ? (4.2.4)

where f(p) = F(r(p)) —2h(p) —2pl (p), n(p) = 2N(r(p)), h(p) = H(r(p)) and the

prime denotes derivative with respect to p. At the linear order of the functions

n(p), f(p), and h(p), by using Eq() and Eq.()7 we obtain the equations

for the functions, n(p), f(p), and h(p) in terms of radial coordinate p as follow
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22,33,
0= (m2p* 4+ 2)f + 2p(f + m’ph' + 3m?ph), (4.2.5)
1
0= §m§p2(n —4h) —pn' — f, (4.2.6)
1
0=f+ §pn'. (4.2.7)

From these equations, we rearrange each function in form of homogeneous differ-

ential equation as follows

p*n" +2pn" —mZp*n = 0. (4.2.8)

In order to solve this equation, we can change the variable such that n = %, where

n is a new variable. By substituting this relation into Eq.(), we obtain

~ 1!
n —m

25

s =0. (4.2.9)
From above equation, it is found that the solution for n is in form of ke™™¢”, where
k is an integration constant. Therefore, we obtain the solutions for n and f as

follows

8GM

n=— 3 e MaP, (4.2.10)
P
4G M
=———(1+mp)e ™", 4.2.11
3 p
P

In order to obtain the solution which can be reduced to Newtonian theory, we can
fix the integration constant so that M is a mass of a point source and G is the
Newtonian constant. As a result, it is found that the post-Newtonian parameter
v = 1/2 obtained by using v = f/n is v = 1/2(1 4+ m,p) as we have mentioned in
Chapter III. These solutions disagree with solutions from GR as well as the Solar
system observations (y = 1 in GR and observations give 1 — v = 107° [39]) so
that the theory encounters vDVZ discontinuity. By analyzing the massless limit
approximations, the equation of motion can be truncated to linear order in f and
n, but not in h. These suggest us that we have to consider higher order of h in

the equation of motion [33].
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Therefore, we have to consider the non-linear behaviour of h as my — 0. By

keeping non-linear terms in h, Eq() and Bianchi identities in Eq() can

be written as

f= —2GTM — (mgp)?(h — ah® + Bh%), (4.2.12)

n' = 2Gp—j2\/[ —m2p(h— Bh?), (4.2.13)
0= 2822(5) = (a2 + 26)1%(p) + 3(ar+ BAW) () — hip) = AGp), (4210

where

A(p) = (po/p),
po = (GM/m2)'/3. (4.2.15)

We call p, as the Vainshtein radius. From Eq. (), Eq. (), and Eq.
(), there are the terms depending on h® and h5. These terms make the
equation of motion complicated to solve. Therefore, in order to simply solve these
equations for f and n, we can take 8 = 0 to eliminate the terms proportional to

h5. In this case with assumption p < p,, the solutions are obtained as

e )
= _QGTM@_%(%))_ (4.2.16)

As a result, it is found that there is no discontinuity appearing in the solution
when we consider the non-linear of & within p < p,. This is the Vainshtein mech-
anism for dRGT massive gravity theory at which the theory can reduce to general
relativity at local gravity scale (within Vainshtein radius). For more general so-
lution which 8 # 0, the solution for A is more complicated. We must solve the

fitth order equation of  in Eq() The solution of A will be substituted into
the others, Eq. () and Eq. (), in order to solve differential equation for
functions of n and f. It implies that it is hardly to solve for the exact solution or
analytical solution. However, we can choose other form of the fiducial metric in

order to solve for analytical solution. We will find this solution in the next section.
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4.3 Analytical Solutions

In the previous section, the spherically symmetric solution, obtained by
setting 5 = 0, is not general but it is easy to show how Vainshtein mechanism
can work. However, we would like to find a general solution, in order to calculate
particle’s trajectory in next chapter. Therefore, we will try to find the analytical
solutions in this theory. We still restrict our consideration in the diagonal branch
of the physical metric, d(r) = 0, static condition, and spherical symmetry. For
convenience, we will choose the function ¢(r) of the physical metric in Eq.(4.2.1)
as ¢(r) = r and then the physical metric can be written as
dr?

f(r)

From the previous section, we used the fiducial metric as the flat Minkowski metric,

ds* = —n(r)dt* + + r2dQ2. (4.3.1)

fuv = N We found that we cannot find the analytical solution by using this form
of the fiducial metric. Therefore, we can choose a suitable fiducial metric in order

to solve for analytical solution. This fiducial metric can be written as [36-3§]
fap = diag(0,0, ¢, ¢*sin® 9) (4.3.2)

From the ansatz in Eq() with the fiducial metric in Eq.(4.3.2), we can find
the components of Einstein tensor, Eq.({1.1.§ ). These components of Einstein

tensor can be obtained as

o fr 1
Gl = P L (4.3.3)
. firn’4+n) 1
G = — (4.3.4)
o_qo_ p(M L nton )
GQ_G¢_f(4n+2T)+f<2n+2W 4n2>. (4.3.5)

The components of effective energy-momentum tensor, X,,, in Eq.(4.1.9) with

this ansatz can be written as

. aBr—c)(r—c) 3B(r—c)* 3r—2c
X' = X! = —( . P T ) (4.3.6)
% — —)? -
X0 = X:f _ a(2c —3r) N 3B(r —c) 4 C 37“‘ (437)

T T T



32

There are specific values of the parameter ¢ in which this effective energy-momentum
tensor behaves like a cosmological constant. An interesting case is ¢ = 0. This
simplifies the components of the effective energy-momentum tensor to depend only
on the parameters of the theory or, in other words to be constant. For ¢ = 0, the
tensor X in Eq.(#.3.0) will be proportional to the identity matrix. This means
that the mass terms are all constants at the Lagrangian level and correspond to
the cosmological constant term. Now, we will substitute all components of Ein-

stein tensor and effective energy-momentum tensor into Eq() The modified

Einstein equations can be written as

A 3r—c)(r—c) 3B8(r—c)® 3r-—2
7%_ﬁ_ﬁ:m%a( r :2)(7” c) n (TT2 c) n TT c>7 (4.3.8)
/ 2
f(r:;r:— n) r_12 _ m§<a(3r —:2)(7’ —¢) N 36(7;,2_ c) N 3r — 20)7 (4.3.9)
1 n o0 (n)?y a(2¢—3r)  3B(r—c)? c¢—3r
Mot 2) Gt g ) =i+ =)
(4.3.10)

