EFFECTS OF ORGANIC SOIL AMENDMENT ON HEAVY METALS FRACTIONATION OF TAILINGS: A CASE STUDY OF AKARA GOLD MINE, THAILAND

Miss Lalita Chunhacherdchai

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Environmental Management (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

ผลจากการเติมวัสดุปรับปรุงดินต่อสัดส่วนรูปแบบโลหะในกากแร่ กรณีศึกษาเหมืองทองอัครา, ประเทศไทย

นางสาวลลิตา ชุณหเชิดชัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาการจัดการสิ่งแวดล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2554 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	EFFECTS OF ORGANIC MATTER ON HEAVY
	METAL FRACTIONATIONS OF TAILINGS : A CASE
Ву	STUDY OF AKARA GOLD MINE, THAILAND Miss Lalita Chunhacherdchai
Field of study	Environmental Management
Thesis Advisor	Srilert Chotpantarat, Ph.D.
Thesis Co-advisor	Assistant Professor Chantra Tongcumpou, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

THESIS COMMITTEE

.....Chairperson (Assistant Professor Ekawan Luepromchai, Ph.D.)Thesis Advisor (Srilert Chotpantarat, Ph.D.)Thesis Co-advisor (Assistant Professor Chantra Tongcumpou, Ph.D.)Examiner (Benjaporn Boonchayaanant, Ph.D.)External Examiner (Associate Professor Wasant Pongsapich, Ph.D.) ลลิตา ชุณหเชิดชัย : ผลจากการเติมวัสคุปรับปรุงดินต่อสัดส่วนรูปแบบโลหะในกากแร่ กรณีศึกษา เหมืองทองอักรา, ประเทศไทย. (EFFECTS OF ORGANIC MATTER ON HEAVY METAL FRACTIONATIONS OF TAILINGS: A CASE STUDY OF AKARA GOLD MINE, THAILAND) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: อ.ดร. ศรีเลิศ โชดิพันธรัตน์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ.ดร. จันทรา ทองกำเภา, 152 หน้า.

งานวิจัยนี้มีจุดมุ่งหมายเพื่อศึกษาลักษณะรูปแบบของโลหะในกากแร่ (โกบอลต์, โครเมียม, ทองแดง, แมงกานีส, นิกเกิล, ตะกั่ว และ สังกะสี) และศึกษาการชะของโลหะของกากแร่ผสมกับกรดฮิวมิคซึ่งใช้เป็นวัสดุปรับปรุงดินในอัตราส่วนและเวลาที่แตกต่างกัน ซึ่งทำการเก็บ ตัวอย่างจำนวน 10 จุด จากพื้นที่ทิ้งกากแร่ในบริเวณเหมืองทองอัครา จังหวัดพิจิตร ประเทศไทย โดยนำกากแร่มาวิเคราะห์ด้วยวิธีการสกัดลำดับ ขั้น หรือ BCR Community Bureau of Reference ทั้งหมด 3 ขั้นตอนและการย่อยกากสุดท้ายด้วยกรดเข้มข้นโดยใช้เครื่องไมโครเวฟในรูป ปริมาณรวม โดยวิธีการย่อยด้วยกรดเข้มข้น (aqua regia) และในรูปแบบที่สามารถดูดซึมได้ โดยวิธีสกัดลำดับขั้นคือ ขั้นที่หนึ่ง สองและสาม (the Standards, Measurements and Testing Programme, SM&T) และวิเคราะห์หาปริมาณความเข้มข้นของโลหะต่างๆให้อยู่ในหน่วยมิลลิกรัม ต่อกิโลกรัมดิน โดยใช้เครื่อง Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES)

ผลการศึกษากากแร่พบว่า ที่การสกัดลำดับขั้นที่หนึ่ง (BCR1) มีร้อยละของการชะของโลหะเทียบกับค่าความเข้นข้นของการ ชะโลหะทุกลำดับขั้นของโลหะนั้นเรียงลำดับจากมากไปน้อยเป็นดังนี้ แมงกานีส โคบอลต์ นิกเกิล ทองแดง สังกะสี ตะกั่วและโครเมียม โดยมีค่า เท่ากับ 32.29% (622.91มก./กก.ของดิน) 8.88% (2.08มก./กก.ของดิน) 8.20% (7.68มก./กก.ของดิน) 8.11% (7.68มก./กก.ของดิน) 6.80% (16.10มก./กก.ของดิน) 3.85% (3.74มก./กก.ของดิน) และ 0.45% (0.55 มก./กก.ของดิน) ตามลำดับ และที่การสกัดลำดับขั้นที่สอง (BCR2) มีร้อย ละของการชะของโลหะเทียบกับค่าความเข้มข้นของการชะโลหะทุกลำดับขั้นของโลหะเรียงลำดับจากมากไปน้อยเป็นดังนี้ โคบอลต์ แมงกานีส ตะกั่ว นิกเกิล สังกะสี โครเมียมเละทองแดง โดยมีค่าเท่ากับ 51.90% (15.95มก./กก.ของดิน) 40.82% (787.47มก./กก.ของดิน) 34.91% (33.94มก./กก.ของดิน) 26.40% (6.71มก./กก.ของดิน) 22.62% (53.58มก./กก.ของดิน) 13.27% (16.46มก./กก.ของดิน) และ12.33% (11.67 มิลลิกรัมต่อกิโลกรัมดิน) ตามลำดับ เมื่อพิจารณาจากร้อยละการชะของธาตุที่ลำดับขั้นที่หนึ่งและสองรวมเรียงจากน้อยไปมากเป็นดังนี้ แมงกานีส โคบอลต์ ตะกั่ว นิกเกิล สังกะสี ทองแดงและโครเมียม ตามลำดับ

เมื่อนำกากแร่ดินผสมกับกรดฮิวมิกทำเป็นวัสดุปรับปรุงดินในอัตราส่วนและเวลาที่แตกต่างกัน โดยมีปริมาณเท่ากับ 5% 7% และ 10%ของปริมาณอินทรียวัตถุในดิน และนำไปบ่มทิ้งไว้นาน 1 7 15 และ 30 วัน ตามลำดับ ซึ่งในตัวอย่างกากแร่ มีพเอช เฉลี่ยเท่ากับ 8.25 และ กรดฮิวมิกมีปริมาณอินทรียวัตถุเท่ากับร้อยละ 74.59 เมื่อนำมาผสมให้ได้ปริมาณอินทรียวัตถุตามร้อยละข้างต้นและนำไปสึกษาผลของปริมาณ ของวัสดุปรับปรุงดินและเวลาที่แตกต่างกันพบว่าเมื่อนำผลไปวิเคราะห์กวามแปรปรวนแบบจำแนกทางเดียว (ONE-WAY ANOVA) และ การทดสอบ Post hoc โดยใช้เทกนิกวิธีกำลังสองน้อยที่สุด ที่อัตราส่วนของปริมาณสารอินทรีย์ในดินเท่ากับร้อยละ 10 นั้นจะทำให้โลหะที่ศึกษา ส่วนใหญ่มีการชะออกมาน้อยที่สุดและมีกวามแตกต่างอย่างมีนัยสำคัญเมื่อเทียบกับอัตราส่วนอื่นๆและกลุ่มกวบคุม และเมื่อนำผลทั้งหมดมา วิเคราะห์หากวามสัมพันธ์ระหว่างเวลาและสัดส่วนของวัสดุปรับปรุงดินที่แตกต่างกันด้วยการวิเกราะห์สมการถดถอยเชิงเส้นกิ่งล็อก โดย พิจารณาที่วิธีสกัดสองลำดับขั้นแรกเป็นหลัก พบว่าเมื่อมีการเพิ่มขึ้นของปริมาณอินทรียวัตถุที่ลำดับขั้นที่หนึ่ง (BCR1) อัตราการชะของ ทองแดง สังกะสี และตะกั่ว ลดลง และที่วิธีสกัดลำดับขั้นที่สอง (BCR2) อัตราการชะของทองแดง โดรเมียม และต่ำวัลดลง พิจารณาที่เงองปริมาณขึ้นที่หนึ่ง วิธีสกัดลำดับขั้นที่สอง (BCR2) พบว่าอิงาการขะของนิกเตรีง แต่หนึ่ง (BCR1) อัตราการละก่ว ลดลง และต่ว่ วิธีสกัดลำดับขั้นที่สอง (BCR2) พบว่าอิงราการชะของนิกเกิลลดลงโดยพิจารณาที่ก่าส้มประสิทธิ์

สาขาวิชา การจัดการสิ่งแวคล้อม	ลายมือชื่อนิสิต
ปีการศึกษา <u>255</u> 4	ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก
	ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม

5287562320 : MAJOR ENVIRONMENTAL MANAGEMENT

KEYWORDS: BCR SEQUENTIAL EXTRACTION / TAILINGS / ORGANIC SOIL AMENDMENT / HUMIC ACID / STATISTIC ANALYSIS

LALITA CHUNHACHERDCHAI: EFFECTS ON ORGANIC MATTER ON HEAVY METAL FRACTIONATIONS OF TAILINGS: A CASE STUDY OF AKARA GOLD MINE, THAILAND. ADVISOR: SRILERT CHOTPANTARAT, Ph.D., COADVISOR: ASST. PROF. CHANTRA TONGCUMPOU, Ph.D., 152 pp.

The purpose of this study was to investigate metal fractionations of mine tailings (i.e., Co, Cr, Cu, Mn, Ni, Pb and Zn) and study of metal leaching from mixtures of tailing and humic acid in different incubation periods and various organic matter ratios. Ten tailing samples were taken from tailings storage facilities of Akara gold mine in Phichit province. Samples were determined using the three-step modified BCR sequential extraction (i.e., BCR1, BCR2 and BCR3) and the additional step of strong acid digestion or aqua regia for residual fraction and analyzed all fractions by Inductively Couple Plasma-Optical Emission Spectrometer (ICP-OES) and reported their concentrations in the unit of mg/kg soil. Amount of metals in such tailings were showed in percentage of BCR1, derived from concentrations of each metal in BCR1 divided by those in all fractions, and were ranged in descending order as follows: Mn > Co > Ni > Cu > Zn > Pb > Cr, that were 32.29% (622.91 mg/kg soil), 8.88% (2.08 mg/kg soil), 8.20% (7.68 mg/kg soil), 8.11% (7.68 mg/kg soil), 6.80% (16.10 mg/kg soil) , 3.85% (3.74 mg/kg soil) and 0.45% (0.55 mg/kg soil), respectively. Percentage of metal in BCR 2 were ranged in descending order as follows: Co > Mn > Pb > Ni > Zn > Cr > Cu , that were 51.90% (15.95 mg/kg soil), 40.82% (787.47 mg/kg soil) , 34.91% (33.94 mg/kg soil), 26.40% (6.71 mg/kg soil), 22.62% (53.58 mg/kg soil), 13.27% (16.46 mg/kg soil) and 12.33% (11.67 mg/kg soil), respectively. As a result, the mobility orders of these metals were Mn > Co > Pb > Ni > Zn > Cr.

Tailings were mixed with humic acid with various ratios of organic matter (5%, 7% and 10%) and with different incubation periods (1, 7, 15 and 30 days) in order to determine the optimum condition of different organic amendment ratios and times on reduction of metal mobility. Soil tailings had a pH around 8.25 and humic acid were 74.59% organic matter. When samples were mixed into those ratios and then analyzed all results through SPSS Statistic program by using ONE-WAY ANOVA and post hoc test with LSD method (Fisher's Least significant difference). The optimum condition of mixing were ten percentage of organic matter as compared to other treatments, which showed statistical significantly lower concentration of metals leached out (p<0.05). Semilog linear regression analysis was then used to determine the relationship between times and ratios of organic matter with metal concentrations in each fraction. Metal concentrations of first two fraction were mainly focused on and found that amounts of Cu Zn and Pb were reduced in BCR1 and Cu Cr and Pb were reduced in BCR2 (R2>0.5).

Field of Study:	Environmental Management	Student's Signature:
Academic Year:	2011	Advisor's Signature:
		Co-advisor's Signature:

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest gratitude to my thesis advisor, Dr. Srilert Chotpantarat, for his valuable suggestions, huge motivations, and kind guidance throughout the thesis work. I would like to sincerely thank to my co-advisor Assistant Prof. Dr. Chantra Tongcumpou, who give suggestion that stimulate the advance of this work. In addition, I would like to thank the thesis committee chairperson, Assistant Prof. Dr. Ekawan Luepromchai, and all thesis committee members; Associate Prof. Dr. Wasan Pongsapich and Dr. Benjaporn Boonchayaanant, for their reviews, helpful suggestions, and strong comments.

Particularly, I also would like to thank the EHWM laboratory officers, Miss Chantana Intim and Miss Benjawan Noinumnon for helping and giving advices related to laboratory equipment especially, ICP-OES in deepest details. Miss Saowaros Mornsuparp, a librarian, for welcome and warm supports. Moreover, I also thank Mr. Kamphol Pantakua, a researcher of Thailand Development Research Institute (TDRI), for his great help in the Statistic fields throughout this study. Mr. Sorn Simatrang, a master degree student of Case Western Reserve University, who send an important chemical substance from USA to Thailand in a short notice, and his kindness for download some online journals and books references which cannot be download in Thailand. Miss Pensiri Akkajit and Mr Mongkolchai Assawadithalerd Ph.D. students at International Postgraduate Program in Environmental Management, Graduate school, Chulalongkorn University for their great help in field and laboratory works that related to this work. Mr. Songsak Haesakul, a master degree student in Faculty of Information Technology, King's Mongkut University of Technology North Bangkok for his great help in some accessories. Furthermore, all of my friends and colleagues whose name not to be mentioned but I keep in mind and feel thankful of them.

Importantly, I would like to sincerely thank for funding supported by International Postgraduate Programs in Environmental Management, Graduate school Grant and Faculty of Science Funding of Chulalongkorn University for supporting my study. I also thank Akara Gold Mine for providing all soil tailings materials.

Finally, I feel proud to dedicate this thesis with all respects to my beloved family for their endless love, encouragement, and inspiration throughout my entire study.

CONTENTS

Page

Abstract (Thai)	iv
Abstract (English)	
Acknowledgements	. vi
Contents	
List of Tables	
List of Figures	xiii
List of Abbreviations	xvii

CHAPTER

Ι	INTRODUCTION	1
	1.1 General Statement	1
	1.2 Objectives	. 5
	1.3 Hypotheses	.6
	1.4 Scope of Work	.6
	1.5 Benefit of this study	8

II LITERATURE REVIEW AND THEORETICAL

BACKGROUND	9
2.1 Mining characteristics and systems	9
2.2 Sequential extraction	10
2.3 Bioavailability	11
2.4 Soil parameters	13
2.4.1 Soil pH	13

2.4.2 Organic matter13
2.5 The presence of heavy metals14
2.6 Seven interested metals
2.6.1 Cobalt (Co) 15
2.6.2 Copper (Cu) 16
2.6.3 Chromium (Cr)16
2.6.4 Manganese(Mn) 17
2.6.5 Nickel (Ni)
2.6.6 Lead (Pb) 18
2.6.7 Zinc (Zn)19

III	METHODOLOGY	20
	3.1 Introduction	20
	3.2 Study Sites	21
	3.3 Soil tailings sample collection and preparation	21
	3.3.1 Soil sample collection and preparation	.21
	3.3.2 Preparing soil samples into soil amendment	21
	3.4 Analysis parameter	22

IV

3.4.1 Soil Chemical properties 22
3.4.1 organic matter
3.4.2 calculating soil organic amendment (%SOM) 23
3.5 Metal analysis 23
3.5.1 BCR sequential extraction
3.5.2 Total digestion (EPA3052)
3.6 Soil amendment analysis
3.7 Quality control
3.8 Data analysis26
RESULTS AND DISCUSSION 27
RESULTS AND DISCUSSION 27 4.1 The Physicochemical characteristic of soil and humic acid27
4.1 The Physicochemical characteristic of soil and humic acid27
4.1 The Physicochemical characteristic of soil and humic acid274.2 Total metal concentrations in soil tailings
 4.1 The Physicochemical characteristic of soil and humic acid27 4.2 Total metal concentrations in soil tailings
 4.1 The Physicochemical characteristic of soil and humic acid27 4.2 Total metal concentrations in soil tailings

CHAPTER

4.4.3	Chromium	.47
4.4.4	Manganese	.52
4.4.5	Nickel	. 57
4.4.6	Lead	. 61
4.4.7	Zinc	.65
4.5 Fractionat	ion patterns of metals	. 69

V	CONCLUSIONS AND RECOMMENDATIONS	72
	5.1 Conclusions	72
	5.2 Recommendations	73

REFERENCES74

APPENDICES	
APPENDIX A	80
APPENDIX B	
APPENDIX C	
APPENDIX D	

Page

CHAPTER

APPENDIX E	94
APPENDIX F	142

BIOGRAPHY152

List of Tables

Tables

2.1	The three-step BCR sequential extraction scheme
4.1	Physicochemical parameter of Soil tailings and Humic acid
4.3	Average percentage proportion of tailing from ten locations in BCR1 and BCR2
	from maximum to minimum
4.4	Metal concentrations (mg/kg) of Certified and measured reference materia
	(CRM 025-050)
4.4	Average all elements concentrations (mg/kg soil) in 1, 7, 15 and 30 days in all
	fraction
4.4	Average all elements concentrations (mg/kg soil) in 1, 7, 15 and 30 days in al
	fraction (Cont.)
4.6	All equations in each metal and fractions from Regression analysis
4.7	Ranking of influence of SOM amount and time aging on reduction of heavy
	metal leaching

List of Figures

Page

Figures

1.1	Sketch map of Akara Gold Mine along the boundary of Phichit and Petchal	boon
	provinces, showing tailing storage facility(TSF) and other land utilities	3
2.1	Mine/mill tailings environment simplicistic system model	10
2.2	Sketch of a soil organic matter (SOM) showing the various kinds of function	ional
	group associated with such soil material	13
3.1	Experimental design in this study	20
4.1	Ten locations in Tailing Storage Facilities, TSF	28
4.2	The TSF in Akara gold mine	28
4.3	How to sample soil tailings samples from TSF area in each punch	28
4.4	Average Co concentration of all fraction from ten locations	31
4.5	Average Cr concentration of all fraction from ten locations	31
4.6	Average Cu concentration of all fraction from ten locations	32
4.7	Average Mn concentration of all fraction from ten locations	32
4.8	Average Ni concentrations of all fraction from ten locations	33
4.9	Average Pb concentration of all fraction from ten locations	33
4.10	Average Zn concentration of all fraction from ten locations	34
4.11	Averages Co concentrations in BCR1 within 30 days at different	
	percentages of SOM.	41
4.12	Averages Co concentrations in BCR2 within 30 days at different	
	percentages of SOM.	41
4.13	Averages Co concentrations in BCR3 within 30 days at different	
	percentages of SOM.	42
4.14	Averages Co concentrations in residual fraction within 30 days	
	at different percentages of SOM.	42
4.15	All fraction percentages of Co within 30 days at different	
	percentages of SOM.	43

xiii

Page

Figures

4.16	Averages Cr concentrations in BCR1 within 30 days	
	at different percentages of SOM.	45
4.17	Averages Cr concentrations in BCR2 within 30 days	
	at different percentages of SOM.	45
4.18	Averages Cr concentrations in BCR3 within 30 days	
	at different percentages of SOM.	46
4.19	Averages Cr concentrations in Residual fraction within 30 days	
	at different percentages of SOM.	46
4.20	All fraction percentages of Cr within 30 days at different	
	percentages of SOM.	47
4.21	Average Cu concentrations in BCR1 within 30 days at different	
	percentages of SOM.	50
4.22	Average Cu concentrations in BCR2 within 30 days at different	
	percentages of SOM.	50
4.23	Average Cu concentrations in BCR3 within 30 days at different	
	percentages of SOM.	51
4.24	Average Cu concentrations in residual fraction within 30 days	
	at different percentages of SOM.	51
4.25	Percentages of Cu in all fractions within 30 days at different	
	percentages of SOM.	52
4.26	Average Mn concentrations in BCR1 within 30 days at different percentages of SOM.	54
4.27	Average Mn concentrations in BCR2 within 30 days at different	
	percentages of SOM.	55
4.28	Averages Mn concentrations in BCR3 within 30 days	
	at different percentages of SOM.	55

Page

xiv

Figures

4.29	Averages Mn concentrations in Residual fraction within 30 days	
	at different percentages of SOM.	56
4.30	All fraction percentages of Cr within 30 days at different	
	percentages of SOM.	56
4.31	Average Ni concentrations in BCR1 within 30 days at different	
	percentages of SOM.	58
4.32	Average Ni concentrations in BCR2 within 30 days at different	
	percentages of SOM.	59
4.33	Average Ni concentrations in BCR3 within 30 days at different	
	percentages of SOM.	59
4.34	Averages Ni concentrations in Residual fraction within 30 days	
	at different percentages of SOM.	60
4.35	All fraction percentages of Ni within 30 days at different	
	percentages of SOM.	60
4.36	Average Pb concentrations in BCR1 within 30 days at different	
	percentages of SOM.	
4.37	Average Pb concentrations in BCR2 within 30 days at different	
	percentages of SOM.	63
4.38	Average Pb concentrations in BCR3 within 30 days at different	
	percentages of SOM.	64
4.39	Average Pb concentrations in residual fraction within 30 days	
	at different percentages of SOM.	64
4.40	Percentages of Pb in all fractions within 30 days at different	
	percentages of SOM.	65
4.41	Average Zn concentrations in BCR1 within 30 days at different	
	percentages of SOM.	67

Figures

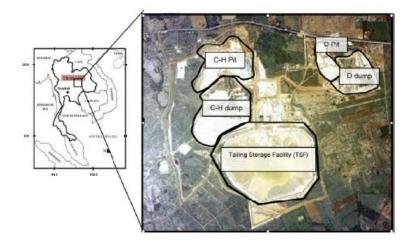
4.42	Average Zn concentrations in BCR2 within 30 days at different	
	percentages of SOM.	67
4.43	Average Zn concentrations in BCR3 within 30 days at different	
	percentages of SOM.	68
4.44	Average Zn concentrations in residual fraction within 30 days	
	at different percentages of SOM.	68
4.45	Percentages of Zn in all fractions within 30 days at different	
	percentages of SOM.	69

LIST OF ABBREVIATIONS

Degree Celsius	
Acid Mine Drainage	
Community Bureau of Reference	
Exchangeable Fraction	
Reducible Fraction	
Oxidisable Fraction	
Residual Fraction	
Certified Reference Material	
Gram	
Gram per kilogram	
Global Positioning System	
Hydrochloric Acid	
Nitric Acid	
Hydrogen peroxide	
Inductively Coupled Plasma-Optical Emission	
Spectrometers	
Liter	
Molar	
milligram per cubic decimeter	
Milligram per kilogram	
Milliliter	
Mole per liter	
Millivolt	
Organic Matter	
Tailings Storage Facilities	
Round per minute	

LIST OF ABBREVIATIONS

°C	Degree Celsius
AMD	Acid Mine Drainage
BCR	Community Bureau of Reference
BCR1	Exchangeable Fraction
BCR2	Reducible Fraction
BCR3	Oxidisable Fraction
Res	Residual Fraction
CRM	Certified Reference Material
g	Gram
g/kg	Gram per kilogram
GPS	Global Positioning System
HCl	Hydrochloric Acid
HNO3	Nitric Acid
H2O2	Hydrogen peroxide
ICP-OES	Inductively Coupled Plasma-Optical Emission
	Spectrometers
L	Liter
М	Molar
mg/dm3	milligram per cubic decimeter
mg/kg	Milligram per kilogram
mL	Milliliter
mol/L	Mole per liter
mV	Millivolt
OM	Organic Matter
TSF	Tailings Storage Facilities
rpm	Round per minute


CHAPTER I INTRODUCTION

1.1 General Statement

Mining industry becomes one of environmental problems for human health because it produces waste materials of variable nature and extent. Mining processes include raw material grinding, ore refining and solid waste disposal which can be a contaminated sources to the environment (Adriano et al., 2004). The mining and smelting of non-ferrous metals has caused soil pollution, metal dusts emanation, water, effluents and seepage (Alloway, 1990). The end product residue from mining industry is called "tailings" and almost of tailings produced in the world are pumped into large surface impoundment known as "tailings dams" (Lottermoser, 2003) or tailings storage facilities (TSF) (Akara, 1999). Many research studies have shown the adverse impacts resulted from mining industries. For examples, pollution of mining industries in Brazil generated from gold-mining activities in which mercury compound was used in the process for concentrating the gold; consequently, high mercury concentrations have been found in fish and resulted to a long-lasting effect onto metal cycling mechanism in the tropical forest ecosystem (Salomon, 1995). Another mining problem was found at the San Quintín mine area in Spain, after the San Quintín mine was definitely closed in 1988; heavy metals contaminated (Pb, Zn, and Ag) sludge from floating process of the law grade mineral heavy metals such as was distribute as sediment cover a large area and resulted to great impact (Rodríguez et al., 2009). In Mexico, Méndez et al., (2003) found arsenic contamination of groundwater which has been suspected that sources of As came from both natural and anthropogenic sources in Zimapán, which had been operated more than 60 years. After ceased operation of Gold, In the mid 1970s, in Central Rand, South Africa more than 2,400 tons gold had been mined, generated huge of solid waste from mining and metallurgy process. Consequently, massive of dumped tailing waste from of gold mining industries was in the area have remained undisturbed for almost a century, and

exposed to oxygenated rainwater (Cukrowska, 2001). Furthermore, in England and Wales, the area around 20,000 contaminated sites were found and needed to be remediated in order to reduce the risk to the environment and human health (Environmental Agency, 2004).

For Thailand, Akara Gold Mine is the largest gold mine, located at the boundary of the two provinces; Pichit and Petchaboon (Fig.1). This mine has been operated for ten years. During the gold extraction process, waste rocks are burst and partly used in a tailings storage facility (TSF) construction. During ore processing, Akara Gold Mine produces approximately 750,000 dry tons of tailings per year, and these tailings are deposited in the TSF. The TSF locates in the southern area of the mine (Fig.1) (Changul et al, 2010a). Several studies related to mining have been conducted in this area, Chotpantarat et al., (2008) reveal that heavy metal concentration in groundwater collected from shallow and deep wells at the mining site over two-year period and showed a relatively high concentration of manganese, supporting by the laboratory results of the batch and column desorption experiments. Changul et al., (2010a, 2010b) investigated chemical characteristics and acid drainage assessment of mine tailing including the acidic potential of waste rocks. The results shows that Acid Mine Drainage (AMD) generation may possibly occur a long time after mine closure due to the dissolution lag time of acid-neutralizing sources. Some waste rocks acidic generation may occur in the future based on environmental conditions, particularly the oxidation of sulfide minerals by the combination of oxygen and water. Furthermore, tailings leachates contain heavy metals exceeding the standards at low pH. As mentioned, under AMD condition, TSF would be a major contaminant factor in the future.

Figure 1.1 Sketch map of Akara Gold Mine along the boundary of Phichit and Petchaboon provinces, showing tailing storage facility(TSF) and other land utilities (map modified from Changul et al., 2010a)

To assess themobility, sorption, and transportation of contaminants in the natural environment in order to understand their environmental impact, several approaches are needed for examining. Batch or column leaching experiments has received much attention. BCR sequential extraction is one of the method to understand fate and speciation of metals which indicates and hence leads to a better basis for site risk assessment (Cukrowska, 2004 and Iwegbue et al., 2007). In Iran, Jalali and Knablari (2008) studied the aging effect on distribution of calcareous soil by using seven condition (ranging time from 3 hours to 28 days) and five-step sequential extraction was carried out in their experiments. They found that in the first three hours, metals in exchangeable fraction were increased and slowly decreased as time passed. Brunori et al.(2005) investigated the kinetic fractionation method (collecting sample in each 15, 30, 60, 100, 150, 240, 360, and 960 minutes) and found that addition of red mud into contaminated soil directly decreased mobility of heavy metal from soil. Lu et al (2005) also reveal that aging of soil affects on the fractionation of heavy metals. Their experiments were carried by spiking a total of 500mg/kg of Cu, Zn, Pb and 2.5 mg/kg Cd to three tropical Chinese soils.and analyze according to the fractionation of the metals according to the aging time. They found metal in exchangeable fraction were increased in the first three hours and then as time

passed metals transformed slowly into other fraction. Bacon and Davidson (2008); Akkajit and Tongcumpou (2010) found that the first two steps of BCR are the most mobile and also increase bioavailability, which has a major risk on environmental impacts. Janos (2010) used many inorganic and organic amendment types to compare mobility and bioavailability the leachability of cadmium: the most effective from his comparison is humate K. Among many tests suggested for various purposes, a three steps procedure developed in EC standards, Measurement and Testing Programme (so call BCR test) became more popular, as it achieved a high degree of standardization and harmonization (Quevauviller, 1998; Rauret et al., 1999; Bacon and Davidson, 2008).

Pollutants consist of inorganic and organic chemicals. The BrØnsted-Lowry concepts of acids and bases were used to describe the various reaction and interaction occurring in a soil water pollutant system. Chemical reactions in the pore water include (1) acid-base reactions and hydrolysis (2) oxidation-reduction (redox) reactions and (3) speciation and complexations (Taylor& Francis group, 2007).

Different soil contains organic matter which may be different in characteristics and properties. Colloidal soil organic matter has a major influence on the chemical properties of soils, and can be divided into non-humic and humic substances. They are formed by secondary synthesis reactions involving microorganisms and have characteristics which are dissimilar to any compounds in living organisms (Alloway, 1995). Organic matter is very important in the transportation and accumulation of metallic ions (Kabata Pendias and Pendias, 2001), which affect micronutrient availability (Quevauviller, 2002), due to its performance as an essential sorbent of plant macronutrients, micronutrients, heavy metal cations (particularly of copper and manganese) (Sparks, 1995) and organic material. All reactions lead to the formation of water-soluble and/or water-insoluble complexes (Kabata Pendias and Pendias, 2001). Furthermore, Dermont (2008) found that an increase in the soil pH or organic matter contents inhibited the metal's extractability and mobility.

