กล ใกการดื้อยากลุ่ม carbapenems ในเชื้อ Acinetobacter baumannii ที่แยก ได้จากผู้ป่วย

นางสาวพรรณธิพา สมานไทย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาจุลชีววิทยาทางการแพทย์ (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

MECHANISMS OF CARBAPENEM RESISTANCE IN ACINETOBACTER BAUMANNII CLINICAL ISOLATES

Miss Pantipa Samarnthai

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Medical Microbiology (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University

Thesis Title	MECHANISMS OF CARBAPENEM RESISTANCE
	IN ACINETOBACTER BAUMANNII CLINICAL
	ISOLATES
Ву	Miss Pantipa Samarnthai
Field of Study	Medical Microbiology
Thesis Advisor	Tanittha Chatsuwan, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

.....Dean of the Graduate School (Associate Professor Pornpote Piumsomboon, Ph.D.)

THESIS COMMITTEE

..... Chairman (Assistant Professor Anan Chongthaleong, M.D.)

......Thesis Advisor

(Tanittha Chatsuwan, Ph.D.)

..... External Examiner

(Associate Professor Aroonwadee Chanawong, Ph.D.)

พรรณธิพา สมานไทย : กลไกการดื้อยากลุ่ม carbapenems ในเชื้อ Acinetobacter baumannii ที่แยกได้จากผู้ป่วย (Mechanisms of carbapenem resistance in Acinetobacter baumannii) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : อ.คร. ธนิษฐา ฉัตรสุวรรณ, 192 หน้า.

เป็นสาเหตสำคัญของการติดเชื้อในโรงพยาบาล Acinetobacter baumannii ยากล่ม carbapenems เป็นยาที่ใช้ในการรักษาการติดเชื้อ A. baumannii ที่ดื้อต่อยาหลายขนาน ปัจจุบันพบการคื้อ ต่อยา carbapenems ในอัตราสูงในหลายประเทศทั่วโลก การศึกษานี้มีวัตถุประสงค์เพื่อตรวจหาความชุกและ กล ใกการคื้อยากลุ่ม carbapenems ได้แก่ การสร้างเอนไซม์ carbapenemases การขับยาออกนอกเซลล์ และการลดลงหรือขาดหายไปของ outer membrane protein โดยทำการศึกษาในเชื้อ A. baumannii จำนวน 453 สายพันฐ์ ซึ่งแยกได้จากผู้ป่วยที่เข้ามารับการรักษาในโรงพยาบาลจุฬาลงกรณ์ ระหว่างปี พ.ศ. 2551-2553 พบอัตราการดื้อยา imipenem และ meropenem เป็นร้อยละ 88.7 เชื้อดื้อยาทุกสายพันธุ์ ตรวจพบเอนไซม์ carbapenemases แต่ตรวจไม่พบเอนไซม์ metallo-β-lactamases การตรวจหายืนคื้อ ยา carbapenems ด้วยวิธี multiplex PCR พบยืน bla_{OXA-51-like} ในเชื้อทุกสายพันธุ์ จากการศึกษาใน เชื้อ A. *baumannii* ที่ดื้อยากลุ่ม carbapenems จำนวน 402 สายพันธุ์พบ *bla*_{OXA-51-like} ร่วมกับ bla_{OXA-23-like} ร้อยละ 99.8 bla_{OXA-51-like} ร่วมกับ bla_{OXA-24-like} ร้อยละ 0.2 และ bla_{OXA-51-like} ร่วมกับ *bla*_{OXA-23-like} และ *bla*_{OXA-58-like} ร้อยละ 4 และตรวจไม่พบขืนที่สร้าง metallo-β-lactamases นอกจากนี้จากการตรวจหา ISAbal บริเวณ upstream ของยืน bla_{OXA-23-like} พบ ISAbal ในเชื้อตัวแทน ทุกสายพันธุ์ (38 สายพันธุ์) และพบ ISAba3 บริเวณ upstream ของยืน bla_{OXA-58-like} ในเชื้อทั้งหมดที่ ้นำมาศึกษา (4 สายพันธุ์) เมื่อทำการวิเคราะห์ลำดับนิวคลีโอไทด์ของยืน $bla_{
m OXA-like}$ จากตัวแทนเชื้อ A. baumannii พบว่ายืน $bla_{OXA-23-like}$ จากเชื้อ 15 สายพันธุ์เป็นชนิด bla_{OXA-23} และยืน $bla_{OXA-58-like}$ จากเชื้อทั้งหมด 4 สายพันธุ์ เป็นชนิด *bla*OXA-58 ส่วน *bla*OXA-51-like พบว่าเป็นชนิด *bla*OXA-65 4 สายพันธุ์ bla_{OXA-66} 7 สายพันธุ์ และ bla_{OXA-69} 1 สายพันธุ์ จากการวิเคราะห์ลำดับนิวคลีโอไทด์ของ ISAbal บริเวณ upstream ของขึ้น bla_{OXA-23-like} ในเชื้อ 5 สาขพันธุ์ และ ISAba3 upstream bla_{OXA-58-like} ใน เชื้อทั้งหมด 4 สายพันธุ์ พบว่ามี -35 และ -10 sequence อยู่บน ISAba การศึกษากลไกการขับยาออกนอก เซลล์โดยวิธีการใช้ carbonyl cyanide m-chlorophenylhydrazone (CCCP) ซึ่งเป็นสารยับยั้งการ ขับยาออกนอกเซลล์ไม่พบกลไกการขับยาออกจากเซลล์ การตรวจหา outer membrane protein ในเชื่อ จำนวน 23 สายพันธ์โดยวิธี SDS-PAGE พบการลดลงของ outer membrane protein ขนาด 43 kDa การศึกษาในครั้งนี้แสดงให้เห็นถึงอัตราการดื้อยากลุ่ม carbapenems ที่สูงในเชื้อ A. baumannii ที่ แยกได้จากผู้ป่วยในประเทศไทยและกลไกการดื้อยา ได้แก่ การสร้างเอนไซม์ carbapenemases และการลดลง ของ outer membrane proteins โดยกลไกการคื้อยาหลักคือการสร้างเอนไซม์ carbapenemase ชนิด OXA-23-like

สาขาวิชาจุลชีววิทยาทางการแพทย์	ลายมือชื่อนิสิต
ปีการศึกษา2553	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก

5087168620 : MAJOR MEDICAL MICROBIOLOGY KEYWORDS: *ACINETOBACTER BAUMANNII /* CARBAPENEMASES / EFFLUX PUMP/ OUTER MEMBRANE PROTEIN

PANTIPA SAMARNTHAI : MECHANISMS OF CARBAPENEM RESISTANCE IN *ACINETOBACTER BAUMANNII* CLINICAL ISOLATES ADVISOR :TANITTHA CHATSUWAN, Ph.D., 192 pp.

Acinetobacter baumannii is an important cause of nosocomial infection. Carbapenems are the first line drug for treatment of multidrug-resistant A. baumannii infections. Currently, carbapenemresistant A. baumannii isolates have been increasingly reported worldwide. In this study, the prevalence and the mechanisms of carbapenem resistance in A. baumannii including the production of carbapenemases, the presence of efflux pump and the loss or decrease of outer membrane protein were investigated. A total of 453 A. baumannii isolated from patients at King Chulalongkorn Memorial Hospital between 2008-2010 were studied. The prevalence of imipenem and meropenem resistance were both 88.7%. Carbapenemase activity was found in all carbapenem-resistant A. baumannii isolates but metallo- β -lactamase enzymes were not detected in any isolates. Screening for the presence of carbapenemase genes by multiplex PCR revealed that $bla_{OXA-51-like}$ was detected in all isolates. Of the 402 carbapenem-resistant A. baumannii isolates, 99.8% carried bla_{OXA-51-like} with bla_{OXA-23-like}, 0.2% haboured bla_{OXA-51-like} with bla_{OXA-24-like} and 4% had bla_{OXA-51-like} with bla_{OXA-23-like} and bla_{OXA-58-like}. The metallo-β-lactamase genes were not found in any isolate. The ISAbal was found in the upstream region of bla_{OXA-23} in all 38 representative carbapenem-resistant A. baumannii isolates and ISAba3 was found upstream region of bla_{OXA-58} in all 4 representative isolates. Sequencing analysis of entire $bla_{OXA-like}$ showed that all 15 representative bla_{OXA-23-like} genes were bla_{OXA-23} and all 4 bla_{OXA-58-like} genes were bla_{OXA-58} . Twelve representative $bla_{OXA-51-like}$ genes were bla_{OXA-65} (4 isolates), bla_{OXA-66} (7 isolates) and bla_{OXA-69} (1 isolate). Five representative ISAba1 upstream region bla_{OXA-23-like} and all 4 ISAba3 upstream region bla_{OXA-58-like} genes had -35 and -10 sequences. The presence of efflux pump mechanism by using carbonyl cyanide m-chlorophenylhydrazone (CCCP), the efflux pump inhibitor, was determined in all 453 isolates. No carbapenem-resistant A. baumannii isolates had this mechanism. Twenty-three A. baumannii isolates were determined for the loss or decrease of outer membrane protein. Five carbapenem-resistant isolates had decreased 43 kDa outer membrane protein. This study showed high rate of carbapenem-resistant A. baumannii isolates in Thailand and demonstrated that carbapenem resistance was attributed to the production of carbapenemases and the reduction of outer membrane protein. The main mechanism of resistance was the production of OXA-23-like carbapenemases.

Field of Study: Medical Microbiology	Student's Signature
Academic Year2010	Advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following whose gave me the possibility to complete my thesis.

Tanittha Chatsuwan, Ph.D., my thesis advisor at the Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, for her guidance, intelligential motivation, understanding and strong encouragement throughout my study.

Assistant Professor Anan Chongthaleong, M.D., the chairman of thesis committee, Department of Microbiology, Faculty of Medicine, Chulalongkorn University and Associate Professor Dr. Aroonwadee Chanawong, Ph.D., the external examiner of my thesis committee, Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, for their valuable comments and suggestions.

Special thanks to all members in inter-department of Medical Microbiology, staff in the Department of Microbiology, Faculty of Medicine, Chulalongkorn University for their helpful and encouragement. My thanks also given to all of those whose names have not been mentioned, for helping me to make my thesis completely.

Finally, I am deeply thankful to my family and my friends for their support and understanding during my study.

CONTENTS

ABSTRACT	(THAI)	iv
ABSTRACT	(ENGLISH)	v
ACKNOWL	EDGEMENTS	vi
CONTENTS		vii
LIST OF TA	BLES	Х
LIST OF FIG	JURES	xii
LIST OF AB	BREVIATIONS	xiv
CHAPTER		
Ι	INTRODUCTION	1
II	OBJECTIVES	4
III	LITERATURE REVIEWS	5
	1. BACTERIOLOGY	5
	2. PATHOGENESIS AND VIRULENCE FACTORS	7
	3. NOSOCOMIAL INFECTION AND COMMUNITY-	
	ACQUIRED INFECTION	9
	4. A. BAUMANNII IDENTIFICATION	10
	5. TREATMENT OF A. BAUMANNII INFECTION	11
	6. CARBAPENEMS	13
	7. MECHANISM OF CARBAPENEM RESISTANCE IN	
	A. BAUMANNII	15
	8. EPIDEMIOLOGY OF CARBAPENEM RESISTANCE	
	IN A. BAUMANNII	23
IV	MATERIALS AND METHODS	25
	1. BACTERIAL STRAINS	26
	2. ACINETOBACTER BAUMANNII IDENTIFICATION	27
	3. ANTIMICROBIAL SUSCEPTIBILITY TESTING	31
	4. PHENOTYPIC DETECTION OFCARBAPENEMASES	35

viii

5. PHENOTYPIC DETECTION OF METALLO-β-	
LACTAMASES	36
6. SCREENING FOR THE PRESENCE OF METALLO- β -	
LACTAMASE GENES	37
7. SCREENING FOR THE PRESENCE OF OXA-TYPE	
CARBAPENEMASE GENES	39
8. SCREENING FOR THE PRESENCE OF ISABA	4
9. SCREENING FOR THE PRESENCE OF ISABA	
UPSTREAM BLAOXA GENES	43
10. ANALYSIS OF ENTIRE BLAOXA AND ISABA	
UPSTREAM BLAOXA BY PCR AND DNA	
SEQUENCING	4
11. DETECTION OF CARBAPENEM EFFLUX PUMP	5
12. OUTER MEMBRANE PROTEIN ANALYSIS	52
RESULTS	53
1. BACTERIAL STRAINS	5.
2. ANTIMICROBIAL SUSCEPTIBILITY TEST	5
3. DETECTION OF CARBAPENEMASE PHENOTYPE	6
4. DETECTION OF METALLO-β-LACTAMASES	
PHENOTYPE	6.
5. SCREENING FOR THE PRESENCE OF METALLO- β -	
LACTAMASE GENES	6.
6. SCREENING FOR THE PRESENCE OF OXA-TYPE	
CARBAPENEMASE GENES	64
7. SCREENING FOR THE PRESENCE OF ISABA IN	
A. BAUMANNII	6
8. SCREENING AND SEQUENCING OF ISABA	
UPSTREAM BLAOXA-LIKE GENES	69

V

PAGE

	9. DNA SEQUENCING AN	NALYSIS OF ENTIRE <i>BLA</i>
	GENES	
	10. DETERMINATION OF	CARBAPENEM EFFLUX
	PUMP IN A. BAUMAN	NII
	11. DETERMINATION OF	OUTER MEMBRANE
	PROTEIN IN CARBAP	ENEM-RESISTANT
	A. BAUMANNII	
	VI DISCUSSION	
	VII CONCLUSION	
REFE	RENCES	
	APPENDICES	
	APPENDIX A	
	APPENDIX B	
	APPENDIX C	
	APPENDIX D	
	APPENDIX E	
	APPENDIX F	
	APPENDIX G	
	APPENDIX H	
BIOGI	RAPHY	

LIST OF TABLES

TABLE		PAGE
1.	The taxonomy of the genus Acinetobacter	6
2.	Metallo-β-lactamase enzymes identified in <i>A. baumannii</i>	16
3.	Scheme for preparing dilutions of antimicrobial agents to used in	
	agar dilution susceptibility tests	32
4.	MIC interpretive standards for Acinetobacter spp	33
5.	Acceptable limits for quality control strains used to monitor	
	accuracy of MICs	34
6.	Primers of multiplex PCR used for amplification of bla genes	
	encoded metallo-β-lactamases	37
7.	Primers of multiplex PCR used for amplification of bla genes	
	encoded OXA-type carbapenemases	39
8.	Primers for amplification of ISAba	41
9.	Primers for amplification of ISAba upstream of bla _{OXA} genes	43
10.	Primers for PCR and DNA sequencing entire <i>bla</i> genes	47
11.	Sequence of the oligonucleotides used as primers for PCR and	
	DNA sequencing <i>bla</i> genes and ISAba upstream region	48
12.	Clinical specimen of 453 A. baumannii isolates	53
13.	The susceptibility of imipenem and meropenem against 453	
	A. baumannii isolates	57
14.	Correlation between carbapenemase genes and MICs in ICUs and	
	non-ICUs	60
15.	OXA-type carbapenemase genes in the 453 A. baumannii isolates	66
16.	OXA-type carbapenemase genes in carbapenem resistance among	
	402 A. baumannii isolates	66
17.	The correlation of the aquisition of ISAba upstream $bla_{OXA-like}$ with	
	MIC in carbapenem-resistant A. baumannii	71
18.	Sequencing analysis of entire <i>bla</i> _{OXA-like}	76
19.	The effect of CCCP among 402 carbapenem-resistant	
	A. baumannii isolates	77

TABLE		PAGE
20.	The outer membrane profiles of 23 representative A. baumannii	82

LIST OF FIGURES

FIGURE		PAGE
1.	Core structure of carbapenems	13
2.	Structure of carbapenem antibiotics	14
3.	Structure of insertion sequence (IS)	19
4.	Schematic organization of the <i>ade</i> gene cluster	22
5.	The structure of multidrug resistance RND family pump	22
6.	Methodology Scheme	25
7.	The inoculum plate of agar dilution method for <i>A. baumannii</i> isolates	33
8.	Detection of carbapenemase phenotype by Modified Hodge test	35
9.	Detection of MBLs by EDTA-disk synergy test	36
10.	Distribution of imipenem MICs among 453 A. baumannii isolates	57
11.	Distribution of meropenem MICs among 453 A. <i>baumannii</i> isolates	58
12.	Comparison of carbapenem resistance in 453 A. <i>baumannii</i> isolates from ICUs and non-ICUs	58
13.	Distributions of imipenem MICs among 453 <i>A. baumannii</i> isolates from ICUs and non-ICUs	59
14.	Distributions of meropenem MICs among 453 <i>A. baumannii</i> isolates from ICUs and non-ICUs	59
15.	Distribution of imipenem MIC in carbapenemase activity	61
16.	Distribution of meropenem MIC in carbapenemase activity	62
17.	Multiplex PCR analysis of <i>bla</i> OXA-like	65
18.	Distribution of genes encoding OXA-type carbapenemases and	
	imipenem MICs	67

FIGURE

19.	Distribution of genes encoding OXA-type carbapenemases and	
	meropenem MICs	67
20.	Schematic representation of ISAba1 upstream bla _{OXA-23}	69
21.	Schematic representation of ISAba3 upstream bla _{OXA-58}	71
22.	Comparison of ISAba1 upstream region of bla _{OXA-23} gene of A285	
	and sequences in GenBank accession no.EF127491	72
23.	Comparison of ISAba3 upstream region of blaOXA-58 gene of A200	
	and sequences in GenBank accession no.DQ987830	73
24.	Outer membrane protein profile in 23 A. baumannii isolates	79

PAGE

LIST OF ABBREVIATIONS

А	adenosine
AC	amoxicillin
Ala (A)	alanine
Asn (N)	asparagine
Asp (D)	aspartic acid
Arg (R)	arginine
bp	base pair
С	cytidine
CO2	carbon dioxide
СН	clarithromycin
CLSI	Clinical and Laboratory Standards Institute
°C	degree Celsius
Cys (C)	cysteine
dATP	deoxyadenosine 5'-triphosphate
dCTP	deoxycytidine 5'-triphosphate
ddATP	dideoxyadenosine 5'-triphosphate
ddCTP	dideoxycytidine 5'-triphosphate
ddGTP	dideoxyguanosine 5'-triphosphate
ddTTP	dideoxytymidine 5'-triphosphate
DDW	double distilled water
ddNTPs	dideonucleotide-tri-phosphate
dGTP	deoxyguanosine 5'-triphosphate
DNA	deoxynucleic acid
dNTPs	deoxynucleotide-tri-phosphate
dTTP	deoxytymidine 5'-triphosphate
DW	distilled water
EDTA	ethylenediamine tetraacetic acid
et al.	et alii
E-test	epsilometer test

g	gram
G	guanosine
Gly (G)	glycine
Glu (E)	glutamic acid
Gln	(Q) glutamine
HCl	hydrochloric acid
HPLC	high performance liquid chromatography
hr	hour
His	(H) histidine
i.e.	id test
Ile (I)	isoleucine
Lys (K)	lysine
Leu (L)	leucine
М	molar
mg	milligram
MgCl ₂	magnesium chloride
MIC	minimum inhibitory concentration
min	minute (s)
ml	milliliter
mM	millimolar
mmol	millimole
Met (M)	methionine
NaCl	sodium chloride
Na ₂ HPO ₄	sodium phosphate dibasic, anhydrous
NaOH	sodium hydroxide
NARST	National Antimicrobial Resistance Surveillance
	Center Thailand
Phe (F)	phenylalanine
PCR	polymerase chain reaction
Pfu	Pyrococcus furiosus
pmol	picomol
Pro (P)	proline

sec	second
Ser (S)	serine
Т	thymidine
TAE	tris-acetate-EDTA
Thr (T)	threonine
Tris	Tris-(hydroxymethyl)-aminoethane
Trp (W)	tryptophan
Tyr (Y)	tyrosine
U	unit
μg	microgram
μL	microliter
μΜ	micromolar
UV	ultraviolet
V	volt

CHAPTER I

INTRODUCTION

Acinetobacter baumannii is an emerging nosocomial pathogen that cause serious infections in various systems including pneumonia, wound infection, meningitis, bacteremia and urinary tract infection, especially for the patients in intensive care units (1). The risk factor of *A. baumannii* infection is prolong admission, prolong antibiotic use, underlying diseases and immunocompromised condition (2). Extensive use of antibiotics has contributed to the emergence of multidrug-resistant strains which resist to many classes of antibiotics including broad-spectrum β -lactams, aminoglycosides, fluoroquinolones and carbapenems (3). Carbapenems are the drug of choice for treatment of multidrug-resistant *A. baumannii* infections (4). Increasing numbers of carbapenem-resistant *A. baumannii* have been described in several regions, leading to limited therapeutic options (3).

Carbapenems are β -lactam antibiotic. They act like other members of β -lactams by inhibiting cross-linkage of cell wall synthesis. Carbapenems bind to PBPs and prevent the transpeptidation of peptidoglycan strand, leading to cell wall damage and bacterial death. Carbapenems that are usually used for treatment of *A. baumannii* include imipenem and meropenem. Increasing carbapenem resistance in *A. baumannii* has been reported worldwide. Many countries were reported carbapenem resistance in *A. baumannii*, including England (5), Greece (6), Italy (7), Taiwan (8), United Arab Emirates (9) Spain and Portugal (10), Mexico (11), Iran (12) and Thailand (13).

A. baumannii isolates resist to carbapenems through various mechanisms including production of carbapenemase enzymes to hydrolyze carbapenems, overexpression of efflux pump and decreased outer membrane permeability. The production of carbapenemase enzymes have been identified in carbapenem-resistant *A. baumannii*, including Class B β -lactamases (Metallo- β -lactamase) and Class D β lactamases (OXA-type carbapenemase). Metallo- β -lactamase enzymes confer the high level of carbapenem resistance in *A. baumannii* isolates. Three groups of MBLs have been found in *A. baumannii* including IMP-like, VIM-like and SIM-1. IMP has been reported in Japan (14), Italy (15), Brazil (16), Hongkong (17) and South Korea (18). VIM have been detected in Korea (18) and Greece (19). SIM-1 was identified in South Korea (20). The production of class D β -lactamases or OXA-type carbapenemases was the most prevalent mechanism of carbapenem resistance in A. baumannii. Although these enzymes hydrolyzed carbapenems in the lower level than metallo- β -lactamases, they spread into the wide range geographic area. There are four groups of OXA-type carbapenemases in A. baumannii. The first group is OXA-23. The members of this group are OXA-23, OXA-27 and OXA-49. OXA-23 was originally characterized as plasmid-encoded from Edinburgh, Scotland in 1985 (21). Currently, this enzyme was also encoded on the chromosome (22). OXA-23producing A. baumannii isolates have been reported in Columbia (23), Argentina (24), Turkey (25), Bulgaria (26), China (27), Singapore, Korea, Thailand and India (28). OXA-24 is the second group of acquired CHDL genes. This group consists of OXA-24, OXA-25, OXA-26 and OXA-72. OXA-24 was frequently found in Spain and Portugal (10, 29), however, it was also detected in several countries such as Czech Republic (30), USA (31), Belgium (32), Taiwan (33), Thailand, Indonesia and Iran (12, 28). The third group is OXA-51, which is the intrinsic enzyme in A. baumannii. The fourth group is OXA-58, the members of this group are OXA-58, OXA-96 and OXA-97. OXA-58 was reported in Italy (34), France (35), Belgium (36), Greece (37), Tunesia (38), China and Thailand (28).

Overexpression of efflux pump is another mechanism of carbapenem resistance in *A. baumannii*. AdeABC efflux pump has been reported to confer carbapenem resistance in *A. baumannii*. Substrates of AdeABC efflux pump are tetracyclines, trimethoprim, chloramphenicol, aminoglicosides, fluoroquinolones, erythromycin, ethidium bromide, β -lactams and tigecycline. AdeABC efflux pump in *A. baumannii* was reported from Korea (39) and China (40) (41).

The loss or decrease of outer membrane protein is also the mechanism of carbapenem resistance in *A. baumannii*. Several studies demonstrated the loss or reduced outer membrane protein. There are three kinds of OMPs often reported for carbapenem resistance in *A. baumannii* including 29 kDa, 33-36 kDa and 43 kDa. The loss or reduction of 29 kDa was reported from France (42), Argentina (43). The loss

or decrease of 33-36 kDa was found in USA (44) and Brazil (45) and the loss or reduction of 43 kDa was reported from France (42).

In Thailand, there were several reports of the prevalence of carbapenem resistance in *A. baumannii*. In 2002, Siriraj Hospital reported that prevalence of carbapenem resistance in *A. baumannii* were 68% (13). At the Police General Hospital reported that resistance rates of imipenem was 61% in 2003 (46). Maharaj Nakorn Chiang Mai Hospital were 60% in 2005 (47). Songklanagarind Hospital was 34.7% in 2007 (48).

Carbapenem resistance in *A. baumannii* has become emerging issue worldwide, including Thailand. Few studies on mechanisms of carbapenem resistance *A. baumannii* in Thailand.The purpose study is to investigate the prevalence and the mechanisms of carbapenem resistance in *A. baumannii* including the production of carbapenemases, the presence of efflux pump and the loss or decrease of outer membrane proteins.

CHAPTER II

OBJECTIVES

- I. To investigate the prevalence of carbapenem resistance in *A. baumannii* clinical isolates.
- II. To study the mechanisms of carbapenem resistance in *A. baumannii* including production of carbapenemase enzymes, the presence of efflux pumps and the loss or decrease of outer membrane proteins.

CHAPTER III

LITERATURE REVIEW

1. BACTERIOLOGY

Acinetobacter baumannii is classified in the Phylum Proteobacteria, Class Gammaproteobacteria, Order Pseudomonadales, Family Moraxellaceae, Genus Acinetobacter. The genus Acinetobacter is strictly aerobic, Gram-negative coccobacilli that occasionally are difficult to destain. The colonies on MacConkey agar are smooth, opaque, sometimes mucoid and grayish pink colonies with diameter of 1-2 mm. For preliminary identification, they are non motile, catalase positive, oxidase negative and nitrate negative.

The current taxonomy of *Acinetobacter* spp. based on DNA-DNA hybridization studies demonstrated that 33 genomic species have been described. Twenty of 33 genomic species have been given valid species names as shown in Table 1. *A. calcoaceticus (Acinetobacter* genomic species 1), *A. baumannii (Acinetobacter* genomic species 2), *Acinetobacter* genomic species 3, and *Acinetobacter* genomic species 13TU, are closely related and difficult to differentiate from other species by phenotypic methods. These groups are given the name as *A. calcoaceticus-A. baumannii* complex (49). *A. baumannii, Acinetobacter* genomic species 3 and *Acinetobacter* genomic species 13TU have been reported to be associated with nosocomial infection (50-52), whereas *A. calcoaceticus*, an environment species, was hardly found in serious infection.

Species	Source	Reference			
Species that have valid names					
A. calcoaceticus (Gen.sp 1)	Soil and humans	ATCC23055			
A. baumannii (Gen.sp 2)	Humans, soil, meat and vegetables	ATCC19606			
A. haemolyticus (Gen.sp 4)	Humans	ATCC 17906			
A. junii (Gen.sp 5)	Humans	ATCC 17908			
A. johnsonii (Gen.sp 7)	Humans and animals	ATCC 17909			
A. lwoffii (Gen.sp 8/9)	Humans and animals	ACTC 15309			
A. radioresistens (Gen.sp 12)	Humans, soil and cotton	IAM 13186			
A. ursingii	Humans	NIPH137			
A. schindleri	Humans	NIPH1034			
A. parvus	Humans and animals	NIPH384			
A. baylyi	Activated sludge and soil	DSM 14961			
A. bouvetii	Activated sludge	DSM 14964			
A. towneri	Activated sludge	DSM 14962			
A. tandoii	Activated sludge	DSM 14970			
A. grimontii	Activated sludge	DSM 14968			
A. tjernbergiae	Activated sludge	DSM 14971			
A. gerneri	Activated sludge	DSM 14967			
A. venetianus	Seawater	CCUG 45561			
A. beijerinckii	Humans, animal, soil and water	MR 22			
A. gyllenbergii	Human	RUH 422T			
Species that have provisional	designations				
A. venetianus	Sea water	ATCC 31012			
Gen.sp 3	Humans, soil and vegetables	ATCC 19004			
Gen.sp 6	Humans	ATCC 17979			
Gen.sp 10	Humans, soil and vegetables	ATCC 17924			
Gen.sp 11	Humans and animals	ATCC 11171			
Gen.sp 13BJ or 14TU	Humans	ATCC 17905			
Gen.sp 14BJ	Humans	CCUG 14816			
Gen.sp 15BJ	Humans	SEIP 23.78			
Gen.sp 16	Humans and vegetables	ATCC 17988			
Gen.sp 17	Humans and soil	SEIP Ac87.314			
Gen.sp 13TU	Humans	ATCC 17903			
Gen.sp 15TU	Humans	M 151a			

 Table 1. The taxonomy of the genus Acinetobacter

Species	Source	Reference
Gen.sp between 1 and 3	Humans	10095
Gen.sp close to 13TU	Humans	10090

(Adapt from L. Dijkshoorn et al., 2007 (53), Y. Peleg *et al.*, 2008 (3) and A. Nemec *et al.*, 2009 (54))

2. PATHOGENESIS AND VIRULENCE FACTOR

A. baumannii colonization is more common than infection. However, it can be develop to severe infection. The precise mechanism associated with an establishment and progression of *A. baumannii* infection are unclear. Biofilm formation, lipopolysaccaharides (LPS) and outer membrane protein A have been described as virulence factors. *A. baumannii* can adhere to both biological such as bronchial epithelial cell and skin or abiotic surface such as urinary catheter and intravascular tube which is able to biofilm formation, which is an initial step to colonization, drug-resistant contribution and invasion to host cell. Resistance to the condition or inhibitory agents from the surface of mucosa and skin is the reason for survival of *A. baumannii* can also survive in environment by resistance to desiccation, disinfectants and antibiotics. The virulence factor of *A. baumannii* are described below.

Biofilm formation

Biofilm is a community of multiple bacterial cells on both biotic and abiotic surface. This structure renders bacteria resistant to antibiotics and allows them to invade the host response and persistence on medically surface such as urinary catheter and endotracheal tube. The study of Rodriguez-Bano *et al.* showed that biofilm forming strains of *A. baumannii* caused catheterrelated urinary tract infections, bloodstream infections and shunt-related meningitis (55). Biofilm is influenced by environmental factors including nutrient availability, bacterial surface components, macromolecular secretions and quorum sensing. It was reported that cell adhesiveness and biofilm formation on plastic in *A. baumannii* isolates habouring bla_{PER-1} is higher than isolates without bla_{PER-1} (56).

Outer membrane protein

The outer membrane protein A (AbOmpA) is a potential virulence factor of A. baumannii. It has been described to induce mitochondrial apoptosis. It is a 38 kDa porin. The structure is trimeric porin with a pore size of 1.3 nm and function as a general diffusion pore (57). AbOmpA localized to the mitochondria, leading to a release of cytochrome c and apoptosisinducing factor (AIF) releasing into cytosol that mediates caspase dependent and AIF-dependent apoptosis in epithelial cells. Approximately 180 bp was degraded by activation of caspase-3 and chromosomal DNA approximately 50 kb was degraded by AIF which resulted in large scale DNA fragmentation. Apoptosis of epithelial cells by AbOmpA may disrupt the mucosal lining and allow invading of bacteria into the deep tissues (58).

Siderophores synthesis

A. baumannii can survive in the environment and the host cell by utilize nutrient resource such as iron. In human host, iron form complexed to hemoglobin, hemosiderin and transferin. Bacteria obtain iron for survival and multiplication in human hosts by secreting siderophore. Siderophores are low-molecular weight ferric ion, a specific chelating agent which was secreted by microorganism in iron-deficient conditions (59). Actis *et al.* demonstrated that all 12 *A. baumannii* isolates grew under the iron-limiting conditions, indicating that they secreted an iron-regulated siderophore into the growth medium (60). The type of siderophore was the catechol type, 2,3dihydroxybenzoic acid (DHBA) (60). Yamamoto *et al.* reported the structure of acinetobactin, the siderophore which was isolated from *A. baumannii* ATCC 19606. This siderophore had both catechol and hydroxamate functional groups (61).

3. NOSOCOMIAL INFECTION AND COMMUNITY-ACQUIRED INFECTION

Acinetobacter spp. have been identified from environment such as water, soil, sludge and human skin. Nevertheless, *A. baumannii* is frequently isolated from clinical specimens and hospital environment. It can be found rarely from other environmetntal samples. The habitat of *A. baumannii* and other species of *Acinetobacter* are shown in Table 1.

Nosocomial infection

A. baumannii can spread from colonized patients to hospital environment and susceptible patients by air droplet and scales of skin. This organism resists to disinfectants and dry environment which allow them to long-term persistence in the hospital and occurrence of outbreak of infection. The susceptible patients received organism through various route such as equipments, hands of staff and ventilation machine.

A. baumannii is opportunistic pathogen that caused various type of infections including ventilator-associated pneumonia, wound infection, urinary tract infection, meningitis and bacteremia. The risk factors of *A. baumannii* infections occur in patients with serious underlying diseases, major surgery, prolonged-hospitalization and treatment with broad-spectrum antibiotics. The infections are associated with exposure to contaminated medical equipment such as intravascular catheter, urinary catheter and endotracheal tube. Ventilator-associated pneumonia and bloodstream infection are the most frequent clinical manifestations of nosocomial *A. baumannii* infection.

Community-acquired infections

Community-acquired infections of *A. baumannii* is less common than hospitalacquired infections. Acute pneumonia is the most frequent community-acquired infection caused by *A. baumannii*, followed by bacteraemia. Community-acquired *A. baumannii* pneumonia typically occurs in patients with underlying condition such as alcoholism, diabetes, cancer and chronic obstructive pulmonary disease (62, 63). Community-acquired pneumonia have a high incident of bacteremia and high mortality rate of 40-60% (62, 64, 65). Many reports of community-acquired pneumonia has been described from tropical or subtropical areas including Australia (62), Turkey (66), Kuwait (67), Papua New Guinea (68), Taiwan (69) and Thailand (70).

4. A. BAUMANNII IDENTIFICATION

2.1 Phenotypic identification

In routine laboratories, the conventional methods such as Gram stain, colony morphology and biochemical tests are used for identification of *A. baumannii* isolates. They are Gram-negative coccobacilli, non-motile, non-fermenting, oxidase-negative and catalase-negative. The colonies on MacConkey are opaque, smooth, sometimes mucoid. The colour of colonies is pale yellow to grayish pink. *A. baumannii* cannot produce urease and cannot reduce nitrate to nitrite and nitrogen gas. They can grow at 37°, 42° and 44°C (71) and use malonate and decarboxylate arginine as a carbon source. *A. calcoaceticus-A. baumannii* complex cannot be separated by phenotypic methods (49). The genotypic methods have been brought to discriminate for this species.

2.2 Genotypic identification

DNA-DNA hybridization is the gold standard for identification of *Acinetobacter* spp. (72) but this method is laborious and only available in reference laboratories. The alternative genotypic methods have been developed including ribotyping (73), amplified fragment length polymorphism (AFLP) analysis (74),

amplified 16S ribosomal DNA restriction analysis (ARDRA) (75) and restriction analysis of the 16S-23S rRNA intergenic spacer sequences (76).

5. TREATMENT OF A. BAUMANNII INFECTION

Multidrug resistance *A. baumannii* have been reported increasingly during the last two decades. The very broad-spectrum β -lactam antibiotics such as carbapenems were presented in 1985. They have been the most important antibiotics for the treatment of multidrug-resistant *A. baumannii* for many years. Unfortunately, carbapenem-resistant *A. baumannii* is now observed increasingly worldwide. Many therapeutic options were brought for treatment of infectious by carbapenem-resistant *A. baumannii*.

3.1 Monotherapy

Sulbactam, a β -lactamase inhibitors, has intrinsic antibiotic activity against *Acinetobacter* (77-79) by binding to PBP2 (80). Sulbactam was used alone or combined with ampicillin and cefoperazone. Urban *et al.* studied a small group of treatment using ampicillin-sulbactam in outbreak multidrug-resistant *A. baumannii*. Nine of 10 patients had shown clinical response (81). This result is similar to Corbella *et al.* that demonstrated the treatment of 41 patients with ampicillin-sulbactam or sulbactam alone to *A. baumannii* infections. Twenty-nine in 41 patients were cured or clinically improved (82). Nevertheless, failure treatment studies with ampicillin-sulbactam also have been reported (83, 84).

