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THE AELLATION BETWEEN THE BINOMIAE~COEFE IC IENTS

AHD THE GAMMSA FUNCTION

2.1 The Dincomial Coefficients

From the binomilal theorem we have o
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coefficients of the nth orders. By listing the expaneions for the

first few values of n as follows !
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and abstracting the coefficlents, we obtadn the familiar pattern
knowh ag Pascalss griancgle, thus
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Each entry is the sum of twe numbers In the row immediately
above, one of the numbers belng in the same column and the other
in the colum imﬁediﬂtely to the left. All numbers outside the
anpgle are zero,

Leb us replace the numbers in the apove disgrsm by ncr, 50

that , we have



The guestion of how the dlagram can be extended upwards, that
iz for negetive wolues of n, will be discussed 1n chapter 3.

2.2 The Gamma FPuncetion

The gomma function demoted by @ {n)} is defined by
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which 1s econvergent for n 3 o .

A recurrence Tormula for the gemms functioh is
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where " (1) = 1. From (2}, | {(n) san be determinzd for 21l n¥ o
when the values for 1 € n € 2 (or any other Interval of unit
length)  are known.
In particular 1f n is a poszitive 1ntcger then
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The recurrettee relation (2) i1s a8 difference equation which
haz (1) o5 o solution. Dy taking (1) as o definition of T (n)} for
n ﬁ © , We can generalize the gemma Tunction to n & o by the use

of (2) In the form
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The function thus obtained has singularities for n

-2, -3, «+.+. ond so on, as shown in Fig. 1.
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Fig.1l X The Graph of the Gamma Fuhetion

LIBRLIRGT



2.3 The Binominl Cocfficicnts in the Form of Gamma Functions

From 2.1 , we have
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gnd from {3} of 2.2 , we have

T {n+1) = nt.

Then from (1} and (2} , we have
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