The tailing from mining sites is one of a major concern for mining management because TSF requires an extremely large space and appropriate take care. Since most of tailing waste from mining contains several heavy metals, leachability of the heavy metal can generate an environmental problem. Comparable to heavy metals contaminated soil, an addition of organic matter into the soil has been widely used for leachability prevention or immobilization the metals in soil. Their mobility in soil system depends on their chemical forms, the nature of the organic matter and interaction among soil components (Gadepalle et al., 2007; Harter &Naidu, 1995; Janos et al., 2010). Egli et al., (1999) studied in lead, cadmium and Zinc contribution and found that major and minor chemical component behaviors were mainly determined by decomposition of organic matter. In soil remediation, soil amendment can be used alone or more often in a mixture with other amendments (Brunori, 2005 and Janos, 2010). The similar approach was introduced in this study. Organic matter was added into the mine tailing in order to investigate the possibility of its effect on mobility of the metals.

Therefore, the objective of this study is to determine the effects of organic matter and tailings ratios as well as aging time on fractionation of heavy metals in soil tailings from tailings storage facilities (TSF) of Akara Gold Mine, Pichit province. Three-step modified BCR sequential extraction was the method used to determine mobile fraction of metals.

1.2 Objectives

The main purpose of this study is to determine the effect of organic matter addition on fractionation of heavy metals in tailings from tailings storage facilities (TSF) of Akara Gold mining site in Pichit province. Two sub-objectives of this study are shown below: 1.2.1 To determine the effect on metal fractionation at different ratio of organic matter and tailing investigate heavy metals in tailings

1.2.2 To study the effect of aging time and tailing at different ratio on metal fractionation.

1.3 Hypothesis

Different amount of organic matters addition into tailing and aging period can be affected on heavy metals fractionation.

1.4 Scope of Work

1. The sampling sites located in TSF area, Akara gold mine, Pichit provinces. Samples were collected in ten sampling spots at one meter depth in April, 2010.

2. Organic Matter used in this study is humic acid.

3. Soil properties: all tailings samples and humic acid were analyzed

for:

3.1 Soil pH (1:2 soil/water suspensions) by pH meter

3.2 Soil organic matter content (OM): by wet digestion according to the Walkley-Black procedure (Benton Joness, 2001)

4. Seven metals of interest in this study include:

- Cobalt (Co)
- Chromium (Cr)
- Copper (Cu)
- Manganese (Mn)
- Nickel (Ni)

- Lead (Pb)
- Zinc (Zn)

5. Metal Analysis: concentration of each elements (Co, Cr, Cu, Mn, Ni, Pb, and Zn) were analyzed by Inductively Coupled Plasma-Optical Emission Spectrometers (ICP-OES).

5.1 Soil tailings samples

Soil samples were analyzed for total digestion according to EPA standard method (EPA-Method 3052, 1996) and the three step of BCR sequential extraction procedure developed by the Standards, Measurements and Testing programme, SM&M. The supernatant sample in each fractionation step was analyzed.

5.2 Humic acid samples

Humic acid, analytical grade, were analyzed for total digestion according to EPA standard method (EPA-Method 3052, 1996) and the three step of BCR sequential extraction procedure developed by the Standards, Measurements and Testing programme, SM&M. Supernatant from each fractionation step were analyzed as same as soil tailings samples.

5.3 Soil amendment sample

Mixture of tailings sample and humic acid were calculated into propotion of different percentage of Organic matter (OM) and Time were inoculated and collected.

6. For the accuracy of total digestion, Certified Reference Material (CRM 025-050) was used to determine metals in the supernatant.

7. Statistical Analysis

The concentration data set of the elements (Co, Cr, Cu, Mn, Ni, Pb and Zn) was analyzed by using the selects cases, One-Way ANOVA, Statistic program to determine the correlation of bioavailability of metal in each fraction, and used for explain relation between Time, OM and elements (Co, Cr, Cu, Mn, Ni, Pb and Zn).

1.5 Benefit of this study

At the end of the study, the selected soil tailings and humic acid background properties (soil pH, organic matter content (OM) and the relationship between metals (Co, Cr, Cu, Mn, Ni, Pb and Zn) would have been investigated. The total digestion and the three-step BCR sequential extraction procedure recommended by the Standards, Measurements and Testing Programme of the European Union (SM&T) were used to determine the metal contents in total and available forms, respectively. Moreover, the best soil amendment condition was chosen for further research.

Furthermore, this study can be assessed or developed for further appropriate conditions in order to reduce heavy metals released to environment Moreover, the results may be an recommendation for Akara Gold Mine to apply for tailings management

CHAPTER II THEORETICAL BACKGROUND AND LITERATURE REVIEWS

2.1 Mining characteristics and system

Mining is the first operation of a mineral or energy resources in the commercial exploitation. Mining industries have many operations such as mining, mineral processing, and metallurgical extraction. Obtaining components of mined material depends on the extraction of material from the ground. The aim of mineral processing or beneficiation is; to physically separate and, to concentrate the ore minerals. On the other hand, the goal of metallurgical extraction is; to destroy the crystallographic bonds in the ore mineral in order to recover the source of element or compound. Mining is always associated with mineral processing such as crushing, grinding, gravity, magnetic or electrostatic separation and floatation. Sometimes, it is dealt with the metallurgical extraction of commodities such as gold, copper, nickel, uranium or phosphate (such as heap leaching; vat leaching; in situ leaching). All three operations of mining industry -mining, mineral processing and metallurgical extraction- produced waste is called "Mine Wastes" that defined as solid, liquid, or gaseous by-products of these activities. They are unwanted, have no current economic value and accumulate at mining site. A quantity of residual waste known as "Tailings" (Lottermoser, 2003). These tailings and waste rocks are very large proportion of the original ores. The mining process can be seen in figure 2.1.

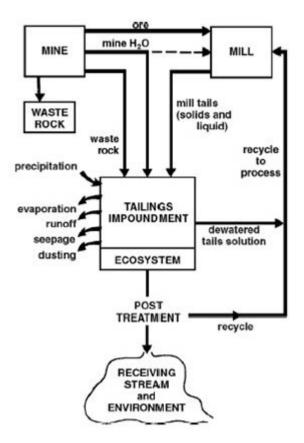


Figure 2.1 Mine/mill tailings environment simplicistic system model (Ritcey, 2005)

2.2 Bioavailability

Most chemical immobilization treatments researches have focused on reducing bioavailability, solubility, or extractability. Because of their results may show reduced solubility and potential decreased metal transport. On the other hand, few studies have measured the metal transport reduction from chemical amendments to contaminated soil (Sparks, 2001). Basically, metals in soil are existed as a variety of chemical species in a dynamic equilibrium governed by soil physical, chemical and biological properties (Lasat, 2006). According to several studies (McGowen, 2000; Gobran et al., 2001; Nigam and Srivastava, 2003; Žemberyová et al., 2006), there are, shown the metal form in soil, much greater importance than the total concentration with regard to bioavailability of metals. For example, Gobran et al., (2001) found that the elements behaviors in the environment cannot predict on the basis of their total concentration because in the fact that not all of the metal may be labile or available for uptaking.

Sequential extractions were used in almost studies to predict the persistence and potential mobility and bioavailability of trace metals. In the first cases, the amounts of trace metals in extractant by a given chemical reagents are supposed to correlate with the amounts accumulated in plants. In the second case, sequential extractions are mainly assumed to provide the localization of trace elements in soils; the reactivity of trace metals in soils are the result from the possible mobility and availability, which depends on their localization in different soil components, which is usually called speciation. McGowen (2000) studied agriculture limestone, mineral rock phosphate, and diammonium phosphate chemical immobilization treatments to reduce Cd, Pb, and Zn solubility and transport in a smelter-contaminated soil. Reducing total Cd, Pb, and Zn elution were found from the contaminated soil. Limestone is effective for reducing Cd and Pb (45% and 54.8% reduction over the untreated check, respectively.

2.3 Sequential extraction

Chemical extraction methods are more sensitive compared to physical methods of speciation. Sequential extraction methods consist of using successively different chemical reagents for trace element extraction from given soil compartments (Belzile et al., 1989: Nirel and Morel, 1990). Many chemical extractions have been developed to determine element behavior in order to fractionate metals. There are single and sequential extractions; single extraction uses only one solvent to extract sample directly. The extractant commonly uses H2O, KNO3, EDTA, DPTA and HNO3. Each extractant is targeted on a single form of each metal. For example, H2O for soluble material, HNO3 for each metal residue, and CH3COOH for bounding particulate material.(Iwegbue et al., 2007)

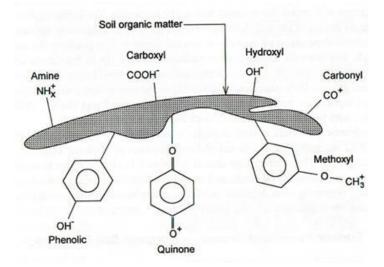
In this study, the three-step BCR sequential extraction procedure will be used according to the procedure recommended by the Standards, Measurements and Testing programme of the European Union (SM&T) which are summarized in Table 2.3.1

Mobility and bioavailability of the metals decrease approximately in the order of the extraction sequence (Dudka et al., 1996). Each successive form represents less availability (Iwegbue et al., 2007).

Table 2.1 The three-step BCR sequential extraction scheme (modified from Akkajit,2008; Pérez and Valiente, 2005; Yang, 2009)

Fraction label	Reagent	Metal species/association
1.Exchangeable (BCR1 or F1)	0.11 mol/L CH ₃ COOH (acetic acid), 16h shaking (22±5 °C)	Bound to colloidal/particulate material or soil surface by relatively weak electrostatic interactions, susceptible to change of pH, released by changes in ionic composition and affected by production or consumption of protons
2. Reducible (BCR2 or F2)	0.5 mol/L HONH ₂ · HCL hydroxylamine hydrochloride at pH1.5, 16h shaking (22 ± 5) °C)	Bound to iron and manganese oxides, instability under anoxic conditions and dissolution of metal-oxide phases under controlled Eh and pH conditions
3.Oxidisable (BCR3 or F3)	8.8 mol/L H_2O_2 (85±2 °C) then 1.0 mol/L CH_3COONH_4 (ammonium acetate) , 16h shaking (22±5 °C)	Bound to organic matter and sulfides various forms. The degradation of organic matter under oxidizing conditions is responsible for trace elements releasing.
4. Residual ^a (F4)	Aqua regia ^a	Concentrated acid digests any chemical bond in substances and all elements be in form of small molecules or solutions

^a This step is not an official step.


2.4 Soil parameters

2.4.1 Soil pH

Soil pH is affected by the changes in redox potential which occur in soils that become watery. Reducing conditions particularly cause a pH increase, and oxidation leads to a decrease. In general, heavy metal cations are most mobile under acid conditions and increasing the pH by liming usually reduces their bioavailability (Alloway, 1995).

2.4.2 Organic matter

The main organic matter in soils comes from biological decay. The final product of this degradation are humic substances, organic of low-molecular and high-molecular weights, carbohydrates, protein, peptides, amino acids, lipids, waxes, polycyclic hydrocarbons, and lignin fragments. Furthermore, the excretion products of roots, composed a wide variety of simple organic acids, are present in soils (Essington, 2003).

Figure 2.2 Sketch of a soil organic matter (SOM) showing the various kinds of functional group associated with such soil material (Yong, 2002).

The basic structure of all soil organics is formed by carbon bonds that are salicylic or aromatic rings, respectively. See Figure 3, carbon and nitrogen are combined with oxygen and/or hydrogen to form the various types of surface functional groups that properties of organic molecules and their reactions with other eater system. The main functional groups are hydroxyls, carboxyls, phenolic, and amines. They can both protonate or deprotonate depending on the aqueous environment pH, i.e., they will develop positive or negative charges depending on the soil pH. The carboxyl group is the major contributor to the acidic properties of the soil organics (Yong, 2002).

The organic component of soil constituents has a high affinity for metal cations because of the presence of ligands or groups that can chelate metals (Harter and Naidu, 1995). When pH was increased, the carboxyl, phenolic, alcoholic and carbonyl functional groups in soil organic matter dissociate, thereby the affinity of ligand ions for metal cations were increased. The affinity general order for metal cations complexed by organic matter follows: Cu2+>Cd2+>Fe2+>Pb2+>Ni2+>Co2+>Mn2+>Zn2+ (Adriano, 2001)

Humic substances can serve as carrier of toxic metals, forming complexes that are stable and enhance transport of toxic metal in waters by reducing the toxicity of the heavy metals to the microbes. Especially, inorganic anions such as phosphate and cyanide can be removed from water as well by mixing of ligand complexation (Sparks, 1995).

2.5 The presence of heavy metals

An environment impact of heavy metal in natural has been mainly caused by humans. Man-made sources pollution can easily create local conditions of elevated metal presence which could lead to environmental effects. Although many metallic elements play an essential role in the function of living organism, they constitute a nutritional requirement and fulfill a physiological role, overabundance of the essential trace elements and particularly their substitution by nonessential ones can cause toxicity symptoms or death. (Volesky, 1990) Heavy metals are important in many ways, for example, using for improving technology in industries of advance countries. Some elements are trace elements and essential for plants and animals. There are many significant as pollutants which effect on ecosystems throughout the world. Heavy metals in soils have gradually increasing in recent years because of scientific and technological growths, including the increasing industrial demands for metals in order to locate or reserves of ore minerals (Alloway, 1995).

Soil is the main component of terrestrial ecosystems. There are many elements in soil, which can be divided into two main group macronutrient and micronutrient (or trace elements). Micronutrients are important in plant nutrition similar to macronutrient but trace elements occur in plants and soils in much smaller concentrations. Trace elements can occur in four main forms in soil: (1) primary and secondary minerals. (2) Adsorbed to mineral and organic matter surfaces. (3) Organic and microbial biomass, and (4) solution. Depending on micronutrients, some forms are more important than others in supplying or buffering plant's available micronutrient in the soil solution. (McLaren, 1997)

2.6 Seven interested metals

2.6.1 Cobalt (Co)

Cobalt is an important element in industrial civilization, and also to maintenance of life within. Co is much less abundant used for the manufacture of special steels, and has been used for centuries in the manufacture of blue pigments and glass. Co has essential roles in living organisms and animals. Environmental pollution problem are relatively insignificant compared with those associated with some other heavy metals. Primary interest in Co as a component of soil lies in its essential roles in ruminant animals and microorganisms. For centuries, farmers in different parts of the world had found some pastures to be unsuitable for sheep and cattle, became weak and emaciated. The symptoms were attributed to low Co Concentrations in the herbage, and top dressing of pastures with Co salts and oral administration of Co were used to alleviate the condition. Uptake of Co by plants is a function of the concentration of Co in the soil solution and on the exchange sites of cations exchange complex. The reagents used include several which alter significantly one of the two soil properties that have been shown to have the greatest influence on Co availability. Some evidences were found that the uptakes of Co increases as the soil pH decreases. (Spark, 2001)

2.6.2 Copper

Copper is one of the essential elements for organisms. Sometime extractable Cu is called "available Cu". An abundance of Cu in lithosphere is considered to be 70 mg/kg. Cu is associated with soil organic matter, oxides of Fe and Mn, soil silicate clays and other minerals (Spark, 2001). Chelation and complexing are the key reactions governing Cu behavior in most soils (Kabata-Pendias and Pendias, 2001).

The mainly common available Cu in the surface environment is founded to be the +2 cations valence electron which is very tightly on inorganic and organic exchange sites depending on the surface charge carried by the absorbents (Spark, 2001). There are many reviews of Cu reaction with inorganic and organic components of soils. (Everett et al, 1967; Chow, 1970 and Spark, 2001) The bioavailability of soluble forms of Cu depends most probably on both the molecular weight of Cu complexes and on the amount present. The concentrations of Cu in soil solutions are basically controlled by both the reaction of Cu with active groups at the surface of the solid phase and by reactions of Cu with specific substances (Kabata-Pendias and Pendias, 2001).

2.6.3 Chromium (Cr)

Chromium (Cr) has been used in alloy steels and chrome planting. The most stable common forms are Cr(III) and Cr(VI). Cr(VI) is an anion, more extracted from soil and sediment particles and is considered the more toxic form. Chromate is

in pH-dependent equilibrium with other form of Cr(VI) such as HCrO4- and dichromate (Cr2O72-), with CrO42- the predominant form at pH > 6. On the other hand, Cr(III) is much less mobile and absorbs to particulates more strongly. The solubility of Cr(III) decreases above pH 4, and above pH 5.5 complete precipitation occurs. However, complexing Cr(III) with soluble organic acids such as citric acid, DPTA, fulvic acids and soil extracts of water-soluble organic matter) maintain Cr(III) in solution above the pH at which uncomplexed Cr precipitates and it therefore a means of enhancing its mobility. Concentration of Cr in growing plankton mine spoil and various types of Cr waste are mainly in the range 10-190 mg/kg, but toxic concentrations may accumulate in plants growing on chromate waste in which the more soluble Cr(VI) form predominates. (Sparks, 2001)

2.6.4 Manganese (Mn)

In Lithosphere, Manganese (Mn) is one of the most abundant trace elements. Mn in form of various oxide and hydroxide species and chelates are found in many components which some are simple and complex ions in solution, and also several oxides of variable composition. Mn exists in multiple oxidation states: Mn(II), Mn(III) and Mn(IV) but the Mn(II) is the most frequent found in the rock-forming silicate minerals. All Mn compounds are very important soil constituents because this element is essential in plant nutrition and controls the behavior of several other micronutrients. It was found that Mn uptake is metabolically controlled which was similar to that of divalent cations species such as Mg2+ and Ca2+ and known to replace the sites of some divalent cations (Fe2+, Mg2+) in silicates and oxides (Kabata-Pendias and Pendias, 2001).

The Mn compounds are known for their rapid oxidation and reduction under variable soil environment and thus oxidizing condition may reduce the availability of Mn and associated micronutrients, whereas reducing conditions may lead to the ready availability of these elements even up to toxic range. The complex mineralogical and chemical behavior of Mn results in the formation of the large number of oxides and hydroxides which give a continuous series of composition of stable and meta-stable arrangements of atoms. Colloidal Mn oxides reveal a great affinity for adsorption of cationic and anionic forms elements as well as inorganic and organic substances (Kabata-Pendias and Pendias, 2001).

2.6.5 Nickel (Ni)

Nickel (Ni) can occur in a number of oxidation states, but only Ni(II) is stable over the wide range of pH and redox conditions found in the soil environment. Ni can be replaced essential metals in metallo-enzymes and cause disruption of metabolic pathways. The average concentration of Ni is 40 mg/Kg which vague much variation between soil types. The content of Ni depends on nature of material. The soil chemistry of Ni is much simpler and is based on the divalent metal ion (Ni2+). The solubility of Hydroxides of Cr(Cr(III)) and Ni, both are siderophilic elements. At difference of pH values give some indication of the relative mobility of these entities in soils. Both become increasingly soluble at lower pH values, but clearly Ni is the more soluble. (Sparks, 2001)

2.6.6 Lead (Pb)

Lead (Pb) is not essential for plants and exists in three oxidation states: Pb, Pb(II), and Pb(IV). Lead exists in all soils and all crops which tend to accumulate in the soil surface. The natural Pb content of soils is reported to be the least mobile among the heavy metals and occurs mainly as Pb2+ (Kabata-Pendias and Pendias, 2001). The major portion is usually solid or adsorbed onto soil particles as long as reducing conditions are maintained. Plants tolerance to soil lead is very high because it is easily adsorbed, once incorporated into the soil; lead tends to have a low mobility, resulting in a long residence time (Haroun et al., 2006).

The great variation of Pb contents of plants is influenced by environmental factors which are known to promote both Pb uptake by roots and Pb translocation into plant top (Kabata-Pendias and Pendias, 2001). The concentration of lead in plants depends on their total and available concentrations in soil, soil properties, and plant species, age, and cultivar, plant parts, plant species and the type of amendments (Chlopecka and Adriano, 1997). A high soil pH may precipitate Pb as hydroxide, phosphate, or carbonate, as well as promote the formation of Pb-organic complexes which are rather stable. Increasing acidity increases the Pb solubility (Kabata-Pendias and Pendias, 2001). Lead is tightly bound under strongly reducing conditions by sulfide mineral precipitation and complexion with insoluble organic matter, and is very effectively immobilized by precipitated iron oxide minerals under well-oxidized conditions.

Zinc is essential for plants and animals and is considered to be readily soluble relative to the other heavy metals in soils (Kabata-Pendias and Pendias, 2001). Zinc is unique among the quartet of metals (Cu, Fe, Mn, and Zn) as zinc does not exhibit multiple valences and is not subject to oxidation-reduction in the soil plant system (Miller and Gardiner, 2001). Zn is relatively active in biochemical processes and is known to be involved in several biological and chemical interactions with several elements (Kabata-Pendias and Pendias, 2001).

A zinc tissue concentration of less than 15 mg/kg (dry weight) leaves a plant deficient, whereas a concentration over 400 mg/kg (dry weight) is potentially phytotoxic. Toxicities of zinc are seldom observed until plant tissue levels in excess of 1000 mg/kg are reached (Haroun et al., 2006). The most common and mobile Zn in soil is believed to be in forms of free and complexed ions in soil solutions (Kabata-Pendias and Pendias, 2001). Zinc may form complexes, for example Zn(OH)2, Zn(OH)-3, and Zn(OH)2-4 with OH- depending on the pH and metal concentration (Ören and Kaya, 2006). As a result of high pH value, zinc hydroxyl species may participate in the adsorption and precipitation. Zinc forms complexes with inorganic and organic ligands, which will affect its adsorption reactions with the soil surface. The adsorption of Zn2+ can be reduced at lower pH by competing cations and these results in easy mobilization and leaching of Zn from light acid soils.

CHAPTER III METHODOLOGY

3.1 Introduction

In this research, soil tailings samples were collected in late April 2010 for conducting further experiments to investigate heavy metal fractionation. Ten tailing samples have been taken from the one-meter depth below ground surface. The experimental design in this study consists of two main parts as shown in the experiment diagram (Figure 3.1). All the apparatus used is given in Appendix A.

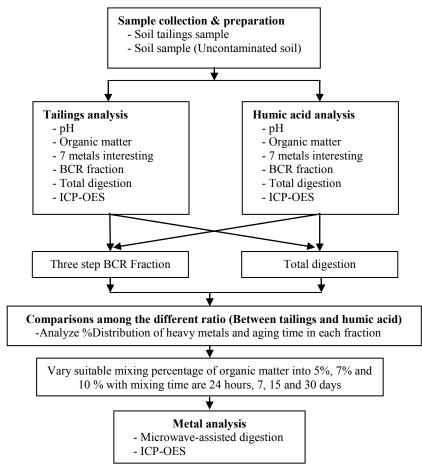


Figure 3.1: Experimental design in this study

3.2 Study Sites

The Sampling sites located in TSF area, Akara gold mine, Pichit provinces. All details of sampling sites are given in Appendix B.

3.3 Sample collection and preparation

3.3.1 Soil sample collection and preparation

All samples were immediately stored and sealed in polypropylene bags and kept at 4 °C before taken to the laboratory for further processing and analysis. At the laboratory, samples were air dried until a constant weight is achieved. Then dried sample were crushed into fine powder using an agate mortar before passing through a 200-mesh sieve. They were carefully screened and put in polypropylene zip-lock bag until analysis. The particles less than 200 mesh ($<74\mu$ m) in soil samples, which are representative of real soil, was used for analysis in this study and stored in polyethylene bottles in a desiccators at room temperature prior analysis (Tokalioğlu, 2003). Precautions were taken to avoid contamination during sampling, drying, grinding, sieving, and storing.

3.3.2 Preparing soil samples into soil amendment

Soil amendment samples were mixed between the organic matter percentage of humic acid and soil tailings into 5%, 7% and 10% (weight by weight) and separate into three conditions; Samples were inoculated at 24 hours, 7, 15 and 30 days respectively. Twelve conditions (including control sample; only used tailings samples, no adding Humic acid) of soils inoculated was investigated fractionation of heavy metals in each sample using three-step BCR sequential extraction and Microwave digestion (for their residues), and then analyzing with Inductively Couple plasma-Optical Emission Spectrometer (ICP-OES).

3.4 Analysis parameter

3.4.1 Soil chemical properties

pH: pH was determined by using a pH meter.

3.4.2 Organic matter

Dried soil samples was digested and followed by the Walkley-Black method as below;

0.5 g soil sample was added into a 500 mL conical flask, and 10 mL of 1N K2Cr207 was then added through a pipette. The soil and dichromate were slightly swirling mixed in the flask; meanwhile 20 mL of concentrated H2SO4 was also added. The slightly swirling in the flask was performed in order to allow soil and reagents having a well mixing.

The content of the flask was held for 30 minutes, followed by dilution with 200 mL of water, 10 mL of 85% H3PO4, 0.2 g of NaF, and 10 drops of diphenylamine indicator; the solution is a violet blue. Then, titrating with 0.5 M ferrous sulfate solution, the solution becomes green at the end point. The organic carbon and organic matter in soil can be calculated by using the following equations.

S = mL of Fe^{2+} solution used to titrate sample

(2) Percent Organic Matter

% Organic Matter =
$$1.72 \times \%$$
 Organic C[2]

Where;

% Organic C = value is calculated by using the Equation [2]

3.4.3 Calculating soil organic amendment (%SOM)

Percentage of soil organic amendment used percent organic matter in above equations to get the final proportion of mixing soil as following:

$$(a \times 1) + (X \times 1) = b (1+X)$$

Where;
 $a = \%$ Organic matter from 3.4.2
 $b = final \%$ SOM

3.5 Metal analysis

The concentrations of seven metals in the samples were analyzed as available fraction and total concentration by using a three-step BCR sequential extraction method and microwave assisted acid digestion, respectively. The plastic containers and glassware used in the experiment was carefully washed and soaked in 5% HNO3 solution overnight followed by repeating washing steps with deionized water. (18.2 M Ω)

3.5.1 BCR sequential extraction

The sequential extraction procedure that will be applied in this study is composed of three steps based upon the Standards, Measurements and testing programme of the European Union (SM&T). Three-step BCR sequential extraction scheme has been widely used in different types of sediments, contaminated soil, industrially-contaminated made-up ground, sewage sludge and fly ashes. For quantifying the fraction of metal characterized by the highest mobility and availability, a high enough total metal concentration was strongly recommended for BCR procedure that applied to sediments. There is a comparison between three-step BCR and modified 3step BCR scheme. The difference concentration of NH2OH.HCL in the second step proved to be the most relevant, especially for Cr, Cu, and Pb extraction which showed a dramatic decrease in both extractability and reproducibility as pH increased. The rest of studied factors did not show significant effect upon reproducibility. The use of NH2OH.HCL 0.5 mol/L adjusted to pH 1.5 by using a fixed volume of diluted HNO3 to the extractant solution and the centrifugation speed was increased from 1500 to 3000g for every step. The combination increases the concentration of NH2OH.HCL from 0.1 to 0.5 mol/L in the modified scheme with a pH lowered to 1.5 also providing a better release of metals bound to hydrous oxides of iron whereas the original reagent largely attacked only the hydrous oxides of manganese. (Quevauviller, 2002) For analyzing varieties of heavy metal in preliminary test, there are many elements to determine; therefore, the three step modified was used in the preliminary step and throughout the study. Each extraction step details are described in the following paragraphs.

BCR1: Exchangeable /Acid soluble fraction

An acetic acid solution (20 ml of 0.11 Mol/L solutions) was added into the polypropylene centrifuge tubes (soil: solution ratio is 1:40) and shaken for 16 hours at room temperature (22 ± 5 °C). No delay should be occurred between the addition of the extractant solution and the beginning of the shaking. The extract was separated from the solid residue by centrifugation for 15 minutes at 3000 rpm, and the supernatant liquid were decanted into a polyethylene container and stored in a refrigerator at 4 °C until analysis. The residues were washed with 20 mL deionized water, shaken for 5 minutes on an end-over-end shaker and centrifuged for 15 minutes at 3000 rpm. After decanting the supernatant, the residues were ready for the next step (BCR1).

BCR 2: Reducible fraction

To the residues from Step 1 (BCR1), 20 mL of hydroxylamine hydrochloride (0.1Mol/L) were added (soil: solution ratio is 1:40) and then shaken for 16 hours at room temperature (22 ± 5 °C). No delay should be occurred between the addition of the extractant solution and the beginning of the shaking. The extractants were separated from the solid phase by centrifugation and decantation as described for BCR1. The residues were washed with 10 mL deionized water, shaken for 15 minutes on an end-over-end shaker and centrifuged for 15 minutes at 3000 rpm. The supernatant were decanted and stored at 4 °C until analysis.

BCR 3: Oxidizable fraction

To the residues from Step 2 (BCR2), 8.8 Mol/L hydrogen peroxide were added at a soil solution ratio of 1:10 and then shaken for 1 hour at room temperature (22 ± 5 °C) by end-over-end shaker The solution will be heated up to 85 °C for 1 hour. The extraction is repeated by using the same procedure. Then, the sample was shaked for 16 hours at 350 rpm at room temperature (22 ± 5 °C). The extract was then separated from the solid phase by centrifugation and decantation as described for BCR1. The supernatant was decanted and stored at 4 °C (Tokalioglu et al., 2003 and Yang et al, 2009). Microwave assisted digestion and analyzed element concentration with Inductively Coupled Plasma-Optical Emission Spectrometers (ICP-OES) were used for determination the metal concentration of the residue from BCR3 as described in 3.5.2.

3.5.2 Total concentration

For estimation of heavy metals concentration from BCR final residue in soil, samples was directly digested by using the microwave assisted digestion procedure according to the aqua regia method.

Dried soil 0.5 g in PTFE vessels 14.5 mL of aqua regia solution was added (modified from microwave digestion application note manual). Aqua regia solution was the mixed acid of concentrated hydrochloric acid and concentrated nitric acid at a ratio 3:1. The digestion by aqua regia was performed at high pressure and temperature. The recommended temperature followed in two steps: the first step was a raising temperature, in this step the temperature increased from room temperature to 180 °C within 10 minutes; and the second step was the holding temperature which means that the temperature holds at 180 °C throughout digestion for 20 minutes. Then, samples was cooled down and filtered by using a Whatman No.41 filter paper. The volume was adjusted to 50 mL with deionized water in volumetric flask. Total heavy metal concentration was measured by Inductively Coupled Plasma-Optical Emission Spectrometers (ICP-OES).