Colistin (polymyxin E) is an old antibiotic of the polymyxin family, which is quickly bactericidal to Gram-negative bacteria. The action of colistin is interfering with outer cytoplasmic membrane, leading to increasing permeability and cell death. It was first presented in 1952. This antibiotic was used for the treatment of infections caused by Gram-negative bacilli until 1980s because of nephrotoxicity and neurotoxicity effects. Because of limited therapeutic options, colistin has returned to be use for treatment of *A. baumannii* infections, especially in ICU. Falagas *et al.*

showed clinical efficacy ranging from 55% to >80% (85). Kim *et al.* demonstrated the successful of treatment in carbapenem-resistant *A. baumannii* isolates by combination of colistin plus aminoglycoside with or without rifampin (86). Colistin cured rate or clinical improvement in severe patients of multidrug-resistant *Acinetobacter* infections in many sites of infection such as intra-abdominal, central nervous system, sepsis, bacteremia and pneumonia were 57-77%. However, Levin *et al.* showed low level of improvement rate of 25% in multidrug-resistant patients with pneumonia (87). The alteration of OMPs was the mechanism of colistin resistance (88).

Tigecycline is a new glycylcycline agent approved by FDA in 2005. It is a bacteriostatic agent, which disturbs bacterial protein synthesis. Tigecycline has a broader spectrum than classical tetracycline because it was not effect by tetracycline specific resistant-mechanisms, *tet*(A-E), *tet*(K), *tet*(O) and *tet*(M). However, tigecycline-resistant *A. baumannii* isolates have increasingly been reported (89-91). Upregulation of chromosomally mediated efflux pumps involved in tigecycline resistance in *A. baumannii* (92, 93).

3.2 Combination therapy

The combination therapy is used to improve efficacy and prevent the emergence of resistance. Two or three antimicrobial agents used to combine and study in vitro, animal model and clinical trials. Tigecycline enhanced activity when combined with colistin, amikin, imipenem and levofloxacin but reduced efficacy when combined with piperacillin/tazobactam (94). Colistin, when combined with ceftazidime, minocycline, rifampicin and imipenem, have been shown synergistic result. However, Montero *et al.* reported conflict result between mouse model and clinical study in rifampin plus imipenem (95). Joly-Guillou *et al.* demonstrated a lack of enhanced the efficacy of levofloxacin with imipenem or amikacin in a mouse pneumonia model (96). Although, many information of combination therapies have been reported but a lack of controlled clinical studies make it difficult to evaluate the synergistic results.

6. CARBAPENEMS

Carbapenems are a class of β -lactam antibiotics. The structure of carbapenems contains the nitrogen and one carbon on the β -lactam ring fused to a five-member thiazolidinic secondary ring (Figure 1). They differ from penicillins, the classical β -lactam by the replacement of a carbon atom for sulfur at position 1, and hence the name of the group, the carbapenems. The second different structure is the addition of double bond between carbon atoms 2 and 3 in the secondary ring. The hydroxyethyl side chain in trans configuration at position 6 is unique for carbapenems and confers stability against β -lactamases (97, 98)

Figure 1. Core structure of carbapenems

Carbapenems act like all β -lactam antibiotics. They are bactericidal that function by inhibiting cross-linkage of cell wall synthesis. Penicillin binding proteins (PBPs) such as transpeptidases are the enzymes that catalyze transpeptidation of peptidoglycan in bacterial cell wall. The structure of β -lactam antibiotics analogues to the D-alanyl-D-alanine of the pentapeptide which attached to N-acetylmuramic acid (NAM). PBPs mistakenly use β -lactam antibiotics as a substrate for cell wall synthesis. The transpeptidase is acylated that prevent complete cell wall synthesis. The loss in cell wall integrity leads to lysis of bacterial cell. Thienamycin was the first carbapenem discovered in 1976 by the soil organism *Streptomyces cattleya*. This antibiotic had broad spectrum of antibiotic activity against Gram-positive and Gramnegative organisms but unstable in clinical use (99).

Imipenem

Meropenem

Figure 2. Structure of carbapenem antibiotics

Imipenem, *N*-formimidoyl thienamycin is a derivative of thienamycin developed in 1985 (Figure 2). Systematic (IUPAC) name is (5R,6S)-3-[2-(aminomethylideneamino)ethylsulfanyl]-6-(1-hydroxyethyl)-7-oxo-1azabicyclo[3.2.0] hept-2-ene-2-carboxylic acid. Imipenem has a broad spectrum of activity against Gram positive, Gram negative aerobic and anaerobic bacteria. Imipenem is hydrolyzed by dehydropeptidase I (DHP-I) at renal brush border of mammalian kidney. For use in clinically, imipenem is coadministered with cilastatin, the DHP-I inhibitor in equal amount for preventing the reducing level of imipenem and the production of nephrotoxic compound (98).

Meropenem is another derivative of thienamycin. This antibiotic was approved by FDA in 1996. Systematic (IUPAC) name is 3-[5-(dimethylcarbamoyl) pyrrolidin-2-yl]sulfanyl-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0] hept-2-ene-2carboxylic acid. The structure of meropenem differs from imipenem by addition of a 1- β methyl at carbon atoms 1 and having a pyrrolidinyl substitution at the 2 position (Figure 2). The presence of 1- β methyl at C1 made meropenem stable to dehydropeptidase I (DHP-I) degradation and the substitution of C2 side chains probably accounts for the higher activity against Gram-negative bacteria in comparison with imipenem. In general, meropenem is more active against Gram-negative and less active against Gram-positive bacteria than imipenem (98).

7. MECHANISM OF CARBAPENEM RESISTANCE IN A. BAUMANNII

Multidrug resistance in *A. baumannii* such as aminoglycosides, quinolones and β -lactam antibiotics have been increasingly reported. Carbapenems, a broadspectrum antibiotics have been the most important agents for treatment of multidrugresistant *A. baumannii* infection. Carbapenem resistance in *A. baumannii* has been reported increasingly worldwide. *A. baumannii* can develope carbapenem resistance through various mechanisms.

3.1 Carbapenemase production

The production of carbapenemases has been found in carbapenem-resistant *A. baumannii* including Class B carbapenemases (Metallo- β -lactamase) enzymes and Class D β -lactamases (OXA-type carbapenemase enzymes). Class D β -lactamases are mostly found in carbapenem-resistant *A. baumannii* isolates as a main mechanism (100).

3.1.1 Class B carbapenemases (Metallo-β-lactamases)

Metallo-β-lactamase enzymes such as IMP (Imipenem-hydrolyzing β -lactamase), VIM (Verona integron-encoded metallo- β -lactamase), SIM-1 enzymes (Seoul imipenemase), SPM-1 (Sao Paulo Metallo- β -lactamase) and GIM-1 (German IMipenemase) have been identified to various Gram-negative bacteria. IMP-1 enzyme was first isolated from P. aeruginosa from Japan in 1988 (101). VIM was first identified in carbapenem-resistant P. aeruginosa clinical isolate from Verona, Italy in 1997 (102). These enzymes have less than 40% amino acid identity with IMP enzymes. SPM-1 was first isolated in P. aeruginosa from Sao Paulo, Brazil. These enzyme shares 35.5% amino acid homology to IMP-1 (103). GIM-1 was isolated in 2002 from Germany (104). GIM had approximately 30% identity to VIM, 43% to IMPs and 29% to SPM. SIM-1 was first discovered in Seoul. It was more closely related to IMP-type enzymes than other MBLs by presenting 64 to 69% amino acid identities to IMP-type. Most acquired MBL genes was found in class-1 integron often form part of the gene cassettes together with other antibiotic resistance genes especially aminoglycoside-modifying enzymes. Only three groups of enzymes have been recognized in *A. baumannii* including IMP, VIM and SIM-1. The enzymes hydrolyzed various β -lactam antibiotics such as penicillins, narrow- to expandedspectrum cephalosporins and carbapenems but not for aztreonam. Although these enzymes are less commonly identified in *A. baumannii* than OXA-type carbapenemases but their hydrolytic efficiency are significant much more higher than OXA-type 100-to 1000-fold (100). The MBL enzymes are resistant to inhibit by β lactam inhibitors such as clavulanate and tazobactam. The enzymes are susceptible to EDTA inhibition so it can use this property to detect MBL production by using E-test strips containing imipenem with or without EDTA (105).

Enzyme	Discovery in	Accession no.	Geographical origin
IMP-1	1999	HM036079.1	Italy, Japan, South Korea
IMP-2	2000	AJ243491	Italy, Japan
IMP-4	2000	AF244145	Hongkong
IMP-5	2002	AF290912	Portugal
IMP-6	2003	AB040994	Brazil
IMP-11	2001	AB074436	Japan
VIM-1	2007	EF690696	Greece
VIM-2	2002	AF324464	South Korea
SIM-1	2005	AY887066	South Korea

Table 2. Metallo-β-lactamase enzymes identified in A. baumannii

Adapt from Poirel and Nordmann., 2006 (100)

3.1.2 Class D-β-lactamases (OXA-type carbapenemase enzymes)

Class D β -lactamases or OXA-type carbapenemases are active-serine-site enzymes. These enzymes have three highly conserved active-site elements. The first element is tetrad, Ser⁷⁰-X-X-Lys, X represents a variable residue, containing the active site serine. The second element is Ser¹¹⁸-X-Val/Ile and the third are the triad Tyr/Phe¹⁴⁴-Gly-Asn and the tetrad Trp²³²-X-X-Gly. OXA-type carbapenemases contain between 243 and 260 amino acid residues with molecular mass ranging from 23 to 35.5 kDa. The isoelectric points (pIs) of the enzymes vary from 5.1 to 9.0. Phenotypically, most of the class D enzymes belong to group 2d of the Bush functional classification scheme for β -lactamase. These enzymes were first defined as oxacillinases because they commonly hydrolyze cloxacillin and oxacillin faster than benzylpenicillin but not all class D β -lactamase have this characteristic. OXA-type carbapenemases hydrolysze penicillin (benzylpenicillin, ampicillin, ticarcillin and piperacillin) and narrow-spectrum cephalosporins but weakly or not hydrolyze extended-spectrum cephalosporins and aztreonam. Imipenem and meropenem were hydrolyzed weakly. These enzymes are usually not inhibited by clavulanic acid, sulbactam and tazobactam whereas they may be inhibited in vitro by NaCl. This property is not shared by other classes of β -lactamase. The activities of most class D β-lactamases were totally inhibited by NaCl at a concentration of 100 mM. It has been attributed to the presence of a Tyr residue at position 144. The replacement of a Tyr residue by a Phe at position 144 makes a resistance to NaCl inhibition. The carbapenem-hydrolyzing class D β -lactamases (CHDLs) can be subclassified into nine main subgroups based on amino acid homologies. Four of nine subgroups have been identified in A. baumannii.

The first subgroup of CHDLs is OXA-23, originally named ARI-1 (*Acinetobacter* resistant to imipenem) identified as plasmid-encoded from Edinburg Scotland in 1985 (21). The other members are OXA-27 and OXA-49. OXA-23 shares 56% amino-acid identity with OXA-51. The progenitor of the bla_{OXA-23} was *A. radioresistens* (106). The bla_{OXA-23} has also been detected in chromosomally located *Proteus mirabilis* isolated from France (107).

The second subgroup encompasses the OXA-24, OXA-25, OXA-26 and OXA-72. OXA-24 originally identified as chromosomally encoded in carbapenemresistant *A. baumannii* isolated from Spain (108). This group shares 63% and 60% amino-acid homology with OXA-51 and OXA-23, respectively.

The third subgroup of CHDLs is represented by OXA-51, the intrinsic gene in *A. baumannii*. The other members of this group are OXA-64 to OXA-71, OXA-75 to OXA-80, OXA-82 to OXA-84, OXA-86 to OXA-95, OXA-98 to OXA-99, OXA-100, OXA-104, OXA-106 to OXA-113, OXA-115 to OXA-117, OXA-128 and OXA-130 to OXA-132. OXA-51 shares 56%, 63% and 59% with OXA-23, OXA-24 and OXA-58, respectively (109).

The forth subgroup consists of the OXA-58, which was first identified in a multidrug-resistant *A. baumannii* from France (35). The cluster includes OXA-96 and OXA-97. This enzyme group was weakly related to other oxacillinases, OXA-58 shares 48%, 47% and 59% amino acid identity with OXA-23, OXA-24 and OXA-51, respectively. The *bla*_{OXA-58} has been identified in different species such as *Acinetobacter junii* from Australia and Romania.

3.1.3 Insertion sequences

Insertion sequences (IS) are the smallest mobile genetic elements which a size generally between 0.8-2.5 kb. They had a simple genetic organization containing the direct repeats (DRs) which are the target site duplication length between 2 and 14 bp., inverted-repeat left (IRL) and inverted-repeat right (IRR) length between 10 and 40 bp. and one or two open reading frames encoding transposases (Figure 3). Insertion sequences had no other genes exceptional transposases which function only for transposition (110, 111). Insertion sequences associated with bla_{OXA} that enhance downstream of bla_{OXA} .

ISAba1 is a member of the IS4 family of insertion sequences and possesses two open reading frames, encoding 189 and 178 amino-acid transposases. It had two 16-bp imperfect inverted repeat and 9-bp duplicated repeat (112). The length of ISAba1 is 1180 bp. ISAba1 has been found upstream of bla_{OXA-23} , bla_{OXA-51} and bla_{OXA-58} in A.baumannii.

ISAba2 belongs to the IS3 family, 1306 bp long. It possesses two open reading frames encoding 318 and 903 amino acid transposases, 25-bp perfect inverted repeats and generates 5-bp target site duplication upon transposition. ISAba2 has been found upstream of bla_{OXA-58} (113).

ISAba3 belongs to the IS1 family, is 800 bp long, possesses inverted repeats of 24 bp and generates 3-bp duplicated repeats. Its transposase is made of an open reading frame, encoding 145 amino acids. ISAba3 has been reported upstream of bla_{OXA-58} (113).

ISAba4, the insertion sequence that belongs to the IS982 family is 975 bp long. It possesses 18-bp inverted repeats and an open reading frame encodes 292 amino acid transposase (112). ISAba4 has been found upstream of bla_{OXA-23} in *A.baumannii*.

OXA-24 group, not consist to insertion sequences but they can mobile to other plasmid by conserved inverted repeat sequences which homologous to XerC/XerD binding sites. These sequences were presented upstream and downstream of bla_{OXA-24} .

Figure 3. Structure of insertion sequence (IS) (110)

3.2 Reduced outer membrane protein permeability

In Gram-negative bacteria such as *A. baumannii*, the cell envelope is composes of outer membrane and inner membrane separated by periplasm. Outer membrane performs the important role to protect bacteria from hazardous agents such as enzymes and antibiotics but some nutrients can pass the membrane by diffusion through porins. Porins are the protein that form water-filled channels allowing the transport of small hydrophilic substrates. Many bacteria developed survival strategies by their diverse structure and regulation of porin expression in antibiotic pressure.

The reduction or decrease of outer membrane proteins is one of carbapenem resistance mechanism in *A. baumannii*. There are several OMPs have been described to loss or decrease in carbapenem-resistant *A. baumannii*. In 1996, Clark reported that decreased expression of 33-36 kDa OMP involved in imipenem-resistant *A. baumannii* isolates. Bou *et al.* demonstrated the reduction of 22 kDa and 33 kDa in imipenem and meropenem-resistant *A. baumannii* isolates in 2000. Siroy *et al.* studied the channel-forming properties of heat-modifiable 29 kDa OMP or CarO in imipenem and meropenem-resistant *A. baumannii* isolates by Mass spectrometry in 2005. CarO was found together with 25 kDa protein but only CarO form to protein chanel. Imipenem binding-site was not detected in CarO, suggesting that this chanel function as an unspecific monomeric chanel (114). Del Mar Tomas *et al* studied that cloning 33-36 kDa to carbapenem-resistant *A. baumannii* isolates 43 kDa which was homologous to OprD in *P. aeruginosa* (42).
3.3 Overexpression of efflux pumps

Efflux pump is an universal mechanism found in all cells. This mechanism plays an important role to remove metabolic compounds and toxins. In bacteria, efflux pump genes are located on the chromosome or on transmissible genetic elements, such as plasmids. Multidrug resistance in bacteria has often been associated with overexpression of this system. Bacterial multidrug efflux pumps were classified into five families, containing the ATP binding cassette (ABC) family, the major facilitator superfamily (MFS), the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance (SMR) family and the resistance-nodulation-division (RND) family (115). Efflux pumps that are described in A. baumannii including RND family, MFS and MATE (116). The RND family is the efflux pump that associated with clinically significant resistance to antibiotics in Gram-negative bacteria. The structure is organized as three-component systems including a transporter protein which is located in cytoplasmic membrane; a membrane fusion protein and an outer membrane porin. These pumps use proton gradient as an energy to efflux chemical compounds. The RND family pumps are susceptible to efflux pump inhibitors such as phenylalanyl-arginyl-β-naphthylamide $(PA\beta N),$ 1-(1-naphthylmethyl)-piperazine (NMP), Carbonyl cyanide m-chlorophenylhydrazone (CCCP) (117). The efflux pump found in carbapenem-resistant A. baumannii is AdeABC efflux pump, a member of the RND family. The substrates for this pump including β -lactams, aminoglycosides, fluoroquinolones, erythromycin, tetracyclines, trimethoprim and chloramphenicol (116). The AdeABC efflux pump is a tripartite efflux machinery which is homologous to MexAB-OprM in P. aeruginosa (Figure 5). AdeB is a multidrug transporter comprising of 12 transmembrane segments, AdeA is a membrane fusion protein and AdeC is an outer membrane protein (118). The *adeABC* genes form an operon which are contiguous and directly oriented (Figure 4). This efflux pump is regulated by two regulatory genes such as *adeR* (regulator) and *adeS* (sensor kinase). These genes are localized upstream the *adeABC* genes and transcribed in the opposite direction (119). Distruption of AdeB by insertion sequence led to loss of efflux pump function and multidrug resistance (118). But not for the case of AdeC, the resistance level of antibiotics was not changed because AdeAB may be able to recruit other OMPs to form a functional complex (119).

Figure 4. Schematic organization of the *ade* gene cluster (120)

Figure 5. The structure of multidrug resistance RND family pump (120)

3.4 Alteration of penicillin-binding proteins

The alteration of penicillin-binding proteins (PBPs) is another mechanism of carbapenem resistance in *A. baumannii*. PBPs are the target sites of β -lactam antibiotics. The change of PBP structure reduce affinity for binding between antibiotics and bacteria. Gehrlein *et al* demonstrated in 1991 that the mutant carbapenem-resistant *A. baumannii* produced 24 kDa in high level, whereas produced low level of other PBPs (121). In 2003, Fernandez-Cuenca *et al*. demonstrated that reduction of PBP2, production of β -lactamase enzymes and loss of 22.5 kDa OMP were related to carbapenem resistance in *A. baumannii* (122).

8. EPIDEMIOLOGY OF CARBAPENEM RESISTANCE IN A. BAUMANNII

Carbapenems are reliable drug for treatment of multidrug resistance in A. baumannii infections for many years. Currently, carbapenem resistance in A. baumannii has been reported worldwide. The MYSTIC (Meropenem Year Susceptibility Test Information Collection) program reported that rate of imipenem and meropenem resistance in A. baumannii in European countries increased from 16% and 18%, respectively in 1997-2000 (123) to 42.5% and 43.4%, respectively in 2006 (124). Between 2000 and 2006, prevalence of carbapenem resistance in A. baumannii was 48% in Turkey (125). During 2003-2008, imipenem resistance rate of A. baumannii increased from 1% to 58% in USA (126). In 2008, resistance rates of imipenem and meropenem in Taiwan were 42% and 38%, respectively (127). At the same period, carbapenem resistance in A. baumannii was 50% in Iran (12), 21.3% in Czech Republic and high rate of resistance was reported to be 70.1% in Greece (128). Between 2006 and 2009, meropenem resistance rate of A. baumannii in Mexico was 59% (11). In Brazil, imipenem and meropenem resistance rates increased from 5.13% and 0%, respectively in 2004 to 77.27% and 80%, respectively in 2008 (129). In 2011, imipenem and meropenem resistance rates in A. baumannii were 54% and 56%, respectively in Iran. In Thailand, the study from Police General Hospital showed that imipenem resistance rate of A. baumannii was 61% in 2003 (46). Carbapenems resistance rate of *A. baumannii* was 60% in 2005 at Maharaj Nakorn Chiang Mai Hospital (47) and 68% in 2006 at Siriraj Hospital (13). In 2007, imipenem resistantce rate of *A. baumannii* isolated from Songklanagarind Hospital was 34.7% (48).

Carbapenemase enzymes have been identified in carbapenem-resistant *A. baumannii*, including Class B β -lactamases (Metallo- β -lactamase) and Class D β -lactamases (OXA-type carbapenemase).The most prevalence of carbapenemase enzyme was OXA-type carbapenemases, whereas, metallo- β -lactamases have been sporadically reported in *A. baumannii*. OXA-type carbapenemase enzymes were classified to 4 subgroups including OXA-23, OXA-24, OXA-51 and OXA-58. OXA-23-producing *A. baumannii* isolates have been reported from Columbia (23), French Polynesia (130), Bulgaria (26), China (27), Turkey (25) and Thailand (131). OXA-24-producing *A. baumannii* isolates were identified in Spain (132), Portugal (10), Czech Republic (30), USA (31), Belgium (32), Taiwan (33), Thailand, Indonesia and Iran (12, 28). OXA-51 group was the intrinsic enzyme in *A. baumannii*. OXA-58-producing *A. baumannii* isolates were identified in France (35), Italy (34), Greece (37), Tunesia (38), Belgium (36), China and Thailand (28).

Metallo- β -lactamase enzymes found in *A. baumannii* including IMP-like, VIM-like and SIM-1. IMP has been reported in Japan (14), Italy (15), Hongkong (17) South Korea (18) and Brazil (16). VIM have been detected in Korea (18) and Greece (19). SIM-1 was identified in South Korea (20).

CHAPTER IV

MATERIALS AND METHODS

Methodology Scheme

Figure 6. Methodology Scheme

PART I : BACTERIAL STRAINS

1. Acinetobacter baumannii isolates

A total of 453 isolates of *Acinetobacter baumannii* were collected between March 2008 and April 2010 at the Department of Microbiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand. The specimens included blood, CSF, body fluid, pus, tissue, sputum, respiratory aspirate and urine.

2. Quality control strain for bacterial identification

Acinetobacter baumannii ATCC 19606 was used as quality control for identification and susceptible strain for OMP profile.

3. Quality control strains for MIC determination

Escherichia coli ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, *Staphylococcus aureus* ATCC 29213 and *Enterococcus faecalis* ATCC 29212 were used as antimicrobial susceptible control.

4. Quality control strains for efflux pump

Acinetobacter baumannii Aci65 obtained from Dr. Padungsri Dubbs, Mahidol University, Thailand.

5. Culture preservation

All *Acinetobacter baumannii* isolates were grown on trypticase soy agar (Oxiod, UK) at 37°C for 18-24 hours. Keeping the colonies for a long time at 70°C by suspended in cryogenic vials containing 20% glycerol in trypticase soy broth.

PART II : ACINETOBACTER BAUMANNII IDENTIFICATION

All clinical isolates of *Acinetobacter baumannii* were identified by conventional method including colony morphology, Gram stain and biochemical tests.

1. Colony morphology

The colony morphology of *Acinetobacter baumannii* is 1 to 2 mm, domed, opaque, smooth and sometimes mucoid. On MacConkey agar the colony is colorless or greyish-pink

2. Cell morphology

Gram stain for cell morphology of *Acinetobacter baumannii* is Gram negative coccobacilli, typically 1.0 to 1.5 μ m by 1.5 to 2.5 μ m.

3. Biochemical tests

3.1 Triple Sugar Iron medium test (TSI)

Triple Sugar Iron medium test (TSI) is used to determine fermentation of glucose, lactose, sucrose and H_2S production. TSI contains three sugars such as glucose, lactose and sucrose (1:10:10). Phenol red is the indicator for acid or alkaline. Acid production is indicated by change of phenol red from red to yellow. Ferrous ions is the indicator for H_2S production by the appearance of a black precipitate.

<u>Test procedure</u> : Pure colony was streaked and stabbed into slant and butt of TSI agar. Incubated TSI tube at 37° C for 24 hours.

Interpretation :

- A/A (Acid slant/ acid butt) : the organisms that can ferment glucose, and either lactose or sucrose and this may be with gas production.

- K/A (alkaline slant / acid butt) : the organisms that can ferment only glucose but not ferment lactose and sucrose. This may be with gas production.

- K/N or N/N (alkaline slant / neutral butt) or (neutral slant / neutral butt) : the organisms that cannot ferment all of three sugars.

- H₂S production : a black precipitation in the butt.

- A.baumannii shows K/N (alkaline slant/ neutral butt) on TSI agar.

3.2 Motility

The test for motility is used to observe the ability of organism to move by flagella through a semisolid medium.

<u>Test procedure</u> : Pure colony is stabled into a semisolid motility medium only half way down the center of the tube and incubate at 37° C for 24 hours.

Interpretation

- Motility test positive : the organisms produce a cloudiness in medium or produce a diffuse viel of growth.

- Motility test negative : the organisms do not grow beyond the line of stab.

- A. baumannii cannot motile.

3.3 Urease test

The urease test is used to detect an organism that possesses the enzyme urease which hydrolyzes urea. Phenol red is an indicator, which turns pink at an alkaline pH. When urea is hydrolyzed, ammonia is split during incubation which makes an alkaline reaction, producing a pink-red colour.

<u>Test procedure</u> : Pure colony is streaked on slope of the urea agar slant and incubate at 37° C for 24 hours.

Interpretation

- Urease test positive : The urea agar is changed to pink-red color.

- Urease test negative : The urea agar remains plae yellowish-orange.

- A. baumannii shows negative result for urease test.

3.4 Citrate test

The citrate test is used to detect an organism that able to utilize ammonium dihydrogen phosphate and sodium citrate as the sources of nitrogen and carbon. Bromthymol blue is an indicator, which turn from green to blue at an alkaline reaction.

<u>Test procedure</u> : Pure colony is streaked onto slope of the simmons citrate agar slant and incubate at 37° C for 24 hours.

Interpretation

- Citrate test positive : The simmons citrate agar is changed to blue color.

- Citrate test negative : The simmons citrate agar remains green.

- A. baumannii shows positive result for citrate test.

3.5 Oxidase test

The oxidase test is used to detect an organism that possesses the cytochrome oxidase enzyme. This enzyme can oxidize the substrate N,N,N,N-tetramethyl-*p*-phenylenediamine dihydrochloride to indophenol and produce a purple colour.

<u>Test procedure</u> : Pure colony is transferred onto filter paper soaked with oxidase reagent.

Interpretation

- Oxidase test positive : A dark purple colour appears within 10 seconds on filter paper.

- Oxidase test negative : No colour development on the filter paper within 10 seconds.

- A. baumannii shows a negative result for oxidase test.

3.6 Hemolysis on sheep blood agar

The organism was inoculated on sheep blood agar plate and incubated at 37°C for 24 hours.

Interpretation

- Positive result : Hydrolysis of red blood on sheep blood agar.

- Negative result : No hemolysis on sheep blood agar.

- A. baumannii shows no hemolysis on sheep blood agar.

3.7 Growth at 37°C, 42°C and 44°C

To determine the ability to grow at 37°C, 42°C and 44°C, the organism was inoculated on tryptic soy agar and incubated at 37°C, 42°C and 44°C. The ability to grow was observed after 24 hours of incubation. *A. baumannii* can grow at 37°C, 42°C and 44°C.

PART III : ANTIMICROBIAL SUSCEPTIBILITY TESTING

The minimal inhibitory concentrations (MICs) of imipenem (Merck & Co., U.S.A.) and meropenem (AstraZeneca UK Limited, United Kingdom) were determined by agar dilution technique and interpreted according to the guidelines of Clinical and Laboratory Standards Institute. *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, *Staphylococcus aureus* ATCC 29213 and *Enterococcus faecalis* ATCC 29212 were used as quality controls.

MICs were determined on Mueller-Hinton agar (BBL, Becton Dickinson and Company, Coskeysville, MD). Preparing the inoculum from a pure overnight culture in tryptic soy broth (BBL, Becton Dickinson and Company, Coskeysville, MD) and the turbidity was adjusted to a 0.5 McFarland standard (approximately 1.5×10^8 CFU/ml) in 0.85% NaCl. Then, the suspension was diluted 10-fold to yield the final inoculum suspension and the 1 ml of inoculum suspension was transferred to the multi-point inoculator wells which deliver 1-2 µl of inoculum suspension to agar dilution plates made the final inoculums was approximately 10^4 CFU/spot. Inoculate the bacterial suspension on Mueller-Hinton agar containing two-fold dilution of antimicrobial agent concentration from 0.015 to $\geq 256 \mu g/ml$. The concentration of antimicrobial agents used in agar dilution are shown in Table 3. Mueller-Hinton agar without antimicrobial agent were used as growth control. Plates were incubated at 35-37°C for 18-24 hours. The MIC is the lowest concentration of antimicrobial agents that inhibit the growth of a microorganism (Figure 7).

The MICs interpretation used breakpoint criteria recommended by CLSI (Clinical and Laboratory Standards Institute, 2008) are shown in the Table 4 and Acceptable MIC limits for quality control strains are listed in Table 5.

Antimicrobial solution								
Step	Conc.	Source	Vol.	Diluent	Intermediate	Final conc. at	Log	
	µg/ml		(ml)	(ml)	Concentration	1:10	2	
					(mg/l)	dilution in		
						agar		
						(µg/ml)		
	5,120	Stock	-	-	5,120	512	9	
1	5,120	Stock	2	2	2,560	256	8	
2	5,120	Stock	1	3	1,280	128	7	
3	5,120	Stock	1	7	640	64	6	
4	640	Step 3	2	2	320	32	5	
5	640	Step 3	1	3	160	16	4	
6	640	Step 3	1	7	80	8	3	
7	80	Step 6	2	2	40	4	2	
8	80	Step 6	1	3	20	2	1	
9	80	Step 6	1	7	10	1	0	
10	10	Step 9	2	2	5	0.5	-1	
11	10	Step 9	1	3	2.5	0.25	-2	
12	10	Step 9	1	7	1.25	0.125	-3	
13	1.25	Step 10	2	2	0.625	0.0625	-4	
14	1.25	Step 9	1	3	0.3125	0.03125	-5	
15	1.25	Step 9	1	7	0.15625	0.015625	-6	

Table 3. Scheme for preparing dilutions of antimicrobial agents to used in agardilution susceptibility tests.

Note: This table is modified from Ericsson HM. Sherris JC. Antibiotic sensitivity testing. Report of an international collaborative study. (Acta Pathol Microbiol Scand.1971; 217 (suppl B): 1-98).

Figure 7. The inoculum plate by agar dilution method for *A. baumannii* isolates: A, control plate (no antibiotic) ; B, MIC plate with imipenem

Table 4. MIC interpretive standards for Acinetobacter spp.

Antimicrobial agent	MIC In	terpretive Standard (J	ug/ml)
	Susceptible	Intermediate	Resistant
Imipenem	\leq 4	8	≥16
Meropenem	≤ 4	8	≥16

	MIC (µg/ml)						
Antimiarahial	Escherichia	Pseudomonas	Staphylococcus	Enterococcus			
Antimicrobia	coli	aeruginosa	aureus	faecalis			
agents	ATCC 25922	ATCC 27853	ATCC 29213	ATCC 29212			
Imipenem	0.06-0.25	1-4	0.015-0.06	0.5-2			
Meropenem	0.008-0.06	0.25-1	0.03-0.12	2-8			

Table 5. Acceptable limits for quality control strains used to monitor accuracy ofMICs

PART IV : PHENOTYPIC DETECTION OF CARBAPENEMASES

Carbapenemase-producing strains in 453 *A. baumannii* isolates were screening by Modified Hodge test. *E. coli* ATCC 25922 was suspended in 0.85% saline to the turbidity of 0.5 Mcfarland and inoculated onto a Mueller-Hinton agar plate. After brief drying, a 10-µg imipenem disk (BBL, Coskeysville, MD) was placed in the center of the plate and test strains were streaked from the edge of the disk to the periphery of the plate. The plate was incubated at 35-37°C for 24 hours. Modified Hodge test positive interpreted by the presence of a distorted inhibition zone after overnight incubation (Figure 8).

Figure 8. Detection of carbapenemase phenotype by Modified Hodge test. The distorted inhibition zone of *E. coli* showed a positive of carbapenemase activity.

PART V : PHENOTYPIC DETECTION OF METALLO-β-LACTAMASES

The method that used for screening metallo- β -lactamases is EDTA-disk synergy test. All 453 *A. baumannii* isolates were screened for metallo- β -lactamases. The bacterial isolate was suspended in 0.85% saline to the turbidity of 0.5 Mcfarland and inoculated onto a Mueller-Hinton agar plate. A 10- μ g imipenem disk was placed 10 mm from a blank filter paper disk soaked in 10 μ l of 0.5 M EDTA solution (concentration approximately 1.5 mg/disk) in a center of each plate. The plate was incubated at 35-37°C for 24 hours. After incubation period, EDTA-synergy test positive was interpreted by the presence of an enlarged inhibition zone (Figure 9). *P.aeruginosa* carrying *bla*_{VIM} gene is used as control for MBL enzyme.

10-μg imipenem disk

Figure 9. Detection of MBLs by EDTA-disk synergy test. The enlarged inhibition zone of tested isolate showed a positive of metallo-β-lactamase activity.

PART VI : SCREENING FOR THE PRESENCE OF METALLO-β-LACTAMASE GENES

A total of 453 A. baumannii isolates were detected for MBL genes by multiplex PCR.

1. DNA preparation

Genomic DNA was prepared by boiling method, three to five pured culture colonies were suspended in 100 μ l of nuclease-free water and boiled at 100°C for 10 minutes. The bacterial suspensions were centrifuged at 12,000 rpm for 5 minutes at room temperature. The supernatant was used as the DNA template for PCR experiments and stored at -20°C.

2. Primers

The presence of bla_{IMP} , bla_{VIM} , bla_{GIM} , bla_{SPM} and bla_{SIM} was screened by multiplex PCR using the primers as described in Table 6. All except one primer were designed by Ellington *et al.* (133). SIM-R1 was designed by this thesis.

Table 6. Primers of m	ultiplex PCR	used for	amplification	of bla	genes	encoded
metallo-β-lactamases						

Gene	Primer	Sequence	Product	Reference
			size (bp)	
$bla_{\rm IMP}$	IMP-F	5'-GGAATAGAGTGGCTTAAYTCT C-3'	188)
	IMP-R	5'-CCAAACYACTASGTTATCT-3'		
$bla_{\rm VIM}$	VIM-F	5'-GATGGTGTTTGGTCG CATA-3'	390	
	VIM-R	5'-CGAATGCGCAGCACCAG-3'		(133)
$bla_{\rm GIM}$	GIM-F	5'-TCGACACACCTTGGTCTGAA-3'	477	\rangle
	GIM-R	5'-AACTTCCAACTTTGCCATGC-3'		
$bla_{\rm SPM}$	SPM-F	5'-AAAATCTGGGTACGCAAACG-3'	271	
	SPM-R	5'-ACATTATCCGCTGGAACAGG-3'		
$bla_{\rm SIM}$	SIM-F	5'-TACAAGGGATTCGGCATCG-3'	304)
	SIM-R1	5'- CCAACCAAAAGCTCTCTTTATC -3'		This study

3. Amplification of the MBLs genes by multiplex PCR

Metallo- β -lactamases genes were amplified by multiplex PCR using IMP-F, IMP-R, VIM-F, VIM-R, GIM-F, GIM-R, SPM-F, SPM-R, SIM-F and SIM-R1 primers. The PCR was performed in a volume 25 µl containing 1X *Taq* buffer, 2 mM MgCl₂, 0.2 mM of each dNTPs (Fermentas, USA), 5 pmol of IMP-F, IMP-R primers, 2 pmol of VIM-F, VIM-R primers, 0.625 pmol of GIM-F, GIM-R, SPM-F, SPM-R, SIM-F and SIM-R1 primers, 0.625 U *Taq* polymerase (Fermentas, USA) and 2 µl of DNA template from boiling method. Cycling conditions were an initial denaturation step at 94°C for 5 minutes, amplification step at 36 cycles of 94°C for 30 seconds, 52°C for 30 seconds, 72°C for 50 seconds and a final extension at 72°C for 5 minutes. The PCR products of *bla*_{IMP}, *bla*_{VIM}, *bla*_{GIM}, *bla*_{SPM} and *bla*_{SIM} were 188 bp, 390 bp, 477 bp, 271 bp and 304 bp respectively.

