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There is a number of different methods to calculate Hawking radiation and

Hawking temperature. Each method has its own slightly different interpretation of

the emitted radiation. However, every method yields the same expression for the

Hawking temperature under some approximation limits (T = ~c3/8πGMkB in 4

dimensions). In this work, we will explore four of these methods, starting with the

oldest derivation of Hawking radiation i.e., Unruh effect where the ground state

or vacuum state of an observer free falling into a black hole becomes a radiation

ensemble at fixed temperature for a distant observer. Hawking radiation is then

being considered as a radiation composed of virtual particle escaping from vicinity

of the horizon region via the quantum tunneling effect. Then, we derive Hawk-

ing radiation by utilizing various forms of uncertainty principle. A momentum

uncertainty of virtual particles emerging near the horizon gives us the energy of

the emitted particle which leads to the temperature of the radiation emitted from

the black hole. Additionally, implications of various mass scales to the black hole

evaporation process and the possibility of black hole stops radiating and becomes

a remnant are being considered. The entropy of black hole remnant is found to

be proportional to the surface area of the horizon in unit of the Planck area, a

characteristic of holography. This statement holds even when the uncertainty re-

lation is modified to the Minimum Length Uncertainty Relations (MLURs) and

extended to arbitrary non-compact D-dimension. However, the entropy of black

hole subjugated by MLURs possesses holography only at large mass and remnant

limit. Lastly, Hawking radiation will be formulated as a cancellation term to the

Einstein anomaly preserving the consistency of quantum field theory around the

horizon region. We will also briefly discuss the potential solutions of information

loss paradox from each method.
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Chapter I

Introduction

Hawking radiation is thermal radiation emitted from an event horizon of a

black hole. We used to believe that every black hole has zero temperature. Since

black hole has such an extreme gravitational pull that any thermal radiation from

the black hole would simply be consumed back, effectively the black hole would

have zero temperature. However, in 1974, a new mechanism that would allow the

event horizon of the black hole to radiate thermal radiation was discovered by

Stephen Hawking [1].

Although there are many methods of calculating Hawking radiation, most

methods rely on the same physical interpretation; many pairs of virtual particles

emerge near the event horizon. A single particle from each pair falls into the black

hole while its partner escapes from the vicinity of the outer region of horizon and

becomes a real particle. More detail may vary between each method.

Most methods agree that Hawking radiation is composed of completely ran-

dom and featureless sub-atomic particles. The only differences between each black

hole are its mass, angular momentum and electric charge. As a black hole grad-

ually loses its mass over time via Hawking radiation, any information contained

within the black hole will be lost forever. This process is called ‘black hole evap-

oration process’. The loss of information in the black hole evaporation process is

very problematic. According to the quantum mechanics, if we have a complete

information of an isolated system at any given time, we will be able to correctly

predict the state of that system at any other time. The time evolution of state

is determined via a unitary operator. This property in the quantum mechanics is

called ‘unitarity’. It implies that the information of system must be conserved.

If black holes are capable of destroying any information, then the ‘law of con-

servation of information’ would be broken. The violation of unitarity due to the

quantum-gravity effect at the event horizon leads to a possibility of pure state

evolving into a mixed state. However, such an evolution is impossible in the quan-

tum mechanics. As such, we have a paradox which is called ‘information loss
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paradox’. The paradox represents an inconsistency between general relativity and

quantum mechanics. If the paradox can be resolved, it will be a good step toward

the complete quantum gravity theory which is the reason why many physicists are

interested in the paradox.

In quantum mechanics, there is a very important matrix called the S-matrix.

This matrix describes the interaction between elementary particles. The determi-

nation of component in S-matrix relies heavily on the unitarity. Without the

unitarity property, all known interactions in the quantum mechanics are in jeop-

ardy. The unitarity breaking in the quantum mechanics was proposed in 1982 by

Stephen Hawking. In order to describe interactions of elementary particle without

the unitarity, a new $-matrix was proposed [2]. However, the new matrix predicts

that quantum fluctuation in an empty space is capable of producing virtual mi-

croscopic black holes. The prediction implies that any empty space is capable of

generating an incredible amount of heat in a fraction of second via the quantum

fluctuation [3]. In order to preserve the unitarity in quantum mechanics, ’t Hooft

and Susskind had proposed a solution which states that the information of an in-

falling object would be scrambled and stored at the event horizon. Once a Hawking

radiation particle is radiated from the horizon, it carries away some information

stored on the horizon [4]. The idea that informations of any three-dimensional sys-

tem are being stored on two-dimensional surface is called ‘Holographic Principle’

or ‘Holography’.

There are three main types of black holes. The first one is a black hole

without an angular momentum and possess a neutral electric charge. This type

of black hole is called ‘Schwarzschild black hole’. The second type is a black hole

with a non-zero angular momentum, but with a neutral electric charge. This type

is called ‘Kerr black hole’. The third type is a black hole with a non-neutral

electric charge, but with a zero angular momentum. This type is called ‘Reissner-

Nordstrom black hole’. The temperature of a Schwarzschild black hole in asymp-

toticly flat 4-dimensional spacetime is known to inversely proportional to the black

hole mass. If a Schwarzschild black hole is colder than its ambient environment,

it will absorb more energy than it radiates. The process increases the mass of

the black hole. As a result, the black hole becomes colder, moving away from the

thermal equilibrium. However, even if a black hole had consumed all masses in

the universe, the black hole will have a very low, but non zero kelvin temperature.

This fact is in accordance with the third law of black hole thermodynamics. On

the other hand, if the black hole is hotter than its ambient environment, then the
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opposite is true. The black hole will keep getting hotter and radiating away its

mass in the process which might lead to a complete evaporation. These facts also

hold for all known types of black hole.

The possibility of black hole destroying information via the evaporation pro-

cess is the main reason why the information loss paradox is a very glaring problem

in the quantum mechanics. Supposed black holes are in very stable final states.

All informations that being consumed by black holes are stored within black holes

forever. Even if we are unable to retrieve any information from black holes, the

total information of our universe is still conserved. One possible solution to the

paradox is the black hole remnant whereby every black hole will not undergo the

complete evaporation process, but rather leaves behind a remnant. Even though

we cannot retrieve any information from the remnant, the information would still

be stored somewhere and thus preserves total information. Another possible solu-

tion is that Hawking radiation is not a featureless and completely random radiation

i.e., Hawking radiation is not blackbody thermal radiation. In other words, the

differences between each black hole are not merely its mass, angular momentum

and electric charge. Here, the resolution of the paradox is rather straightforward

[7].

In this thesis, we will generally use natural unit (G = c = ~ = kB = 1)

unless states otherwise.

1.1 Properties of Black Hole

The following properties and components are unique to black holes. They will be

referred throughout this thesis.

Singularity: An infinitely dense point mass locates at the center of every

black hole where geodesic ends and spacetime curvature becomes infinite. Some

theories suggest that the singularity contains all masses of the black hole. For a

Schwarzschild black hole (no charge and non-rotating), according to these theories,

all infalling masses would form a point mass with infinite density [1]. However,

there are other theories suggest otherwise [21]. Since it is impossible to observe

any event beyond the horizon, the existence of singularity is open for conjecture.

It is possible to avoid arriving the singularity of a Kerr or Reissner-Nordstrom

black hole. However, once an infalling object crosses the event horizon, even if it

escapes the singularity, it will emerge into a completely different universe. The
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aforementioned phenomenon implies the possibility of using black holes as worm-

holes to the parallel universe [1].

At the singularity, all known theories break down and no longer valid since

the quantum effects and gravitational effects become equally important [5]. Al-

though there have been many attempts to formulate a theory of quantum gravity,

such a theory is still far from completion.

Event Horizon: A surface enveloping every black hole. A Light travels

away from the black hole in a radial direction is trapped on this surface; unable

to leave the surface in either away from or into the singularity direction.

If we drop an object into a black hole, that object will appear to be moving

slower as it reaches the event horizon; effectively, it would take an infinite amount

of time to actually touch the event horizon. Additionally due to gravitational red-

shift, the infalling object will appear to be redder in color and dimmer. However,

if we are falling into a black hole, we will be unable to know whether or not we

pass the event horizon. In other words, we will be unable to perceive the existence

of event horizon and simply fall pass the horizon [1]. The aforementioned phe-

nomenon stems from the fact that every event horizon locates at the ‘coordinate

singularity’ which is a type of singularity emerging from a poor choice of coordi-

nates. This type of singularity is removable by simply using better coordinates

such as ‘Painleve coordinates’ [8].

As an example, we will find the location of event horizon for a Schwarzschild

black hole whose horizon is in a perfect spherical shape. Let us start with

Schwarzschild metric,

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ2.

By setting ds = 0 for the light worldline and dΩ = 0 for the light travels in radial

direction, the light worldline becomes,(
1− 2M

r

)2

dt2 = dr2.

By being ‘trapped’ on the horizon, the light stays at the same location forever.

That is, dr → 0 and dt→∞, which implies that, r = 2M . This resultant radius

is called ‘Schwarzschild radius’ (RS). Although the definition of this surface is

drastically difference from a conventional surface of any other astronomical object,

it is, nevertheless, regarded as a surface of Schwarzschild black hole.
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Surface Gravity (κ): Generally, surface gravity of an astronomical

object is an acceleration of testing body at the surface of interested object. How-

ever, every black hole processes an infinitely high gravitational pull, it is only

natural that every black hole has an infinite gravitational acceleration. Thus, a

renormalized surface gravity is used, instead. This renormalized surface gravity

is an acceleration of infalling object perceived by an observer whose location has

sufficient distance from the black hole such that gravitational pull is negligible.

For a Schwarzschild black hole, we can calculate the surface gravity by mul-

tiply an acceleration of infalling object at the very moment it passes the event

horizon with the gravitational redshift of interested black hole to obtain,

κ =
1

4M
,

where M is the mass of black hole [1]. The above parameter is regarded as a

gravitational constant for the Schwarzschild black hole.

Entropy: Every object with a non-zero temperature must possesses an

amount of entropy. As such, every black hole must has a non-zero entropy. How-

ever, before the discovery of Hawking radiation, we believed that every black hole

have zero temperature and entropy. This property proves to be problematic, as

every matter being consumed by any black hole must possess some amount of

entropy. If every black hole truly processes a zero entropy, then it is possible to

decrease the total entropy of the universe by simply allowing some amount of en-

tropy to be consumed by any black hole. Even now after the discovery of Hawking

radiation and temperature, the entropy of black hole is quite unusual.

In order to find the entropy of black hole, we start with the following equa-

tion,

dS =
dQ

T
.

Due to the immense gravitation of black hole, all heat energies that enter is stored

as masses. It will be shown later on that the temperature of Schwarzschild black

hole is equal to 1/8πM . For now, the aforementioned fact is used to find that the

entropy of black hole is,

dS = 8πMdM = d(4πM2),

S = 4πM2 = πR2
S =

A

4
,

where A is a surface area of the event horizon. The above equation tells us that the

entropy of black hole is stored on the event horizon surface, not volume. According
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to the statistical mechanics, the entropy and the information of a system is highly

related to each other. The aforementioned equation shows a characteristic of

holography in the Schwarzschild black hole which roughly states that a complete

information of system is being encoded on the boundary of that system.

1.2 Motivation and Thesis Outline

The purpose of this work is to explore the derivation of Hawking radiation from

four different methods. Each method will present a unique physical interpretation

of the radiation. Although each method presents a different emergence of the ra-

diation, the resultant temperature is widely accepted to be equal to, T ∼ 1/2πM .

While every method relies on the same basis mechanics (Hawking radiation is

composed of escaped virtual particles), each method still needs another mechanics

to function properly. The fact that supplementary mechanics has no baring on

the final result is rather intriguing.

Additionally, new mass scales have been discovered. This new mass scale

seems to have an implication on black hole evaporation process and the existence

of black hole remnant.

In the next chapter, Hawking radiation will be derived by utilizing Unruh

effect phenomenon where ground state of accelerated observer becomes a thermal

ensemble for an inertial observer. In chapter three, a virtual particle is found to

be able to escape from the vicinity of the horizon region via quantum tunneling

effect. This phenomenon leads to an emergence of hawking radiation. The temper-

ature of Reissner-Nordstrom black hole will be calculated as well. In chapter four,

various uncertainty principles will also be utilized to calculate Hawking tempera-

ture. New mass scales and their implication on black hole evaporation process will

also be considered. Additionally, black hole lifetime and existence of black hole

remnant will be explored. We have also found that the remnant from a MLUR

type of black hole possesses the holography in arbitrary D-dimension. Lastly, in

chapter five, Hawking radiation will be derived as a cancellation phenomenon of

the gravitational anomaly. In addition, a potential solution to the information

loss paradox from each method will be considered.



Chapter II

Unruh Effect

According to the special relativity, we know that the maximum speed of

every object is the speed of light in vacuum. As a massive object undergoes a

constant acceleration process, its speed becomes closer and closer to the speed of

light in vacuum, but never reaches the ultimate speed. If we plotted the geodesic

of that accelerated object, it will appear to be a hyperbola curve in spacetime

diagram with light-like geodesic as its asymptotic line (as shown in Figure 2.1).

Any event occurring in a region with time coordinate higher than the asymptotic

line (Region A) cannot send any physical signal to the accelerated object. Nat-

urally, if the object stopped accelerating, it will cross the asymptotic line and

perceives those event. Because of this reason, the accelerated object perceives an

apparent event horizon. This horizon is called a ‘Rindler horizon’. Due to an effect

where a ground state of inertial observer appears to be a thermal equilibrium state

for an accelerated observer, this horizon is known to radiate thermal radiation.

The aforementioned effect is called ‘Unruh Effect’.

The physical interpretation of Unruh effect is as follows; the ground state

of inertial observer contains many virtual particles. However, as another observer

undergoes constant acceleration process, observes this ground state he or she is

only able to observed some of the virtual particle due to the existence of apparent

horizon. If a pair of virtual particles emerges at the vicinity of apparent horizon

region, it is possible that a single virtual particle from the pair will cross the

apparent horizon and ‘lost’ to the accelerated observer. Thus, the accelerated

observer perceives the ground state of inertial observer to be a thermal equilibrium

state.

The Rindler horizon is quite similar to the event horizon of black hole, albeit

some physical differences (we will address later on). The Unruh temperature is

proportional to the acceleration of constant accelerated observer. The proper

acceleration of every object free falling into the black hole is equal to the surface

gravity of black hole. By setting the acceleration of constant acceleration observer



8

Figure 2.1: Space time diagram of constant acceleration observers (Rindler space).

equal to the surface gravity of black hole, the Unruh effect can be utilized to

calculate Hawking radiation.

