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CHAPTER 1
INTRODUCTION

The aim of this chapter is to give a general concept of functional equations,

stability problems, and history concerning our proposed problem.

1.1 Functional Equations

A functional equation is an equation expressing certain property of an unknown
function. Any function that satisfies the equation is called a solution of the
functional equation. Solving a functional equation means to find all solutions of

the equation, the collection of which is called the general solution of the equation.

Example. Consider the functional equation

flx+y) =2f(y) +yf(v)

for all x,y € R, where f : R — R. Substituting y = 0 results in f(x) = xf(0) for
all z € R. In particular, f(0) =0. So f(x) =0 for all z € R.

Substituting back shows that the zero function satisfies the above equation.
Hence, a function f is a solution of the functional equation f(z+y) = zf(y)+yf(x)

for all x,y € R if and only if it is the zero function.

Among the most studied functional equations is the Cauchy functional equation

flx+y) = f@)+ f(y) (1.1)

for all z,y in the domain of f. This equation is named after A.L. Cauchy, who
showed that, when assigned f : R — R, all of its continuous solutions are of the

form f(z) = cx for all z € R, where ¢ € R [3]. The existence of nonlinear solution



of eq. (1.1) was discovered in 1905, when Hamel constructed the general solution
through the use of a basis of R considered as a vector space over Q (see [11]). An
interesting property of any nonlinear solution of eq. (1.1) is that the graph for each
of them is densed in R?. This means these functions are nowhere continuous and
are unbounded on any open interval.

A functional equation that is closely related to eq. (1.1) is the Jensen functional

equation

. . (1.2)

; (x+y> _ f@)+ )
for all z,y € R. It is known that f is a solution of eq. (1.2) if and only if
f(z) = ¢+ A(x), where A is a solution of eq. (1.1) and ¢ is a constant (see [4]).

A further generalization of eq. (1.1) was done by M. Fréchet in 1909 when he
studied a functional equation which can be written as

Ay b F(0) =0 (1.3)

77777

for all hy, ho, ..., hyy1 € R, where n is a positive integer ([9], also see [1]). M. Fréchet
showed that the only continuous solutions of eq. (1.3) are the zero function and
the polynomials of degree not exceeding n.

Observe that if a function f : R — R satisfies eq. (1.3) for all hy, ha, ..., Ay € R,
then

Aﬁf,ig ..... hn+1f($) = Azi}lu,hg ,,,,, hn+1f(0) - AZE hn+1f(0) =0

.....

for all x, hy, ha, ..., h,p1 € R. Hence eq. (1.3) implies

At f(@) =0 (1.4)

77777

for all x, hy, ha, ..., h,y1 € R. The converse is obviously true, so the two functional
equations are equivalent.

Many researchers have studied eq. (1.4) and its generalizations [2, 5, 7, 14, 15, 19].



It was also shown that eq. (1.4) is equivalent to
AP () = 0 (15)

for all z,h € R [6]. Hence, both eq. (1.4) and eq. (1.5) were named Fréchet
functional equation. Their solutions are called generalized polynomial functions of

order at most n.

1.2 Stability Problems of Functional Equations

The stability problems was initiated in 1940 by S.M. Ulam [21] during his talk
at the Mathematics Club of the University of Wisconsin. His proposed problem is
as follows: “Let G be a group and G5 be a metric group with the metric d. Given
e > 0, does there exist a 6 > 0 such that if f : G; — G5 satisfies the inequality
d(f(zy), f(x)f(y)) < 6 for all z,y € Gy, then there exists a homomorphism
H: G, — Gy with d(f(z),H(x)) <eforall z € G177

A partial answer for this question came in the following year by D.H. Hyers
[12]. He proved that for a function f between Banach spaces E; and Es, if f

satisfies the inequality

Iz +y) = flz) = Fy)l <e

for all x,y € Fy and for certain € > 0, then there exists a unique additive mapping

A By — E5 satisfying the inequality

[f(2) = A(2)] < e

for all z € Ej.
So any results answering a question of this sense are called Hyers-Ulam stability.
This kind of stability became one of fundamental concepts in the study of functional

equations.



There are other kinds of stability of functional equations, but in this dissertation

we will only refer to Hyers-Ulam stability.

1.3 Motivation and Proposed Problem

Solutions and stability of functional equation eq. (1.4) have been studied under
many different assumptions, such as one point continuity or assumption that the
domain of f is an algebraic structure other than (R, +). Among the most general
domains are commutative semigroups, on which the stability of both egs. (1.4)
and (1.5) were proved by M. Albert and J. Baker [2]. A more general stability
result for eq. (1.4) has been obtained by L. Szekélyhidi [20], who confirmed an
affirmative result on amenable semigroups.

Stability of other functional equations on nonassociative, noncommutative
domains were also widely investigated [8, 16, 17, 18, 22]. Among them is the

monomial functional equation,

Apf(x) =nlf(y)

for all z,h in the domain. This functional equation is also a generalization of
eq. (1.1) and is closely related to eq. (1.5), as each of its solutions (see [7]) must
also satisfy eq. (1.5). Its stability on power-associative, power-symmetric groupoids
was proved by A. Gildnyi in 1999 [10].