4. Analysis of amplified DNA

The PCR products were analyzed on 1% agarose gels electrophoresis (Pronadisa, Spain) in 0.5X TBE buffer containing 0.5 μ g/ml of ethidium bromide (Sigma, USA). Six microliters of PCR products were mixed with 3 μ l of loading buffer (20% ficoll, 0.05% bromphenol blue). The electrophoresis was carried out at 100 volts for 60 minutes. The amplified products were visualized and photographed under UV light transilluminator. A 100 bp DNA ladder plus (Fermentus, USA) was used as a DNA size marker.

5. Quality control

The clinical strains of *P. aeruginosa* harbouring bla_{IMP} and bla_{VIM} were used as positive controls. The bla_{IMP} was obtained from Associate Professor Dr. Aroonwadee Chanawong, Khon Kaen University, Thailand.

PART VII : SCREENING FOR THE PRESENCE OF OXA-TYPE CARBAPENEMASE GENES

A total of 453 *A. baumannii* isolates were detected for OXA-type carbapenemase genes by multiplex PCR.

1. DNA preparation

Genomic DNA was prepared by boiling method, four to five pured culture colonies were suspended in 100 μ l of nuclease-free water and boiled at 100°C for 10 minutes. The bacterial suspensions were centrifuged at 12,000 rpm for 5 minutes at room temperature. The supernatant was used as the DNA template for PCR experiments and stored at -20°C.

2. Primers

The presence of bla_{OXA-23} , bla_{OXA-24} , bla_{OXA-51} and bla_{OXA-58} were screened by multiplex PCR using the primers OXA23-F, OXA23-R, OXA24-F, OXA24-R, OXA51-F, OXA51-R, OXA58-F and OXA58-R as described by Woodford *et al.* (134) in Table 7.

Table 7. Primers of multiplex PCR used for amplification of *bla* genes encoded OXA-type carbapenemase

Primer	Sequence	Product	references
		size (bp)	
OXA23-F	5'-GATCGGATTGGAGAACCAGA-3'	501)
OXA23-R	5'-ATTTCTGACCGCATTTCCAT-3'		
OXA24-F	5'-GGTTAGTTGGCCCCCTTAAA-3'	249	
OXA24-R	5'-AGTTGAGCGAAAAGGGGATT-3'		(134)
OXA51-F	5'-TAATGCTTTGATCGGCCTTG-3'	353	
OXA51-R	5'-TGGATTGCACTTCATCTTGG-3'		
OXA58-F	5'-AAGTATTGGGGGCTTGTGCTG-3'	599	
OXA58-R	5'-CCCCTCTGCGCTCTACATAC-3')
	Primer OXA23-F OXA23-R OXA24-F OXA24-R OXA51-F OXA51-R OXA58-F OXA58-R	Primer Sequence OXA23-F 5'-GATCGGATTGGAGAACCAGA-3' OXA23-R 5'-ATTTCTGACCGCATTTCCAT-3' OXA24-F 5'-GGTTAGTTGGCCCCCTTAAA-3' OXA24-R 5'-AGTTGAGCGAAAAGGGGATT-3' OXA51-F 5'-TAATGCTTTGATCGGCCTTGA-3' OXA51-R 5'-TGGATTGCACTTCATCTTGG-3' OXA58-F 5'-CCCCTCTGCGCTCTACATAC-3'	PrimerSequenceProductOXA23-F5'-GATCGGATTGGAGAACCAGA-3'501OXA23-F5'-ATTTCTGACCGCATTTCCAT-3'249OXA24-F5'-GGTTAGTTGGCCCCCTTAAA-3'249OXA24-F5'-AGTTGAGCGAAAAGGGGATT-3'249OXA51-F5'-TAATGCTTGATCGGCCTTGA-3'353OXA51-F5'-TGGATTGCACTTCATCTGG-3'599OXA58-F5'-CCCTCTGCGCTTAACA-3'599

3. Amplification of the *bla*_{OXA-like} genes by multiplex PCR

OXA-type carbapenemase genes were amplified by multiplex PCR using OXA23-F, OXA23-R, OXA24-F, OXA24-R, OXA51-F, OXA51-R, OXA58-F and OXA58-R primers. The PCR was performed in a volume 25 μ l containing 1X *Taq* buffer, 1.5 mM MgCl₂, 0.2 mM of each dNTPs (Fermentas, USA), 1.25 pmol of each primer except 0.625 pmol of OXA58-F and OXA58-R and 0.625 U *Taq* polymerase (Fermentas, USA), and 1 μ l of DNA template from boiling method. Cycling conditions were an initial denaturation step at 94°C for 5 minutes, amplification step at 30 cycles of 94°C for 25 seconds, 52°C for 40 seconds, 72°C for 50 seconds and a final extension at 72°C for 6 minutes. The PCR products of *bla*_{OXA-23}, *bla*_{OXA-24}, *bla*_{OXA-51} and *bla*_{OXA-58} were 501 bp, 249 bp, 353 bp and 599 bp, respectively.

4. Analysis of amplified DNA

The PCR products were analyzed on 1% agarose gels electrophoresis (Pronadisa, Spain) in 0.5X TBE buffer containing 0.5 μ g/ml of ethidium bromide (Sigma, USA). Six microliters of PCR products were mixed with 3 μ l of loading buffer (20% ficoll, 0.05% bromphenol blue). The electrophoresis was carried out at 100 volts for 60 minutes. The amplified products were visualized and photographed under UV light transilluminator. A 100 bp DNA ladder plus (Fermentus, USA) was used as a DNA size marker.

5. Quality control

The clinical strains of *A. baumannii* harbouring bla_{OXA-23} , bla_{OXA-24} , bla_{OXA-51} and bla_{OXA-58} were used as positive control strains.

PART VIII : SCREENING FOR THE PRESENCE OF ISABA

A total of 49 *A. baumannii* isolates were selected by the different of MIC level (MIC range 0.25 to >256). They were screened for the presence of IS*Aba1*, IS*Aba2*, IS*Aba3* and IS*Aba4* with primers specific for each type of IS*Aba* by PCR.

1. DNA preparation

Genomic DNA was prepared by boiling method, four to five pured culture colonies were suspended in 100 μ l of nuclease-free water and boiled at 100°C for 10 minutes. The bacterial suspensions were centrifuged at 12,000 rpm for 5 minutes at room temperature. The supernatant was used as the DNA template for PCR experiments and stored at -20°C.

2. Screening for ISAba1-4

The presence of ISA*ba1*, ISA*ba2*, ISA*ba3* and ISA*ba4* was screened by polymerase chain reaction using the primers described in Table 8.

Table 8. Primers for amplification of ISAba

Element	Primer	Sequence	Product	References
			size (bp)	
ISAba1	ISAba1-F	5'- CACGAATGCAGAAGTTG-3'	549	(135)
	ISAba1-R	5'- CGACGAATACTATGACAC-3'		
ISAba2	ISAba2-F	5'- CATCATAGTGACAGAGGTGTGC-3'	268	This study
	ISAba2-R	5'- AAGGTGACACATAACCTAGTGC-3'		
ISAba3	ISAba3-F	5'- CAATCAAATGTCCAACCTGC-3'	403	(113)
	ISAba3-R	5'- CGTTTACCCCAAACATAAGC-3'		
ISAba4	ISAba4-F	5'- ATTTGAACCCATCTATTGGC-3'	612	(112)
	ISAba4-R	5'- ACTCTCATATTTTTTTTTGG-3'		

3. Amplification of the ISAba1-4 by PCR

ISAba1, ISAba2, ISAba3 and ISAba4 were amplified by PCR using ISAba1-F, ISAba1-R, ISAba2-F, ISAba2-R, ISAba3-F, ISAba3-R, ISAba4-F and ISAba4-R. The PCR was performed in a volume 25 µl containing 1X *Taq* buffer, 1.5 mM MgCl₂, 0.2 mM of each dNTPs (Fermentas, USA), 1 pmol of each primers, 0.625 U *Taq* polymerase (Fermentas, USA) and 1 µl of DNA template from boiling method. Cycling conditions were an initial denaturation step at 95°C for 5 minutes, amplification step at 35 cycles of 95°C for 30 seconds, 52°C for 30 seconds, 72°C for 1 minutes and a final extension at 72°C for 10 minutes. The PCR products of ISAba1-F, ISAba1-R, ISAba2-F, ISAba2-R, ISAba3-F, ISAba3-R. ISAba4-F, ISAba4-R were 549 bp, 268 bp, 403 bp and 612 bp respectively.

4. Analysis of amplified DNA

The PCR products were analyzed on 1% agarose gels electrophoresis (Pronadisa, Spain) in 0.5X TBE buffer containing 0.5 μ g/ml of ethidium bromide (Sigma, USA). Six microliters of PCR products were mixed with 3 μ l of loading buffer (20% ficoll, 0.05% bromphenol blue). The electrophoresis was carried out at 100 volts for 60 minutes. The amplified products were visualized and photographed under UV light transilluminator. A 100 bp DNA ladder plus (Fermentus, USA) was used as a DNA size marker.

5. Quality control

The clinical strains of *A. baumannii* harbouring ISAba1, ISAba2 and ISAba3 were used as positive control strains.

PART IX: SCREENING FOR THE PRESENCE OF ISABA UPSTREAM BLA_{OXA} GENES

A total of 43 *A. baumannii* isolates carrying bla_{OXA} were investigated for ISAba in the upstream region of *bla* genes by PCR using the forward primer specific for ISAba and the reverse primers specific for bla_{OXA} genes.

1. DNA preparation

Genomic DNA was prepared by boiling method, four to five pured culture colonies were suspended in 100 μ l of nuclease-free water and boiled at 100°C for 10 minutes. The bacterial suspensions were centrifuged at 12,000 rpm for 5 minutes at room temperature. The supernatant was used as the DNA template for PCR experiments and stored at -20°C.

2. Primers

The presence of ISAba upstream of bla genes was screened using ISAba for forward and reverse primers and bla genes for reverse primers. The primers for screening of ISAba upstream of of bla genes are shown in Table 9.

Element	Primer	Sequence
ISAba1	ISAba1-F	5'- CACGAATGCAGAAGTTG-3'
	ISAba1-R	5'- CGACGAATACTATGACAC-3'
ISAba2	ISAba2-F	5'- CATCATAGTGACAGAGGTGTGC-3'
	ISAba2-R	5'- AAGGTGACACATAACCTAGTGC-3'
ISAba3	ISAba3-F	5'- CAATCAAATGTCCAACCTGC-3'
	ISAba3-R	5'- CGTTTACCCCAAACATAAGC-3'
bla _{OXA-23}	OXA23-R	5'-ATTTCTGACCGCATTTCCAT-3'
bla _{OXA-24}	OXA24-R	5'-AGTTGAGCGAAAAGGGGATT-3'
bla _{OXA-51}	OXA51-R	5'-TGGATTGCACTTCATCTTGG-3'
bla _{OXA-58}	OXA58-R	5'-CCCCTCTGCGCTCTACATAC-3'

Table 9. Primers for amplification of ISAba upstream of bla_{OXA} genes

3. Amplification of ISAba upstream of bla_{OXA-like} genes by PCR

The PCR was performed in 50 μ l PCR reaction mixture containing 1X *Taq* buffer, 3 mM MgCl₂, 0.2 mM dNTPs (Fermentas, USA), 1 pmol of IS*Aba* and *bla* genes primers , 0.625 U *Taq* polymerase (Fermentas, USA) and 2 μ l of DNA template from boiling method. Cycling conditions were an initial denaturation step at 95°C for 1 minute, amplification step at 35 cycles of 95°C for 30 seconds, 50°C for 30 seconds, 72°C for 1 minute and a final extension at 72°C for 10 minutes.

4. Analysis of amplified DNA

The PCR products were analyzed on 1% agarose gels electrophoresis (Pronadisa, Spain) in 0.5X TBE buffer containing 0.5 μ g/ml of ethidium bromide (Sigma, USA). Six microliters of PCR products were mixed with 3 μ l of loading buffer (20% ficoll, 0.05% bromphenol blue). The electrophoresis was carried out at 100 volts for 60 minutes. The amplified products were visualized and photographed under UV light transilluminator. A 100 bp DNA ladder plus (Fermentus, USA) was used as a DNA size marker.

PART X : ANALYSIS OF ENTIRE *BLA*_{OXA} AND ISABA UPSTREAM *BLA*_{OXA} BY PCR AND DNA SEQUENCING

A. baumannii isolates carrying *bla* genes were characterized by PCR of entire *bla* genes and IS*Aba* upstream region and automated DNA sequencing.

1. DNA preparation

1.1 Plasmid DNA extraction

A. baumannii was extracted plasmid DNA for amplify entire blaoxA-23-like and blaoxA-58-like genes by Plasmid Mini Kit (GmbH & Co. KG, Germany). A. baumannii was cultured in Luria-Bertani broth (Pronadisa, Spain) until the density the density of bacterial cells up to 12 OD/ml (OD600). Bacterial cells were transferred to a 1.5 ml capped microcentrifuge tube and centrifuged at 11,000 g for 30 seconds then remove the supernatant. The 250 μ l of resuspension solution were added and then, mixed by vortexing. The sample was added by 250 µl of lysis solution and mixed by inverting 6-8 times. The 350 µl of neutralizing solution were added to the sample and mixed by inverting 6-8 times. The sample was centrifuged for 5-10 minutes. The plasmid DNA in clear supernatant was transferred into a plasmid mini column and was centrifuged for 1 minute. The filtrate was removed from the tube and replaced into the same wash tube. The column was added by 750 μ l of wash solution and centrifuged for 1 minute. The wash solution was removed from the tube and the column was replaced into the same wash tube. Then, the tube was centrifuged for 1 additional minute to remove residual wash solution. The plasmid mini column was transferred to a 1.5 ml microcentrifuge tube and the 50 µl of elution solution was added onto the base of the column and incubated for 1 minute at room temperature. After that, the column was centrifuged for 1 minute to elute the plasmid DNA. The plasmid DNA samples were stored at -20°C.

1.2 Boiling method

Genomic DNA was prepared by boiling method, four to five pured culture colonies were suspended in 100 μ l of nuclease-free water and boiled at 100°C for 10 minutes. The bacterial suspensions were centrifuged at 12,000 rpm for 5 minutes at room temperature. The supernatant was used as the DNA template for PCR experiments and stored at -20°C.

2. Primers for PCR and DNA sequencing

2.1 Primers for entire $bla_{OXA-like}$ genes

The primers for PCR and sequencing of entire blaOXA-23-like, blaOXA-51-like, blaOXA-58-like are shown in Table 10.

Specific for	Primers	Primer sequence	Product	Reference
Specific for	1 milers	i inici sequence	size (bp)	Kreitinte
PCR primers				
entire <i>bla</i> OXA23-like	OXA23-likeF	5'-GATGTGTCATAGTATTCGTCG-3'	1065)
	OXA23-likeR	5'-TCACAACAACTAAAAGCACTG-3'		
entire <i>bla</i> OXA24-like	OXA24-likeF	5'-GTACTAATCAAAGTTGTGAA-3'	1021	(136)
	OXA24-likeR	5'-TTCCCCTAACATGAATTTGT-3'		
entire <i>bla</i> OXA51-like	OXA51-likeF	5'-TACGCCAATCCATACAGCAA-3'	1416) (GenBank
	OXA51-likeR	5'-GCTTGACGCTGCTTTTTACC-3'		accession no.CU468230)
entire <i>bla</i> _{OXA58-like}	OXA58-likeF	5'-TTATCAAAATCCAATCGGC-3'	933	
	OXA58-likeR	5'-TAACCTCAAACTTCTAATTC-3'		(137)
Sequencing				
primers				
entire <i>bla</i> OXA23-like	OXA23-likeF	5'-GATGTGTCATAGTATTCGTCG-3')
	OXA23-likeR	5'-TCACAACAACTAAAAGCACTG-3'		
entire <i>bla</i> OXA24-like	OXA24-likeF	5'-GTACTAATCAAAGTTGTGAA-3'		(138)
	OXA24-likeR	5'-TTCCCCTAACATGAATTTGT-3'		J
	OXA21-likeR1	5'-AGTTGAGCGAAAAGGGGATT-3'		-
entire <i>bla</i> OXA51-like	OXA51-likeF	5'-TACGCCAATCCATACAGCAA-3'		(GenBank accession
	OXA51-likeFM	5'-TAATGCTTTGATCGGCCTTG-3'		no.CU46823)
	OXA51-likeFM1	5'-ATGAACATTAAAGCACTC-3'		(134) (GenBank accession
	OXA51-likeR1	5'-CTATAAAATACCTAATTGTTC-3'		no.EU97756)
entire <i>bla</i> _{OXA58-like}	OXA58-likeF	5'-TTATCAAAATCCAATCGGC-3'		
	OXA58-likeR	5'-TAACCTCAAACTTCTAATTC-3'		(137)
	OXA58-likeFM	5'-AAGTATTGGGGGCTTGTGCTG-3'		(134)

Table 10. Primers for PCR and DNA sequencing entire *bla* genes

The primers for PCR and sequencing of ISA*ba* upstream *bla*OXA-like are shown in Table 11.

Table 11. Sequence of the oligonucleotides used as primers for PCR and DNAsequencing bla genes and ISAba upstream region

Specific for	Primer	Sequence
ISAba1-bla _{OXA-23}	ISAba1-F	5'- CACGAATGCAGAAGTTG-3'
	OXA23-R	5'-ATTTCTGACCGCATTTCCAT-3'
ISAba3- bla _{OXA-58}	ISAba3-R	5'- CGTTTACCCCAAACATAAGC-3'
	OXA58-R	5'-CCCCTCTGCGCTCTACATAC-3'

3. Amplification of entire *bla*OXA-like genes

3.1 Amplification of entire *bla*OXA-23-like and *bla*OXA-58-like genes

OXA23-F and OXA23-R primers were used for amplification of the entire *bla*OXA-23-like gene while OXA58-F and OXA58-R primers were for entire *bla*OXA-58-like gene amplification. The PCR was performed in 50 μ l PCR reaction mixture containing 1X *taq* buffer, 3 mM MgCl₂, 200 μ M dNTP (Fermentas, USA), 5 pmol of each primer, 1.25 U *Taq* polymerase (Fermentas, USA), and 3 μ l of DNA template. Cycling conditions were an initial denaturation step at 95°C for 5 minutes, amplification step at 30 cycles of 95°C for 25 seconds, 52°C for 40 seconds, 72°C for 50 seconds and a final extension at 72°C for 6 minutes. The PCR products of entire *bla*OXA-23-like and *bla*OXA-58-like were 1,062 bp and 933 bp, respectively.

The amplification of entire *bla*OXA51-Jike gene was used OXA51-F and OXA51-R as primers. The PCR was performed in 50 µl PCR reaction mixture containing 1X *taq* buffer, 3 mM MgCl₂, 200 µM dNTP (Fermentas, USA), 5 pmol of each primer, 1.25 U *Taq* polymerase (Fermentas, USA), and 3 µl of DNA template. Cycling conditions were an initial denaturation step at 95°C for 5 minutes, amplification step at 35 cycles of 95°C for 30 seconds, 52°C for 1 minute, 72°C for 90 seconds and a final extension at 72°C for 10 minutes. The PCR product of entire *bla*OXA-51-Jike was 825 bp.

4. Amplification of ISAba upstream of bla_{OXA-like} genes by PCR

The PCR was performed in 50 µl PCR reaction mixture containing 1X *Taq* buffer, 3 mM MgCl₂, 0.2 mM dNTPs (Fermentas, USA), 1 pmol of IS*Aba* and *bla* genes primers , 0.625 U *Taq* polymerase (Fermentas, USA) and 2 µl of DNA template from boiling method. Cycling conditions were an initial denaturation step at 95°C for 1 minute, amplification step at 35 cycles of 95°C for 30 seconds, 50°C for 30 seconds, 72°C for 1 minute and a final extension at 72°C for 10 minutes.

5. Analysis of amplified DNA

The PCR products were analyzed on 1% agarose gels electrophoresis (Pronadisa, Spain) in 0.5X TBE buffer containing 0.5 μ g/ml of ethidium bromide (Sigma, USA). Six microliters of PCR products were mixed with 3 μ l of loading buffer (20% ficoll, 0.05% bromphenol blue). The electrophoresis was carried out at 100 volts for 60 minutes. The amplified products were visualized and photographed under UV light transilluminator. A 100 bp DNA ladder plus (Fermentus, USA) was used as a DNA size marker.

6. Purification of PCR product

The PCR products were purified by Invisorb Fragment cleanup kit as described by the manufacturer (Invitek GmbH,Germany). For binding the PCR-fragments, add 250 μ l binding buffer to the PCR sample and mix very well by vortexing. Transfer the complete sample onto a Spin Filter and centrifuge for 3 minutes at 12,000 rpm. For elution of the PCR-fragments, place the Spin Filter into a new 1.5 ml tube and add 30 μ l elution buffer onto the center of the Spin Filter. After that, incubate for 1 minute at room temperature then the tube was centrifuged for 1 minute at 10,000 rpm. The concentration of DNA was measured by spectrophotometer (BIO RAD, Smart Spec tm 3000, U.S.A) and approximately adjusted to 50-100 ng/ μ l for preparation of sequencing reaction and the purified PCR products were stored at -20°C.

7. Preparation of sequencing reaction

Purified PCR products were sequenced by the chain termination method at the Macrogen Inc. (Seoul, Korea). Sequencing was conducted under BigDyeTM terminator cycling conditions. The reacted products were purified by ethanol precipitation and running using automatic sequencer, Applied Biosystems DNA sequencer model 3730xI (Rochester NY, USA).

8. Sequencing analysis

The nucleotide sequences and protein sequences were analyzed with the software available over the Internet at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/BLAST), ExPASy (www.expasy.org/) and multiple sequence alignment of sequences were analyzed by Multilin (http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html) or Bioedit program.

PART XI: DETECTION OF CARBAPENEM EFFLUX PUMP PHENOTYPE

The mechanism of carbapenem efflux pump in 453 *A. baumannii* isolates was determined by inhibitory effects of carbonyl cyanide *m*-chlorophenylhydrazone (CCCP), the efflux pump inhibitor. Susceptibility testing was carried out using agar dilution method. MIC changes were observed in either the presence or the absence of CCCP (Sigma, USA) at concentrations of 12.5 μ M. The Mueller Hinton agar containing the two-fold dilutions of imipenem and meropenem (0.015-256 μ g/ml) were inoculated with 5x10⁴ CFU/ml of each isolate. Plates were incubated for 20-24 hour at 37°C. The positive of phenotype efflux pump was detected by the MIC of imipenem and meropenem decreased at least 4-fold. MICs in the the presence of CCCP *A. baumannii* Aci65 with efflux pump positive (decreased 4-fold) were used as positive control and the plate CCCP without antibiotics was used as control.

PART XII : OUTER MEMBRANE PROTEIN ANALYSIS

A total of 23 *A. baumannii* isolates including 2 susceptible isolates and 21 resistant isolates, *A. baumannii* ATCC 19606 were selected by different types of *bla*_{OXA-like} and the level of MIC for imipenem and meropenem. The outer membrane protein (OMPs) fractions were prepared by the *N*-lauroyl sacrosinate method and analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis.

1. Cell envelope preparation and OMP extraction.

Inoculation of *A. baumannii* isolates in Luria-Bertani broth 100 ml for 18-24 hours at 37°C in shaker incubator. After that, centrifuge for 30 minutes at 5,000 rpm at 4°C. The pellet was resuspended in 10 mmol/l Tris HCl pH 8.0 10 ml and cells were breaked by sonication for 5 minutes. The cell debris was removed by centrifugation at 5000 rpm at 4°C for 45 minutes. The supernatant was transferred and centrifuged for 20000 rpm at 4°C for 1 hour then resuspensed in DDW 150 μ l. The suspension was treated by 2% sarkosyl, incubated for 20 minutes and then centrifuge for 35000 rpm at 4°C for 90 minutes. The pellet was resuspended in 100 μ l of 10 mmol/l Tris HCl pH 8.0 and stored at -70°C until further use.

2. SDS-PAGE

Prepare 12% polyacrylamide gel for separate gel and 4% polyacrylamide gel for stacking gel. Electrophoresis was performed at a constant amphere of 30 mA for 80 minutes and the gel was stained with Coomassie Brilliant Blue.

CHAPTER V

RESULTS

PART I : BACTERIAL STRAINS

A total of 453 *A. baumannii* isolates were used in this study. They were collected from clinical specimens at the Department of Microbiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand between March 2008 and April 2010. Each isolate was from different patient. Two hundred and sixty-nine (59.4%) isolates were collected from male and 184 (40.6%) isolates were from female. The range of age was 8 days to 99 years old. Two hundred and three (44.8%) were obtained from ICUs and 255 (55.2%) were from non-ICUs. For the sites of specimens, 58 (12.8%) isolates were from sterile sites including blood, CSF and body fluid and 395 (87.2%) isolates were from non-sterile sites including sputum, urine, pus, tissue, respiratory aspirate and other specimen. The results are shown in Table 12.

Table 12. Clinical specimen of 453 A. baumannii isolates
--

Source	Specimen	No. of isolates	Total (%)
Starile site	Body fluid	35	7.7
n = 58 (12.8%)	Blood	21	4.6
II = 38(12.870)	CSF	2	0.4
	Sputum	197	43.5
	Urine	90	19.9
Non-sterile site	Pus	30	6.6
n= 395 (87.2%)	Tissue	12	2.6
	Respiratory aspirate	43	9.5
	Other	23	5.1

All clinical isolates were identified as *A. baumannii* based on conventional methods such as colony morphology, Gram stain and biochemical characteristics. The colony morphology of *A. baumannii* isolates on MacConkey agar was lactose non-ferment, 1 to 2 mm in diameter, colorless or greyish-pink, smooth and sometimes mucoid. Gram stain showed gram negative coccobacilli, usually in diploid form. For biochemical characteristics, the isolates showed neutral slant/neutral butt on triple sugar iron agar, non motile, urease negative, citrate positive, oxidase negative, oxidized glucose and non hemolysis on sheep blood agar. For ability to grow, the isolates grew at 37°C, 42°C and 44°C.

PART II : ANTIMICROBIAL SUSCEPTIBILITY TESTING

The antimicrobial susceptibility testing to carbapenems in *A. baumannii* was determined by agar dilution method on Mueller-Hinton agar. The MIC is the lowest concentration of antibiotics required to inhibit the growth of a microorganism *in vitro*. The MIC₅₀ and MIC₉₀ are the lowest concentration of antibiotics required to inhibit 50% and 90% of isolates tested, respectively. MIC breakpoints of imipenem and meropenem are $\geq 16 \ \mu g/ml$. The results of susceptibility testing and resistance rates of imipenem and meropenem against 453 *A. baumannii* isolates are shown in Table 13 and appendix D.

Prevalence of imipenem resistance was 88.7% (402/453). Imipenem MIC ranged from 0.5 to >256 μ g/ml. MIC₅₀ and MIC₉₀ were 128 μ g/ml and 256 μ g/ml, respectively. Distribution of the imipenem MIC for 453 A. baumannii isolates is shown in Figure 10. It was demonstrated that 11.3% (51/453) of imipenemsusceptible A. baumannii isolates had MICs ranged from 0.5 to 4 µg/ml and most of imipenem-susceptible isolates (72.5 %, 37/51) had imipenem MICs of 1 and 2 μ g/ml. Imipenem-resistant isolates had MICs ranged from 32 to >256 μ g/ml and the majority of imipenem-resistant isolates (79.1%, 318/402) had imipenem MICs of 128 to 256 µg/ml. Similar to imipenem, prevalence of meropenem resistance was 88.7% (402/453). The meropenem MIC ranged from 0.25 to 256 μ g/ml. MIC₅₀ and MIC₉₀ were 64 µg/ml and 128 µg/ml, respectively. Distribution of the meropenem MICs for 453 A. baumannii isolates is shown in Figure 11. It was shown that 11.3% (51/453) of MICs of meropenem-susceptible isolates had the MIC ranging from 0.25 to 4 μ g/ml. Most of meropenem-susceptible isolates (92.2%, 47/51) had meropenem MIC of 0.25 to 2 µg/ml. Meropenem-resistant isolates had MICs ranged from 16 to 256 µg/ml and the majority of meropenem-resistant isolates (80.8%, 325/402) had imipenem MICs of 32 to 64 μ g/ml.

The resistance rates of imipenem and meropenem in A. baumannii isolates from ICUs and non-ICUs were studied. The comparison of carbapenem-resistant rate between ICUs and non-ICUs isolates are shown in Figure 12. Imipenem resistance in ICU and non-ICU isolates were 88.7% (180/203) and 88.8 % (222/250), respectively. MIC₅₀ and MIC₉₀ of imipenem resistance in both ICUs and non-ICUs were 128 µg/ml and 256 µg/ml, respectively. Similar to imipenem resistance rates, meropenem resistance rates in ICU and non-ICU isolates were 88.7% (180/203) and 88.8 % (222/250), respectively. MIC₅₀ and MIC₉₀ of meropenem resistance in both ICU and non-ICU isolates were 64 µg/ml and 128 µg/ml, respectively (Table 14). Distribution of imipenem MIC in ICU and non-ICU isolates are demonstrated in Figure 13. The MIC range of imipenem-susceptible isolates from ICU and non-ICU were 0.5 to 2 µg/ml. The majority of imipenem-susceptibile isolates in ICU (82.6%, 19/23) and non-ICU (85.7%, 24/28) had imipenem MIC ranged from 1 to 2 μ g/ml and 1 to 4 µg/ml, respectively. Whereas, the MIC range of imipenem-resistant isolates in ICU and non-ICU had imipenem MIC ranging from 32 to $>256 \mu g/ml$. Most of imipenemresistant isolates from ICU (85%, 153/180) and non-ICU (93.7%, 208/222) had imipenem MIC ranging from 128 to 256 and 64 to 256 µg/ml, respectively. Distribution of the MIC of meropenem in ICU and non-ICU isolates are shown in Figure 14. It was demonstrated that meropenem-susceptible isolates from ICU and non-ICU had meropenem MIC ranging 0.25 to 2 µg/ml. Most of meropenemsusceptible isolates from ICU (82.6%, 19/23) and non-ICU (85.7%, 24/28) had meropenem MIC of 0.25 to 0.5 μ g/ml and 0.25 to 1 μ g/ml, respectively. In addition, MICs of meropenem-resistant isolates from ICU and non-ICU had the MIC range of 16 to 256 µg/ml. The majority of meropenem-resistant strains from both ICU (81.1%, 146/180) and non-ICU (80.6%, 179/222) had meropenem MIC of 16 to 128 µg/ml.
Antimicrobial	Γ	MICs (µg/m	l)	Susceptibility (%)				
agents	MIC50	MIC90	Range	S	I	R		
Imipenem	128	256	0.5->256	11.3 (51/453)	0	88.7 (402/453)		
Meropenem	64	128	0.25-256	11.3 (51/453)	0	88.7 (402/453)		

Table 13. The susceptibility of imipenem and meropenem against 453A. baumannii isolates.

Figure 10. Distribution of imipenem MICs among 453 A. baumannii isolates

Figure 11. Distribution of meropenem MICs among 453 A. baumannii isolates

Figure 12. Comparison of carbapenem resistance in 453 *A. baumannii* isolates from ICUs and non-ICUs

Figure 13. Distributions of imipenem MICs among 453 *A. baumannii* isolates from ICUs and non-ICUs

Figure 14. Distributions of meropenem MICs among 453 *A. baumannii* isolates from ICUs and non-ICUs

Table 14. Correlation between carbapenemase genes and MICs of A. baumannii isolates from ICUs and non-ICUs

	No. of	No. of	No. of isolates habouring $bla_{OXA-like}$ (%)			MIC (ug/ml)					
Ward	isolates	OXA-51-like	OXA-51-like,	OXA-51-like,	OXA-51 like, OXA-23- like,		Imipenem			Meropenem	
			OAA-25- like	OAA-24- like	OXA-58 -like	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀	Range
ICU	203	23 (11.3)	179 (88.2)	0	1 (0.5)	128	256	0.5->256	64	128	0.25-256
Non-ICU	250	28 (11.2)	218 (87.2)	1 (0.4)	3 (1.2)	128	256	0.5->256	64	128	0.25-256

PART III : DETECTION OF CARBAPENEMASE PHENOTYPE

The carbapenemase phenotype was detected by modified Hodge test. A total of 453 *A. baumannii* isolates were detected for carbapenemase activity. Carbapenemase activity of all isolates are shown in Appendix D. Four hundred and two (88.7%) were positive for carbapenemase activity. The range of imipenem MIC for carbapenemase activity negative and positive were 0.5 to 4 μ g/ml and 32 to > 256 μ g/ml, respectively. The MIC range of meropenem for carbapenemase activity negative and positive were 0.25 to 2 μ g/ml and 16 to 256 μ g/ml, respectively. All of 402 *A. baumannii* isolates with carbapenemase activity were resistant to imipenem and meropenem. Distribution of MICs of imipenem and meropenem MICs in *A. baumannii* isolates and the presence of carbapenemase activity are shown in Figures 15 and 16.

■ Carbapenemase negative ■ Carbapenemase positive

Figure 15. Distribution of imipenem MICs and carbapenemase activity

Figure 16. Distribution of meropenem MICs and carbapenemase activity

PART IV : DETECTION OF METALLO- β -LACTAMASES PHENOTYPE

The metallo- β -lactamase activity was detededed by EDTA-disk synergy test. A total of 453 *A. baumannii* were tested for metallo- β -lactamase activity and the results are shown in Appendix D. All of 453 *A. baumannii* were negative for metallo- β -lactamase activity.

PART V: SCREENING FOR THE PRESENCE OF METALLO-β-LACTAMASE GENES

All of 453 *A. baumannii* isolates were screened for the presence of metallo- β -lactamase genes including $bla_{IMP-like}$, $bla_{VIM-like}$, bla_{SIM-1} , bla_{SPM-1} and bla_{GIM-1} . The expected size of PCR products of $bla_{IMP-like}$, $bla_{VIM-like}$, bla_{SIM-1} , bla_{SPM-1} and bla_{GIM-1} were 188 bp, 390 bp, 477 bp, 271bp and 304 bp, respectively. Metallo- β -lactamase genes were not detected in any isolates. The result of screening for $bla_{IMP-like}$, $bla_{VIM-like}$, bla_{SIM-1} , bla_{SPM-1} and bla_{GIM-1} are shown in appendix D.

PART VI : SCREENING FOR THE PRESENCE OF OXA-TYPE CARBAPENEMASE GENES

A total of 453 *A. baumannii* isolates were screened for OXA-type carbapenemase genes including $bla_{OXA-23-like}$, $bla_{OXA-24-like}$, $bla_{OXA-51-like}$ and $bla_{OXA-58-like}$ by multiplex PCR. The expected size of PCR products of bla_{OXA-23} , bla_{OXA-24} , bla_{OXA-51} and bla_{OXA-58} were 501 bp, 249 bp, 353 bp, 599 bp, respectively (Figure 17). The result of screening for bla_{OXA} are presented in appendix D. All isolates were positive for bla_{OXA-51} . Four hundred and one (88.5%, 401/453) were positive for bla_{OXA-23} . One (0.2%, 1/453) isolate were positive for bla_{OXA-24} . Four (0.9%, 4/453) were positive for bla_{OXA-58} .

Among 402 carbapenem-resistant *A. baumannii* isolates, 401 (99.8%) had bla_{OXA-23} , 1 (0.2%,) carried bla_{OXA-24} , 4 (1%) isolates haboured bla_{OXA-58} . The results are presented in Table 16. Of 453 isolates, 51 (11.3%) carried only bla_{OXA-51} . These isolates had no carbapenemase activity. Three hundred and ninety-seven isolates (87.6%) carried bla_{OXA-23} and bla_{OXA-51} , 1 (0.2%) haboured bla_{OXA-24} and bla_{OXA-51} , 4 (1%) had bla_{OXA-23} , bla_{OXA-51} and bla_{OXA-58} . All of which had carbapenemase activity. The results are summarized in Table 15.