From Eq.(), it is a differential equation of only function f. Therefore, we can

solve this differential equation for f(r) to obtain solution as

2MG A
_ —+ _rr2 + yr -+ C, (4311)

f)=1-=2 42

where M is the mass of the gravitational source and we redefine the parameters

for convenience as

A=3m’(1+a+p), (4.3.12)
v =—cm(1+2a+ 3p), (4.3.13)
¢ =c*m(a + 3p), (4.3.14)

A plays a role of the cosmological constant depending on the graviton mass m,
which is not surprisingly. The mass of graviton also serves as the cosmological
constant in the self-expanding cosmological solution in dRGT massive gravity
theory [42,43]. This solution can give rise to known solutions in GR as follows.
In the case of my, = 0, we have the Schwarzschild solution. For ¢ = 0 which makes

v = ¢ = 0, The solution can be determined according to the value of a and g. If
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(1+ a+ B) <0, the solution is in the form of Schwarzschild-de-Sitter while the
case (1+a+ ) > 0, on the other hand, provides the Schwarzschild-anti-de-Sitter

solution. By evaluating Eq.(4.3.8) minus by Eq.(), we also obtain
n'f=f'n. (4.3.15)

This equation shows that the functions f and n differ by a constant. Actually, we

can choose the constant to obtain a solution such that

2MG A
- —|—§T2—|—’}/T—|—C. (4.3.16)

n(r)=f(r)=1
We can see that the solution obtained in this section is exact and analytic. There-
fore, it is useful to use this form of the spherically symmetric solution for analyze

the particle’s trajectory. We will consider this issue in next chapter.

By comparing the form of solutions in this section and one in the previous
section, we found that the solution in dRGT massive gravity theory hardly depends
on the choice of the fiducial (reference) metric; changing to other forms of the
fiducial metric will significantly affect the solution. This dependency is one of the
important properties of massive gravity. For example, one cannot have a nontrivial
flat cosmological solution with a Minkowski fiducial metric in a cosmological point
of view [41], only the open FLRW solution is allowed [42] where the FLRW solution
with arbitrary geometry exists when the FLRW fiducial metric is considered [43].
By generalizing the form of the fiducial metric, a nontrivial cosmological solution

can be found [44].

We have shown that the non-linear dRGT massive gravity can explain the
vDVZ discontinuity by adding the higher order mass terms into the covariant
FP massive gravity action. This shows how Vainshtein mechanism can work in
dRGT massive gravity theory. A broad class of non-linear massive gravity theory
provided the BD-ghost making the theory unstable. In order to eliminate the
BD-ghost, we can introduce well-constructed mass terms into the action. This
specific mass terms can be constructed by tuning at each power of H,, including

Stiickelberg field. The dRGT massive gravity theory is such a theory without
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BD-ghost. By imposing static condition and spherical symmetry, we obtain the
analytical solution for dRGT massive gravity theory. The dRGT solution differs
from GR solution such that it has additional terms parametrized by the graviton
mass and other parameters of the theory. In next chapter, we will use this solution
to find the effective potential and consider the particle’s trajectory around the
gravitational point source especially in the our solar system. If this theory can
provide prediction of the Mercury’s trajectory as GR provides, it means that this

theory is possible to reduce to GR at the local gravity scale.



CHAPTER V

Particle’s Trajectory

As we have learned in the previous chapter, there is the discontinuity called
vDVZ discontinuity in the linear massive gravity theory. By using Vainshtein
mechanism, it was found that the non-linear massive gravity theory must be con-
sidered in order to explain the vDVZ discontinuity [18]. This mechanism shows
that the higher order in h,, is dominated inside a characteristic radius called the
Vainshtein radius. However, non-linearity of the massive gravity theory provides
the BD-ghost found by Boulware and Deser [17]. These BD-ghost terms lead the
theory to be unstable. dRGT massive gravity theory is introduced by adding the
well-constructed non-linear mass terms into the action in order to eliminate the
BD-ghost. From the dRGT massive gravity theory, we found that the analytical
solution is different from the solution obtained in GR. At the local gravity scale,
the solution obtained in dRGT massive gravity theory must be reduced to one
obtained in GR in order to explain the well-known phenomena. Therefore, we
can consider the trajectory of an object around the gravitational source such as
Mercury’s trajectory in our solar system in order to show that the dRGT massive

gravity theory can explain the phenomena at the local gravity scale as GR can.

In this chapter, we will analyze the particle’s trajectory by using the effective
potential. We firstly introduce the effective potential which can be determined by
using the Killing vector theorem and by considering together with the dRGT
massive gravity solution () As a result, we then categorize the effective

potential into three interesting cases.
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5.1 Effective Potential

If we consider a particle moving under influence a conservative force, the
total energy per unit mass can be written in terms of kinetic and potential terms.
Some of kinetic terms can be rearranged to be potential terms by imposing the
constraint obtained from the symmetry of the system. The effective potential is an
expression combining these terms with the original potential terms. For example,

the effective potential of a particle for Newtonian theory can be written as

V(r) = o GM, (5.1.1)

272 r

where L is the angular momentum per unit mass and M is the mass of a gravi-
tational source. L in the first term of Eq() is obtained by the constraint of
the system, d¢/dr = L/r*. The second term in Eq(n) is the original potential
term. From this effective potential, it can be plotted as a function of r as shown
in Fig.l5:1|. By using this effective potential, we can analyze how a particle moves
around the gravitational source. By considering the effective potential in Fig.15:1|,
if the total energy per unit mass is equal to the minimum of the effective potential,
the particle will move around the source as a circular orbit. If the total energy
per unit mass is more than the minimum of effective potential and less than zero,
there will be maximum and minimum radius at which the particle moves as an
elliptical orbit. If the total energy per unit mass is more than or equal to zero,
the orbit of the particle is unbound which means that the particle will not orbit

around the source.