Inspired by these results, we aim to investigate the stability problem for eq. (1.4)

and eq. (1.5) on power-associative, power-symmetric groupoids.



CHAPTER II
PRELIMINARIES

In this chapter, we covers some basic theorems concerning difference operator,
additivity of functions, power-associativity and power-symmetry on groupoids.
Throughout this dissertation, let (5, +) be a commutative semigroup and B be

a real Banach space.

2.1 Groupoids and Special Properties

A groupoid (G, o) consists of a set G with a binary operation o : G x G — G. Since
o is not necessarily associative, order of operations must be made clear before we
proceed.

Let k € N. For z1,x,, ...,z € G, denote

r10x9,0 -0z = (...((r10x9) 023)0...) 0T,

that is, the operation o will be done from left to right whenever there are no written

parenthesis. With this notion, define

2 =goxo---o0x.
e

k terms

Next, we give the definition of power-associativity and power-symmetry, and

properties that they imply.

Definition 2.1. A groupoid (G, o) is power-associative if

.Z’k+l — ill'k o :Il'l



for all x € G and all k,1 € N.

Theorem 2.2. [10] Let (G,0) be a power-associative groupoid. Then
(Ik)l — xkl

for all x € G and for all k,l € N.

Remark 2.3. Let (G, 0) be a power-associative groupoid and let x € G. Define
G, = {2 | k e N}.

Then it is not hard to see that G, is a commutative semigroup.

Definition 2.4. Let m > 1 be an integer. A groupoid (G, o) is mth-power-
symmetric if

m m

(roy)" =" oy

for all x,y € G.
We say that (G,o) is power-symmetric if (G, o) is mth-power-symmetric for

some m > 1.

Theorem 2.5. [10] Let (G, 0) be a power-associative groupoid and let an integer
m > 1. If (G, o) is mth-power-symmetric, then it is also m*th-power-symmetric

for all k € N.

2.2 Difference Operators

The difference operator is a very important tool in our study. Let (G,o) be a
groupoid and f : G — B. The difference operator A, with the span h € G is
defined by

Apf(x) = f(xoh)— f(z)

for all x € G.



The iteration of A is defined recursively by

for every hqy, hs, ..., hy11 € G. When the spans are all equal, denote

Npf =2y onf
———

k terms

In the following theorem and later, denote z0y? := z for all z,y € G. Theorems
referenced from [4] have originally been stated for mappings between linear spaces
over Q. The proof presented in [4] remains valid for functions whose domain and

range are as restated in here.

Theorem 2.6. [4] Let (G,0) be a groupoid, f: G — B and k € N. Then

AZl,hg.‘.,hkf(x) = Z (—1)fame= = f(rohl o hP o0 hek)

€1,€2,...,6,€{0,1}

for all x,hy, ho, ..., hy € G. Furthermore,

k
Aﬁf(x) = Z(—l)k_i<l;>f(xo hoho---oh)
=0 i terms

for all x,h € G.

The difference operators commute when acting on a function whose domain is

a commutative semigroup.

Theorem 2.7. [4] Let f : S — B. Then
Apy Ay f = Bny Ay f

for all hq,hy € S.



2.3 Additivity of Functions

Definition 2.8. A function A : S — B is called an additive function if
Az +y) = Alr) + Aly)

for all z,y € S.

Example. Let c € R. A linear function f : R — R defined by

flz) =cx

for all x € R, is an additive function.

A generalization of additivity is multi-additivity, which is an important tool in

establishment of our results.

Definition 2.9. Let n € N. A function A,, : S™ — B is said to be n-additive if it

is additive respect to each of its components, that is,

*
An(fL’l,LIfg, ey i1, T4 +x N 7T 7$n) :An(azl,xz, ey L1, Lgy it 1y - - - ,xn)
*
+ Ap(xy, oy o i1, X Ty, e, T)
for all z1,z9,...,2,,2" € S and for all i € {1,2,...,n}.

Definition 2.10. Let n be a positive integer and A, : S™ — B be an n-additive
function. The diagonalization of A, is defined to be the function A™ : S — B such

that

forallz € S.

Example. Let f: R — R be defined by

flz)=a'



for all x € R. Then f is the diagonalization of the 4-additive function g : R* — R
defined by

g(x1, X9, T3, T4) = T1T2T374

for all xq, x5, 23,24 € R.

The next two theorems are basic properties of diagonalization of n-additive

functions.
Theorem 2.11. [4] Let n € N and A" : S — Y be the diagonalization of an
n-additive function. Then
A" (kz) = k"A"(x)
for all x € S and for all k € N.

Theorem 2.12. [4] Let k € N, Ay : S* — B be a k-additive function and A* be
the diagonalization of Ay. Then

for all x,hqy, ha,... hy € S. Moreover, if n > k, then

for all x,hy,ho,... h, €S.