This method is one of the very first derivations of Hawking radiation. In

this method, we utilize two observers. One observer is free falling into the black

hole. For this observer, he or she will not be able to perceive the existence of black

hole via gravitational pull or any physical experiment. The observer is also unable

to perceive the existence of event horizon. In his or her view, all virtual particles

emerge and completely destroy each other which makes his ground state well de-

fined. Another observer is located far away sufficiently for any gravitational effect

to be negligible. Once this ‘distant’ observer observes the ground state of ‘free

falling’ observer, he or she will perceive a thermal radiation of perfect blackbody.

This radiation is Hawking radiation. We will identify a temperature of black-

body which radiates the same amount of thermal radiation as the temperature of

black hole [1].

For simplicity, we can assume that both observer and black hole are all

aligning on the same straight line without losing generality. This assumption

reduces our spacetime to 1+1 dimensional spacetime. For the free falling observer,

he or she lives in a Minkowski spacetime whose metric is,

ds2 = −dt2 + dx2.
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Since he or she is free falling into the black hole, he or she has constant acceleration.

The worldline of a constant acceleration object is,

t(τ) =
1

α
sinh(ατ), (2.1a)

x(τ) =
1

α
cosh(ατ), (2.1b)

where τ is a proper time of free falling observer.

We will verify that this worldline has constant acceleration. The proper

acceleration of any object is,

aµ =
d2

dτ 2
xµ.

From the above equation, we find the acceleration of free falling observer to be,

at = α sinh(ατ),

ax = α cosh(ατ).

Hence, the total acceleration of free falling observer is,√
aµaµ =

√
−α2 sinh2(ατ) + α2 cosh2(ατ) = α.

The above equation clearly shows that the proper acceleration of the aforemen-

tioned worldline is, indeed, constant.

We will now construct new coordinates (η, ξ),

t(η, ξ) =
1

a
eaξ sinh(aη), (2.3a)

x(η, ξ) =
1

a
eaξ cosh(aη). (2.3b)

The reason for establishment of these new coordinates (η, ξ) is to take account

of free falling observers with different initial condition. η will act as though it is

the proper time of each observer while ξ contains the initial position of free falling

observer. By reversing time, the free falling observers with a different non-zero

velocity become zero-velocity observers whose initial position is difference. Hence,

only ξ is needed to describe every possible free falling observer.

However, these coordinates only describe observers traveling to the posi-

tive direction of x-axis. In order to describe observers traveling to the negative

direction of x-axis, we add negative signs on both x and t.

By comparing (2.1) and (2.3), we obtain the following relations,

η(τ) =
α

a
τ, (2.4a)

ξ(τ) =
1

a
log
( a
α

)
. (2.4b)
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From the above relations, a new metric in these new coordinates is found to be as

follows,

ds2 = −dt2 + dx2,

= −e2aξ sinh2(aη)dξ2 − e2aξ cosh2(aη)dη2 − 2e2aξ sinh(aη) cosh(aη)dξdη

+e2aξ cosh2(aη)dξ2 + e2aξ sinh2(aη)dη2 + 2e2aξ sinh(aη) cosh(aη)dξdη,

= e2aξ(−dη2 + dξ2).

The redshift factor in terms of these new coordinates is,

V =
√
| g00 | = eaξ.

We can calculate the surface gravity in these new coordinates from the redshift

factor by the following equation [1],

κ =
√
∇µV∇µV =

√
∂µV ∂µV = a. (2.5)

Take note that this property is independent of (η, ξ) which implies that the black

hole has a constant surface gravity regardless of which coordinate we use. These

new coordinates that we just finish constructed are belonged to the spacetime

called Rindler Space (See Figure 2.1[6]). These coordinates are used by the free

falling observer while the distant observer use (t, x)-coordinates.

Annihilation/creation operators for both observer will now be constructed.

Considering virtual particles emerge near the event horizon, any particle that

capable of escaping from the black hole at the vicinity of event horizon region

must be traveling at near light speed. Thus, we may assume massless condition.

Massless scalar field is,

�φ = e−2aξ(−∂2
η + ∂2

ξ )φ = 0,

with the following plane wave solutions,

gk =
1√
4πω

e±iωη+ikξ. (2.6)

The scalar field can be written as,

φ =

∫
dk(b̂

(1)
k g

(1)
k + b̂

(1)†
k g

(1)∗
k + b̂

(2)
k g

(2)
k + b̂

(2)†
k g

(2)∗
k ),

where b̂k and b̂†k are annihilation and creation operators respectively. These oper-

ators must have the following properties,

(g
(i)
k1
, g

(j)
k2

) = δijδ(k1 − k2), (2.7a)

b̂
(i)
k | 0R〉 = 0, (2.7b)
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where | 0R〉 is a ground state of free falling observer.

For g
(1)
k which travels to the positive direction of x-axis, we have relationships

between (t, x)-coordinates and (η, ξ)-coordinates as follows,

e−a(η−ξ) = a(x− t), (2.8a)

ea(η+ξ)) = a(x+ t). (2.8b)

Likewise, for g
(2)
k which travels to the negative direction of x-axis, we have the

relationships between (t, x)-coordinates and (η, ξ)-coordinates as follows,

e−a(η−ξ) = −a(x− t), (2.9a)

ea(η+ξ)) = −a(x+ t). (2.9b)

With above relations, we can now find annihilation/creation operators of distant

observer in terms of operator from the free falling observer. Firstly, the plane wave

solutions of free falling observer is needed to be described in (t, x)-coordinates,

√
4πωg

(1)
k = e−iωη+ikξ = e−iω(η−ξ) = aiω/a(−t+ x)iω/a. (2.10)

However, as g
(2)
k is being described in (t, x)-coordinates, it becomes,

√
4πωg

(2)
k = a−iω/a(−t− x)−iω/a.

The above form does not compatible with our previous form of g
(1)
k . In order to

express g
(2)
k in a form that compatible with that of g

(1)
k , considering g

(2)∗
−k ,

√
4πωg

(2)∗
−k = e−iωη+ikξ = aiω/a(t− x)iω/a.

The above form seems to be compatible with our form of g
(1)
k . However, further

modification is needed,

√
4πωg

(2)∗
−k = aiω/a(−1)iω/a(−t+ x)iω/a,

= aiω/aeiπ/a(−t+ x)iω/a,
√

4πωe−iπ/ag
(2)∗
−k = aiω/a(−t+ x)iω/a. (2.11)

These results are now perfectly compatible. (2.10) and (2.11) are combined to

obtain,
√
πω(g

(1)
k + e−iπ/ag

(2)∗
−k ) = aiω/a(−t+ x)iω/a.

With the above equation, we can now find plane wave solutions of the distant

observer (whose coordinates are (t, x)) in terms of plane wave solutions of the

free falling observer (g
(1)
k and g

(2)
k ). To simplify the relation, a factor eπω/2a is
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multiplied into the afore mentioned equation. Moreover, in order to preserve

orthogonal property (h
(i)
k1
, h

(j)
k2

) = δijδ(k1 − k2), a factor 1√
2 sinh(πωa )

is also needed.

Thus we get,

h
(1)
k =

1√
2 sinh

(
πω
a

)(eπω/2ag
(1)
k + e−πω/2ag

(2)∗
−k ), (2.12a)

h
(2)
k =

1√
2 sinh

(
πω
a

)(eπω/2ag
(2)
k + e−πω/2ag

(1)∗
−k ). (2.12b)

Additionally the massless scalar field for distant observer is known to be,

φ =

∫
dk(ĉ

(1)
k h

(1)
k + ĉ

(1)†
k h

(1)∗
k + ĉ

(2)
k h

(2)
k + ĉ

(2)†
k h

(2)∗
k ).

By utilizing Bogolubov transformation, the relationship between operators from

both observer is found to be,

ĉ
(1)
k =

1√
2 sinh

(
πω
a

)(eπω/2ab̂
(1)
k + e−πω/2ab̂

(2)†
−k ), (2.13a)

ĉ
(2)
k =

1√
2 sinh

(
πω
a

)(eπω/2ab̂
(2)
k + e−πω/2ab̂

(1)†
−k ). (2.13b)

With these relations, it is possible to calculate the number of particles that the

distant observer perceives on the ground state of free falling observer,

〈0R | n̂(1)(k) | 0R〉 = 〈0R | ĉ(1)†
k ĉ

(1)
k | 0R〉,

=
e−πω/a

2 sinh
(
πω
a

)〈0R | b̂(1)
k b̂

(1)†
k | 0R〉,

=
e−πω/a

2 sinh
(
πω
a

)δ(0),

=
1

e2πω/a − 1
δ(0).

By comparing the above result with the Planck spectrum, the above result is found

to be thermal radiation of a perfect blackbody with temperature of a
2π

. From (2.5),

it is clear that,

T =
κ

2π
. (2.14)

Note that, there is a δ(0) in our result because we did not normalize our plane

wave solutions. this factor can be considered as a normalizing factor which does

not affect our final result. Additionally, the Unruh temperature is observed by a

constant acceleration observer which means the Unruh temperature should stem

from the number of particle a constant acceleration observer (free falling observer)

observes on the ground state of the inertial observer (distant observer). However in
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general relativity, it is the free falling observer who is actually the inertial observer.

The acceleration of free falling observer stems from the curvature of spacetime not

force. The distant observer, on the other hand, has a constant acceleration to

the opposite direction of the black hole. The distant observer needs this constant

acceleration in order to maintain his or her position. Interestingly, we can calculate

the temperature an inertial observer perceives on the ground state of accelerated

observer. The resultant temperature is the same which means the inertial observer

must also perceive a thermal radiation ensemble of the same temperature from the

ground state of accelerated observer.

This method is relatively simpler than other methods. However, the method

only shows us that the ground state of constant acceleration observer would appear

to be warm thermal radiation for the distant observer. In other words, any observer

subjugated to a constant acceleration from any astronomical object would give us

a similar result. Arguably, any astronomical object is capable of emitting some

form of Hawking radiation. However, this radiation would only be observable by

an inertial observer. The lack of distinction between which observer is able to

observe the radiation needs further investigation. Each observer will be able to

observe the radiation from the ground state of other observer. They, of course,

observe their own ground state to be void of any real particle. As such, we need

to establish which ground state is the background. In other words, as the observer

tries to measure the temperature of his or her surrounding which ground state is

being observed. For Unruh effect where both observer are in Minkowski space,

the ground state of inertial observer is the background, which means that only

accelerated observer is able to perceive the Unruh temperature. This result is

only natural since the accelerated observer is one who perceives the apparent

event horizon. For the case of an observer free falling into the black hole, however,

the ground state of apparent acceleration observer (free falling observer) is the

background. As stated earlier, the ground state of free falling observer is voided

of event horizon and well defined. Additionally according to the general relativity,

the free falling observer is an inertial observer. If we assume that the ground state

of free falling observer is the background, then only distant observer is able to

perceive Hawking temperature. Naturally, this assumption gives us a result in

agreement with what we expect to happen; Hawking radiation is observable by

our equipments located far away from the black hole.

The weakness of this method is that it does not reflect any quantum gravity

nature of Hawking radiation. We derived this result in flat space background. This
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flat space assumption works because for the free falling observer, the spacetime is

flat. As for the distant observer, the gravitational effect of black hole is negligible.

As a result, we have completely ignored the gravitational nature of black hole.

While the quantum nature of Hawking radiation is shown in this method, it does

not seem to be working in combination with gravity. As we will be shown in other

methods, Hawking radiation needs both quantum and gravitational effect in order

to work properly. Nevertheless, this method shows us the possibility of Hawking

radiation emitted from the event horizon.

This method have given us a very important message; if an observer per-

ceives an event horizon i.e., a region where any physical signal within cannot

be perceived by the observer, then that horizon will emit thermal radiation, but

only observable by particular observers who share the same horizon. Even though

Rindler horizon is emerged from the acceleration and black hole horizon is emerged

from the curvature in spacetime, the origin of horizon itself have little to no effect

on the calculation. As such, any form of event horizon is capable of radiating

thermal radiation.



Chapter III

Quantum Tunneling

According to the previous chapter, Hawking radiation seems to be perfect

blackbody thermal radiation which means the radiation only depends on mass,

angular momentum and electric charge of black holes. This fact is rather prob-

lematic. As a black hole undergoes a complete evaporation process, this process

can be regarded as the black hole becomes thermal radiation. All information

contained within the black hole except information about its mass, angular mo-

mentum and electric charge, will be lost forever. In an attempt to resolve this issue,

another theory proposes that Hawking radiation is stemmed from quantum tun-

neling effect. According to this theory, Hawking radiation has statistical nature.

In other words, only average of Hawking radiation spectrum satisfies blackbody

radiation. As such, it is now possible for Hawking radiation particle to carry some

information of the black hole and potentially solve information loss paradox.

In this method, we will be working at region near the event horizon. As a

pair of virtual particles emerges near the horizon, there is a chance that quantum

tunneling effect will separate the pair, leaving one particle outside the horizon

and the other particle inside (If the pair of virtual particles emerges outside the

horizon, one of the virtual particles will tunnel across the horizon into the black

hole. If the pair emerges inside the horizon, one of the particles will tunnel across

the horizon away from the black hole). The infalling particle is usually anti-

particle. By absorbing these particles, black hole loses some of its mass equal to

the mass of escaping particles, effectively conserves total mass. Thus, the rate

by which a particle tunnels away from a black hole is equal to decay rate of the

black hole (Γ). As such, it is the possibility of lowering mass of the black hole

that drives the evaporation process which supports an idea in quantum gravity

that every black hole is in a highly excited states [7].

Since we are going to work in an area around the horizon, it is necessary to

eliminate the coordinate singularity at the horizon. The singularity is removed by
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introducing a new time coordinate,

t = ts + 2
√

2Mr + 2M log

√
r −
√

2M
√
r +
√

2M
,

where ts is the Schwarzschild time [8].

With these new coordinates, our line element becomes,

dt = dts +

√
2M

r
dr +

M√
r

(
1

√
r −
√

2M
− 1
√
r +
√

2M

)
dr,

= dts +

√
2M

r
dr +

2M
√

2M√
r(r − 2M)

dr,

= dts +

√
2M

r

(
1− 2M

r

)−1

dr.

∴ dts = dt−
√

2M

r

(
1− 2M

r

)−1

dr.

For simplicity, all particles are assumed to travel in radial direction. This assump-

tion is possible because every particle whose position is at the near horizon region

must travel in almost perfect radial direction in order to avoid being pulled into

the black hole. In addition, as particles are tunneling across the horizon, it will not

emerge far from its original position. As such, even if the particles do not cross the

horizon in the radial direction, the deviation is negligible. With this assumption,

the r2dΩ2 term is omitted. The new metric under these new coordinates is,

ds2 =

(
1− 2M

r

)(
dt−

√
2M

r

(
1− 2M

r

)−1

dr

)2

−
(

1− 2M

r

)−1

dr2,

=

(
1− 2M

r

)
dt2 − 2

√
2M

r
dtdr +

2M

r

(
1− 2M

r

)−1

dr2 −
(

1− 2M

r

)−1

dr2.