To validate the method, the accuracy of the total digestion procedures for determining metals in the extracts was compared to the results of the Certified Reference Material, CRM 025-050 (RTC).

3.6 Soil amendment analysis

Before preparation of soil amendment samples, humic acid; an analytical grade, was weighted and mixed with dried tailings samples. Preparation and analysis of humic acid used the same method as soil analysis.

3.7 Quality control

Certified reference material was also analyzed following the same method as the sample in order to provide an indication of the extraction efficiency of each method. The analytical procedure accuracy for total and sequential extraction was checked using a soil certified reference material. CRM 025-050 (RTC) was moderately contaminated soil available from the Western United Sates (Peter Matúš et al., 2005). All samples and reference materials were carried out in triplicate for each experiment.

3.8 Data analysis

Statistical studies were applied for determination the correlation analysis by Statistical software SPSS packages program. Seven metals were interested in different soil amendments aging ratio and percent of leachate in each fraction step were analyzed and calculated based on the correlation matrix.

CHAPTER IV RESULTS AND DISCUSSION

4.1 The Physicochemical characteristics of soil and humic acid

The physicochemical characteristics of 30 samples from ten sampling spots (Fig. 4.1 to 4.3) are summarized in table 4.1. There are more details of raw data in table C-1 and C-2 in the Appendix C. Soil samples show physicochemical properties: pH ranges from 8.00 to 8.45 and organic matter content (%OM) from 1.04 to 1.50. In the experiment, Humic acid was bought from Sigma-Aldrich Corporation in Technical grade, pH ranges of 3.0, after rechecked at lab pH ranges of 1.97 to 2.07. The organic matter content ranges of humic acid are 70.05 to 78.33. Cations of heavy metal mostly mobile under acid condition and pH can be increased by liming usually reduces their bioavailability (Alloway, 1990)

Statistic value	Soil Ta	ailings	Humic acid		
	pH	OM (%)	рН	OM (%)	
Min	8.00	1.04	1.97	70.05	
Max	8.45	1.50	2.07	78.33	
Mean±SD	8.25±0.19	1.27±0.18	$2.02{\pm}0.05$	74.59±3.66	
Median	8.25	1.23	2.03	75.39	

Table 4.1 Physicochemical parameter of Soil tailings and Humic acid

Figure 4.1 Ten locations in Tailing Storage Facilities, TSF (small rectangular pictures)

Figure 4.2 The TSF in Akara gold mine.

Figure 4.3 How to sample soil tailings samples from TSF area in each punch.

For soil organic matter contents, almost soil tailings ranges are very low (1.04- 1.50%) which indicate that soil tailings in this area does not fertile because most agriculture soil is between 2-10% (Alloway, 1990).

4.2 Total metal concentrations in soil tailings

All samples were air dried, passed through a 200-mesh sieve and used three steps BCR sequential extraction from ten locations. All residues from oxidizable fraction or BCR3 were digested by using microwave digestion techniques, EPA 3052 method and aqua regia, in order to determine the total metal concentrations. The maximum, minimum, mean and median total metal concentrations (mg/kg soil), and standard deviations (%) of seven interested elements (Co, Cr, Cu, Mn, Ni, Pb and Zn) obtained from determination of 30 samples are reported in Table 4.2 and the comprehensive analytical results were shown in Appendix D-1.

All above data were shown in Table 4.2. and Fig 4.5 to 4.11. For Fig.4.5 to 4.11 were shown in bar graph, each bar include 4 fractions; BCR1, BCR2, BCR3 and residual fraction into percentage of fraction which calculating from average element concentration of raw data. X-axis was sampling locations and Y-axis was 100% fraction. Results found 70-80% of extractable Mn and 50-60% of extractable Pb in BCR1 and BCR2 fraction from whole fraction. The other was found in residual fraction (Pb Ni and Zn (50-60% of all fractions), Cr and Cu (70-80% of all fractions).

Each fraction was considered and there are some researches published that almost first and second fractions, exchangeable and reducible fractions, were dissolved easily into environment (Bacon and Davidson, 2008, Akkajit and Tongcumpou, 2010). Metal concentrations results from BCR1 and BCR2 were compared with Soil quality standards for habitat and agriculture of Pollution control department in Thailand of Cr, Mn, Ni, and Pb are not exceed 300, 1800, 1,600 and 400 mg/kg, respectively (PCD, 2008). On the other hand, the metal concentrations were determined from BCR1 and BCR2 mean elements can be leached into environment. Chotpantarat et al., (2008) and Changul et al (2008) found that concentration of heavy metal (Mn and Pb) in gold mine area are exceed than water quality standards for Industrial effluent Standards of Pollution control department in Thailand, which of Cu, Mn, Ni, and Pb are not more than 2.0, 5.0, 1.0, and 0.2 mg/L (PCD, 2004), reported in ground water concentration value exceeded the water quality standards for Industrial effluent Standards of Pollution control department in Thailand (See Appendix B and Fig. 4.4 to 4.10).

Table 4.2 Descriptive statistics of element concentrations (mg/kg) in 120 soil tailings

 samples by three-step BCR sequential extraction and total digestion

BCR1		Metal concentrations in samples (mg/kg)								
	Со	Cr	Cu	Mn	Ni	Pb	Zn			
Max	2.86	0.63	7.95	629.86	3.01	3.97	18.34			
Min	1.54	0.41	5.13	461.98	1.15	0.90	9.50			
Mean	2.32	0.50	6.75	577.37	1.63	1.85	13.28			
±SD	±0.39	±0.06	±0.65	±47.42	±0.34	± 0.90	± 2.35			
BCR2 Co Cr Cu Mn N				Ni	Pb	Zn				
Max	16.63	18.54	12.46	793.37	8.70	34.94	96.22			
Min	11.80	7.67	5.90	436.58	2.97	19.86	7.45			
Mean	13.85	13.90	10.10	677.57	4.46	28.63	13.80			
±SD	± 1.17	± 2.00	± 1.53	± 88.44	± 0.96	± 3.72	± 15.96			
BCR3	Со	Cr	Cu	Mn	Ni	Pb	Zn			
Max	12.05	8.11	17.81	36.83	8.33	14.49	146.59			
Min	0.40	0.87	2.64	0.07	0.59	2.10	0.12			
Mean	1.82	2.45	5.08	17.07	2.08	6.02	9.14			
±SD	± 2.82	± 1.63	± 3.14	± 12.16	± 1.43	± 3.05	± 27.54			
RES	Со	Cr	Cu	Mn	Ni	Pb	Zn			
Max	11.01	110.03	68.59	501.44	13.62	73.36	152.09			
Min	6.70	59.92	37.23	335.32	7.26	9.51	55.07			
Mean	8.79	88.86	54.35	429.47	9.53	21.38	82.70			
±SD	± 1.25	± 12.23	± 7.62	± 47.70	± 1.59	± 15.06	± 21.31			

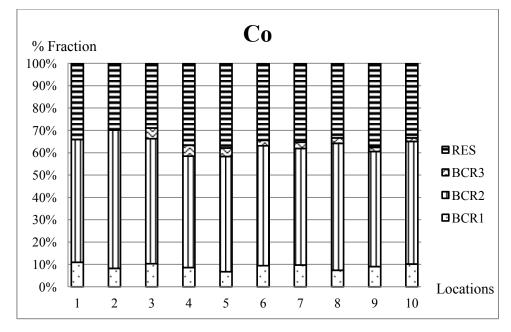


Figure 4.4 Average Co concentration of all fraction from ten locations

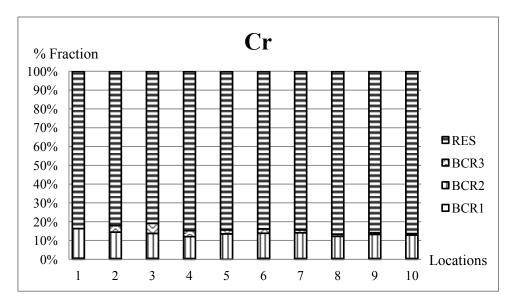


Figure 4.5 Average Cr concentration of all fraction from ten locations

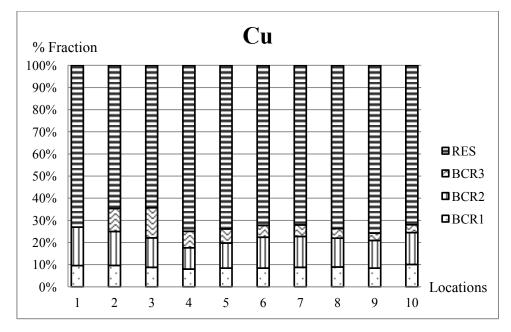


Figure 4.6 Average Cu concentration of all fraction from ten locations

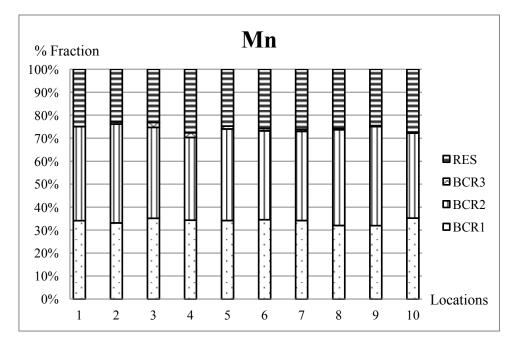


Figure 4.7 Average Mn concentration of all fraction from ten locations

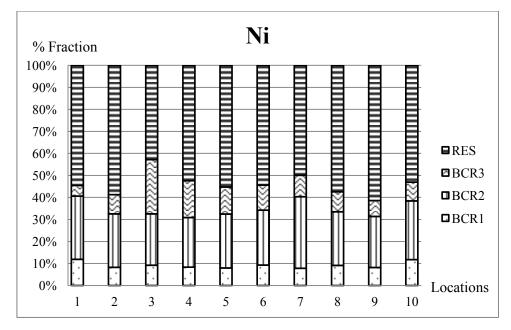


Figure 4.8 Average Ni concentrations of all fraction from ten locations

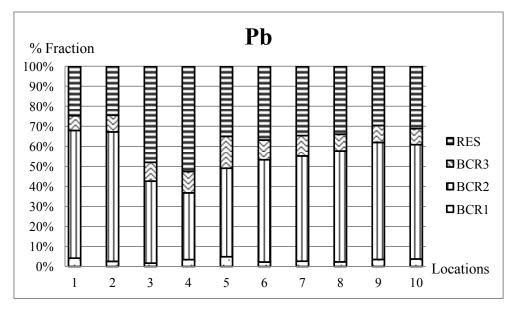


Figure 4.9 Average Pb concentration of all fraction from ten locations

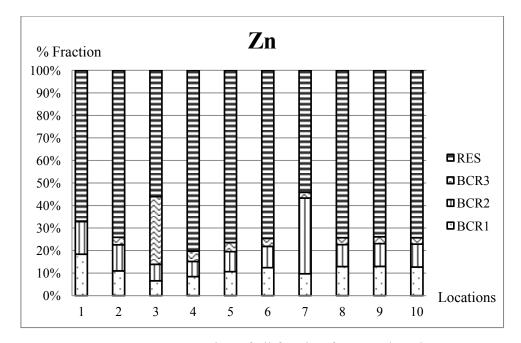


Figure 4.10 Average Zn concentration of all fraction from ten locations

From those average data of seven metal elements from ten sampling spots in TSF. Data was detemined in percentage of BCR1and BCR2 by using formula;

$$\%BCR1 = \frac{BCR1 \times 100}{(BCR1 + BCR2 + BCR3 + Res)}$$
$$\%BCR2 = \frac{BCR2 \times 100}{(BCR1 + BCR2 + BCR3 + Res)}$$

There were shown summary data in Table 4.3 which appeared from maximum to minimum percentage; for percentage of BCR1: Mn (32.39) > Co (8.88) > Ni (8.20) > Cu (8.11) > Zn (6.80) > Pb (3.85) > Cr (0.45), for percentage of BCR2; Co (51.90) > Mn (40.82) > Pb (34.91) > Ni (26.40) > Zn (22.62) > Cr (13.27) > Cu (12.33), and Summary proportion between BCR1 and BCR2: Mn (73.11) > Co (60.78) > Pb (38.76) > Ni (34.60) > Zn (29.42) > Cu (20.43) > Cr (13.72).

	Tailings from ten locations									
Element	Conc.	%(Max > Min)	(Max > Min) Element	Element	Conc.	%(Max > Min)	(Max > Min) Element	% (Max > Min)		
BCR1	BCR1	BCR1	BCR1	BCR2	BCR2	BCR2	BCR2	BCR1+BCR2		
Mn	622.9095	32.29	Mn	Mn	787.4717	40.82	Со	Mn	73.11	
Zn	16.1010	6.80	Со	Zn	53.5845	22.62	Mn	Со	60.78	
Cu	7.6769	8.11	Ni	Cu	11.6719	12.33	Pb	Pb	38.76	
Pb	3.7400	3.85	Cu	Pb	33.9403	34.91	Ni	Ni	34.60	
Со	2.7300	8.88	Zn	Со	15.9478	51.90	Zn	Zn	29.42	
Ni	2.0848	8.20	Pb	Ni	6.7126	26.40	Cr	Cu	20.43	
Cr	0.5547	0.45	Cr	Cr	16.4584	13.27	Cu	Cr	13.72	

Table 4.3 Average percentage proportion of tailing from ten locations in BCR1 and BCR2 from maximum to minimum.

4.3 Validation of the method

This experiment has a quality control by using natural matrix certified reference material (CRM) standard soil 025-050 which show metal concentration in detail on Appendix Table D-1, and compare between standard deviation averages CRM which measure in experiment as quality control show in Table 4.4. The table shows almost elements of measure values are in range of prediction interval, excluding Pb in range of confidential interval.

Table 4.4 Metal concentrations (mg/kg) of Certified and measured reference material(CRM 025-050)

Elements	Measure values (mg/kg)	Confidential Interval (mg/kg)	Prediction interval (mg/kg)		
Со	6.54 ± 0.50	3.56 - 4.57	2.03 - 6.10		
Cr	497.53 ±14.85	419 - 463	335 - 547		
Cu	18.05 ± 1.59	7.03 - 8.48	4.21 -11.3		
Mn	252.02 ±21.07	167 - 180	141 - 205		
Ni	27.12 ±1.17	10.7 - 13.6	4.69 - 19.6		
Pb	1,450.16 ±217.11	1,359 -1,536	1,017- 1,878		
Zn	76.82 ±2.28	48.4 - 55.1	34.3 - 69.2		

4.4 Comparison between aging time and organic amendment ratio

In this study, soil amendment with different ratio of humic acid and soil tailings were carried out for 30 days. Samples were collected after 1-, 7-, 15-, and 30-day-incubation with mixing soils into 5%, 7% and 10% SOM (by calculating results from 4.1). All elements concentration data in triplicate were shown in

Appendix D-2 to D-5 and average concentration of data (Table 4.4) and graphs (Fig. 4.11 to 4.45). All graphs and data are shown in each element and fraction in the following paragraphs by using SPSS statistics program to compare significant differences among average control and other SOM ratio. Statistical analysis was performed, based on these data by using select cases function button to separate and analyze in each incubation day ONE-WAY ANOVA models and LSD (Least Significant Difference), respectively. Table 4.4 was shown fraction by fraction from BCR1 as 1, BCR2 as 2, BCR3 as 3 and residual fraction as 4, and all seven elements concentration were shown in unit of mg/kg soil. For seven elements, results were shown in each element and organized by results of BCR1, BCR2, BCR3, Res (Residual fraction) and all proportion of fraction in each element in 100 percentages. By using this formula to calculate a percentage of decreasing or increasing when compare with average control value:

 $\% = [Average value at x day] - [Average value of control] \times 100$ [Average value of control]

BCR Day SOM Ni Pb Со Cr Cu Mn Zn 0.7595 Ctrl 2.8469 6.6867 596.4959 1.4435 1.4428 8.1935 5% 2.6994 0.7309 0.9934 613.4820 2.0592 0.7383 7.3844 1 1 7% 1 2.4922 0.5604 0.7560 624.8585 2.5721 0.4452 7.0629 0.5477 1 10% 2.3854 0.6091 618.1676 2.0973 0.4001 6.8140 0.6729 5.9004 572.4345 1 Ctrl 2.6419 1.6538 1.5097 7.8153 7.2616 1 5% 2.7361 0.7418 0.8539 642.5817 2.2016 0.8182 7 1 7% 2.6690 0.5544 0.6211 662.2470 2.2882 0.4773 6.6801 647.2612 2.2759 0.6363 0.5174 0.2338 6.6023 1 10% 2.4731 528.4903 1 Ctrl 3.0691 0.6275 6.3345 1.7263 1.1493 8.9761 5% 3.0974 0.7751 0.8158 596.3625 2.1973 0.9281 8.1245 1 15 1 7% 2.8234 0.5911 0.6229 580.1459 2.6731 0.5334 7.6743 10% 2.6510 0.6587 0.5383 555.9758 2.3938 1.0636 7.0005 1 Ctrl 2.8096 0.5878 5.0764638.3723 2.0671 1.2935 8.9209 1 5% 2.9650 0.5933 0.5603 744.6370 2.7530 0.5897 7.9737 1 30 1 7% 2.6030 0.4795 0.4603 704.3332 2.8910 0.4601 7.8521 10% 2.3543 0.6464 0.4362 700.7912 2.9029 0.3105 6.8439 1 BCR Day SOM Со Cr Cu Mn Ni Pb Zn 11.7532 Ctrl 4.7363 14.8643 765.3267 4.3103 21.8454 8.9507 2 2 5% 4.7323 737.0984 4.7368 20.2629 9.9156 11.8420 5.0148 1 7% 5.0247 11.6000 2.8964 707.2374 5.2423 17.9014 10.9775 2 10% 4.8863 10.3171 2.2006 686.5575 5.2279 16.5019 10.9783 2 705.4645 21.4014 8.3003 4.1500 13.8248 11.5626 3.8705 Ctrl 2 4.1597 12.5626 4.5681 646.0223 4.2593 20.3170 9.3958 5% 7 2 7% 4.5109 11.9767 2.6505 640.5451 4.7344 18.4009 11.3384 2 10% 4.7359 11.4543 2.0405 651.5717 4.9694 17.7160 10.4946 2 3.9065 16.2015 10.0466 633.9519 4.2838 20.2410 9.7308 Ctrl 2 5% 4.8843 14.0183 3.6045 612.2350 5.0220 18.6710 11.4458 15 2 13.5405 13.3647 2.5728 7% 5.8932 674.5862 5.6365 17.2250 2 10% 5.0801 12.6473 1.5969 570.3622 11.8688 5.4186 16.0520 2 Ctrl 3.9629 20.8031 12.3216 867.6175 3.2819 18.9490 11.9995 2 5% 4.8403 19.7349 5.8887 825.0901 4.5077 19.9050 16.1485 30 2 7% 5.9769 17.6945 4.1735 827.3822 4.6226 19.1790 15.3935 2 4.6994 10% 4.3804 17.3254 2.8662 782.9268 16.7510 14.5621

Table 4.4 Average all elements concentrations (mg/kg soil) in 1, 7, 15 and 30 days in all fraction

-		(Cont.)					1		
BCR	Day	SOM	Со	Cr	Cu	Mn	Ni	Pb	Zn
3		Ctrl	5.3923	3.1596	4.8292	16.2944	1.3258	3.3980	4.3538
3	1	5%	7.9683	4.2500	11.4133	26.3916	2.0162	5.2725	4.9215
3	1	7%	8.1539	5.4866	13.9901	33.7537	2.4531	5.4765	5.6362
3		10%	6.9660	7.0323	13.0124	31.3800	2.2836	6.6674	6.2876
3	7	Ctrl	6.2781	3.0173	6.5415	16.5347	1.4239	2.3548	4.2812
3	/	5%	6.9469	4.7189	11.6604	25.7213	2.0282	4.3354	5.6128
3		7%	8.4119	6.4568	14.5573	31.3225	2.5299	4.4776	6.3465
3		10%	8.3913	7.1877	14.8735	35.2674	2.7873	5.7970	7.0523
3		Ctrl	5.8074	3.7101	6.1702	24.3973	1.7806	2.3548	6.6429
3	15	5%	7.7224	4.6449	10.7743	48.7897	1.9600	4.3354	9.9758
3	15	7%	9.3467	5.8045	13.2725	61.3927	1.7485	4.4776	8.6586
3		10%	10.4613	8.9039	13.7481	69.8169	1.9554	5.7970	10.5438
3		Ctrl	5.4733	2.6515	5.2376	10.8135	1.7337	2.2516	4.6381
3	20	5%	6.8096	3.8632	12.3188	16.0173	1.8023	2.9162	5.6041
3	30	7%	7.1838	5.6404	13.2946	18.7927	1.9275	4.0391	5.8754
3		10%	6.5115	5.7808	13.3571	20.8265	1.8495	3.8589	7.0449
BCR	Day	SOM	Со	Cr	Cu	Mn	Ni	Pb	Zn
4		Ctrl	7.6190	86.3081	58.6394	430.2268	9.0224	11.9751	68.8165
4	1	5%	6.4058	80.7567	53.9556	418.0158	8.3070	13.3171	68.8514
4	1	7%	5.8986	79.6961	59.9173	386.1582	8.5229	15.7301	89.9839
4		10%	6.6450	82.4337	53.6011	407.5616	9.3454	12.9072	64.6594
4		Ctrl	7.7392	89.8630	46.3648	425.9290	11.0577	10.7178	70.9125
4	7	5%	6.9783	94.2773	43.2668	423.4370	10.4858	11.1741	72.2514
4	/	7%	6.8106	97.4097	43.5623	422.4052	10.5589	11.5568	74.6348
4		10%	6.8519	97.2821	43.0786	421.7775	10.9839	11.5360	66.2085
4		Ctrl	8.2864	99.7324	36.5363	346.1389	10.6089	8.1230	67.9675
4	15	5%	7.3720	103.3902	33.7276	315.8497	10.6566	8.8886	67.1840
4	15	7%	6.3390	95.0281	29.6522	265.5321	10.3426	8.5198	52.8461
4		10%	7.2396	99.4186	32.5943	302.9507	11.0184	8.0860	61.5719
4		Ctrl	8.4073	111.9746	36.7387	421.1350	7.9749	11.8792	71.1611
4	20	5%	8.1726	105.8840	32.9508	408.7692	7.5422	11.3439	66.5609
4	30	7%	7.8603	109.1092	32.1799	394.3977	8.6721	11.4043	64.1645
4		10%	8.4500	105.9357	34.1709	403.5614	8.8794	12.4357	69.1606

Table 4.4 Average all elements concentrations (mg/kg soil) in 1, 7, 15 and 30 days in all fraction (Cont.)

4.4.1 Cobalt

The concentration of Co in each fraction was determined, and the average concentrations of Co in the samples were shown in Figs. 4.11 to 4.15.

In BCR1 fraction (see fig.4.11), all of the samples at 1-, 7-, 15- and 30day of incubation with different SOM, indicated lower extractability significant differences (p < 0.05) of Co as compared to the control. At 1-day of incubation, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Co concentration as compare with control (12.46% and 16.21%, decrease, respectively). There was no significant difference in Co concentration observed in 7-day of incubation samples. At 15-day of incubation, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Co concentration as compare with control (8.00% and 13.62%, decrease, respectively). At 30-day of incubation, samples with 7% and 10%SOM showed significant difference (p < 0.05) in extractable Co concentration as compare with control (8.00% and 13.62%, decrease, respectively). At 30-day of incubation, samples with 7% and 10%SOM showed significant difference (p < 0.05) in extractable Co concentration as compare with control (7.35% and 16.21%, decrease, respectively).

In BCR 2 fraction (see Fig. 4.12), there was no significant difference of control at 1-day of incubation. At 7- day of incubation, samples with 7% and 10% SOM showed significant differences (p < 0.05) in extractable Co concentration as compare with control(8.70% and 14.12% increase, respectively). Significant differences (p < 0.05) in Co concentration were also detected among samples for 15-day of incubation and their controls. Samples with 5%, 7% and 10%SOM exhibited 25.03, 50.86% and 30.04% higher extractable Co than that in the control, respectively. At 30-day of incubation, samples with 5% and 7% SOM showed significant differences (p < 0.05) in extractable Co concentration as compare with the control (25.03%, and 50.82% increase, respectively). Although, all of the samples containing SOM (i.e. 5%, 7% and 10%) showed higher extractable Co than the control, sample incubated with 7% SOM for 7 days revealed the lowest detectable Co among the samples supplemented with different SOM.

For oxidizable fraction, BCR3 (see Fig. 4.13), Significant differences (p < 0.05) in Co concentration were also detected among samples for 1-day of incubation and their controls. Samples with 5% and 7% SOM exhibited 47.77% and 51.21% higher extractable Co than the control, respectively. At 7- and 15-day of incubation, samples with 10% SOM showed significant differences (p < 0.05) in extractable Co concentration as compare with control(33.66% and 80.14% increase, respectively). There was no significant difference of control at 30-day of incubation.

For residual fraction (see Fig. 4.14), At 1-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Co concentration as compare with control (15.92%, 22.52% and 12.78% increase, respectively). At 7-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Co concentration as compare with control (9.83%, 12.00% and 11.46% increase, respectively). Significant differences (p < 0.05) in Co concentration were also detected among samples for 15 days of incubation and their controls. Samples with 5%, 7% and 10% SOM exhibited 11.04%, 23.50% and 12.63% higher extractable Co, respectively. At 30-day of incubation, there is no significant difference was observed (p < 0.05) between Co concentration from samples with addition of SOM and control. (see Fig. 4.14 and Table 4.6).

Regarding of the 3-step BCR sequential extraction and the residual fraction, the percentage distribution of Cobalt in each fraction relatively to the sum of metal concentrations in all fractions (BCR1+ BCR2+ BCR3+ Res), which represent 100%, of all treated soils were determined in all incubation periods (1-, 7-, 15- and 30-day of incubation) (Figure 4.15.) Based on the overall percentage distribution in all incubation periods (1, 7, 15 and 30 days), the percentage of Co in residual fraction (Res) was dominant and the ranking of Co in other fractions is as following;

Res
$$(30-40\%) \approx BCR3 (30-40\%) > BCR2 (20-25\%) > BCR1 (10-15\%)$$

In conclusion, the residual fraction (Res) was the major fraction of Co in this study (the lowest in the % distribution as compared with other fractions). The optimum condition of Co in BCR2 and Residual fraction were 7%SOM. The optimum condition of Co in BCR1 and BCR3 were 10%SOM of soil amendment. However, the addition of 10% and 7%SOM could be the suitable ratio for reducing Co in BCR1.

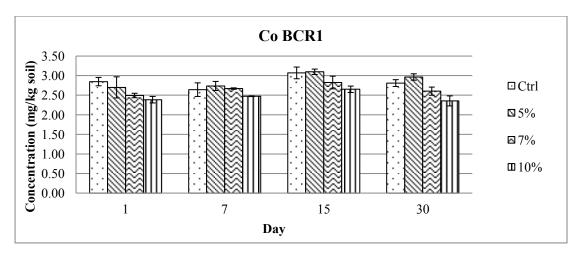


Figure 4.11 Averages Co concentrations in BCR1 within 30 days at different percentages of SOM.

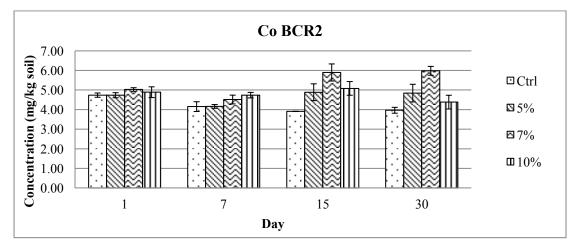


Figure 4.12 Averages Co concentrations in BCR2 within 30 days at different percentages of SOM.

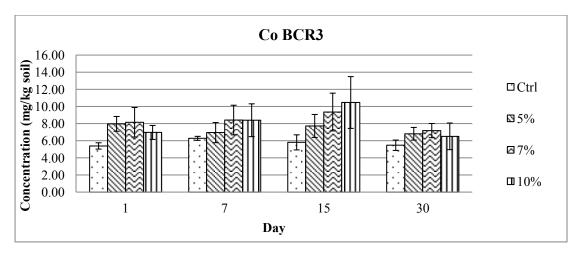
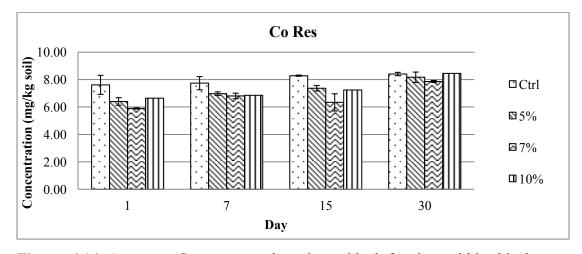
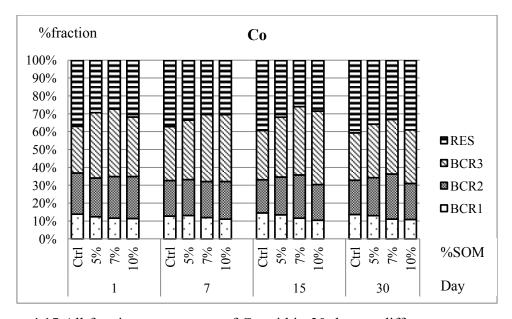




Figure 4.13 Averages Co concentrations in BCR3 within 30 days at different percentages of SOM.

Figure 4.14 Averages Co concentrations in residual fraction within 30 days at different percentages of SOM.

Figure 4.15 All fraction percentages of Co within 30 days at different percentages of SOM.