2.4 Generalized Polynomial Functions

In 1983, M. Albert and J. Baker gave the general solution and proved a stability
result of Fréchet functional equation eq. (1.4) on commutative semigroups. The
solutions are called generalized polynomial functions of order at most n, and are

described in the following theorem.

Theorem 2.13. [2] Letn € N and f : S — B. Assume that

han(x) =0

.....
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for all z,hy, hy, ... hy1 €S. Then there exist A, A%,... A" : S — B and c € B

such that each A is the diagonalization of an i-additive function and
f(z) =c+ AY(z) + A*(2) + - + A"(2)

forallz € S.

The stability of eq. (1.4) proved by M. Albert and J. Baker is restated in the

following theorem.

Theorem 2.14. [2] Letn € N, e e RY, and f : S — B. Assume that f satisfies

1A b F @) < €

.....

for all x,hy, ha, ... hyi1 € S. Then there exist AL, A%,...,A": S — B andc€ B

such that each A is a diagonalization of an i-additive function and
1f(x —C—ZA’ ) < 2e

for all x € S. Furthermore, if S has an identity element e then

I1f (2 ZAZ ) <e

forallz € S.

Proposition 2.15. We will investigate a relation between f and A', A%, ... A"
from Theorem 2.14. Define

B() = f(@) = c= Y A')

E(kx) +c

o =0 foralll € N.

forallx € S. Then E is a bounded function and lim

k—o0
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Hence

SR iy U )
Allw) = i =
— lim > i1 A'(ka) 0
k—o0 kn
— lim f(kx) — E(kx) — ¢ lim E(kz) +c¢
f(kx)
kl—>rgo kn
for all x € S. In the similar manner,
l . .
oy e 2im KA (2)
Alw) = lim ==
l i
— lim > izt A'(k) 10
k—oo k‘l
~ fim flhka) =320 Al (kx) — E(kz) — c + lim E(kz)+c
k—o0 Kkt k—o0 k!
~ lim f(kx) — Z;'L:H—l Al (k)
k—o0 ,I{;l

for allz € S and for alll € {1,2,...,n—1}. This relation will be essential in our

study.

Proposition 2.16. The functions A', A% ... A" in Theorem 2.14 are unique:
Assume that there exist BY, B?, ..., B" : S — B where each B' is the diagonalization

of an i-additive function and there exists 0 > 0 such that

1f () = fle) = ZBi(l’)H <90



for allx € G. Then

||Z (A'( IS ZB’
< f(x ZBZ
<6 +e.

12

-2 A
ZAZ

(2.1)

)+ 11 (2

Suppose that there exists the largest k € {1,2,...
Theorem 2.12,

,n} such that A* # B*. By

AR (A — BM)(z) = K1AF(h) — k'B*(h)

for all x,h € S.
From Theorem 2.11, Theorem 2.12, and inequality (2.1), we have

1A% (h) = BH(W)|| =z — kIB*(ih) + 0|

k—1
= BY)(x) + Aj (A" = BY)(2)|

i=1

< 2 [(f) 2 |4 ny) - B%(m(zww]
1 < (k

SW 2 j)(5+€)

<L oksye
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for all z,h € S and for all l € N. Hence,

|45 (h) = BE()]| = Jim [|A%(h) — B*(n)]|

1
< lim — 2
< lim 20+

=0

forall h € S.

This contradicts the assumption that A* — B* is not the zero function. Hence
At = B for alli € {1,2,...,n}.

This also implies that A' + A% +--- + A", as a function, is unique.



CHAPTER I11
HYERS-ULAM STABILITY OF FRECHET
FUNCTIONAL EQUATION ON COMMUTATIVE
SEMIGROUPS

We recall the work of D. Z. Djokovi¢ [6] and A. Albert and J. Baker [2] on the

stability of symmetric Fréchet functional equation,
A f(x) =0 (1.5)

for all z, h € S. Firstly, we state Djokovi¢’s representation theorem here.

Theorem 3.1. [6] Let Y be an abelian group and n € N. Then there ezist s,k € N
and my, Mo, ...my € Z such that the following statement holds:

For every hy, ho, ..., h, € S there exist uy,vi,Us, Vg, ..., Uk, Vx € S such that

forall f: S —Y and for allz € S.

Now consider € € R*, an integer n € N, and a function f : S — B such that
AR f@)]l < e

for all x;h € S. Theorem 3.1 implies that there exist integers s,k € N and

mi, Ma, ..., my € Z such that

k
(n+ )AL fx) = Z m AT f (2 + ;)
=1



15

for any x, hy, ho, ..., hyy1 € S. Hence

1A% haninf ||_Z|| A )l

m;
< S —
_22:1: H (n + 1)!25 €

for all @, hy, hy,..., h, € S. Letting M, ZZ al |, the following theorem

n+1 '25 ’

follows from Theorem 2.14.