Hence, our new line element is,

ds2 =

(
1− 2M

r

)
dt2 − 2

√
2M

r
dtdr − dr2 − r2dΩ2. (3.1)

These new coordinates are called Painleve coordination.

For any particle to escape a black hole from the vicinity of horizon region, it

must be travel at the near light speed in radial direction. Thus, we assume ds = 0,

0 = ds2 =

(
1− 2M

r

)
dt2 − 2

√
2M

r
dtdr − dr2,

=

((
1−

√
2M

r

)
dt− dr

)((
1 +

√
2M

r

)
dt+ dr

)
.

∴
dr

dt
= ±1−

√
2M

r
.
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The positive sign in the above equation represents geodesic of the outgoing particle

and the negative sign represents geodesic of the ingoing particle.

The above equation will be modified to account for self-gravitational effect

of escaping particles. Let the outgoing particle (normal particle) possesses energy

of ‘ω’ whilst the ingoing particle (anti-particle) possesses energy of ‘−ω’. By

regrading virtual particles as two mass shells of energy, outgoing particle perceives

the black hole with a mass of M − ω while ingoing particle perceives the universe

under an influent of mass M + ω [9].

Firstly, considering the case of outgoing particle,

dr

dt
= 1−

√
2(M − ω)

r
. (3.2)

By using WKB approximation, the imaginary part of action (ImS) of an outgoing

particle as it crosses the horizon is,

ImS = Im

∫ rout

rin

prdr = Im

∫ rout

rin

∫ pr

0

dp′rdr.

According to the Hamilton’s equation,

H = prṙ − L.

∴ ṙ =
dH

dpr
.

From the above equation, we can change variable from a momentum to an energy.

Since all energies of black hole are in the form of mass, integration limits are initial

mass and final mass. Additionally, H = M − ω′, which leads us to, dH = −dω′.
By using dpr = dH

ṙ
, the imaginary part of action can be modified into the following

form,

Im

∫ rout

rin

∫ pr

0

dp′rdr = Im

∫ rout

rin

∫ M−ω

M

dH

ṙ
dr,

= Im

∫ +ω

0

∫ rout

rin

(
1−

√
2(M − ω′)

r

)−1

dr(−dω′).

At the last step, we were using (3.2). For simplicity, the term,
∫ (

1−
√

2(M−ω′)
r

)−1

dr,

will be calculated first.

Before a black hole absorbs anti-particle of energy (−ω), mass of the black

hole was M . After the absorption, mass of the black hole becomes (M−ω). Hence,

rin (the horizon radius before the absorption) is 2M while rout (the horizon radius

after the absorption) is 2(M − ω). This fact leads us to a relation, rin > rout.
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Additionally, there must be some value of r between rin and rout which satisfies,

1−
√

2(M−ω′)
r

= 0. Let ro denotes such value.

From Cauchy’s integral formula,

2πif(a) =

∮
f(z)

z − a
dz.

However, our integration is on a straight line or half of a close contour,

πif(a) =

∫ a+ε

a−ε

f(z)

z − a
dz.

Applied the above formula, our
∫ rin
rout

(
1−

√
2(M−ω′)

r

)−1

dr term becomes,

= Im

∫ ro−ε

rout

(
1−

√
2(M − ω′)

r

)−1

dr + Im

∫ ro+ε

ro−ε

(
1−

√
2(M − ω′)

r

)−1

dr

+Im

∫ rin

ro+ε

(
1−

√
2(M − ω′)

r

)−1

dr,

= Im

∫ ro+ε

ro−ε

(
1−

√
2(M − ω′)

r

)−1

dr.

The first and third terms contain no singularity. Even though we did not fully cal-

culate these terms, we know that the results must be real numbers. A new variable,

r′ = r
2(M−ω′)

, is needed to further solve our integration. Applied this variable into

our integration term, the second term, Im
∫ ro+ε
ro−ε

(
1−

√
2(M−ω′)

r

)−1

dr, becomes,

I = 2(M − ω′)Im
∫ 1+ε

1−ε

(
1− 1√

r′

)−1

dr′,

= 2(M − ω′)Im
∫ 1+ε

1−ε

√
r′dr′√
r′ − 1

,

= 2(M − ω′)Im
∫ 1+ε

1−ε

√
r′(
√
r′ + 1)dr′

r′ − 1
,

= 4π(M − ω′). (3.3)

Therefore, the imaginary part of our action is,

ImS = Im

∫ +ω

0

∫ rin

rout

(
1−

√
2(M − ω′)

r

)−1

drdω′,

= 4π

∫ +ω

0

(M − ω′)dω′,

= 4πω
(
M − ω

2

)
. (3.4)
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However, the above result is only from the case where a particle is tunneling away

from the black hole. Another result from a case where an anti-particle is tunneling

into the black hole must also be calculated.

In this case, we consider a particle which travels back in time. According

to (3.1), the time reversal will only result in,
√

2M
r
→ −

√
2M
r

, which changes (3.2)

into, ṙ = ±1 +
√

2M
r

. Additionally, for an anti-particle, the universe will be under

the influence of mass M+ω. While the Hamiltonian’s equation is still, H = M−ω,

this equation is modified into, H = M +ω′, where ω′ ranges from 0 to −ω. Hence,

the imaginary part of action for the anti-particle is,

ImS = Im

∫ −ω
0

∫ rin

rout

(
−1 +

√
2(M + ω′)

r

)−1

drdω′,

= Im

∫ +ω

0

∫ rin

rout

(
1−

√
2(M − ω′′)

r

)−1

drdω′′,

= Im

∫ +ω

0

∫ rout

rin

(
1−

√
2(M − ω′′)

r

)−1

dr(−dω′′).

The above term is exactly the same as what we had in our previous case. Therefore,

the imaginary part of action for the anti-particle is also,

ImS = 4πω
(
M − ω

2

)
. (3.5)

The amplitudes from both channels (particle and anti-particle) are needed to be

square before they can be added together. In a more detailed calculation, this

statement means that the term ReS is needed to be calculate. However, such

detailed only affects the pre-factor. According to the WKB approximation, the

exponential part of the semi-classical emission rate in either case is,

Γ ∼ e−2ImS = e−8πω(M−ω2 ). (3.6)

From Planck’s spectrum, Γ ∼ 1
eω/T−1

∼ e−ω/T , we can read off temperature

from (3.6),

T =
1

8π

(
M − ω

2

)−1

. (3.7)

Previously in ‘Unruh Effect’ chapter, we obtained, T = 1/8πM . Our ‘Quantum

Tunneling’ method seems to be more accurate. A correction term, ω2, emerges

from self-gravitational effect of Hawking radiation. This term also preserves the

conservation of total mass and energy. Generally, an energy of radiation will be

very small in comparison to that of black hole and can be neglected. However, as a

black hole becomes hotter than its ambient temperature and starts the evaporation
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process, this correction term will start to be of significant. If the above resultant

temperature formula still holds until the last moment of black hole life, ω will be

in the same order with that of M . The temperature of black hole as it radiates

its last radiation will no longer equal to 1/8πε, but instead equal to 1/4πε, where

ε is an energy of the black hole at its final moment which should be in order of

sub-atomic particle energy.

In this method, Hawking radiation emerges from quantum tunneling effect.

Interestingly, while this method still relies on virtual particles to explain physical

interpretation of Hawking radiation, a region where virtual particles can escape

from the black hole in this method have to be wider than the previous method.

However, if we redo the calculation and neglect the self- gravitational effect, the

resultant temperature will be the same as that of previous method. This result

suggests that there might be something wrong with our interpretation of Hawking

radiation in the previous chapter. Perhaps, even though, we did all the calculations

without any regard for the quantum tunneling effect, the underlying mechanics of

Unruh temperature need quantum tunneling in order to function properly.

According to the quantum mechanics, if any particle is tunneling, it does so

across a barrier or classically forbidden region. However, if we consider black hole

gravitational potential, there is no such barrier exists [10]. The source of barrier is

the Hawking radiation particle itself. As a black hole adsorbs the negative energy

particle, it loses some of its energy and shrinks. This act of horizon shrinking effect

is the source of barrier [11]. As the horizon is shrinking, it causes the potential

energy of black hole to shift its value in r-coordinate. This shifting effect appears

to be a barrier for the particle which is also why we set our integration limits from

rin = 2M to rout = 2(M − ω).

Moreover in this method, the mechanics which drives the radiation process

is the possibility of lowering the black hole mass. At first glance, it seems we have

only accounted for quantum nature of the black hole and neglect its gravitational

nature. However, if we look closely at our calculation steps, the pole which gives

us the imaginary part of action is corresponding to the location of horizon. Inter-

estingly, this statement means that only quantum tunneling effect at vicinity of

the horizon gives us the emission rate which in turn gives us the Hawking radia-

tion. This fact shows us that Hawking radiation is emerged from both quantum

and gravity effect combine.
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From statistical mechanics, the Planck spectral flux of a gray body is,

ρ(ω) =
dω

2π

|T (ω)|2

eω/T − 1
,

where |T (ω)|2 is the gray body frequency dependent transmission coefficient. This

equation tells us that the pre-factor from real part of action effects the transmission

coefficient. In a more detailed calculation, the other properties of Schwarzschild

black hole will affect |T (ω)|2 which suggests how we might be able to extract

information from black holes. Additionally, the ω2 term in our resultant tem-

perature (3.7) strongly suggests that Hawking temperature is no longer perfect

blackbody temperature.

Moreover the resultant emission rate from (3.6) can be written as,

Γ ∼ e8πMω ∼ e∆S,

where S is a entropy of the black hole. The above equation is modified under the

assumption that the black hole temperature is constant over the emission process

of a single Hawking radiation particle. The black hole loses energy (∆Q) of ω in

the process. As such, the entropy change in this process is, ∆Q/T = 8πMω. The

above equation can be interpreted as follows; the decay rate is also the possibility

of black hole evolving into another state. There are eS states in total. The

possibility of finding a shell containing all the mass of black hole is proportional

to e−S. This interpretation shows us that the evaporation process can be regarded

as state evolution in statistical mechanics.

The fact that Hawking radiation has statistical nature means that we might

be able to extract informations from black holes via Hawking radiation. This

statement is the most interesting idea that we learn from this method.

3.1 A Generalization to Charged Black Hole

In this section, we will repeat the previous calculation for a Reissner-Nordstrom

black hole. However, if the radiation has electric charge, then we need to account

for electromagnetic forces which would further complicate our calculation. As

such, we assume that the radiation has neutral electric charge. Another crucial

different is that for a Reissner-Nordstrom black hole, we have two event horizons

as can be seen from equation, 1 − 2M
r

+ Q2

r2
= 0, which has two solutions. Only

the outer horizon contributes to Hawking radiation. According to the Penrose

diagram any radiation from inner horizon emerges in a new universe.
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In order to calculate Hawking radiation of Reissner-Nordstrom black hole, we

need to switch Schwarzschild background with Reissner-Nordstrom background,

ds2 =

(
1− 2M

r
+
Q2

r2

)
dt2R−N −

(
1− 2M

r
+
Q2

r2

)−1

dr2 − r2dΩ2. (3.8)

The coordinate singularity at the horizon is eliminated by using the following time

coordinate,

dtR−N = dt−
√

2M

r
− Q2

r2

(
1− 2M

r
+
Q2

r2

)−1

dr2.

Hence, the charge Painleve line element is,

ds2 =

(
1− 2M

r
+
Q2

r2

)
dt2 − 2

√
2M

r
− Q2

r2
dtdr − dr2 − r2dΩ2. (3.9)

This equation has almost the same form as (3.1). Thus, the equation of motion

for massless particle is,

ṙ = ±1−
√

2M

r
− Q2

r2
.

By substituting M with M −ω to account for self-gravitational effect, we find the

imaginary part of the action for a positive energy outgoing particle to be,

ImS = Im

∫ +ω

0

∫ rin

rout

(
1−

√
2(M − ω′)

r
− Q2

r2

)−1

dr(−dω′).

We will also do the integration with respect to r first. Here, however, a new

variable r′ is set to
√

2(M − ω′)r −Q2. Additionally, there are two poles in this

calculation, but one of the pole is associated with the inner horizon radius. Our

integration limits (rout, rin) cover only the outer horizon. Thus, we have only one

pole to be concern with,

Im

∫ rin

rout

(
1−

√
2(M − ω′)

r
− Q2

r2

)−1

dr =
1

M − ω′

∫ α

β

(
1− 2

r′(M − ω′)
r′2 +Q2

)−1

r′dr′,

=
1

M − ω′

∫ α

β

(r′2 +Q2)r′dr′

r′2 − 2(M − ω′)r′ +Q2
.

From the denominator, the value of r′ at our poles is found to be, r′± = (M−ω′)±√
(M − ω′)2 −Q2. Only the residue of pole associate with outer horizon will be

calculated,

Res(r′+) =
π

(M − ω′)
2(M − ω′)2 + 2(M − ω′)

√
(M − ω′)2 −Q2

2
√

(M − ω′)2 −Q2

×((M − ω′) +
√

(M − ω′)2 −Q2),

= π
((M − ω′) +

√
(M − ω′)2 −Q2)2√

(M − ω′)2 −Q2
,

= π
(2(M − ω′)2 −Q2) + 2(M − ω′)

√
(M − ω′)2 −Q2√

(M − ω′)2 −Q2
.
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From this result, it is clear that as, Q → 0, our residue is the same as that of

previous case. We can now calculate the imaginary part of action,

ImS = 2π

∫ +ω

0

(M − ω′)2 −Q2 + (M − ω′)
√

(M − ω′)2 −Q2√
(M − ω′)2 −Q2

dω,

= 2π

∫ +ω

0

(
√

(M − ω′)2 −Q2 +M − ω′)dω,

= 2πω
(
M − ω

2

)
+ π

[
M
√
M2 −Q2 − (M − ω)

√
(M − ω)2 −Q2

]
+πQ2 ln

(
(M − ω) +

√
(M − ω)2 −Q2

M +
√
M2 −Q2

)
. (3.10)

Since the logarithm term only contributes to magnitude of decay rate, it will be

ignored. Naturally, we will need to also calculate decay rate from anti-particle

channel, however as seen in the previous case, this channel will also yield the same

resultant decay rate. Before the temperature of black hole can be read off, the

second term of (3.10) needs further treatment. This term will now be expanded

with respect to ω, by utilizing the following relation,

(M−x)
√

(M − x)2 −Q2 = M
√
M2 −Q2− 2M2 −Q2√

M2 −Q2
x+

M

2

2M2 − 3Q2

(M2 −Q2)3/2
x2−...,

the (3.10) becomes,

ImS = 2πω

(
M − ω

2
+
M2 −Q2/2√
M2 −Q2

− M

2

2M2 − 3Q2

(M2 −Q2)3/2
ω + ...