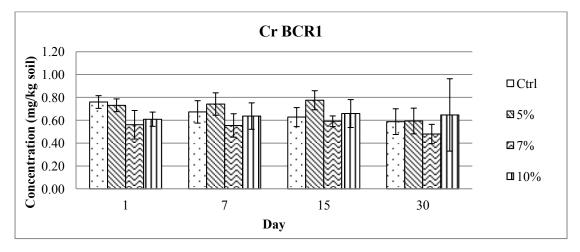
4.4.2 Chromium

The concentration of Cr in each fraction was determined, and the average concentrations of Co in the samples were shown in Figs. 4.16 to 4.20.

In BCR1 fraction (see Fig. 4.16), all of the samples at 1-, 7-, 15- and 30-day of incubation with different SOM: 5%, 7% and 10%SOM, indicated lower extractability significant differences (p < 0.05) of Cr as compared to the control. At 1-day of incubation, there were only samples with 7%SOM, extractable Cr concentration statistically significantly decreased (p < 0.05) 26.21%. At 7- and 15-day of incubation, samples with 5% SOM only showed significant differences (p < 0.05) in extractable Cr concentration. Comparing to the control, extractable Mn concentration statistically significantly increased (p < 0.05) 10.24% and 23.52%, respectively. There was no significant difference (p < 0.05) in 30-day-incubation.

In BCR2 fraction (see Fig. 4.17), all of the samples at 1-, 7-, 15- and 30-day of incubation with different SOM: 5%, 7% and 10%SOM, indicated lower extractability significant differences (p < 0.05) of Cr as compared to the control. For

1-day of incubation, statistically significantly decreased (p < 0.05) 20.33%, 21.96% and 30.59%, respectively. At 7-day of incubation, samples with 5%, 7% and 10% SOM statistically significantly decreased (p < 0.05) 9.13%, 13.37% and 17.15%, respectively. At 15-dayof incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cr concentration as compare to control (13.48%, 17.51% and 21.94% decrease, respectively). At 30-day of incubation, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cr concentration difference (p < 0.05) in extractable Cr concentration difference (p < 0.05) in extractable Cr concentration, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cr concentration as compare with control (14.94% and 16.72% decrease, respectively).


Interestingly, the Cr concentration showed in BCR3 fraction (see Fig. 4.18), of most samples is significantly higher than Cr detected in the controls (p < 0.05). Samples were incubated with 5%, 7% and 10%SOM, for 1 day statistically significantly increased (p < 0.05) 34.51%, 73.65% and 122.57%, respectively. At 7-day of incubation, samples with 7% and 10% SOM statistically significantly increased (p < 0.05) 113.99% and 138.21%, respectively. For 15-day of incubation, There was only found indicated significantly higher extractability (p < 0.05) of Cr when compared to the control with 10% SOM (139.99% increase). At 30-day of incubation, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cr concentration as compare with control (112.73% and 118.02% increase, respectively).

For residual fraction, there was no significant difference (p < 0.05) in 1-, 7-, 15- and 30-day of incubation.

For all fraction of Cr (Fig. 4.20), the percentage distribution of Cr in each fraction relatively to the sum of metal concentrations in all fractions (BCR1+ BCR2+ BCR3+ Res), which represent into 100%, of all treated soils were determined in all incubation. Based on the overall percentage distribution in all incubation periods, the percentage of Cr in residual fraction (Res) was dominant and the ranking of Cr in other fractions is as following;

Res (80-85%) > BCR2 (10-15%) > BCR3 (5%) > BCR1 (1-2%)

As mentioned, Almost of Cr was dominantly showed in residual fraction. The extractable Cr in BCR1 and BCR2 fractions were about 15% and time were not effect to Cr. For other research, Ololade (2009) found high concentration of Cu in sewage. Kumar et al., (2011) found heavy metal in Sukinda mining Area and quantity of Cr higher than Cu.

Figure 4.16 Averages Cr concentrations in BCR1 within 30 days at different percentages of SOM.

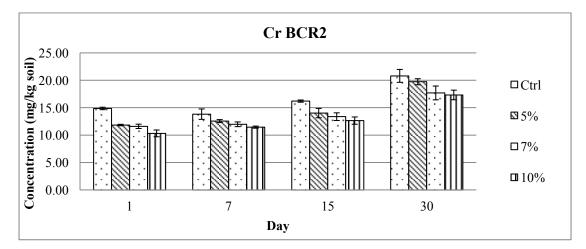


Figure 4.17 Averages Cr concentrations in BCR2 within 30 days at different percentages of SOM.

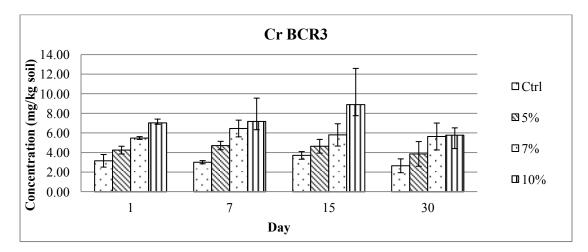
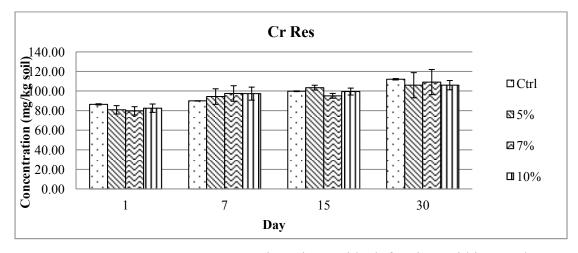
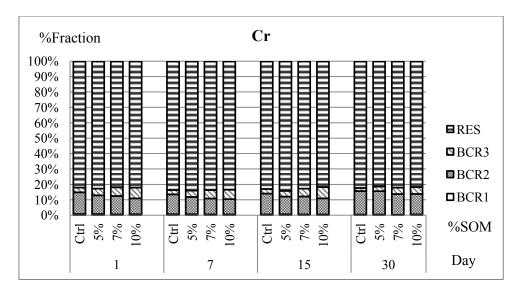




Figure 4.18 Averages Cr concentrations in BCR3 within 30 days at different percentages of SOM.

Figure 4.19 Averages Cr concentrations in Residual fraction within 30 days at different percentages of SOM.

Figure 4.20 All fraction percentages of Cr within 30 days at different percentages of SOM.

4.4.3 Copper

The concentration of Cu in each fraction was determined, and the average concentrations of Cu in the samples are shown in Figs. 4.21-4.24.

After investigated Cu in each fraction, for BCR1 fraction (see Fig. 4.21) all of the samples at 1-, 7-, 15- and 30-day of incubation with different SOM, showed that extractable Cu significantly extraordinary decrease (p < 0.05) as compared to those of the control. At 1-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to those of the control (85.14%, 88.69% and 91.81% decrease, respectively). At 7-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to those of the control (85.14%, 88.69% and 91.81% decrease, respectively). At 7-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to those of the control (85.53%, 89.47% and 91.23%, respectively). For 15-dayof incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to those of the control (87.12%, 90.17% and 91.50% decrease, respectively). Similarly, for 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to those of the control (87.12%, 90.17% and 91.50% decrease, respectively). Similarly, for 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu

concentration as compare to those of the control (88.96%, 90.93% and 91.41% decrease, respectively).

In BCR2 fraction (see Fig.4.22), all of the samples at 1-, 7-, 15- and 30-day of incubation with different SOM, indicated significantly lower extractability (p < 0.05) of Cu as compared to the control. For 1-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare with control (57.33%, 75.36% and 81.28% decrease, respectively). For 7 –day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to the control (60.49%, 77.08% and 82.35% decrease, respectively). For 15-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to the control (64.12%, 74.39% and 84.11% decrease, respectively. For 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to the control (52.21%, 66.13% and 71.74% decrease, respectively).

In BCR3 fraction (see Fig. 4.23), for 1-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Cu concentration as compare to the control (136.34%, 189.70% and 169.45% increase, respectively) . Significant differences (p < 0.05) in Cu concentration were also detected among samples with 7-day of incubation and the control. Samples with 5%, 7% and 10%SOM exhibited 78.25%, 122.54% and 127.37% higher extractable Cu as compare to the control. For 15-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Cu concentration as compare to the control (74.62%, 115.10% and 122.81% increase, respectively). For 30 days incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Cu concentration as compare to the control (74.62%, 115.10% and 122.81% increase, respectively). For 30 days incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Cu concentration as compare to the control (74.62%, 115.10% and 122.81% increase, respectively). For 30 days incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Cu concentration as compare to the control (135.20%, 153.83% and 155.03% increase, respectively.

For Cu concentration in residual fraction after 3-step sequential extraction (See Fig.4.24), there was no significant difference for Cu concentration of 1-day of incubation but the others for 7-, 15- and 30-day of incubation with different SOM, revealed significantly lower extractability (p < 0.05) of Cu as compared to the control. For 7-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to the control (6.68%, 6.04% and 7.09% decrease, respectively). For 15-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to the control (6.68%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to the control (7.69%, 18.84% and 10.79% decrease, respectively). For 30-day of incubation, samples with 5% and 7% SOM showed significant difference (p < 0.05) in extractable Cu concentration as compare to the control (10.31%, and 12.41% decrease, respectively).

Regarding of the 3-step BCR sequential extraction and the residual fraction, the percentage distribution of Cu of each fraction, relatively to the sum of metal concentrations in all fractions (BCR1+ BCR2+ BCR3+ Res, which represent totally 100%, of all treated soils were determined in all incubation periods (i.e.,1, 7, 15 and 30 days) as showed in Figure 4.25. Based on the overall percentage distribution in all incubation periods, the percentage of Cu in residual fraction (Res.) was dominant and the ranking of Cu in each fraction was shown as the following order:

For all fractions of extractable Cu concentration, the Cu concentration among %SOMs and the control for BCR1 and BCR2 were significantly decreased. It showed that almost available Cu in BCR1 and BCR2 (Fig. 4.21 and 4.22) were not easily leached into the environment. They were showed the evidence of increasing Cu concentration in BCR3 (see Fig. 4.23). The results showed high concentration in residual fraction as same as research of Janoš et al., (2010). Although the most fraction of Cu were in residual fraction, when time went on the extractable Cu were found. Results were support by research of Sprynskyy (2006).

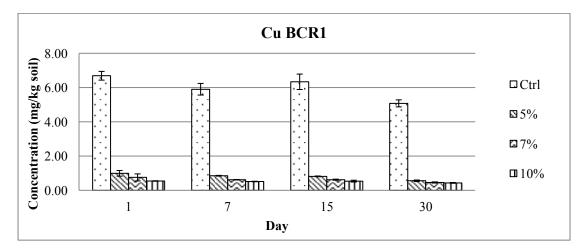


Figure 4.21 Average Cu concentrations in BCR1 within 30 days at different percentages of SOM.

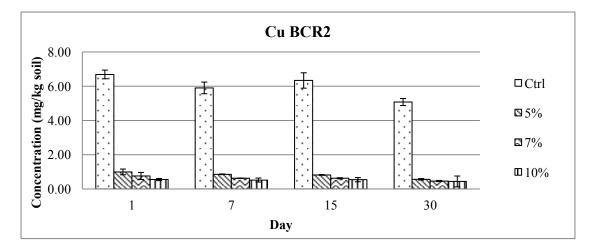


Figure 4.22 Average Cu concentrations in BCR2 within 30 days at different percentages of SOM.

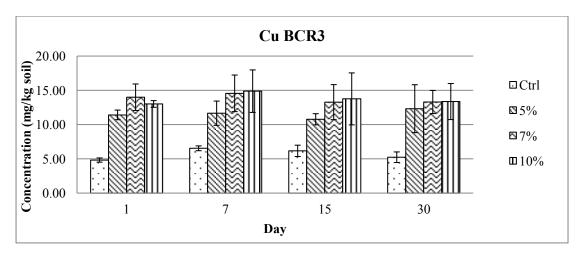
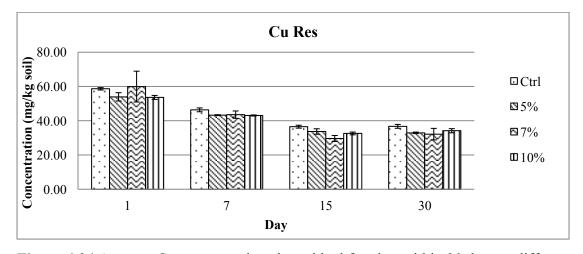
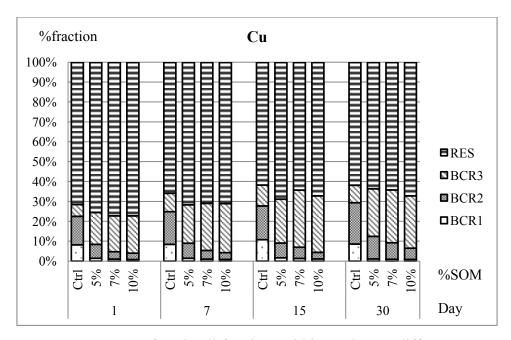




Figure 4.23 Average Cu concentrations in BCR3 within 30 days at different percentages of SOM.

Figure 4.24 Average Cu concentrations in residual fraction within 30 days at different percentages of SOM.

Figure 4.25 Percentages of Cu in all fractions within 30 days at different percentages of SOM.

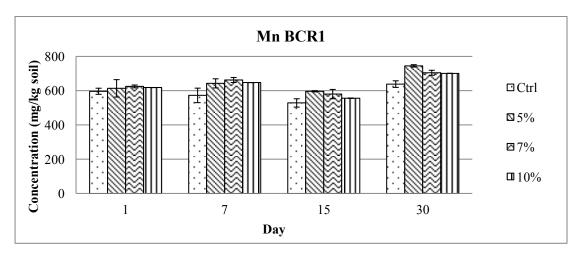
4.4.4 Manganese

The concentration of Mn in each fraction was determined, and the average concentrations of Mn in the samples are shown in Figs. 4.26-4.29.

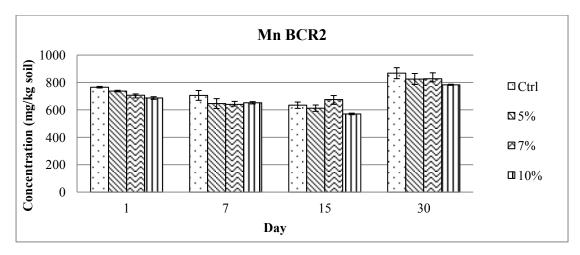
In the BCR1 fraction (see Fig.4.26), no reduction in extractable Mn was observed among samples with the addition of 5%, 7%, and 10% of SOM. There is no significant difference was observed (p < 0.05) between Mn concentration from samples with addition of SOM and control for 1-day of incubation. At 7-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Mn concentration as compare with control (12.85%, 15.69% and 13.07% increase, respectively). Significant differences (p < 0.05) in Mn concentration were also detected among samples for 15 days of incubation and their controls. Samples with 5% and 7% SOM exhibited 12.84% and 9.77% higher extractable Mn respectively. At 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Mn concentration as compare with the control (16.65%, 10.33% and 9.78% increase, respectively. Although, all of the

samples containing SOM (i.e. 5%, 7% and 10%) showed higher extractable Mn as compare with their control, sample incubated with 7% SOM for 15 days revealed the lowest detectable Mn among the samples supplemented with different SOM.

In BCR2 fraction (see Fig. 4.27), all of the samples at 1-, 7-, 15- and 30-day of incubation with different SOM, indicated lower extractability significant differences (p < 0.05) of Mn as compared to the control. At 1-day of incubation, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Mn concentration as compare with control (7.59% and 10.29% decrease, respectively). At 7-dayof incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Mn concentration as compare to control (8.43%, 9.20% and 7.64% decrease, respectively). For 15- and 30-day of incubation, There were only found indicated significantly lower extractability (p < 0.05) of Mn when compared to the control with 10% SOM (10.03% and 9.76% decrease, respectively).


Interestingly, the Mn concentration observed in BCR3 fraction (see Fig.4.28) of most samples is significantly higher than Mn detected in the controls (p < 0.05). Samples were incubated with 5%, 7% and 10%, for 1 day statistically significantly increased (p < 0.05) 61.97%, 107.15% and 104.86%, respectively. At 7-day of incubation, samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 55.56%, 89.44% and 113.29%, respectively. For 15-day-incubation samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 99.98%, 151.64% and 186.17%%, respectively. At 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Mn concentration. Comparing to the control, extractable Mn concentration statistically significantly increased (p < 0.05) 48.12%, 73.79% and 92.60%, respectively.

For Mn content in the soil residue after BCR extraction (see Fig.4.29), there was no significant difference in Mn concentration observed in 30-day of


incubation samples. Lower concentration of Mn was found in samples incubated with SOM for 1- and 15-day of incubation. After 1-day of incubation, the lowest significant different in Mn concentration was 7% (10.24%, increase). There was no significant difference (p < 0.05) in 7-day-incubation. Samples with 5%, 7%, and 10% SOM for 15 days exhibited 8.75%, 23.29% and 12.48%, respectively, lower than that in the control.

The amount of Mn extracted from each fraction and the Mn concentrations contained in the residue were shown in Fig. 4.30. The largest partition of the extractable Mn found in BCR2 fraction was a little higher than that in BCR1. The lowest amount of Mn was detected in BCR3 fraction. Furthermore, the proportion of BCR1 and BCR2 were approximately 70-80% of all fractions and can be concluded as the following order:

The results of BCR1 and BCR2 fractions were consistent with the previous studies at Akara mining site, conducted by Chotpantarat et al., (2008), and Changul et al., (2008), they found that Mn is the most metal concentrations leached from batch and column desorption tests.

Figure 4.26 Average Mn concentrations in BCR1 within 30 days at different percentages of SOM.

Figure 4.27 Average Mn concentrations in BCR2 within 30 days at different percentages of SOM.

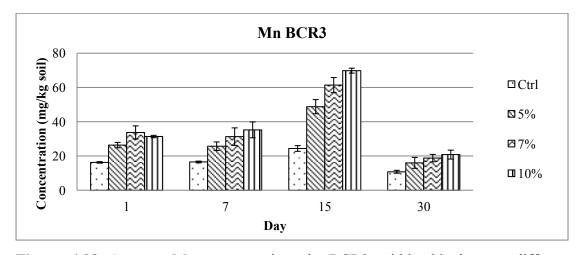
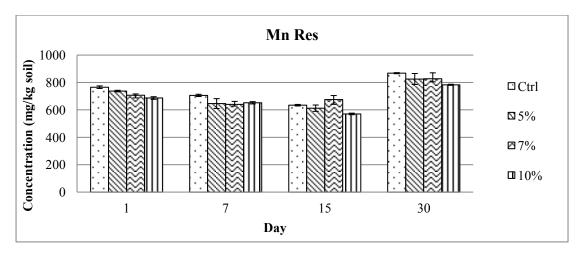



Figure 4.28 Average Mn concentrations in BCR3 within 30 days at different percentages of SOM.

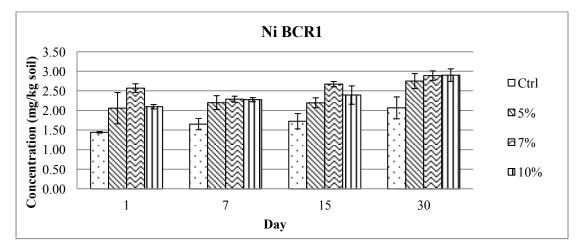
Figure 4.29 Average Mn concentrations in residual fraction within 30 days at different percentages of SOM.

Figure 4.30 All fraction percentages of Mn within 30 days at different percentages of SOM.

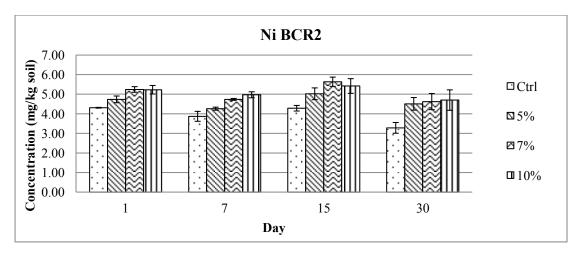
4.4.5 Nickel

In BCR1 fraction (see Fig. 4.31), Samples were incubated with 5%, 7% and 10% SOM, for 1-day of incubation Ni statistically significantly increased (p < 0.05) 42.66%, 78.19% and 45.30%, respectively. At 7-day of incubation, samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 33.12%, 38.36% and 37.61%, respectively. For 15-day-incubation samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 27.28%, 54.85% and 38.67%, respectively. At 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Ni concentration. Comparing to the control, extractable Ni concentration statistically significantly increased (p < 0.05) 33.18%, 39.86% and 40.43%, respectively.

In BCR2 fraction (see Fig. 4.32), At 1- day of incubation, samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 9.89%, 21.62% and 21.29%, respectively. At 7-day of incubation, samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 33.12%, 38.36% and 37.61%, respectively. For 15-day-incubation samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 17.23%, 31.58% and 26.49%, respectively. At 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant differences (p < 0.05) in extractable Ni concentration. Comparing to the control, extractable Ni concentration statistically significantly increased (p < 0.05) 37.35%, 40.88% and 43.19%, respectively.

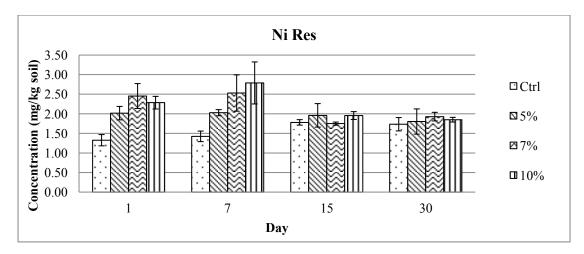

In BCR3 fraction (see Fig. 4.33), At 1- day of incubation, samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 52.08%, 85.03% and 72.25%, respectively. At 7-day of incubation, samples with 7% and 10% SOM statistically significantly increased (p < 0.05) 77.67% and 95.75%, respectively. For 15-day-incubation samples with 5% and 10% SOM statistically significantly increased (p < 0.05) 10.08% and 9.82%, respectively. There was no significant difference (p < 0.05) in 30-day of incubation.

For residual fraction (see Fig. 4.34), there was only samples with 5% SOM statistically significantly increased (p < 0.05) at 15-day of incubation.


The amount of Ni extracted from each fraction and the Ni concentrations contained in the residue were shown in Fig. 4.35. The largest partition of the extractable Ni found in residual fraction. The lowest amount of Ni was detected in BCR1 and BCR3 fraction. Furthermore, the proportion of BCR1 and BCR2 were approximately 30-40% of all fractions and can be concluded as the following order:

Res (45-55%) > BCR2 (25%) > BCR1 ≈ BCR3 (8-10%)

In conclusion, the residual fraction (Res) is the major fraction of Ni in this study. Sprynskyy et al., (2006) also found a decreasing extractable Ni in residual fraction.


Figure 4.31 Average Ni concentrations in BCR1 within 30 days at different percentages of SOM.

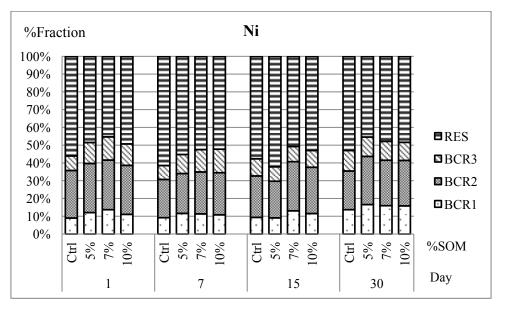

Figure 4.32 Average Ni concentrations in BCR2 within 30 days at different percentages of SOM.

Figure 4.33 Average Ni concentrations in BCR3 within 30 days at different percentages of SOM.

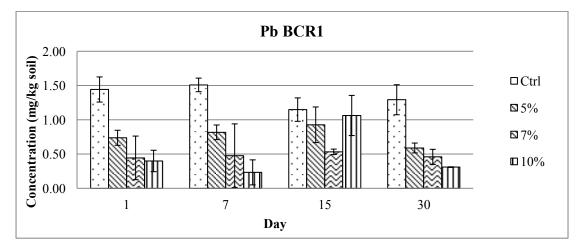
Figure 4.34 Average Ni concentrations in residual fraction within 30 days at different percentages of SOM.

Figure 4.35 All fraction percentages of Ni within 30 days at different percentages of SOM.

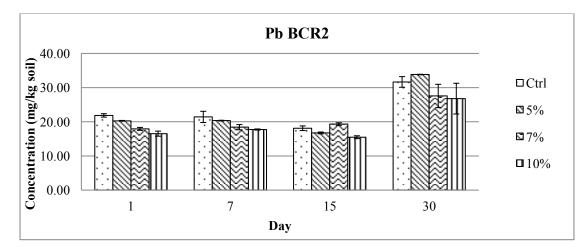
4.4.6 Lead

The concentration of Pb in each fraction was determined, and the average concentrations of Pb in the samples are shown in Figs. 4.36-4.39.

In BCR1 fraction (see Fig.4.36), all of the samples at 1-, 7-, 15- and 30-dayof incubation with different SOM, found that extractable Pb leached significantly lower than those extractable Pb as compared to the control with significant differences (p < 0.05). At 1-dayof incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Pb concentration as compared with the control (48.83%, 69.14% and 72.27% decrease, respectively). For 7-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Pb concentration as compared with the control (48.83%, 69.14% and 72.27% decrease, respectively). For 7-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Pb concentration as compared with the control (45.81%, 68.39% and 84.51% decrease, respectively). For 15-day of incubation with 7% SOM, there was only found indicated significantly lower those in the control (p < 0.05) about 53.59%. At 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) about 53.59%. At 30-day of incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the control (p < 0.05) in extractable Pb concentration as compared with the con


In BCR2 fraction (see Fig.4.37), all of the samples at 1-, 7-, 15- and 30-day-incubation with different SOM, indicated higher extractability significant differences (p < 0.05) of Pb as compared to the control. At 1-day ofincubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Pb concentration as compared with the control (7.24%, 18.05% and 24.46% decrease, respectively). At 7-dayof incubation, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Pb concentration as compared with the control (14.02% and 17.22% decrease, respectively). For 15-day of incubation with 10% SOM, there was only found that it decreased significantly lower extractability (p < 0.05) of Pb as compared to the control about 14.44%. Furthermore, there was no significant difference in Pb concentration observed in sample incubated with all contents of SOM for 30-day-incubation.

The Pb concentration determined in BCR3 (see Fig.4.38) fraction most SOM containing samples is significantly higher than Pb detected in the controls significant differences (p < 0.05). All of the samples at 1-, 7-, 15- and 30-day of incubation with different SOM, indicated significantly higher extractability significant differences (p < 0.05) of Pb as compared to those of the control. For 1-day of incubation, samples with 5%, 7% and 10% SOM statistically significant increased (p < 0.05) of extractable Pb concentration as comparing to the control approximately 55.16%, 61.17% and 96.21%, respectively. For 7 days incubation, samples with 5%, 7% and 10% SOM statistically significant increased (p < 0.05) (p < 0.05) of extractable Pb concentration as compare to those of the control approximately 98.19%, 109.12% and 132.57%, respectively. For 15-day of incubation, samples with 5%, 7% and 10% SOM statistically significant increased (p < 0.05) of extractable Pb concentration as compare to those of the control approximately 84.11%, 90.15% and 146.78%, respectively. For 30-day of incubation with 10% SOM, there was only found that extractable Pb significantly decreased (p < 0.05) as compared to those of the control approximately 71.39%.


In residual fraction (see Fig 4.39), there was no significant differences (p < 0.05) in extractable Pb for 30-day of incubation. It probably means that no significant effect of time and %SOM on residual fraction of Pb.

The amount of Pb extracted from each fraction and the Pb concentrations contained in the residue were shown in (Fig. 4.40). The largest partition of the extractable Pb was found in BCR2 fraction. The Lowest amount of Pb was detected in BCR1 fraction. The proportion of all fractions can be concluded from as the following order:

As mentioned, Pb was easily dissolved as shown higher than 50% of summation of extractable Pb in BCR1 and BCR2 fractions. From the research of Thilo (2008), Pb can be easily dissolved in acidic environment as same as under reducible condition (BCR2). According to the study of Akkajit and Tongcumpou (2008), metals always dissolve easily in the first and second fractions (BCR1 and BCR2). The level of Pb was in lined with from the research of Chotpantarat (2008) and Channgul (2008) that found Pb in leachate of Akara mine tailings. Furthermore, it may review that a longer duration of incubation time could not effect on extractability of Pb. However, the SOM clearly effect on extractability of Pb on BCR1, BCR2 and BCR3 (see Figs. 4.36-4.38).

Figure 4.36 Average Pb concentrations in BCR1 within 30 days at different percentages of SOM.

Figure 4.37 Average Pb concentrations in BCR2 within 30 days at different percentages of SOM.

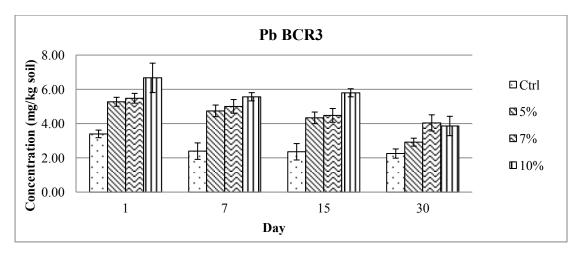
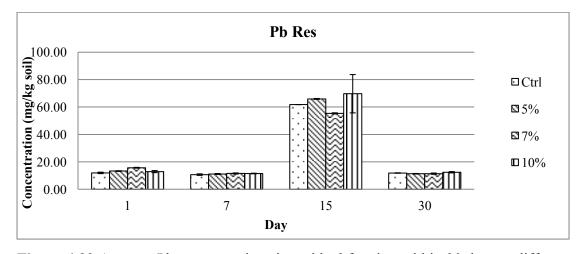
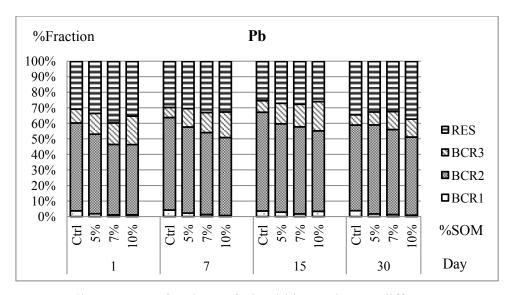




Figure 4.38 Average Pb concentrations in BCR3 within 30 days at different percentages of SOM.