Theorem 3.2. [2] Let n € N, e € RT, and f : S — B. Assume that f satisfies
AR ()] < e

for allz,h € S. Then there exist M,, € R* and A', A%, ..., A":S — Bandc€ B

such that each A is the diagonalization of an i-additive function and
1f(z —C—ZAZ )| < Mye

forall z € G.

However, it is not easy to determine M,, in Theorem 3.2 for large n. To see

this, we will consider the procedure from which the combination
k
(n+ DAL fl@) =) mART ()
i=1
is derived. It was shown in the proof of Theorem 3.1 that

1yeees hn+1

(4 DEAT (1 [ DR+ Q] (3.1)

et +1
ST (pertenant

S

~~~~~ 'n+1
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for all hy,...,hyy1 € S and n, s € N, where

n+1
S n+1
Q = - Z(_l) * +1( m ) Z Ai1h1+-"+in+1hn+1'

m=1 D] 5eeey in+1€{071 ..... mfl}

The multiplication in the above equation represents operator composition, and the

number (n + 1)! in the right side represents the operator defined by

((n+ D)) = (n+ DI[f(2)]

forall f: S — Bandallz e S.
It was concluded that if s is large enough (apparently, if 2° > n?), then there

exist s,k € N, my,ma,...,my € Z, and uq, vy, U, Vo, . .., ug, v € .S such that

k
Q¥ AN f@) =) mAT (2 wy),
=1

for every x € S.

In particular, when n = 1 and s = 1, this procedure yields

ANG, 1, f (@) = = BAL f (@) = BAL,f(2) + 5L 1p, [ (2) + A f(x + ha) + A, f (2 + ha)
+ A7 f(@+ h) + A f(z+ he) + A7 f(x+ ho) + A L, f (@ + Do)
+ A} f(z+hi+ho) + A7 f(x+ hy + ho) + A7 f(x 4 ha + ho)
+ AR AL f(x) + 405 A, f () + 405, AR, f () + 445 A7, f(2)
+4A; A; f(x) +8A; A f(x)

for all z, hy, he € S. Note that the last six terms can be finalized in more than one
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way, for example,

A} AF f(x) =A% f(z 4 3h1) — 3A7 f(z + 2hy)
+ 347 f(x + hi) — A} f()
=AZ f(z+ hy +2hg) — A7 (x4 2hy) — 207 f(x + hy + hy)
+ 20, f(x+ ho) + A} flx+hi) — A f(2).

Hence, the method of construction is not without difficulties, especially for large
n. Since M, in Theorem 3.2 is defined using eq. (3.1), it could be considerably
large and hard to determine.

Our goal in this chapter is to give an alternative result on the stability of

eq. (1.5), which will have a simpler bound than M,,.

3.1 Auxiliary Lemmas

We begin with lemmas concerning the difference operator.

Lemma 3.3. Letne N and f: S — B. Then

AL f(z) = zﬁ; (7;) Al f(z + ih)

forall z,h € S.

Proof. We will proceed by induction on n. For n =1,

Aopf(z) =f(x + 2h) — f(x)
=f(z+h)— f(x)+ f(x+2h) — f(z+ h)
=Apf(z) + Anf(z+h)
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for all x, h € S. For the inductive step,

NGt f(a) =05, f (x + 2h) — Ay, f(2)
=AL f(x+h) — AL, f(2) + AL, f(z +2h) — AL, f(x + h)
=ARAL (2 + h) + ARAL, f(2)
=Ak Apf(z +h) + AL AL f(2)

k k

0 <Ij) ASAf(z+h+ih) + Y (k) AFALF(z + ih)

7

2: k z:}i] k
_Z<)Ak“f(x+(z+1 +Z<)Ak“fx+zh
o
:Z<i_1)A’fL+lf(x+zh)+Z z) M f (2 4 ih)
i=1 =0
k1
_ (kjl)Aﬁ“f(anih)
i=0

for all z, h € S. The last equality results from the identity (k“) = (Z lfl) + (k) for

(2

all £ € N and for each integer ¢+ < k.

Hence, the statement is true for all n € N. O

Lemma 3.4. Letn e N and f: S — B. Then

n

ML) = et @) = 5030 () S Ar e+ 10
=0

i=1
forall z,h € S.

Proof. First, observe that

k—1

Apf(x +kh) =Ap f(z) + ) [ARf(z+ (1+Dh) — AL f(x + 1h)]
=0
k—1

=Apf(x)+> A f(x +1h)

=0



19
for all x, h € S and for all £ € N. Hence, by Lemma 3.3,
AL f () =ALf(z Z( Jaiste i
=AM f(x Z ( )
—(2")AI f(x i( )ZA”“ (z + Lh).

=0

Aq f(x) + ZA"“f z+1y)

So

n i—1

AT f(z) = Agh —2%2( )ZMH (z + h)

=1 =0

for all xz,h € S. n

3.2 Stability of Fréchet Functional Equation

Now we are ready to solve our problem.

Lemma 3.5. Let n € N, e € RT. Assume that [ : S — B satisfies
AR f(2)] < e

for all x;h € S. Then

AR AR, f(2)]] <
for all x,hy,hy € S.

Proof. Define a sequence of real numbers (a,,) by a1 = M€ and a,,1 = z%am +ne