The MIC range of imipenem in *A. baumannii* isolates carrying only bla_{OXA-51} were 0.5 to 4 µg/ml. MIC₅₀ and MIC₉₀ were 1 µg/ml and 4 µg/ml, respectively. The isolates that haboured bla_{OXA-23} and bla_{OXA-51} had imipenem MIC ranging from 32 to >256 µg/ml. MIC₅₀ and MIC₉₀ were 128 µg/ml and 256 µg/ml, respectively. Only one isolate habouring bla_{OXA-24} and bla_{OXA-51} had imipenem MIC of >256 µg/ml. All 4 isolates carrying bla_{OXA-23} , bla_{OXA-51} and bla_{OXA-58} had imipenem MIC of 64 µg/ml. The distribution of imipenem MIC and $bla_{OXA-1ike}$ gene are presented in Table 15 and Figure 18.

The isolates habouring only bla_{OXA-51} had low-level meropenem MIC as for imipenem MIC. The meropenem MIC ranged from 0.25 to 2 µg/ml. The isolates habouring bla_{OXA-23} and bla_{OXA-51} had MIC of meropenem ranged from 16 to 256 µg/ml. MIC₅₀ and MIC₉₀ were 64 µg/ml and 128 µg/ml, respectively. Only 1 isolate carrying bla_{OXA-24} and bla_{OXA-51} had meropenem MIC of 256 µg/ml. The isolates carrying bla_{OXA-23} , bla_{OXA-51} and bla_{OXA-58} had meropenem MIC range of 16 µg/ml to 32 µg/ml. MIC₅₀ and MIC₉₀ were 16 µg/ml and 32 µg/ml, respectively. The distribution of meropenem MIC and $bla_{OXA-like}$ gene are presented in Table 15 and Figure 19.

Figure 17. Multiplex PCR analysis of *bla*_{OXA-like}: M, 100-bp plus DNA ladder; lane 1 negative control (sterile DDW); lane 2, *bla*_{OXA23-like}, *bla*_{OXA24-like}, *bla*_{OXA51-like} and *bla*_{OXA58-like}; lane 3-5, *bla*_{OXA23-like} and *bla*_{OXA51-like}; lane 6, *bla*_{OXA51-like}

~ .		No. of	Imi	penem N	ЛIC	Meropenem MIC			
Carbapenemase activity	bla _{OXA-like}	isolates		(mg/L)		(mg/L)			
		(%)	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀	Range	
Negative	bla _{OXA51-like} ,	51(11.3)	1	4	0.5-4	0.5	1	0.25-2	
Positive	bla _{OXA51-like} , bla _{OXA23-like}	397(87.6)	128	256	32->256	64	128	16-256	
Positive	$bla_{ m OXA51-like},$ $bla_{ m OXA24-like}$	1(0.2%)	-	-	>256	-	-	256	
Positive	$bla_{OXA51-like},$ $bla_{OXA23-like},$ $bla_{OXA58-like}$	4(1%)	64	64	64-64	16	32	16-32	

Table 15. OXA-type carbapenemase genes in the 453 A. baumannii isolates.

Table 16. OXA-type carbapenemase genes among 402 carbapenem-resistantA. baumannii isolates.

Gene	Number of isolates (%)
bla _{OXA23-like}	401 (99.8%)
bla _{OXA24-like}	1 (0.2%)
bla _{OXA51-like}	402 (100%)
bla _{OXA58-like}	4 (1%)

Figure 18. Distribution of genes encoding OXA-type carbapenemases and imipenem MICs

Figure 19. Distribution of genes encoding OXA-type carbapenemases and meropenem MICs

PART VII : SCREENING FOR THE PRESENCE OF ISABA IN A. BAUMANNII

A total of 49 *A. baumannii* isolates with different MIC level (MIC range 0.25 to >256), were screened for the presence of IS*Aba1*, IS*Aba2*, IS*Aba3* and IS*Aba4* with primers specific for each type by PCR. The expected sizes of PCR products of IS*Aba1*, IS*Aba2*, IS*Aba3* and IS*Aba4* were 549 bp, 268 bp, 403 bp and 612 bp, respectively. IS*Aba1* was detected in 43 (87.8%) isolates. IS*Aba2* was detected in 7 (14.3%) isolates. IS*Aba3* was present in 8 (16.3%) isolates. IS*Aba4* was not detected in any isolates.

PART VIII : SCREENING AND SEQUENCING OF ISABA UPSTREAM BLA_{OXA-LIKE} GENES

1. ISAba1 upstream bla_{OXA-like}

A total of 43 isolates carrying ISAba1 were screened for the presence of ISAba1 upstream the $bla_{OXA-like}$ genes. The results are summarized in Table 17 and appendix E.

1.1 ISAba1 upstream bla_{OXA-23-like}

There were 38 A. baumannii isolates carrying both ISAbal and $bla_{OXA-23-like}$. The MIC of imipenem and meropenem ranged from 32 to >256 and 16 to 128 μ g/ml, respectively. MIC₅₀ of imipenem and meropenem were and 64 μ g/ml, respectively. MIC₉₀ were 256 and 64 μ g/ml, 256 respectively. PCR using primer ISAba1-F and bla_{OXA-23-like}-R amplified the specific DNA fragment of 1405 bp. DNA sequencing analysis of 5 representative isolates (A251, A252, A253, A254 and A285) revealed that ISAba1 was located upstream of bla_{OXA-23} . The schematic representation of ISAba1 upstream bla_{OXA-23-like} is shown in Figure 20. Nucleotide sequence alignment of PCR fragment of the ISAba1-bla_{OXA-23-like} of the representative isolates (A285) and the sequences in Genbank accession no.EF127491 showed that both ISAba1-bla_{OXA-23-like} fragments were identical (figure 22). The -35 (TTAGAA) sequences and -10 (TTATTT) sequences separated by 16 bp performed as promoter sequences. Nucleotide sequence alignment of our 5 representative A. baumannii isolates and sequence accession no.EF127491 are shown in appendix F.

Figure 20. Schematic representation of ISAba1 upstream bla_{OXA-23}

1.2 ISAba1 upstream bla_{OXA-51-like}

All 43 ISAba1 isolates carried both ISAba1 and $bla_{OXA-51-like}$. However, ISAba1 was not identified in the upstream region of $bla_{OXA-51-like}$ in any isolates by PCR.

1.3 ISAba1 upstream bla_{OXA-58-like}

Four isolates including A98, A200, A232 and A341 carried both ISAba1 and $bla_{OXA-58-like}$. The presence of ISAba1 upstream $bla_{OXA-58-like}$ was not detected in any isolates by PCR.

2. ISAba2 upstream $bla_{OXA-like}$

A total of 7 *A. baumannii* isolates including Ab1, A260, A264, A270, A282, A290 and A293 carrying IS*Aba2* were screening for the presence of IS*Aba2* upstream region of $bla_{OXA-like}$ genes, including $bla_{OXA-23-like}$, $bla_{OXA-24-like}$, $bla_{OXA-51-like}$. IS*Aba2* upstream $bla_{OXA-like}$ genes were not present in any isolates. The results are summarized in Table 17 and appendix E.

3. ISAba3 upstream bla_{OXA-like}

A total of 8 *A. baumannii* isolates including A98, A200, A232, A255, A256 and A341 carrying ISAba3 were screened for the presence of ISAba3 upstream $bla_{OXA-like}$ genes including $bla_{OXA-23-like}$, $bla_{OXA-51-like}$, $bla_{OXA-58-like}$. The results are summarized in Table 17 and appendix E.

3.1 ISAba3 upstream bla_{OXA-58-like}

There were 4 *A. baumannii* isolates carrying both IS*Aba3* and $bla_{OXA-58-like}$. The imipenem MIC were 64 µg/ml and meropenem MIC ranged from 16 to 32 µg/ml. MIC₅₀ of imipenem and meropenem were 64 and 16 µg/ml, respectively. MIC₉₀ were 64 and 32 µg/ml, respectively. PCR using primer IS*Aba3*-F and *bla*_{OXA-58-like}-R amplified the specific DNA fragment of 1046 bp. DNA sequencing analysis revealed that all 4 isolates had IS*Aba3*

upstream bla_{OXA-58} . The schematic representation of ISAba3 upstream $bla_{OXA-58-like}$ is shown in Figure 21. In A200, ISAba3 was located 17 bp upstream of bla_{OXA-58} . The -35 (TTTATC) sequences and -10 (TTTCTT) sequences separated by 16 bp performed as promoter sequences. Nucleotide sequence alignment of PCR fragment of the ISAba3-bla_{OXA-58-like} of A200 and the sequences in Genbank accession no.DQ987830 showed that both ISAba3-bla_{OXA-58-like} fragment were identical (Figure 23). Nucleotide sequence alignment of all 4 *A. baumannii* isolates and sequence accession no.DQ987830 are shown in appendix F.

Figure 21. Schematic representation of ISAba3 upstream bla_{OXA-58}

Table 17. The correlation of the aquisition of ISAba upstream $bla_{OXA-like}$ withMIC in carbapenem-resistant A. baumannii.

ISAba-bla _{OXA-like}	No. of	IPI	Μ MIC (με	g/ml)	MEM MIC (µg/ml)			
	isolates	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀	Range	
ISAba1- bla _{OXA-23-like}	38	256	256	32->256	64	64	16-128	
ISAba3- bla _{OXA-58-like}	4	64	64	64-64	16	32	16-32	

	1301												1430
EF127491	ATAAAGCGTT	GAATCAAAGC	AATGCGCTCT	TTCGTATCTG	AATTTCCACG	TTTATTAAGC	AATGTCCAAA	GGATAGGTAT	CGCTATTCCA	CGATAAACGA	TTGCGAGCAT	CAGGATATTA	ATATTTCGTT
A285													
Consensus													
55105401	1431					~~~~~		000000000000					1560
EF12/491	TTCCCCATTT	CCAATTGGTT	CTATCTAAAG	TCAGTTGCAC	TIGGICGAAT	GAAAACATAT	TGAAAATCAA	CTGAGAAATT	TGACGATAAT	CAAAATACTG	ACCIGCAAAG	AAGCGCTGCA	TACGTCGATA
Consensus													
conscisus													
	1561												1690
EF127491	AAATGATTGT	GGTAAGCACT	TGATGGGCAA	GGCTTTAGAT	GCAGAAGAAA	GATTACATGT	TTGCTTTAAA	ATAATCACAA	GCATGATGAG	CGCAAAGCAC	TTTAAATGTG	ACTTGTTCCA	TTTTAGAGAT
A285													
Consensus													
						-35		-10		IRI	ISAbal		
	1691		~~~~~~~~~~					10					1820
EF127491	'I''I'G'I''I''I'AAGA	TAAGATATAA	CTCATTGAGA	TGTGTCATAG	TATTCGTCGT	TAGAAAACAA	TTATTATGAC	ATTATT CAA	TGAGTTATCT	ATTTTTGTCG	TGTACAGAGC	TCTTTTTTAT	TTTCTATTGA
7 2 0 5													
A285						•••••		· · · · · · · · · · · · · · · · · · ·					
A285 Consensus						·····							
A285 Consensus		Start codon											1950
A285 Consensus EF127491	1821 TCTGGTGTTT	Start codon	 AATATTTTAC	TTGCTATGTG	GTTGCTTCTC	ттттсттс	TGGTTGTACG	GTTCAGCATA	ΑΤΤΤΑΑΤΑΑΑ	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA	1950 TAATCAGGTG
A285 Consensus EF127491 A285	1821 TCTGGTGTTT	Start codon AAA <mark>ATG</mark> AATA	 AATATTTTAC	TTGCTATGTG	GTTGCTTCTC	ттттсттс	TGGTTGTACG	GTTCAGCATA	 ATTTAATAAA	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA	1950 TAATCAGGTG
A285 Consensus EF127491 A285 Consensus	1821 TCTGGTGTTT	Start codon	AATATTTTAC	TTGCTATGTG	GTTGCTTCTC	ттттсттс	TGGTTGTACG	GTTCAGCATA	ATTTAATAAA	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA	1950 TAATCAGGTG
A285 Consensus EF127491 A285 Consensus	1821 TCTGGTGTTT	Start codon	AATATTTTAC	TTGCTATGTG	GTTGCTTCTC	ттттсттс	TGGTTGTACG	GTTCAGCATA	ATTTAATAAA	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA	1950 TAATCAGGTG
A285 Consensus EF127491 A285 Consensus	1821 TCTGGTGTTT 	Start codon aaa <mark>atc</mark> aata	AATATTTTAC	TTGCTATGTG	GTTGCTTCTC	ттттсттс	TGGTTGTACG	GTTCAGCATA	ATTTAATAAA	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA	1950 TAATCAGGTG
A285 Consensus EF127491 A285 Consensus EF127491	1821 TCTGGTGTTT 1951 ATTCATCAAT	Start codon		TTGCTATGTG	GTTGCTTCTC TGGTTATTCA	TTTTTCTTTC	TGGTTGTACG	GTTCAGCATA	ATTTAATAAA TGCTCTAAGC	TGAAACCCCG	AGTCAGATTG CAGAATATGT	TTCAAGGACA GCCAGCCTCT	1950 TAATCAGGTG
A285 Consensus EF127491 A285 Consensus EF127491 A285	1821 TCTGGTGTTT 	Start codon	аататтттас аааааасассс	TTGCTATGTG TCAGGTGTGC	GTTGCTTCTC	TTTTTCTTTC	TGGTTGTACG	GTTCAGCATA	ATTTAATAAA 	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA	1950 TAATCAGGTG
A285 Consensus EF127491 A285 Consensus EF127491 A285 Consensus	1821 TCTGGTGTTT 1951 ATTCATCAAT	Start codon AAA <mark>ATC</mark> AATA ACTTTGATGA	аататтттас аааааасасс	TTGCTATGTG TCAGGTGTGC	GTTGCTTCTC 	TTTTTCTTTC AACAGATAAA	TGGTTGTACG	GTTCAGCATA	ATTTAATAAA 	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA	1950 TAATCAGGTG 2080 ACATTTAAAA
A285 Consensus EF127491 A285 Consensus EF127491 A285 Consensus	1821 TCTGGTGTTT 	Start codon AAA <mark>ATC</mark> AATA ACTTTGATGA	AATATTTTAC	TTGCTATGTG TCAGGTGTGC	GTTGCTTCTC	TTTTTCTTTC AACAGATAAA	TGGTTGTACG	GTTCAGCATA	ATTTAATAAA 	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA GCCAGCCTCT	1950 TAATCAGGTG 2080 ACATTTAAAA
A285 Consensus EF127491 A285 Consensus EF127491 A285 Consensus EF127491	1821 TCTGGTGTTT 	Start codon AAA <mark>ATC</mark> AATA ACTTTGATGA	AATATTTTAC	TTGCTATGTG TCAGGTGTGC	GTTGCTTCTC TGGTTATTCA 	TTTTTCTTTC AACAGATAAA 	TGGTTGTACG	GTTCAGCATA 	ATTTAATAAA TGCTCTAAGC 	TGAAACCCCG	AGTCAGATTG CAGAATATGT	TTCAAGGACA GCCAGCCTCT	1950 TAATCAGGTG 2080 ACATTTAAAA 2210 TGAAGCTTC
A285 Consensus EF127491 A285 Consensus EF127491 A285 Consensus EF127491 A285	1821 TCTGGTGTTT 	Start codon AAA <mark>ATG</mark> AATA ACTTTGATGA CCTGATCGGA	AATATTTTAC AAAAAACACC TTGGAGAACC	TTGCTATGTG TCAGGTGTGC AGAAAACGGA	GTTGCTTCTC TGGTTATTCA TATTAATGAA	TTTTTCTTTC AACAGATAAA 	I GGTTGTACG	GTTCAGCATA TATATGGTAA GAAAAGGTCA	ATTTAATAAA 	TGAAACCCCG CGCGCAAATA CGCGCAAATA	AGTCAGATTG CAGAATATGT CATGACACTA	TTCAAGGACA GCCAGCCTCT GGAGAAGCCA	1950 TAATCAGGTG 2080 ACATTTAAAA 2210 TGAAGCTTTC

Figure 22. Comparison of ISAba1 upstream region of bla_{OXA-23} gene of A285 and sequences in GenBank accession no.EF127491

	261												390
DQ987830	ACTTTGCTGA	GGCTGAATTT	CATAGGTTGA	TTCAGTTAAA	GTACGTAAAA	CTTTACCGAT	ACTGATGCGC	TCAACTTCAG	CAATATCTCG	TATACCGCTG	CCTCTGACCA	TCAACTGTAA	TATTTTACGA
A200													
Consensus													
	391												520
DQ987830	GTAATACCTG	ACTTACATCC	TAGATAGCTC	AGTGCATGAT	CACCAATAAA	CTGACGTTTA	CAGTCTTTGC	ACTGATAGTT	TTGTTTCCCA	TCTACTTTGA	TACCATTTTT	CTTTATACTA	TCACTGAGGC
A200													
Consensus													
								I	RL ISAba3				
	521				-35		-10		1011040			Start codo	n 650
DQ987830	AGGTTGGACA	TTTGATTGCT	AGAGTTATTT	GCATTTCTCT	AT <mark>TTTATC</mark> AA	AATCCAATCG	GCTTTTTTTT	CAGCATACTT	TTTGAAACAC	TACCAAATTT	TAAAGTTGTA	TATC <mark>ATG</mark> AAA	TTATTAAAAA
A200													
Consensus													
	651												780
DQ987830	TATTGAGTTT	AGTTTGCTTA	AGCATAAGTA	TTGGGGGCTTG	TGCTGAGCAT	AGTATGAGTC	GAGCAAAAAC	AAGTACAATT	CCACAAGTGA	ATAACTCAAT	CATCGATCAG	AATGTTCAAG	CGCTTTTTAA
A200	• • • • • • • • • • •		• • • • • • • • • • •		• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •			• • • • • • • • • • •	• • • • • • • • • • •		
Consensus	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
	701												010
0007020	781		mammamaaaa			3 3 3 3 3 0 0 0 0 0							910
DQ987830	IGAAAICICA	GCIGAIGCIG	IGITIGICAC	AIAIGAIGGI	CAAAAIAIIA	AAAAAIAIGG	CACGCATTIA	GACCGAGCAA	AAACAGCIIA	TATICCIGCA	ICIACATITA	AAATIGCCAA	IGCACIAAII
AZUU													
consensus													
	911												1040
00987830	GGTTTAGAAA	ATCATAAAGC	AACATCTACA	GAAATATTTA	AGTGGGATGG	AAAGCCACGT	TTTTTAAAG	CATGGGACAA	AGATTTTACT	TTGGGCGAAG	CCATGCAAGC	ATCTACAGTG	CCTGTATATC
A200													
Consensus													
	1041												1170
DQ987830	AAGAATTGGC	ACGTCGTATT	GGTCCAAGCT	TAATGCAAAG	TGAATTGCAA	CGTATTGGTT	ATGGCAATAT	GCAAATAGGC	ACGGAAGTTG	ATCAATTTTG	GTTGAAAGGG	CCTTTGACAA	TTACACCTAT
A200													
Consensus													

Figure 23. Comparison of ISAba3 upstream region of bla_{OXA-58} gene of A200 and sequences in GenBank accession no.DQ987830

PART IX: DNA SEQUENCING ANALYSIS OF ENTIRE BLA GENES

1. DNA SEQUENCING ANALYSIS OF ENTIRE BLA GENES

The entire $bla_{OXA23-like}$, $bla_{OXA51-like}$ and $bla_{OXA58-like}$ genes were amplified by PCR and DNA sequencing. Fifteen, 12 and 4 isolates with different MIC level and $bla_{OXA-like}$ genes were selected for sequenced $bla_{OXA23-like}$, $bla_{OXA51-like}$ and $bla_{OXA58-like}$. The results of DNA sequencing are summarized in Table 18.

A total of 15 representative *A. baumannii* isolates habouring *bla*_{OXA23-like} were selected for DNA sequencing, including A98, A200, A232, A251, A252, A253, A254, A258, A259, A292, A294, A297, A299, A300 and A341. The isolates haboured various types of *bla*_{OXA-like} as shown in table 18. The MIC range of imipenem and meropenem were 32 to >256 µg/ml and 16 to 128 µg/ml, respectively. DNA sequence analysis of the 1,065-bp fragments of 15 representative *A. baumannii* revealed an open reading frame of 822 bp, encoding a 271 amino acids. They shared 100% nucleotide sequences and amino acid sequences identity to *bla*_{OXA-23} and OXA-23 enzyme, respectively (GenBank accession no.EU022368 and ABU24822). Nucleotide sequence alignment of these *A. baumannii* and sequence accession no.EU022368 are shown in appendix F.

A total of 12 representative *A. baumannii* isolates habouring $bla_{OXA51-like}$ were selected for DNA sequencing, including A98, A200, A232, A251, A252, A253, A254, A258, A259, A299, A300 and A341. The isolates haboured various types of $bla_{OXA-like}$ as shown in table 18. The MIC range of imipenem and meropenem were 32 to >256 µg/ml and 16 to 128 µg/ml, respectively. The OXA-51 group was intrinsic enzyme in *A. baumannii* and showed the low level of carbapenem hydrolytic activity. In our study, these isolates had co-existence of $bla_{OXA51-like}$ and other $bla_{OXA-like}$ which caused high level of imipenem and meropenem MIC. DNA sequence analysis of the 1,416-bp fragments in 12 representative *A. baumannii* revealed an open reading frame of 825 bp, encoding a 274 amino acids. Of 12 isolates, 7 isolates showed 100% nucleotide sequences and amino acid sequences identity to bla_{OXA-66} and OXA-66

enzyme, respectively (GenBank accession no.FJ360530 and ACP34154). One isolate shared 100% nucleotide sequence and amino acid sequence identity to *bla*_{OXA-69} and OXA-69 enzyme, respectively (GenBank accession no.CU459141 and CAM86994). Four isolates shared 99% nucleotide sequences and amino acid sequences identity to *bla*_{OXA-65} and OXA-65 (GenBank accession no.AY750908 and AAW81337), respectively. Nucleotide sequence alignment of these *A. baumannii* and sequence accession no.FJ360530, no.CU459141 and no.AY750908 are shown in appendix F.

A total of 4 *A. baumannii* isolates habouring $bla_{OXA58-like}$ were performed DNA sequencing included A98, A200, A232 and A341. The MIC of imipenem was 64 µg/ml and meropenem were 16 to 32 µg/ml as shown in table 18. DNA sequence analysis of the 933-bp fragments in 4 *A. baumannii* revealed an open reading frame of 841 bp, encoding a 280 amino acids. They shared 100% nucleotide sequences and amino acid sequences identity to bla_{OXA-58} and OXA-58 enzyme, respectively (GenBank accession no.HQ219687 and ADQ27319). Nucleotide sequence alignment of all 4 *A. baumannii* isolates and sequence accession no.HQ219687 are shown in appendix F.

Isolates	MIC	(µg/ml)		Presence o	f <i>bla</i> genes	Type of <i>bla</i> genes	
isolates	Imipenem	Meropenem	bla _{OXA-23-like}	bla _{OXA-24-like}	bla _{OXA-51-like}	bla _{OXA-58-like}	Type of but genes
A98	64	32	+	-	+	+	$bla_{\text{OXA-23}}$, $bla_{\text{OXA-65}}$ and $bla_{\text{OXA-58}}$
A200	64	16	+	-	+	+	$bla_{\text{OXA-23}}, bla_{\text{OXA-65}}$ and $bla_{\text{OXA-58}}$
A232	64	16	+	-	+	+	$bla_{\text{OXA-23}}, bla_{\text{OXA-65}}$ and $bla_{\text{OXA-58}}$
A341	64	32	+	-	+	+	$bla_{\text{OXA-23}}$, $bla_{\text{OXA-65}}$ and $bla_{\text{OXA-58}}$
A253	128	32	+	-	+	-	$bla_{\text{OXA-23}}$ and $bla_{\text{OXA-66}}$
A254	128	32	+	-	+	-	$bla_{\rm OXA-23}$ and $bla_{\rm OXA-66}$
A252	256	64	+	-	+	-	$bla_{\text{OXA-23}}$ and $bla_{\text{OXA-66}}$
A258	256	64	+	-	+	-	$bla_{\text{OXA-23}}$ and $bla_{\text{OXA-66}}$
A259	256	64	+	-	+	-	$bla_{\rm OXA-23}$ and $bla_{\rm OXA-66}$
A300	256	64	+	-	+	-	$bla_{\text{OXA-23}}$ and $bla_{\text{OXA-66}}$
A251	>256	128	+	-	+	-	$bla_{\text{OXA-23}}$ and $bla_{\text{OXA-66}}$
A299	32	16	+	-	+	-	bla_{OXA-23} and bla_{OXA-69}
A292	128	64	+	-	+	-	bla _{OXA-23}
A294	256	64	+	-	+	-	bla _{OXA-23}
A297	256	32	+	-	+	-	bla _{OXA-23}

Table 18. Sequencing analysis of entire *bla*_{OXA-like}

PART X: DETERMINATION OF CARBAPENEM EFFLUX PUMP IN A. BAUMANNII

The efflux pump activity was detected by agar dilution with or without carbonyl cyanide *m*-chlorophenylhydrazone (CCCP), the proton pump inhibitor. The decrease of carbapenem MIC equal or greater than 4-fold is the criteria for efflux pump positive. There were 453 isolates of *A. baumannii* tested for the presence of efflux pump. The samples were selected by type of bla_{OXA} and level of MIC for imipenem and meropenem. The effect of CCCP on 453 *A. baumannii* isolates are shown in Appendix H.

In the presence of CCCP, imipenem and meropenem MICs were decreased for 2-fold in 63 (15.7%) isolates and 97 (24.1%) isolates, respectively. There were 339 (84.1%) isolates and 305 (75.7%) isolates which had no change in imipenem and meropenem MICs in the presence of CCCP. The results are summarized in table 19. The susceptible isolates had no change in imipenem and meropenem MICs. The efflux pump mechanism was not found in our carbapenem-resistant isolates.

Table 19. The effect of CCCP	among	402 carbapenem-resistant A.	baumannii
isolates.			

Antimicrobial	No. of fold	No. of isolates	MIC range (ug/ml)			
agents	decreased	(%)	no CCCP	СССР		
Imipenem	2	63(15.7%)	64-512	32-256		
	-	339(84.1%)	32-512	32-512		
Meropenem	2	97(24.1%)	32-128	16-64		
	-	305(75.7%)	16-256	16-256		

- = no change in MIC

PART XI : DETERMINATION OF OUTER MEMBRANE PROTEIN IN CARBAPENEM-RESISTANT A. BAUMANNII

Outer membrane proteins were analyzed by SDS-PAGE in 23 selected isolates. The isolates were selected by different types of bla_{OXA} and level of MIC for imipenem and meropenem. Among 23 *A. baumannii* isolates, 21 were resistant to imipenem and meropenem and 2 isolates were susceptible to these antimicrobial agents. The MICs for imipenem-resistant isolates ranged from 32 to > 256 µg/ml, whereas the MIC of meropenem-resistant isolates ranged from 16 to 256 µg/ml.

The OMP profiles were devided into 4 patterns in SDS-PAGE gels. OMP profile A was observed in 19 isolates. These isolates contained 8 major OMP bands of 19 kDa, 20 kDa, 26 kDa, 29 kDa, 37 kDa, 43 kDa, 48 kDa and 72 kDa. The OMP profile B was found in 2 isolates which showed 9 major bands. This profile differed from profile A in the presence of the 81 kDa OMP. OMP profile C differed from OMP pattern A by containing an additional band of the 28 kDa OMP. There is only 1 isolate in this profile. OMP profile D had 1 member differed from profile A in the presence of 25 kDa and 47 kDa OMP and in the absence of 48 kDa. The results are summarized in Figure 24.

OMP profile A was found in 19 isolates of *A. baumannii* (A313, A53, A146, A197, A98, A341, A125, A358, A200, A232, A91, A225, Ab17, A31, A165, A285, A170, A265, Ab1). Eighteen isolates were resistant to carbapenems and 1 isolate was susceptible to carbapenems. The MIC range of imipenem and meropenem of this profile ranged from 1 to >256 µg/ml and 0.5 to 256 µg/ml, respectively. OMP profile B (A299 and A325) was found in 2 isolates and both isolates were resistant to carbapenems. The MICs of imipenem and meropenem were both 32 µg/ml and 16 µg/ml, respectively. The OMP profile C (A258) was found in only 1 isolate which was resistant to carbapenems. The MICs of imipenem and meropenem were 256 µg/ml and 64 µg/ml, respectively. The fourth profile was profile D (A8) which was observed in only one susceptible isolate. The MICs of imipenem and meropenem were 2 µg/ml and 1 µg/ml, respectively. Five carbapenem-resistant *A. baumannii* isolates had profile A (A53, A91, A197 and A265) and C (A258) showed the reduction of 43 kDa OMP. The MICs of imipenem and meropenem in 5 isolates

Figure 24. Outer membrane protein profile in 23 A. baumannii isolates

Isolates	Imipenem	Meropenem		bla _{O2}		OMP	Reduced	
	MIC	MIC	bla _{OXA-23}	bla _{OXA-24}	bla _{OXA-51}	bla _{OXA-58}	profile	OMPs
	(µg/ml)	(µg/ml)						
A313	1	0.5	-	-	+	-	А	Negative
A8	2	1	-	-	+	-	D	Negative
A299	32	16	+	-	+	-	В	Negative
A325	32	16	+	-	+	-	В	Negative
A53	64	32	+	-	+	-	А	Positive
A146	64	32	+	-	+	-	А	Negative
A197	64	32	+	-	+	-	А	Positive
A98	64	32	+	-	+	+	А	Negative
A341	64	32	+	-	+	+	А	Negative
A125	64	32	+	-	+	-	А	Negative
A358	64	16	+	-	+	-	А	Negative
A200	64	16	+	-	+	+	A	Negative
A232	64	16	+	-	+	+	A	Negative
A91	128	64	+	-	+	-	А	Positive
A225	128	64	+	-	+	-	А	Negative
Ab17	128	32	+	-	+	-	A	Negative
A31	128	32	+	-	+	-	А	Negative
A165	128	32	+	-	+	-	А	Negative
A258	256	64	+	-	+	-	С	Positive
A285	256	64	+	-	+	-	A	Negative
A170	256	64	+	-	+	-	A	Negative
A265	256	64	+	-	+	-	А	Positive
Ab1	>256	256	-	+	+	-	А	Negative

 Table 20. The outer membrane profiles of 23 representative A. baumannii

CHAPTER VI

DISCUSSION

Acinetobacter baumannii is a major opportunistic nosocomial pathogen. Carbapenems are the very broad spectrum antibiotics used to treat A. baumannii in serious infection. Unfortunately, carbapenem-resistant A. baumannii has been increasingly reported worldwide. The MYSTIC (Meropenem Year Susceptibility Test Information Collection) programme reported imipenem and meropenem resistance rate of A. baumannii in European countries including Belgium, Croatia, Czech Republic, Finland, Germany, Greece, Poland, Russia, Spain, Sweden, Turkey and United Kingdom increased from 16% and 18%, respectively in 1997-2000 (123) to 42.5% and 43.4%, respectively in 2006 (124). In 2003, prevalence of imipenem resistance in A. baumannii isolated from Spain was 40% (122). Carbapenem resistance in A. baumannii isolated from Iran was 50% in 2008 (12) and high rate of resistance was reported to be 70.1% in Greece (128). During 2006-2009, meropenem resistance rate of A. baumannii in Mexico was 59% (11). In Thailand, the study from Police General Hospital showed that imipenem resistance rate of A. baumannii was 61% in 2003 (46). Carbapenems resistance rate of A. baumannii was 60% in 2005 at Maharaj Nakorn Chiang Mai Hospital (47) and 68% in 2006 at Siriraj Hospital (13). In 2007, imipenem resistantce rate of A. baumannii isolated from Songklanagarind Hospital was 34.7% (48). In this study, all 453 A. baumannii isolates were collected from King Chulalongkorn Memorial Hospital, Bangkok, Thailand between March 2008 and April 2010. The resistant rates of imipenem and meropenem was 88.7%. The results showed high prevalence of carbapenem resistance. This is similar to the larger Tigecycline Evaluation and Surveillance Trial (TEST) programme which reported imipenem resistance in 32 countries to be 91.5% in 2010.

OXA-23 carbapenemase enzyme was the first OXA-type characterized from Scotland in 1985. It was first described as ARI-1 from imipenem-resistant *A*. *baumannii*. Although $bla_{OXA-23-like}$ was first reported from plasmid but it was also found on chromosome. Villgas *et al*. reported that 3 of 4 clones of carbapenemresistant *A*. *baumannii* isolates had the bla_{OXA-23} gene on the chromosome and one clone on plasmid (23). Mugnier et al. demonstrated that 10 of 20 isolates carried bla_{OXA-23} gene on the chromosome, 9 isolates had bla_{OXA-23} gene on plasmid and 1 isolates haboured *bla*_{OXA-23} gene on both the chromosome and plasmid (22). Our study showed that *bla*_{OXA-23-like} was present in 88.5% of all 453 A. *baumannii* isolates and was found in 99.8% of imipenem- and meropenem-resistant isolates. Many outbreaks of bla_{OXA-23-like} genes in A. baumannii isolates were reported in many countries. The bla_{OXA-23-like} was identified in all carbapenem-resistant A. baumannii isolates from Bulgaria (26) and China in 2009 (139). Carvalho et al. reported that prevalence of bla_{OXA-23-like} was 87.3% in Brazil (50). In Thailand, Nuimsup et al. (140) and Thapa et al. (131) showed high prevalence of $bla_{OXA-23-like}$ (100%), similar to our study. This suggests that OXA-23 is disseminated in Thailand and worldwide. OXA-23 group comprises of OXA-23, OXA-27 and OXA-49. In our study, we detected bla_{OXA-23} in all fifteen representative isolates by sequencing entire bla_{OXA-23-like}. Corvec et al. investigated the genetic structure surrounding of the blaOXA-23 and showed that ISAba1 and ISAba4 upstream bla_{OXA-23} were on Tn2006 and Tn2007, respectively. ISAba1 was located 34 bp upstream of the start codon of bla_{OXA-23} and the +1 transcription start was located inside ISAba1 and upstream bla_{OXA-23} for 60 bp. The -35 sequence (TTAGAA) and -10 sequence (TTATTT) were separated by 16 bp (112). In our study, ISAba1 was found upstream of bla_{OXA-23} in all representative A. baumannii isolates and the genetic structure of ISAba1 and bla_{OXA-23} were at the same location as that of Corvec et al..

OXA-24 group comprises of OXA-24, OXA-25, OXA-26 and OXA-72 enzymes. These enzyme was first identified as chromosomally encoded in carbapenem-resistant *A. baumannii* isolated from Spain (108). The *bla*_{OXA24-like} gene was reported to be on both plasmid and chromosome (31). The high prevalence of carbapenem-resistant *A. baumannii* habouring *bla*_{OXA-24-like} was observed in Spain and Portugal (10, 29). The *bla*_{OXA-24-like} was also reported in USA, Czech Republic and Belgium (30-32). In Asia, high prevalence of *bla*_{OXA24-like} in carbapenem-resistant *A. baumannii* isolates was found in Taiwan (33) and was also detected in Thailand, Indonesia and Iran (12, 28). In this study, *bla*_{OXA24-like} was found in only 1 isolate with the MIC of imipenem and meropenem of $> 256 \mu g/ml$ and 256 $\mu g/ml$, respectively. The study of Afzal-Shah *el al.* showed that carbapenemase activity of OXA-25 and OXA-26 enzymes was higher than OXA-27, the member of OXA-23 group. The $bla_{OXA-24-like}$ gene was not found to be located in mobile genetic elements such as insertion sequence, transposon and integron. The mobilization of $bla_{OXA-24-like}$ was associated with site-specific recombination binding site including XerC and XerD binding sites (141-143).