Figure 4.39 Average Pb concentrations in residual fraction within 30 days at different percentages of SOM.

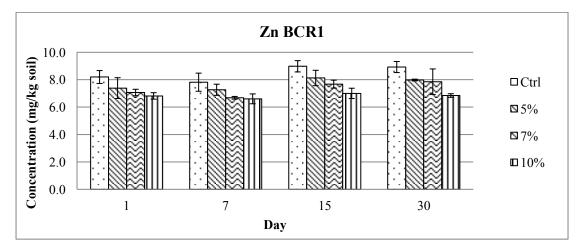
Figure 4.40 All percentage fractions of Pb within 30 days at different percentages of SOM.

4.4.7 Zinc

For BCR1 fraction (see Fig. 4.41), all of the samples at 1-, 7-, 15- and 30-day of incubation with different %SOM, indicated lower extractability significant differences (p < 0.05) of Zn as compared to the control. At 1-day of incubation, there was an only significant difference (p < 0.05) sample with 7% in extractable Zn concentration as compare with control (16.84% decreases). At 7-day of incubation, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Zn concentration as compare with control (14.52% and 15.52% decrease, respectively). At 15-dayof incubation, samples with 5%, 7% and 10% SOM showed significant difference (p < 0.05) in extractable Zn concentration as compare to control (9.49%, 14.50% and 22.01% decrease, respectively). At 30-day of incubation, samples with 7% and 10% SOM showed significant difference (p < 0.05) in extractable Zn concentration as compare with control (11.98% and 23.28% decrease, respectively).

For BCR2 fraction (see Fig. 4.42), at 1-day of incubation, samples with 7% and 10% SOM statistically significantly increased (p < 0.05) 22.64% and 22.65%, respectively. At 7-day of incubation, samples with 7% and 10% SOM statistically

significantly increased (p < 0.05) 36.60% and 26.44%, respectively. For 15-dayincubation samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 17.62%, 39.15% and 21.97%%, respectively. For 30-day-incubation samples with 5%, 7% and 10% SOM statistically significantly increased (p < 0.05) 84.58%, 28.28% and 21.36%, respectively.


For BCR3 fraction (see Fig. 4.43), at 1-day of incubation, samples with 7% and 10% SOM statistically significantly increased (p < 0.05) 29.46% and 44.42%, respectively. At 7-day of incubation, samples with 7% and 10% SOM statistically significantly increased (p < 0.05) 48.24% and 64.73%, respectively. At 15-day of incubation, there was only 10% SOM statistically significantly increased (p < 0.05) 58.72%. At 30-day of incubation, samples with 7% and 10% SOM statistically significantly increased (p < 0.05) 26.67% and 51.89%, respectively.

For residual fraction, There was only 15-day of incubation, which statistically significantly decrease, samples with 7% (22.25%) and 10% (9.41%) SOM.

The percentage of Zn in residual fraction (Res) was dominant and the ranking of Zn in other fractions is as following;

By summing the first-two fraction of BCR sequential extraction (BCR1 and BCR2), Zn in these two fraction is around 20% of the total metal concentration. Changul (2008) and Chotpantarat et al., (2008), Liu et al., (2006) and Jalali et al., (2008) found that as the time increased the Zn in the exchangeable fraction (BCR1) decreased and this is consistent to this study.

In conclusion, the residual fraction was the major fraction of Zn in this study (the lowest in the percentage distribution as compared to other fractions. For BCR1 and Residual fraction, more incubation time should be provided because of no significant difference between the control and other treatments were observed.

However, the addition of 10% of soil amendment (SOM) could be the minimum ratio for Zn in this fraction.

Figure 4.41 Average Zn concentrations in BCR1 within 30 days at different percentages of SOM.

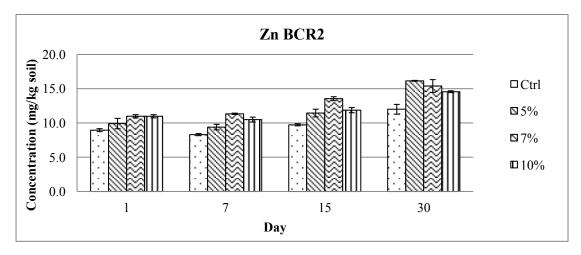


Figure 4.42 Average Zn concentrations in BCR2 within 30 days at different percentages of SOM.

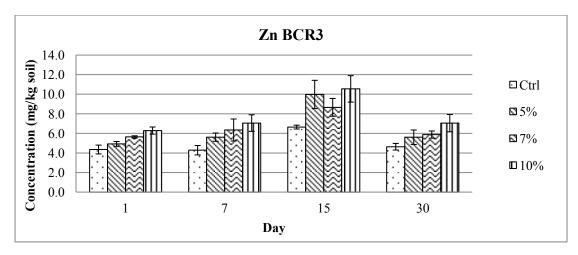
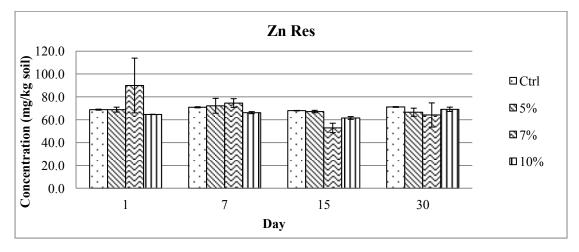
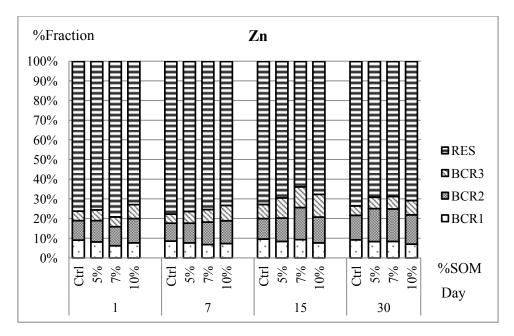




Figure 4.43 Average Zn concentrations in BCR3 within 30 days at different percentages of SOM.

Figure 4.44 Average Zn concentrations in residual fraction within 30 days at different percentages of SOM.

Figure 4.45 All percentage fractions of Zn within 30 days at different percentages of SOM.

4.5 Fractionation patterns of metals

According to ONE-WAY ANOVA, the result showed the increased and decreased trend of elements. However, regression analysis was then selected and used to determine the relationship between incubation times and element. (see Appendix F.). The following equation used semi-log linear regression to describe correlation between time and condition. Details showed as below;

$$Log Y = a + b \cdot X_1 + c \cdot X_2$$

Where; constant а = b Coefficient of time = X_1 Time = Coefficient of condition с = X_2 Condition =

1 40	the 4.6 All equations in each metal and fractions from Regression analysis								
	BCR1	BCR2	BCR3	RES					
Со	Log Y = 1.05	Log Y = 1.45 +	Log Y = 1.827 +	Log Y = 1.957					
	-0.014 X ₁ +0.001X ₂	$0.017X_1 + 0.001X_2$	$0.034X_1 - 0.004X_2$	$-0.012X_1 + 0.007X_2$					
	$R^2 = 0.3645$	$R^2 = 0.2272$	$R^2 = 0.2961$	$R^2 = 0.5589$					
Cr	Log Y = -0.3072	Log Y = 2.571 +	Log Y = 1.167 +	Log Y = 4.450 + -					
	-0.021X ₁ -0.007X ₂	$0.025X_1 - 0.016X_2$	$0.084X_1 - 0.004X_2$	$0.001 X_1 - 0.004 X_2$					
	$R^2 = 0.2167$	$R^2 = 0.9209$	$R^2 = 0.7069$	$R^2 = 0.6290$					
Cu	Log Y = 1.657	Log Y = 2.302	Log Y = 1.84 +	Log Y = 3.982 -					
	-0.255X ₁ -0.012X ₂	-0.172X ₁ +0.008X ₂	$0.092X_1 - 0.0017X_2$	$0.009X_1 - 0.941X_2$					
	$R^2 = 0.8698$	$R^2 = 0.9290$	$R^2 = 0.7388$	$R^2 = 0.6547$					
Mn	Log Y = 6.34 +	Log Y = 6.536	Log Y = 3.050 +	Log Y = 6.016 -					
	$0.008X_1 + 0.004X_2$	$-0.009X_1 - 0.005X_2$	$0.08X_1 - 0.015X_2$	$0.008X_1 - 0.002X_2$					
	$R^2 = 0.3019$	$R^2 = 0.3028$	$R^2 = 0.4515$	$R^2 = 0.5077$					
Ni	Log Y = 0.458 +	Log Y = 1.43 +	Log Y = 0.510 +	Log Y = 2.311 +					
	0.012X ₁ +0.001X ₂	$0.028X_1 - 0.004X_2$	$0.066X_1 + 0.023X_2$	$0.003X_1 + 0.004X_2$					
	$R^2 = 0.393$	$R^2 = 0.5941$	$R^2 = 0.5785$	$R^2 = 0.0600$					
Pb	Log Y = 0.296 -	Log Y = 2.945 –	Log Y = 1.156 -	Log Y = 2.751 -					
	$0.001X_1 - 0.130X_2$	0.020X1+0.0158X2	$0.077X_1 - 0.014X_2$	$0.004X_1 - 2.455X_2$					
	$R^2 = 0.5353$	$R^2 = 0.5893$	$R^2 = 0.8434$	$R^2 = 0.0156$					
Zn	Log Y = 2.096	Log Y = 2.128 +	Log Y = 1.542 +	Log Y = 4.2862-					
	$-0.022X_1+0.003X_2$	0.024X ₁ +0.013X ₂	$0.043X_1 - 0.043X_2$	$0.006X_1 - 0.003X_2$					
	$R^2 = 0.6607$	$R^2 = 0.779$	$R^2 = 0.3456$	$R^2 = 0.0724$					

Table 4.6 All equations in each metal and fractions from Regression analysis

According to equations, the negative sign (-) of X1 and X2 revealed the significance of elements with %SOM and duration of times (at P <0.05, respectively. For bolded equations mean r-square value were more than 0.70 and also had the negative sign (-) of X1 and X2. For BCR1, Cu Zn and Pb were reduced in significance (P <0.05), with Cu and Pb decreased with increasing times in significance (P <0.05). In BCR2, the leaching concentrations of Cu Cr and Pb reduced in significance (P <0.05). But only Ni was affected with time in significance (P <0.05). Moreover, for BCR3, there was no significant differences (P <0.05). with SOM. Time still affected on Cu Cr, Pb and Ni. for residual fraction, condition affected on Cr, Co and Mn. Time also effected on Cu, Co and Mn. Therefore, each equation fraction was concluded and showed in Table 4.7

Fraction	Condition (%SOM), X1	Time, X2
BCR1	Reduced leaching rate: Cu, Zn, Pb	Reduced leaching rate: Cu, Pb
BCR2	Reduced leaching rate: Cu, Cr, Pb	Reduced leaching rate: Ni
BCR3	-	Reduced leaching rate: Cu, Cr, Pb, Ni
Res	Reduced leaching rate: Cr, Co, Mn	Reduced leaching rate: Cu, Co, Mn

Table 4.7 Ranking of influence of SOM amount and time aging on reduction of heavy metal leaching

There are some research for distribution of heavy metal, Brunori et al., (2005) found that in short time, heavy metal can be leached and more soluble than long time incubation and Robinson (1999) said that soil amendment effect or Nickel and Cobalt leaching. Clemente et al., (2006) found that solubility of Mn was increased at the beginning of the experiment due to pH effect. Furthermore, the value of electronegativity (EN) of metals can predict the most strongly and weakly adsorbed by soil. As following: Pb (2.33) > Ni (1.97) > Cu (1.9) > Co (1.88) > Cr (1.66) > Zn (1.65) > Mn (1.55) (Alloway, 1990).

Therefore, most researchers found that Mn were the least adsorbed in the competition situation as same as this study. (Jalali and Moharrami, 2007; Lu and Xu, 2008 and Changul et al., 2010).

CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

The physicochemical characteristic of samples from ten locations, the average pH of soil tailings was 8.25 and the average pH of humic acid was 2.02. An average percentage of SOM in soil and humic acid were 1.27% and 74.59, respectively.

Tailings from Akara gold mine was determined seven elements; Co, Cr, Cu, Mn, Ni, Pb and Zn. According to three-step BCR and residual fraction, results were shown in percentage of fraction. Almost of higher concentration were found in residual fraction, which were found about 50-60% for Pb, Ni, and about 70-80% in Cr and Cu. However, Mn in BCR1 and BCR2 was found higher than other metals and also Pb was found about 50% in BCR1 and BCR2.

Each heavy metal fraction were investigated under different SOMs (5%, 7% and 10%) and time aging and analyzed by one-way ANOVA sand LSD statistical programme. The summary results found that: for BCR1, adding SOM reduced Cu Zn and Pb amount, and as reduced amount of Cu and Pb was reducing time aging (P <0.05). BCR2, Cu Cr and Pb were reduced leaching rate when percentages of SOM were high. And longer time only affected on Ni. For BCR3, there was no significant different in any correlation equations with SOMs. However, time still effected on Co, Cu, Cr, Pb and Ni. Moreover, for residual fraction, condition affected on Cr, Co and Mn. Time also effected on Cu,, Cr and Mn. However, when heavy metal were considered by semi-log linear regression. It about highly concentration (r >0.7) of Cu, at BCR1, Cu and Cr at BCR2 and Cu and Cr at BCR3.

5.2 Recommendation

For collecting samples in tailing facilities, it was hard to take a samples in high depths, Because of characteristic and landscape of TSF area almost have watery in the middle.

Manganese correlation in sample was quite high, especially in BCR1 and BCR2. Therefore, it should have a good management to prevent leaching of Mn and other metals to surrounding areas.

According to results, the optimum of SOM (at least 10%) the optimum content of SOM(at least 10%) would be recommend to mining site for mine reclamation. In addition, time aging on such mine tailings will be taken in consideration for reduction heavy metal leaching.

REFERENCES

- Andriano, D.C., Wenzel, W.W., Vangronsveld, J., Bolan, N.S. 2004. Role of assisted natural remediation in environmental cleanup. <u>Geodema</u>. 122:121-142.
- Akkajit, P. 2008. Effects of other matals on Cd uptake by sugarcane. Master's Thesis, Environmental Management, Graduate School, Chulalongkorn University.
- Akkajit, P. and Tongcumpou, C. 2010. Fractionation of metals in cadmium contaminated soil: Relation and effect on bioavailable cadmium. <u>Geodema</u>. 156: 126-132
- Akara mine. 1999. <u>Environmental impact Assessment Chatree Gold project</u>. Document prepared for Akara mining limited. 2 revision1.
- Alloway, B.J. 1995. <u>Heavy Metals in Soils</u>. London; New York: Black Academic & Professional.
- Assawadithalerd, M. 2009. Effects of organic fertilizer and potassium hydroxide addition on cadmium bioavailability in paddy soil. Master's Thesis, Environmental Management, Graduate School, Chulalongkorn University.
- Bacon, J.R., Davidson, C.M. 2008. Is there a future for sequential chemical extraction? <u>Analytica</u> 133: 25-46.
- Berzile, N., Lecomte, P., and Tessier A., 1989. Testing readsorption of trace elements during partial chemical extractions of bottom sediments, <u>Environmental</u> <u>Science and Technology</u>. 23(8); 1015-1020.
- Brunori, C., Cremisini, C., D'Annibale, L., Massanisso, P. and Pinto, V. 2005. A kinetic study of trace element leachability from abandoned-mined-polluted soil treated with SS-MSW compost and red mud. Comparison with results sequential extraction. <u>Analytical and Bioanalysis Chemistry</u>. 381: 1347-1354.
- Changul, C., Suthirat, C., Padmanahban G. and Tongcumpou, C. 2010a. Chemical characteristics and acid drainage assessment of mine tailings from Akara Gold mine in Thailand. <u>Environmental Earth Science</u>. 60: 1583-1595.

- Changul, C., Suthirat, C., Padmanahban G. and Tongcumpou, C. 2010b. Assessing the acidic potential of waste rock in the Akara gold mine, Thailand. Environmental Earth Science. 60: 1065-1071.
- Chotpantarat, S., Ong, S.K., Sutthirat, C. and Osathaphan, K. 2008. Heavy metal contamination of groundwater and surrounding soils by tailing leachates from a Gold Mine in Thailand. <u>Journal Science Res. Chulalongkorn University</u>. 33:101-112.
- Chow, T. 1970. Lead accumulation in roadside soil and grass. <u>Nature</u> (London). 225: 295-296.
- Cukrowska, E.M., Govender, K. and Viljoen, M. 2004. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation. <u>Chemosphere</u>. 56: 39-50.
- Dermont, G., Bergeron, M., Mercier, G., and Richer-Lafleche, M. Soil. 2007.Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous materials 152:1-31
- Egli, M., Fitze, P. and Oswald, M. 1999. Changes in heavy metal contents in an acidic Forest soil affected by depletion of soil organic matter within the time span 1969-93. <u>Environmental pollution</u>. 105: 367-379.
- Essington, M.E. 2003. <u>Soil and water chemistry : an integrative approach</u>. Florida: CRC Press.
- Everett, J. L., Day, C.L. and Reynods, D., 1967. Food Cosmetic toxicology. 5: 29-33.
- Gadepelle, V.P., Ouki, S.K., Herwijnen, R.V. Hutchings, Tony. 2007. Immobilization of heavy metal in soil using natural and waste Materials for vegetation Establishment on contaminated sites. <u>Soil and Sediment Contamination: An</u> <u>International Journal</u>. 16:2, 233-251.
- Gobran, G. R.; Lombi, E.; and Wenzel, W. W. 2001. <u>Trace elements in the</u> <u>rhizosphere</u>. Florida: CRC Press.

- Jalali, M. and Khanlari, Z.V. 2008. Effect of aging process on the fractionation of heavy metals in some calcareous soil in Iran. <u>Geodema</u>. 143:26-40.
- Janos, P., Vávrová, J., Herzogová, L. and Pilařová, V. 2010. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. <u>Geoderma</u> 159: 353-341.
- Jones, J.B.Jr. 2001. <u>Laboratory Guide for Conducting Soil Tests and Plant Analysis</u>: CRC press.
- Iwegbue,C.W.A., Emuh, F.N., Isirimah, N.O., Egun, and A.C. 2007. Review fractionation characterization and speciation of heavy metals in composts and compost-amended soils. <u>African Journal Biotechnology</u>. 6:067-078
- Kabata Pendias, A.and Pendias, H. 2001. <u>Trace Elements in Soils and Plants</u>. 3rd ed. Florida: CRC Press.
- Lasat, M.M. 2002. Phytoextraction of Toxic Metals: A Review of Biological Mechanism. Journal of Environmental Quality 31: 109-120.
- Lottermoser, B. 2003. <u>Mine Waste: Characterization, Treatment and Environmental</u> <u>Impacts</u>. Springer.
- Lu, A., Zhang, S., Shan, X.Q., 2005. Time effect on the fractionation of heavy metals in soils. <u>Geodema</u>. 125: 225-234.
- Méndez, M. and Armienta, M.A. 2003. Arsenic phase distribution in Zimapán mine tailings, Mexico. <u>Geofísica international</u>. 42: 131-140.
- McGowan, S.L. 2000. <u>In Situ chemical treatments for reducing heavy metal solubility</u> <u>and transport in smelter contaminated soil</u>. Ph.D. dissertation, Oklahoma State University.
- McLaren, R.G. and Cameron, K.C. 1997. <u>Soil Science: Sustainable production and</u> <u>environmental protection</u>. Auckland: Oxford University Press.

- Nigam, R., and Srivastava, M.M. 2003. Organically bound cadmium with reference to its speciation and bioavailability. Journal of Radioanalytical and Nuclear Chemistry 258 : 13-19.
- Nirel, P.M.V., and Morel, F.M.M., 1990. Pitfalls of sequential extractions, <u>Water</u> research. 24(8); 1055-1056.
- Pe'rez, G. and Valiente, M. 2005. Determination of pollution trends in an abandoned mining site by application of a multivariate statistical analysis to heavy metals fractionation using SM&T-SES. Journal of Environmental monitoring. 7:29-36
- Quevauviller, P. 2002. <u>Methodologies in Soil and Sediment Fractionation Studies:</u> <u>Single and Sequential Extraction Procedures</u>. Cornwall: The Royal Society of Chemistry.
- Rauret, G., López-Sánchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, Ph., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. <u>Journal of Environment Monitering</u>. 1:57-61.
- Ritcey, G.M. 2005. Tailings management in gold plants. Hydrometallurgy. 78:3-20
- Rodríguez, L., Ruiz, E., Alonso-Azcárate, J. and Rincón, J. 2009. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. <u>Journal Environmental Management</u>. 90: 1106-1116.
- Salomons, W. 1995. Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration. 52:5-23
- Selim, H. Magdi and Sparks, D.L. 2001. <u>Heavy metal release in soils</u>. Lewis Publisher.
- Sparks, D.L. 1995. Environmentsl soil chemistry. Academic press, New York. Taylor & Francis group. 2007. <u>Geoenvironmental sustainability</u>. LLC.

- Tokalioğlu, S., Kartal, S. and Bírol, G. 2003. Application of a three-stage sequential extraction procedure for the determination of extractable metal contents in highway soils. Turkey Journal Chemistry. 27: 333-346.
- Volesky, B. 1990. Biosorption of heavy metals. Florida: CRC Press.
- Yang, J.S., Lee, J.Y., Baek, K., Kwon, T.S. and Choi J. 2009. Extraction behavior of as, Pb, and Zn from mone tailings with acid and base solutions. <u>Journal of hazardous waste materials</u>. 171: 443-451.
- Yong, R.N. 2000. <u>Geoenvironmental engineering: contaminated soils, pollutant fate</u> <u>and mitigation</u>. Florida: CRC Press,
- Žemberyová, M.; Barteková, J.; Hagarová, I. 2006. The utilization of modified BCR three- step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. <u>Talanta</u> 70: 973-978.

APPENDICES

APPENDIX A

APPARATUS AND MATERIALS

Apparatus	Model	Series Number
1. PNP Orbital Shaker	OS-3	PNP062/48
2. Sartorius Balance 4 digits ,Germany	TE 214S	SWB:17508312
3. Thermolyne Hot Plate stirrer 7x7 inches, USA	SPA-1020B	1138040375412
4. Varian Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Australia	VISTA-MPX Axial	EL 02086289
5. Kendro Centrifuge, Germany	Biofuge Statos	40163872
6. Binder Oven, Germany	400(E2)	00-182047
7. Milestone Microwave Digestion and Extraction System, Italy	ETHOS PRO	127547
8. Milestone Microwave Digestion and Extraction System, Italy	ETHOS SEL	125060
9. Thermo Forma Freezer, USA	925	803075-2586
10. Orto alresa Sieve shaker and sieve 200 mesh, 0.075 mm or 75 um, Spain	TA002	542-54/03
12. ELGA Water purification system (18 M Ω), England	Option R7 Maxima HPLC	OR07F 181595BP

Table A-1 Apparatus and Materials used in this study

-

Appendix B

 Table B-1
 The Thailand soil quality standards for habitats and agriculture (PCD, 2008)

parameters	The Thailand soil quality standards for habitats and agriculture
Cr (hexavalent)	<300 mg/kg
Cadmium and compounds	< 37 mg/kg
Lead (Pb)	< 400 mg/kg
Nickel (Ni)	< 1,600 mg/kg
Manganese (Mn)	< 1,800 mg/kg
Arsenic (As)	< 3.9 mg/kg
Mercury and compounds	< 23 mg/kg

Table B-2 The Thailand industrial effluent standard and The standard of surface water quality for agriculture (PCD, 2008)

parameters	The Thailand industrial effluent standard	The standard of surface water quality for agriculture
рН	5.5-9	5-9
Zinc (Zn)	< 0.05 mg/l	< 1.0 mg/l
Cr (hexavalent)	< 0.25 mg/l	<0.05 mg/l
Cr (Trivalent)	< 0.75 mg/l	<0.5mg/l
Copper (Cu)	< 2.0 mg/l	<0.1 mg/l
Cadmium (Cd)	< 0.03 mg/l	< 0.05 mg/l
Lead (Pb)	< 0.2 mg/l	< 0.05 mg/l
Nickel (Ni)	< 1.0 mg/1	<0.1 mg/I
Manganese (Mn)	< 5mg/l	< 1.0 mg/l
Arsenic (As)	< 0.25 mg/l	< 0.01 mg/l

Appendix C

Samuelas	Soil tailings properties				
Samples	рН	OM (%)			
1-1	8.08				
1-2	8.00	1.49			
1-3	8.20				
2-1	8.22				
2-2	8.20	1.23			
2-3	8.14				
3-1	8.26				
3-2	8.15	1.04			
3-2	8.28				
4-1	8.34				
4-2	8.31	1.50			
4-3	8.29				
5-1	8.34				
5-2	8.37	1.38			
5-3	8.30				
6-1	8.40				
6-2	8.42	1.17			
6-3	8.25				
7-1	8.19				
7-2	8.17	1.23			
7-3	8.31				
8-1	8.38				
8-2	8.45	1.11			
8-3	8.22				
9-1	8.25				
9-2	8.29	1.51			
9-3	8.09				
10-1	8.15				
10-2	8.19	1.04			
10-3	8.15				

Table C-1. Physicochemical Characteristics of Studies Soil Tailings

Table C-2. Physicochemical Characteristics of humic acid

Samples	OM (%)
H-1	78.33
H-2	70.05
H-3	75.39

Appendix D

 Table D-1. Total metal concentrations (Co, Cr, Cu, Mn, Ni, Pb and Zn) in 123 Soil tailings samples and CRM 050-025

Samples	Metal concentration in Samples (mg/Kg)						
-	Со	Cr	Cu	Mn	Ni	Pb	Zn
BCR1 1/1	N/A	0.6082	6.4415	475.7109	2.0505	1.7665	18.3444
BCR1 1/2	2.5296	0.5759	6.5220	498.6683	1.7138	1.4363	14.9187
BCR1_1/3	2.4027	0.4543	6.3995	484.4058	1.7694	1.7141	15.0399
BCR1_2/1	2.0804	N/A	N/A	N/A	N/A	N/A	N/A
BCR1_2/2	2.1291	0.4374	6.3294	564.7129	1.4192	1.0196	9.6698
BCR1_2/3	2.1551	0.4416	6.4176	569.6464	1.3737	1.1261	9.4970
BCR1_3/1	2.4314	0.4607	6.9634	590.9913	1.5423	1.0943	13.7836
BCR1_3/2	2.3996	0.4336	6.0467	514.2230	1.5106	0.8927	11.3968
BCR1_3/3	2.8622	0.6313	7.1155	605.4416	2.0838	1.4059	9.9696
BCR1_4/1	2.4510	0.4123	6.9223	592.8656	1.4696	3.7229	12.8841
BCR1_4/2	2.5181	0.4405	6.9929	599.1732	1.5374	2.9616	11.5638
BCR1_4/3	2.3711	0.4115	6.9080	575.2974	1.4095	2.6494	11.6201
BCR1_5/1	1.5400	N/A	5.1264	599.2891	1.2055	3.7966	10.7050
BCR1_5/2	1.6112	N/A	5.3027	598.1807	1.1502	3.9869	10.6585
BCR1_5/3	1.6162	N/A	7.9459	607.2612	1.3905	3.4326	14.8508
BCR1_6/1	N/A	0.5376	6.5319	608.5612	1.9373	1.0514	12.6262
BCR1_6/2	2.2994	0.6031	6.5207	596.9697	1.7641	1.1965	15.6754
BCR1_6/3	2.6859	0.5233	6.6050	621.5940	1.5507	1.3751	17.0597
BCR1_7/1	2.6046	0.4993	7.0667	616.2582	1.5741	1.4237	15.8322
BCR1_7/2	2.8018	0.5772	7.3521	625.6451	1.6793	1.4437	15.2457
BCR1_7/3	2.7795	0.4799	7.2418	616.6864	1.6025	1.4989	15.5014
BCR1_8/1	1.8781	0.5033	6.2938	550.1497	1.4855	1.0041	14.6821
BCR1_8/2	1.8112	0.4444	6.3369	550.3086	1.4442	1.2664	12.5849
BCR1_8/3	1.7225	0.4158	6.2802	461.9763	1.4999	1.1402	12.1621
BCR1_9/1	2.5665	0.4837	7.0297	591.0530	1.6211	2.0716	13.5364
BCR1_9/2	2.5702	0.5529	7.0553	583.4978	1.5674	1.6734	13.2065
BCR1_9/3	N/A	0.4629	6.9760	576.2254	1.6382	1.9121	13.8456
BCR1_10/1	2.6441	0.5358	7.5609	613.1167	1.6401	1.9544	9.5407
BCR1_10/2	2.5967	0.5079	7.7513	625.7485	3.0110	1.7525	13.0966
BCR1_10/3	2.6222	0.5362	7.7184	629.8632	1.6033	1.7684	15.6760
BCR2_1/1	11.7986	13.6319	12.4601	598.3807	4.3645	24.0209	12.8025
BCR2_1/2	12.1542	13.9746	11.5071	577.0622	4.5721	24.7482	12.4743
BCR2_1/3	13.0265	13.9013	11.0486	575.0493	4.4876	26.6415	12.7331
BCR2_2/1	15.2669	12.4956	8.4809	690.7863	3.4715	23.0898	8.8098
BCR2_2/2	16.6287	16.4566	11.1246	783.5486	4.4256	30.2460	10.6541
BCR2_2/3	N/A	16.0763	10.6532	737.8228	4.4565	28.4005	10.6222
BCR2_3/1	15.1070	14.4351	10.7915	680.9992	4.6345	29.5181	11.7604
BCR2_3/2	N/A	14.1392	10.4891	664.6719	4.3858	27.6613	17.7084
BCR2_3/3	12.6297	12.5146	9.2192	578.7066	3.9917	26.3214	9.5162
BCR2_4/1	14.2712	7.6650	5.9034	436.5786	3.0162	24.2684	7.6650
BCR2_4/2	14.0461	13.7953	9.5358	715.7480	4.4291	33.2394	10.0602

Table D-1. Total metal concentrations (Co, Cr, Cu, Mn, Ni, Pb and Zn) in 123 Soil tailings samples and CRM 050-025 (Cont.)