)
. (3.11)

As shown in the previous case, the temperature of black hole is,

T =
ω

2ImS
,

=
1

4π

[
M +

M2 −Q2/2√
M2 −Q2

− 1

2

(
1 +M

2M2 − 3Q2

(M2 −Q2)3/2

)
ω + ...

]−1

. (3.12)

The zeroth order of ω can be modified into,

T =
1

2π

√
M2 −Q2

(M +
√
M2 −Q2)2

(3.13)

The above solution is agreed with well known temperature of a Reissner-Nordstrom

black hole. Interestingly, if we redo the calculation with integration limits rang-

ing across both horizon, the resultant temperature would be equal to that of

Schwarzschild black hole. This implies that as a value of Q becomes smaller with

respect to M i.e., Q/M → 0, and the two horizons are starting to converge, the

Reissner-Nordstrom black hole will behavior like Schwarzschild black hole. This



24

statement is also supported by substituting, Q = 0, into (3.13) which yields the

same resultant temperature as Schwarzschild black hole temperature.

According to (3.10), if a black hole keep radiates neutral radiation until,

M ∼ ω, the second term under square root sign will be negative. However, the

emission rate must be real number which implies that the Reissner-Nordstrom

black hole must radiate some charge radiation in order to preserve a relation,

M ≥ Q + ω or M > Q. This statement is a manifestation of third law of black

hole thermodynamics; surface gravity (κ =
√
M2 −Q2/(M +

√
M2 −Q2)2) must

never equal to zero.

Moreover, from (3.13), our result is no longer perfect blackbody radiation.

Especially as a black hole shrinks to its final state, the values of M and ω are

starting to be of the same order. The terms with large order of ω will also effect

the Hawking radiation in the final state heavily. The radiation will diverge from

blackbody radiation even more than our previous case. This statement is under

the assumption that the black hole still processes some electric charge at this point

in its life time.



Chapter IV

Uncertainty Principle

From the particle-wave duality nature of quantum objects, it is impossible to

measure the precise position and momentum of any quantum object at the same

time. There will always be some uncertainty in either position or momentum.

However, the afore mentioned fact has neglected the act of measurement or some

other property of the interested object. By considering these neglected point,

the uncertainty of either position or momentum is increased and thus, modifies

the Heisenberg’s uncertainty principle. These modifications are rather important

to our work in this chapter. With different modifications, we obtain different

resultant temperature. Some resultant temperature also predicts an existence of

black hole remnant. An object left behind by a black hole as uncertainty mechanics

prevent the black hole from evaporating any further. The existence of remnant is

very interesting as it has a potential to resolve the information loss paradox.

In this chapter, the uncertainty principle will be used to calculate Hawking

radiation. By considering a position uncertainty of virtual particle emerges near

the horizon, we can calculate Hawking temperature. Since we do not know exactly

where the pair of virtual particle emerges, there is a position uncertainty (∆x)

equal to Schwarzschild diameter (4GM/c2) or diameter of the horizon. From the

position uncertainty, the corresponding minimum momentum uncertainty is found.

If we assume that the escaping virtual particle possesses a momentum in the or-

der of its own momentum uncertainty, we can calculate temperature of radiation

composes of these escaping virtual particles. The resultant temperature is then

identified as the temperature of black hole. Naturally, the aforementioned assump-

tion is rather ambiguous and the resultant temperature needs further calibration

[12].

In this chapter, we will no longer use natural unit. The natural unit will be

used again in the next chapter. Our calculation is started with the Heisenberg’s
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uncertainty principle,

∆x∆p ≥ ~, (4.1)

∆p =
~

∆x
=

~c2

4GM
.

In the last step, we set ∆x equal to Schwarzschild diameter. The energy of radi-

ation made of these escaping virtual particles is then,

E = pc =
~c3

4GM
.

From the following equation, E = kBT , where kB is a Boltzmann constant, the

temperature of these escaping virtual particles is found to be,

T =
~c3

4GMkB
. (4.2)

In analogous to previous methods, we assume massless condition for these escaping

virtual particles because they can escape from black hole gravity at the vicinity

of horizon region.

The above result agrees with the Bekenstein-Hawking temperature up to a

factor of 1/2π. Interestingly, this method also shows us that Hawking radiation

stems from combination of gravity and quantum effect. The position uncertainty

is set to Schwarzschild diameter which shows an indirect involvement from the

curvature of spacetime due to the gravitation of black hole. The involvement of

quantum mechanics is obviously from the Heisenberg’s uncertainty principle. This

method relies heavily on other method to properly calculate Hawking temperature.

Not only the Hawking radiation has already been known to compose of escaping

virtual particle, but the Hawking temperature is also known before hand in order to

calibrate the resultant temperature from this method. Nevertheless, the advantage

of this method is its ability to quickly calculate Hawking temperature up to a

numerical factor.

Different uncertainty principles may be used in order to obtain some interest-

ing results. In this thesis only MLURs (Minimum Length Uncertainty Relations)

and GUP (Generalized Uncertainty Principle) type of modification are used,

∆x ≥ ~
2∆p

+
2R

Mc
∆p, (4.3a)

∆x ≥ ~
∆p

+
G

c3
∆p. (4.3b)

The above uncertainty principles are MLURs and GUP uncertainty principle re-

spectively. R is an apparatus size or distance between detector and observed
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particle. The MLURs modification bases on an idea that there exists an interval

of time between moments a signal was sent and returned. The observed parti-

cle gains some position uncertainty equal to a distance it may or may not travel

within the interval which equal to the ‘velocity uncertainty’ multiplied by the time

interval. More detail can be found in an Appendix A.3.

By using above uncertainty relations as starting points instead of (4.1), we

need to multiply both uncertainty principles by ∆p and treat them as quadratic

equations. These following results are obtained,

∆pMLURs =
Mc∆x

4R

(
1±

√
1− 4R~

Mc(∆x)2

)
,

∆pGUP =
c3∆x

2G

(
1±

√
1− 4G~

c3(∆x)2

)
.

By setting ∆x equal to Schwarzschild diameter, the corresponding temperature

from each equation is found to be,

TMLURs =
GM2

RkB

(
1±

√
1− R~c3

4G2M3

)
,

TGUP =
Mc2

2kB

(
1±

√
1− ~c

GM2

)
.

If the negative signs were chosen, at large mass limit (M → ∞), these resultant

temperatures would agree with the Bekenstein-Hawking temperature up to a factor

of 1/π and 1/2π respectively. Thus, the temperature of black hole from each

modification is found to be,

TMLURs =
GM2

πRkB

(
1−

√
1− R~c3

4G2M3

)
, (4.4a)

TGUP =
Mc2

4πkB

(
1−

√
1− ~c

GM2

)
. (4.4b)

With these resultant temperatures, a black hole (in perfect vacuum) would no

longer keep evaporating to oblivion. The evaporation process is stopped when the

value of M becomes sufficiently small to render a term under the square root sign

negative and meaningless. The final mass of black hole remnant from each result

is,

MRemnant,(MLURs) =

(
R~c3

4G2

)1/3

, (4.5a)

MRemnant(GUP ) =

√
~c
G

= MP , (4.5b)
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where MP is the Planck’s mass.

From (4.4a), it is important to define physical interpretation of R in this

resultant temperature. R is the distance between an observer and the black hole.

As the black hole radiates Hawking radiation, there must be a back reaction on

the black hole to conserve total momentum. Since the Hawking radiation particle

possesses a momentum uncertainty, the black hole must gain some momentum

uncertainty as well. This fact means that as the black hole radiates Hawking

radiation, it gains a momentum uncertainty and thus, a velocity uncertainty. This

velocity uncertainty is then causes the black hole to gain a position uncertainty.

The position uncertainty causes the exact location of black hole to be unknown.

The size of horizon is effected as a result. As such, the distance between an

observer and the black hole affects the black hole temperature.

It is interesting to notice that just before the evaporation process stops,

the black hole emits very high thermal energy from the horizon. However, once

the evaporation process is stopped, the black hole remnant should no longer pos-

sess such a high temperature any longer. It is important to remind ourself that

Hawking radiation is not a conventional thermal radiation emits from a matter

possessing heat energy. Once the evaporation process stops, the black hole rem-

nant must possess other temperature via other mechanics.

This method is possibly the easiest one. However, this method alone is not

enough to find the exact temperature of black hole and there are some ambiguity in

the assumption. Our resultant temperature is needed to be compare with resultant

temperature in other method to find calibrating factor. The most important

point we receive from this method is the prediction of black hole remnant. This

prediction could potentially solve the information loss paradox. If black holes

leave something behind instead of completely evaporate to sub-atomic particles

and ground states, then it is possible that any information within black holes is

stored in the remnant. There are some theories state that black hole remnant is

inert and only interact via gravitation. These properties are quite similar to dark

matter which suggests that primordial black hole remnant can be a warm dark

matter candidate. Interestingly, the existence of black hole remnant stems from the

modification term of uncertainty principle. With different modification term, we

obtain different remnant mass. Another interesting point is that the remnant mass

is corresponding to the minimum position uncertainty of its respective uncertainty

principle. This fact shows us that the horizon must have the minimum size.

The minimum diameter of horizon is the minimum position uncertainty of black
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hole. As such, black hole remnant mass can also be calculated by setting horizon

diameter equal to the minimum position uncertainty. The mass of black hole with

that size of horizon is the remnant mass.

4.1 Mass Scale and Black Hole Remnant

We are all familiar with Planck’s mass which constructed from three fundamental

constants (G, ~, c). However, it is possible to construct three other forms by

adding another fundamental constant, that is, cosmological constant (Λ). These

masses are,

~
c

√
Λ

3
,

c2

G

√
3

Λ
,

(
~2
√

Λ

G

)1/3

.

Above masses are MW , M ′
W , and MT respectively each of them has different

physical meaning. MW is the smallest possible quantity of mass an object can

have. M ′
W is the maximum mass any universe can possess without collapsing into

a black hole. The discovery of MT is rather new and its physical interpretation is

still being studied [13]. Together these masses form a mass scale,

MW MT MP M ′
T M ′

W(
c3

~GΛ

) 1
6

Figure 4.1: Hierarchy of masses on the logarithmic scale.

Interestingly, these masses are related by a dimensionless factor c3/~GΛ.

This factor can be interpreted as the maximum quantum bits of the observable

universe. The radius of observable universe is in order of 1/Λ. By dividing surface

of the universe with Planck’s length (
√

~G/c3) squares, we obtain the surface

area of our observable universe in the unit of Planck’s area which equal to the

dimensionless factor [14].

The black hole temperature we find previously can be expressed in terms of
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these mass scales as,

TBH =
~c3

8πGMkB
=

1

8π

MP c
2

kB

(
MP

M

)
, (4.6a)

TMLURs =
1

π

Mc2

kB

(
RW

R

)(
M

M ′
W

)(
1−

√
1− A

M3

)
, (4.6b)

TGUP =
1

4π

Mc2

kB

1−

√
1−

(
MP

M

)2
 , (4.6c)

where RW is a Compton wave length of MW and A = 1
4

(
R
RW

)
M ′3

T . Interestingly,

temperatures of black holes (just before the evaporation process stops) are,

TMLURs,(Remnant) =
MT c

2

2πkB

(
RW

2R

)1/3

=
TT

24/3π

(
RW

R

)1/3

, (4.7a)

TGUP,(Remnant) =
MP c

2

4πkB
=
TP
4π
, (4.7b)

where TP is a temperature associate with MP and TT is a temperature associate

with MT . We can also express masses of remnant as,

MRem(MLURs) =
1

22/3

(
R

RW

)1/3

M ′
T =

1

22/3

(
R

R′W

)1/3

MT , (4.8a)

MRem(GUP ) = MP . (4.8b)

Although, we have quite different formula for Hawking temperature, at Cosmic-

Microwave-Background limit (T = 2.7 K), all resultant temperatures agree that

the black hole should possess mass of 4.5× 1022 kg. This fact is not surprising as

we set calibrating factor such that every result agrees at large mass limit.

From (4.8a), if we set R to be as large as physically possible, that is, RW

which is in the order of our observable universe radius, the remnant mass is then

in the order of M ′
T . In other words, we are observing a black hole locates at

the edge of our observable universe. If we set R to be as small as R′W which is

Compton wave length of our observable universe, the remnant mass is in the order

of MT . This setting means that we are observing an extreme small black hole.

This length is even smaller than Planck’s length which might be problematic as

physics at this scale have not been completely established. Nevertheless, we use

this limit as the minimum limit. These limits mean that the remnant mass, for

the MLURs type of black hole, is ranging from MT to M ′
T . Interestingly, if we

set R to be Planck’s length, the remnant is in the order of MP . This result is in

agreement with the GUP type of black hole. Additionally, this limit is the lowest

limit that our current physics (2016) still working properly.
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The entropy of black hole subject to the MLURs can be calculated by using

dS = dQ/T = c2dM/T ,

S = c2

∫
T−1dM = kB

[
3π

4

(
M ′

W

M

)(
R

RW

)
2F1

(
1

3
,
1

2
,
4

3
;
A

M3

)
+2π

(
M

MP

)2
(

1 +

√
1− A

M3

)]
. (4.9)

From the above equation, the entropy of remnant is determined to be,

S0 =
πkB

4

(
2 +

3
√
πΓ(4/3)

Γ(5/6)

)(
RH

RP

)2

, (4.10)

where RH is a Schwarzschild radius of the remnant,

RH =
2GM

c2
=

2G

c2

(
R~c3

4G2

)1/3

∼
(
~GR
c3

)1/3

.

The term (RH/RP )2 clearly shows us that even though we modified the uncer-

tainty relation with MLURs, the entropy still obeys Holography i.e., the entropy

is proportional to the horizon area (∼ R2
H) in the unit of Planck’s area (R2

P ).

The lifetime of a black hole (in perfect vacuum) with different initial mass

is now being determined. Starting with Stefan-Boltzmann law of radiation,

AHεσT
4 = −dQ

dt
= −c2dM

dt
.

By integrating both side in respect to t, we obtain,

tev =

∫ M

Mf

c6dM ′

16πεσ(GM ′)2T 4
,

=
320π

ε

RP

c

(
M

MP

)3
[
−
(
A

M3

)2

+
A

M3

(
8

√
1− A

M3
− 7

)

+8

(√
1− A

M3
+ 1

)
+ 16

A

M3
ln

(
1 +

√
1− A

M3

)]
. (4.11)

By setting R = RW , the time it takes for any black hole with mass greater than

the remnant mass (A1/3 ' 2.517× 1012 kg) to finish evaporating would be longer

than the present age of the universe (13.8 billion years or 4.35× 1017 seconds) as

shown in Figure 4.2.

While we were setting R = RW , we have made R as large as possible. A

case where R is set to be as small as possible is now being considered. Since it is

impossible for R to be smaller than the horizon, the smallest possible value of R

should be in the same order as Schwarzschild radius,

R =
2GM

c2
.
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Figure 4.2: Evaporation lifetime of black hole for R = RW .