for each k € N, where M, is as in Theorem 3.2. We will prove by induction that

for every m € N:

[An AR f (@) < am (3.2)

for every x, hy,hy € S.
The basis step follows from Theorem 3.1. For the inductive step, let £ € N and
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assume that inequality (3.2) holds for m = k. Lemma 3.4 implies

n n 1 n
180 AL F@ ol A A, F@] + Z( )ZHAmA P+ )|

for all x, hy, hy € S. Hence the inequality (3.2) is true for every m € N.
It is not hard to see that

m—2 1
Ay = 2(m1 a1+n< 2%>

=0

for every integer m > 1. We then obtain

= 1 on
nliiﬂo“m:”<227>€:2:—1€'

1=0

Let x, hy, hy € S. By inequality (3.2),

n2"
n — 1

|80, AL )| < lim_ay = =

for all x, hy, ho € S, as required. n

Theorem 3.6. Letn € N, e € RT, and [ : S — B be such that

A ()] < e
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for allx,h € S. Then

for all z,hy,ha, ..., hyi1 €S.

Proof. This can be done via induction on n. Lemma 3.5 directly implies the case
when n = 1. For inductive step, observe that Lemma 3.5 and assumption of the
theorem yield

k2k
A%, A, @) < 5

for all 2, hy,hy € G. Let h € S and f, = Ay f. Hence, A} fo(z)| <
h, € S.

€

k
2’,22_1 e for all

By the induction hypothesis, we obtain

----------

k=1 o
9i 2k
< ) T
—<H2i—1>(k Vg e

for every x, hq, ha, ..., hy € S. Since h is arbitrary, it completes the inductive step.

Hence the proof is completed. O
We come to the conclusion of this chapter.

Theorem 3.7. Letn € N, e € R, and f : S — B. Assume that f satisfies the
mequality

AL f ()] < e

for all x,h € S. Then there exist unique A', A%,..., A" : S — B and c € B such

that each A is a diagonalization of an i-additive function and

<2 <ﬁ 2i2_i 1) nle

Hf(x) — (c—l— iA%x))
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for all x € S. Furthermore, if S has an identity element O then

< (ﬁ 2i2_i 1) nle

Hf(x) - (f(O) + ZAW)

forallz € S.

Proof. The existence follows immediately from Theorems 3.6 and 2.14. The uniqueness

follows from Proposition 2.16. O

Remark 3.8. Note that our new bound

(H 57 1) nle

15 smaller than Mye from Theorem 3.2, at least for some n. For example, one

choice for M is %, and a partial calculation yielded My > 15 while

2 i
H 2 o= 16
2t —1 3

=1

3 .

2 128

Mj3 s also larger than H T 3l = -
=1

The author hypothesi;;d that

(ﬁ 22.2_i 1) nle < M,

i=1

for alln € N.



CHAPTER IV
HYERS-ULAM STABILITY OF FRECHET
FUNCTIONAL EQUATIONS ON CERTAIN

GROUPOIDS

In this chapter, let m > 1 be an integer, (G, o) be a power-associative, mth-power-
symmetric groupoid with a left identity e.

The Hyers-Ulam stability of the functional equation

and

A f(z) = 0. (1.5)

has been studied by many authors [2, 13, 20]. One of the most general results is

Theorem 2.14, which we restate below.

Theorem 4.1. 2| Letn € N, e e RY, and f : S — B. Then f satisfies

777777

for all x,hi, hs, ..., hot1 € S if and only if there exist A, A%,..., A" : S — B and

¢ € B such that each A' is a diagonalization of an i-additive function and
1 f(z —C—EZA’ )| < 2e

for all x € S. Furthermore, if S has an identity element O then

I1f (2 E:AZ ) <e
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forallz € S.

We will investigate the stability of eq. (1.4) and eq. (1.5) with a more general
domain for f. We adopt the concept of functions with noncommutative domain
from a work of Gilanyi[10]. He proved the Hyers-Ulam stability of the monomial

functional equation

nf (@) =nlf(h) (4.1)

when the domain of f is a power-associative, mth-power-symmetric (m > 1)
groupoid. Since eq. (4.1) and eq. (1.4) are closedly related, it could be speculated
that similar assumptions on the domain will also imply the stability of eq. (1.4).
However, power-associativity and power-symmetry are not sufficient for the