		Metal concentration in Samples (mg/Kg)									
Samples	Со	Cr	Cu	Mn	Ni	Pb	Zn				
BCR2_4/3	14.0654	13.8561	9.4445	705.9080	4.4171	32.5456	11.0008				
BCR2_5/1	12.3373	12.2468	8.2820	723.4992	3.8317	33.5000	9.9068				
BCR2_5/2	12.1163	12.4861	8.2136	690.7257	3.8885	34.9429	9.5480				
BCR2_5/3	12.1859	12.3749	8.1081	690.8840	3.7898	33.3781	10.8335				
BCR2_6/1	14.3405	14.5018	10.8886	676.9322	4.7051	27.0583	11.6500				
BCR2_6/2	14.3266	15.1986	11.2608	709.9282	4.8066	28.3995	11.5112				
BCR2_6/3	13.8170	13.9945	10.5905	655.0844	4.5457	27.1955	11.3204				
BCR2_7/1	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
BCR2_7/2	14.5832	14.3799	11.1207	692.2985	4.7285	28.2803	10.9520				
BCR2_7/3	N/A	18.5369	11.9408	714.2406	8.6966	28.9026	96.2170				
BCR2_8/1	13.4257	9.2648	6.5975	475.3941	2.9741	19.8627	7.4508				
BCR2_8/2	13.8395	15.2005	10.5531	778.3795	4.4551	30.5375	11.7758				
BCR2_8/3	14.1656	14.7209	10.5794	774.9012	4.3751	29.9391	10.5937				
BCR2_9/1	14.8642	14.3789	10.3420	783.8084	4.4513	32.8401	10.7751				
BCR2_9/2	14.2388	14.8168	10.5681	785.2349	4.6913	30.8721	10.1548				
BCR2_9/3	14.7636	14.4541	10.1869	793.3717	4.4886	30.7898	10.8847				
BCR2_10/1	14.5809	15.0378	11.1440	689.3204	5.0533	31.5340	10.3606				
BCR2_10/2	N/A	14.3685	10.6834	653.6527	4.6982	29.2655	10.7589				
BCR2_10/3	13.6756	13.9901	11.1366	616.6568	4.4323	22.1309	9.5959				
BCR3_1/1	6.5803	N/A	N/A	0.1036	0.9404	3.4226	0.3796				
BCR3_1/2	8.7781	N/A	N/A	0.0697	0.5941	2.9021	0.1175				
BCR3_1/3	12.0485	N/A	N/A	0.0728	0.7072	2.3590	0.1432				
BCR3_2/1	N/A	N/A	N/A	0.0752	0.6006	2.1026	0.1154				
BCR3_2/2	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
BCR3_2/3	1.3880	3.7684	6.8514	30.4629	2.3524	4.8874	5.7266				
BCR3_3/1	1.0883	4.1770	6.7462	33.4840	2.6267	5.0320	6.5583				
BCR3_3/2	1.3720	8.1144	17.8132	36.8327	8.3303	7.6227	146.5839				
BCR3_3/3	1.0926	4.3062	6.5433	34.5165	2.7908	6.4348	6.4846				
BCR3_4/1	1.3139	3.3575	6.4417	36.5816	2.6640	9.8670	6.2525				
BCR3_4/2	1.4098	3.1051	6.3765	33.1988	2.9291	9.0871	6.6275				
BCR3_4/3	1.4054	3.1916	6.6544	32.6913	3.2293	10.0694	6.7501				
BCR3_5/1	1.0160	2.1365	5.0859	24.3562	1.9377	12.0256	5.3273				
BCR3_5/2	0.8617	1.9842	4.5946	22.6938	1.8779	14.4938	4.4999				
BCR3_5/3	0.8282	1.8557	4.2043	18.6272	1.9578	10.1061	4.1267				
BCR3_6/1	0.7555	2.8588	4.2576	19.5338	2.0891	5.5202	4.3268				
BCR3_6/2	0.6684	2.5852	4.3972	19.2798	2.1855	5.5253	4.5871				
BCR3_6/3	0.5178	1.9539	3.8349	14.3330	2.1611	4.8803	4.1626				
BCR3_7/1	0.6846	1.8926	3.8363	15.7412	1.9489	5.6012	4.3362				
BCR3_7/2	0.8344	1.8446	4.2282	14.8338	1.9209	4.5677	3.9286				
BCR3_7/3	0.8213	1.9872	4.7842	15.2569	2.1502	6.2929	3.9521				
BCR3_8/1	0.6304	1.2157	3.0085	9.3409	1.4634	3.8130	3.0547				
BCR3_8/2	0.5721	1.2948	3.2457	9.7626	1.4203	4.4248	3.3379				
BCR3_8/3	0.5772	1.0546	2.8935	8.3785	1.5126	3.9760	3.0717				
BCR3_9/1	0.6135	0.9770	2.7560	8.4897	1.4695	5.2197	3.6435				
BCR3_9/2	0.4073	0.8693	2.6425	7.1551	1.5123	4.0582	2.9448				

Table D-1. Total metal concentrations (Co, Cr, Cu, Mn, Ni, Pb and Zn) in 123 Soil tailings samples and CRM 050-025 (Cont.)

Converter.		Metal concentration in Samples (mg/Kg)									
Samples	Со	Cr	Cu	Mn	Ni	Pb	Zn				
BCR3_9/3	0.5512	0.9091	2.8911	7.9688	1.2589	4.4737	2.8931				
BCR3_10/1	0.3945	0.8883	2.6739	7.1334	1.5079	3.8903	2.9044				
BCR3_10/2	0.4514	0.6788	2.4653	7.0540	1.7645	4.1123	2.8945				
BCR3_10/3	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Res_1/1	8.0838	78.0727	50.5677	372.3242	9.6049	9.8845	61.2569				
Res_1/2	7.0409	66.9221	46.8803	335.3210	7.2566	9.5129	55.0696				
Res_1/3	7.8027	76.0265	49.9378	356.5041	8.5794	9.7700	59.2509				
Res_2/1	7.6452	95.2889	41.7514	396.3364	13.3638	9.9444	66.1279				
Res_2/2	7.8457	84.1496	44.5420	398.0429	8.6053	10.9696	65.1291				
Res_2/3	7.5871	83.3820	41.4621	383.0155	7.8969	9.9791	62.1841				
Res_3/1	6.7098	77.5059	37.2345	355.7632	7.5345	9.6830	66.1635				
Res_3/2	6.6992	76.2916	50.0818	344.5242	7.4300	14.6868	79.7656				
Res_3/3	8.1009	95.8507	60.2011	425.3943	8.8998	73.3606	152.0899				
Res_4/1	9.6588	88.2026	63.2962	487.2389	8.1402	58.4923	135.0020				
Res_4/2	10.7844	80.0984	63.0384	454.3898	8.9548	45.8740	95.9252				
Res_4/3	10.7791	88.5973	68.5874	481.9191	10.5591	37.6110	111.0726				
Res_5/1	9.5632	59.9240	50.6151	394.5794	8.3103	31.0535	85.8195				
Res_5/2	9.4650	76.5355	53.5832	474.5501	8.7115	27.6518	93.6662				
Res_5/3	7.8839	95.4854	56.5075	435.0434	8.9540	21.8962	80.9521				
Res_6/1	9.0212	102.9528	60.5985	480.2021	11.0900	21.0295	102.7348				
Res_6/2	9.2593	70.1276	49.5853	426.1563	10.3170	20.8224	89.1667				
Res_6/3	8.9715	100.4711	58.7171	455.8108	9.2276	17.7778	80.9374				
Res_7/1	10.3975	110.0319	58.8842	484.3893	10.8169	20.3447	90.4045				
Res_7/2	9.3716	92.8930	59.8174	462.9218	9.8314	17.2956	82.2866				
Res_7/3	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Res_8/1	7.8901	95.7324	50.4720	401.0677	10.0229	16.7561	72.5723				
Res_8/2	8.2970	96.0920	51.6643	430.9377	9.3125	16.2114	76.5628				
Res_8/3	8.1963	94.1542	54.6126	423.1818	8.5042	16.3636	78.0623				
Res_9/1	10.7749	99.6239	65.4503	453.6223	13.6243	16.6637	81.8884				
Res_9/2	10.2369	96.8871	59.7049	425.9475	12.2493	15.6603	72.5385				
Res_9/3	11.0131	94.9395	63.6297	464.1099	10.2600	15.4425	77.1393				
Res_10/1	8.4295	99.4452	54.1014	474.7276	9.9614	15.0198	76.6267				
Res_10/2	8.5089	99.8004	55.6607	501.4371	9.0790	15.9980	73.7355				
Res_10/3	8.8580	101.4773	54.9881	475.0942	9.1620	14.2861	74.3000				
CRM1	7.1047	513.6521	16.8168	227.6899	27.6437	1699.9229	79.1516				
CRM2	6.1510	484.4183	17.4865	264.0986	25.7743	1306.5678	74.5955				
CRM3	6.3691	494.5055	19.8430	264.2857	27.9317	1343.9953	76.7053				

*N/A means not available

 Table D-2
 Total heavy metal concentration in soil amendment ratio of triplicate control, 5%, 7% and 10% OM in 30 days at BCR1

Samples	Day	ОМ	Co1	Cr1	Cu1	Mn1	Ni1	Pb1	Zn1
•	•		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Ctrl1	1	-	2.8409	0.7149	6.8098	590.112	1.4488	1.4256	8.0299
Ctrl1	7	-	2.4415	0.5035	5.7532	523.802	1.5484	1.3978	7.0747
Ctrl1	15	-	3.1619	0.6169	6.7244	539.929	1.8954	0.9757	9.3128
Ctrl1	30	-	2.7998	0.5918	5.2331	634.893	1.9458	1.2282	8.4814
Ctrl2	1	-	2.9567	0.8219	6.8562	616.637	1.4594	1.6341	8.7237
Ctrl2	7	-	2.7414	0.5994	6.2887	600.518	1.8168	1.5862	8.0259
Ctrl2	15	-	2.8965	0.6006	5.8424	500.535	1.5116	1.1549	8.5151
Ctrl2	30	-	2.7282	0.4456	4.8446	621.065	1.8632	1.1148	9.0061
Ctrl3	1	-	2.7431	0.7418	6.3941	582.739	1.4223	1.2687	7.8270
Ctrl3	7	-	2.7429	0.5006	5.6594	592.984	1.5962	1.5452	8.3453
Ctrl3	15	-	3.1488	0.7890	6.4367	545.008	1.7718	1.3173	9.1002
Ctrl3	30	-	2.9008	0.8560	5.1513	659.159	2.2391	1.5374	9.2752
5%/1	1	5	2.3886	0.6680	0.8129	554.803	1.6463	0.7452	6.5287
5%/1	7	5	2.6063	0.5645	0.8427	612.811	2.2360	0.8708	6.8312
5%/1	15	5	3.1417	0.8055	0.8224	597.619	2.3425	1.0772	8.0399
5%/1	30	5	2.9207	0.4550	0.5316	738.049	2.9319	0.5091	8.0070
5%/2	1	5	2.8405	0.7937	1.0265	640.156	2.0891	0.6252	7.6507
5%/2	7	5	2.8280	0.7406	0.8419	664.394	2.3585	0.8883	7.3144
5%/2	15	5	3.1328	0.7992	0.8346	598.971	2.1063	1.0791	8.7218
5%/2	30	5	3.0591	0.4658	0.5383	751.862	2.7707	0.6480	8.0144
5%/3	1	5	2.8691	0.7309	1.1406	645.487	2.4422	0.8444	7.9738
5%/3	7	5	2.7739	0.7242	0.8772	650.541	2.0103	0.6954	7.6393
5%/3	15	5	3.0177	1.0903	0.7903	592.498	2.1431	0.6280	7.6116
5%/3	30	5	2.9151	0.5739	0.6108	743.999	2.5565	0.6120	7.8996
7%/1	1	7	2.5120	0.6974	0.6885	615.504	2.6629	0.6391	7.2990
7%/1	7	7	2.6544	0.6644	0.6101	655.627	2.3659	0.6598	6.5831
7%/1	15	7	2.6583	0.5780	0.5895	549.422	2.6030	0.2558	7.4787
7%/1	30	7	2.6902	0.5348	0.4675	713.690	2.9248	0.4949	8.9236
7%/2	1	7	2.4274	0.4527	0.9864	628.491	2.6046	0.3299	7.8504
7%/2	7	7	2.6635	0.6079	0.6154	652.046	2.2118	0.5227	6.7772
7%/2	15	7	2.9820	0.7896	0.6518	600.649	2.6787	0.4881	8.0066
7%/2	30	7	2.4878	0.5954	0.4900	687.399	2.9944	0.4232	7.3769
7%/3	1	7	2.5372	0.5312	0.5930	630.580	2.4489	0.3667	6.8268
7%/3	7	7	2.6891	0.6322	0.6377	679.068	2.2869	0.2493	7.1018
7%/3	15	7	2.8300	0.6753	0.6274	590.366	2.7377	0.8564	7.5376
7%/3	30	7	2.6310	0.4679	0.4235	711.911	2.7538	0.4622	7.2557

Samples	Day	ОМ	Co1 mg/Kg	Cr1 mg/Kg	Cu1 mg/Kg	Mn1 mg/Kg	Ni1 mg/Kg	Pb1 mg/Kg	Zn1 mg/Kg
10%/1	1	10	2.2914	0.6692	0.5603	604.217	2.0645	0.2202	6.5438
10%/1	7	10	2.4701	0.4755	0.5251	653.356	2.2755	0.1702	6.9641
10%/1	15	10	2.7298	0.5943	0.5013	565.199	2.2707	1.0088	7.3755
10%/1	30	10	2.4417	0.4431	0.4610	707.448	3.0854	0.2962	6.8801
10%/2	1	10	2.4151	0.5447	0.5321	626.260	2.0648	0.5012	6.9233
10%/2	7	10	2.4672	0.3687	0.5256	637.834	2.2234	0.0913	6.5978
10%/2	15	10	2.5659	0.5234	0.5156	545.816	2.2470	1.3800	6.6228
10%/2	30	10	2.4138	0.4481	0.4157	709.268	2.8454	0.3059	6.6978
10%/3	1	10	2.4496	0.6133	0.5507	624.026	2.1626	0.4791	6.9748
10%/3	7	10	2.4821	0.5484	0.5015	650.594	2.3288	0.4399	6.2450
10%/3	15	10	2.6574	0.6036	0.5979	556.913	2.6636	0.8020	7.0031
10%/3	30	10	2.2074	0.4308	0.4320	685.658	2.7780	0.3152	6.9537

Table D-2 Total heavy metal concentration in soil amendment ratio of triplicate control, 5%, 7% and 10% OM in 30 days at BCR1 (Cont.)

 Table D-3
 Total heavy metal concentration in soil amendment ratio of triplicate control, 5%, 7% and 10% OM in 30 days at BCR2

Samples	Day	ОМ	Co2	Cr2	Cu2	Mn2	Ni2	Pb2	Zn2
-	•	0	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Ctrl1	1	-	4.7747	14.7532	11.6128	764.434	4.3313	21.2727	8.9163
Ctrl1	7	-	3.8631	12.7440	10.4621	664.497	3.5862	19.7029	8.1270
Ctrl1	15	-	3.9032	16.3699	9.7292	651.071	4.3684	17.8604	9.8826
Ctrl1	30	-	3.8768	20.0202	12.2117	831.959	3.0664	29.9346	11.3818
Ctrl2	1	-	4.6132	14.7202	11.7066	760.197	4.2977	22.0590	8.7512
Ctrl2	7	-	4.3205	14.5240	12.0920	731.834	3.9504	22.9743	8.3440
Ctrl2	15	-	3.9136	16.2558	9.8602	643.120	4.3643	18.8561	9.7288
Ctrl2	30	-	4.1370	22.1560	12.8743	911.028	3.5902	32.9982	12.7808
Ctrl3	1	-	4.8209	15.1196	11.9401	771.350	4.3019	22.2045	9.1846
Ctrl3	7	-	4.2665	14.2065	12.1336	720.063	4.0749	21.5270	8.4300
Ctrl3	15	-	3.9025	15.9788	10.5503	607.665	4.1187	17.5464	9.5810
Ctrl3	30	-	3.8751	20.2331	11.8789	859.866	3.1892	31.9615	11.8357
5%/1	1	5	4.8256	11.8285	5.2089	738.487	4.8610	19.5650	10.0270
5%/1	7	5	4.2648	12.2566	4.4821	660.891	4.3493	19.8359	9.7127
5%/1	15	5	5.3747	14.8167	3.7749	648.397	5.3032	17.9185	12.3974
5%/1	30	5	5.3182	19.3923	5.6514	804.241	4.6180	33.3599	16.1397
5%/2	1	5	4.7865	11.9786	4.9703	756.217	4.8080	20.5996	9.9215
5%/2	7	5	4.0753	12.6660	4.4471	637.734	4.2065	20.5939	9.0019
5%/2	15	5	4.7017	13.1184	3.3859	580.211	5.0568	17.1952	11.2227
5%/2	30	5	4.7790	20.3715	6.1033	849.470	4.7597	33.7123	17.9408
5%/3	1	5	4.5848	11.7190	4.8654	716.591	4.5414	20.6243	9.7984
5%/3	7	5	4.1389	12.7653	4.7749	639.441	4.2220	20.5211	9.4728
5%/3	15	5	4.5763	14.1199	3.6529	608.097	4.7059	15.0378	10.7173
5%/3	30	5	4.4236	19.4409	5.9113	821.559	4.1453	34.3234	14.3649
7%/1	1	7	5.0999	11.4284	2.6345	714.218	5.0760	18.2726	10.9649
7%/1	7	7	4.2560	12.3232	2.5680	618.257	4.7807	17.8081	11.0792
7%/1	15	7	5.5736	12.5599	2.4337	654.971	5.3664	19.1332	13.0907
7%/1	30	7	5.8577	16.2502	4.2097	781.845	4.1714	23.6254	15.5008
7%/2	1	7	5.0515	12.0519	3.5267	710.417	5.3245	18.0103	12.8883
7%/2	7	7	4.6801	12.1102	2.8409	642.639	4.6835	19.2554	10.2758
7%/2	15	7	6.3904	13.6993	2.9786	708.992	5.7989	19.0598	14.2443
7%/2	30	7	6.2386	18.5650	4.0771	866.889	4.9807	29.8650	16.4097
7%/3	1	7	4.9226	11.3196	2.5281	697.077	5.3262	17.4212	10.9902
7%/3	7	7	4.5964	11.4968	2.5426	660.740	4.7390	18.1393	12.6602
7%/3	15	7	5.7155	13.8348	2.3063	659.796	5.7443	19.7333	13.2866
7%/3	30	7	5.8345	18.2682	4.2338	833.413	4.7157	29.1162	14.2700

Samples	Day	ОМ	Co2 mg/Kg	Cr2 mg/Kg	Cu2 mg/Kg	Mn2 mg/Kg	Ni2 mg/Kg	Pb2 mg/Kg	Zn2 mg/Kg
10%/1	1	10	4.8977	10.6820	2.2678	689.432	5.3020	17.1254	11.1921
10%/1	7	10	4.8189	11.6016	2.0475	656.896	5.1406	17.8882	10.6418
10%/1	15	10	5.1978	13.0849	1.5420	583.022	5.3720	15.4364	11.9960
10%/1	30	10	4.8627	17.9724	2.7908	834.751	5.0105	29.9250	15.0504
10%/2	1	10	5.1552	10.6654	2.2901	719.227	5.3990	16.6972	11.2845
10%/2	7	10	4.8163	11.2377	2.0284	655.160	4.8430	17.5605	10.3812
10%/2	15	10	4.6872	11.8834	1.6078	537.383	5.0689	15.9124	11.4232
10%/2	30	10	4.5943	17.6772	2.8921	776.997	4.9910	28.7305	14.7217
10%/3	1	10	4.6058	9.6038	2.0440	651.014	4.9829	15.6831	10.4584
10%/3	7	10	4.5724	11.5236	2.0455	642.658	4.9246	17.6993	10.4607
10%/3	15	10	5.3554	12.9737	1.6408	590.682	5.8148	15.0786	12.1872
10%/3	30	10	3.6843	16.3267	2.9157	737.033	4.0967	21.5963	13.9141

Table D-3 Total heavy metal concentration in soil amendment ratio of triplicate control, 5%, 7% and 10% OM in 30 days at BCR2 (Cont.)

Co3 Cu3 Mn3 Ni3 Pb3 Cr3 Zn3 Samples Day OM mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Ctrl1 1 4.9690 3.7023 4.4793 16.0282 1.2186 3.3512 4.7741 7 6.2829 2.9631 6.9449 17.0762 1.3815 1.8022 4.8344 Ctrl1 -Ctrl1 15 5.8262 3.6410 6.2698 24.7631 1.7753 1.8022 6.8671 1.9598 Ctrl1 30 5.5467 5.3811 10.8218 1.5589 2.1339 4.2619 _ Ctrl2 1 5.5615 2.4507 5.0393 16.0619 1.2701 3.6397 3.8790 -Ctrl2 7 6.0422 2.8892 6.2916 16.1109 1.3158 2.6474 4.0276 _ Ctrl2 15 6.6794 3.3570 6.9402 25.8479 1.8486 2.6474 6.5091 _ 30 Ctrl2 6.0389 3.3717 5.9300 11.6521 1.9063 2.0616 4.7406 -Ctrl3 1 5.6463 3.3257 4.9690 16.7931 1.4888 3.2031 4.4083 _ Ctrl3 7 6.5092 3.1997 6.3880 16.4170 1.5744 2.6146 3.9816 _ Ctrl3 15 4.9165 4.1322 5.3007 22.5811 1.7179 2.6146 6.5527 _ 30 4.8344 2.6229 4.4015 9.9666 1.7359 2.5592 4.9119 Ctrl3 _ 5 5%/1 1 8.9249 4.2396 12.0922 27.6511 2.4052 5.0924 4.9848 5%/1 7 5 3.5416 10.9446 24.3635 1.8447 6.4441 4.3510 5.6859 5%/1 15 5 6.6008 4.2855 10.1116 46.3706 2.0542 4.3510 4.9776 5 3.2135 8.9281 5%/1 30 4.0810 12.8394 1.7675 2.7932 4.9218 5 5%/2 1 7.7360 4.5011 11.4586 26.8831 1.8988 5.4926 5.0334 5%/2 7 10.3614 5 6.1061 4.5425 24.1912 1.9675 3.9899 5.1603 15 5 7.3576 4.0718 10.5251 46.4478 3.9899 8.5348 5%/2 1.8716 5%/2 30 5 9.5643 4.6606 15.9095 19.2429 1.8015 3.1836 6.3923 5 5%/3 1 7.2440 4.0092 10.6890 24.6405 1.7447 5.3401 4.6386 7 5%/3 5 8.2905 6.0727 13.6752 28.6091 2.2725 4.6653 5.9923 5%/3 15 5 9.2089 5.5773 11.6862 53.5508 1.9541 4.6653 11.4168 5 5%/3 30 6.7834 3.7154 12.1187 15.9696 1.8379 2.7716 5.4982 2.5510 7%/1 1 7 10.1344 5.5706 16.0008 37.4545 5.7803 5.5200 7 7 7%/1 6.5155 6.8296 11.6788 25.4522 1.9944 4.9418 5.0739 7%/1 15 7 8.6375 5.5348 12.8605 65.7992 1.7248 4.9418 8.8446 7%/1 30 7 6.9699 4.7838 13.4342 19.0318 1.9142 4.1354 6.1397 7%/2 1 7 7.3319 5.5687 13.8183 34.0382 2.7106 5.4357 6.6670 7%/2 7 7 9.9030 7.0616 16.9484 34.7965 2.7829 4.2485 7.1943 7%/2 15 7 11.8174 7.0538 16.0114 27.8102 1.7898 4.2485 9.4647 7%/2 30 7 8.0977 7.2246 14.9073 20.8240 2.0403 4.4555 6.0316 7%/3 6.9954 5.3206 12.1512 29.7684 5.7524 1 7 2.0977 5.2136 7%/3 7 7 5.4791 15.0447 33.7189 2.8123 8.8171 4.2426 6.7714 56.9862 7%/3 15 7 10.9456 1.7308 7.5853 4.8248 4.2426 7.6664 7%/3 30 7 4.9128 5.4548 6.4838 11.5422 16.5223 1.8282 3.5265

Table D-4 Total heavy metal concentration in soil ratio of triplicate control, 5%, 7% and 10% OM in 30 days at BCR3

Samples	Day	ОМ	Co3 mg/Kg	Cr3 mg/Kg	Cu3 mg/Kg	Mn3 mg/Kg	Ni3 mg/Kg	Pb3 mg/Kg	Zn3 mg/Kg
10%/1	1	10	7.8326	6.8771	13.5730	31.6987	2.4277	6.3410	6.3432
10%/1	7	10	9.4015	9.4795	16.6409	37.1537	2.8562	5.9922	7.3660
10%/1	15	10	8.3294	12.9394	11.2594	68.3777	1.8423	5.9922	10.5733
10%/1	30	10	8.1505	6.5461	16.3647	23.7865	1.7950	3.8148	7.1092
10%/2	1	10	6.8467	7.4732	12.7214	31.8575	2.3138	6.0198	6.6191
10%/2	7	10	6.1842	4.7425	11.2933	29.9813	2.2198	5.5349	6.0942
10%/2	15	10	9.1361	5.7004	11.8756	71.2560	2.0019	5.5349	9.1800
10%/2	30	10	6.3299	5.0632	12.2123	19.8007	1.9186	4.4452	7.8930
10%/3	1	10	6.2186	6.7466	12.7428	30.5838	2.1094	7.6414	5.9007
10%/3	7	10	9.5883	7.3411	16.6864	38.6673	3.2859	5.8638	7.6965
10%/3	15	10	13.9184	8.0718	18.1092	34.6256	2.0221	5.8638	6.9144
10%/3	30	10	5.0540	5.7330	11.4944	18.8922	1.8348	3.3168	6.1323

Table D-4 Total heavy metal concentration in soil ratio of triplicate control, 5%, 7% and 10% OM in 30 days at BCR3 (Cont.)

 Table D-5
 Total heavy metal concentration in soil amendment ratio of triplicate control, 5%, 7% and 10% OM in 30 days at residual fraction

Samples	Day	ОМ	Co4	Cr4	Cu4	Mn4	Ni4	Pb4	Zn4
-			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Ctrl1	1	-	6.8204	73.1948	57.8648	424.601	7.9338	12.5837	67.8977
Ctrl1	7	-	7.3165	86.0893	45.3055	418.431	11.271	11.0843	69.6655
Ctrl1	15	-	8.262	96.2322	35.5551	339.958	9.8979	61.813	65.2458
Ctrl1	30	-	8.3755	109.824	38.0174	417.486	7.2862	11.7268	71.7803
Ctrl2	1	-	7.9509	93.703	58.8574	424.848	9.9951	11.6696	71.0383
Ctrl2	7	-	8.2601	93.9697	47.5393	434.810	11.7081	10.0836	73.0768
Ctrl2	15	-	8.2604	99.6436	37.0432	347.446	9.7049	61.794	67.9875
Ctrl2	30	-	8.5433	116.145	35.8513	425.262	9.1086	11.8491	70.8068
Ctrl3	1	-	8.0857	92.0266	59.1961	441.232	9.1384	11.6719	67.5133
Ctrl3	7	-	7.641	89.53	46.2495	424.547	10.1941	10.9854	69.9951
Ctrl3	15	-	8.3368	103.322	37.0106	351.012	12.2239	11.3287	70.6692
Ctrl3	30	-	8.3032	109.955	36.3473	420.656	7.53	12.0617	70.8962
5%/1	1	5	6.5713	79.5969	55.8896	428.392	8.12	14.2127	71.3564
5%/1	7	5	6.9239	90.7924	43.1571	417.834	10.1066	11.2084	79.584
5%/1	15	5	7.5269	105.424	34.7924	323.832	14.3915	70.87	68.2893
5%/1	30	5	7.8096	98.3812	32.9522	397.315	6.7754	11.7946	65.6433
5%/2	1	5	6.5606	88.7376	51.2247	396.559	9.0583	12.9782	67.5784
5%/2	7	5	6.8844	99.16	43.579	425.902	11.347	10.9086	67.1623
5%/2	15	5	7.1448	102.381	34.4937	314.751	14.9113	64.9595	67.1125
5%/2	30	5	8.1452	110.883	32.5084	408.935	7.9792	11.1239	63.529
5%/3	1	5	6.0856	73.9356	54.7526	429.096	7.7428	12.7605	67.6195
5%/3	7	5	7.1267	92.8796	43.0642	426.575	10.0038	11.4054	70.0079
5%/3	15	5	7.4442	102.366	31.8967	308.966	15.9321	61.9315	66.1501
5%/3	30	5	8.5629	108.388	33.3919	420.057	7.8719	11.1132	70.5105
7%/1	1	7	5.513	75.7836	69.5987	361.041	7.5825	48.3595	113.94
7%/1	7	7	6.4468	105.846	41.9218	422.678	10.9916	10.8554	73.7613
7%/1	15	7	5.6702	92.4394	27.8549	247.801	9.8466	57.0358	48.859
7%/1	30	7	6.5266	95.0351	28.3808	340.687	8.2998	9.5352	52.4416
7%/2	1	7	6.0526	79.0531	58.3349	410.553	8.6652	17.0669	65.6198
7%/2	7	7	7.3543	96.3441	45.994	436.456	10.533	12.5471	78.7981
7%/2	15	7	6.4295	97.4037	29.7659	266.405	10.2727	44.7538	52.5944
7%/2	30	7	8.831	120.2	34.8199	424.940	9.8243	12.3696	67.0606
7%/3	1	7	6.1302	84.2515	51.8182	386.881	9.3212	14.3933	66.0283
7%/3	7	7	6.6306	90.0387	42.7711	408.082	10.1519	11.268	71.3451
7%/3	15	7	6.9172	95.2412	31.3357	282.391	10.9085	64.363	57.085
7%/3	30	7	8.2233	112.093	33.3389	417.566	7.8921	12.3081	72.9913

Samples	Day	ОМ	Co4 mg/Kg	Cr4 mg/Kg	Cu4 mg/Kg	Mn4 mg/Kg	Ni4 mg/Kg	Pb4 mg/Kg	Zn4 mg/Kg
10%/1	1	10	6.9587	87.3637	54.337	411.503	9.9168	13.3167	64.5105
10%/1	7	10	6.5538	104.716	42.8166	418.697	10.649	11.2894	65.2493
10%/1	15	10	7.176	103.49	31.6788	304.011	11.3367	78.3966	62.531
10%/1	30	10	8.826	101.514	33.8721	400.300	10.2056	12.9156	67.6357
10%/2	1	10	6.4303	80.1746	52.257	392.415	9.0324	12.044	64.6854
10%/2	7	10	6.6989	91.8655	43.4293	421.654	10.2216	11.6254	66.981
10%/2	15	10	7.219	97.2708	32.9362	309.135	11.7258	53.5785	61.979
10%/2	30	10	8.0128	105.325	33.1353	397.182	8.437	11.9616	71.277
10%/3	1	10	6.5459	79.7628	54.2093	418.766	9.0871	13.3609	64.7824
10%/3	7	10	7.3031	95.2647	42.9897	424.982	12.0813	11.6933	66.3951
10%/3	15	10	7.3238	97.4951	33.1678	295.706	9.9926	77.147	60.2057
10%/3	30	10	8.5113	110.968	35.5052	413.203	7.9955	12.4299	68.5691

Table D-5 Total heavy metal concentration in soil amendment ratio of triplicate control, 5%, 7% and 10% OM in 30 days at residual fraction (Cont.)