We firstly find the constants of the particle’s motion. One way to find these
constants is to use the Killing vector theorem. The Killing vector theorem provides
the concept of conservation of energy and angular momentum corresponding to the
symmetry of the system. By considering the physical metric tensor corresponding
to spherically symmetric solution of dRGT massive gravity theory as we have

mentioned before, it can be written as

2
LSRR 0% (5.1.2)

ds* = —f(r)dt +f(7“)
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unbound orbit

=

Figure 5.1: Newtonian effective potential is plotted from Eq() The solid line
shows the effective potential and dash line shows the total energy per unit mass

of the particle. We have set the Eq() as V(r)=1/r*> - 3/r.

where f(r) was found in the previous chapter in Eq() as follows

2MG A,
- + —r“4+yr+(

f)=1-=Z 42

As we noticed before, a simple way to find the constants of motion is obtained by
using the Killing vector theorem. We will use the four Killing vectors, one for time
translation and three for the spherical symmetry. These will provide the constant
of the motion for a free particle; if K* is a Killing vector, the theorem provides

dah
—K”%gw = constant. (5.1.3)

Because of the symmetries, we can reduce some of the terms involving these sym-
metries to the familiar form. Invariance under time translations provides the con-
servation of energy, while invariance under spatial rotations gives the conservation
of the three components of angular momentum. We can think that the angular
momentum is a three-vector with a component of magnitude and two components
of direction. The conservation of directions indicates that the particle will move

in a plane. We can choose the plane in which the particle moves to easily solve
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the problem by rotating the coordinates. It implies that we can choose the plane

¢ = 5 which make sinf = 1. Thus, two remaining Killing vectors correspond to
the energy and magnitude of angular momentum can be expressed as
dz”

E=-K'— Vs
dr I

E= f(r);l—i (5.1.4)

and

_ dzt
Bdr’

2 d¢

[ =r*—L .
TdT7 (5.1.5)

where K* = (1,0,0,0) and R, = (0,0,0,7?sind) = (0,0,0,7%). These conserved

L =

quantities which are the energy (E) and angular momentum per unit mass of the
particle (L) give a convenient way to understand the orbits of a particle. In order
to obtain the effective potential, we have to use the constraint of geodesic equation

which can be written as
dzt dx¥
T T

where € = 0 for massless particle and € = —1 for massive particle. By considering

the metric tensor Eq() and then expanding Eq() for massive particle,

e = —1, we obtain
08 s A
10505+ 7 (&) () =
~E*+ (3—:)2 + f—jf(r) = —f(r),
(&Y + L pey + ) - 2 =0

dr
<dr)2+ (L—2+1)f(r) = B (5.1.7)

(5.1.6)

dr r?

By substituting Eq() into Eq.(5.1.7), we obtain

dr\?2 2MG  Ar? L? 2MGL? AL? L? L?
(—r> +1- (= — + ML = E?,

dr r 3 r2 r3 3 r r2
1/dr\2 Ard 1 I? MGL?> E?* AL? ¢
() 2 L2 —2MG)— + (1+¢)— — - 25
2(d7> T trto Jor T 055~ 5 2 2 2



39

In order to find the effective potential, we can group the terms in Eq.(p.1.§) into
three parts. The first part represents the kinetic term. The second part is the
effective potential which includes the terms depending on r. The last part contains

the constant terms corresponding to the total energy per unit mass.

1 2
5(%) + Vosf(r) = K (constant), (5.1.9)

where

Ar?  qyr 1 2 MGL?
Verr = T+ T 0L = 2MO) 5+ (G g = =5

. (5.1.10)

We now obtain the effective potential per unit mass of a particle. In order to
analyze the particle’s trajectory in the dRGT massive gravity theory, the effective
potential must be written in terms of the original parameters in dRGT massive
gravity theory such as «, 8, and my. By substituting A, v, and ¢ from Eq.
(), Eq. (), and Eq() respectively into Eq.(), we will obtain
the desired effective potential for the particle’s trajectory. We will consider this

effective potential containing these parameters in the next section.

5.2 Equation of Particle’s Motion in the dRGT

Massive Gravity Theory

From the effective potential, we can consider the contribution of graviton
mass to the particle’s trajectory. In order to compare the strength of the effective
potential due to dRGT massive gravity theory with that due to GR, we can ignore
the effect of angular momentum or, in order words, we can set angular momentum
to be zero. The effective potential for vanishing angular momentum can be written

as

A2 yr MG
Veff:?-i-?— — (5.2.1)

When the first and the third terms in Eq() is in the same order, it provides

the characteristic radius for the massive gravity theory. This characterisic radius is
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r=r,/ mg = r2. r, is known as the Vainshtein radius and r, is the Schwarzschild

radius, (rs = 2GM). When r is greater than the Vainshtein radius, the first term
in Eq. () dominates. It implies that we are considering the system at the
cosmological scale. When r is less than the Vainshtein radius, the third term in
Eq. () dominates. It implies that we are considering the system at the local
gravity scale. By considering the second and the third terms in Eq(n) to be
in the same order, we found that ¢ and r, is also in the same order. Therefore, we
will rewrite the effective potential in Eq() in terms of «, 3, rs, and r,. By
substituting A, ~, and ¢ from Eq.(), Eq.(), and Eq() respectively
into Eq() and rearranging Eq.(), we obtain

Vips = 27;; [(1 +a +B)<%)2 —(1+2a +35)(%>
1

2 2
Lr, L°r,

rer? r3

+ (1 +2a+ 30)

L26} (TU

- )+ [la+38)+1] |, 622

?m?. If we consider the system at the cosmological scale (r > r,),

where € = ¢*m?
the first two terms will dominate. By considering this effective potential at the
cosmological scale, we can see that force, F' = —VV_;, will be negative when (1+
a+ () > 0. This shows that particles are attracted. This attraction corresponds
to a collapsing universe whose spacetime is the anti-de-Sitter (AdS) spacetime.
The force will be positive when (1 + « + ) < 0. It can imply that the universe
is expanding which corresponds to the de-Sitter (dS) spacetime. Normally, if the
effective potential has only the first term, we cannot find the stable orbit at the

cosmological scale. However, the second term can provide the stable orbital radius

at the cosmological scale when (1 +a+ ) > 0 and (1 + 2a + 33) > 0.