By substituting this value into (4.8), the remnant mass becomes,

MRem(MLURs) =
1

21/3

(
~cM
G

)1/3

=
1

21/3

(
M2

PM
)1/3

. (4.12)

This is a weighed geometric mean between the original mass (M) and the Planck’s

mass.

MP MRem M

Figure 4.3: Relation between Planck’s mass, remnant mass, and original mass on

the logarithmic scale.

From the above equation, the remnant mass is known to be varying between

MP and M ′
T with the maximum value achieves when original mass equals to M ′

W .

The temperature and entropy of the remnant are,

T0 =
MP c

2

25/3πkB

(
MP

M

)1/3

, (4.13)

S0 =
πkB
22/3

(
M

MP

)2/3(
2 +

3
√
πΓ(4/3)

Γ(5/6)

)
. (4.14)
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From the above equation, we may not immediately see holography. However,

by changing M (the original mass) into the remnant mass ∼ (M2
PM)1/3 (the

above entropy is the entropy of remnant), then changing MRem into its corre-

spond Schwarzschild radius, and MP into Planck’s length. The term (M/MP )2/3

becomes, (
M

MP

)2/3

=

(
2M3

Rem

M3
P

)2/3

= 22/3

(
MRem

MP

)2

,

=
1

21/3

(
c2RH

G

RP c

~

)2

,

=
1

21/3

(
RH

RP

)2

.

∴ S0 =
πkB

2

(
RH

RP

)2(
2 +

3
√
πΓ(4/3)

Γ(5/6)

)
. (4.15)

Again, holographic principle holds for our black hole remnant.

The above limit only applies to black hole whose mass is higher than M ′
T ∼

1012kg. This limit seems to be fine for general black hole. However, for a miniature

black hole such as the primordial black hole whose mass can be smaller than M ′
T ,

we need to consider an even smaller limit R→ R′W . The existence of smaller limit

means that the previous limit is the smallest possible limit for a naturally created

black hole in the present universe. Under this new limit, the remnant mass is,

A1/3 =
MT

22/3
(4.16)

The remnant entropy can be calculated from (4.10), by setting R = R′W ,

S0 =
πkB

4

(
2 +

3
√
πΓ(4/3)

Γ(5/6)

)(
~GΛ

c3

)2/9

(4.17)

It may be hard to see holography from the above equation. However, by setting

R = R′W , RH becomes Schwarzschild radius of our remnant. In other words, by

setting a new limit for R, we do not violate the holography. The lifetime of this

black hole can be calculated by using (4.11). The life time of this type of black

hole is very short as shown in Figure 4.4.

4.1.1 Black Hole in Schwarzschild-(Anti) de Sitter Back-

ground

In this subsection, we will find the temperature of black hole in Schwarzschild-

(Anti) de Sitter space to determine whether or not the result can be arranged in
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Figure 4.4: Evaporation lifetime of black hole for R = R′W .

terms of any mass scale. Starting with the Schwarzschild-(Anti) de Sitter metric,

ds2 =

(
1− 2GM

c2r
± Λ

3
r2

)
dt2 −

(
1− 2GM

c2r
± Λ

3
r2

)−1

dr2 − r2dΩ2,

where the plus (minus) sign is for the Schwarzschild-(Anti) de Sitter space. The

horizon radius can be found by setting
(
1− 2GM

c2r
± Λ

3
r2
)

equal to zero,

rdS =
2√
Λ

cos

[
π

3
+

1

3
cos−1

(
3
GM
√

Λ

c2

)]
, (4.18a)

rAdS =
2√
Λ

sinh

[
1

3
sinh−1

(
3
GM
√

Λ

c2

)]
, (4.18b)

where rdS and rAdS are horizon radius in the Schwarzschild-de Sitter and Schwarzschild-

Anti-de Sitter space respectively [15][16]. The black hole temperature can be

calculated from,

T =
~c
kB

g′00(rH)

4π
=

~c
4πkBrH

(1± Λr2
H). (4.19)

By simply substituting horizon radius from (4.18) and expand the temperature in

terms of M to obtain,

TdS =
MW c

2

8πkB

(
M ′

W

M
− 16

M

M ′
W

− 80

(
M

M ′
W

)3

− ...

)
, (4.20a)

TAdS =
MW c

2

8πkB

(
M ′

W

M
+ 16

M

M ′
W

− 80

(
M

M ′
W

)3

+ ...

)
. (4.20b)
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These resultant temperatures do not predict an existence of black hole remnant.

However, by looking closer at rdS, we see that the value of M can not exceed M ′
W/3

as an arc-cos of any value higher than one is physically meaningless. Additionally

in AdS case, we have the term, 1 − Λr2
H . If this term is set to zero, the value of

M is found to be 2
3
M ′

W . These results give us the maximum mass any black hole

can possess.

4.2 A Generalization to D-Dimension and Holog-

raphy

In this section, we will repeat the calculation of entropy and temperature to deter-

mined whether or not holographic principle holds in arbitrary dimension. Starting

with the MLURs equation,

∆p =
Mc∆x

4R

(
1−

√
1− 4R~

Mc(∆x)2

)
.

The Schwarzschild radius in D-dimension is 2χM1/(d−3), where χ is the gravita-

tional constant ((κc2)1/(d−3)) whose dimension is dependent with κ = 8πGd/c
4.

By setting ∆x equal to Schwarzschild radius in D-dimension, the Hawking tem-

perature is found to be,

T =
Mc2

4πkB

(
RS

R

)(
1−

√
1− Ad

M (d−1)/(d−3)

)
, (4.21)

where Ad = ~R
cχ2 and RS is the Schwarzschild radius. The black hole will stops

evaporate when,

M = A
(d−3)/(d−1)
d . (4.22)

The corresponding Schwarzschild radius of the remnant mass is,

RS−min = 2

(
~Rχ(d−3)

c

)1/(d−1)

= 2(ζ2χ(d−3))1/(d−1), (4.23)

where ζ =
√

~R/c. The above value is also the minimum position uncertainty.

The entropy of black hole can then be calculated as follows,

S = c2

∫
T−1dM,

= 4πkB

(
d− 3

d− 2

)(
R

RS

)[
(d− 1)

2
2F1

(
1

2
,

1

d− 1
,

d

d− 1
;

Ad
M (d−1)/(d−3)

)
+

(
M (d−1)/(d−3)

Ad

)(
1 +

√
1− Ad

M (d−1)/(d−3)

)]
. (4.24)
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From the above equation, the remnant entropy can also be calculated,

S0 = 2πkB

(
R

RS−min

)(
d− 3

d− 1

)(
1 +

√
π

2

Γ(1/(d− 1))

Γ((d+ 1)/2(d− 1))

)
. (4.25)

The above solution does not appear to obey holographic principle. However, if we

modify the term R/Rs−min, the holography is shown as follow,

∵

(
RS−min

2

)(d−1)

=
~R
c
χ(d−3).(

RS−min

2

)(d−1)

=
~R
c
κc2,

= ~Rκc,

∴
R

RS−min
=

1

2(d−1)

R
(d−2)
S−min

~κc
=

1

2(d−1)

R
(d−2)
S−min

R
(d−2)
P,d

, (4.26)

where RP,d is the D-dimension Planck’s length. With the above modification, we

see that the remnant entropy is, indeed, proportional to the horizon area (R
(d−2)
S−min)

in the unit of D-dimensional Planck’s area (R
(d−2)
P,d ). In other words, we have

holographic principle in arbitrary D-dimensional space for the MLURs type of

black hole.



Chapter V

Gravitational Anomaly

According to the quantum field theory, anomalies represent the violations of

classical law in the quantum theory. These violations are evidents of the inconsis-

tency in quantum physics. These anomalies stem from local symmetry breaking in

the quantum theory. In order to preserve the consistency in the quantum theory,

these anomalies must be eliminated. One possible method of eliminating these

anomalies is done via the quantum hall effect where an additional magnetic field

is introduced into an electric field. The gauge anomaly term found in the electric

field is then being canceled by the magnetic field in the total action [17]. This

fact suggests that the gauge symmetry breaking in the electric field results in an

induction of the magnetic field.

At the small region in the vicinity of horizon, there exists an Einstein (grav-

itational) anomaly which is an anomaly stemmed from a general coordinate trans-

formation in a fermion graviton loop. This anomaly represents the violation of

energy conservation. Analogous to the previous example, Hawking radiation can

be derived as a cancellation term to the Einstein anomaly in order to preserve the

energy conservation law.

In this method, the Einstein anomaly at the vicinity of horizon region is

studied. Hawking radiation is derived as a cancellation term to the Einstein

anomaly [18]. By considering the gravitational anomaly, an extra term in the

energy-momentum tensor is found. The extra term appears to be a pure radiation

flux. A temperature of blackbody with a corresponding thermal radiation flux

equivalent to the extra term is defined as a temperature of the black hole.

We will start with the Einstein anomaly,

∇µT
µ
ν =

1

96π
√
−g

εαβ∂α∂ρΓ
ρ
βν . (5.1)

The Einstein anomaly holds only in the small region at the vicinity of horizon

region. Otherwise, ∇µT
µ
ν = 0.
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From this anomaly, new parameter Aν and Nµ
ν are defined as,

∇µT
µ
ν ≡ Aν ≡

1√
−g

∂µN
µ
ν . (5.2)

These variables will help us later on when we calculate the effect of Einstein

anomaly on the energy-momentum tensor. In order to calculate the anomalous

term, we start with the metric of spacetime. Our metric is assumed to be in the

following form,

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

(d−2),

where dΩ2
(d−2) is a line element on the (d-2)-sphere and f(r) depends on the struc-

ture of our spacetime. The above form is a representation of many interesting

spacetime such as Schwarzschild, de Sitter and Reissner-Nordstrom. For sim-

plicity, spherical symmetry is assumed which truncates our dimension into 1+1

dimensional spacetime. This truncation is an important detail when we compare

the thermal radiation flux from our result with that of a blackbody.

With the above metric, we are able to identify Nµ
ν in term of f(r). Firstly,

a formula of Nµ
ν is needed to be extract from (5.2),

Nµ
ν =

1

96π
εαβ∂αΓµβν . (5.3)

From the above formula, all Christoffel symbols are calculated in term of f(r)

before Nµ
ν can be evaluated,

Γrrr =
1

2
grr∂rgrr = −1

2

f ′(r)

f(r)
, Γrrt = 0, Γttr =

1

2
gtt∂rgtt =

1

2

f ′(r)

f(r)
,

Γrtt = −1

2
grr∂rgtt =

1

2
f ′(r)f(r), Γttt = 0, Γtrr = 0.

We are now ready to find the value of each Nµ
ν . Firstly, we start with the N t

t ,

N t
t =

1

96π
εαβ∂αΓtβt =

1

96π
εrr∂r(g

tt∂rgtt),

= 0.

The value of N t
t is equal to zero because gµν is independent of t, so ∂tgµν is zero.
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Likewise, we can calculate other Nµ
ν as follows,

N r
r =

1

96π
εαβ∂αΓrβr =

1

96π
εrβ∂rΓ

r
βr =

1

96π
εrt∂rΓ

r
tr,

= 0,

N r
t =

1

96π
εrt∂rΓ

r
tt = − 1

192π
εrt∂r(g

rr∂rgtt),

=
1

192π
∂r(f(r)∂rf(r)) =

1

192π
(f ′2(r) + f(r)f ′′(r)),

N t
r =

1

96π
εrt∂rΓ

t
tr =

1

192π
εrt∂r(g

tt∂rgtt),

=
1

192π
∂r

(
1

f(r)
∂rf(r)

)
=

1

192π

1

f 2(r)
(f(r)f ′′(r)− f ′2(r)).

The energy-momentum tensor can now be evaluated in terms of f(r) and integral

constant. From (5.2) and constancy in time (∂tT
µ
ν = 0), the form of T µν is found

to be,

∂µT
µ
ν + ΓµµρT

ρ
ν − ΓρµνT

µ
ρ = Aν ,

∂µT
µ
ν − ΓρµνT

µ
ρ = Aν .

The following equation, Γµµρ = 1√
−g∂ρ
√
−g = 0, is utilized in the last step of the

above calculation. We will calculate T rr by setting ν = r,

Ar = ∂rT
r
r + ∂tT

t
r − ΓρµrT

µ
ρ ,

= ∂rT
r
r − ΓrrrT

r
r − ΓttrT

t
t ,

= ∂rT
r
r +

1

2

f ′(r)

f(r)
T rr −

1

2

f ′(r)

f(r)
(Tαα − T rr ),

1

f(r)
∂r (f(r)T rr ) = Ar +

1

2

f ′(r)

f(r)
Tαα .

We simply need to multiply both side of the above equation by f(r) and integrate

out ∂r. We then divide f(r) out of both side and get,

T rr = K ′/f(r) +B(r)/f(r) + I(r)/f(r),

= (K +Q)/f(r) +B(r)/f(r) + I(r)/f(r), (5.4)

where B(r) =
∫ r
rH
f(x)Ar(x)dx and I(r) = 1

2

∫ r
rH
Tαα (x)f ′(x)dx. From the following

relation, Tαα = T rr + T tt , T
t
t is found to be,

T tt = Tαα − ((K +Q)/f(r) +B(r)/f(r) + I(r)/f(r)) . (5.5)
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In order to find T rt , we need to set ν = t,

At = ∂rT
r
t + ∂tT

t
t − ΓρµtT

µ
ρ ,

= ∂rT
r
t − ΓrttT

t
r − ΓttrT

r
t ,

= ∂rT
r
t −

1

2
f ′(r)f(r)T tr −

1

2

f ′(r)

f(r)
T rt ,

= ∂rT
r
t +

1

2

f ′(r)

f(r)
T rt −

1

2

f ′(r)

f(r)
T rt = ∂rT

r
t .

∴ T rt = −K + C(r) = grrgttT
t
r = −f 2(r)T tr , (5.6)

where C(r) =
∫ r
rH
At(x)dx.

Generally ∇µT
µ
ν = 0, however, at the horizon region, these conditions are

no longer hold. As such, T µν is separated into three parts as follow,

T µν = T µχνH + T µoνΘ+ + T µiνΘ−,

where Θ+ = Θ[r − (rH + ε)] and Θ− = Θ[(rH − ε) − r] are scalar step functions

and H = 1−Θ+ −Θ− is a top hat function which has value of one in the region

(rH − ε, rH + ε) and zero elsewhere.