Appendix E

Table E-1.1a Day 1; BCR1 ANOVA

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.385	3	.128	5.445	.025
Co1	Within Groups	.189	8	.024		
ľ	Total	.574	11			
	Between Groups	.082	3	.027	4.119	.049
Cr1	Within Groups	.053	8	.007		
	Total	.135	11			
	Between Groups	79.180	3	26.393	783.586	.000
Cu1	Within Groups	.269	8	.034		
	Total	79.450	11			
	Between Groups	1319.087	3	439.696	.563	.654
Mn1	Within Groups	6242.610	8	780.326		
	Total	7561.696	11			
	Between Groups	1.928	3	.643	14.701	.001
Ni1	Within Groups	.350	8	.044		
	Total	2.277	11			
	Between Groups	2.086	3	.695	28.206	.000
Pb1	Within Groups	.197	8	.025		
	Total	2.283	11			
	Between Groups	2.926	3	.975	3.502	.069
Zn1	Within Groups	2.228	8	.279		
	Total	5.155	11			

Mean Difference Dependent (I) Condition (J) Condition Std. Error Sig. Variable (I-J) .273 Co1 .00 .05 .1475000 .1253748 .07 .3547000 .1253748 .022 .10 .4615333 .1253748 .006 .05 -.1475000 .1253748 .273 .00 .07 .2072000 1253748 .137 .10 .3140333 .1253748 .037 .07 .00 -.3547000 .1253748 .022 .05 -.2072000 1253748 .137 .1068333 1253748 .419 .10 .10 .00 .1253748 .006 -.4615333 .05 -.3140333 .1253748 .037 .07 -.1068333 .1253748 .419 Cr1 .00 .05 .0286667 .0665172 .678 .07 .1991000^{*} .0665172 .017 10 .1504667 .0665172 .054 .05 .00 -.0286667 .0665172 .678 .07 .1704333 .0665172 .034 .10 .1218000 .0665172 .104 .07 .00 -.1991000 .0665172 .017 -.1704333 .05 .0665172 .034 .10 -.0486333 .0665172 .486 .10 .0665172 .00 -.1504667 .054 .05 -.1218000 .0665172 .104 .07 .0486333 .0665172 .486 .05 .000 Cu1 .00 5.6933667 1498507 .07 5.9307333 .1498507 .000 .10 6.1390000 1498507 .000 .05 .00 -5.6933667 .1498507 .000 .152 .07 .2373667 1498507 .10 .4456333 1498507 .018 -5.9307333 .1498507 .07 .00 .000 .05 -.2373667 .1498507 .152 .2082667 .1498507 .202 .10 .10 .00 -6.1390000 1498507 .000 .05 -.4456333 .1498507 .018 .07 -.2082667 .1498507 .202 .00 Mn1 .05 -16.9860667 22.8082761 .478 -28.3626667 .07 22.8082761 .249 .10 .370 -21.6717333 22.8082761 .05 .00 16.9860667 22.8082761 .478 .07 -11.3766000 22.8082761 .631 .10 -4.6856667 22.8082761 .842 22.8082761 .07 .00 28.3626667 .249 11.3766000 22.8082761 .05 .631 10 6.6909333 22.8082761 .777 .10 .00 21.6717333 22.8082761 .370 4.6856667 22.8082761 .842 .05 .07 -6.6909333 22.8082761 .777

Table E-1.1b Day 1; Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni1	.00	.05	6157000*	.1707032	.007
		.07	-1.1286333*	.1707032	.000
		.10	6538000*	.1707032	.005
	.05	.00	.6157000*	.1707032	.007
		.07	5129333*	.1707032	.017
		.10	0381000	.1707032	.829
	.07	.00	1.1286333*	.1707032	.000
		.05	.5129333*	.1707032	.017
		.10	.4748333*	.1707032	.024
	.10	.00	.6538000*	.1707032	.005
		.05	.0381000	.1707032	.829
		.07	4748333*	.1707032	.024
Pb1	.00	.05	.7045333*	.1281856	.001
		.07	.9975667*	.1281856	.000
		.10	1.0426333*	.1281856	.000
	.05	.00	7045333*	.1281856	.001
		.07	.2930333	.1281856	.052
		.10	.3381000*	.1281856	.030
	.07	.00	9975667*	.1281856	.000
		.05	2930333	.1281856	.052
		.10	.0450667	.1281856	.734
	.10	.00	-1.0426333*	.1281856	.000
		.05	3381000*	.1281856	.030
		.07	0450667	.1281856	.734
Zn1	.00	.05	.8091333	.4309355	.097
		.07	.8681333	.4309355	.079
		.10	1.3795667*	.4309355	.013
	.05	.00	8091333	.4309355	.097
		.07	.0590000	.4309355	.894
		.10	.5704333	.4309355	.222
	.07	.00	8681333	.4309355	.079
		.05	0590000	.4309355	.894
		.10	.5114333	.4309355	.269
	.10	.00	-1.3795667*	.4309355	.013
		.05	5704333	.4309355	.222
		.07	5114333	.4309355	.269

		1	ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.176	3	.059	2.079	.181
Co2	Within Groups	.225	8	.028		
	Total	.401	11			
	Between Groups	33.373	3	11.124	73.684	.000
Cr2	Within Groups	1.208	8	.151		
	Total	34.581	11			
	Between Groups	170.992	3	56.997	602.067	.000
Cu2	Within Groups	.757	8	.095		
	Total	171.749	11			
	Between Groups	10687.154	3	3562.385	8.501	.007
Mn2	Within Groups	3352.356	8	419.045		
	Total	14039.511	11			
	Between Groups	1.792	3	.597	24.433	.000
Ni2	Within Groups	.196	8	.024		
	Total	1.988	11			
	Between Groups	51.220	3	17.073	50.380	.000
Pb2	Within Groups	2.711	8	.339		
	Total	53.932	11			
	Between Groups	12.419	3	4.140	11.166	.003
Zn2	Within Groups	2.966	8	.371		
	Total	15.384	11			

Table E-1.2a Day 1; BCR2 ANOVA

Table E-1.2b Day 1; BCR2 Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co2	.00	.05	.0039667	.1369608	.978
		.07	2884000	.1369608	.068
		.10	1499667	.1369608	.305
	.05	.00	0039667	.1369608	.978
		.07	2923667	.1369608	.065
		.10	1539333	.1369608	.294
	.07	.00	.2884000	.1369608	.068
		.05	.2923667	.1369608	.065
		.10	.1384333	.1369608	.342
	.10	.00	.1499667	.1369608	.305
		.05	.1539333	.1369608	.294
		.07	1384333	.1369608	.342
Cr2	.00	.05	3.0223000*	.3172542	.000
		.07	3.2643667*	.3172542	.000
		.10	4.5472667*	.3172542	.000
	.05	.00	-3.0223000*	.3172542	.000
		.07	.2420667	.3172542	.467
		.10	1.5249667*	.3172542	.001
	.07	.00	-3.2643667*	.3172542	.000
		.05	2420667	.3172542	.467
		.10	1.2829000*	.3172542	.004
	.10	.00	-4.5472667*	.3172542	.000
		.05	-1.5249667*	.3172542	.001
		.07	-1.2829000*	.3172542	.004
Cu2	.00	.05	6.7383000 [*]	.2512228	.000
		.07	8.8567333*	.2512228	.000
		.10	9.5525333*	.2512228	.000
	.05	.00	-6.7383000 [*]	.2512228	.000
		.07	2.1184333*	.2512228	.000
		.10	2.8142333*	.2512228	.000
	.07	.00	-8.8567333 [*]	.2512228	.000
		.05	-2.1184333*	.2512228	.000
		.10	.6958000*	.2512228	.024
	.10	.00	-9.5525333 [*]	.2512228	.000
		.05	-2.8142333*	.2512228	.000
		.07	6958000*	.2512228	.024
Mn2	.00	.05	28.2284000	16.7141561	.130
		.07	58.0893667*	16.7141561	.008
		.10	78.7693000 [*]	16.7141561	.002
	.05	.00	-28.2284000	16.7141561	.130
		.07	29.8609667	16.7141561	.112
		.10	50.5409000*	16.7141561	.016
	.07	.00	-58.0893667*	16.7141561	.008
		.05	-29.8609667	16.7141561	.112
		.10	20.6799333	16.7141561	.251
	.10	.00	-78.7693000*	16.7141561	.002
		.05	-50.5409000*	16.7141561	.016
		.07	-20.6799333	16.7141561	.251

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni2	.00	.05	4265000*	.1276680	.010
1 (12	.00	.07	9319333*	.1276680	.000
		.10	9176667*	.1276680	.000
	.05	.00	.4265000*	.1276680	.010
		.07	5054333*	.1276680	.004
		.10	4911667*	.1276680	.005
	.07	.00	.9319333*	.1276680	.000
	,	.05	.5054333*	.1276680	.004
		.10	.0142667	.1276680	.914
	.10	.00	.9176667*	.1276680	.000
		.05	.4911667*	.1276680	.005
		.07	0142667	.1276680	.914
Pb2	.00	.05	1.5824333*	.4753221	.010
		.07	3.9440333*	.4753221	.000
		.10	5.3435000*	.4753221	.000
	.05	.00	-1.5824333*	.4753221	.010
		.07	2.3616000*	.4753221	.001
		.10	3.7610667*	.4753221	.000
	.07	.00	-3.9440333*	.4753221	.000
		.05	-2.3616000*	.4753221	.001
		.10	1.3994667*	.4753221	.019
	.10	.00	-5.3435000*	.4753221	.000
		.05	-3.7610667*	.4753221	.000
		.07	-1.3994667*	.4753221	.019
Zn2	.00	.05	9649333	.4971532	.088
		.07	-2.6637667*	.4971532	.001
		.10	-2.0276333*	.4971532	.004
	.05	.00	.9649333	.4971532	.088
		.07	-1.6988333*	.4971532	.009
		.10	-1.0627000	.4971532	.065
	.07	.00	2.6637667*	.4971532	.001
		.05	1.6988333*	.4971532	.009
		.10	.6361333	.4971532	.237
	.10	.00	2.0276333*	.4971532	.004
		.05	1.0627000	.4971532	.065
		.07	6361333	.4971532	.237

		1	ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	14.392	3	4.797	4.250	.045
Co3	Within Groups	9.030	8	1.129		
	Total	23.422	11			
	Between Groups	24.947	3	8.316	51.679	.000
Cr3	Within Groups	1.287	8	.161		
	Total	26.234	11			
	Between Groups	153.292	3	51.097	44.924	.000
Cu3	Within Groups	9.099	8	1.137		
	Total	162.392	11			
	Between Groups	539.306	3	179.769	40.070	.000
Mn3	Within Groups	35.891	8	4.486		
	Total	575.197	11			
	Between Groups	2.217	3	.739	11.066	.003
Ni3	Within Groups	.534	8	.067		
	Total	2.751	11			
	Between Groups	16.446	3	5.482	23.427	.000
Pb3	Within Groups	1.872	8	.234		
	Total	18.318	11			
	Between Groups	7.340	3	2.447	12.837	.002
Zn3	Within Groups	1.525	8	.191		
	Total	8.865	11			

Table E-1.3a Day 1; BCR3 ANOVA

Table E-1.3b Day 1; BCR3 Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co3	.00	.05	-2.5760333*	.8674679	.018
		.07	-2.7616333*	.8674679	.013
		.10	-1.5737000	.8674679	.107
	.05	.00	2.5760333*	.8674679	.018
		.07	1856000	.8674679	.836
		.10	1.0023333	.8674679	.281
	.07	.00	2.7616333*	.8674679	.013
		.05	.1856000	.8674679	.836
		.10	1.1879333	.8674679	.208
	.10	.00	1.5737000	.8674679	.107
		.05	-1.0023333	.8674679	.281
		.07	-1.1879333	.8674679	.208
Cr3	.00	.05	-1.0904000*	.3275226	.010
		.07	-2.3270667*	.3275226	.000
		.10	-3.8727333*	.3275226	.000
	.05	.00	1.0904000*	.3275226	.010
		.07	-1.2366667*	.3275226	.005
		.10	-2.7823333*	.3275226	.000
	.07	.00	2.3270667*	.3275226	.000
	,	.05	1.2366667*	.3275226	.005
		.10	-1.5456667*	.3275226	.002
	.10	.00	3.8727333*	.3275226	.000
		.05	2.7823333*	.3275226	.000
		.07	1.5456667*	.3275226	.002
Cu3	.00	.05	-6.5840667*	.8707901	.000
Cus	.00	.07	-9.1609000*	.8707901	.000
		.10	-8.1832000*	.8707901	.000
	.05	.00	6.5840667*	.8707901	.000
		.07	-2.5768333*	.8707901	.018
		.10	-1.5991333	.8707901	.104
	.07	.00	9.1609000*	.8707901	.000
	.07	.05	2.5768333*	.8707901	.018
		.10	.9777000	.8707901	.294
	.10	.00	8.1832000*	.8707901	.000
	.10	.05	1.5991333	.8707901	.104
		.07	9777000	.8707901	.294
Mn3	.00	.05	-10.0971667*	1.7294236	.000
11110	.00	.07	-17.4593000*	1.7294236	.000
		.10	-15.0856000*	1.7294236	.000
	.05	.00	10.0971667*	1.7294236	.000
		.00	-7.3621333*	1.7294236	.003
		.10	-4.9884333*	1.7294236	.020
	.07	.00	17.4593000*	1.7294236	.000
		.05	7.3621333*	1.7294236	.003
		.10	2.3737000	1.7294236	.207
	.10	.10	15.0856000*	1.7294236	.000
	.10	.00	4.9884333*	1.7294236	.020
	1	.05		1.1297230	.020

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni3	.00	.05	6904000*	.2109901	.011
		.07	-1.1272667*	.2109901	.001
		.10	9578000 [*]	.2109901	.002
	.05	.00	$.6904000^{*}$.2109901	.011
		.07	4368667	.2109901	.072
		.10	2674000	.2109901	.241
	.07	.00	1.1272667*	.2109901	.001
		.05	.4368667	.2109901	.072
		.10	.1694667	.2109901	.445
	.10	.00	.9578000 [*]	.2109901	.002
		.05	.2674000	.2109901	.241
		.07	1694667	.2109901	.445
Pb3	.00	.05	-1.8745000*	.3949741	.001
		.07	-2.0785333*	.3949741	.001
		.10	-3.2694000*	.3949741	.000
	.05	.00	1.8745000^{*}	.3949741	.001
		.07	2040333	.3949741	.619
		.10	-1.3949000*	.3949741	.008
	.07	.00	2.0785333*	.3949741	.001
		.05	.2040333	.3949741	.619
		.10	-1.1908667*	.3949741	.017
	.10	.00	3.2694000*	.3949741	.000
		.05	1.3949000*	.3949741	.008
		.07	1.1908667*	.3949741	.017
Zn3	.00	.05	5676667	.3564716	.150
		.07	-1.6260000*	.3564716	.002
		.10	-1.9338667*	.3564716	.001
	.05	.00	.5676667	.3564716	.150
		.07	-1.0583333*	.3564716	.018
		.10	-1.3662000*	.3564716	.005
	.07	.00	1.6260000^{*}	.3564716	.002
		.05	1.0583333*	.3564716	.018
		.10	3078667	.3564716	.413
	.10	.00	1.9338667*	.3564716	.001
		.05	1.3662000*	.3564716	.005
		.07	.3078667	.3564716	.413

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	4.689	3	1.563	8.336	.008
Co4	Within Groups	1.500	8	.187		
	Total	6.189	11			
	Between Groups	75.736	3	25.245	.455	.721
Cr4	Within Groups	443.927	8	55.491		
	Total	519.662	11			
	Between Groups	93.387	3	31.129	1.404	.311
Cu4	Within Groups	177.338	8	22.167		
	Total	270.725	11			
	Between Groups	3140.371	3	1046.790	3.391	.074
Mn4	Within Groups	2469.573	8	308.697		
	Total	5609.944	11			
	Between Groups	2.000	3	.667	1.047	.423
Ni4	Within Groups	5.095	8	.637		
	Total	7.096	11			
	Between Groups	435.900	3	145.300	1.623	.259
Pb4	Within Groups	716.260	8	89.533		
	Total	1152.161	11			
	Between Groups	502.718	3	167.573	.859	.500
Zn4	Within Groups	1560.411	8	195.051		
	Total	2063.129	11			

Table E-1.4b Day 1; RES Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co4	.00	.05	1.2131667*	.3535506	.009
		.07	1.7204000*	.3535506	.001
		.10	.9740333*	.3535506	.025
	.05	.00	-1.2131667*	.3535506	.009
		.07	.5072333	.3535506	.189
		.10	2391333	.3535506	.518
	.07	.00	-1.7204000*	.3535506	.001
		.05	5072333	.3535506	.189
		.10	7463667	.3535506	.068
	.10	.00	9740333*	.3535506	.025
		.05	.2391333	.3535506	.518
		.07	.7463667	.3535506	.068
Cr4	.00	.05	5.5514333	6.0822600	.388
		.07	6.6120667	6.0822600	.309
		.10	3.8744333	6.0822600	.542
	.05	.00	-5.5514333	6.0822600	.388
		.07	1.0606333	6.0822600	.866
		.10	-1.6770000	6.0822600	.790
	.07	.00	-6.6120667	6.0822600	.309
		.05	-1.0606333	6.0822600	.866
		.10	-2.7376333	6.0822600	.665
	.10	.00	-3.8744333	6.0822600	.542
		.05	1.6770000	6.0822600	.790
		.07	2.7376333	6.0822600	.665
Cu4	.00	.05	4.6838000	3.8442360	.258
		.07	-1.2778333	3.8442360	.748
		.10	5.0383333	3.8442360	.226
	.05	.00	-4.6838000	3.8442360	.258
		.07	-5.9616333	3.8442360	.160
		.10	.3545333	3.8442360	.929
	.07	.00	1.2778333	3.8442360	.748
		.05	5.9616333	3.8442360	.160
		.10	6.3161667	3.8442360	.139
	.10	.00	-5.0383333	3.8442360	.226
		.05	3545333	3.8442360	.929
		.07	-6.3161667	3.8442360	.139
Mn4	.00	.05	12.2110333	14.3456520	.419
		.07	44.0686000*	14.3456520	.015
		.10	22.6652000	14.3456520	.153
	.05	.00	-12.2110333	14.3456520	.419
		.07	31.8575667	14.3456520	.057
		.10	10.4541667	14.3456520	.487
	.07	.00	-44.0686000*	14.3456520	.015
		.05	-31.8575667	14.3456520	.057
		.10	-21.4034000	14.3456520	.174
	.10	.00	-22.6652000	14.3456520	.153
		.05	-10.4541667	14.3456520	.487
		.07	21.4034000	14.3456520	.174

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni4	.00	.05	.7154000	.6516302	.304
		.07	.4994667	.6516302	.465
		.10	3230000	.6516302	.633
	.05	.00	7154000	.6516302	.304
		.07	2159333	.6516302	.749
		.10	-1.0384000	.6516302	.150
	.07	.00	4994667	.6516302	.465
		.05	.2159333	.6516302	.749
		.10	8224667	.6516302	.242
	.10	.00	.3230000	.6516302	.633
		.05	1.0384000	.6516302	.150
		.07	.8224667	.6516302	.242
Pb4	.00	.05	-1.3420667	7.7258241	.866
		.07	-14.6315000	7.7258241	.095
		.10	9321333	7.7258241	.907
	.05	.00	1.3420667	7.7258241	.866
		.07	-13.2894333	7.7258241	.124
		.10	.4099333	7.7258241	.959
	.07	.00	14.6315000	7.7258241	.095
		.05	13.2894333	7.7258241	.124
		.10	13.6993667	7.7258241	.114
	.10	.00	.9321333	7.7258241	.907
		.05	4099333	7.7258241	.959
		.07	-13.6993667	7.7258241	.114
Zn4	.00	.05	0350000	11.4032567	.998
		.07	-13.0461000	11.4032567	.286
		.10	4.1570000	11.4032567	.725
	.05	.00	.0350000	11.4032567	.998
		.07	-13.0111000	11.4032567	.287
		.10	4.1920000	11.4032567	.723
	.07	.00	13.0461000	11.4032567	.286
		.05	13.0111000	11.4032567	.287
		.10	17.2031000	11.4032567	.170
	.10	.00	-4.1570000	11.4032567	.725
		.05	-4.1920000	11.4032567	.723
		.07	-17.2031000	11.4032567	.170

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.113	3	.038	3.420	.073
Col	Within Groups	.088	8	.011		
	Total	.200	11			
	Between Groups	.083	3	.028	5.142	.029
Cr1	Within Groups	.043	8	.005		
	Total	.126	11			
	Between Groups	61.871	3	20.624	710.708	.000
Cu1	Within Groups	.232	8	.029		
	Total	62.103	11			
	Between Groups	14414.392	3	4804.797	6.902	.013
Mn1	Within Groups	5569.451	8	696.181		
	Total	19983.843	11			
	Between Groups	.827	3	.276	18.254	.001
Ni1	Within Groups	.121	8	.015		
	Total	.948	11			
	Between Groups	2.767	3	.922	37.535	.000
Pb1	Within Groups	.197	8	.025		
	Total	2.963	11			
	Between Groups	2.583	3	.861	4.304	.044
Zn1	Within Groups	1.600	8	.200		
	Total	4.183	11			

Table E-1.5a Day 7; BCR1 ANOVA

Table E-1.5b Day 7; BCR1 Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Col	.00	.05	0941333	.0855161	.303
		.07	0270667	.0855161	.760
		.10	.1688000	.0855161	.084
	.05	.00	.0941333	.0855161	.303
		.07	.0670667	.0855161	.455
		.10	.2629333*	.0855161	.015
	.07	.00	.0270667	.0855161	.760
		.05	0670667	.0855161	.455
		.10	.1958667	.0855161	.051
	.10	.00	1688000	.0855161	.084
		.05	2629333*	.0855161	.015
		.07	1958667	.0855161	.051
Cr1	.00	.05	1419333*	.0599961	.046
		.07	1003333	.0599961	.133
		.10	.0703000	.0599961	.275
	.05	.00	.1419333*	.0599961	.046
		.07	.0416000	.0599961	.508
		.10	.2122333*	.0599961	.008
	.07	.00	.1003333	.0599961	.133
		.05	0416000	.0599961	.508
		.10	.1706333*	.0599961	.022
	.10	.00	0703000	.0599961	.275
		.05	2122333*	.0599961	.008
		.07	1706333*	.0599961	.022
Cu1	.00	.05	5.0465000*	.1390882	.000
		.07	5.2793667*	.1390882	.000
		.10	5.3830333*	.1390882	.000
	.05	.00	-5.0465000*	.1390882	.000
		.07	.2328667	.1390882	.133
		.10	.3365333*	.1390882	.042
	.07	.00	-5.2793667*	.1390882	.000
		.05	2328667	.1390882	.133
		.10	.1036667	.1390882	.477
	.10	.00	-5.3830333*	.1390882	.000
		.05	3365333*	.1390882	.042
		.07	1036667	.1390882	.477
Mn1	.00	.05	-70.1472667*	21.5434660	.012
		.07	-89.8126000*	21.5434660	.003
		.10	-74.8268000*	21.5434660	.008
	.05	.00	70.1472667*	21.5434660	.012
		.07	-19.6653333	21.5434660	.388
		.10	-4.6795333	21.5434660	.833
	.07	.00	89.8126000 [*]	21.5434660	.003
		.05	19.6653333	21.5434660	.388
		.10	14.9858000	21.5434660	.506
	.10	.00	74.8268000*	21.5434660	.008
		.05	4.6795333	21.5434660	.833
		.07	-14.9858000	21.5434660	.506

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Nil	.00	.05	5478000*	.1003425	.001
		.07	6344000*	.1003425	.000
		.10	6221000*	.1003425	.000
	.05	.00	.5478000*	.1003425	.001
		.07	0866000	.1003425	.413
		.10	0743000	.1003425	.480
	.07	.00	.6344000*	.1003425	.000
		.05	.0866000	.1003425	.413
		.10	.0123000	.1003425	.905
	.10	.00	.6221000*	.1003425	.000
		.05	.0743000	.1003425	.480
		.07	0123000	.1003425	.905
Pb1	.00	.05	.6915667*	.1279891	.001
		.07	1.0324667*	.1279891	.000
		.10	1.2759333*	.1279891	.000
	.05	.00	6915667*	.1279891	.001
		.07	.3409000*	.1279891	.029
		.10	.5843667*	.1279891	.002
	.07	.00	-1.0324667*	.1279891	.000
		.05	3409000*	.1279891	.029
		.10	.2434667	.1279891	.094
	.10	.00	-1.2759333*	.1279891	.000
		.05	5843667*	.1279891	.002
		.07	2434667	.1279891	.094
Zn1	.00	.05	.5536667	.3651913	.168
		.07	.9946000*	.3651913	.026
		.10	1.2130000*	.3651913	.011
	.05	.00	5536667	.3651913	.168
		.07	.4409333	.3651913	.262
		.10	.6593333	.3651913	.109
	.07	.00	9946000*	.3651913	.026
		.05	4409333	.3651913	.262
		.10	.2184000	.3651913	.566
	.10	.00	-1.2130000*	.3651913	.011
		.05	6593333	.3651913	.109
		.07	2184000	.3651913	.566

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.735	3	.245	6.884	.013
Co2	Within Groups	.285	8	.036		
	Total	1.019	11			
	Between Groups	9.355	3	3.118	10.439	.004
Cr2	Within Groups	2.390	8	.299		
	Total	11.744	11			
	Between Groups	172.092	3	57.364	236.904	.000
Cu2	Within Groups	1.937	8	.242		
	Total	174.029	11			
	Between Groups	8126.045	3	2708.682	5.487	.024
Mn2	Within Groups	3949.555	8	493.694		
	Total	12075.600	11			
	Between Groups	2.168	3	.723	29.902	.000
Ni2	Within Groups	.193	8	.024		
	Total	2.361	11			
	Between Groups	26.000	3	8.667	10.007	.004
Pb2	Within Groups	6.929	8	.866		
	Total	32.928	11			
	Between Groups	15.703	3	5.234	12.730	.002
Zn2	Within Groups	3.289	8	.411		
	Total	18.993	11			

Table E-1.6b Day 7; BCR2 Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co2	.00	.05	0096333	.1539898	.952
		.07	3608000*	.1539898	.047
		.10	5858333*	.1539898	.005
	.05	.00	.0096333	.1539898	.952
		.07	3511667	.1539898	.052
		.10	5762000*	.1539898	.006
	.07	.00	.3608000*	.1539898	.047
		.05	.3511667	.1539898	.052
		.10	2250333	.1539898	.182
	.10	.00	.5858333*	.1539898	.005
		.05	.5762000*	.1539898	.006
		.07	.2250333	.1539898	.182
Cr2	.00	.05	1.2622000*	.4462551	.022
		.07	1.8481000^{*}	.4462551	.003
		.10	2.3705333*	.4462551	.001
	.05	.00	-1.2622000*	.4462551	.022
		.07	.5859000	.4462551	.226
		.10	1.1083333*	.4462551	.038
	.07	.00	-1.8481000*	.4462551	.003
		.05	5859000	.4462551	.226
		.10	.5224333	.4462551	.275
	.10	.00	-2.3705333*	.4462551	.001
		.05	-1.1083333*	.4462551	.038
		.07	5224333	.4462551	.275
Cu2	.00	.05	6.9945333 [*]	.4017804	.000
		.07	8.9120667*	.4017804	.000
		.10	9.5221000*	.4017804	.000
	.05	.00	-6.9945333*	.4017804	.000
		.07	1.9175333*	.4017804	.001
		.10	2.5275667*	.4017804	.000
	.07	.00	-8.9120667*	.4017804	.000
		.05	-1.9175333*	.4017804	.001
		.10	.6100333	.4017804	.167
	.10	.00	-9.5221000*	.4017804	.000
		.05	-2.5275667*	.4017804	.000
		.07	6100333	.4017804	.167
Mn2	.00	.05	59.4422000 [*]	18.1419281	.011
		.07	64.9194333 [*]	18.1419281	.007
		.10	53.8928333 [*]	18.1419281	.018
	.05	.00	-59.4422000 [*]	18.1419281	.011
		.07	5.4772333	18.1419281	.770
		.10	-5.5493667	18.1419281	.767
	.07	.00	-64.9194333 [*]	18.1419281	.007
		.05	-5.4772333	18.1419281	.770
		.10	-11.0266000	18.1419281	.560
	.10	.00	-53.8928333*	18.1419281	.018
		.05	5.5493667	18.1419281	.767
		.07	11.0266000	18.1419281	.560