In order to consider the system at the local gravity scale such as the scale of
solar system, we will consider the orbital radius of a particle which is very smaller
than the Vainshtein radius (r < r,). Therefore, the first two terms in Eq()
will be negligible. By this condition, we obtain

Ts
27,

2 r3

L%/, L?r, L*r,
Verr = }<

[— [1+(1+2a+30) 7) + [e(a+38)+1] } (5.2.3)

Tol's TsT
From this effective potential, we will consider in three cases. For the first case,

angular momentum goes to zero. The second case, angular momentum goes to
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infinity but L%e/r,r, approaches zero. This case represents the particle orbiting
around the source but it is not fast enough to make the term L?¢/r,r, dominates.
The last one, also angular momentum goes to infinity but L?e/r,r, is close to one.

It implies that the graviton mass will affect the effective potential.

For the first case, we obtain the effective potential as

T's

o (5.2.4)

Verp = —

This case is interesting because this effective potential is the same as one obtained
in GR. When we consider the vanishing angular momentum particle, it is found
that the effective potential and then the motion of a particle are not affected
by graviton mass. Therefore, the effective potential obtained in dRGT massive
gravity theory can be reduced to one in GR. In other words, we cannot distinguish
the dRGT massive gravity theory from GR via a gravitational experiment on a

test particle with zero angular momentum.

For the second case, L — oo and L?¢/r,rs ~ 0, we obtain

Vo T N L?> L,
fI T Tor T g2 2r3

(5.2.5)

This case, angular momentum goes to infinity but is not enough to make the term
L?¢/r,rs contributes significantly to the effective potential. It is found that the
effective potential is the same as one obtained in GR. The radius of the circular
orbit of this particle can be solved by using dV.ss/dr = 0. We can easily obtain
the possible radii as
L? 4+ L\/L? — 3r2
r= . (5.2.6)

Ts

Since we are considering the case of high angular momentum, we can estimate the

solutions as

L2+ L1 - 3r2/217)

r
s
2L% 3
= —r 5.2.7
" T ’ZT ( )
or,
L2
r=—— 3GM.

GM’
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For r = 3GM, it provides the unstable circular orbit corresponding to the maxi-
mum point of the effective potential as shown in Fig.@ for the case of the Mer-
cury. For r = L?/GM, it provides the stable circular orbit corresponding to the
minimum point of the effective potential as shown in Fig.@ for the case of the
Mercury.

Ueff

1.5%x108 |
1.0x108 |

500000 |-

r(m)

-500000

-1.0x10% |

Figure 5.2: Plotting of unstable orbit of Mercury which is not the present radius
of Mercury. However, It represents the possibility to have this radius which is

4430 m.

Moreover, we can find a minimum value of angular momentum which can

still provide the circular orbit. By taking the value under discriminant in Eq.

() to be zero, we obtain

L =V12GM. (5.2.8)

The radius of the circular orbit corresponding to this value of angular momentum
is
r=6GM. (5.2.9)

In particular, a circular orbit is not possible for L < v/12GM. For r = 6GM, it is

also the smallest possible radius of stable circular orbit in Schwarzschild solution.
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Ueff

1.x107°8 |

1 1 1 1 1 r(m)
1x101t 2x1011 3x1011 ax1011 5x1011

-1.x1078}

-2.x1078 |

Figure 5.3: Plotting of stable orbit of Mercury which is quite close to the obser-

vations. It is about 5.79 x 10'° m.

For the third case, L — oo and L?%¢/r,ry ~ 1. The effective potential for
this case can be written as
2

[— [1+(1420+30) L ] <7;—”>+[e(a+36)+1}

TyTs

2 2
LTU_L Ty

r2 r3

TS
27,

Vg = |- 5:2.10)

S

This case, angular momentum goes to infinity and is enough to make the term
L?¢/r,ry contributes significantly to the effective potential. It is found that this
effective potential contains the correction terms which invloves the parameters of
the dRGT massive gravity theory; namely «, 3, and graviton mass in term of e.
These parameters can be tuned to fit with observational data, as well as we can
reduce this case to that of the GR when mass of graviton goes to zero. The circular

radius for this case can be written as

 XL*+ X[2\/1-3r2Y /X212
B rsY ’

r (5.2.11)

where X = 1+ ae+ 3B and Y = 1 4 <5 4 20eL’ 3’36152. We found that the

TyT2 roT2 TyT2

circular radius not only depend on angular momentum and but also depend on

the parameters of the dRGT massive gravity theory. We also found stable and
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unstable orbits as in GR case. The circular radii can be estimated as

X2 4 XL2(1 - 3r2Y /2X2L2)
N rsY ’

r

_2XL2 37
oY '2X°

(5.2.12)

When graviton mass goes to zero, these circular radii obtained in dRGT massive
gravity theory can be reduced to those obtained in GR. Moreover, we can interpret
the condition on the angular momentum as in the case of the GR by considering
discriminant of Eq. () The minimum value of angular momentum in this

case can be found as

V3Y

L=
X

re. (5.2.13)

The radius of the circular orbit corresponding to this value of angular momentum

can be written as

_3rs  6GM

- 5.2.14
% = x (5.2.14)

r

If L < v/3Yry/X, a circular orbit will not occur. Therefore, r = 6GM /X is

smallest possible radius of stable circular orbit in dRGT massive gravity theory.

We can calculate the angular momentum of the particle which provides the
result in dRGT massive gravity theory significantly different to the result in GR.
That is

Lr 1
— ~— ~ 10" (eV) 2 (5.2.15)

Ts mg

Particularly, if L3/r, is considerably more than 10* (eV)~2, we can use the cor-
responding particle to observe clear-cut effects due to the dRGT massive gravity

theory.