stability of eq. (1.4), as stated in the next example. Hence our main results also

assume the existence of a left identity element.

Example. Define o: N x N — N by

m if m<n
mon =
m—1 if m>n
for all m,n € N. [t is not hard to see that (N,o) is a power-associative, mth-

power-symmetric groupoid for all integer m > 1. We will show that eq. (1.4) is not

stable on this structure.

Define f : N — N by
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for all k € N. Then

AR b PR =

-----

Z (—1)"“7617627'"76"“]”(/{; oh{! oho---oh™)

n+1

€1,€2,..1, €n+1

(koh{! oho---0h™])

< -1 n+l—ej—ex—-—€pt1 n+1
T 6226 » (=1) (n+ 1)2n+1
< Z (_1)?’L+1—61—62—~~—6n+1 (k © hil ° h§2 ©---0 h:ﬁ:f) - k
= L (n+ 1)2n+1
k
+ -1 nt+l—el—e2——€nt1
o EQZ; » (=1) (n+ 1)2nt!
koh{oho---oh®) —k
< Z H( 1 2 n+1 ) H 10

(n + 1)2n+1

€1,€25.45 €n+1

for all x,hy, ha, ... hoiy € N. Since each ||(kohf' oh$?o---oh ") — k|| <n+1,

the above inequalities yield

AR o FR) < 1

-----

for all x,hy, ho, ... hyr1 € N.
Suppose that g : N — N such that AZ?}ZQ 77777 han(x) =0 forallx,hy,ho,... ,hys1 €
N. Then
0= AP f(k+1) = (—1)"(g(k + 1) — (k)

for all k € N. Hence g is a constant function and || f(k) — g(k)|| is not bounded.
So Fréchet functional equation (1.4) is not stable on this domain.
4.1 Stability of Nonsymmetric Fréchet Functional Equation

In this section, we will study the stability of eq. (1.4). Before we can solve the

problem, we need the following lemma.
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Lemma 4.2. Letn € N, e € R", and f : G — B satisfy

AR b F @) < €

for all x,hy, ho, ... h,r1 € G. Suppose that k € N such that the limit

. 1 ms
L(z) = Slirgo mskf(x )
exists for every x € G. Then
h s (%) =0

for all x,hy, ha,... hyr1 € G.

Proof. Given the assumptions,

[Avarr—C)

n+1

- >, (mprterereni(zo bt o b oo b

€1,€2,...,en+1€{0,1}

1 ¢ s
=l X (e dim o f((wo bt o b oo B )™)

s—00 M
€1,€2,,€n+1€{0,1}

— Sli)rgo Z (_1>n+1—€1—€2—...—6n+1 %f(xms o hilms o hgzms oo h:;rllms)
61,62,...,6n+1€{0,1}
1
= s}j_{go —7 Z (_1)n+1—61—62_"'_6n+1f(xms o (hTS)El o (h;ﬂs)@ 0.0 nmjl)ﬁnﬂ)

€1,€2,.,en+1€{0,1}

1
= lim AR e e SO
< lim —¢
5—+00 mSk
=0

for every z,hy, ha, ..., h, € G. Remind that z 0 4° := x and that (G, o) is m*th-

power-symmetric for every s € N. O
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Now we approach the problem by considering it on subsets of the domain of f.

In the following lemma, for each x € G, denote

G, ={2" | k € N}
and GY =G, U{e}.
Also denote Ny := N U {0}.

Lemma 4.3. Letn e N, e e RT, x € G, and [ : G — B satisfy

AR b £ (RO < €

77777

for all hy, hy, ... hoy1 € G, and all hg € GY. Then there exists ay, as, ..., a, € B
such that
£ (") = (f(e) + kay + k*as + -+ k"a,) || < €

for all k € N. Furthermore, aq,as, ..., a, are defined by

= Jim 7 (f -3 k) |
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for all £ € N. According to the assumptions,

[y A ChI |

kn+1

— Z (_1)7’L+1—61—62—-~.—€n+1F(k0 + €1k?1 + €2k2 4+ .. 4 €n+1kn+l)

€1,€2,..,€n+1€{0,1}

_ Z (_1)n+17517527"'76n+1f(:Ek0+€1k1+€2k2+"'+5n+lkn+l)

€1,€2,...,en+1€{0,1}

= Z (_1)n+1761*627---—6n+1f(:cko o xélkl o $62k2 0--+0 x€n+1kn+1>

€1,€2,...,én+1€{0,1}

. n+1

k
_“ xkl,mk2,..4,zkn+lf(x 0>||

<e€
for all ko,kl,kg, .. .7kn+1 € N and

1A% F(O)]

k1,k2,....knt1

- Z (—1)rHlmamem T Peky + €0k + -+ 4 €np1kng)

€1,€2,.,€n+1€{0,1}

— Z (_1)n+1—61—52_...—en+1f(6 o xélkl o xﬁzkg 0---0 $6n+1kn+1)

€1,€2,.,en+1€{0,1}

=A%, FE

<e

for all ki, ko, ..., knye1 € N. So ||AZT F(ko)|| < eforevery ko, k1, ks, ..., kns1 € Ny

k1,k2,. . kn41
(it equals to zero in the case one of the spans is zero).

By Theorem 2.14, There exist A, A%,..., A" : Ny — B such that each A’ is

the diagonalization of an i-additive function and

n