We have two unknown constants, K and Q, for each T µν . In order to deter-

mine the value of these constants, we start with effective action as a function of

metric and matter field,

W [gµν ] ≡ −i ln

(∫
D[matter]eiS[matter,gµν ]

)
, (5.7)

where S[matter, gµν ] is a classical action function which transforms under general

coordinate transformation as, δλS = −
∫
ddx
√
−gλν∇µT

µ
ν . The general covariance

of effective action require that, δλW = 0. Thus, we obtain the following equation,

δλW =

∫
D[matter]

(
eiS[matter,gµν ]δλS

)∫
D[matter]eiS[matter,gµν ]

= δλS = 0,

since δλS is a function of gµν and does not depend on matter field. Now, δλW will

be expanded into the following form,

−δλW =

∫
d2x
√
−gλν∇µ[T µχνH + T µoνΘ+ + T µiνΘ−],

=

∫
d2xλν

[
(∇µT

µ
χν)H + (T µχν∂µH + T µoν∂µΘ+ + T µiν∂µΘ−)

]
,

=

∫
d2xλν

[
∂µ(Nµ

νH)−Nµ
ν ∂µH + (T µχν∂µH + T µoν∂µΘ+ + T µiν∂µΘ−)

]
,

=

∫
d2xλt

[
∂r(N

r
tH) + (T rot − T rχt +N r

t )∂rΘ+ + (T rit − T rχt +N r
t )∂rΘ−

]
+λr

[
(T ror − T rχr)∂rΘ+ + (T rir − T rχr)∂rΘ−

]
, (5.8)
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In the second line, we used a property,
√
−g = 1. We need to expand ∂rΘ± terms

in order to solve (5.8). As previously stated, the forms of Θ± are,

Θ± = Θ(±r ∓ rH − ε).

From the relation, ∂xΘ(x) = δ(x), where δ(x) is a Dirac delta function, we may

expand ∂rΘ± using Taylor’s series as follows,

∂rΘ± = ±δ(r − rH ∓ ε),

= ±
[
δ(r − rH) + (∓ε)∂rδ(r − rH) +

1

2
ε2∂2

r δ(r − rH) + ...

]
,

=

[
±1− ε∂r ±

1

2
ε2∂2

r − ...
]
δ(r − rH).

A few remark before we start solving (5.8), f(r) flips sign as it crosses the horizon

which means, fo(r) = −fi(r). As for the sign of fχ(r), it will be determined by the

attached Θ±. We will assume that, I(r)/f(r)|rH = 1
2
Tαα |rH , and the term ∂r(N

r
tH)

vanishes under the very small ε limit. Thus,

−δλW =

∫
d2xλt

[
(T rot − T rχt +N r

t )∂rΘ+ + (T rit − T rχt +N r
t )∂rΘ−

]
+λr

[
(T ror − T rχr)∂rΘ+ − (T rir − T rχr)∂rΘ−

]
.

We flip the sign of (T rir − T rχr) term to cancel out the flipping sign effect of fi(r)

and fχ(r). Once we substitute the expansion of ∂rΘ± into the above equation, it

is clear that there are only four different terms regardless of how high the order of

expansion we use i.e., (T rot−T rχt+N r
t )±(T rit−T rχt+N r

t ) and (T ror−T rχr)±(T rir−T rχr).
These terms are simplified by using the following conditions, C(rH) = 0 and

B(rH) = 0,

(T rot − T rχt +N r
t ) + (T rit − T rχt +N r

t ) = Ko +Ki − 2Kχ − 2N r
t ,

(T rot − T rχt +N r
t )− (T rit − T rχt +N r

t ) = Ko −Ki,

(T ror − T rχr)− (T rir − T rχr) =

(
Ko +Qo −Ki −Qi

f(rH)

)
,

(T ror − T rχr) + (T rir − T rχr) =

(
Ko +Qo +Ki +Qi − 2Kχ − 2Qχ

f(rH)

)
.

By setting δλW = 0, all these terms must vanish. Thus we obtain the following

conditions,

Ko = Ki = Kχ + Φ,

Qo = Qi = Qχ − Φ,

where,

Φ = N r
t |rH =

f ′2(r)

192π
=

κ2

48π
. (5.9)
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The last step is done by utilizing the following relation, κ = 1
2
f ′(r).

The total energy-momentum tensor becomes, under very small ε limit,

T µν = T µoνΘ+ + T µiνΘ− + T µχνH,

= T µcν + T µΦν ,

where T µcν is a conserved energy-momentum tensor which arises from a combination

of T µoν , T
µ
iν and parts of T µχν . This tensor is a tensor that which we would have had

without any gravitational anomaly effect. By substituting Kχ with KO−Φ and Qχ

with QO + Φ, every component of T µχν that is not stemmed from the gravitational

anomaly is taken into T µcν . All other components are put into T µΦν . The component

of T µΦν tensor is found to be a pure flux of Φ. Another way to interpret the above

equation is as follows; since we can regard (5.2) as differential equations, T µcν can

be regraded as complementary solutions while T µΦν can be regarded as particular

solutions.

Since a blackbody with temperature T emits a massless thermal radiation

flux in the form of, Φ = π
12
T 2, in the direction of r+. The flux of T µΦν is equivalent

to the blackbody radiation flux with the temperature of, T = κ/2π. This result

is, indeed, agreed with the Bekenstein-Hawking temperature.

In this method, Hawking radiation is an anomalous cancellation phenomenon

emerges in order to preserve the consistency in the quantum field theory and the

general relativity [19]. The Einstein anomaly is emerged from a general coordi-

nate transformation in one-loop fermion-graviton diagram. This fact implies that

Hawking radiation has both quantum and gravity nature. Since, ∇µT
µν = 0, is

a representation of the energy-momentum conservation in the general relativity,

the Einstein anomaly represents the violation of the conservation of energy and

momentum due to the quantum field effect. In analogous to the quantum hall

effect, Hawking radiation cancels the Einstein anomaly at the vicinity of horizon

region [18].

Hawking radiation is shown to strongly relate with both quantum and grav-

ity effect. In this method, however, Hawking radiation does not seem to rely

heavily with the existence of virtual particle as other methods do. However, in or-

der to try and explain how the radiation emerges to cancel the Einstein anomaly,

the existence of virtual particle is needed. In the end, this method also needs

virtual particle in order to explain the existence of Hawking radiation. The dif-

ference is that the radiation compose of virtual particle emerges in the area with

the Einstein anomaly as a consequence of local symmetry breaking. In contrast
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with the usual explanation of Hawking radiation where a single virtual particle

from each pair is being consumed by the black hole whilst its partner escapes and

becomes a real particle.



Chapter VI

Conclusion

Throughout this thesis, we have explored and discussed four different meth-

ods of calculating Hawking radiation. Each method yields a unique and interesting

interpretation of Hawking radiation. Weaknesses and strengths of each method

were also discussed. Some methods have offered a potential solution to informa-

tion loss paradox. In this chapter, we summarize and compare our results from

all previous methods.

Let us start with the Unruh effect. Relatively speaking, this method is easy

to derive. In this method, we found that a ground state of an inertial observer

appears to be a thermal radiation ensemble for a constant acceleration observer.

As an observer is subjected to a constant acceleration, he or she will perceive an

apparent event horizon. The existence of horizon induces thermal radiation via the

Unruh effect. The aforementioned phenomenon suggests that an event horizon of

any origin is capable of emitting thermal radiation. On one hand, this property of

the Unruh effect is useful. We utilize the property to calculate thermal radiation

radiated by the black hole horizon i.e., Hawking radiation. This property also

implies that the event horizon at the edge of our observable universe is capable

of emitting thermal radiation. On the other hand, this property suggests that

any astronomical object is capable of emitting thermal radiation, even if it does

not possess any event horizon of its own. Additionally, this method neglected

quantum and gravity nature of the black hole. Hawking radiation is shown to be

perfect blackbody radiation which gives rise the information loss paradox [1].

Secondly, quantum tunneling effect is used to calculate Hawking radiation.

This method utilizes quantum effect at the vicinity of horizon region (whose exis-

tence relies on the gravitational effect) which indicates the quantum and gravity

nature of Hawking radiation. At first glance, there seems to be no classical barrier

or classically forbidden region in the black hole gravitational potential. However,

we learned that as a black hole radiates a Hawking radiation particle, it shrinks.

The shrinking effect shifts gravitational potential which creates an apparent bar-
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rier for the particle. The transmission rate across the apparent barrier is then

being recognized as a black hole decay rate. This fact implies that as a black hole

decays, it radiates thermal radiation which is Hawking radiation. Interestingly,

the decay rate can be modified into the following form, e∆S, where S is an entropy

of the black hole. According to the Statistical mechanics, the aforementioned

form shows us that the black hole decomposition can be regarded as a black hole

evolving into a new state. As such, Hawking radiation has Statistic nature which

means that properties other than mass, angular momentum and electric charge of

black holes effect Hawking radiation spectrum. This fact could potentially solve

the information loss paradox. A self-gravitational effect of the Hawking radiation

particle is found as a correction term to standard Bekenstein-Hawking tempera-

ture. While negligible, the correction term implies that the Hawking radiation is

somewhat deviate from blackbody radiation. Moreover, in ‘Quantum Tunneling’

chapter, our calculation only gives us an approximation solution. We had ne-

glected the pre-factor of decay rate. In a more detailed calculation, the pre-factor

is found to be depending on frequency of Hawking radiation as well which further

supports that the radiation fits poorly with blackbody radiation. A charged black

hole is also being studied [7].

Afterward, uncertainty principles are adapted to calculate Hawking temper-

ature. The method gives us Hawking temperature rather easily. However, the

resultant temperatures need calibrating factors which means that we need to al-

ready obtain Hawking temperature from other methods. Nevertheless, the fact

that this method yields Hawking temperature in a quick and easy manner is quite

useful. By modifying Heisenberg uncertainty principle, the existence of black hole

remnant is shown [12]. These modifications are done by taking account of the

actual measuring process. With these modifications, the minimum position un-

certainty is no longer zero as the momentum uncertainty diverges to infinity. Due

to the minimum position uncertainty, the black hole diameter is known to have a

minimum size in length at which point the evaporation process must stop. The

existence of remnant has a potential to solve the information loss paradox. Since

a black hole does not undergo a complete evaporation process, the information

stored within the black hole is preserved in the remnant.

Additionally, physical interpretations of new mass scales (MT , M ′
T ) which

are constructed from dimensional analysis are known to be the maximum (M ′
T )

and the minimum (MT ) mass limits of black hole remnant subjugated by the

‘Minimum Length Uncertainty Relation’ (MLUR). We had also studied the black
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hole entropy where we find that, under the MLUR modification, the entropy of

black hole obeys holography only at either the large mass limit or the remnant

mass limit. The holography in the MLUR type of black hole seems to be lost at

other limits. The holographic property at the remnant mass limit was also shown

to be hold at arbitrary non-compact D-dimension. Life time of the MLUR type

of black hole is also being studied which is found to have the minimum life time

varying between 10−99 and 1021 [13].

Lastly, Hawking radiation is identified as a cancellation term to the Einstein

anomaly. Anomalies in quantum physics are representations of the inconsistency

in quantum theory. The Einstein anomaly is derived from the general coordinate

transformation in a fermion graviton loop. This anomaly violates the conservation

of total energy and momentum. In analogous to the quantum Hall effect where

the gauge anomaly in electric field is known to induce magnetic field, the Einstein

anomaly is shown to induce thermal radiation, that is, Hawking radiation [19].

The interpretation of Hawking radiation in this method is rather interesting. The

Hawking radiation is derived as a cancellation term which preserves the consistency

in quantum gravity. Although the quantum gravity nature of Hawking radiation

is very clear in this method, the calculation steps are rather complicated. [18].

5.1 Future study

In the chapter three, we have neglect the pre-factor term and utilized WKB ap-

proximation. It will be quite interesting to derive Hawking radiation in a full

detail without using WKB approximation. In the chapter four, new mass scales

were introduced. These mass scale were only discovered recently (2016). It will be

interesting to discover other possible physical meaning and implications. Due to

an incompletion of quantum-gravity theory, we cannot find any potential solution

to information loss paradox in the chapter five. With better a understanding of

gravitational anomaly and quantum-gravity, it will be worth our time to re derive

Hawking radiation with better details via the method as shown in the chapter five.
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Appendix A

Detailed Calculation

A.1 Bogolubov Transformation

From special relativity, every observer with different velocity will have his or her

own different spacetime coordinate. As such, it is not unusual to have two different

observers, each observer with his or her own different annihilation and creation

(âi,b̂i) operators as well as different free wave modes (fi,gi). In order to, compare

a state between different observer, it is useful to establish a transformation of

operators and free wave modes between each observer. Bogolubov transformation

is such transformation [1].

While these operators and wave modes belong to different observers, it still

have the same orthonormal properties for these different free wave modes, that is,

(fi, fj) = δij, (gi, gj) = δij,

(f ∗i , f
∗
j ) = −δij, (g∗i , g

∗
j ) = −δij.

Additionally, these operators have the following commutation relations,

[âi, âj] = 0, [â†i , â
†
j] = 0, [âi, â

†
j] = δij.

[b̂i, b̂j] = 0, [b̂†i , b̂
†
j] = 0, [b̂i, b̂

†
j] = δij.

Our matter field can also be expanded as,

φ =
∑
i

(âifi + â†if
∗
i ), (A.1)

φ =
∑
i

(b̂igi + b̂†ig
∗
i ). (A.2)

Let us define a transformation from one wave modes to another wave modes as,

gi =
∑
j

(αijfj + βijf
∗
j ), (A.3)
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where αij and βij are Bogolubov coefficients. We shall implement the following

normalization condition on these coefficients,∑
k

(αikα
∗
jk − βikβ∗jk) = δij, (A.4a)∑

k

(αikβjk − βikαjk) = 0. (A.4b)

Before we move forward, it will be easier to work in the matrix notation. Let

G =

[
gi

g∗i

]
, F =

[
fi

f ∗i

]
, A = [αij], and B = [βij]. In addition, (A.3) is needed

to be complex conjugated which yields g∗i =
∑

j(β
∗
ijfj + α∗ijf

∗
j ).

By transforming (A.3) and (A.4) into matrix notation, we have,

G =

[
A B

B∗ A∗

]
F, (A.5a)

AA† −BB† = [1], (A.5b)

ABT −BAT = [0]. (A.5c)

With these properties, it is possible to construct a matrix which transforms F

into G. The matrix is equaled to

[
A B

B∗ A∗

]−1

. An inverse matrix can easily be

constructed by utilizing properties (A.5b) and (A.5c) which yield,

[
A† −BT

−B† AT

]
.