We have now analyzed the dRGT massive gravity theory by considering
an effective potential of a particle in order to compare the particle’s trajectory
obtained in dRGT massive gravity theory with one obtained in GR. In the first
case, we consider the effective potential for the particle which has no angular

momentum at the local gravity scale. This effective potential can be reduced
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to one obtained in GR. This case shows that in the massive gravity theory the
particle which has no angular momentum will be attracted to the gravitational
source similarly to what will occur in GR. The second case corresponding to high
angular momentum situation while € is very small so that L2¢/r,r, ~ 0, it is found
that the dRGT massive gravity theory can explain the Mercury’s trajectory as GR
can. It implies that in this sense the dRGT massive gravity theory can recover
the result obtained in GR in such a limit. The third case corresponds to very high
angular momentum situation while e is still very small so that L?¢/r,r, ~ 1. The
effective potential has the correction terms involving the dRGT massive gravity
parameters which can be tuned to fit with the observational data. We finally find
the condition for the particle’s angular momentum; namely L3/r, > 10* (eV)~2,
by which the dRGT massive gravity theory prediction is significantly different

from one predicted in GR.



CHAPTER VI

Conclusion

As we have reviewed and discussed, the linear massive gravity theory has
been started by Fierz and Pauli in 1939. They introduced the mass terms to
the the linearized Einstein-Hilbert action. The additional mass terms in massive
gravity theory make the theory has five degrees of freedom in the Fierz-Pauli (FP)
theory, instead of two degrees of freedom found in general relativity (GR). The
FP massive gravity theory successfully describes massive spin-2 theory. In 1970
van Dam, Veltman, and Zakharov studied FP massive gravity theory by adding a
symmetric source into the action. In Chapter III, we have derived the linearized
equation of motion by varying the massive gravity action. We then obtained
the solution of h,, by solving the linearized equation of motion. As a result, we
calculated the light bending angle in the massive gravity theory and then compared
the result to one obtained in GR. The result from linear massive gravity theory
in massless limit differs from the one obtained in GR. Therefore, we have seen
the appearance of discontinuity in this linear massive gravity theory called vDVZ
discontinuity. The vDVZ discontinuity can be explained by considering non-linear
massive gravity theory. This idea was proposed by Vainshtein in 1972. However,
just about the same time, Boulware and Deser (BD) found that a broad class
of non-linear massive gravity theories suffers from an instability. This instability
is occured due to an additional scalar ghost mode in the non-linear FP massive
gravity theory, called BD-ghost. It is the sixth degree of freedom in addition to 5
degrees of freedom for massive gravity theory. In Chapter IV, we presented some
attempts trying to explain these problems. The explanation of the origin of this

ghost can be found by using the effective field theory approach and introducing the
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Stiikelberg fields. In order to solve this problem, the action has to contain well-
constructed non-linear mass terms so that the BD-ghost will not appear. Such an
action was proposed by de Rham, Gabadadze, and Tolley in 2010. They found such
mass terms of massive gravity theory which is known as dRGT massive gravity
theory. We know that the general relativity can very well explain phenomena at
local gravity scale such as those in our solar system. In Chapter IV, we have
seen how Vainshtein mechanism can work in dRGT massive gravity theory. We
consider this theory by imposing a static condition and spherical symmetry so
that we obtained an analytic solution for dRGT massive gravity theory. At the
local gravity scale the solution obtained in dRGT massive gravity theory can be
reduced to one obtained in GR. It is found that this solution is expressed in terms

of the parameters «, 3, and, e. This solution, Eq() can be written as

dr?

ds* = —n(r)dt* + + 7r2d?,
ST
where n(r) = f(r), and the function f(r) in this solution can be written as
2MG A
f(r)y=1- . +§r2+77‘+C,

where

A=3m’(1+a+f),
v =—cm}(1+ 20+ 30),

¢ =c*m(a+30),

The terms in the function (f(r)) containing mass of graviton can be thought of
as correction terms. A which is the coefficient in front r%-term plays a role of
cosmological constanct. This solution can give rise to known solutions in GR as
follows. In the case of m, = 0, we have the Schwarzschild solution. For ¢ = 0 which
makes 7 = ¢ = 0, the solution can be classified according to the value of o and
B. If (1+a+ B) <0, the solution is in the form of Schwarzschild-de-Sitter while
the case that (14 a+ ) > 0, on the other hand, provides the Schwarzschild-anti-
de-Sitter solution. From the Vainshtein mechanism, a chacteristic radius can be

found which is known as Vainshtein radius (r,,) where 73 = r,/m. This radius can
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distinguish the non-linear regime (r < r,) from the linear regime (r > r,) where
the non-linear terms will be suppressed inside this radius. We then discussed this
solution in order to consider the particle’s trajectory and possible further studies
in Chapter V. At the local gravity scale, we expected that the solution obtained
in dRGT massive gravity theory must be reducible to one obtained in GR in
order to explain the well-known phenomena. Therefore, we have considered the
trajectory of an object around a gravitational source such as Mercury’s trajectory
in our solar system in order to show that the dRGT massive gravity theory can
explain the phenomena at the local gravity scale as GR can. We have analyzed
the particle’s trajectory by using the effective potential. This effective potential
can be determined from the corresponding geodesic equation with the help of the

Killing vector theorem. The effective potential can be written as

Vigs = ;SU a +a+ﬁ)<%>2 - (1+2a+35)<%>
- [1+Q +2a+36)f;€s] (7;—”) + [e(a+38) +1] fz;” — ngv].

As a result, at the local gravity scale we then categorized the particle’s motion
into three interesting cases. In the first case, we considered the effective potential
for the particle which has no angular momentum. This effective potential can be
reduced to one obtained in GR. This case shows that in the massive gravity theory
the particle which has no angular momentum will be attracted to the gravitational
source similarly to what will occur in GR. The second case corresponds to high
angular momentum situation while € is very small so that L?¢/r,r, ~ 0. It is found
that the dRGT massive gravity theory can explain the Mercury’s trajectory as GR
can. It implies that in this sense the dRGT massive gravity theory can recover
the result obtained in GR in such a situation. The third case corresponds to very
high angular momentum situation while € is still very small so that L%¢/r,rs ~ 1.
We can show this effective potential for this case again as follows

L? » L?r, L?r,
TUTZ] (%) + [e(a+3p) +1] Tz - _T]

rer 73

Veff:;; [— [1+ (1+2a+33)

v

We can see that this effective potential has the correction terms involving the

dRGT massive gravity parameters which can be tuned to fit with the observational
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data. We finally find the condition for the particle’s angular momentum; namely
L3/r, > 10* (eV)~2, by which the prediction of dRGT massive gravity theory is

significantly different from one predicted in GR.