The first report of OXA-51 group was from Argentina in 2004 (144). These enzymes had weakly hydrolytic activity. The $bla_{OXA-51-like}$ was an intrinsic gene in *A. baumannii*. Several studies showed that all strains of *A. baumannii* carried this gene. In this study, all of our *A. baumannii* isolates haboured $bla_{OXA-51-like}$. This result is similar to the studies of Turton *et al.* in 2006 (145), Merkier *et al.* in 2006 (146) and Wang *et al.* in 2007 (147). However, Koh *et al.* reported from Singapore in 2007 that not all *A. baumannii* isolates (77.3%) had $bla_{OXA-51-like}$ (148). In this study, sequencing analysis of entire showed that $bla_{OXA-51-like}$ genes were the bla_{OXA-66} (7 isolates, 58.3%), bla_{OXA-65} (4 isolates, 33.3%) and bla_{OXA-69} (1 isolate, 8.4%). The bla_{OXA-66} was reported from Greece, China, Taiwan and Spain (149-152). The bla_{OXA-65} was identified from Argentina (153). The bla_{OXA-69} was detected from Greece, Brazil and Norway (37, 154, 155). The $bla_{OXA-51-like}$ has been associated with ISAba1. The ISAba1 element upstream $bla_{OXA-51-like}$ provides promoter for enhancing of $bla_{OXA-51-like}$ expression (29).

OXA-58 was first described by Poirel *et al.* in 2003 from France. The members of this group were OXA-58, OXA-96 and OXA-97. (37). In our study, $bla_{OXA-58-like}$ was found together with $bla_{OXA-23-like}$ and $bla_{OXA-51-like}$ in 4 carbapenem-resistant isolates. Sequencing analysis revealed that all 4 isolates were bla_{OXA-58} . Ruiz *et al.* in 2007 reported that 20% of 83 imipenem-resistant *A. baumannii* isolates contained $bla_{OXA-58-like}$ (29). The study of Giannouli *et al.* of multiple Mediterranean hospitals including Greece, Italy, Lebanon, and Turkey reported that all 21 *A. baumannii* isolates from ICU had $bla_{OXA-58-like}$ (156). Tsakris *et al.* from Greece reported that $bla_{OXA-58-like}$ was found in 26 of 31 imipenem-resistant *A. baumannii* isolates (149). Pournaras *et al.* demonstrated that $bla_{OXA-58-like}$ was detected in 14 of 17 of imipenem-resistant *A. baumannii* isolates showed high level resistance. However,

we could not exclude the activity of OXA-23 in these isolates. However, Tsakris *et al.* reported widespread $bla_{OXA-58-like}$ which exhibited weak carbapenemase activity (157). The $bla_{OXA-58-like}$ was also reported from Italy (34), Iran (12) and China (158). In 2007, bla_{OXA-96} was found in one of 44 imipenem-resistant *A. baumannii* isolated from Singapore (148). The bla_{OXA-97} was detected in 19 in 39 carbapenem-resistant *A. baumannii* isolated from Tunesia (38). The $bla_{OXA-58-like}$ has been involved in a variety of genetic structure. ISAba1, ISAba2, ISAba3 and IS18 upstream bla_{OXA-58} were described to provide the promoter sequence enhancing the expression of bla_{OXA-58} (113).

The first report of ISAba1 was from France in 2003. Corvec et al. described the presence of insertion sequence upstream of bla_{ampC} gene in ceftazidime-resistant A. baumannii isolates (159). Turton et al. reported that ISAbal upstream bla_{OXA-51-like} and *bla*_{OXA-23-like} was found in carbapenem non-susceptible A. *baumannii* isolates (160). Corvec et al. demonstrated that -35 and -10 sequences located in ISAba1 provided strong promoter to bla_{OXA-23-like} in imipenem-resistant isolates (112). In 2006, Poirel et al. studied genetic structure surrounding bla_{OXA-58-like} and found that ISAba1 was detected upstream of *bla*_{OXA-58-like} and ISAba2- ISAba3-like (113). ISAba4 was located in the upstream region of bla_{OXA-23-like} on the Tn2007 (112). In this study, ISAba1 was found upstream of bla_{OXA-23-like} in all representative isolates but it was not present upstream of $bla_{OXA-51-like}$. This result is similar to that of Stoeva et al. from Bulgaria in 2008 which reported that all 29 carbapenem-resistant A. baumannii had ISAba1 in the upstream region of blaOXA-23-like but ISAba1 was not detected upstream of $bla_{OXA-51-like}$ (26). The results are in agreement with Jubelle et al. in 2007 from Australia (161). Thapa et al. also reported that all 37 carbapenemresistant A. baumannii isolated from Thailand had ISAba1 upstream bla_{OXA-23-like} (131). This is in contrast to the study of Ruiz et al. from Spain which showed that five representative isolates had ISAba1 located upstream of $bla_{OXA-51-like}$ (29). In this study, the -35 and -10 sequence located in ISAba1 upstream bla_{OXA-23-like} was identical to that of Genbank accession No.EF127491 (112). The MIC of imipenem and merpenem of 38 representative isolates showed high level resistance, suggesting that ISAba1 may provide the strong promoter for bla_{OXA-23-like}. ISAba3 which was in the upstream region of bla_{OXA-58-like} was found in all of our isolates, similar to the study by Giannouli *et al* (162). The -35 and -10 sequence was identical to those of Genbank accession No.DQ987830 in the study of Poirel *et al*. (113).

Metallo-β-lactamases in A. baumannii was less common than OXA-type carbapenemases. Carbapenem resistance level of MBLs is 100-1000 fold more than OXA-type carbapenemases (100). Metallo-β-lactamase genes in A. baumannii included bla_{IMP-like}, bla_{VIM-like} and bla_{SIM-like}. In our study, all 453 A. baumannii isolates had no metallo-\beta-lactamases. Our results are similar to the study of Zhou et al. from China in 2007 which showed that the majority of imipenem-resistant isolates had *bla*_{OXA-23-like} and *bla*_{IMP-like}, *bla*_{VIM-like} and *bla*_{SIM-like} were not detected (27). Metallo- β -lactamase genes were not found in all 92 isolates of meropenem-resistant A. baumannii isolates but bla_{OXA-24-like}, bla_{OXA-23-like} and bla_{OXA-58-like} were found in 64.1%, 1.1% and 2.2%, respectively (33). Papa et al. also reported 0% of bla_{IMP-like} and *bla*_{VIM-like} in 164 carbapenem-resistant A. *baumannii* isolated from Greek hospital (163). In contrast to the study of Sung et al. which reported that 31 carbapenemresistant A. baumannii isolates had bla_{IMP-1}(15 isolates) and bla_{VIM-2} (1 isolate), whereas, the *bla*_{OXA-23} was found in 7 isolates. Tsakris *et al.* reported the high prevalence of bla_{VIM-1}, bla_{VIM-4} and bla_{OXA-58} in 31 imipenem-resistant A. baumannii isolates from Greece in 2008 (149).

AdeABC are efflux pumps belonging to resistance-nodulation-division (RND) family. The wide range of antibiotics such as aminoglicosides, fluoroquinolones, erythromycin, tetracyclines, trimethoprim, chloramphenicol, ethidium bromide, β -lactams and tigecycline are substrates of these pumps (92, 93, 116, 164). Overexpression of AdeABC efflux pump conferred carbapenem resistance in *A. baumannii*. In our study, the MIC of imipenem and meropenem in carbapenem-resistant isolates were not detected by CCCP. Our results demonstrated that the mechanism of efflux pump was not involved in carbapenem resistance in our *A. baumannii* isolates. Several studies reported the absence of efflux pump mechanism in carbapenem-resistant *A. baumannii*. Quale *et al.* studied meropenem efflux pump in 2003 from New York and showed that no isolate had this resistance mechanism (165). Similarly, Pournaras *et al.* from Greece in 2006, reported that no isolate were significantly decreased in MIC of imipenem in the presence of CCCP.

(37). Jeong *et al.* reported from Korea in 2009 that 1 of 17 imipenem-resistant *A. baumannii* isolates had decreased level of MIC in the presence of CCCP (39). In 2010, Huang *et al.* showed that MIC of imipenem was decreased 4-fold in 1 of 22 isolates of imipenem-resistant *A. baumannii* from China (40). However, the study of Huang *et al.* reported from China in 2008 that MIC of meropenem in several isolates was decreased at least 4-fold after CCCP added (41). Although AdeABC system can efflux wide range of antibiotics but it predominated in aminoglycosides and quinolones. Overexpression of efflux pump can combine with other resistance mechanisms such as OXA-type carbapenemases which cause high level of carbapenem resistance (166).

The modification of outer membrane permeability was another mechanism of carbapenem resistance in *A. baumannii*. In 1996, Clark reported that imipenem-resistant *A. baumannii* isolates reduced expression of a 33-36 kDa outer membrane protein (44). Limansky *et al.* reported from Argentina in 2002 that imipenem resistance in *A. baumannii* caused by the loss of a 29 kDa outer membrane protein (43). In 2005, Dupont reported loss of 29 kDa and 43 kDa outer membrane protein in imipenem-resistant *A. baumannii* isolate from France (42). Analysis of 43 kDa outer membrane protein was homologous to OprD in *P. aeruginosa* (42). Similar to our study, the 43 kDa OMP was found to decrease in 5 isolates from 21 carbapenem-resistant *A. baumannii* isolates. In contrast to the study from Zarrilli *et al* in 2008 from Labanese hospital, the decrease in outer membrane protein was not found in any isolate of imipenem-resistant *A. baumannii* (167).

Several studies demonstrated the combination of decreased OMP with other resistance mechanisms. The study of Bou *et al.* in 2000 showed the presence of bla_{OXA-24} and the decrease of 22 kDa and 33 kDa outer membrane proteins (168). Costa *et al.* from Brazil in 2000 reported that a loss of 31-36 kDa and production of β -lactamase caused imipenem resistance in *A. baumannii* isolates (45). The study of Fernandez-Cuenca *et al.* in 2003 showed that the loss of 22.5 kDa OMP, the absence of PBP₂ and the production of β -lactamases were the causes of imipenem resistance in *A. baumannii*

CHAPTER VII

CONCLUSION

Increasing number of multidrug-resistant *A. baumannii* has been reported worldwide. Carbapenems are the drug of choices for the treatment of multidrug-resistant *A. baumannii* for many years. Unfortunately, carbapenem-resistant *A. baumannii* has been global increasingly reported. In this study, a total of 453 *A. baumannii* isolates obtained from patients in King Chulalongkorn Memorial Hospital between March 2008 and April 2010 were studied. The prevalence of imipenem and meropenem resistance were both 88.7%. MIC₅₀ and MIC₉₀ of imipenem were 128 μ g/ml and 256 μ g/ml, respectively. MIC₅₀ and MIC₉₀ of meropenem were 64 μ g/ml and 128 μ g/ml, respectively. High resistance rates of imipenem and meropenem was found in both ICU and non-ICU isolates.

Of 453 *A. baumannii* isolates, 11.3% were susceptible to imipenem and meropenem and were negative for carbapenemase activity. These isolates had only the $bla_{OXA-51-like}$. All *A. baumannii* isolates with carbapenemase activity (88.7%) were resistant to both imipenem and meropenem. The co-existence of $bla_{OXA-51-like}$ and other $bla_{OXA-51-like}$ including $bla_{OXA-51-like}$ together with $bla_{OXA-23-like}$ (99.8%), $bla_{OXA-51-like}$ together with $bla_{OXA-23-like}$ (99.8%), $bla_{OXA-51-like}$ together with $bla_{OXA-24-like}$ (0.2%) and $bla_{OXA-51-like}$ together with $bla_{OXA-23-like}$ (99.8%), $bla_{OXA-51-like}$ together with $bla_{OXA-24-like}$ (0.2%) and $bla_{OXA-51-like}$ together with $bla_{OXA-23-like}$ and $bla_{OXA-58-like}$ (4%) was found in these isolates. Insertion sequence, ISAba1, was found in the upstream region of $bla_{OXA-23-like}$ in all 38 representative isolates. DNA sequences upstream $bla_{OXA-23-like}$ gene showed ISAba1-mediated -35 and -10 promoter sequences. The results suggest that ISAba1 and ISAba3 play an important role in the expression of the bla_{OXA} genes in our isolates.

DNA sequencing analysis of 15 entire $bla_{OXA-23-like}$ and 4 entire $bla_{OXA-58-like}$ genes revealed that bla_{OXA-23} and bla_{OXA-58} were identified in 100% of $bla_{OXA-23-like}$ and $bla_{OXA-58-like}$. Twelve entire $bla_{OXA-51-like}$ sequences were bla_{OXA-66} (58.3%), bla_{OXA-65} (33.3%) and bla_{OXA-69} (8.4%).

In the study of efflux pump mechanism, the exposure of effux pump inhibitor, CCCP, could not reduce the MIC of imipenem and meropenem equal or more than 4-fold. The result showed no efflux pump mechanism in all of the 159 representative isolates. The reduction of 43 kDa OMP was detected in 5 of the 21 representative carbapenem-resistant *A. baumannii* isolates but 29 kDa and 33-36 kDa were not lost or reduced in this study. Our results showed high rate of carbapenem resistance in *A. baumannii* and the main mechanism of carbapenem resistance was due to the production of OXA-23-like carbapenemases.

REFERENCES

- Fournier, P. E., and Richet, H. The epidemiology and control of *Acinetobacter baumannii* in health care facilities. <u>Clin Infect Dis</u> 42, 5 (March 2006): 692-699.
- Munoz-Price, L. S., and Weinstein, R. A. Acinetobacter infection. <u>N Engl J Med</u> 358, 12 (March 2008): 1271-1281.
- (3) Peleg, A. Y.; Seifert, H.; and Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. <u>Clin Microbiol Rev</u> 21, 3 (July 2008): 538-582.
- (4) Turner, P. J., and Greenhalgh, J. M. The activity of meropenem and comparators against *Acinetobacter* strains isolated from European hospitals, 1997-2000. <u>Clin Microbiol Infect</u> 9, 6 (June 2003): 563-567.
- (5) Coelho, J. M., et al. Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. <u>J Clin Microbiol</u> 44, 10 (October 2006): 3623-3627.
- Maniatis, A. N.; Pournaras, S.; Orkopoulou, S.; Tassios, P. T. and Legakis, N.
 J. Multiresistant *Acinetobacter baumannii* isolates in intensive care units in Greece. <u>Clin Microbiol Infect</u> 9, 6 (June 2003): 547-553.
- (7) D'Arezzo, S., et al. Epidemic multidrug-resistant Acinetobacter baumannii related to European clonal types I and II in Rome (Italy). <u>Clin Microbiol</u> <u>Infect</u> 15, 4 (April 2009): 347-357.
- (8) Hsueh, P. R., et al. Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. <u>Emerg Infect Dis</u> 8, 8 (August 2002): 827-832.
- (9) Mugnier, P.; Poirel, L.; Pitout, M.; and Nordmann, P. Carbapenem-resistant and OXA-23-producing *Acinetobacter baumannii* isolates in the United Arab Emirates. <u>Clin Microbiol Infect</u> 14, 9 (September 2008): 879-882.
- (10) Da Silva, G. J., et al. Long-term dissemination of an OXA-40 carbapenemaseproducing Acinetobacter baumannii clone in the Iberian Peninsula. <u>J</u> <u>Antimicrob Chemother</u> 54, 1 (July 2004): 255-258.
- (11) Garza-Gonzalez, E.; Llaca-Diaz, J. M.; Bosques-Padilla, F. J.; and Gonzalez,G. M. Prevalence of multidrug-resistant bacteria at a tertiary-care teaching

hospital in Mexico: special focus on *Acinetobacter baumannii*. Chemotherapy 56, 4 (August 2010): 275-279.

- (12) Feizabadi, M. M., et al. Antimicrobial susceptibility patterns and distribution of *bla*_{OXA} genes among *Acinetobacter* spp. Isolated from patients at Tehran hospitals. Jpn J Infect Dis 61, 4 (July 2008): 274-278.
- (13) Keerasuntonpong, A.; Samakeenich, C.; Tribuddharat, C.; and Thamlikitkul, V. Epidemiology of *Acinetobacter baumannii* Infections in Siriraj Hospital 2002 <u>Siriraj Medical Journal</u> 58 (2006): 951-954.
- (14) Takahashi A, Yomoda S, Kobayashi I, Okubo T, Tsunoda MandIyobe S. Detection of carbapenemase-producing *Acinetobacter baumannii* in a hospital. <u>J Clin Microbiol</u> 38, 2 (February 2000): 526-529.
- (15) Riccio, M. L., et al. Characterization of the metallo-beta-lactamase determinant of *Acinetobacter baumannii* AC-54/97 reveals the existence of *bla*_(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother 44, 5 (May 2000): 1229-1235.
- (16) Gales, A. C.; Tognim, M. C.; Reis, A. O.; Jones, R. N. and Sader, H. S. Emergence of an IMP-like metallo-enzyme in an *Acinetobacter baumannii* clinical strain from a Brazilian teaching hospital. <u>Diagn</u> <u>Microbiol Infect Dis</u> 45, 1 (January 2003): 77-79.
- (17) Chu, Y. W., et al. IMP-4, a novel metallo-beta-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. <u>Antimicrob Agents Chemother</u> 45, 3 (March 2001): 710-714.
- (18) Lee, K.; Lee, W. G.; Uh, Y.; Ha, G. Y.; Cho, J.; and Chong, Y. VIM- and IMPtype metallo-beta-lactamase-producing *Pseudomonas* spp. and *Acinetobacter* spp. in Korean hospitals. <u>Emerg Infect Dis</u> 9, 7 (July 2003): 868-871.
- (19) Tsakris, A., et al. VIM-1 metallo-beta-lactamase in *Acinetobacter baumannii*.
 <u>Emerg Infect Dis</u> 12, 6 (June 2006): 981-983.
- (20) Lee, K., et al. Novel acquired metallo-beta-lactamase gene, *bla*(SIM-1), in a class
 1 integron from *Acinetobacter baumannii* clinical isolates from Korea.
 <u>Antimicrob Agents Chemother</u> 49, 11 (November 2005): 4485-4491.
- (21) Paton, R.; Miles, R. S.; Hood, J.; Amyes, S. G.; Miles, R. S.; and Amyes, S. G.
 ARI 1: beta-lactamase-mediated imipenem resistance in *Acinetobacter baumannii*. Int J Antimicrob Agents 2, 2 (February 1993): 81-87.
- (22) Mugnier, P. D.; Poirel, L.; Naas, T.; and Nordmann, P. Worldwide dissemination of the *bla*_{OXA-23} carbapenemase gene of *Acinetobacter baumannii*. <u>Emerg Infect Dis</u> 16, 1 (January 2008): 35-40.
- (23) Villegas, M. V., et al. Dissemination of Acinetobacter baumannii clones with OXA-23 Carbapenemase in Colombian hospitals. <u>Antimicrob Agents</u> <u>Chemother</u> 51, 6 (June 2007): 2001-2004.
- (24) Merkier, A. K., et al. Polyclonal spread of *bla*_(OXA-23) and *bla*_(OXA-58) in *Acinetobacter baumannii* isolates from Argentina. <u>J Infect Dev Ctries</u> 2, 3 (2008): 235-240.
- (25) Meric, M., et al. Emergence and spread of carbapenem-resistant *Acinetobacter baumannii* in a tertiary care hospital in Turkey. <u>FEMS Microbiol Lett</u> 282, 2 (May 2008): 214-218.
- (26) Stoeva, T.; Higgins, P. G; Bojkova, K.; and Seifert, H. Clonal spread of carbapenem-resistant OXA-23-positive *Acinetobacter baumannii* in a Bulgarian university hospital. <u>Clin Microbiol Infect</u> 14, 7 (July 2008): 723-727.
- (27) Zhou, H.; Yang, Q.; Yu, Y. S.; Wei, Z. Q.; and Li, L. J. Clonal spread of imipenem-resistant *Acinetobacter baumannii* among different cities of China. <u>J Clin Microbiol</u> 45, 12 (December 2007): 4054-4057.
- (28) Mendes, R. E.; Bell, J. M.; Turnidge, J. D.; Castanheira, M.; and Jones, R. N. Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among *Acinetobacter* spp. in Asia-Pacific nations: report from the SENTRY Surveillance Program. <u>J Antimicrob Chemother</u> 63, 1 (January 2009): 55-59.
- (29) Ruiz, M.; Marti, S.; Fernandez-Cuenca, F.; Pascual, A.; and Vila, J. High prevalence of carbapenem-hydrolysing oxacillinases in epidemiologically related and unrelated *Acinetobacter baumannii* clinical isolates in Spain. <u>Clin Microbiol Infect</u> 13, 12 (December 2007): 1192-1198.
- (30) Nemec, A., et al. Emergence of carbapenem resistance in *Acinetobacter* baumannii in the Czech Republic is associated with the spread of

multidrug-resistant strains of European clone II. <u>J Antimicrob Chemother</u> 62, 3 (September 2008): 484-489.

- (31) Lolans, K.; Rice, T. W.; Munoz-Price, L. S.; and Quinn, J. P. Multicity outbreak of carbapenem-resistant *Acinetobacter baumannii* isolates producing the carbapenemase OXA-40. <u>Antimicrob Agents Chemother</u> 50, 9 (September 2006): 2941-2945.
- (32) Towner, K. J.; Levi, K.; and Vlassiadi, M. Genetic diversity of carbapenemresistant isolates of *Acinetobacter baumannii* in Europe. <u>Clin Microbiol</u> <u>Infect</u> 14, 2 (February 2008): 161-167.
- (33) Lu, P. L.; Doumith, M.; Livermore, D. M.; Chen, T. P.; and Woodford, N. Diversity of carbapenem resistance mechanisms in *Acinetobacter baumannii* from a Taiwan hospital: spread of plasmid-borne OXA-72 carbapenemase. J Antimicrob Chemother 63, 4 (April 2009): 641-647.
- (34) Giordano, A., et al. Outbreak of Acinetobacter baumannii producing the carbapenem-hydrolyzing oxacillinase OXA-58 in Rome, Italy. <u>Microb</u> <u>Drug Resist</u> 13, 1 (Spring 2007): 37-43.
- (35) Poirel, L.; Marque, S.; Heritier, C.; Segonds, C.; Chabanon, G.; and Nordmann,
 P. OXA-58, a novel class D {beta}-lactamase involved in resistance to carbapenems in *Acinetobacter baumannii*. <u>Antimicrob Agents Chemother</u> 49, 1 (January 2005): 202-208.
- (36) Bogaerts, P., et al. Outbreak of infection by carbapenem-resistant *Acinetobacter* baumannii producing the carbapenemase OXA-58 in Belgium. J Clin <u>Microbiol</u> 44, 11 (November 2006): 4189-4192.
- (37) Pournaras, S., et al. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. <u>J Antimicrob Chemother</u> 57, 3 (March 2006): 557-561.
- (38) Poirel, L.; Mansour, W.; Bouallegue, O.; and Nordmann, P. Carbapenemresistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. <u>Antimicrob</u> <u>Agents Chemother</u> 52, 5 (May 2008): 1613-1617.

- (39) Jeong, H. W., et al. Loss of the 29-kilodalton outer membrane protein in the presence of OXA-51-like enzymes in *Acinetobacter baumannii* is associated with decreased imipenem susceptibility. <u>Microb Drug Resist</u> 15, 3 (Sep 2009): 151-158.
- (40) Huang, J.; Huang, J.; Yu, F.; and WangXandLi, G. AdeABC efflux pump: Less important role in *Acinetobacter baumannii* against carbapenems. <u>African Journal of Microbiology Research</u> 4, 20 (2010): 2148-2152.
- (41) Huang, L.; Sun, L.; Xu, G.; and Xia, T. Differential susceptibility to carbapenems due to the AdeABC efflux pump among nosocomial outbreak isolates of *Acinetobacter baumannii* in a Chinese hospital. <u>Diagn</u> <u>Microbiol Infect Dis</u> 62, 3 (November 2008): 326-332.
- (42) Dupont, M.; Pages, J. M.; Lafitte, D.; Siroy, A.; and Bollet, C. Identification of an OprD homologue in *Acinetobacter baumannii*. <u>J Proteome Res</u> 4, 6 (November-December 2005): 2386-2390.
- (43) Limansky, A. S.; Mussi, M. A.; and Viale, A. M. Loss of a 29-kilodalton outer membrane protein in *Acinetobacter baumannii* is associated with imipenem resistance. <u>J Clin Microbiol</u> 40, 12 (December 2002): 4776-4778.
- (44) Clark, R. B. Imipenem resistance among *Acinetobacter baumannii*: association with reduced expression of a 33-36 kDa outer membrane protein. J
 <u>Antimicrob Chemother</u> 38, 2 (August 1996): 245-251.
- (45) Costa, S. F., et al. Outer-membrane proteins pattern and detection of betalactamases in clinical isolates of imipenem-resistant *Acinetobacter baumannii* from Brazil. <u>Int J Antimicrob Agents</u> 13, 3 (January 2000): 175-182.
- (46) Peanutsaha, S. Antimicrobial resistance pattern of *Acinetobacter* spp. in Police General Hospital. <u>The Thai Police Med J</u> 29 (2003): 19-26.
- (47) Chaiwarith, R.; Mahatthanaphak, S.; Boonchoo, M.; Supparatpinyo, K.; and Sirisanthana, T. Pandrug-Resistant *Acinetobacter baumannii* at Maharaj Nakorn Chiang Mai Hospital. J Infect Dis Antimicrob Agents 22 (2005): 1-8.

- (48) Jamulitrat, S.; Thongpiyapoom, S.; and Suwalak, N. An outbreak of imipenemresistant Acinetobacter baumannii at Songklanagarind Hospital: the risk factors and patient prognosis. <u>J Med Assoc Thai</u> 90, 10 (October 2007): 2181-2191.
- (49) Gerner-Smidt P Tjernberg, I., and Ursing, J. Reliability of phenotypic tests for identification of *Acinetobacter* species. <u>J Clin Microbiol</u> 29, 2 (February 1991): 277-282.
- (50) Carvalho, K. R.; Carvalho-Assef, A. P.; Peirano, G.; Santos, L. C.; Pereira, M. J.; and Asensi, M. D. Dissemination of multidrug-resistant *Acinetobacter baumannii* genotypes carrying *bla*_(OXA-23) collected from hospitals in Rio de Janeiro, Brazil. <u>Int J Antimicrob Agents</u> 34, 1 (July 2009): 25-28.
- (51) van Dessel, H., et al. Outbreak of a susceptible strain of *Acinetobacter* species
 13 (sensu Tjernberg and Ursing) in an adult neurosurgical intensive care unit. <u>J Hosp Infect</u> 51, 2 (June 2002): 89-95.
- (52) Idzenga, D.; Schouten, M. A.; and van Zanten, A. R. Outbreak of *Acinetobacter* genomic species 3 in a Dutch intensive care unit. <u>J Hosp Infect</u> 63, 4 (August 2006): 485-487.
- (53) Dijkshoorn, L.; Nemec, A.; and Seifert, H. An increasing threat in hospitals: multidrug-resistant *Acinetobacter baumannii*. <u>Nat Rev Microbiol</u> 5, 12 (December 2007): 939-951.
- (54) Nemec A, Musilek M, Maixnerova M, De Baere T, van der Reijden TJ, Vaneechoutte M, et al. Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59, Pt 1 (Jan 2009): 118-124.
- (55) Rodriguez-Bano, J., et al. Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. <u>Clin Microbiol Infect</u> 14, 3 (March 2008): 276-278.
- (56) Lee, H. W., et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. <u>Clin Microbiol Infect</u> 14, 1 (January 2008): 49-54.
- (57) Jyothisri, K.; Deepak, V.; and Rajeswari, M. R. Purification and characterization of a major 40 kDa outer membrane protein of *Acinetobacter baumannii*. <u>FEBS Lett</u> 443, 1 (January 22 1999): 57-60.

- (58) Choi, C. H., et al. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol 7, 8 (August 2005): 1127-1138.
- (59) Clarke, T. E.; Tari, L.; W.; and Vogel, H. J. Structural biology of bacterial iron uptake systems. <u>Curr Top Med Chem</u> 1, 1 (May 2001): 7-30.
- (60) Actis, L. A.; Tolmasky, M. E.; Crosa, L. M. and Crosa, J. H. Effect of ironlimiting conditions on growth of clinical isolates of *Acinetobacter baumannii*. J Clin Microbiol 31, 10 (October 1993): 2812-2815.
- (61) Yamamoto, S.; Okujo, N.; and Sakakibara, Y. Isolation and structure elucidation of acinetobactin, a novel siderophore from *Acinetobacter baumannii*. <u>Arch Microbiol</u> 162, 4 (1994): 249-254.
- (62) Anstey, N. M.; Currie, B. J.; Hassell, M.; Palmer, D.; Dwyer, B.; and Seifert, H. Community-acquired bacteremic *Acinetobacter* pneumonia in tropical Australia is caused by diverse strains of *Acinetobacter baumannii*, with carriage in the throat in at-risk groups. J Clin Microbiol 40, 2 (February 2002): 685-686.
- (63) Falagas, M. E.; Karveli, E. A.; Kelesidis, I.; and Kelesidis, T. Community-acquired *Acinetobacter* infections. <u>Eur J Clin Microbiol Infect Dis</u> 26, 12 (December 2007): 857-868.
- (64) Leung, W. S.; Chu, C. M.; Tsang, K. Y.; Lo, F. H.; Lo, K. F. and Ho, P. L. Fulminant community-acquired *Acinetobacter baumannii* pneumonia as a distinct clinical syndrome. <u>Chest</u> 129, 1 (January 2006): 102-109.
- (65) Chen, M. Z.; Hsueh, P. R.; Lee, L.N.; Yu, C. J.; Yang, P. C.; and Luh, K. T. Severe community-acquired pneumonia due to *Acinetobacter baumannii*. <u>Chest</u> 120, 4 (October 2001): 1072-1077.
- (66) Bilgic, H.; Akin, E. S.; Tasan, Y.; Ekiz, K.; and Seber, O. A case of *Acinetobacter calcoaceticus* pneumonia. <u>Thorax</u> 50, 3 (March 1995): 315-316; discussion 317-318.
- (67) Achar, K. N.; Johny, M.; Ahar, M. N.; and Menon, N. K. Community-acquired bacteraemic *Acinetobacter* pneumonia with survival. <u>Postgrad Med J</u> 69, 818 (December 1993): 934-937.

- (68) Barnes, D. J.; Naraqi, S.; and Igo, J. D. Community-acquired Acinetobacter pneumonia in adults in Papua New Guinea. <u>Rev Infect Dis</u> 10, 3 (May-June 1988): 636-639.
- (69) Yang, C. H.; Chen, K. J.; and Wang, C.K. Community-acquired Acinetobacter pneumonia: a case report. <u>J Infect</u> 35, 3 (November 1997): 316-318.
- (70) Vathesatogkit, P.; Charoenphan, P.; Saenghirunvattana, S.; Kiatboonsri, S and Sathapatayavongs, B. Community-acquired *Acinetobacter* pneumonia in Thailand. Report of 5 cases. <u>J Med Assoc Thai</u> 70, 2 (February 1987): 96-101.
- (71) Bouvet, P. J.; and Grimont, P. A. Identification and biotyping of clinical isolates of *Acinetobacter*. <u>Ann Inst Pasteur Microbiol</u> 138, 5 (September-October 1987): 569-578.
- (72) Tjernberg, I., and Ursing, J. Clinical strains of *Acinetobacter* classified by DNA-DNA hybridization. <u>APMIS</u> 97, 7 (July 1989): 595-605.
- (73) Gerner-Smidt, P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol 30, 10 (October 1992): 2680-2685.
- (74) Janssen, P., and Dijkshoorn, L. High resolution DNA fingerprinting of Acinetobacter outbreak strains. <u>FEMS Microbiol Lett</u> 142, 2-3 (September 1996): 191-194.
- (75) Vaneechoutte, M., et al. Identification of *Acinetobacter* genomic species by amplified ribosomal DNA restriction analysis. <u>J Clin Microbiol</u> 33, 1 (January 1995): 11-15.
- (76) Dolzani, L.; Tonin, E.; Lagatolla, C.; Prandin, L.; and Monti-Bragadin, C. Identification of *Acinetobacter* isolates in the *A. calcoaceticus-A. baumannii* complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. <u>J Clin Microbiol</u> 33, 5 (May 1995): 1108-1113.
- (77) Brauers, J.; Frank, U.; Kresken, M.; Rodloff, A. C.; and Seifert, H. Activities of various beta-lactams and beta-lactam/beta-lactamase inhibitor combinations against *Acinetobacter baumannii* and *Acinetobacter* DNA group 3 strains. <u>Clin Microbiol Infect</u> 11, 1 (January 2005): 24-30.
- (78) Higgins, P. G.; Wisplinghoff, H., Stefanik, D.; and Seifert, H. In vitro activities of the beta-lactamase inhibitors clavulanic acid, sulbactam, and

tazobactam alone or in combination with beta-lactams against epidemiologically characterized multidrug-resistant *Acinetobacter baumannii* strains. <u>Antimicrob Agents Chemother</u> 48, 5 (May 2004): 1586-1592.

- (79) Rodriguez-Hernandez, M. J., et al. Sulbactam efficacy in experimental models caused by susceptible and intermediate *Acinetobacter baumannii* strains. J <u>Antimicrob Chemother</u> 47, 4 (April 2001): 479-482.
- (80) Noguchi, J. K. and Gill, M. A. Sulbactam: a beta-lactamase inhibitor. <u>Clin</u> <u>Pharm</u> 7, 1 (January 1988): 37-51.
- (81) Urban, C., et al. Effect of sulbactam on infections caused by imipenem-resistant *Acinetobacter calcoaceticus* biotype anitratus. <u>J Infect Dis</u> 167, 2 (February 1993): 448-451.
- (82) Corbella, X., et al. Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant *Acinetobacter baumannii*. J Antimicrob Chemother 42, 6 (December 1998): 793-802.
- (83) Jimenez-Mejias, M. E.; Pachon, J.; Becerril, B.; Palomino-Nicas, J.; Rodriguez-Cobacho, A.; and Revuelta, M. Treatment of multidrug-resistant *Acinetobacter baumannii* meningitis with ampicillin/sulbactam. <u>Clin</u> <u>Infect Dis</u> 24, 5 (May 1997): 932-935.
- (84) Levin, A. S.; Levy, C. E.; Manrique, A. E.; Medeiros, E. A.; and Costa, S. F. Severe nosocomial infections with imipenem-resistant *Acinetobacter baumannii* treated with ampicillin/sulbactam. <u>Int J Antimicrob Agents</u> 21, 1 (January 2003): 58-62.
- (85) Falagas, M. E.; and Kasiakou, S. K. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. <u>Clin Infect Dis</u> 40, 9 (May 2005): 1333-1341.
- (86) Kim, B.; Peleg, A.; and LOdise, T. Management of meningitis due to antibioticresistant *Acinetobacter* species. <u>Lancet Infect Dis</u> 9, 4 (2009): 245-255.
- (87) Levin, A. S., et al. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii*. <u>Clin Infect Dis</u> 28, 5 (May 1999): 1008-1011.

- (88) gilleland, H., and Farley, L. Adaptive resistance to polymyxin in *Pseudomonas* aeruginosa due to an outer membrane permeability mechanism. <u>Can</u> JMicrobiol (1982): 830-840.
- (89) Rice, L. B. Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. <u>Clin Infect Dis</u> 43 Suppl 2, (September 2006): 100-105.
- (90) Reid, G. E.; Grim, S. A.; Aldeza, C. A.; Janda, W. M.; and Clark, N. M. Rapid development of *Acinetobacter baumannii* resistance to tigecycline. Pharmacotherapy 27, 8 (August 2007): 1198-1201.
- (91) Navon-Venezia, S.; Leavitt, A.; and Carmeli, Y. High tigecycline resistance in multidrug-resistant *Acinetobacter baumannii*. J Antimicrob Chemother 59, 4 (April 2007): 772-774.
- (92) Peleg, A. Y.; Adams, J.; and Paterson, D. L. Tigecycline Efflux as a Mechanism for Nonsusceptibility in *Acinetobacter baumannii*. <u>Antimicrob Agents</u> <u>Chemother</u> 51, 6 (Jun 2007): 2065-2069.
- (93) Ruzin, A.; Keeney, D.; and Bradford, P. A. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in *Acinetobacter calcoaceticus-Acinetobacter baumannii* complex. J Antimicrob Chemother 59, 5 (May 2007): 1001-1004.
- (94) Principe, L.; D'Arezzo, S.; Capone, A.; Petrosillo, N.; and Visca, P. In vitro activity of tigecycline in combination with various antimicrobials against multidrug resistant *Acinetobacter baumannii*. <u>Ann Clin Microbiol</u> Antimicrob 8, (2009): 18.
- (95) Montero, A., et al. Antibiotic combinations for serious infections caused by carbapenem-resistant *Acinetobacter baumannii* in a mouse pneumonia model. <u>J Antimicrob Chemother</u> 54, 6 (December 2004): 1085-1091.
- (96) Joly-Guillou, M. L.; Wolff, M.; Farinotti, R.; Bryskier, A.; and Carbon, C. In vivo activity of levofloxacin alone or in combination with imipenem or amikacin in a mouse model of *Acinetobacter baumannii* pneumonia. <u>J</u> <u>Antimicrob Chemother</u> 46, 5 (November 2000): 827-830.
- (97) Nicolau, D. P. Carbapenems: a potent class of antibiotics. <u>Expert Opin</u> <u>Pharmacother</u> 9, 1 (2008): 23-37.