IE(k) = F(0) =) A'(R) < e

i=1
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for all k£ € Ny.
Let a; = A%(1) for each i € {1,2,...,n}. Theorem 2.11 implies that

1f(z XFMM—M’ }:WW
SGCEUUEPIEIE

<e€
for all k£ € Ng.
Proposition 2.15 yields
= lim P (F) = Jim ()
Un = 0 T b !\
ap—1 = lim (F(k) — k"a,) = lim (f(z") — k"ay)

1 S D k ~
a —]}LIEOE (F(k) —22/{@) —kll)rgoz (f(x )—Zkai>
as desired. [

The next theorem gives the main result of this section.

Theorem 4.4. Letn € N, e € RT, and f : G — B satisfy

.....

for all x, hy,ho,... hpy1 € G. Then there exists a unique function P : G — B
such that P(e) = 0,

If(z) = P(x) — fle)|| <€
for all x € G, and

AnH P(z) =0

hiha,...,npn41



for all x,hqy, ho, ..., hyr1 € G. Furthermore, P is defined by

P(z) = AY(x) + A%(z) + - + A™(2)

where
A"(2) = lim - [(a*)
A7) = Jim ol (1) - A7)
AMa) = Jim (f(rv’“) - ZA%:c’“))
forall z € G.

Proof. According to lemma 4.3, for each x € G, there exist a,1,a;2, .

such that

If(z) — f(e) — Z““” <e

and

k—oo k™
. k n
Qrn—-1 = klg{olo W(f(x ) —k (lzm)
ay; = lim 1 f(xk)—ikia ;
1 k—oo k 5 o

Define P, A', A%,... A" : G — B by A'(z) = a,; and
P(x) = A'(z) + A*(z) + - - + A™(z)

for all z € G.

It remains to show that

30

--aaac,neB



o A(z%) =Kla,, forallz € G, i € {1,2,...,n}, and k € N, and

P(z) =0 for all ,hqy,hs, ..., hyi1 € G.

3025000y n+1
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To show that A(2*) = kia,,; forallz € G, i € {1,2,...,n}, and k € N, we observe

that
An(xl> = Qg p

T 1 INk
= lim = f((@)")
_m 1 1 Lk
= i o @)
=1"ay,.

and

for all [ € N. It can be shown in similar way that
Al(z") = Klay

forallz € G,i€{1,2,...,n—2}, and k € N.

Next, we will show that Ap*)
32500y n+41

By the definition of A™ and Lemma 4.2,

AZT}W 77777 h o AM(@) =0

P(z) = 0 for all x, hy, ho, ...

st € G



for all x, hq, ho, ...

125 5,

.....

for all xZ, hl, hg, .

for all xZ, hl, hg, c

for all x, hl, h27 .

for all x, hy, ho, ...

o (f = AN @)1 =[1 A3,

32

,hn+1 € G. So

b L @I = 1A, AT @)

..........

<€

,hni1 € G. Using Lemma 4.2 again yields

s € G

For uniqueness of P, let P*: G — B be such that

for all x, hl, hg, ..

for all z € G.

. ha

€ (G and there exists ¢ such that

n+1

1£(@) = f(e) = P*(@)]| <6

Let z € G and remind that G, is a commutative semigroup. Observe that the

restriction f, of f on G, satisfies the assumption of Theorem 2.14. The restrictions
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P, of P and P} of P* also satisfy

hn_,_lpa:(y) - 0,
1f2(y) = fle) = Pu(y)l| < 2,
A b P (W) = 0,

----- n+l1- T

and || fa(y) — f(x) = Pi(y)[l <26

for all y, hy, ha, ..., hyt1 € G,. Proposition 2.16 then implies that P, = P, that
is, P(x) = Py(z) = Pi(x) = P*(x).
Since z is arbitrary, we can conclude that P = P*. O]

4.2 Stability of Symmetric Fréchet functional equation

The stability results of symmetric version of Fréchet functional equation,
Ayt f(z) =0,

have mainly been obtained by applying one of certain theorems, such as Djokovi¢’s
theorem(Theorem 3.1), Kuczma’s representation theorem (see Theorem 9.2 of [4]),
and our Theorem 3.6, to the stability results of eq. (1.4). However, we do not have
such a tool that is applicable for functions on noncommutative domain. Hence we

will proceed in a way that is analogous to the previous section.

Lemma 4.5. Letn € N, e € RT, and f : G — B satisfy
AR f(z)] < e

for all x,h € G. Suppose that k € N such that the limit
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exists for every x € G. Then
AML(z) =0

for all z,h € G.

Proof. We proceed as follows:

n+1 - TH-I —i n+1
|A L(x ||_”Z ; L(zohoho---oh)
i+0 i terms

n+1
_HZ n+l z( Z 1) lim —f((xOM/_@)ms)

s—o00 S
i+0

i terms

n+1
N 1 S S S S
= lim ”+1_’(n—|,— )f(a:m oh™ oh™ o---0h™)

5—00 mSk 7 ~~
i+0 i terms
n+1
_ n + 1 s s s s