The further studies can possibly involve these correction terms such as find-
ing constraint of the parameters in the theory from the observations. One can also
perform the same analyzes on a more complicated system such as a system with a
spinning or charged source. Though, this theory is not the theory of everything,
it provides a plenty of insights on the nature of the universe. The massive gravity
theory may be more useful than Einstein’s general relativity theory in some situ-
ations. We now are waiting for the further evidences and knowledges to develop

this modified gravity theory to be more accurate.
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APPENDIX A

Einstein’s Linearized

Perturbation

In this appendix, we discuss how to derive a linearized Einstein’s action on

curved space we refer to in chapter II.

A.1 The Metric Tensor

Starting to collect the second order perturbation from metric tensor. The

metric tensor g,, obeys the relation
g#l’gpy - 557 (A.l.l)

we have the metric tensor can be written as background and perturbed part as

Gy = Guv + hy and we assume the inverse metric tensor as
g =g — W+ 1Y (A.1.2)

where f* is any second order metric that need to find. we can rewrite Eq.(jA.1.1))

as
(g™ = W+ ") (o + hp) = 0,
80 — W'Phy,, + fI' + f*°h,, = 6l.
We keep only second order term
Ji = 0"hg,
" = h"Phy.
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so, we obtain

§ = gh — W 4 PR (A.1.5)

Moreoever, we can evaluate the second order of \/—g by using Taylor ex-

pansion of /=g = \/—det(gn) = /—det(gu + hyw) = F(gu + huw), that is

1 OF 1 0°F

F g V—I—h v) = F [m —I— 5 A lguw= HV'h V—f__f G = IW.hMVha +
(u u) (u) 20g,w|g g % 2agwagaﬁ|g g B
(A.1.6)
We will interprete the solution of each term, the first on is
oF ov—g
=V (A.1.7)

8§W B agp,u '
In order to evaluate Eq.(), we have to introduce the formula as follows

In(det(M)) = Tr(ln M), (A.1.8)

where M is any metric tensor. When we take differentiate on this correlation, and

M is g, we obtain

1 v
_59 = gﬂ 5g,uu>
g

99
aguy - gg 9
o/ —g _ -1 0Jg
aguu 2\/ ) ag;w,
= YV Tggm
2(—9)
=g 1,
: = —g"'\/— Al1l
T V=9, ( 0)

By substituting Eq() into Eq() which firstly has been differentiated

with respect to g,3, we obtain

2F 1 /= 1 og"”
_— = — 'L“j—g+_\/ _gg—J
00w0Gap 27 Ogap 2 9Gap
1 1 1 dgh”
- N 2= , A1.11
59 (29 V 9)+2\/ gagaﬁ ( )
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From identity of metric tensor, we have

glwgua = 55’
0
7y -0
9 (9" o) = 0,
89#1’ . n W@gw _ O
89045 8gaﬁ

Taking g7 on both sides of an above eqaution

89“” v (o2 ag
T8 = — g g7 5185,

agaﬁ .
3gw _ _goa/g’yﬁ
aga,@ ’
gt
= —g™g"”. A.1.13
gy 9 ( )
By substituting Eq() into Eq.(), we obtain
O*F 1 1
) — g8 g — —a™ "B/ —q. A.1.14
" Do 10 V=9 =597V =g ( )

By substituting quation Eq. () and Eq. () into Eq. () to find out
V=9,

- 1 1 L
V_i=v=g+ §h\/—_g+ ghQ‘ /=g — Zhu R/ —g- (A.1.15)

A.2 The Christoffel Symbol

The Christoffel symbol, I'},, which is the important structure to defines-

pacetime curvature. It is defined as

~ 1. _ ~ ~
FZV :igp/\(aﬂgku + aug/\u - a)\gpw)y (A21a)
1 1
:FZV + §gp>\(auh')\u + 8I/h/\,u - a)\huu> - §h'p>\(aug)\1/ + 8ug)\u - a)\gw/)a

1 1
- éhp)\(a#h)\y + 8,,h,\ﬂ — 8Ahu,, + Ehmhfy(@ug,\y + &,gw — 8Agw,).
(A.2.1b)
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We can use the covariant derivative of rank 2-tensor, V, 1), = 9,1},, — F;}#T)\V -

), T, to simplify the Christoffel symbol. We obtain

Vo = Dol — D23y — T2 B, (A.2.2)

Voo = yhing — T2\ By — T2 Tn, (A.2.2b)

Vahor = O\hgy — T8 hpy — T8 e (A.2.2¢)
Eq.()+Eq.(lA.Q.QbI)—Eq.(lA.Q.QCI), we get

Oohry + Ovhrng — Orhoy = Vohay + Vihae — Vahg, — 2T b,y (A.2.3)

From Eq. ()

. 1 1
e, =", + §gf“(vuhM + Vohay — Vahu, + 21777 R, ) — Eh"’\(QI’ZVgpA),
1 1
— §h”A(VuhA,, + Vohay — Viahu + 200 h,) + 5hfﬂh,*y(zrgyg,ﬂ),

1 1
=I", + §gpA(VuhM + Vohau — Vahu) — 5}%(%@” + Vohay — Vahu).