- (98) Zhanel, G. G., et al. Comparative review of the carbapenems. <u>Drugs</u> 67, 7 (2007): 1027-1052.
- (99) Hellinger, W. C., and Brewer, N. S. Carbapenems and monobactams: imipenem, meropenem, and aztreonam. <u>Mayo Clin Proc</u> 74, 4 (April 1999): 420-434.
- (100) Poirel, L., and Nordmann, P. Carbapenem resistance in *Acinetobacter baumannii*: mechanisms and epidemiology. <u>Clin Microbiol Infect</u> 12, 9 (September 2006): 826-836.
- (101) Watanabe, M.; Iyobe, S.; Inoue, M.; and Mitsuhashi, S. Transferable imipenem resistance in *Pseudomonas aeruginosa*. <u>Antimicrob Agents Chemother</u> 35, 1 (January 1991): 147-151.
- (102) Lauretti, L., et al. Cloning and characterization of *bla*_{VIM}, a new integron-borne metallo-beta-lactamase gene from a *Pseudomonas aeruginosa* clinical isolate. <u>Antimicrob Agents Chemother</u> 43, 7 (July 1999): 1584-1590.
- (103) Toleman, M. A., et al. Molecular characterization of SPM-1, a novel metallobeta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. <u>J Antimicrob Chemother</u> 50, 5 (November 2002): 673-679.
- (104) Castanheira, M.; Toleman, M. A.; Jones, R. N.; Schmidt, F. J.; and Walsh, T. R. Molecular characterization of a beta-lactamase gene, *bla*_{GIM-1}, encoding a new subclass of metallo-beta-lactamase. <u>Antimicrob Agents Chemother</u> 48, 12 (December 2004): 4654-4661.
- (105) Lee, K.; Chong, Y.; Shin, H. B.; Kim, Y. A.; Yong, D.; and Yum, J. H. Modified Hodge and EDTA-disk synergy tests to screen Metallo-βlactamase-producing strains of *Pseudomonas* and *Acinetobacter* species. <u>Clin Micro and Infect</u> 7 (2001): 88-91.
- (106) Poirel, L.; Figueiredo, S.; Cattoir, V.; Carattoli, A.; and Nordmann, P. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. <u>Antimicrob Agents Chemother</u> 52, 4 (April 2008): 1252-1256.
- (107) Bonnet, R., et al. Chromosome-encoded class D beta-lactamase OXA-23 in *Proteus mirabilis*. <u>Antimicrob Agents Chemother</u> 46, 6 (June 2002): 2004-2006.

- (108) Bou, G.; Oliver, A.; and Martinez-Beltran, J. OXA-24, a novel class D betalactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. <u>Antimicrob Agents Chemother</u> 44, 6 (June 2000): 1556-1561.
- (109) Poirel, L.; Naas, T.; and Nordmann, P. Diversity, epidemiology, and genetics of class D beta-lactamases. <u>Antimicrob Agents Chemother</u> 54, 1 (January 24-38.
- (110) Depardieu, F.; Podglajen, I.; Leclercq, R.; Collatz, E.; and Courvalin, P. Modes and modulations of antibiotic resistance gene expression. <u>Clin Microbiol</u> <u>Rev</u> 20, 1 (January 2007): 79-114.
- (111) Mahillon, J., and Chandler, M. Insertion sequences. <u>Microbiol Mol Biol Rev</u> 62, 3 (September 1998): 725-774.
- (112) Corvec, S.; Poirel, L.; Naas, T.; Drugeon, H.; and Nordmann, P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene *bla*_{OXA-23} in *Acinetobacter baumannii*. <u>Antimicrob Agents Chemother</u> 51, 4 (April 2007): 1530-1533.
- (113) Poirel, L., and Nordmann, P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene *bla*_{OXA-58} in *Acinetobacter baumannii*. <u>Antimicrob Agents Chemother</u> 50, 4 (April 2006): 1442-1448.
- (114) Siroy, A., et al. Channel formation by CarO, the carbapenem resistanceassociated outer membrane protein of *Acinetobacter baumannii*. Antimicrob Agents Chemother 49, 12 (December 2005): 4876-4883.
- (115) Piddock, L. J. Multidrug-resistance efflux pumps not just for resistance. <u>Nat</u> <u>Rev Microbiol</u> 4, 8 (August 2006): 629-636.
- (116) Vila, J.; Marti, S.; and Sanchez-Cespedes, J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 59, 6 (June 2007): 1210-1215.
- (117) Pages, J. M.; Masi, M.; and Barbe, J. Inhibitors of efflux pumps in Gramnegative bacteria. <u>Trends Mol Med</u> 11, 8 (August 2005): 382-389.
- (118) Magnet, S.; Courvalin, P.; and Lambert, T. Resistance-nodulation-cell divisiontype efflux pump involved in aminoglycoside resistance in *Acinetobacter*

baumannii strain BM4454. <u>Antimicrob Agents Chemother</u> 45, 12 (December 2001): 3375-3380.

- (119) Marchand, I.; Damier-Piolle, L.; Courvalin, P.; and Lambert, T. Expression of the RND-type efflux pump AdeABC in *Acinetobacter baumannii* is regulated by the AdeRS two-component system. <u>Antimicrob Agents</u> <u>Chemother</u> 48, 9 (September 2004): 3298-3304.
- (120) Wieczorek, P.; Sacha, P.; Hauschild, T.; Zorawski, M.; Krawczyk, M.; and Tryniszewska, E. Multidrug resistant *Acinetobacter baumannii*-the role of AdeABC (RND family) efflux pump in resistance to antibiotics. <u>Folia</u> <u>Histochem Cytobiol</u> 46, 3(2008): 257-267.
- (121) Gehrlein, M.; Leying, H.; Cullmann, W.; Wendt, S.; and Opferkuch, W. Imipenem resistance in *Acinetobacter baumanii* is due to altered penicillin-binding proteins. <u>Chemotherapy</u> 37, 6 (1991): 405-412.
- (122) Fernandez-Cuenca, F.; Martinez-Martinez, L.; Conejo, M. C.; Ayala, J. A.; Perea, E. J.; and Pascual, A. Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of *Acinetobacter baumannii*. J Antimicrob Chemother 51, 3 (March 2003): 565-574.
- (123) Turner, P., and Greenhalgh, J. The activity of meropenem and comparators against *Acinetobacter* strains isolated from European hospitals, 1997-2000. <u>Clin Microbiol infect</u> 9 (2003): 563-567.
- (124) Turner, P. J. Meropenem activity against European isolates: report on the MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 2006 results. <u>Diagn Microbiol Infect Dis</u> 60, 2 (February 2008): 185-192.
- (125) Gur, D.; Korten, V.; Unal, S.; Deshpande, L. M.; and Castanheira, M. Increasing carbapenem resistance due to the clonal dissemination of oxacillinase (OXA-23 and OXA-58)-producing *Acinetobacter baumannii*: report from the Turkish SENTRY Program sites. J Med Microbiol 57, 12 (December 2008): 1529-1532.
- (126) Reddy, T., et al. Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. <u>Antimicrob Agents</u> <u>Chemother</u> 54, 5 (May 2010): 2235-2238.

- (127) Yang, S. C., et al. Prevalence of antibiotics resistance and OXA carbapenemases genes in multidrug-resistant Acinetobacter baumannii isolates in central Taiwan. <u>Eur J Clin Microbiol Infect Dis</u> 29, 5 (May 601-604.
- (128) Ikonomidis, A.; Ntokou, E.; Maniatis, A. N.; Tsakris, A.; and Pournaras, S. Hidden VIM-1 metallo-beta-lactamase phenotypes among *Acinetobacter baumannii* clinical isolates. J Clin Microbiol 46, 1 (January 2008): 346-349.
- (129) Baumgart, A. M.; Molinari, M. A.; and Silveira, A. C. Prevalence of carbapenem resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii* in high complexity hospital. <u>Braz J Infect Dis</u> 14, 5 (October 2010): 433-436.
- (130) Naas, T.; Levy, M.; Hirschauer, C.; Marchandin, H.; and Nordmann, P. Outbreak of carbapenem-resistant *Acinetobacter baumannii* producing the carbapenemase OXA-23 in a tertiary care hospital of Papeete, French Polynesia. J Clin Microbiol 43, 9 (September 2005): 4826-4829.
- (131) Thapa, B.; Tribuddharat, C.; Srifuengfung, S.; and Dhiraputra, C. High prevalence of *bla*_{(OXA)-23} in oligoclonal carbapenem-resistant *Acinetobacter baumannii* from Siriraj Hospital, Mahidol University, Bangkok, Thailand. <u>Southeast Asian J Trop Med Public Health</u> 41, 3 (May 2010): 625-635.
- (132) Lopez-Otsoa, F.; Gallego, L.; Towner, K. J.; Tysall, L.; Woodford, N.; and Livermore, D. M. Endemic carbapenem resistance associated with OXA-40 carbapenemase among *Acinetobacter baumannii* isolates from a hospital in northern Spain. J Clin Microbiol 40, 12 (December 2002): 4741-4743.
- (133) Ellington, M. J.; Kistler, J.; Livermore, D. M.; and Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-betalactamases. <u>J Antimicrob Chemother</u> 59, 2 (February 2007): 321-322.
- (134) Woodford, N., et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in *Acinetobacter* spp. <u>Int J Antimicrob Agents</u> 27, 4 (April 2006): 351-353.

- (135) Segal, H.; Garny, S.; and Elisha, B. G. Is IS(ABA-1) customized for Acinetobacter? <u>FEMS Microbiol Lett</u> 243, 2 (February 15 2005): 425-429.
- (136) Afzal-Shah, M., and Livermore, D. M. Worldwide emergence of carbapenemresistant Acinetobacter spp. J Antimicrob Chemother 41, 5 (May 1998): 576-577.
- (137) Heritier, C.; Dubouix, A.; Poirel, L.; Marty, N.; and Nordmann, P. A nosocomial outbreak of *Acinetobacter baumannii* isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. <u>J Antimicrob Chemother</u> 55, 1 (January 2005): 115-118.
- (138) Afzal-Shah, M.; Woodford, N.; and Livermore, D. M. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of *Acinetobacter baumannii*. <u>Antimicrob Agents Chemother</u> 45, 2 (February 2001): 583-588.
- (139) Zong, Z.; Lu, X.; Valenzuela, J. K, Partridge, S. R.; andIredell, J. An outbreak of carbapenem-resistant *Acinetobacter baumannii* producing OXA-23 carbapenemase in western China. <u>Int J Antimicrob Agents</u> 31, 1 (January 2008): 50-54.
- (140) Niumsup, P. R.; Boonkerd, N.; Tansawai, U.; and Tiloklurs, M. Carbapenemresistant Acinetobacter baumannii producing OXA-23 in Thailand. Jpn J <u>Infect Dis</u> 62, 2 (March 2009): 152-154.
- (141) Merino, M., et al. OXA-24 carbapenemase gene flanked by XerC/XerD-Like Recombination sites in different plasmids from different Acinetobacter species isolated during a nosocomial outbreak. <u>Antimicrob Agents</u> <u>Chemother</u> 54, 6 (June 2010): 2724-2727.
- (142) Tian, G. B., et al. Identification of diverse OXA-40 group carbapenemases, including a novel variant, OXA-160, from *Acinetobacter baumannii* in Pennsylvania. <u>Antimicrob Agents Chemother</u> 55, 1 (January 2010): 429-432.
- (143) D'Andrea, M. M., et al. Characterization of pABVA01, a plasmid encoding the OXA-24 carbapenemase from Italian isolates of *Acinetobacter baumannii*.
 <u>Antimicrob Agents Chemother</u> 53, 8 (August 2009): 3528-3533.

- (144) Brown, S.; Young, H. K.; and Amyes, S. G. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of *Acinetobacter baumannii* from Argentina. <u>Clin Microbiol Infect</u> 11, 1 (January 2005): 15-23.
- (145) Turton, J. F.; Woodford, N.; Glover, J.; Yarde, S.; Kaufmann, M. E.; and Pitt, T. L. Identification of *Acinetobacter baumannii* by detection of the *bla*_{OXA-51-like} carbapenemase gene intrinsic to this species. <u>J Clin Microbiol</u> 44, 8 (August 2006): 2974-2976.
- (146) Merkier, A. K., and Centron, D. *bla*_(OXA-51)-type beta-lactamase genes are ubiquitous and vary within a strain in *Acinetobacter baumannii*. <u>Int J</u> <u>Antimicrob Agents</u> 28, 2 (August 2006): 110-113.
- (147) Wang, H., et al. Molecular epidemiology of clinical isolates of carbapenemresistant Acinetobacter spp. from Chinese hospitals. <u>Antimicrob Agents</u> <u>Chemother</u> 51, 11 (November 2007): 4022-4028.
- (148) Koh, T. H.; Sng, L. H.; Wang, G. C.; Hsu, L. Y.; and Zhao, Y. IMP-4 and OXA beta-lactamases in *Acinetobacter baumannii* from Singapore. J <u>Antimicrob Chemother</u> 59, 4 (April 2007): 627-632.
- (149) Tsakris, A., et al. Clusters of imipenem-resistant Acinetobacter baumannii clones producing different carbapenemases in an intensive care unit. <u>Clin</u> <u>Microbiol Infect</u> 14, 6 (June 2008): 588-594.
- (150) Zhou, H., et al. Dissemination of imipenem-resistant Acinetobacter baumannii strains carrying the ISAba1 bla_{OXA-23} genes in a Chinese hospital. J Med <u>Microbiol</u> 56, 8 (August 2007): 1076-1080.
- (151) Hu, W. S.; Yao, S. M.; Fung, C. P.; Hsieh, Y. P.; Liu, C. P.; and Lin, J. F. An OXA-66/OXA-51-like carbapenemase and possibly an efflux pump are associated with resistance to imipenem in *Acinetobacter baumannii*. <u>Antimicrob Agents Chemother</u> 51, 11 (November 2007): 3844-3852.
- (152) Culebras, E.; Gonzalez-Romo, F.; Head, J.; Gomez, M.; Morales, G.; and Picazo, J. J. Outbreak of *Acinetobacter baumannii* Producing OXA-66 in a Spanish Hospital: Epidemiology and Study of Patient Movements. <u>Microb Drug Resist</u> (June 2010): 309-315

- (153) Brown, S., and Amyes, S. G. The sequences of seven class D beta-lactamases isolated from carbapenem-resistant *Acinetobacter baumannii* from four continents. <u>Clin Microbiol Infect</u> 11, 4 (April 2005): 326-329.
- (154) Grosso, F., et al. OXA-23-producing Acinetobacter baumannii: a new hotspot of diversity in Rio de Janeiro? J Antimicrob Chemother 66, 1 (January 62-65.
- (155) Karah, N., et al. The emergence of OXA carbapenemase- and 16S rRNA methylase-producing international clones of Acinetobacter baumannii in Norway. J Med Microbiol (December 2010): 515-521
- (156) Giannouli, M., et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii strains in intensive care units of multiple Mediterranean hospitals. J Antimicrob Chemother 63, 4 (April 2009): 828-830.
- (157) Tsakris, A.; Ikonomidis, A.; Pournaras, S.; Spanakis, N.; and Markogiannakis, A. Carriage of OXA-58 but not of OXA-51 beta-lactamase gene correlates with carbapenem resistance in *Acinetobacter baumannii*. <u>J Antimicrob</u> Chemother 58, 5 (November 2006): 1097-1099.
- (158) Wang, H., et al. Molecular epidemiology of clinical isolates of carbapenemresistant Acinetobacter spp. from Chinese hospitals. <u>Antimicrob Agents</u> <u>Chemother</u> 51, 11 (November 2007): 4022-4028.
- (159) Corvec, S.; Caroff, N.; Espaze, E.; Giraudeau, C.; Drugeon, H.; and Reynaud,
 A. AmpC cephalosporinase hyperproduction in *Acinetobacter baumannii* clinical strains. <u>J Antimicrob Chemother</u> 52, 4 (October 2003): 629-635.
- (160) Turton, J. F., et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. <u>FEMS Microbiol Lett</u> 258, 1 (May 2006): 72-77.
- (161) Valenzuela, J. K.; Thomas, L.; Partridge, S. R.; van der Reijden, T.; Dijkshoorn LandIredell, J. Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant *Acinetobacter baumannii*. <u>J Clin Microbiol</u> 45, 2 (February 2007): 453-460.
- (162) Giannouli, M., et al. Molecular epidemiology of multidrug-resistant *Acinetobacter baumannii* in a tertiary care hospital in Naples, Italy, shows

the emergence of a novel epidemic clone. <u>J Clin Microbiol</u> 48, 4 (April 1223-1230.

- (163) Papa, A.; Koulourida, V.; and Souliou, E. Molecular epidemiology of carbapenem-resistant *Acinetobacter baumannii* in a newly established Greek hospital. <u>Microb Drug Resist</u> 15, 4 (December 2009): 257-260.
- (164) Fournier, P.E., et al. Comparative genomics of multidrug resistance in *Acinetobacter baumannii*. <u>PLoS Genet</u> 2, 1 (January 2006): 62-72.
- (165) Quale, J.; Bratu, S. Landman, D.; and Heddurshetti, R. Molecular epidemiology and mechanisms of carbapenem resistance in *Acinetobacter baumannii* endemic in New York City. <u>Clin Infect Dis</u> 37, 2 (July 15 2003): 214-220.
- (166) Heritier, C.; Poirel, L.; Lambert, T.; and Nordmann, P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in *Acinetobacter baumannii*. <u>Antimicrob Agents Chemother</u> 49, 8 (August 2005): 3198-3202.
- (167) Zarrilli, R., et al. A plasmid-borne blaOXA-58 gene confers imipenem resistance to Acinetobacter baumannii isolates from a Lebanese hospital. <u>Antimicrob Agents Chemother</u> 52, 11 (November 2008): 4115-4120.
- (168) Bou, G.; Cervero, G.; Dominguez, M. A.; Quereda, C.; and Martinez-Beltran, J. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in *A. baumannii* is not due solely to the presence of beta-lactamases. J Clin Microbiol 38, 9 (September 2000): 3299-3305.

APPENDICES

APPENDIX A

REAGENTS, MATERIALS AND INSTRUMENTS

A. REAGENTS

Absolute ethanol	(Merck, Germany)
Ammonium persulfate (APS)	(Amresco, USA)
β-Mercapto Ethanol	(Merck, Germany)
Boric acid	(Sigma, USA)
Bromophenol Blue	(BIO-RAD, USA)
СССР	(Sigma, USA)
Coomassie Brilliant Blue R-250	(BIO-RAD, USA)
dNTPs	(Promega, USA)
EDTA	(Amresco, USA)
Ethidium bromide	(Amresco, USA)
Glacial acetic acid	(Merck, Germany)
HCl	(Merck, Germany)
LB broth	(Pronadisa, Spain)
MacConkey agar	(Oxoid, England)
Methanol	(Merck, Germany)
Methylene bis Acrylamide	Methylene bis Acrylamide
Muller-Hinton II agar	(BBL, USA)
NaCl	(Merck, Germany)
NaOH	(Sigma, USA)
Taq DNA Polymerase	(Fermentas, USA)
TEMED	TEMED
Tris	(Amresco, USA)
Trytic soy agar	(BBL, USA)
Trytic soy broth	(BBL, USA)
100 bp DNA ladder	(Fermentas, USA)
100 bp plus DNA ladder	(Fermentas, USA)

Sodium lauroyl sarcosinate SDS

(Sigma, USA) (Merck, Germany)

B. METERIALS

-

C. INSTRUMENTS

Automatic pipette	(Gilson, Lyon, France)
Beckman Optima TM TLX Ultracentrifuge	(Beckman, USA)
Camera Gel Doc TM MZL	(BIO-RAD, USA)
Incubator	(Forma Scientific, USA)
Perkin Elmer GeneAmp PCR system 9600	(Perkin Elmer, USA)
Microcentrifuge	(Eppendorf, USA)
Spectrophotometer	(BIO-RAD, USA)
Water bath	(Memmert, USA)
High intensity ultrasonic processor	(Sonics, USA)
Beckman Avantis TM J-25I Centrifuge	(Beckman, USA)
Hettich zentrifuge	(Hettich, Germany)

APPENDIX B

MEDIA AND ANTIBIOTIC SOLUTION PREPARATION

1. MacConkey agar (Oxoid, England)

Suspend 51.5 grams in 1,000 ml of distilled water. Bring to the boil to dissolve completely. Sterilize by autoclaving at 121°C for 15 minutes. Once the medium is prepared, store at 4°C.

2. LB broth (Pronadisa, Spain)

Suspend 20 grams of the dehydrated medium in 900 ml of distilled water. Dissolve by heating with frequent agitation until complete dissolution. Adjust final volume to 1,000 ml. Sterilize at 121° C (15 lbs. sp) for 15 minutes. Store medium at 4° C.

3. Muller-Hinton II agar (BBL, USA)

Suspend 38 grams of the dehydrated medium in 1,000 ml of distilled water. Dissolve by heating with frequent agitation until complete dissolution. Sterilize at 121° C (15 lbs. sp) for 15 minutes by autoclaving. Once the medium is prepared, store at 4° C.

4. Tryptic soy broth (BBL, USA)

Suspend 30 grams in 1,000 ml of distilled water. Bring to the boil to dissolve completely. Sterilize by autoclaving at 121°C for 15 minutes. Once the medium is prepared, store at 4°C.

5. Trytic soy agar (BBL, USA)

Suspend 40 grams in 1,000 ml of distilled water. Bring to the boil to dissolve completely. Sterilize at 121°C for 15 minutes by autoclaving. Once the medium is prepared, store at 4°C.

6. 0.85% NaCl (Merck, Germany)

Suspend 8.5 grams in 1,000 ml of distilled water. Bring to the boil to dissolve completely. Sterilize by autoclaving at 121°C for 15 minutes. Once the medium is prepared, store at room temperature.

7. Triple Sugar Iron agar (Oxoid, England)

Suspend 65 grams in 1,000 ml of distilled water. Bring to the boil to dissolve completely. Mix well and distribute into containers. Sterilize by autoclaving at 121°C for 15 minutes. Allow to set as slopes with 2.5 cm butts. Once the medium is prepared, store at 4°C.

8. OF Basal Medium (Difco, France)

Suspend 9.4 grams of the dehydrated medium in 900 ml of distilled water. Dissolve by heating with frequent agitation until complete dissolution. Adjust final volume to 1,000 ml. Add 1% carbohydrate (glucose). Sterilize by autoclaving at 121° C (15 lbs. sp) for 15 minutes. Once the medium is prepared, store at 4° C.

9. Urea Medium (BBL, USA)

Solution A: for 20 ml		
Urea agar base (BBL)	2.9	g
Urea	4	g
Distilled water	20	ml

Dissolve in 20 ml of distilled water. Adjust to pH 6.2 and sterilize by filtration (0.22 μ m filter).

\mathbf{D}	Sol	lution	B:	for	80	ml
--------------	-----	--------	----	-----	----	----

Bacto agar (Difco)	0.5	g
Distilled water	80	ml

Add the ingredient to 80 ml of distilled water; heat with stirring until th agar is dissolved. Sterilize by autoclaving at 121°C, 15 ponds/inch² pressure, for 15 minutes. Mix solution A, 20 ml with solution B, 80 ml. Aliquot into sterile 1.5 microtube (1 ml/tube). Test the sterility by incubate tubes at 37°C for 24 hours. Store tubes in refrigerator at 4°C until used.

10. Motility

Suspend 8.5 grams in 1,000 ml of distilled water. Bring to the boil to dissolve completely. Sterilize by autoclaving at 121°C for 15 minutes. Once the medium is prepared, store at room temperature.

11. Simmon citrate

Suspend 24.2 grams in 1,000 ml of distilled water. Bring to the boil to dissolve completely. Sterilize by autoclaving at 121°C for 15 minutes. Once the medium is prepared, store at room temperature.

Antibiotic solution preparation

Imipenem, stock concentration 5120 µg/ml

- Prepare a stock solution; dissolve 0.0512 g in 0.1 N NaOH and 4 ml distilled water

Meropenem, stock concentration 5120 µg/ml

- Prepare a stock solution; dissolve 0.0256 g in 5 ml distilled water.

Netilmycin, stock concentration 5120 μ g/ml

- Prepare a stock solution; dissolve 256 μ l in 4744 μ l distilled water. Piperacillin/tazobactam, stock concentration 5120 μ g/ml
- Prepare a stock solution; dissolve 0.0256 g in 5 ml distilled water. Colistin, stock concentration 5120 $\mu g/ml$
 - Prepare a stock solution; dissolve 0.0256 g in 5 ml distilled water.

APPENDIX C

REAGENTS PREPARATION

1. 10X Tris-borate buffer (TBE)

Tris base	108	g/L
Boric acid	55	g/L
0.5 M EDTA (pH 8.0)	40	ml

Adjust volume to 1,000 ml with distilled water. The solution was mixed and sterilized by autoclaving at 121°C for 15 minutes.

2. 0.5 M EDTA (pH 8.0)

Disodium ethylene diamine tetra-acelate 2H ₂ O	186.1 g	g/L
Distilled water	1	L

Adjust pH to 8.0 and volume to 1,000 ml. Store at room temperature for no longer than 1 year.

3.10X TE buffer

Tris	12.11	g/L
0.5 M EDTA	20	ml

Adjust to pH 8.0 by adding conc. HCl. Adjust volume to 1,000 ml and sterilized by autoclaving at 121°C for 15 minutes.

Agarose	1	g
0.5X TBE	100	ml

Dissolve by heating in microwave oven and occasional mix unit no granules of agarose are visible.

5. 6X Loading buffer 100 ml

Tris HCl	0.6	g
EDTA	1.68	g
SDS	0.5	g
Bromphenol Blue	0.1	g
Sucrose	40	g

Adjust volume to 100 ml with distilled water. Mix the solution and aliquot into 1.5 microtubes. Store at 4° C.

7. 10 mM Tris HCl pH 8.0

Tris	1.21	g
Distilled water	1	L

Adjust to pH 8.0 by adding conc. HCl. Adjust volume to 1,000 ml and sterilized by autoclaving at 121°C for 15 minutes.

8. SDS-PAGE Staining solution

Coomassie Brilliant Blue R-250	2.5	g
Methanol	500	ml
Glacial acetic acid	100	ml
Distilled water	400	ml

Keep flask on dark at room temperature.

9. SDS-PAGE Destaining solution

10% acetic acid

10. SDS-PAGE Sample buffer (6X)

Glycerol	3	ml
SDS	1	g
β-Mercapto Ethanol	0.5	ml
0.5 mM Tris-HCl (pH 6.8)	6	ml
Brom phenol blue	0.0012	g

aliquots of 1 ml, keep at -20 C

11. SDS-PAGE Running buffer (5X)

Tris	15.1	g
Glycine	72	g
SDS	5	g
Distilled water	1	L
Keep at RT		

12. 12% polyacrylamide gel (separating gel)

DDW	4.4	ml
40% Acrylamide /Bis	3	ml
1.5 M Tris-HCl pH 8.8	2.5	ml
10% SDS	0.1	ml
10% APS	50	μl
TEMED	5	μl

Add TEMED and APS at the end

13. 4% polyacrylamide gel (stacking gel)

DDW	6.7	ml
40% Acrylamide /Bis	0.97	ml
0.5 M Tris-HCl pH 6.8	2.5	ml
10% SDS	0.1	ml
10% APS	50	μl
TEMED	10	μl

Add TEMED and APS at the end.

15. Isopropanol fixing solution (500ml)

100% acetic acid	5	ml
100% isopropanol	31.25	ml
DDW	463.75	ml

16. Equilibrating solution (500ml)

Glycerol	20	ml
70% ethanol	71.25	ml
DDW	408.75	ml

17.10% APS

Ammonium persulfate	100	mg
DDW	1	ml

18. Comassie blue stain

Acetic acid 10% (v/v) Comassie blue dye 0.006% (w/v) ddH₂0 90%

19. Isopropanol fixing solution

Acetic acid 10% (v/v)	30	ml
Isopropanol 25% (v/v)	75	ml
ddH ₂ 0 65%	195	ml

20. 1.5M Tris-HCl, pH 8.8

Tris base	27.23	g
DDW	80	ml

Adjust to pH 8.0 by adding conc. HCl. Adjust volume to 150 ml and sterilized by autoclaving at 121°C for 15 minutes.

21. 0.5 M Tris-HCl, pH 6.8

Tris base	6	g
DDW	60	ml

Adjust to pH 6.8 by adding conc. HCl. Adjust volume to 100 ml and sterilized by autoclaving at 121°C for 15 minutes.

APPENDIX D

THE RESULTS OF ALL TESTS IN THIS STUDY

Results of imipenem and meropenem susceptibility, carbapenemase phenotype, MBLs phenotype and the presence of *bla* genes of 453 A. *baumannii* isolates

		MIC	(µg/ml)	Carbanenemase	MBLs				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24-}	bla _{OXA51} .	bla _{OXA58} -	bla _{IMP-}	bla _{VIM} .	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like			
1	Ab1	>256	256	+	-	-	+	+	-	-	-	-	-	-
2	Ab2	256	128	+	-	+	-	+	-	-	-	-	-	-
3	Ab3	256	128	+	-	+	-	+	-	-	-	-	-	-
4	Ab4	256	64	+	-	+	-	+	-	-	-	-	-	-
5	Ab6	256	32	+	-	+	-	+	-	-	-	-	-	-
6	Ab7	1	1	-	-	-	-	+	-	-	-	-	-	-
7	Ab8	128	64	+	-	+	-	+	-	-	-	-	-	-
8	Ab9	128	64	+	-	+	-	+	-	-	-	-	-	-