From the constructed matrix, the following expansions are known,

fi =
∑
j

(α∗jigj − βjig∗j ), (A.6a)

f ∗i =
∑
j

(−β∗jigj + αjig
∗
j ). (A.6b)

By substituting (A.6) into (A.1), the following result is obtained,

φ =
∑
i

(âifi + â†if
∗
i ),

=
∑
i

(âi
∑
j

(α∗jigj − βjig∗j ) + â†i
∑
j

(−β∗jigj + αjig
∗
j )),

=
∑
j

(
∑
i

(âiα
∗
ji − â

†
iβ
∗
ji)gj −

∑
i

(âiβji − â†iαji)g∗j ),

The above result must agree with (A.2). Hence, the transformation between op-

erators are,

b̂j =
∑
i

(α∗jiâi − β∗jiâ
†
i ). (A.7)
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Similarly, by substituting (A.3) into (A.2), the following result is obtained,

âj =
∑
i

(α∗ij b̂i + β∗ij b̂
†
i ). (A.8)

From (A.7) and (A.8), we have a transformation of operator between different

observers. Additionally, we can transform free wave modes between each observer

with (A.3) and (A.6). This concludes Bogolubov transformation.

A.2 Radiation in 1+1 Dimensions

Generally, from Stefan-Boltzmann’s law, blackbody radiation flux is,

Φ =
π2

60
T 4. (A.9)

The above formula describes a blackbody radiation flux in 3+1 dimension. How-

ever, most of our work is in 1+1 dimension. Naturally, the radiation flux in

different dimension would be in difference form due to directions by which the

radiation flux propagates. As such, it is useful to re-derive blackbody radiation

flux in 1+1 dimension.

Starting from total energy of massless boson,

U =

∫ ∞
0

Ū(ω)dn(ω),

where Ū(ω) is an average thermal energy of boson gas and dn(ω) is multiplicity

of energy states between frequency interval ω to ω + dω. In order to find dn(ω),

we need to work in mode of frequency (k); dn(k) is simply dk in 1+1 dimensions.

From ω = kπ
L

, dn(ω) = (L/π)dω (c ≡ 1; natural unit). L will also equal to volume

of the box containing our interested boson gas,

U =

∫ ∞
0

ω

eβω − 1

L

π
dω,

U

L
=

1

β2π

∫ ∞
0

x

ex − 1
dx.

Here, a new variable is defined, x = βω. The integration term can be solved by,∫ ∞
0

x

ex − 1
dx =

∫ ∞
0

xe−x

1− e−x
dx =

∞∑
k=1

∫ ∞
0

xe−kxdx,

=

(
∞∑
k=1

1

k2

)(∫ ∞
0

ye−ydy

)
= ξ(2)Γ(2),

=
π2

6
,
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where y = kx. Substitute the result back, energy density is found to be,

u =
1

β2π

π2

6
,

=
π

6
T 2.

However, the result is a total energy emitted by a blackbody which radiates to

both r+ and r− directions. Hence, the blackbody radiation emitted to r+ direction

is only πT 2/12.

It is worth noticing that πT 2/12 is an energy density of the blackbody ra-

diation (emission energy density, u) not the blackbody radiation flux (emission

power density, Φ). In order to find the blackbody radiation flux, we will need to

do small calculation steps. The emission power density will equal to the rate that

the energy density passes through some fixed area (uAc) divided by that area (A).

Thus, Φ = uc = πT 2/12, under natural unit.

A.3 Minimum Length Uncertainty Relations

Previously in ‘Uncertainty Principle’ chapter, we used a new modification to un-

certainty principle called MLURs without proper introduction. In this section, we

will derive MLURs in more detail [13]. We will also restore the natural constants

in this section.

Starting with Heisenberg’s uncertainty principle,

∆x ≥ ~
2∆p

.

The above relation tells us that there is a natural limit on how precise we can

measure position and momentum of a quantum object. However, the above equa-

tion neglects the process of actual measurement. For example, if uncertainty

from our probe is being considered, then an extra term equals to the size of

our probe (∆x ≥ l) must be added. If the object in question interact with

its own energy/momentum, then another uncertainty proportional to ∆p will be

added (β∆p). Thus, the uncertainty principle is modified into the following form,

∆x ≥ ~
2∆p

+ l + β∆p. (A.10)

Formerly, ∆x can have a value as low as zero, but with these additional terms

it is clear that as ∆p → ∞, ∆x also diverges to infinity. Hence, there is a non-

zero minimum value of position uncertainty ∆xmin which can be calculated by
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minimizing ∆x with respect to ∆p and obtained,

∆xmin = l +
√

2~β.

The corresponding ∆p which gives ∆xmin is,

∆pc =

√
~

2β
.

Since we can make the probe size to be arbitrary small, therefore ∆xmin is roughly

equaled to
√

2~β.

Another form of additional term is ∆x ≥ 2R∆p/Mc. The term arises from

the following thought experiment; suppose we have a particle traveling parallel to

a mirror. Let R be the distance between the particle and the mirror. The time it

would require for photon to be emitted from the particle, reflected by the mirror

and absorbed back by the same particle is roughly t = 2R/c. During that period,

the particle would have gain additional position uncertainty of ∆x = (∆p/M)t =

2R∆p/Mc. Thus, we have a new uncertainty principle,

∆x ≥ ~
2∆p

+
2R∆p

Mc
. (A.11)

The above uncertainty principle is called ‘Minimum length uncertainty relations’

(MLURs). By comparing the above relation with (A.10), we see that it is the case

where l = 0 and β = 2R/Mc. From the relation, if ∆x is minimized with respect

to ∆p, the following result is obtained,

∆xmin = 2

√
R~
Mc

. (A.12)

Certainly, the minimum value of l is equaled to Schwarzschild radius of the particle

that we measure. Thus,

∆xmin =
GM

c2
+ 2

√
R~
Mc

. (A.13)

From the above equation, ∆xmin is minimized with respect to M in order to find

the lowest possible value of ∆xmin. The lowest value is,

∆xmin =
3

2

(
RG~
c3

)1/3

=
3

2
(RR2

P )1/3, (A.14)

where the corresponding mass which gives ∆xmin is,

Mc =
1

2

(
R~c3

G2

)1/3

=
1

2
(R
√

Λ)1/3M ′
T . (A.15)

Interestingly, the result is exactly the remnant mass we obtained from MLURs

type of Hawking radiation.
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Appendix B

Structure of Black Hole

B.1 Singularity and Event Horizon

Generally, we believe that a black hole is composed of a point material mass (sin-

gularity) and an encompassed-surface (event horizon) where light traveled away

from the black hole trapped on. However, there are some theories suggest that

when a black hole was born, material masses could not move across the horizon.

Additionally, at the length smaller than Planck’s length, gravitation can behave

as a repulsive force as well. Thus, there is no singularity. All the material masses

are distributed around event horizon. This type of black hole is called ‘Bardeen

black hole’ or ‘Regular black hole’ [20].

We will look at the creation of a black hole and consider how the above

statement might have been true [21]. Starting from a dust sphere under a process

of collapsing into a black hole, line element within said dust sphere is,

ds2 = dt2 −R2(t)
(
dχ2 + χ2dΩ2

)
, (B.1)

where R(t) is a radius of the dust sphere. χ is a scaling coordinate within the dust

sphere with value ranging from zero to one.

Assuming Schwarzschild space background, line element outside the dust

sphere is,

ds2 =
(

1− a

r

)
dt2 −

(
dr2

1− a
r

+ r2dΩ2

)
. (B.2)

Considering the case where r and χ are constants, the following equations are

hold,

Inside : ds2 = dt2 −R2(t)χ2dΩ2, (B.3a)

Outside : ds2 =
(

1− a

r

)
dt2 − r2dΩ2. (B.3b)
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From Lagrangian outside the dust sphere, the following result is obtained,

L =
(

1− a

r

)
ṫ2 − r2θ̇2 − r2 sin2 θφ̇2,

0 =
∂L

∂t
= ∂τ

[
2
(

1− a

r

)
ṫ
]
.

∴ ṫ =
1(

1− a
r

) .
By substituting the above result into original Lagrangian, and assuming spherical

symmetry, we have,

L = 1 =
(

1− a

r

)
ṫ2 − ṙ2

1− a
r

,

=
1

1− a
r

− ṙ2

1− a
r

.

∴ ṙ2 =
a

r
. (B.4)

Since Ṙ has the same form as ṙ (Ṙ2 = A/R), parameter from inside and outside

can be connected by simply setting a = A and r = R.

To help with further calculation, let us set R = f(x) as follow,

R = Ax2,

t =
2

3
Ax3.

It is very straightforward to verify that, Ṙ2 = A/R, still hold.

From equation of state inside the dust sphere (w = 0),

ρ = kR−3,

where k is some constant. Since mass of the dust sphere must equal to ρV , value

of k can be calculated by,

M =
k

R3

4

3
πR3 =

4πk

3
.

∴ k =
3M

4π
=

3A

8π
.

Properties, 2M = a = A, are used in the last line. By substituting the above

solution back into the equation of state, the density of dust sphere is found to be,

ρ =
3A

8π

1

r3
. (B.5)

We shall now find a moment when the creation of the event horizon occurs. The

time when our dust sphere supposes to completely collapse into singularity will be
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identified as zero. The worldline of light that would be ‘freeze’ on the horizon is

being retraced back in time. This worldline will show us exactly where the event

horizon is. The condition at the horizon is, r = a. This condition, along with

previous continuous conditions, lead us to new conditions of, R = r = a = A =

2M . The only value of x which satisfies both R = A and t < 0 is, x = −1. The

event horizon can now be retraced from the moment it envelops our dust sphere

to its creation,

0 = dt2 −R2dχ2,∫
1

R
dt =

∫
dχ,∫ −1

x0

1

Ax2
2Ax2dx =

∫ 1

0

dχ = 1,

∴ x0 = −3

2
, (B.6)

where x0 is a parameter corresponding to the creation of the event horizon. Thus,

the time when the horizon emerges is,

t = −9

4
A. (B.7)

This shows us that the event horizon is created 9A/4 before our dust sphere

actually finishes collapsing into singularity. The time interval between horizon

creation (−9A/4) and all material masses cross horizon (−2A/3) is 19
12
A. This

period is rather interesting as we have horizon even before the black hole is actually

born. Also, at the very moment the surface of our dust sphere touches the horizon,

the horizon has a size equals to that of Schwarzschild radius. Some theory suggests

that phenomenon prevents the collapsing process from completion.

B.1.1 A Generalization to Schwarzschild dS and AdS Space

In previous section, we had assumed Schwarzschild space. In order to obtain

more generalized solutions, we will now repeat our calculation under Schwarzschild

AdS/dS space. In the new back ground, our metric becomes,

ds2 =

(
1− a

r
− Λ

3
r2

)
dt2 −

(
dr2

1− a
r
− Λ

3
r2

+ r2dΩ2

)
. (B.8)

By simply repeating our previous calculation steps, a new ṙ is found to be,

ṙ2 =
a

r
+

Λ

3
r2 (B.9)
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However, our new Ṙ will equals to A/R+ ΛR2/3. Thus, the continuous condition

still yields the same restriction, A = a and R = r. The other differences are our

conditions at the horizon and our form of R. For now, we will set,

R = f(x),

t = g(x),

In order to find what form f(x) and g(x) should take, we will try to determine

the moment a horizon emerges, ∫
1

R
dt =

∫
dχ,∫

1

f(x)
g′(x)dx = 1.

From Ṙ, a relation between f(x) and g(x) is found to be,

Ṙ2 =

(
dR/dx

dt/dx

)2

=

(
f ′(x)

g′(x)

)2

=
A

f(x)
+

Λ

3
f 2(x),

g′(x) =
f ′(x)f 1/2(x)(
A+ Λ

3
f 3(x)

)1/2
.

Substitute the relation back into our previous equation, we get,

1 =

∫
f ′(x)

f 1/2
(
A+ Λ

3
f 3(x)

)1/2
dx.

We can now guess the form of f(x),

Schwarzschild de Sitter : f 3(x) =
3A

Λ
tan2 x,

Schwarzschild Anti-de Sitter : f 3(x) =
3A

Λ
sin2 x.

Consequently, our g(x) becomes, under initial condition g(0) = 0,

Schwarzschild de Sitter : g(x) = 2
A1/3

(3Λ)1/2
ln(secx+ tanx),

Schwarzschild Anti-de Sitter : g(x) = 2
A1/3

(3Λ)1/2
x.

Hence, our integration becomes,

Schwarzschild de Sitter : 1 =
2

35/6

1

Λ1/6

∫ xe

x0

secx

tan2/3 x
dx, (B.10a)

Schwarzschild Anti-de Sitter : 1 =
2

35/6

1

Λ1/6

∫ xe

x0

dx

sin2/3 x
, (B.10b)
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where xe is a parameter corresponding to the moment horizon envelops the dust

sphere. The value of xe is needed to be evaluated. At that particular moment,

the following conditions are hold, R = r = rH , where rH is a horizon radius. We

know that radii of the horizon are,

rSchwarzschild−dS =
2√
Λ

cos

[
π

3
+

1

3
cos−1(3M

√
Λ)

]
, (B.11a)

rSchwarzschild−AdS =
2√
Λ

sinh

[
1

3
sinh−1(3M

√
Λ)

]
. (B.11b)

By solving for values of xe for each case, x0 can then be evaluated. These steps

must be done by computational evaluation. For a dust sphere with solar mass, we

find,

Schwarzschild de Sitter : xe = −3.92403× 10−27, (B.12a)

Schwarzschild Anti-de Sitter : xe = −4.64483× 10−37, (B.12b)

while x0 have values of,

Schwarzschild de Sitter : x0 = −3.92399× 10−27, (B.13a)

Schwarzschild Anti-de Sitter : x0 = −1.05367× 10−8. (B.13b)

From these results, the interval of time between the creation of horizon and the

moment our horizon completely envelops the dust sphere can be evaluated,

Schwarzschild de Sitter : t = 6.5001, (B.14a)

Schwarzschild Anti-de Sitter : t = 1.74541× 1019. (B.14b)

These results are in second unit.
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Appendix C

Einstein Anomaly

In field theory, an anomaly occurs as an evident that a symmetry of action

or corresponding conservation law which was valid in classical theory is violated in

quantized version of the theory. These anomalies are indication of inconsistency

of the theory. However, there is a different between global and local symmetry

breaking. The global symmetry breaking is good for the consistency of the theory

as it provides, for example, the physical explanation for the π0-decay [22]or the

U(1) problem in QCD [23]. While the local symmetry breaking leads to the

inconsistency of the quantum theory. The anomalous terms can cause the theory

to lose re-normalizeability or S-matrix to lose its unitarity property.

An Einstein anomaly is corresponding to the violation of classical conserva-

tion law of the energy-momentum tensor, ∇µT
µν 6= 0. This anomaly occurs from

general coordinate transformations in fermion graviton loop. Other important

anomalies are Lorentz anomaly which is an asymmetry of the energy-momentum

tensor, T µν 6= T νµ, and Weyl anomaly which is a non-vanishing of the trace of

energy-momentum tensor, Tαα 6= 0.