Therefore, we can rewrite the Christoffel symbol in terms of Christoffel symbol up

to second order as follows

e 0 1 2
I, =100 410D 4 102, (A.2.5)
where
1
P8 =29 Ougnw + 0ugan — Orgun), (A.2.6a)
1
o) =59 (Vuhaw + Vol = Vahy), (A.2.6b)
1
FZE?) = éh”’\(vuh/\y + Vohy, — Vahu). (A.2.6¢)

A.3 The Riemann Curvature Tensor

The Riemann curvature tensor or Riemann-Christoffel tensor is the tensor
which shows the curvature of Riemannian manifolds. We can calculate it by using

definition as



R, =0,I%, —o,1%, +17 s, —T0Tg

apu— ov av=- o’

=0,I1%0 + 9,120 + 9,022 — 9,100 — 9,12l — 9,12,
+ (020 4+ 1o 4 72@) (Tl 4+ 1o 4 7e®),
0 1 2 a0 a(l a2
= (A9 4+ T+ T2) (T30 + Tl + T52),

=R, + 0,04 — 9,1 4+ 9,122 — 9,122

opY ou

+ IO 4 o0 4 peipe®) 4 pethpall) 4 pe@pal)

u tov

DTS — PADTR T — PADTD — T
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(A.3.1)

(A.3.2)

We can write the terms of partial derivatives in form of covariant derivatives

by using definition of the covariant derivatives of a tensor shown as

VI, =0,k + AT, — 0, T4, —Th, The

ViV ViV 212 BT Avg urL T vy

By making the term of partial derivatives to be a subject, we obtain

0T, =V, I8, —TIAT), + T, Th + T

M1
ViV 212 ViV BT A prt T)\Vl :

Therefore, we obtain

v g

e v S N S R O A

1y _ 1) _ e TAQ) A e(l) A (L)
&,F{ju —V,,Fgu FMFW +FWFM +FWFA0.

Eq. ()—Eq. (), we have

9,02 — 0,10 = v, o) — v, o0 — 12 1A 4 A TRY 4 18 1A —

v

The second order terms are rearranged in the same way,
5 =V, I — T, 102 + T, TR + T, 155
(2) _ (2) _ P TA2) A e(2) A e(2)
aVszru _VVFgu Fu)\rau + FVJF)\;L + FV,UF)\G' :

Eq. ()—Eq. (), we have

v

0,02 — 9,10 = v, 0@ — v, 0@ 70 12 4 T TR 4 18 1AG) -

(A.3.3)

(A.3.4)

(A.3.5a)
(A.3.5b)

Fiarig) :

(A.3.6)

(A.3.7a)
(A.3.7h)

), The,

(A.3.8)
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By substituting Eq.(|A.3.6) and Eq.(|A.3.§) into Eq.(), we obtain

o 1 1 2 2 (Hpa(l Dpa(l
Rguu - Rguu + v,urg(u) - VVFgEL) + Vurzpr(u) - vurgi) + Fgu)rag ) — FZ(IJ)FUl(i )
(A.3.9)
This is the Riemann curvature tensor using to calculate the Ricci tensor which is

represented in the next section.

A.4 The Ricci Curvature Tensor

The Ricci curvature tensor or Ricci tensor, it shows the way of measuring to
which the geometry. The Ricci tensor is determined by a trace of Riemann tensor
as follows

Ry, = R (A.4.1)

opv
Roy = Ry + V, I — v, 1000 4+ v 102 — v, 1) 4 el — petipetg),

we can rewrite the previous equation in background and pertuerbation part up to

the second order as follows

R,, = RO + RY + R (A.4.2)
where
RO =R,,, (A.4.3a)
Ry) =V, I — v, o0, (A.4.3b)
R() =v, @) — v, 123 4 pelipelt — pelpeop, (A.4.3¢)

A.5 The Scalar Curvature

The scalar curvature or Ricci scalar, it is the Lagrangian density for Einstein-

Hilbert action. It is defined as the trace of Ricci tensor. That is

R=§"R,,, (A.5.1)
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and we know that

37 = g7 — h7 + h7RY, (A5.2)

We now have

R =R+ g""R}) + g°"R) — h™ Ry, — h™"RS) + h* W5 Ry,

=R+ ¢°"RY — h*"R,, + ¢°“R?) — h® Ry, + h"*h Ry,

We can rewrite it as

R=R" 4+ RY 4+ RO (A.5.4)

where

RO —R. (A.5.5a)
RW =¢o*RY _ povR_,

:gauvprgg) _ gUVVyPg-(pl) _ h‘”’RUV’ (A55b)
R® =g°"R®) — h""R,, + h" W} R,,,

:ggyvprg(VQ) _ gauvyrg(pQ) + gaurgg)rgy) _ gaur\g(yl)1“3[()1)7

— h'V 000 + 7, T + hOhE R, (A.5.5¢)

A.6 The Linearized Action

From Eq. (), the second order perturbed action can be rewritten by
substituting the results in Eq.(|A.1.15), Eq.(|A.3.d), and Eq() as follows

50 = [ gt [V, — O+ T — T,

ov ov o 14 ]' oV 1 ov
— bV, + b7V, T + hRY Ry, + 5h v, e Sho v, e

op
~Lpper +1h23—1h“”h R (A.6.1)
2 g 4 o

From Eq.(), we can use the equation from background, R, — %QWR =0
or R, = %gWR, and then integrate by part of some terms in this above action.

There are the surface terms resulting from integrating by part which we can set
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them to be zero by demanding that the variation vanished at the surface. As a

serult, we can rewrite some terms as

1 1 1 1 1
hh?’ Ry, + <h*R — ~h*h,, R :§h”h§gWR — Zhh"”gm,R

2 8 4
1 1
Zh2R—-Z
*3 4

1 1 1
=—h°*h,nR — ~hhR + —h’R
9 ATy *3

1
- bR,
1 1
——h"™h,,R — —h’
" B = SR,

1 1
__ % T2
TR, = SH). (A62)

h*h% Ry, —

h* R,

We then integrate some terms in Eq.(), we obtain

JSEAVAN WSO VAN (750 WS I vV Rl WSO (A.6.3)
hrv, 0o =V, (e rey — v, T, (A.6.4)
S0V =V, (g7 T — g7V AT, (A65)
%g”“hvyl“ﬁ,’g}) :V,,(%g””hl“{,’(pl)) - %ngyhrggﬂ. (A.6.6)

By substituting the above equations into Eq.(), we can rewrite Eq. ()

without the surface terms as follows
1 1
5= / VG (V7 = Sg7 T T 4+ (507 Y — VT

1 1
g TETEY = g TUTED + S R(2 by, — 5}#’)] (A6.7)

In order to simplify this action, we can use definition of Christoffel symbol

in Eq.(g.2.6;), Eq.(g.2.6a), and Eq() to substitute into Eq() Then,
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the first, second, third, and forth terms in Eq() can be rewritten as

1 1 1
(Voh?" = 30 VT, =(Voh™ = 367V ph) 50 Vol + Vulag = Vahog).