		MIC (µg/ml)		Carbanenemase	MRI s				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP} .	bla _{VIM-}	blasm	blasm 1	blacm
				F, F-	F9 F -	like	like	like	like	like	like	010031101-1	o ta srm-1	o ta Gim-1
9	Ab10	128	64	+	-	+	-	+	-	-	-	-	-	-
10	Ab11	>256	128	+	-	+	-	+	-	-	-	-	-	-
11	Ab13	128	128	+	-	+	-	+	-	-	-	-	-	-
12	Ab14	256	64	+	-	+	-	+	-	-	-	-	-	-
13	Ab16	>256	128	+	-	+	-	+	-	-	-	-	-	-
14	Ab17	128	32	+	-	+	-	+	-	-	-	-	-	-
15	Ab18	2	1	-	-	-	-	+	-	-	-	-	-	-
16	Ab19	1	0.25	-	-	-	-	+	-	-	-	-	-	-
17	Ab20	256	64	+	-	+	-	+	-	-	-	-	-	-
18	Ab21	256	64	+	-	+	-	+	-	-	-	-	-	-
19	Ab22	256	64	+	-	+	-	+	-	-	-	-	-	-
20	Ab23	128	32	+	-	+	-	+	-	-	-	-	-	-
21	Ab24	2	1	-	-	-	-	+	-	-	-	-	-	-
22	Ab26	128	64	+	-	+	-	+	-	-	-	-	-	-
23	Ab27	256	64	+	-	+	-	+	-	-	-	-	-	-
24	Ab28	4	2	-	-	-	-	+	-	-	-	-	-	-
25	Ab29	1	0.5	-	-	-	-	+	-	-	-	-	-	-
26	Ab30	256	128	+	-	+	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbanenemase	MRI s				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP} .	bla _{VIM-}	blasm	blasm 1	blacm
				P	F	like	like	like	like	like	like	51W51W-1	of SPM-1	of a Gim-1
27	Ab31	128	64	+	-	+	-	+	-	-	-	-	-	-
28	Ab32	128	64	+	-	+	-	+	-	-	-	-	-	-
29	Ab33	4	2	-	-	-	-	+	-	-	-	-	-	-
30	Ab34	1	0.5	-	-	-	-	+	-	-	-	-	-	-
31	Ab35	64	32	+	-	+	-	+	-	-	-	-	-	-
32	Ab36	128	32	+	-	+	-	+	-	-	-	-	-	-
33	Ab37	256	128	+	-	+	-	+	-	-	-	-	-	-
34	Ab38	256	128	+	-	+	-	+	-	-	-	-	-	-
35	Ab39	1	1	-	-	-	-	+	-	-	-	-	-	-
36	Ab40	256	64	+	-	+	-	+	-	-	-	-	-	-
37	Ab41	128	32	+	-	+	-	+	-	-	-	-	-	-
38	Ab42	1	0.5	-	-	-	-	+	-	-	-	-	-	-
39	Ab43	128	32	+	-	+	-	+	-	-	-	-	-	-
40	Ab44	128	32	+	-	+	-	+	-	-	-	-	-	-
41	Ab45	128	32	+	-	+	-	+	-	-	-	-	-	-
42	Ab46	128	32	+	-	+	-	+	-	-	-	-	-	-
43	Ab47	256	128	+	-	+	-	+	-	-	-	-	-	-
44	Ab48	256	32	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carhanenemase	MRI s				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} -	bla _{OXA24} -	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	51.17		01.01
45	Ab49	256	64	+	-	+	-	+	-	-	-	-	-	-
46	Ab50	256	64	+	-	+	-	+	-	-	-	-	-	-
47	Ab52	256	64	+	-	+	-	+	-	-	-	-	-	-
48	Ab53	256	64	+	-	+	-	+	-	-	-	-	-	-
49	Ab54	128	32	+	-	+	-	+	-	-	-	-	-	-
50	Ab55	256	64	+	-	+	-	+	-	-	-	-	-	-
51	Ab56	128	64	+	-	+	-	+	-	-	-	-	-	-
52	Ab57	2	0.5	-	-	-	-	+	-	-	-	-	-	-
53	Ab58	256	32	+	-	+	-	+	-	-	-	-	-	-
54	Ab59	>256	64	+	-	+	-	+	-	-	-	-	-	-
55	Ab60	64	32	+	-	+	-	+	-	-	-	-	-	-
56	Ab61	128	32	+	-	+	-	+	-	-	-	-	-	-
57	Ab62	256	64	+	-	+	-	+	-	-	-	-	-	-
58	Ab63	256	64	+	-	+	-	+	-	-	-	-	-	-
59	Ab64	128	32	+	-	+	-	+	-	-	-	-	-	-
60	Ab65	1	0.25	-	-	-	-	+	-	-	-	-	-	-
61	Ab66	128	32	+	-	+	-	+	-	-	-	-	-	-
62	Ab67	128	32	+	-	+	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbanenemase	MRI s				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP} .	bla _{VIM-}	blasm 1	blaspm 1	bla _{CIM 1}
				r - Jr	r - Jr	like	like	like	like	like	like			e Giwi-i
63	Ab68	256	64	+	-	+	-	+	-	-	-	-	-	-
64	Ab69	128	32	+	-	+	-	+	-	-	-	-	-	-
65	Ab70	>256	32	+	-	+	-	+	-	-	-	-	-	-
66	Ab72	1	0.25	-	-	-	-	+	-	-	-	-	-	-
67	Ab73	1	0.5	-	-	-	-	+	-	-	-	-	-	-
68	Ab74	256	64	+	-	+	-	+	-	-	-	-	-	-
69	Ab75	>256	64	+	-	+	-	+	-	-	-	-	-	-
70	Ab76	256	64	+	-	+	-	+	-	-	-	-	-	-
71	Ab78	256	32	+	-	+	-	+	-	-	-	-	-	-
72	Ab79	128	32	+	-	+	-	+	-	-	-	-	-	-
73	Ab81	128	32	+	-	+	-	+	-	-	-	-	-	-
74	Ab82	64	16	+	-	+	-	+	-	-	-	-	-	-
75	Ab83	256	64	+	-	+	-	+	-	-	-	-	-	-
76	Ab84	128	64	+	-	+	-	+	-	-	-	-	-	-
77	Ab85	4	1	-	-	-	-	+	-	-	-	-	-	-
78	Ab86	256	64	+	-	+	-	+	-	-	-	-	-	-
79	Ab87	256	64	+	-	+	-	+	-	-	-	-	-	-
80	Ab88	256	64	+	-	+	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbanenemase	MRI s				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP} .	bla _{VIM-}	blasm	blasm 1	blacm
				F=====0.9 F =	F2 F -	like	like	like	like	like	like	01003101-1	o morni-i	o ta Gim-1
81	Ab89	1	1	-	-	-	-	+	-	-	-	-	-	-
82	Ab90	64	16	+	-	+	-	+	-	-	-	-	-	-
83	Ab91	>256	256	+	-	+	-	+	-	-	-	-	-	-
84	Ab92	1	0.5	-	-	-	-	+	-	-	-	-	-	-
85	Ab93	64	16	+	-	+	-	+	-	-	-	-	-	-
86	Ab94	256	64	+	-	+	-	+	-	-	-	-	-	-
87	Ab95	256	64	+	-	+	-	+	-	-	-	-	-	-
88	Ab96	128	32	+	-	+	-	+	-	-	-	-	-	-
89	Ab97	128	16	+	-	+	-	+	-	-	-	-	-	-
90	Ab98	64	16	+	-	+	-	+	-	-	-	-	-	-
91	Ab100	128	64	+	-	+	-	+	-	-	-	-	-	-
92	A2	128	32	+	-	+	-	+	-	-	-	-	-	-
93	A3	>256	128	+	-	+	-	+	-	-	-	-	-	-
94	A5	256	64	+	-	+	-	+	-	-	-	-	-	-
95	A6	128	32	+	-	+	-	+	-	-	-	-	-	-
96	A7	128	32	+	-	+	-	+	-	-	-	-	-	-
97	A8	2	1	-	-	-	-	+	-	-	-	-	-	-
98	A9	128	64	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI 6				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} -	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58} -	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like		~	
99	A10	128	64	+	-	+	-	+	-	-	-	-	-	-
100	A11	128	32	+	-	+	-	+	-	-	-	-	-	-
101	A12	4	2	-	-	-	-	+	-	-	-	-	-	-
102	A13	256	64	+	-	+	-	+	-	-	-	-	-	-
103	A15	256	64	+	-	+	-	+	-	-	-	-	-	-
104	A16	256	64	+	-	+	-	+	-	-	-	-	-	-
105	A17	256	64	+	-	+	-	+	-	-	-	-	-	-
106	A18	64	32	+	-	+	-	+	-	-	-	-	-	-
107	A19	1	0.25	-	-	-	-	+	-	-	-	-	-	-
108	A20	128	32	+	-	+	-	+	-	-	-	-	-	-
109	A21	2	0.5	-	-	-	-	+	-	-	-	-	-	-
110	A22	256	64	+	-	+	-	+	-	-	-	-	-	-
111	A24	256	64	+	-	+	-	+	-	-	-	-	-	-
112	A26	256	64	+	-	+	-	+	-	-	-	-	-	-
113	A27	256	64	+	-	+	-	+	-	-	-	-	-	-
114	A28	1	0.5	-	-	-	-	+	-	-	-	-	-	-
115	A29	64	16	+	-	+	-	+	-	-	-	-	-	-
116	A30	256	64	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI 6				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} .	bla _{OXA51} -	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
				1 01		like	like	like	like	like	like	51.01 I	51.011	OLUT 1
117	A31	128	32	+	-	+	-	+	-	-	-	-	-	-
118	A32	256	64	+	-	+	-	+	-	-	-	-	-	-
119	A33	128	32	+	-	+	-	+	-	-	-	-	-	-
120	A34	256	128	+	-	+	-	+	-	-	-	-	-	-
121	A35	256	128	+	-	+	-	+	-	-	-	-	-	-
122	A36	256	128	+	-	+	-	+	-	-	-	-	-	-
123	A38	128	32	+	-	+	-	+	-	-	-	-	-	-
124	A39	128	32	+	-	+	-	+	-	-	-	-	-	-
125	A40	64	32	+	-	+	-	+	-	-	-	-	-	-
126	A42	64	32	+	-	+	-	+	-	-	-	-	-	-
127	A43	128	64	+	-	+	-	+	-	-	-	-	-	-
128	A44	>256	128	+	-	+	-	+	-	-	-	-	-	-
129	A45	256	64	+	-	+	-	+	-	-	-	-	-	-
130	A46	128	32	+	-	+	-	+	-	-	-	-	-	-
131	A47	128	32	+	-	+	-	+	-	-	-	-	-	-
132	A48	256	64	+	-	+	-	+	-	-	-	-	-	-
133	A50	128	32	+	-	+	-	+	-	-	-	-	-	-
134	A51	256	64	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI e				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} -	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	51.11		
135	A52	128	128	+	-	+	-	+	-	-	-	-	-	-
136	A53	64	32	+	-	+	-	+	-	-	-	-	-	-
137	A54	128	128	+	-	+	-	+	-	-	-	-	-	-
138	A55	>256	64	+	-	+	-	+	-	-	-	-	-	-
139	A56	256	64	+	-	+	-	+	-	-	-	-	-	-
140	A57	128	64	+	-	+	-	+	-	-	-	-	-	-
141	A58	128	64	+	-	+	-	+	-	-	-	-	-	-
142	A59	64	32	+	-	+	-	+	-	-	-	-	-	-
143	A60	256	64	+	-	+	-	+	-	-	-	-	-	-
144	A61	256	128	+	-	+	-	+	-	-	-	-	-	-
145	A63	256	128	+	-	+	-	+	-	-	-	-	-	-
146	A64	256	64	+	-	+	-	+	-	-	-	-	-	-
147	A65	256	128	+	-	+	-	+	-	-	-	-	-	-
148	A66	256	64	+	-	+	-	+	-	-	-	-	-	-
149	A67	256	64	+	-	+	-	+	-	-	-	-	-	-
150	A68	256	64	+	-	+	-	+	-	-	-	-	-	-
151	A69	128	64	+	-	+	-	+	-	-	-	-	-	-
152	A71	128	64	+	-	+	-	+	-	-	-	-	-	-
		MIC	(µg/ml)	Carbananamasa	MBI 6				The pres	ence of <i>bla</i>	a genes			
-----	---------	------	---------	---------------	-----------	------------------------	------------------------	------------------------	-----------------------	----------------------	----------------------	----------------------	----------------------	----------------------
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP} .	bla _{VIM} .	bla _{SIM-1}	bla _{SPM-1}	bla _{CIM-1}
				F	r - Jr	like	like	like	like	like	like			eGiwi-i
153	A72	>256	64	+	-	+	-	+	-	-	-	-	-	-
154	A73	256	64	+	-	+	-	+	-	-	-	-	-	-
155	A74	256	64	+	-	+	-	+	-	-	-	-	-	-
156	A75	2	0.5	-	-	-	-	+	-	-	-	-	-	-
157	A76	128	32	+	-	+	-	+	-	-	-	-	-	-
158	A78	256	64	+	-	+	-	+	-	-	-	-	-	-
159	A79	128	64	+	-	+	-	+	-	-	-	-	-	-
160	A80	128	64	+	-	+	-	+	-	-	-	-	-	-
161	A81	256	128	+	-	+	-	+	-	-	-	-	-	-
162	A82	256	128	+	-	+	-	+	-	-	-	-	-	-
163	A83	128	64	+	-	+	-	+	-	-	-	-	-	-
164	A84	128	64	+	-	+	-	+	-	-	-	-	-	-
165	A85	128	64	+	-	+	-	+	-	-	-	-	-	-
166	A86	128	64	+	-	+	-	+	-	-	-	-	-	-
167	A87	64	32	+	-	+	-	+	-	-	-	-	-	-
168	A88	64	32	+	-	+	-	+	-	-	-	-	-	-
169	A89	64	32	+	-	+	-	+	-	-	-	-	-	-
170	A90	128	128	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbanenemase	MRI s				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP} .	bla _{VIM-}	blasm 1	blaspm 1	blacm
				F, F-	F3 F -	like	like	like	like	like	like	010031101-1	o ta srm-1	o turgim-1
171	A91	128	64	+	-	+	-	+	-	-	-	-	-	-
172	A92	128	64	+	-	+	-	+	-	-	-	-	-	-
173	A94	128	32	+	-	+	-	+	-	-	-	-	-	-
174	A95	256	32	+	-	+	-	+	-	-	-	-	-	-
175	A96	2	2	-	-	-	-	+	-	-	-	-	-	-
176	A97	256	128	+	-	+	-	+	-	-	-	-	-	-
177	A98	64	32	+	-	+	-	+	+	-	-	-	-	-
178	A100	256	128	+	-	+	-	+	-	-	-	-	-	-
179	A101	64	32	+	-	+	-	+	-	-	-	-	-	-
180	A102	256	128	+	-	+	-	+	-	-	-	-	-	-
181	A103	64	32	+	-	+	-	+	-	-	-	-	-	-
182	A104	64	32	+	-	+	-	+	-	-	-	-	-	-
183	A105	128	32	+	-	+	-	+	-	-	-	-	-	-
184	A106	256	64	+	-	+	-	+	-	-	-	-	-	-
185	A107	256	128	+	-	+	-	+	-	-	-	-	-	-
186	A110	256	64	+	-	+	-	+	-	-	-	-	-	-
187	A111	128	64	+	-	+	-	+	-	-	-	-	-	-
188	A112	128	64	+	-	+	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbananamasa	MBI c				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24-}	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like			
189	A113	0.5	0.25	-	-	-	-	+	-	-	-	-	-	-
190	A114	128	64	+	-	+	-	+	-	-	-	-	-	-
191	A115	128	64	+	-	+	-	+	-	-	-	-	-	-
192	A116	128	64	+	-	+	-	+	-	-	-	-	-	-
193	A117	0.5	0.5	-	-	-	-	+	-	-	-	-	-	-
194	A118	128	64	+	-	+	-	+	-	-	-	-	-	-
195	A119	>256	64	+	-	+	-	+	-	-	-	-	-	-
196	A121	256	128	+	-	+	-	+	-	-	-	-	-	-
197	A122	256	128	+	-	+	-	+	-	-	-	-	-	-
198	A123	>256	128	+	-	+	-	+	-	-	-	-	-	-
199	A124	>256	128	+	-	+	-	+	-	-	-	-	-	-
200	A125	64	32	+	-	+	-	+	-	-	-	-	-	-
201	A126	128	64	+	-	+	-	+	-	-	-	-	-	-
202	A127	128	64	+	-	+	-	+	-	-	-	-	-	-
203	A128	128	64	+	-	+	-	+	-	-	-	-	-	-
204	A129	64	32	+	-	+	-	+	-	-	-	-	-	-
205	A130	128	64	+	-	+	-	+	-	-	-	-	-	-
206	A132	128	64	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI 6				The pres	ence of <i>bl</i>	<i>a</i> genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} -	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58} -	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	51.11		01.011
207	A133	128	64	+	-	+	-	+	-	-	-	-	-	-
208	A134	128	64	+	-	+	-	+	-	-	-	-	-	-
209	A135	128	64	+	-	+	-	+	-	-	-	-	-	-
210	A137	128	64	+	-	+	-	+	-	-	-	-	-	-
211	A138	128	64	+	-	+	-	+	-	-	-	-	-	-
212	A139	128	32	+	-	+	-	+	-	-	-	-	-	-
213	A140	64	32	+	-	+	-	+	-	-	-	-	-	-
214	A141	64	32	+	-	+	-	+	-	-	-	-	-	-
215	A142	128	64	+	-	+	-	+	-	-	-	-	-	-
216	A143	128	64	+	-	+	-	+	-	-	-	-	-	-
217	A144	>256	256	+	-	+	-	+	-	-	-	-	-	-
218	A145	256	128	+	-	+	-	+	-	-	-	-	-	-
219	A146	64	32	+	-	+	-	+	-	-	-	-	-	-
220	A147	64	32	+	-	+	-	+	-	-	-	-	-	-
221	A148	32	16	+	-	+	-	+	-	-	-	-	-	-
222	A149	128	32	+	-	+	-	+	-	-	-	-	-	-
223	A150	128	64	+	-	+	-	+	-	-	-	-	-	-
224	A151	64	32	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI s				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} -	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	Shiri I	51.011	OLM 1
225	A152	64	32	+	-	+	-	+	-	-	-	-	-	-
226	A153	64	32	+	-	+	-	+	-	-	-	-	-	-
227	A154	64	32	+	-	+	-	+	-	-	-	-	-	-
228	A155	128	64	+	-	+	-	+	-	-	-	-	-	-
229	A156	128	64	+	-	+	-	+	-	-	-	-	-	-
230	A157	256	64	+	-	+	-	+	-	-	-	-	-	-
231	A159	128	64	+	-	+	-	+	-	-	-	-	-	-
232	A162	128	64	+	-	+	-	+	-	-	-	-	-	-
233	A163	256	128	+	-	+	-	+	-	-	-	-	-	-
234	A164	256	128	+	-	+	-	+	-	-	-	-	-	-
235	A165	128	32	+	-	+	-	+	-	-	-	-	-	-
236	A166	128	64	+	-	+	-	+	-	-	-	-	-	-
237	A167	64	32	+	-	+	-	+	-	-	-	-	-	-
238	A168	64	16	+	-	+	-	+	-	-	-	-	-	-
239	A169	128	32	+	-	+	-	+	-	-	-	-	-	-
240	A170	128	64	+	-	+	-	+	-	-	-	-	-	-
241	A171	128	64	+	-	+	-	+	-	-	-	-	-	-
242	A173	128	64	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI s				The pres	ence of <i>bl</i>	<i>a</i> genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} -	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58} -	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	2	~	
243	A174	128	64	+	-	+	-	+	-	-	-	-	-	-
244	A175	256	128	+	-	+	-	+	-	-	-	-	-	-
245	A176	256	64	+	-	+	-	+	-	-	-	-	-	-
246	A177	128	32	+	-	+	-	+	-	-	-	-	-	-
247	A178	256	128	+	-	+	-	+	-	-	-	-	-	-
248	A179	256	128	+	-	+	-	+	-	-	-	-	-	-
249	A180	128	16	+	-	+	-	+	-	-	-	-	-	-
250	A182	256	64	+	-	+	-	+	-	-	-	-	-	-
251	A183	256	64	+	-	+	-	+	-	-	-	-	-	-
252	A184	256	128	+	-	+	-	+	-	-	-	-	-	-
253	A185	256	64	+	-	+	-	+	-	-	-	-	-	-
254	A186	>256	64	+	-	+	-	+	-	-	-	-	-	-
255	A187	256	128	+	-	+	-	+	-	-	-	-	-	-
256	A188	256	64	+	-	+	-	+	-	-	-	-	-	-
257	A189	256	128	+	-	+	-	+	-	-	-	-	-	-
258	A190	256	64	+	-	+	-	+	-	-	-	-	-	-
259	A191	64	16	+	-	+	-	+	-	-	-	-	-	-
260	A192	256	128	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI s				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} .	bla _{OXA51} -	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	51.11		01.011
261	A193	256	128	+	-	+	-	+	-	-	-	-	-	-
262	A195	64	32	+	-	+	-	+	-	-	-	-	-	-
263	A196	256	64	+	-	+	-	+	-	-	-	-	-	-
264	A197	64	32	+	-	+	-	+	-	-	-	-	-	-
265	A198	64	16	+	-	+	-	+	-	-	-	-	-	-
266	A199	1	0.5	-	-	-	-	+	-	-	-	-	-	-
267	A200	64	16	+	-	+	-	+	+	-	-	-	-	-
268	A201	128	64	+	-	+	-	+	-	-	-	-	-	-
269	A202	128	64	+	-	+	-	+	-	-	-	-	-	-
270	A203	64	32	+	-	+	-	+	-	-	-	-	-	-
271	A204	4	0.25	-	-	-	-	+	-	-	-	-	-	-
272	A205	128	64	+	-	+	-	+	-	-	-	-	-	-
273	A206	128	64	+	-	+	-	+	-	-	-	-	-	-
274	A207	64	32	+	-	+	-	+	-	-	-	-	-	-
275	A208	64	16	+	-	+	-	+	-	-	-	-	-	-
276	A209	0.5	0.25	_	-	-	-	+	-	-	-	-	-	-
277	A211	128	64	+	-	+	-	+	-	-	-	-	-	-
278	A212	128	32	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI 6				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} -	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	51.11		
279	A213	1	0.5	-	-	-	-	+	-	-	-	-	-	-
280	A214	128	64	+	-	+	-	+	-	-	-	-	-	-
281	A215	64	32	+	-	+	-	+	-	-	-	-	-	-
282	A216	1	0.5	-	-	-	-	+	-	-	-	-	-	-
283	A217	128	64	+	-	+	-	+	-	-	-	-	-	-
284	A218	64	32	+	-	+	-	+	-	-	-	-	-	-
285	A219	128	64	+	-	+	-	+	-	-	-	-	-	-
286	A220	128	64	+	-	+	-	+	-	-	-	-	-	-
287	A221	64	64	+	-	+	-	+	-	-	-	-	-	-
288	A222	256	64	+	-	+	-	+	-	-	-	-	-	-
289	A223	128	64	+	-	+	-	+	-	-	-	-	-	-
290	A224	128	32	+	-	+	-	+	-	-	-	-	-	-
291	A225	128	64	+	-	+	-	+	-	-	-	-	-	-
292	A226	1	0.5	-	-	-	-	+	-	-	-	-	-	-
293	A227	128	64	+	-	+	-	+	-	-	-	-	-	-
294	A228	128	64	+	-	+	-	+	-	-	-	-	-	-
295	A229	256	64	+	-	+	-	+	-	-	-	-	-	-
296	A230	128	64	+	-	+	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbananamasa	MBI e				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like			
297	A231	0.5	0.25	-	-	-	-	+	-	-	-	-	-	-
298	A232	64	16	+	-	+	-	+	+	-	-	-	-	-
299	A233	128	32	+	-	+	-	+	-	-	-	-	-	-
300	A234	128	64	+	-	+	-	+	-	-	-	-	-	-
301	A235	128	32	+	-	+	-	+	-	-	-	-	-	-
302	A237	128	64	+	-	+	-	+	-	-	-	-	-	-
303	A238	64	32	+	-	+	-	+	-	-	-	-	-	-
304	A239	128	32	+	-	+	-	+	-	-	-	-	-	-
305	A240	256	64	+	-	+	-	+	-	-	-	-	-	-
306	A241	128	64	+	-	+	-	+	-	-	-	-	-	-
307	A242	128	32	+	-	+	-	+	-	-	-	-	-	-
308	A243	128	64	+	-	+	-	+	-	-	-	-	-	-
309	A245	128	32	+	-	+	-	+	-	-	-	-	-	-
310	A246	128	64	+	-	+	-	+	-	-	-	-	-	-
311	A247	128	64	+	-	+	-	+	-	-	-	-	-	-
312	A248	128	32	+	-	+	-	+	-	-	-	-	-	-
313	A249	128	64	+	-	+	-	+	-	-	-	-	-	-
314	A250	128	64	+	-	+	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbananamasa	MBI 6				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} .	bla _{OXA51} -	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like		51.11	01.011
315	A251	>256	128	+	-	+	-	+	-	-	-	-	-	-
316	A252	256	64	+	-	+	-	+	-	-	-	-	-	-
317	A253	128	32	+	-	+	-	+	-	-	-	-	-	-
318	A254	128	32	+	-	+	-	+	-	-	-	-	-	-
319	A255	128	32	+	-	+	-	+	-	-	-	-	-	-
320	A256	64	32	+	-	+	-	+	-	-	-	-	-	-
321	A257	128	32	+	-	+	-	+	-	-	-	-	-	-
322	A258	256	64	+	-	+	-	+	-	-	-	-	-	-
323	A259	256	64	+	-	+	-	+	-	-	-	-	-	-
324	A260	1	0.25	-	-	-	-	+	-	-	-	-	-	-
325	A261	2	0.25	-	-	-	-	+	-	-	-	-	-	-
326	A262	256	128	+	-	+	-	+	-	-	-	-	-	-
327	A263	256	64	+	-	+	-	+	-	-	-	-	-	-
328	A264	2	1	-	-	-	-	+	-	-	-	-	-	-
329	A265	256	64	+	-	+	-	+	-	-	-	-	-	-
330	A266	128	32	+	-	+	-	+	-	-	-	-	-	-
331	A268	128	32	+	-	+	-	+	-	-	-	-	-	-
332	A270	2	0.5	-	-	-	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbanenemase	MRI s				The pres	sence of <i>bla</i>	<i>a</i> genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	blasm 1	blaspm 1	blacm
				P	F?	like	like	like	like	like	like	01003101-1	o ta srm-1	o turgim-i
333	A272	128	32	+	-	+	-	+	-	-	-	-	-	-
334	A274	256	64	+	-	+	-	+	-	-	-	-	-	-
335	A275	256	64	+	-	+	-	+	-	-	-	-	-	-
336	A276	256	64	+	-	+	-	+	-	-	-	-	-	-
337	A277	256	64	+	-	+	-	+	-	-	-	-	-	-
338	A279	256	64	+	-	+	-	+	-	-	-	-	-	-
339	A280	128	16	+	-	+	-	+	-	-	-	-	-	-
340	A281	4	1	-	-	-	-	+	-	-	-	-	-	-
341	A282	2	0.25	-	-	-	-	+	-	-	-	-	-	-
342	A283	4	0.5	-	-	-	-	+	-	-	-	-	-	-
343	A284	128	32	+	-	+	-	+	-	-	-	-	-	-
344	A285	256	64	+	-	+	-	+	-	-	-	-	-	-
345	A286	128	32	+	-	+	-	+	-	-	-	-	-	-
346	A287	256	64	+	-	+	-	+	-	-	-	-	-	-
347	A288	128	32	+	-	+	-	+	-	-	-	-	-	-
348	A289	2	1	-	-	-	-	+	-	-	-	-	-	-
349	A290	64	16	+	-	+	-	+	-	-	-	-	-	-
350	A291	256	64	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbananamasa	MBI 6				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} -	bla _{OXA58-}	bla _{IMP-}	bla _{VIM} .	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	51.01 I	51.011	OLUT 1
351	A292	128	64	+	-	+	-	+	-	-	-	-	-	-
352	A293	2	0.25	-	-	-	-	+	-	-	-	-	-	-
353	A294	256	64	+	-	+	-	+	-	-	-	-	-	-
354	A295	4	1	-	-	-	-	+	-	-	-	-	-	-
355	A296	256	32	+	-	+	-	+	-	-	-	-	-	-
356	A297	256	32	+	-	+	-	+	-	-	-	-	-	-
357	A299	32	16	+	-	+	-	+	-	-	-	-	-	-
358	A300	256	64	+	-	+	-	+	-	-	-	-	-	-
359	A301	32	16	+	-	+	-	+	-	-	-	-	-	-
360	A302	0.5	0.5	-	-	-	-	+	-	-	-	-	-	-
361	A303	128	64	+	-	+	-	+	-	-	-	-	-	-
362	A304	128	64	+	-	+	-	+	-	-	-	-	-	-
363	A305	128	32	+	-	+	-	+	-	-	-	-	-	-
364	A306	2	1	-	-	-	-	+	-	-	-	-	-	-
365	A310	128	32	+	-	+	-	+	-	-	-	-	-	-
366	A311	1	0.5	-	-	-	-	+	-	-	-	-	-	-
367	A312	128	32	+	-	+	-	+	-	-	-	-	-	-
368	A313	1	0.5	-	-	-	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbanenemase	MRI s				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} -	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like			
369	A314	128	64	+	-	+	-	+	-	-	-	-	-	-
370	A315	64	16	+	-	+	-	+	-	-	-	-	-	-
371	A317	2	0.5	-	-	-	-	+	-	-	-	-	-	-
372	A318	32	16	+	-	+	-	+	-	-	-	-	-	-
373	A319	0.5	0.5	-	-	-	-	+	-	-	-	-	-	-
374	A320	128	32	+	-	+	-	+	-	-	-	-	-	-
375	A321	64	32	+	-	+	-	+	-	-	-	-	-	-
376	A322	64	16	+	-	+	-	+	-	-	-	-	-	-
377	A323	128	64	+	-	+	-	+	-	-	-	-	-	-
378	A324	128	64	+	-	+	-	+	-	-	-	-	-	-
379	A325	32	16	+	-	+	-	+	-	-	-	-	-	-
380	A326	128	32	+	-	+	-	+	-	-	-	-	-	-
381	A327	128	32	+	-	+	-	+	-	-	-	-	-	-
382	A328	128	32	+	-	+	-	+	-	-	-	-	-	-
383	A329	64	16	+	-	+	-	+	-	-	-	-	-	-
384	A330	128	64	+	-	+	-	+	-	-	-	-	-	-
385	A331	128	32	+	-	+	-	+	-	-	-	-	-	-
386	A332	128	32	+	-	+	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbanananasa	MBI 6				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} -	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58} -	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like	51.11		01011
387	A333	128	32	+	-	+	-	+	-	-	-	-	-	-
388	A334	>256	64	+	-	+	-	+	-	-	-	-	-	-
389	A336	256	64	+	-	+	-	+	-	-	-	-	-	-
390	A337	128	32	+	-	+	-	+	-	-	-	-	-	-
391	A338	256	64	+	-	+	-	+	-	-	-	-	-	-
392	A339	128	32	+	-	+	-	+	-	-	-	-	-	-
393	A340	128	32	+	-	+	-	+	-	-	-	-	-	-
394	A341	64	32	+	-	+	-	+	+	-	-	-	-	-
395	A342	256	64	+	-	+	-	+	-	-	-	-	-	-
396	A343	256	64	+	-	+	-	+	-	-	-	-	-	-
397	A344	128	32	+	-	+	-	+	-	-	-	-	-	-
398	A345	256	32	+	-	+	-	+	-	-	-	-	-	-
399	A346	128	32	+	-	+	-	+	-	-	-	-	-	-
400	A347	128	32	+	-	+	-	+	-	-	-	-	-	-
401	A348	256	64	+	-	+	-	+	-	-	-	-	-	-
402	A349	128	32	+	-	+	-	+	-	-	-	-	-	-
403	A350	256	64	+	-	+	-	+	-	-	-	-	-	-
404	A351	256	64	+	-	+	-	+	-	-	-	-	-	-

		MIC ((µg/ml)	Carbanenemase	MRI s				The pres	ence of <i>bla</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
					1 .1	like	like	like	like	like	like	Sint-1	51 11-1	of the second se
405	A352	256	64	+	-	+	-	+	-	-	-	-	-	-
406	A353	1	0.25	-	-	-	-	+	-	-	-	-	-	-
407	A354	256	32	+	-	+	-	+	-	-	-	-	-	-
408	A355	64	32	+	-	+	-	+	-	-	-	-	-	-
409	A356	128	32	+	-	+	-	+	-	-	-	-	-	-
410	A357	256	64	+	-	+	-	+	-	-	-	-	-	-
411	A358	256	64	+	-	+	-	+	-	-	-	-	-	-
412	A359	>256	128	+	-	+	-	+	-	-	-	-	-	-
413	A360	256	64	+	-	+	-	+	-	-	-	-	-	-
414	A361	64	32	+	-	+	-	+	-	-	-	-	-	-
415	A362	>256	128	+	-	+	-	+	-	-	-	-	-	-
416	A364	128	32	+	-	+	-	+	-	-	-	-	-	-
417	A365	256	32	+	-	+	-	+	-	-	-	-	-	-
418	A366	256	32	+	-	+	-	+	-	-	-	-	-	-
419	A367	256	32	+	-	+	-	+	-	-	-	-	-	-
420	A368	256	32	+	-	+	-	+	-	-	-	-	-	-
421	A369	256	32	+	-	+	-	+	-	-	-	-	-	-
422	A370	64	16	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbanananasa	MBI 6				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} .	bla _{OXA24} .	bla _{OXA51} .	bla _{OXA58-}	bla _{IMP-}	bla _{VIM-}	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
						like	like	like	like	like	like		~	
423	A371	128	32	+	-	+	-	+	-	-	-	-	-	-
424	A372	128	32	+	-	+	-	+	-	-	-	-	-	-
425	A373	256	128	+	-	+	-	+	-	-	-	-	-	-
426	A374	256	128	+	-	+	-	+	-	-	-	-	-	-
427	A375	256	32	+	-	+	-	+	-	-	-	-	-	-
428	A376	64	16	+	-	+	-	+	-	-	-	-	-	-
429	A377	256	128	+	-	+	-	+	-	-	-	-	-	-
430	A378	1	0.5	-	-	-	-	+	-	-	-	-	-	-
431	A379	256	64	+	-	+	-	+	-	-	-	-	-	-
432	A380	256	64	+	-	+	-	+	-	-	-	-	-	-
433	A381	256	64	+	-	+	-	+	-	-	-	-	-	-
434	A382	256	64	+	-	+	-	+	-	-	-	-	-	-
435	A383	128	32	+	-	+	-	+	-	-	-	-	-	-
436	A384	128	32	+	-	+	-	+	-	-	-	-	-	-
437	A385	128	32	+	-	+	-	+	-	-	-	-	-	-
438	A386	128	32	+	-	+	-	+	-	-	-	-	-	-
439	A388	128	32	+	-	+	-	+	-	-	-	-	-	-
440	A389	256	64	+	-	+	-	+	-	-	-	-	-	-

		MIC	(µg/ml)	Carbanenemase	MBLs				The pres	ence of <i>bl</i>	a genes			
No.	Isolate	IPM	MEM	phenotype	phenotype	bla _{OXA23} . like	bla _{OXA24} . like	bla _{OXA51} . like	bla _{OXA58-} like	<i>bla</i> IMP. like	<i>bla</i> _{VIM} . like	bla _{SIM-1}	bla _{SPM-1}	bla _{GIM-1}
441	A390	128	32	+	-	+	-	+	-	-	-	-	-	-
442	A391	128	32	+	-	+	-	+	-	-	-	-	-	-
443	A393	128	32	+	-	+	-	+	-	-	-	-	-	-
444	A395	64	16	+	-	+	-	+	-	-	-	-	-	-
445	A397	64	32	+	-	+	-	+	-	-	-	-	-	-
446	A398	256	64	+	-	+	-	+	-	-	-	-	-	-
447	A399	256	64	+	-	+	-	+	-	-	-	-	-	-
448	A400	128	64	+	-	+	-	+	-	-	-	-	-	-
449	A401	256	64	+	-	+	-	+	-	-	-	-	-	-
450	A402	256	64	+	-	+	-	+	-	-	-	-	-	-
451	A403	64	32	+	-	+	-	+	-	-	-	-	-	-
452	A404	64	32	+	-	+	-	+	-	-	-	-	-	-
453	A405	128	32	+	-	+	-	+	-	-	-	-	-	-

IPM, imipenem ; MEM, meropenem; +, positive ; -, negative

APPENDIX E

PCR screening for detection of gene encoding *bla*_{OXA-like}, ISAba and ISAba upstream *bla*_{OXA-like} in 49 A. *baumannii*

Isolate	MIC (µg/ml)		bla _c)XA-like			ISAba		ISAba1 upstream	ISAba3 upstream
	IPM	MEM	bla _{OXA23-} like	bla _{OXA24-} like	bla _{OXA51-} like	bla _{OXA58-} like	ISAba1	ISAba2	ISAba3	bla _{OXA23-like}	bla _{OXA58-like}
Ab1	>256	256	-	+	+	-	-	+	-	-	-
A98	64	32	+	-	+	+	+	-	+	+	+
A200	64	16	+	-	+	+	+	-	+	+	+
A232	64	16	+	-	+	+	+	-	+	+	+
A341	64	32	+	-	+	+	+	-	+	+	+
A251	>256	128	+	-	+	-	+	-	-	+	-
A252	256	64	+	-	+	-	+	-	-	+	-
A253	128	32	+	-	+	-	+	-	-	+	-
A254	128	32	+	-	+	-	+	-	-	+	-
A255	128	32	+	-	+	-	+	-	+	+	-

Isolate	MIC (µg/ml)		blag)XA-like			ISAba		ISAba1 upstream	ISAba3 upstream
1501000	IPM	MEM	bla _{OXA23-} like	bla _{OXA24-} like	bla _{OXA51-} like	bla _{OXA58-} like	ISAba1	ISAba2	ISAba3	bla _{OXA23-like}	bla _{OXA58-like}
A256	64	32	+	-	+	-	+	-	+	+	-
A257	128	32	+	-	+	-	+	-	-	+	-
A258	256	64	+	-	+	-	+	-	-	+	-
A259	256	64	+	-	+	-	+	-	-	+	-
A260	1	0.25	+	-	+	-	-	+	-	-	-
A261	2	0.25	+	-	+	-	-	-	-	-	-
A262	256	128	+	-	+	-	+	-	-	+	-
A263	256	64	+	-	+	-	+	-	-	+	-
A264	2	1	+	-	+	-	-	+	-	-	-
A265	256	64	+	-	+	-	+	-	-	+	-
A266	128	32	+	-	+	-	+	-	-	+	-
A268	128	32	+	-	+	-	+	-	-	+	-
A270	2	0.5	+	-	+	-	-	+	+	-	-
A272	128	32	+	-	+	-	+	-	-	+	-
A274	256	64	+	-	+	-	+	-	-	+	-

Isolate	MIC (µg/ml)		blag	DXA-like			ISAba		ISAba1 upstream	ISAba3 upstream
1501000	IPM	MEM	bla _{OXA23-} like	bla _{OXA24-} like	bla _{OXA51-} like	bla _{OXA58-} like	ISAba1	ISAba2	ISAba3	bla _{OXA23-like}	bla _{OXA58-like}
A275	256	64	+	-	+	-	+	-	-	+	-
A276	256	64	+	-	+	-	+	-	-	+	-
A277	256	64	+	-	+	-	+	-	-	+	-
A279	256	64	+	-	+	-	+	-	-	+	-
A280	128	16	+	-	+	-	+	-	-	+	-
A281	4	1	+	-	+	-	+	-	+	-	-
A282	2	0.25	+	-	+	-	-	+	-	-	-
A283	4	0.5	+	-	+	-	+	-	-	-	-
A284	128	32	+	-	+	-	+	-	-	+	-
A285	256	64	+	-	+	-	+	-	-	+	-
A286	128	32	+	-	+	-	+	-	-	+	-
A287	256	64	+	-	+	-	+	-	-	+	-
A288	128	32	+	-	+	-	+	-	-	+	-
A289	2	1	+	-	+	-	+	-	-	-	-
A290	64	16	+	-	+	-	+	+	-	+	-

Isolate	MIC (µg/ml)		blag	DXA-like			ISAba		ISAba1 upstream	ISAba3 upstream
	IPM	MEM	bla _{OXA23-} like	bla _{OXA24-} like	bla _{OXA51-} like	bla _{OXA58-} like	ISAba1	ISAba2	ISAba3	bla _{OXA23-like}	bla _{OXA58-like}
A291	256	64	+	-	+	-	+	-	-	+	-
A292	128	64	+	-	+	-	+	-	-	+	-
A293	2	0.25	+	-	+	-	+	+	-	-	-
A294	256	64	+	-	+	-	+	-	-	+	-
A295	4	1	+	-	+	-	+	-	-	-	-
A296	256	32	+	-	+	-	+	-	-	+	-
A297	256	32	+	-	+	-	+	-	-	+	-
A299	32	16	+	-	+	-	+	-	-	+	-
A300	256	64	+	-	+	-	+	-	-	+	-

IPM, imipenem ; MEM, meropenem; +, positive ; -, negative

APPENDIX F

NUCLEOTIDE SEQUENCES ALIGNMENT OF SELECTED ISOLATES

1. 15 A. baumannii isolates with bla_{OXA-23}

	1												130
OXA-23	ATGAATAAAT	ATTTTACTTG	CTATGTGGTT	GCTTCTCTTT	TTCTTTCTGG	TTGTACGGTT	CAGCATAATT	TAATAAATGA	AACCCCGAGT	CAGATTGTTC	AAGGACATAA	TCAGGTGATT	CATCAATACT
A98													
A300													
A299													
A341													
A297													
A294													
A292													
A259													
A258													
A254													
A253													
A252													
A251													
A232													
A200													
Consensus													

