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ABSTRACT

This thesis begins with the binominl coefficients which we

con wrlte im the form

ni
r r! (n - r)!

s

tevovaeaall)

When n and r are popltive integers, the values of the
function ncr are defined on the lattiece points in the lat
quadrant of the {r, n) plane , and these valucs form 2 pattem
known as Poscal’s trlangle. Uking the well-known rule for con-
structing Pescal’s triangle, we can find the values of the
function on the iattice pointes in the 2nd gquodrant.

We hove two ways to extend the function $o the Jrd oand
Lth quadrants.

(2} Uaing the binomial series

(1 + ﬂ]n = n11:‘:|I‘l_+ nCla + nCEHE + s4as , lettingn

. ] _ 1
be a negative integer and  fa] < | , and using a * =,
g

we obtain volues of the function on the lattice polints in the

¥

Ard and 4th quadrents.

It
{b} Using the bincmial serles in (a) and replacing (1 + a)

by {a& + 1) with n e negative integer ond la]l >»! ., and using
- 1
a ¥ = ok we obtaln snother set of values of the functlon on

the lottice points in the 3rd snd 4th quadrants, that are different

from the values 1n {&).
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From {1), replacing factorials by gemma functions,we have

N - Tin + 1) rereeead2)

r T'(r+l}]"{n-r+1},

n
and replecing C 1in (2) by £(r, n} , we have
r

Ti{n + 1)

- sessinal3)
T{r+1}r{n—r+1}

f (1‘, n] =

By using (3), we obtain the values of the funecticn on
the other points in the (r, n) plane.

But Tn) bes singularities for n =0, -1, -2, -3, ..e4.
and s¢ om. Therefore, f{r, n) hes singulur:l‘.tiea fop n = =1,-2,
=3, vsas , or we have singelar lines forn = -1, -2, -3, tercey

We can remove the singularities on the lattice polmnts of the
elngular lines

{1} by taking the limit along the line r = r, to the lattice

1
point {rl, nl} from elther direction, which gives the same values

as in {a) sbove, and

(2) by taking the limit olong the line ng = T, + k, where
k is an integer, to the lattice polnt [re, nE) from elther dirce-
tion , which gives the same values as in (b).

Using (1} and (3) wvariocus graphs are drown 1llustrating the

shape of the function in reglon -5 E r é + 5, -5 ‘.‘:—. n £‘.‘ +D.
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