1
:(V)\hm/ - igauvkh) (vah/\u + Vl/h/>\0' - V)\hap>7

1 1 1
ZQVAh””VUhM + §VAhUVVVhAU — §VAh‘”’VAhU,,,
1 1 1
- ZvAhvuhM - Zv*hvahM + ZVAhVAh. (A.6.8)

1 1 1
(ngv,,h — V,h)1e0) :(ngvyh — Vyh””)igp’\(vohm +V,ohae — Vaho,),

1 1
:(§ga”v0h — §Vyh"”)(vah + V*hye — VPhy,),

1 1
—ZVohV. h+ -
4V Veh + 1

1 1 1
— 5 Vuh"'Voh - §Vl,h‘”’V’\hM + 5V VP ho,.

1
VI hVahag = 1V hV?ho,

(A.6.9)

By adding Eq.(|A.6.8) with Eq.(), we obtain the following equation,
1 1 1
(V,h — §ngph)rg<;> +(597Voh - V, b0 = 5 V7hVoh — VAhV" hy,
1
+ Vo'V o hyy, — §V*h‘”’vkhw.

(A.6.10)

1
g””Fg(pl)Fg‘l(}) =—g7" 9" ¢ (Vahrp + Vohra — Vahap) (Vehs + Vihse — Vhe),

4
1 oo av «
:Z(Vah + Ve — VPha,) (Vo + V,h* — Vh),
1 1
=5 VahV i = 2V hVh. (A.6.11)

1
g ToTo) =199 9% (Vahay + Ve = Vaha)(Vohgy + V,ohse = Visha,),
1

:Z(Vah”” + VhE — VPh)(Vohs, + YV hge — Vihe,),

1 o « (e (0% o (6% o «
= (Vah™ Vs + Vah™V b = VahVhe, + VN o

+ VIREN hE — VRN Dy, — VPRGNV hS — VPRI RS
+ VPRIV hy,),

1 1
=5 VTV ohay = ZVHV . (A.6.12)
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By substracting Eq() with Eq.(), we obtain the following equation,

1 1
ov Dra(l ov Dra(l av a
g rerelt) — g rgyr(,;)_évahvuh — 1 VahVh

1 1
= GV ahay VTV g, (A6.13)

We can rewrite Eq() by substituting Eq() and Eq() as follows
1
S = / V—gd'z [QV”hVUh — ViV hy, + VARV o hy,
1y, 1 o1 1 1
— §V h? V)\hm,ivahvyha — Zvahvah — Evah“’vgh@p + Z—vahmvphw},
1 1 1 1
= / \/_—gdA‘x[ZV”hV,,h — 5 VIV + §v“hﬂ”whw — ZVAh’“’VAhW

1 1
+ ZR(h‘”’hW - 5112)]. (A.6.14)

A.7 The Equations of Motion

From Eq. (), we now write it again as follows
1 1 1
/ V—gd'z [Ea(wwuh) — SOV RV D) + S8V H V)
—}la(vkhwvmw) + }laR(hWhW - %hQ)] —0. (A7)

We will expand the terms in Eq.(|A.7.1)). These terms can be expanded as

1 1 1
IRAEAPDESTURWESA A

1
=5V h.V,5h,
:V#(%V“h.éh) - %VHV“h.(Sh,

1 1
=Vu(5V*h6h) = Sg*7V, V" hShas, (A.7.2)

1 1 1
S(GVI NV ) =5V OhN sy + S VR,
1 1
=V (5 V" hyubh) + V(5 V hohy,),

1 1
- §ga6V“V”hW5ha5 — 5v';“vﬁhahaﬁ, (A.7.3)
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1 1 1
5(§Vﬁth>\uv)\huy) =§V”5h’\”.VAhW + §V'uh)\VV)\5hm,,

1 1
=V (5 Vol 60) + V(G VI b,

1 , 1 ,
- §V“VAhu.5hAV - §VNW Shyu, (A.7.4)
1 Ry N1 1 A ST pv 1 A uv
5(ZV RN \hy) =7V ShH™ N \h + TV Vr0h,u,
1 v
:§V*h“ Vabhu,
1 1
:VA(EVAh‘“’.cShW) — 5vAvAhﬁv(shw, (A.7.5)
1 1 1 1
- v T h2 —_ % = 2
5(4R(h s = 5h ) 45(Rh ) 85(Rh ),
1 1 1 1 1
— v - v - py o 2 - 2
T hwOR + L Shy + 4RhW5h 85Rh 8R5h :
R 14 (0%
=5 (W 0hy, = g Phdhag). (A.7.6)

By substituting Eq.(A.7.2) to Eq.(A.7.6) into Eq.(|A.7.1)), we obtain

1 1 1 1
/ V—gd*z bgaﬂDh(Shag + §go‘ﬁV“V”hW6hQﬁ + évavﬁhahw — §Vﬂv*h;5my

1 1
= VAR Shy, 4 SOR Sy, + g(h“”éhw - go‘ﬁh&ha)} —0.

1 1 1 1
/ V—gd*z [ = 59" Oh+ 59"V VP has + SVFVh = SVOVURL

1 1
— SVOVERL 4 SOR 4 g(w - gWh)] Shy = 0.

This integration is equal to zero so that the term in the bracket must be zero. We

have

1 1 1 1 1 1
——g"Oh + =g"' VOV has + VIV h — VOV RY — —VOVFhY + O™
29 o9 it 2 @9 «t3

+§(h’“’ — g™h) = 0. (A7.7)

By rearranging above equation, we obtain

R
O =Vl = VOV b 4 gV VP b+ VIV h— g Ot 2 (0 — g h) = 0.
(A.7.8)
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