	131												260
OXA-23	TTGATGAAAA	AAACACCTCA	GGTGTGCTGG	TTATTCAAAC	AGATAAAAAA	ATTAATCTAT	ATGGTAATGC	TCTAAGCCGC	GCAAATACAG	AATATGTGCC	AGCCTCTACA	TTTAAAATGT	TGAATGCCCT
A98													
A300													
A299													
A341													
A297													
A294													
A292													
A259													
A258													
A254													
A253													
A252													
A251													
A232													
A200													
Consensus													
	261												390
OXA-23	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	ТААТGАААТА	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A258 A253 A253 A252	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253 A252 A251	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253 A252 A251 A251 A232	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253 A252 A251 A252 A251 A232 A200	261 GATCGGATTG	GAGAACCAGA	AAACGGATAT	TAATGAAATA	TTTAAATGGA	AGGGCGAGAA	AAGGTCATTT	ACCGCTTGGG	AAAAAGACAT	GACACTAGGA	GAAGCCATGA	AGCTTTCTGC	390 AGTCCCAGTC

	391												520
OXA-23	TATCAGGAAC	TTGCGCGACG	TATCGGTCTT	GATCTCATGC	AAAAAGAAGT	AAAACGTATT	GGTTTCGGTA	ATGCTGAAAT	TGGACAGCAG	GTTGATAATT	TCTGGTTGGT	AGGACCATTA	AAGGTTACGC
A98													
A300													
A299													
A341													
A297													
A294													
A292													
A259													
A258													
A254													
A253													
A252													
A251													
A232													
A200													
Consensus													
	521												650
OXA-23	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253 A253 A252	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253 A252 A251	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253 A252 A251 A251 A232	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC
OXA-23 A98 A300 A299 A341 A297 A294 A292 A259 A258 A254 A253 A252 A251 A252 A251 A232 A200	521 CTATTCAAGA	GGTAGAGTTT	GTTTCCCAAT	TAGCACATAC	ACAGCTTCCA	TTTAGTGAAA	AAGTGCAGGC	TAATGTAAAA	AATATGCTTC	TTTTAGAAGA	GAGTAATGGC	TACAAAATTT	650 TTGGAAAGAC

	651												780
OXA-23	TGGTTGGGCA	ATGGATATAA	AACCACAAGT	GGGCTGGTTG	ACCGGCTGGG	TTGAGCAGCC	AGATGGAAAA	ATTGTCGCTT	TTGCATTAAA	TATGGAAATG	CGGTCAGAAA	TGCCGGCATC	TATACGTAAT
A98													
A300													
A299													
A341													
A297													
A294													
A292													
A259													
A258													
A254													
A253													
A252													
A251													
A232													
A200													
Consensus													

	781			8	822
OXA-23	GAATTATTGA	TGAAATCATT	AAAACAGCTG	AATATTATTT	AA
A98					
A300					
A299					
A341					
A297					
A294					
A292					
A259					
A258					
A254					
A253					
A252					
A251					
A232					
A200					
onsensus					

2. 12 A. baumannii isolates with bla_{OXA-51} group

2.1 7 A. baumannii isolates with bla_{OXA-66}

	1												130
OXA-66	ATGAACATTA	AAGCACTCTT	ACTTATAACA	AGCGCTATTT	TTATTTCAGC	CTGCTCACCT	TATATAGTGA	CTGCTAATCC	AAATCACAGC	GCTTCAAAAT	CTGATGTAAA	AGCAGAGAAA	ATTAAAAATT
A251													
A300													
A259													
A258													
A254													
A253													
A252													
Consensus													
	131												260
OXA-66	TATTTAACGA	AGCACACACT	ACGGGTGTTT	TAGTTATCCA	ACAAGGCCAA	ACTCAACAAA	GCTATGGTAA	TGATCTTGCT	CGTGCTTCGA	CCGAGTATGT	ACCIGCITCG	ACCITCAAAA	TGCTTAATGC
A251	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A300	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A259		• • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •		• • • • • • • • • • •	• • • • • • • • • • • •
A258													
A254													
A255													
Conconque													
Consensus													
	261												390
OXA-66	TTTGATCGGC	CTTGAGCACC	ATAAGGCAAC	CACCACAGAA	GTATTTAAGT	GGGATGGTAA	AAAAAGGTTA	TTCCCAGAAT	GGGAAAAGGA	CATGACCCTA	GGCGATGCCA	TGAAAGCTTC	CGCTATTCCA
A251													
A300													
A259													
A258													
A254													
A253													
A252													
Consensus													

	391												520
OXA-66	GTTTATCAAG	ATTTAGCTCG	TCGTATTGGA	CTTGAGCTCA	TGTCTAAGGA	AGTGAAGCGT	GTTGGTTATG	GCAATGCAGA	TATCGGTACC	CAAGTCGATA	ATTTTTGGCT	GGTGGGTCCT	ТТААААТТА
A251													
A300													
A259													
A258													
A254													
A253													
A252													
Consensus													
	521												650
OXA-66	CTCCTCAGCA	AGAGGCACAG	TTTGCTTACA	AGCTAGCTAA	TAAAACGCTT	CCATTTAGCC	AAAAAGTCCA	AGATGAAGTG	CAATCCATGC	TATTCATAGA	AGAAAAGAAT	GGAAACAAAA	TATACGCAAA
A251													
A300													
A259													
A258													
A254													
A253													
A255													
Conconque													
consensus													
	651												700
OVA CC	N A CTROCTTROC	CONTROCATO		ACTACCOTCC		COURTOWING		3 3 T 3 T T T T	aammamaaam		ATCAAAAA AC	CAATACCTAC	
0AA-00	AAGIGGIIGG	GGAIGGGAIG	IAAACCCACA	AGIAGGCIGG	TIAACIGGAI	GGGIIGIICA	GCCICAAGGG	AATATIGIAG	CGITCICCCI	IAACIIAGAA	AIGAAAAAAG	GAATACCIAG	CICIGIICOA
AZ51													
A300													
A259													
A258		• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	
A254	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A253	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A252	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •
Consensus	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •
	781				825								
OXA-66	AAAGAGATTA	CITATAAAAG	C'I'TAGAACAA	TTAGGTATTT	TATAG								
A251													
A300													
A259													
7 2 5 9													

A252

Consensus

2.2 4 A. baumannii isolates with bla_{OXA-65}

	1												130
OXA-65	ATGAACATTA	AAGCACTCTT	ACTTATAACA	AGCGCTATTT	TTATTTCAGC	CTGCTCACCT	TATATAGTGA	CTGCTAATCC	AAATCACAGT	GCTTCAAAAT	CTGATGAAAA	AGCAGAGAAA	ATTAAAAATT
OXA-98									C				
A200									C				
A341									C				
A232									C				
Consensus									C				
	131												260
OXA-65	TATTTAACGA	AGCACACACT	ACGGGTGTTT	TAGTTATCCA	ACAAGGCCAA	ACTCAACAAA	GCTATGGTAA	TGATCTTGCT	CGTGCTTCGA	CCGAGTATGT	ACCTGCTTCG	ACCTTCAAAA	TGCTTAATGC
OXA-98				• • • • • • • • • • •				• • • • • • • • • • •			• • • • • • • • • • •		
A200	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A341	•••••	•••••	•••••	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •
A232	•••••	•••••	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	•••••
Consensus	•••••	•••••	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	•••••
	0.61												200
0117 65	261			~~~~~									390
OXA-65	TTTGATCGGC	CITGAGCACC	ATAAGGCAAC	CACCACAGAA	GTATTTAAGT	GGGATGGTAA	AAAAAGG1"I'A	TTCCCAGAAT	GGGAAAAGGA	CATGACCCTA	GGCGATGCCA	TGAAAGCTTC	CGCTATTCCA
0XA-98													
A200													
A341													
Conconque													
Consensus													
	391												520
OXA-65	GTTTATCAAG	ATTTAGCTCG	TCGTATTGGA	CTTGAGCTCA	TGTCTAAGGA	AGTGAAGCGT	GTTGGTTATG	GCAATGCAGA	TATCGGTACC	CAAGTCGATA	ATTTTTGGCT	GGTGGGTCCT	ТТААААТТА
0XA-98													
A200													
A341													
A232													
Consensus													
	521												650
OXA-65	CTCCTCAGCA	AGAGGCACAG	TTTGCTTACA	AGCTAGCTAA	TAAAACGCTT	CCATTTAGCC	AAAAAGTCCA	AGATGAAGTG	CAATCCATGC	TATTCATAGA	AGAAAAGAAT	GGAAACAAAA	TATACGCAAA
OXA-98												T	
A200												T	
A341												T	
A232												T	
Consensus												t	

	651												780
OXA-65	AAGTGGTTGG	GGATGGGATG	TAAACCCACA	AGTAGGCTGG	TTAACTGGAT	GGGTTGTTCA	GCCTCAAGGG	AATATTGTAG	CGTTCTCCCT	TAACTTAGAA	ATGAAAAAAG	GAATACCTAG	CTCTGTTCGA
OXA-98		G											
A200		G											
A341		G											
A232		G											
Consensus		g											
	781				825								
OXA-65	AAAGAGATTA	CTTATAAAAG	TTTAGAACAA	TTAGGTATTT	TATAG								
OXA-98													
A200													
A341													

A232 Consensus

2.3 1 A. baumannii isolates with bla_{OXA-69}

	1												130
OXA-69	ATGAACATTA	AAGCACTCTT	ACTTATAACA	AGCGCTATTT	TTATTTCAGC	CTGCTCACCT	TATATAGTGA	CTGCTAATCC	AAATCACAGT	GCTTCAAAAT	CTGATGACAA	AGCAGAGAAA	ATTAAAAATT
A299													
Consensus													
0117 60	131							manmaam	aamaammaaa				260
UXA-69	IAIIIAACGA	AGCACACACI	ACGGGIGIII	IAGITATCCA	ICAAGGICAA	ACICAACAAA	GCIAIGGIAA	IGAICIIGCI	CGIGCIICGA	CCGAGIAIGI	ACCIGCIICG	ACCIICAAAA	IGCIIAAIGC
Congengus													
combenibub													
	261												390
OXA-69	TTTGATCGGC	CTTGAGCACC	ATAAGGCAAC	CACCACAGAA	GTATTTAAAT	GGGATGGGGA	AAAAAGGCTA	TTCCCAGAAT	GGGAAAAGAA	CATGACCCTA	GGCGATGCTA	TGAAAGCTTC	CGCTATTCCG
A299													
Consensus													
	391												520
OXA-69	GTTTATCAAG	ATTTAGCTCG	TCGTATTGGA	CTTGAGCTCA	TGTCTAAGGA	AGTGAAGCGT	GTTGGTTATG	GCAATGCAGA	TATCGGTACC	CAAGTCGATA	ATTTTTGGCT	GGTGGGTCCT	СТАААААТТА
A299 Conconque													
consensus													
	521												650
OXA-69	CTCCTCAGCA	AGAGGCACAG	TTTGCTTACA	AGCTAGCTAA	TAAAACGCTT	CCATTTAGCC	AAAAAGTCCA	AGATGAAGTG	CAATCCATGC	TATTCATAGA	AGAAAAGAAT	GGAAATAAAA	TATACGCAAA
A299													
Consensus													
	651												780
OXA-69	AAGTGGTTGG	GGATGGGATG	TAAACCCACA	AGTAGGCTGG	TTAACTGGAT	GGGTTGTTCA	GCCTCAAGGG	AATATTGTAG	CGTTCTCCCT	TAACTTAGAA	ATGAAAAAAG	GAATACCTAG	CTCTGTTCGA
A299		• • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • • •	• • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •
consensus													
	781				825								
OXA-69	AAAGAGATTA	CTTATAAAAG	TTTAGAACAA	TTAGGTATTT	TATAG								
A299													

Consensus

3. 4 A. baumannii isolates with bla_{OXA-58}

	1												130
OXA-58	ATGAAATTAT	TAAAAATATT	GAGTTTAGTT	TGCTTAAGCA	TAAGTATTGG	GGCTTGTGCT	GAGCATAGTA	TGAGTCGAGC	AAAAACAAGT	ACAATTCCAC	AAGTGAATAA	CTCAATCATC	GATCAGAATG
OXA-98													
0XA-341													
0XA-232													
OXA-200													
Consensus													
	131												260
OXA-58	TTCAAGCGCT	TTTTAATGAA	ATCTCAGCTG	ATGCTGTGTT	TGTCACATAT	GATGGTCAAA	ATATTAAAAA	ATATGGCACG	CATTTAGACC	GAGCAAAAAC	AGCTTATATT	CCTGCATCTA	CATTTAAAAT
OXA-98													
0XA-341													
0XA-232													
OXA-200													
Consensus													
	261												390
OXA-58	TGCCAATGCA	CTAATTGGTT	TAGAAAATCA	TAAAGCAACA	TCTACAGAAA	TATTTAAGTG	GGATGGAAAG	CCACGTTTTT	TTAAAGCATG	GGACAAAGAT	TTTACTTTGG	GCGAAGCCAT	GCAAGCATCT
OXA-98													
0XA-341													
0XA-232													
OXA-200													
Consensus													
	391												520
OXA-58	ACAGTGCCTG	TATATCAAGA	ATTGGCACGT	CGTATTGGTC	CAAGCTTAAT	GCAAAGTGAA	TTGCAACGTA	TTGGTTATGG	CAATATGCAA	ATAGGCACGG	AAGTTGATCA	ATTTTGGTTG	AAAGGGCCTT
OXA-98	•••••	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •
0XA-341	•••••	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •
0XA-232	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
OXA-200	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
Consensus	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
	501												650
	521								~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				650
OXA-58	TGACAATTAC	ACCTATACAA	GAAGTAAAGT	TTGTGTATGA	TTTTAGCCCAA	GGGCAATTGC	CILLILLAAACC	TGAAGTTCAG	CAACAAGTGA	AAGAGATGTT	GTATGTAGAG	CGCAGAGGGG	AGAATCGTCT
OXA-98		•••••	• • • • • • • • • • •	• • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
UXA-341		•••••	• • • • • • • • • • •	• • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
UXA-232	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	•••••
OXA-200	• • • • • • • • • • •	• • • • • • • • • • •		• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
Consensus													

	651												780
OXA-58	ATATGCTAAA	AGTGGCTGGG	GAATGGCTGT	AGACCCGCAA	GTGGGTTGGT	ATGTGGGTTT	TGTTGAAAAG	GCAGATGGGC	AAGTGGTGGC	ATTTGCTTTA	AATATGCAAA	TGAAAGCTGG	TGATGATATT
OXA-98													
0XA-341													
0XA-232													
OXA-200													
Consensus													
	781						843						
OXA-58	GCTCTACGTA	AACAATTGTC	TTTAGATGTG	CTAGATAAGT	TGGGTGTTTT	TCATTATTTA	TAA						
OXA-98													
0XA-341													
0XA-232													
OXA-200													

Consensus

5. 5 A. baumannii isolates with ISAba1 upstream region of bla_{OXA-23} gene

	1691												1820
EF127491	TTGTTTAAGA	TAAGATATAA	CTCATTGAGA	TGTGTCATAG	TATTCGTCGT	TAGAAAACAA	TTATTATGAC	ATTATTTCAA	TGAGTTATCT	ATTTTTGTCG	TGTACAGAGC	TCTTTTTTAT	TTTCTATTGA
A252													
A254													
A253													
A251													
A285													
Consensus													
	1821												1950
EF127491	TCTGGTGTTT	AAA <mark>ATG</mark> AATA	AATATTTTAC	TTGCTATGTG	GTTGCTTCTC	TTTTTTCTTTC	TGGTTGTACG	GTTCAGCATA	ATTTAATAAA	TGAAACCCCG	AGTCAGATTG	TTCAAGGACA	TAATCAGGTG
A252													
A254		• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A253		• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A251		•••••	•••••	• • • • • • • • • • • •	•••••	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • •	•••••	•••••	•••••
A285	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	•••••
Consensus	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	•••••
	1051												2000
FF127401	1951	አርሞሞሞር አጥር አ	777777	TOLOCTOTO	TOOTTATTON	770777777	<u>አአአአምሞአአምሮ</u>	TATATCOTA	TCOTOTA ACC	CCCCCAAATA	CACAATATCT	COCACCOTOT	2080
EF127491	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A281	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus EF127491	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus EF127491 A252	1951 ATTCATCAAT 	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus EF127491 A252 A254	1951 ATTCATCAAT 	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	TATATGGTAA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus EF127491 A252 A254 A253	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	TCAGGTGTGC	TGGTTATTCA	AACAGATAAA	AAAATTAATC	GAAAAGGTCA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus EF127491 A252 A254 A253 A251	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	AGAAAACGGA	TGGTTATTCA	AACAGATAAA	GGAAGGGCGA	GAAAAGGTCA	TGCTCTAAGC	CGCGCAAATA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA
EF127491 A252 A254 A253 A251 A285 Consensus EF127491 A252 A254 A253 A251 A285	1951 ATTCATCAAT	ACTTTGATGA	AAAAAACACC	AGAAAACGGA	TATTAATGAA	AACAGATAAA	AAAATTAATC	GAAAAGGTCA	TGCTCTAAGC	GGGAAAAAGA	CAGAATATGT	GCCAGCCTCT	2080 ACATTTAAAA

6. 4 A. baumannii isolates with ISAba3 upstream region of bla_{OXA-58} gene

	131												260
DQ987830	AATCTCGTTT	ACCCCAAACA	TAAGCAACAA	TTTCACCTGT	TTCTCGATGA	TAGGCGTAAA	TAAGCCATTG	TTTATTCTTT	TTATTTCCAA	CAAAATTCCA	GAACTCATCT	ACTTCGAGAG	ATTCATAATG
A98					•••••	•••••	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •
A200					• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A232					• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	•••••		• • • • • • • • • • •		•••••	• • • • • • • • • • • •
A341						• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •		• • • • • • • • • • • •		•••••	• • • • • • • • • • • •
Consensus													
	261												390
D0987830	ACTTTGCTGA	GGCTGAATTT	CATAGGTTGA	TTCAGTTAAA	GTACGTAAAA	CTTTACCGAT	ACTGATGCGC	TCAACTTCAG	CAATATCTCG	TATACCGCTG	CCTCTGACCA	TCAACTGTAA	TATTTTACGA
~ A98													
A200													
A232													
A341													
Consensus													
	391												520
DQ987830	GTAATACCTG	ACTTACATCC	TAGATAGCTC	AGTGCATGAT	CACCAATAAA	CTGACGTTTA	CAGTCTTTGC	ACTGATAGTT	TTGTTTCCCA	TCTACTTTGA	TACCATTTTT	CTTTATACTA	TCACTGAGGC
A98	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A200	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •
A232	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A341		• • • • • • • • • • • •	• • • • • • • • • • • •			• • • • • • • • • • • •		• • • • • • • • • • •		• • • • • • • • • • • •		•••••	• • • • • • • • • • • •
Consensus													
	521												650
DO987830	AGGTTGGACA	TTTGATTGCT	AGAGTTATTT	GCATTTCTCT	ATTTTATCAA	AATCCAATCG	GCTTTTTCTT	CAGCATACTT	TTTGAAACAC	TACCAAATTT	TAAAGTTGTA	TATCATGAAA	ТТАТТААААА
A98													
A200													
A232													
A341													
Consensus													
	651												780
DQ987830	TATTGAGTTT	AGTTTGCTTA	AGCATAAGTA	TTGGGGGCTTG	TGCTGAGCAT	AGTATGAGTC	GAGCAAAAAC	AAGTACAATT	CCACAAGTGA	ATAACTCAAT	CATCGATCAG	AATGTTCAAG	CGCTTTTTAA
A98		•••••	•••••	• • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • • • • • •	•••••	•••••	•••••	•••••
A200	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •
A232	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • •		•••••	• • • • • • • • • • • •
A341													
CONSCIENCS													

APPENDIX G

DNA CODON

One- and Three-Letter symbols for the amino acids

А	Ala	Alanine
В	Asx	Asparagine or aspartic acid
С	Cys	Cysteine
D	Asp	Aspartic acid
Е	Glu	Glutamic acid
F	Phe	Phenylalanine
G	Gly	Glycine
Н	His	Histidine
Ι	Ile	Isoleucine
Κ	Lys	Lysine
L	Leu	Leucine
М	Met	Methionine
Ν	Asn	Asparagine
Р	Pro	Proline
Q	Gln	Glutamine
R	Arg	Arginine
S	Ser	Serine
Т	Thr	Threonine
V	Val	Valine
W	Trp	Trytophan
Y	Tyr	Tyrosine
Ζ	Glx	Gln or Glu

First position (5'end)	Second position				Third position (3' end)
	U	С	Α	G	
U	UUU Phe	UCU Ser	UAU Tyr	UGU Cys	U
	UUU Phe	UCU Ser	UAC Tyr	UGC Cys	С
	UUA Leu	UCA Ser	UAA Stop	UGA Stop	А
	UUG Leu	UCG Ser	UAG Stop	UGG Trp	G
С	CUU Leu	CCU Pro	CAU His	CGU Arg	U
	CUC Leu	CCC Pro	CAC His	CGC Arg	С
	CUA Leu	CCA Pro	CAA Gln	CGA Arg	А
	CUG Leu	CCG Pro	CAG Gln	CGG Arg	G
	AUU Ile	ACU Thr	AAU Asn	AGU Ser	U
Α	AUC Ile	ACC Thr	AAC Asn	AGC Ser	С
	AUA Ile	ACA Thr	AAA Lys	AGA Arg	А
	AUG Met ^a	ACG Thr	AAG Lys	AGG Arg	G
	GUU Val	GCU Ala	GAU Asp	GGU Gly	U
G	GUC Val	GCC Ala	GAC Asp	GGC Gly	С
	GUA Val	GCA Ala	GAA Glu	GGA Gly	А
	GUG Val	GCG Ala	GAG Glu	GGG Gly	G

^aAUG forms part of the initiation signal as well as coding for internal Met residues
APPENDIX H

Results of MIC with CCCP inhibited AdeABC efflux pump of 453 *A. baumannii* isolates

Isolate	Μ	IC (µg/ml)	MIC (µg/ml)		
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP	
Ab1	512	512	256	256	
Ab2	256	256	128	128	
Ab3	256	256	64	32	
Ab4	256	256	64	64	
Ab6	256	128	32	32	
Ab7	1	1	1	1	
Ab8	256	256	64	32	
Ab9	128	128	64	32	
Ab10	256	128	64	32	
Ab11	256	256	128	64	
Ab13	256	256	128	64	
Ab14	256	256	64	64	
Ab16	256	256	64	32	
Ab17	128	128	32	32	
Ab18	2	2	1	1	
Ab19	2	2	0.25	0.25	
Ab20	256	256	32	32	
Ab21	256	256	64	64	
Ab22	256	256	64	64	
Ab23	256	256	128	128	
Ab24	2	2	1	1	
Ab26	128	128	32	16	
Ab27	256	256	64	64	
Ab28	4	4	2	2	
Ab29	1	1	0.5	0.5	
Ab30	256	256	64	64	
Ab31	128	128	64	64	
Ab32	128	128	64	64	
Ab33	4	4	2	2	
Ab34	1	1	0.5	0.5	
Ab35	64	64	32	32	
Ab36	128	128	16	16	
Ab37	256	256	64	64	
Ab38	256	256	64	64	
Ab39	1	1	1	1	

Isolate	M	MIC (µg/ml)		MIC (µg/ml)	
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP	
Ab40	256	256	64	64	
Ab41	128	128	32	32	
Ab42	1	1	0.5	0.5	
Ab43	256	256	32	32	
Ab44	128	128	32	32	
Ab45	256	256	64	64	
Ab46	256	256	64	64	
Ab47	256	256	128	64	
Ab48	256	256	64	64	
Ab49	256	256	64	64	
Ab50	256	256	128	64	
Ab52	256	256	32	32	
Ab53	256	256	64	64	
Ab54	256	128	64	32	
Ab55	256	256	64	64	
Ab56	256	256	64	32	
Ab57	1	1	0.5	0.5	
Ab58	256	256	64	32	
Ab59	512	512	128	128	
Ab60	128	128	32	16	
Ab61	128	128	32	16	
Ab62	256	256	64	64	
Ab63	128	128	32	32	
Ab64	64	64	32	32	
Ab65	1	1	0.25	0.25	
Ab66	64	64	32	32	
Ab67	64	64	32	16	
Ab68	128	128	64	64	
Ab69	64	64	32	32	
Ab70	64	64	16	16	
Ab72	1	1	0.25	0.25	
Ab73	1	1	0.5	0.5	
Ab74	128	128	64	64	
Ab75	256	256	128	64	
Ab76	128	128	32	32	
Ab78	128	128	64	32	
Ab79	128	64	32	32	
Ab81	64	64	32	16	
Ab82	64	64	32	32	
Ab83	256	256	64	64	
Ab84	64	64	32	32	
Ab85	4	4	1	1	
Ab86	128	128	64	64	
Ab87	128	128	64	64	

Isolate	MIC (µg/ml)		MIC (µg/ml)	
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP
Ab88	128	128	32	32
Ab89	1	1	1	1
Ab90	32	32	16	16
Ab91	256	256	256	256
Ab92	1	1	0.5	0.5
Ab93	64	64	16	16
Ab94	128	128	64	64
Ab95	128	64	64	32
Ab96	128	64	64	32
Ab97	64	32	32	16
Ab98	32	32	16	16
Ab100	64	64	32	32
A2	64	64	32	32
A3	128	128	32	32
A5	128	128	64	32
A6	128	128	64	32
A7	64	64	32	32
A8	2	2	1	1
A9	256	256	64	64
A10	128	128	32	32
A11	64	64	32	32
A12	4	4	2	2
A13	128	128	64	32
A15	128	128	64	64
A16	128	128	64	64
A17	256	256	64	64
A18	64	64	32	32
A19	1	1	0.25	0.25
A20	128	64	32	32
A21	2	2	0.5	0.5
A22	256	128	64	64
A24	128	64	64	32
A26	128	128	64	32
A27	128	128	32	32
Δ28	1	1	0.5	0.5
A 29	64	64	16	16
A30	64	64	32	32
A 21	32	22	16	16
A31 A32	128	128	6/	22
A32	120 64	120 64	16	16
A33	120	120	10	
A34	128	128	04	04
A33	128	128	04	04
A36	128	128	64	64
A38	64	64	32	32
A39	64	64	64	32

Isolate MIC (µg/ml) MIC (µg		IIC (µg/ml)		
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP
A40	64	64	32	32
A42	64	64	32	16
A43	64	64	32	32
A44	256	256	64	64
A45	128	128	64	64
A46	64	64	32	32
A47	64	64	32	32
A48	128	128	64	32
A50	64	32	32	32
A51	128	128	32	32
A52	128	64	64	64
A53	64	32	16	16
A54	64	64	32	32
A55	64	32	32	16
A56	128	128	32	32
A57	64	64	32	32
A58	64	64	32	16
A59	64	32	16	16
A60	128	64	32	32
A61	256	256	64	64
A63	128	128	64	64
A64	128	128	32	32
A65	128	64	64	64
A66	256	128	32	32
A67	64	64	32	32
A68	64	64	16	16
A69	256	256	256	256
A71	256	256	256	256
A72	256	256	64	64
A73	128	128	64	64
A74	128	128	64	64
A75	1	1	0.5	0.5
A76	256	256	16	16
A78	128	128	64	64
A79	128	64	32	32
A80	128	128	64	32
A81	256	256	64	64
A82	128	128	64	64
A83	64	64	32	32
A84	128	128	32	32
A85	128	128	64	32
A86	128	128	32	32
A87	64	64	32	32
A88	64	32	16	16

Isolate MIC (µg/ml) MIC (µ		fIC (µg/ml)		
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP
A89	32	32	16	16
A90	128	128	64	64
A91	64	32	32	32
A92	64	64	32	32
A94	64	32	16	16
A95	128	128	64	64
A96	2	2	2	2
A97	128	128	64	64
A98	64	64	16	16
A100	128	128	64	64
A101	64	64	16	16
A102	256	256	128	64
A103	128	128	32	16
A104	64	64	32	32
A105	128	64	32	16
A106	256	128	128	64
A107	256	256	128	128
A110	256	128	128	64
A111	128	64	32	32
A112	128	128	32	32
A113	0.5	0.5	0.25	0.25
A114	128	128	64	32
A115	128	64	32	32
A116	128	64	32	32
A117	0.5	0.5	0.5	0.5
A118	128	64	32	32
A119	256	256	128	128
A121	256	128	128	64
A122	256	256	64	64
A123	256	128	128	128
A124	256	256	128	128
A125	64	64	16	16
A126	128	128	64	64
A127	128	128	64	64
A128	128	128	64	64
A129	128	128	64	32
A130	128	128	64	64
A132	128	128	64	64
A133	128	128	64	64
A134	128	128	64	64
A135	128	128	64	64
A137	256	256	64	64
A138	256	128	32	32
A139	128	64	32	32

Isolate	M	MIC (µg/ml)		IIC (µg/ml)
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP
A140	128	64	32	32
A141	128	64	32	32
A142	128	128	64	64
A143	256	128	64	64
A144	256	256	128	128
A145	256	256	64	64
A146	64	64	32	32
A147	128	64	32	32
A148	128	128	32	32
A149	128	128	32	32
A150	128	128	64	32
A151	128	128	32	32
A152	64	64	16	16
A153	64	64	32	16
A154	64	64	16	16
A155	256	256	128	64
A156	256	128	32	32
A157	256	256	64	64
A159	256	256	64	64
A162	256	256	64	64
A163	256	128	128	64
A164	256	128	64	64
A165	64	64	32	32
A166	128	128	64	64
A167	32	32	16	16
A168	64	32	32	32
A169	128	128	32	16
A170	256	256	64	64
A171	256	256	128	128
A173	64	64	32	32
A174	256	128	64	64
A175	256	256	64	64
A176	128	128	64	64
A177	64	64	32	32
A178	256	256	64	64
A179	256	256	64	64
A180	64	32	16	16
A182	128	128	64	64
A183	128	128	64	64
A184	256	256	128	128
A185	128	128	64	64
A186	256	256	64	64
A187	256	256	128	128
A188	128	128	64	64

Isolate MIC (µg/ml) MIC (µg/		IIC (µg/ml)		
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP
A189	256	256	128	128
A190	128	128	64	64
A191	128	128	32	32
A192	256	128	128	128
A193	256	256	64	64
A195	32	32	16	16
A196	128	128	64	64
A197	128	128	64	64
A198	64	64	16	16
A199	1	1	0.5	0.5
A200	64	64	16	16
A201	256	256	64	64
A202	256	128	64	64
A203	64	64	16	16
A204	4	4	0.25	0.25
A205	128	128	64	64
A206	128	128	64	32
A207	128	128	64	32
A208	32	32	16	16
A209	0.5	0.5	0.25	0.25
A211	128	128	64	64
A212	128	128	32	32
A213	1	1	0.5	0.5
A214	256	256	64	64
A215	256	256	32	32
A216	1	1	0.5	0.5
A217	128	128	64	64
A218	128	128	64	32
A219	256	256	128	128
A220	128	128	64	64
A221	128	64	32	32
A222	128	128	64	64
A223	128	128	64	32
A224	256	128	64	64
A225	128	128	64	32
A226	1	1	0.5	0.5
A227	128	128	64	32
A228	128	128	64	64
A229	256	256	64	64
A230	128	128	64	32
A231	0.5	0.5	0.25	0.25
A232	64	64	16	16
A233	64	64	32	32
A234	128	128	64	64

Isolate MIC (µg		C (μg/ml) MIC (μg/ml)		IIC (µg/ml)
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP
A235	64	64	32	32
A237	128	128	64	64
A238	64	64	32	32
A239	64	64	32	32
A240	128	128	64	64
A241	256	128	64	32
A242	64	64	32	32
A243	128	128	64	64
A245	64	64	32	32
A246	128	128	64	64
A247	256	256	64	32
A248	64	64	32	32
A249	128	128	64	32
A250	128	128	64	64
A251	256	256	128	128
A252	128	128	64	64
A253	64	64	32	16
A254	128	128	64	64
A255	64	64	32	16
A256	64	64	32	16
A257	64	32	32	16
A258	128	128	64	64
A259	128	128	64	64
A260	0.5	0.5	0.5	0.25
A261	1	1	0.25	0.25
A262	256	128	64	64
A263	128	128	64	64
A264	1	1	0.5	0.5
A265	128	128	64	64
A266	64	64	32	16
A268	128	64	32	16
A270	2	2	0.5	0.5
A272	64	64	32	32
A274	128	128	64	64
A275	128	128	32	32
A276	128	128	64	64
A277	128	128	64	32
A279	128	64	64	64
A280	128	64	16	16
A281	4	4	1	1
A282	2	2	0.5	0.5
A283	4	4	0.5	0.5
A284	128	128	64	64
A285	128	64	64	32

Isolate	MIC (µg/ml)		MIC (µg/ml)	
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP
A286	64	64	16	16
A287	128	128	64	32
A288	64	64	16	16
A289	2	2	1	1
A290	32	32	16	16
A291	128	128	64	32
A292	128	128	64	32
A293	2	2	0.5	0.5
A294	128	128	64	32
A295	4	4	1	1
A296	64	64	16	16
A297	64	64	32	32
A299	16	16	16	16
A300	256	128	64	64
A301	64	64	32	16
A302	0.5	0.5	0.5	0.5
A303	256	256	128	64
A304	128	128	32	32
A305	128	128	32	32
A306	2	2	1	1
A310	128	64	32	32
A311	1	1	0.5	0.5
A312	128	128	64	64
A313	1	1	0.5	0.5
A314	128	128	64	64
A315	64	64	16	16
A317	2	2	0.5	0.5
A318	64	64	16	16
A319	0.5	0.5	0.5	0.5
A320	128	128	32	32
A321	128	64	64	64
A322	64	64	32	32
A323	128	128	64	32
A324	128	128	64	64
A325	64	64	16	16
A326	128	128	32	32
A327	128	128	32	32
A328	64	64	32	32
A329	256	256	64	32
A330	128	128	64	64
A331	128	64	32	32
A332	128	128	32	32
A333	64	64	32	32
A334	128	128	64	64

Isolate MIC (µg/ml) MIC (µg/		IIC (µg/ml)		
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP
A336	128	128	64	64
A337	64	64	32	32
A338	128	128	64	64
A339	64	64	32	16
A340	128	64	32	32
A341	64	64	16	16
A342	128	128	64	64
A343	128	128	64	64
A344	128	128	32	32
A345	64	64	32	32
A346	64	64	32	32
A347	128	128	64	32
A348	128	64	64	64
A349	64	64	32	32
A350	128	128	64	64
A351	256	256	64	64
A352	256	256	64	32
A353	1	1	0.25	0.25
A354	256	256	32	32
A355	64	64	32	16
A356	64	64	32	16
A357	256	256	64	32
A358	256	256	64	32
A359	512	256	128	64
A360	256	256	64	32
A361	64	64	16	16
A362	256	256	128	128
A364	128	128	32	16
A365	128	128	32	32
A366	128	128	32	16
A367	128	128	32	16
A368	128	128	32	16
A369	256	256	32	16
A370	64	64	32	16
A371	64	64	32	32
A372	64	64	32	16
A373	256	256	64	32
A374	256	256	64	64
A375	256	128	32	16
A376	64	64	16	16
A377	256	256	64	64
A378	1	0.5	0.25	0.25
A379	128	128	32	32
A380	256	256	64	64

Isolate	M	MIC (µg/ml)		MIC (µg/ml)	
	IPM	IPM +10 µM CCCP	MEM	MEM+10 µMCCCP	
A381	256	256	64	64	
A382	128	128	64	64	
A383	128	64	32	32	
A384	64	64	32	32	
A385	128	128	32	16	
A386	128	128	64	32	
A388	128	128	32	32	
A389	256	256	64	64	
A390	128	128	32	32	
A391	64	64	64	32	
A393	128	128	32	32	
A395	64	64	16	16	
A397	64	64	32	32	
A398	256	256	64	64	
A399	128	128	32	32	
A400	64	64	32	16	
A401	128	64	64	64	
A402	128	128	64	64	
A403	64	64	32	32	
A404	64	64	32	16	
A405	128	128	32	32	

IPM, imipenem; MEM, meropenem;

CCCP, carbonyl cyanide m-chlorophenylhydrazon

BIOGRAPHY

Miss Pantipa Samarnthai was born on September 5, 1976 in Petchaboon province, Thailand. She graduated with a Bachelor degree of Science (Medical Technology) from the Faculty of Allied Health Sciences, Chulalongkorn University in 1997. She has studied in the Master degree in the Inter-Department of Medical Microbiology, Faculty of Graduate School, Chulalongkorn University since 2007.