In ‘Gravitational Anomaly’ chapter, we simply introduce the Einstein anomaly

(5.1) without any proof. We will now verify that the aforementioned equation

holds [24]. Starting with two-dimension Lagrangian describing a Weyl fermion in

a gravitational back ground,

L =
ie

2
ψ̄γµ
←→
D µ

1± γ5

2
ψ,

=
ie

2
Eaµψ̄γa

←→
D µ

1± γ5

2
ψ, (C.1)

where eaµ is the zweibein and Eµ
a is inverse zweibein (Eµ

a e
a
ν = δµν ), e is the deter-

minant of the zweibein e = | det eaµ|, and Dµ = ∂µ + ωµ is the covariant derivative

with spin connections ωµ.

The Einstein anomaly and the Weyl anomaly can be determined by one loop
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fermion graviton. It is sufficient to use linearized gravitational field,

gµν = ηµν + κhmuν +O(κ2), gµν = ηµν − κhµν +O(κ2),

eaµ = ηaµ +
1

2
κhaµ +O(κ2), Eµ

a = ηµa −
1

2
κhµa +O(κ2).

In two-dimension, ωµ = 0. κ is absorbed into hµν for convenience. A linearized

interaction Lagrangian is found to be,

LlinI = − i
4

(
haµψ̄γa

1± γ5

2

←→
∂ψµ ψ + hµµψ̄γ

a1± γ5

2

←→
∂ψa ψ

)
, (C.2)

where
←→
∂ψµ only acts on ψ. The second term comes from, e = 1− hµµ +O(h2).

We have the following properties,

LlinI = −1

2
hµνT

µν ,

T µν =
1

2
(T µa E

aν + T νaE
aµ).

From these properties, we can read off T µν as,

T µν =
i

4

(
ψ̄Eaνγa

1± γ5

2

←→
∂µψ + ψ̄Eaµγa

1± γ5

2

←→
∂ν ψ

)
. (C.3)

From the above expression, vertices in the loop diagram is found to be,

− i
4

(γµ(k1 − k2)ν + γν(k1 − k2)µ)
1± γ5

2
. (C.4)

The whole amplitude can be given by two-point function,

Tµνρσ(p) = i

∫
d2xeipx〈0|T [Tµν(x)Tρσ(0)]|0〉.

This amplitude can be used to calculate many anomalies; however, only one

anomaly interested us; that is the Einstein anomaly (∇µTµν). It is quite clear that

with some integration by part, differential operator (∇µ) can be moved from Tµν

term to eipx term. In other word, ∇µTµν is equivalent to pµTµνρσ. If pµTµνρσ = 0,

then the Einstein anomaly is vanished. But if pµTµνρσ have non-zero value, then

that value is our Einstein anomaly.

The amplitude will now be separated into a vector part and an axial part,

Tµνρσ = T Vµνρσ + TAµνρσ. (C.5)

It is possible to expand the vector part using form-factors,

T Vµνρσ(p) = pµpνpρpσT1(p2) + (pµpνgρσ + pρpσgµν)T2(p2)

+(pµpρgνσ + pµpσgνρ + pνpρgµσ + pνpσgµρ)T3(p2)

+gµνgρσT4(p2) + (gµρgνσ + gµσgνρ)T5(p2). (C.6)
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Generally, the terms pµpνgρσ and pρpσgµν should be separate and have its own

form-factor, but due to symmetries (µ↔ ν, ρ↔ σ, and µν ↔ ρσ) the two terms

must have equal value of form-factor. p2 is represented square of momentum

amplitude. Likewise, the form factors of the axial part can be expanded as,

TAµνρσ(p) = (εµτp
τpνpρpσ + εντp

τpµpρpσ + ερτp
τpµpνpσ + εστp

τpµpνpρ)T6(p2)

+(εµτp
τpνgρσ + εντp

τpµgρσ + ερτp
τpσgµν + εστp

τpρgµν)T7(p2)

+[εµτp
τ (pρgνσ + pσgνρ) + εντp

τ (pρgµσ + pσgµρ)

+ερτp
τ (pµgνσ + pνgµσ) + εστp

τ (pµgνρ + pνgµρ)]T8(p2). (C.7)

Let us contract pµ to identify what is needed to be calculated in order to evaluate

the Einstein anomaly,

pµT Vµνρσ = pνpρpσ(p2T1 + T2 + 2T3) + pνgρσ(p2T2 + T4)

+(pρgνσ + pσgνρ)(p
2T3 + T5), (C.8)

pµTAµνρσ = εντp
τ [pρpσ(p2T6 + 2T8) + gρσp

2T7]

+ερτp
τ [pνpσ(p2T6 + T7 + T8) + gνσp

2T8]

+εστp
τ [pνpρ(p

2T6 + T7 + T8) + gνρp
2T8]. (C.9)

For a pure vector part, we will see later on that there is no anomaly. From (C.8),

if left hand side is set to zero, then the following equations are obtained,

p2T1 + T2 + T3 = 0, (C.10a)

p2T2 + T4 = 0, (C.10b)

p2T3 + T5 = 0. (C.10c)

These conditions are called ‘Ward Identity’.

The amplitude of massive fermion according to Feynman rules is,

Tµνρσ(p) = − i

16
Tr

∫
d2k

(2π)2

[
[γµ(p+ 2k)ν + γν(p+ 2k)µ]

1± γ5

2

/p+ /k +m

(p+ k)2 −m2 + iε

[γρ(p+ 2k)σ + γσ(p+ 2k)ρ]
1± γ5

2

/k +m

k2 −m2 + iε

]
. (C.11)

Naturally, the amplitude has symmetry with the interchange of indexes, which

would make a lot of confusion. Therefore, we need to expand T Vµνρσ into four

different terms each with its own non-interchangeable indexes,

T Vµνρσ = T niµνρσ + T niνµρσ + T niµνσρ + T niνµσρ.
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Let us take a closer look at integrand of (C.11). There are two (1± γ5)/2 terms,

I = A
1± γ5

2
B

1± γ5

2
C,

4I = ABC ± Aγ5BC ± ABγ5C + Aγ5Bγ5C,

= 2ABC ± (Aγ5BC + ABγ5C).

∴ I =
1

2
ABC ± 1

4
(Aγ5BC + ABγ5C).

This is possible because there are two γ-matrices in B. The first term will con-

tribute to T Vµνρσ while the second term contributes to TAµνρσ. As such, T Vµνρσ will

be twice as large as TAµνρσ. In two-dimension, the following property holds,

γµγ5 = −εµνγν .

It is clear how the term Aniµνγ5B
ni
ρσC become ∓1

2
ετµT

ni
τνρσ. Hence,

TAµνρσ = ∓
[

1

2
(ετµT

ni
τνρσ + ετρT

ni
µντσ) +

1

2
(ετνT

ni
τµρσ + ετρT

ni
νµτσ)

+
1

2
(ετµT

ni
τνσρ + ετσT

ni
µντρ) +

1

2
(ετνT

ni
τµσρ + ετσT

ni
νµτρ)

]
. (C.12)

The form-factors will now be evaluated by utilizing Cutkosky’s rules,

ImT niµνρσ =
1

32

∫
d2k(p+ 2K)ν(p+ 2k)σ

×
[
(p+ k)µkρ + (p+ k)ρkµ − gµρ(p+ k)λkλ

]
×δ(k2 −m2)δ((p+ k)2 −m2)θ(−k0)θ(k0 + p0). (C.13)

Since we are going to work in near-light speed limit, the term with m2 will be

ignored. Considering the following Dirac delta function property,∫
dxf(x)δ(x) = f(x0), (C.14)

where f(x0) = 0. Hence ImT niµνρσ becomes,

ImT niµνρσ =
1

32
(p+ 2K)ν(p+ 2k)σ[(p+ k)µkρ

+(p+ k)ρkµ − gµρ(p+ k)λkλ]|k′J0, (C.15)

where k′ is a solution to equations k2 − m2 = 0 and (p + k)2 − m2 = 0 and J0

equals to,

J0 =

∫
d2kδ(k2 −m2)δ((p+ k)2 −m2)θ(−k0)θ(k0 + p0),

=
1

p2

(
1− 4m2

p2

)−1/2

. (C.16)
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Let us solve for k′ in term of p. Starting from, k2−m2 = 0. With the step function

θ(−k0), k0 is found to be,

k0 = −
√
k2

1 +m2.

From (p+ k)2 −m2 = 0,

p2 + 2p · k + k2 −m2 = 0,

p2 + 2p · k = p2 + 2(p0k0 − p1k1) = 0,

p2 − 2(p0

√
k2

1 +m2 + p1k1) = 0,

p2

2
− p1k1 = p0

√
k2

1 +m2.

By squaring both sides of equation and treat it as a quadratic equation, the value

of k1 is found to be,

k1 = −
p1 ± p0

√
1− 4m2

p2

2
. (C.17)

Substituting the above value into k0 = −
√
k2

1 +m2,

k0 = −

√√√√√p1 ± p0

√
1− 4m2

p2

2

2

+m2,

= −1

2

√√√√(p1 ± p0

√
1− 4m2

p2

)2

+ 4m2,

= −1

2

√√√√p2
1 + p2

0

(
1− 4m2

p2

)
± 2p0p1

√
1− 4m2

p2
+ 4m2,

= −1

2

√√√√p2
1

(
1− 4m2

p2

)
+ p2

0 ± 2p0p1

√
1− 4m2

p2
,

= −1

2

√√√√(p0 ± p1

√
1− 4m2

p2

)2

.

Thus, k0 can be written in term of p0 and p1 as,

k0 = −
p0 ± p1

√
1− 4m2

p2

2
. (C.18)

By substituting both k0 and k1 into J0, we can verify that (C.16) holds.

We will now set (µ,ν,ρ,σ) into different sets of values to solve for T1(p2)-
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T5(p2). For example,

(0, 0, 0, 0),

LHS :
J0

32
(p+ 2k)0(p+ 2k)0[(p+ k)0k0 + (p+ k)0k0 − g00(p+ k)λkλ],

= −p2
1(p2

0 + p2
1)
m2

p2

(
1− 4m2

p2

)
,

RHS : p4
0T

ni
1 (p2) + 2p2

0T
ni
2 (p2) + 4p2

0T
ni
3 (p2) + T ni4 (p2) + 2T ni5 (p2).

However, after substituting every possible sets of (µ,ν,ρ,σ), only the T ni1 (p2) can

be solved,

ImT1(p2) = −1

4
J0
m2

p2

(
1− 4

m2

p2

)
,

which is not surprising since it is possible to boost our reference frame and obtain

different anomalous results. Nevertheless, we would obtain enough relationship

between T2(p2)-T5(p2) to verify that (C.10) would hold. Subsequently, by utilizing

(C.12), the following properties are obtained,

T6 = ∓1

4
T1, T7 = ∓1

4
T2, T8 = ∓1

4
T3.

Since we can verify that (C.10) holds regardless of our inability to find exact value

of T2(p2)-T5(p2), we know that pµT Vµνρσ = 0. Hence, only the anomaly in axial part

is needed,

pµTAµνρσ(p) = −T7εντp
τ (pρpσ − gρσp2)

−T8(ερτp
τ (pνpσ − gνσp2) + εστp

τ (pνpρ − gνρp2)),

= ±1

4
T2εντp

τ (pρpσ − gρσp2)

±T3(ερτp
τ (pνpσ − gνσp2) + εστp

τ (pνpρ − gνρp2)).

Here, the relationship εντp
τpρpσ + ερτp

τpσpν + εστp
τpνpρ = 0 is used. Next, in flat

space limit (h→ 0), the following properties hold,

εντp
τ (pρpσ − gρσp2) = ερτp

τ (pσpν − gσνp2) = εστp
τ (pνpρ − gνρp2).

Thus, our axial anomaly is,

pµTAµνρσ(p) = ±1

4
(T2 + 2T3)εντp

τ (pρpσ − gρσp2),

= ∓p
2

4
T1εντp

τ (pρpσ − gρσp2).

Again, we use (C.10). In the end, we do not need to find any specific value of

T2(p2)-T5(p2) and the Einstein anomaly is still obtainable. This means our Einstein

anomaly is independent of reference frame.
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We only need to find the value of T1(p2) to complete our evaluation of the

Einstein anomaly. From dispersion relation for the form-factors,

T (p2) =
1

π

∫ ∞
4m2

dt

t− p2
ImT (t).

T1(p2) can be evaluated as,

T1(p2) = − 1

4π

∫ ∞
4m2

dt

t− p2

m2

t2

(
1− 4m2

p2

)1/2

.

To solve the above equation, we set t = 4m2 sec2 θ,

T1(p2) = −
(
m2

4π

)∫ π
2

0

2(2m)2 sec2 θ tan θdθ

(2m)2 sec2 θ − p2

2m tan θ

(2m)5 sec5 θ
,

= −
(
m2

4π

)
2

(2m)4

∫ π
2

0

(sec2 θ − 1)dθ

sec3 θ(sec2 θ − (p/2m)2)
.

By utilizing the following identities,

x2 − 1

x3(x2 − A2)
=

(
1− A2

A4

)
1

x
+

1

A2

1

x3
+

(
A2 − 1

A4

)
x

x2 − A2
,∫ π

2

0

cos θdθ = 1,∫ π
2

0

cos3 θdθ =
2

3
.

T1(p2) is found to be,

T1(p2) = −
(
m2

4π

)
2

(2m)4

[(
4m2

p2
− 1

)
4m2

p2
+

2

3

(
4m2

p2

)
− 4m2

p2

(
4m2

p2
− 1

)∫ π
2

0

sec θdθ

sec2 θ − (p/2m)2

]
.

Next, the last integration is needed to be evaluated,∫ π
2

0

sec θdθ

sec2 θ − (p/2m)2
=

∫ π
2

0

cos θ

1−
(

p2

4m2

)
cos2 θ

dθ,

=

∫ π
2

0

d sin θ(
1− p2

4m2

)
+
(

p2

4m2

)
sin2 θ

,

=
4m2

p2

√
p2

4m2 − p2
arctan

√
p2

4m2 − p2
.

By substituting the integration result back into our original equation, we obtain,

T1(p2) =
1

p2

[
1

24π
− 1

2π

m2

p2

+
1

2π

m2

p2

√
4m2 − p2

p2
arctan

√
p2

4m2 − p2

]
. (C.19)
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Under massless limit, T1(p2) simply becomes,

p2T1 =
1

24π
.

Thus, our anomaly is,

pµTµνρσ(p) = ∓ 1

96π
εντp

τ (pρpσ − gρσp2). (C.20)

We can, then, deduce the Einstein anomaly via Fourier Transformation,

∂µ〈Tµν〉 = ∓ 1

192π
εµν∂

µ(∂α∂βh
αβ − ∂α∂αhββ). (C.21)

This result agrees with linearization of,

∇µ〈Tµν〉 = ∓ 1

96π

1

e
εαβ∂α∂ρΓ

ρ
βν . (C.22)

This equation is exactly (5.1) at the beginning of ‘Gravitational Anomaly’ chapter

(Note: e =
√
−g).
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