= lim I g D ) f(@™ o™ o h™ 0.0 A™)
5—00 mSk 2 —~
++0 i terms
1 n+1
=l )
. 1
< lim €
s—o00 M5k

for all z, h € G. Remind that (G, o) is m*th-power-symmetric for every s € N. [

The next lemma allows us to use Lemma 4.3 in the main result of this section.

The definitions of G, and GY here are the same as in Lemma 4.3.

Lemma 4.6. Letn € N, e € RT, and f : G — B satisfy
AR f(z)] < e

for all x,h € G. Then, for each x € G,

n

n 2
||Ahj:]112 ,,,,, hn+1f(y)|| S (H 21 — 1> TL!E

=1

for all hy, hy, ... hyy1 € Gy and for all y € GY.
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Proof. Let x € GG. Define F': Ny — B by

for all £ € N. According to the assumptions,

n+1

Az Fl =1 3o (") Pl )

n+1 n + 1
13- "“l( )f@%“%n
n+1

1
S (M o tente ot

Vv
7 terms

=[| A% f ()]

=c
for all ko, k € N. Also,
1A F(0) Hﬁf e (") )
—u%f m1l(”+1)fu*n

nH n+1
I (M) seoatente ent)

TV
7 terms

=A% fe)l

= €

for all £ € N.
So ||APT F (k)| < € for every ko, k € Ny. Thus Theorem 3.6 yields

n 2
HAkj;z ----- n+1F(k0)H < H (2Z — 1> nle
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for all kg, k1, ks, ..., k, 1 € Ng. This implies

n = 9
HAhiflm ~~~~~ hn+lf<y)H < H (2i — 1) nle
=1

for all hy, hs, ..., h,11 € G, and y € GO. O
The next theorem completes the goal of this section.

Theorem 4.7. Letn € N, e € RY, and f : G — B satisfy
AR f(2)] < e

for all xt,h € G. Then there exists a unique function P : G — B such that
P(e) =0,

n

Hﬂw—P@»<ﬂmh;01%{1>me

i=1

for all x € G, and
AMIP(z) =0

for all x,h € G. Furthermore, P is defined by

P(x) = Al(w) + A2(z) + -+ A"(a)

where
A'(x) =1 L m
() = lim —— (™)
e 1 s s S
A l(x) :sli)rgo m(n—1)s (f(l’ ) —A (ZE ))
1 Lo .
Al =1 . msy Al (™
(v) = lim — (f (™) ; ( ))
for all x € G.

Proof. By to Lemmas 4.6 and 4.3, for each x € G, there exist a; 1,052, ...,0,, € B
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such that

and

1 k
en =0 3 F )
k n
R h_)Holo 1 (f(2") = K"az0)

Define P, A', A%,... A" : G — B by A'(z) = a,,; and
P(r) = A'(a) + A%(2) 4+ + A'(0)

for all z € G.

It is now sufficient to show that

o Al(z*) =FKla,,; forallz € G,i€{1,2,...,n}, and k € N, and

e A" P(z) =0 forall z,h € G.

The statement A’(2*) = k'a,; for all z € G, i € {1,2,...,n}, and k € N can
be shown in identical way as in Theorem 4.4, that is,

A = ap,

1 Ik
= lim 2 f((2)")
(")

={" lim

="azp.
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and

Al(‘rl) Ayl ;
_ Nk j
_kh—{{oloﬁ f((l’) ) - Z k]axl])
Jj=1+1
_ Ik i An( .0
= lim -5 (f((@)") = Z kK A™(a'))
Jj=i+1
1 i .
= "' lim f(zt®) — K la,
i - 3 e
= liax,Z

foralll € Nand all i € {1,2,...,n— 1}, given the procedure is done in descending
order.
Thus we will show that
AP P(z) =0

for all x, h € G. By the definition of A™ and Lemma 4.5,
A A™M(2) =0
for all z, h € G. So

1AL = A (@) =12 f (@) = A A" (@)l

<e€
for all z € G. Lemma 4.5 again implies
AZ+1An_1($) =0

for all x,h € G. Applying Lemma 4.5 recursively yields

AT AN (z) =0
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for all x,h € G and for i € {1,2,...,n}. Hence

ARFUP(x) =APT (A + AP 4 AY)(2)
=0

for all z,h € G.
For uniqueness of P, let P*: G — B be such that

for all =, hy, ho,..., hy, ., € G and there exists § such that

1f () = fle) = Pr(x)| <0

for all x € G.
Let x € GG and remind that GG, is a commutative semigroup under the restriction
of o on G, x G.. Observe that the restriction f, of f on GG, satisfies the assumption

of Theorem 3.7. Similarly, the restrictions P, of P and P; of P* on G, also satisfy

An—i—lpz(y) =0

1£:(v) — £(e) — Po(w)]| <2 (H s ) nle

=1

AT (y) = 0

and [[£,(y) — f(z) = P2(y)]| <2 (H o 1) nld

for all y € G,. Since P, is unique, P(z) = P,(z) = P}(z) = P*(z).

Since x is arbitrary, we can conclude that P = P*. O
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