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni2	.00	.05	3887667*	.1269245	.016
		.07	8639000*	.1269245	.000
		.10	-1.0989000*	.1269245	.000
	.05	.00	.3887667*	.1269245	.016
		.07	4751333*	.1269245	.006
		.10	7101333*	.1269245	.001
	.07	.00	.8639000*	.1269245	.000
		.05	.4751333*	.1269245	.006
		.10	2350000	.1269245	.101
	.10	.00	1.0989000^*	.1269245	.000
		.05	.7101333*	.1269245	.001
		.07	.2350000	.1269245	.101
Pb2	.00	.05	1.0844333	.7598579	.191
		.07	3.0004667*	.7598579	.004
		.10	3.6854000*	.7598579	.001
	.05	.00	-1.0844333	.7598579	.191
		.07	1.9160333*	.7598579	.036
		.10	2.6009667*	.7598579	.009
	.07	.00	-3.0004667*	.7598579	.004
		.05	-1.9160333*	.7598579	.036
		.10	.6849333	.7598579	.394
	.10	.00	-3.6854000*	.7598579	.001
		.05	-2.6009667*	.7598579	.009
		.07	6849333	.7598579	.394
Zn2	.00	.05	-1.0954667	.5235625	.070
		.07	-3.0380667*	.5235625	.000
		.10	-2.1942333*	.5235625	.003
	.05	.00	1.0954667	.5235625	.070
		.07	-1.9426000*	.5235625	.006
		.10	-1.0987667	.5235625	.069
	.07	.00	3.0380667*	.5235625	.000
		.05	1.9426000*	.5235625	.006
		.10	.8438333	.5235625	.146
	.10	.00	2.1942333*	.5235625	.003
		.05	1.0987667	.5235625	.069
		.07	8438333	.5235625	.146

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	10.274	3	3.425	1.693	.245
Co3	Within Groups	16.183	8	2.023		
	Total	26.457	11			
	Between Groups	31.325	3	10.442	5.215	.028
Cr3	Within Groups	16.018	8	2.002		
	Total	47.343	11			
	Between Groups	134.021	3	44.674	8.940	.006
Cu3	Within Groups	39.977	8	4.997		
	Total	173.998	11			
	Between Groups	594.041	3	198.014	14.621	.001
Mn3	Within Groups	108.343	8	13.543		
	Total	702.384	11			
	Between Groups	3.256	3	1.085	7.622	.010
Ni3	Within Groups	1.139	8	.142		
	Total	4.395	11			
	Between Groups	18.132	3	6.044	43.118	.000
Pb3	Within Groups	1.121	8	.140		
	Total	19.253	11			
	Between Groups	12.619	3	4.206	7.063	.012
Zn3	Within Groups	4.764	8	.596		
	Total	17.384	11			

Table E-1.7a Day 7; BCR3 ANOVA

Table E-1.7b Day 7; BCR3 Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co3	.00	.05	6688000	1.1612707	.581
		.07	-2.1337667	1.1612707	.103
		.10	-2.1132333	1.1612707	.106
	.05	.00	.6688000	1.1612707	.581
		.07	-1.4649667	1.1612707	.243
		.10	-1.4444333	1.1612707	.249
	.07	.00	2.1337667	1.1612707	.103
		.05	1.4649667	1.1612707	.243
		.10	.0205333	1.1612707	.986
	.10	.00	2.1132333	1.1612707	.106
		.05	1.4444333	1.1612707	.249
		.07	0205333	1.1612707	.986
Cr3	.00	.05	-1.7016000	1.1553530	.179
		.07	-3.4394333*	1.1553530	.018
		.10	-4.1703667*	1.1553530	.007
	.05	.00	1.7016000	1.1553530	.179
		.07	-1.7378333	1.1553530	.171
		.10	-2.4687667	1.1553530	.065
	.07	.00	3.4394333*	1.1553530	.018
		.05	1.7378333	1.1553530	.171
		.10	7309333	1.1553530	.545
	.10	.00	4.1703667*	1.1553530	.007
		.05	2.4687667	1.1553530	.065
		.07	.7309333	1.1553530	.545
Cu3	.00	.05	-5.1189000*	1.8252113	.023
		.07	-8.0158000*	1.8252113	.002
		.10	-8.3320333*	1.8252113	.002
	.05	.00	5.1189000*	1.8252113	.023
		.07	-2.8969000	1.8252113	.151
		.10	-3.2131333	1.8252113	.116
	.07	.00	8.0158000*	1.8252113	.002
		.05	2.8969000	1.8252113	.151
		.10	3162333	1.8252113	.867
	.10	.00	8.3320333*	1.8252113	.002
		.05	3.2131333	1.8252113	.116
		.07	.3162333	1.8252113	.867
Mn3	.00	.05	-9.1865667*	3.0047605	.016
		.07	-14.7878333*	3.0047605	.001
		.10	-18.7327333*	3.0047605	.000
	.05	.00	9.1865667*	3.0047605	.016
		.07	-5.6012667	3.0047605	.099
		.10	-9.5461667*	3.0047605	.013
	.07	.00	14.7878333*	3.0047605	.001
		.05	5.6012667	3.0047605	.099
		.10	-3.9449000	3.0047605	.226
	.10	.00	18.7327333*	3.0047605	.000
		.05	9.5461667*	3.0047605	.013
		.07	3.9449000	3.0047605	.226

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni3	.00	.05	6043333	.3080986	.085
1415	.00	.07	-1.1059667*	.3080986	.007
		.10	-1.3634000*	.3080986	.002
	.05	.00	.6043333	.3080986	.085
	.05	.00	5016333	.3080986	.142
		.10	7590667*	.3080986	.039
	.07	.00	1.1059667*	.3080986	.007
	.07	.05	.5016333	.3080986	.142
		.10	2574333	.3080986	.428
	.10	.00	1.3634000*	.3080986	.002
	.10	.05	.7590667*	.3080986	.039
		.07	.2574333	.3080986	.428
Pb3	.00	.05	-1.9806667*	.3056932	.000
105	.00	.07	-2.1229000*	.3056932	.000
		.10	-3.4422333*	.3056932	.000
	.05	.00	1.9806667*	.3056932	.000
		.07	1422333	.3056932	.654
		.10	-1.4615667*	.3056932	.001
	.07	.00	2.1229000*	.3056932	.000
		.05	.1422333	.3056932	.654
		.10	-1.3193333*	.3056932	.003
	.10	.00	3.4422333*	.3056932	.000
		.05	1.4615667*	.3056932	.001
		.07	1.3193333*	.3056932	.003
Zn3	.00	.05	-1.3316333	.6301055	.068
		.07	-2.0653333*	.6301055	.011
		.10	-2.7710333*	.6301055	.002
	.05	.00	1.3316333	.6301055	.068
		.07	7337000	.6301055	.278
		.10	-1.4394000	.6301055	.052
	.07	.00	2.0653333*	.6301055	.011
		.05	.7337000	.6301055	.278
		.10	7057000	.6301055	.295
	.10	.00	2.7710333 [*]	.6301055	.002
		.05	1.4394000	.6301055	.052
		.07	.7057000	.6301055	.295

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	1.706	3	.569	3.583	.066
Co4	Within Groups	1.270	8	.159		
	Total	2.975	11			
	Between Groups	112.755	3	37.585	1.057	.419
Cr4	Within Groups	284.474	8	35.559		
	Total	397.229	11			
	Between Groups	21.456	3	7.152	4.730	.035
Cu4	Within Groups	12.095	8	1.512		
	Total	33.551	11			
	Between Groups	30.057	3	10.019	.132	.938
Mn4	Within Groups	606.738	8	75.842		
	Total	636.795	11			
	Between Groups	.762	3	.254	.443	.729
Ni4	Within Groups	4.583	8	.573		
	Total	5.345	11			
	Between Groups	1.395	3	.465	1.561	.273
Pb4	Within Groups	2.383	8	.298		
	Total	3.778	11			
	Between Groups	113.233	3	37.744	2.470	.136
Zn4	Within Groups	122.250	8	15.281		
	Total	235.483	11			

Table E-1.8b Day 7; RES Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co4	.00	.05	.7608667*	.3252779	.047
		.07	.9286333*	.3252779	.021
		.10	.8872667*	.3252779	.026
	.05	.00	7608667*	.3252779	.047
		.07	.1677667	.3252779	.620
		.10	.1264000	.3252779	.708
	.07	.00	9286333*	.3252779	.021
		.05	1677667	.3252779	.620
		.10	0413667	.3252779	.902
	.10	.00	8872667*	.3252779	.026
		.05	1264000	.3252779	.708
		.07	.0413667	.3252779	.902
Cr4	.00	.05	-4.4143333	4.8688996	.391
		.07	-7.5467000	4.8688996	.160
		.10	-7.4191333	4.8688996	.166
	.05	.00	4.4143333	4.8688996	.391
		.07	-3.1323667	4.8688996	.538
		.10	-3.0048000	4.8688996	.554
	.07	.00	7.5467000	4.8688996	.160
		.05	3.1323667	4.8688996	.538
		.10	.1275667	4.8688996	.980
	.10	.00	7.4191333	4.8688996	.166
		.05	3.0048000	4.8688996	.554
		.07	1275667	4.8688996	.980
Cu4	.00	.05	3.0980000*	1.0039651	.015
		.07	2.8024667*	1.0039651	.024
		.10	3.2862333*	1.0039651	.011
	.05	.00	-3.0980000*	1.0039651	.015
		.07	2955333	1.0039651	.776
		.10	.1882333	1.0039651	.856
	.07	.00	-2.8024667*	1.0039651	.024
		.05	.2955333	1.0039651	.776
		.10	.4837667	1.0039651	.643
	.10	.00	-3.2862333*	1.0039651	.011
		.05	1882333	1.0039651	.856
		.07	4837667	1.0039651	.643
Mn4	.00	.05	2.4920667	7.1106635	.735
		.07	3.5238000	7.1106635	.634
		.10	4.1515667	7.1106635	.575
	.05	.00	-2.4920667	7.1106635	.735
		.07	1.0317333	7.1106635	.888
		.10	1.6595000	7.1106635	.821
	.07	.00	-3.5238000	7.1106635	.634
		.05	-1.0317333	7.1106635	.888
		.10	.6277667	7.1106635	.932
	.10	.00	-4.1515667	7.1106635	.575
		.05	-1.6595000	7.1106635	.821
		.07	6277667	7.1106635	.932

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni4	.00	.05	.5719333	.6180075	.382
		.07	.4989000	.6180075	.443
		.10	.0737667	.6180075	.908
	.05	.00	5719333	.6180075	.382
		.07	0730333	.6180075	.909
		.10	4981667	.6180075	.443
	.07	.00	4989000	.6180075	.443
		.05	.0730333	.6180075	.909
		.10	4251333	.6180075	.511
	.10	.00	0737667	.6180075	.908
		.05	.4981667	.6180075	.443
		.07	.4251333	.6180075	.511
Pb4	.00	.05	4563667	.4456191	.336
		.07	8390667	.4456191	.096
		.10	8182667	.4456191	.104
	.05	.00	.4563667	.4456191	.336
		.07	3827000	.4456191	.415
		.10	3619000	.4456191	.440
	.07	.00	.8390667	.4456191	.096
		.05	.3827000	.4456191	.415
		.10	.0208000	.4456191	.964
	.10	.00	.8182667	.4456191	.104
		.05	.3619000	.4456191	.440
		.07	0208000	.4456191	.964
Zn4	.00	.05	-1.3389333	3.1917852	.686
		.07	-3.7223667	3.1917852	.277
		.10	4.7040000	3.1917852	.179
	.05	.00	1.3389333	3.1917852	.686
		.07	-2.3834333	3.1917852	.477
		.10	6.0429333	3.1917852	.095
	.07	.00	3.7223667	3.1917852	.277
		.05	2.3834333	3.1917852	.477
		.10	8.4263667*	3.1917852	.030
	.10	.00	-4.7040000	3.1917852	.179
		.05	-6.0429333	3.1917852	.095
		.07	-8.4263667*	3.1917852	.030

	ANOVA								
		Sum of Squares	df	Mean Square	F	Sig.			
	Between Groups	.405	3	.135	8.978	.006			
Col	Within Groups	.120	8	.015					
	Total	.525	11						
	Between Groups	.169	3	.056	4.371	.042			
Cr1	Within Groups	.103	8	.013					
	Total	.273	11						
	Between Groups	72.597	3	24.199	468.653	.000			
Cu1	Within Groups	.413	8	.052					
	Total	73.010	11						
	Between Groups	7881.471	3	2627.157	7.332	.011			
Mn1	Within Groups	2866.487	8	358.311					
	Total	10747.959	11						
	Between Groups	1.430	3	.477	16.752	.001			
Ni1	Within Groups	.228	8	.028					
	Total	1.658	11						
	Between Groups	.668	3	.223	3.248	.081			
Pb1	Within Groups	.548	8	.069					
	Total	1.217	11						
	Between Groups	6.182	3	2.061	11.618	.003			
Zn1	Within Groups	1.419	8	.177					
	Total	7.601	11						

Table E-1.9a Day 15; BCR1 ANOVA

 Table E-1.9b Day 15; BCR1 Post Hoc Tests

Dependent Variable		(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Col	.00	.05	0283333	.1001126	.784
		.07	.2456333*	.1001126	.040
		.10	.4180333*	.1001126	.003
	.05	.00	.0283333	.1001126	.784
		.07	.2739667*	.1001126	.026
		.10	.4463667*	.1001126	.002
	.07	.00	2456333*	.1001126	.040
		.05	2739667*	.1001126	.026
		.10	.1724000	.1001126	.123
	.10	.00	4180333*	.1001126	.003
		.05	4463667*	.1001126	.002
		.07	1724000	.1001126	.123
Cr1	.00	.05	2295000*	.0928141	.039
		.07	0121333	.0928141	.899
		.10	.0950667	.0928141	.336
	.05	.00	.2295000*	.0928141	.039
		.07	.2173667*	.0928141	.047
		.10	.3245667*	.0928141	.008
	.07	.00	.0121333	.0928141	.899
		.05	2173667*	.0928141	.047
		.10	.1072000	.0928141	.281
	.10	.00	0950667	.0928141	.336
		.05	3245667*	.0928141	.008
		.07	1072000	.0928141	.281
Cu1	.00	.05	5.5187333*	.1855362	.000
		.07	5.7116000*	.1855362	.000
		.10	5.7962333*	.1855362	.000
	.05	.00	-5.5187333*	.1855362	.000
		.07	.1928667	.1855362	.329
		.10	.2775000	.1855362	.173
	.07	.00	-5.7116000*	.1855362	.000
		.05	1928667	.1855362	.329
		.10	.0846333	.1855362	.660
	.10	.00	-5.7962333*	.1855362	.000
		.05	2775000	.1855362	.173
		.07	0846333	.1855362	.660
Mn1	.00	.05	-67.8721333*	15.4555473	.002
		.07	-51.6555667*	15.4555473	.010
		.10	-27.4854667	15.4555473	.113
	.05	.00	67.8721333 [*]	15.4555473	.002
		.07	16.2165667	15.4555473	.325
		.10	40.3866667*	15.4555473	.031
	.07	.00	51.6555667*	15.4555473	.010
		.05	-16.2165667	15.4555473	.325
		.10	24.1701000	15.4555473	.156
	.10	.00	27.4854667	15.4555473	.113
		.05	-40.3866667*	15.4555473	.031
		.07	-24.1701000	15.4555473	.156

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Nil	.00	.05	4710333*	.1377429	.009
		.07	9468667*	.1377429	.000
		.10	6675000*	.1377429	.001
	.05	.00	.4710333*	.1377429	.009
		.07	4758333*	.1377429	.009
		.10	1964667	.1377429	.192
	.07	.00	.9468667*	.1377429	.000
		.05	.4758333*	.1377429	.009
		.10	.2793667	.1377429	.077
	.10	.00	.6675000*	.1377429	.001
		.05	.1964667	.1377429	.192
		.07	2793667	.1377429	.077
Pb1	.00	.05	.2212000	.2137899	.331
		.07	.6158667*	.2137899	.020
		.10	.0857000	.2137899	.699
	.05	.00	2212000	.2137899	.331
		.07	.3946667	.2137899	.102
		.10	1355000	.2137899	.544
	.07	.00	6158667*	.2137899	.020
		.05	3946667	.2137899	.102
		.10	5301667*	.2137899	.038
	.10	.00	0857000	.2137899	.699
		.05	.1355000	.2137899	.544
		.07	.5301667*	.2137899	.038
Zn1	.00	.05	.8516000*	.3438675	.038
		.07	1.3017333*	.3438675	.005
		.10	1.9755667*	.3438675	.000
	.05	.00	8516000*	.3438675	.038
		.07	.4501333	.3438675	.227
		.10	1.1239667*	.3438675	.011
	.07	.00	-1.3017333*	.3438675	.005
		.05	4501333	.3438675	.227
		.10	.6738333	.3438675	.086
	.10	.00	-1.9755667*	.3438675	.000
		.05	-1.1239667*	.3438675	.011
		.07	6738333	.3438675	.086

		1	ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	5.999	3	2.000	16.097	.001
Co2	Within Groups	.994	8	.124		
	Total	6.992	11			
	Between Groups	21.201	3	7.067	16.624	.001
Cr2	Within Groups	3.401	8	.425		
	Total	24.601	11			
	Between Groups	131.101	3	43.700	479.912	.000
Cu2	Within Groups	.728	8	.091		
	Total	131.829	11			
	Between Groups	17002.545	3	5667.515	6.603	.015
Mn2	Within Groups	6866.470	8	858.309		
	Total	23869.016	11			
	Between Groups	3.184	3	1.061	13.839	.002
Ni2	Within Groups	.613	8	.077		
	Total	3.797	11			
	Between Groups	24.855	3	8.285	10.955	.003
Pb2	Within Groups	6.050	8	.756		
	Total	30.905	11			
	Between Groups	22.041	3	7.347	22.522	.000
Zn2	Within Groups	2.610	8	.326		
	Total	24.651	11			

Table E-1.10a Day 15; BCR2 ANOVA

 Table E-1.10b
 Day 15; BCR2 Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co2	.00	.05	9778000*	.2877672	.009
		.07	-1.9867333*	.2877672	.000
		.10	-1.1737000*	.2877672	.004
	.05	.00	.9778000*	.2877672	.009
		.07	-1.0089333*	.2877672	.008
		.10	1959000	.2877672	.515
	.07	.00	1.9867333*	.2877672	.000
		.05	1.0089333*	.2877672	.008
		.10	.8130333*	.2877672	.022
	.10	.00	1.1737000*	.2877672	.004
		.05	.1959000	.2877672	.515
		.07	8130333*	.2877672	.022
Cr2	.00	.05	2.1831667*	.5323467	.003
		.07	2.8368333*	.5323467	.001
		.10	3.5541667*	.5323467	.000
	.05	.00	-2.1831667*	.5323467	.003
		.07	.6536667	.5323467	.254
		.10	1.3710000*	.5323467	.033
	.07	.00	-2.8368333*	.5323467	.001
		.05	6536667	.5323467	.254
		.10	.7173333	.5323467	.215
	.10	.00	-3.5541667*	.5323467	.000
		.05	-1.3710000*	.5323467	.033
		.07	7173333	.5323467	.215
Cu2	.00	.05	6.4420000*	.2463857	.000
		.07	7.4737000*	.2463857	.000
		.10	8.4497000*	.2463857	.000
	.05	.00	-6.4420000*	.2463857	.000
		.07	1.0317000*	.2463857	.003
		.10	2.0077000^*	.2463857	.000
	.07	.00	-7.4737000*	.2463857	.000
		.05	-1.0317000*	.2463857	.003
		.10	.9760000*	.2463857	.004
	.10	.00	-8.4497000*	.2463857	.000
		.05	-2.0077000*	.2463857	.000
		.07	9760000*	.2463857	.004
Mn2	.00	.05	21.7170000	23.9208250	.390
		.07	-40.6342667	23.9208250	.128
		.10	63.5897000 [*]	23.9208250	.029
	.05	.00	-21.7170000	23.9208250	.390
		.07	-62.3512667*	23.9208250	.031
		.10	41.8727000	23.9208250	.118
	.07	.00	40.6342667	23.9208250	.128
		.05	62.3512667*	23.9208250	.031
		.10	104.2239667*	23.9208250	.002
	.10	.00	-63.5897000*	23.9208250	.029
		.05	-41.8727000	23.9208250	.118
		.07	-1.0422397E2	23.9208250	.002

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni2	.00	.05	7381667*	.2261054	.011
		.07	-1.3527333*	.2261054	.000
		.10	-1.1347667*	.2261054	.001
	.05	.00	.7381667*	.2261054	.011
		.07	6145667*	.2261054	.026
		.10	3966000	.2261054	.118
	.07	.00	1.3527333*	.2261054	.000
		.05	.6145667*	.2261054	.026
		.10	.2179667	.2261054	.363
	.10	.00	1.1347667*	.2261054	.001
		.05	.3966000	.2261054	.118
		.07	2179667	.2261054	.363
Pb2	.00	.05	1.3704667	.7100514	.090
		.07	-1.2211333	.7100514	.124
		.10	2.6118333*	.7100514	.006
	.05	.00	-1.3704667	.7100514	.090
		.07	-2.5916000*	.7100514	.006
		.10	1.2413667	.7100514	.119
	.07	.00	1.2211333	.7100514	.124
		.05	2.5916000*	.7100514	.006
		.10	3.8329667*	.7100514	.001
	.10	.00	-2.6118333*	.7100514	.006
		.05	-1.2413667	.7100514	.119
		.07	-3.8329667*	.7100514	.001
Zn2	.00	.05	-1.7150000*	.4663469	.006
		.07	-3.8097333*	.4663469	.000
		.10	-2.1380000*	.4663469	.002
	.05	.00	1.7150000^{*}	.4663469	.006
		.07	-2.0947333*	.4663469	.002
		.10	4230000	.4663469	.391
	.07	.00	3.8097333*	.4663469	.000
		.05	2.0947333*	.4663469	.002
		.10	1.6717333*	.4663469	.007
	.10	.00	2.1380000*	.4663469	.002
		.05	.4230000	.4663469	.391
		.07	-1.6717333*	.4663469	.007

	ANOVA								
		Sum of Squares	df	Mean Square	F	Sig.			
	Between Groups	36.927	3	12.309	2.973	.097			
Co3	Within Groups	33.118	8	4.140					
	Total	70.045	11						
	Between Groups	45.994	3	15.331	3.898	.055			
Cr3	Within Groups	31.468	8	3.933					
	Total	77.462	11						
	Between Groups	108.280	3	36.093	6.489	.016			
Cu3	Within Groups	44.497	8	5.562					
	Total	152.777	11						
	Between Groups	1909.705	3	636.568	3.068	.091			
Mn3	Within Groups	1659.990	8	207.499					
	Total	3569.695	11						
	Between Groups	.114	3	.038	6.401	.016			
Ni3	Within Groups	.047	8	.006					
	Total	.161	11						
	Between Groups	18.132	3	6.044	43.118	.000			
Pb3	Within Groups	1.121	8	.140					
	Total	19.253	11						
	Between Groups	23.043	3	7.681	2.346	.149			
Zn3	Within Groups	26.194	8	3.274					
	Total	49.236	11						

Table E-1.11a Day 15; BCR3 ANOVA

Table E-1.11b Day 15; BCR3 Post Hoc Tests

Dependent Variable	-	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co3	.00	.05	-1.9150667	1.6612679	.282
		.07	-3.5393667	1.6612679	.066
		.10	-4.6539333*	1.6612679	.023
	.05	.00	1.9150667	1.6612679	.282
		.07	-1.6243000	1.6612679	.357
		.10	-2.7388667	1.6612679	.138
	.07	.00	3.5393667	1.6612679	.066
		.05	1.6243000	1.6612679	.357
		.10	-1.1145667	1.6612679	.521
	.10	.00	4.6539333*	1.6612679	.023
		.05	2.7388667	1.6612679	.138
		.07	1.1145667	1.6612679	.521
Cr3	.00	.05	9348000	1.6193612	.580
		.07	-2.0944000	1.6193612	.232
		.10	-5.1938000 [*]	1.6193612	.012
	.05	.00	.9348000	1.6193612	.580
		.07	-1.1596000	1.6193612	.494
		.10	-4.2590000*	1.6193612	.030
	.07	.00	2.0944000	1.6193612	.232
		.05	1.1596000	1.6193612	.494
		.10	-3.0994000	1.6193612	.092
	.10	.00	5.1938000 [*]	1.6193612	.012
		.05	4.2590000*	1.6193612	.030
		.07	3.0994000	1.6193612	.092
Cu3	.00	.05	-4.6040667*	1.9256285	.044
		.07	-7.1022667*	1.9256285	.006
		.10	-7.5778333*	1.9256285	.004
	.05	.00	4.6040667*	1.9256285	.044
		.07	-2.4982000	1.9256285	.231
		.10	-2.9737667	1.9256285	.161
	.07	.00	7.1022667*	1.9256285	.006
		.05	2.4982000	1.9256285	.231
		.10	4755667	1.9256285	.811
	.10	.00	7.5778333*	1.9256285	.004
		.05	2.9737667	1.9256285	.161
		.07	.4755667	1.9256285	.811
Mn3	.00	.05	-24.3923667	11.7614848	.072
		.07	-25.8011667	11.7614848	.060
		.10	-33.6890667*	11.7614848	.021
	.05	.00	24.3923667	11.7614848	.072
		.07	-1.4088000	11.7614848	.908
		.10	-9.2967000	11.7614848	.452
	.07	.00	25.8011667	11.7614848	.060
		.05	1.4088000	11.7614848	.908
		.10	-7.8879000	11.7614848	.521
	.10	.00	33.6890667 [*]	11.7614848	.021
		.05	9.2967000	11.7614848	.452
		.07	7.8879000	11.7614848	.521

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni3	.00	.05	1793667*	.0627759	.021
		.07	.0321333	.0627759	.623
		.10	1748333*	.0627759	.024
	.05	.00	.1793667*	.0627759	.021
		.07	.2115000*	.0627759	.010
		.10	.0045333	.0627759	.944
	.07	.00	0321333	.0627759	.623
		.05	2115000*	.0627759	.010
		.10	2069667*	.0627759	.011
	.10	.00	.1748333*	.0627759	.024
		.05	0045333	.0627759	.944
		.07	.2069667*	.0627759	.011
Pb3	.00	.05	-1.9806667*	.3056932	.000
		.07	-2.1229000*	.3056932	.000
		.10	-3.4422333*	.3056932	.000
	.05	.00	1.9806667*	.3056932	.000
		.07	1422333	.3056932	.654
		.10	-1.4615667*	.3056932	.001
	.07	.00	2.1229000*	.3056932	.000
		.05	.1422333	.3056932	.654
		.10	-1.3193333*	.3056932	.003
	.10	.00	3.4422333*	.3056932	.000
		.05	1.4615667*	.3056932	.001
		.07	1.3193333*	.3056932	.003
Zn3	.00	.05	-1.6667667	1.4774330	.292
		.07	-2.0156000	1.4774330	.210
		.10	-3.9008000*	1.4774330	.030
	.05	.00	1.6667667	1.4774330	.292
		.07	3488333	1.4774330	.819
		.10	-2.2340333	1.4774330	.169
	.07	.00	2.0156000	1.4774330	.210
		.05	.3488333	1.4774330	.819
		.10	-1.8852000	1.4774330	.238
	.10	.00	3.9008000*	1.4774330	.030
		.05	2.2340333	1.4774330	.169
		.07	1.8852000	1.4774330	.238

		1	ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	5.715	3	1.905	17.201	.001
Co4	Within Groups	.886	8	.111		
	Total	6.601	11			
	Between Groups	105.437	3	35.146	4.097	.049
Cr4	Within Groups	68.624	8	8.578		
	Total	174.062	11			
	Between Groups	73.027	3	24.342	14.031	.001
Cu4	Within Groups	13.879	8	1.735		
	Total	86.906	11			
	Between Groups	10033.893	3	3344.631	30.854	.000
Mn4	Within Groups	867.208	8	108.401		
	Total	10901.101	11			
	Between Groups	44.686	3	14.895	16.136	.001
Ni4	Within Groups	7.385	8	.923		
	Total	52.070	11			
	Between Groups	1116.640	3	372.213	1.280	.345
Pb4	Within Groups	2327.147	8	290.893		
	Total	3443.787	11			
	Between Groups	437.536	3	145.845	21.653	.000
Zn4	Within Groups	53.884	8	6.735		
	Total	491.420	11			

Table E-1.12a Day 15; RES ANOVA

 Table E-1.12b
 Day 15; RES Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co4	.00	.05	.9144333*	.2717223	.010
		.07	1.9474333*	.2717223	.000
		.10	1.0468000*	.2717223	.005
	.05	.00	9144333*	.2717223	.010
		.07	1.0330000*	.2717223	.005
		.10	.1323667	.2717223	.639
	.07	.00	-1.9474333*	.2717223	.000
		.05	-1.0330000*	.2717223	.005
		.10	9006333*	.2717223	.011
	.10	.00	-1.0468000*	.2717223	.005
		.05	1323667	.2717223	.639
		.07	.9006333*	.2717223	.011
Cr4	.00	.05	-3.6577667	2.3913765	.165
		.07	4.7043333	2.3913765	.085
		.10	.3138333	2.3913765	.899
	.05	.00	3.6577667	2.3913765	.165
		.07	8.3621000*	2.3913765	.008
		.10	3.9716000	2.3913765	.135
	.07	.00	-4.7043333	2.3913765	.085
		.05	-8.3621000*	2.3913765	.008
		.10	-4.3905000	2.3913765	.104
	.10	.00	3138333	2.3913765	.899
		.05	-3.9716000	2.3913765	.135
		.07	4.3905000	2.3913765	.104
Cu4	.00	.05	2.8087000^{*}	1.0754414	.031
		.07	6.8841333 [*]	1.0754414	.000
		.10	3.9420333*	1.0754414	.006
	.05	.00	-2.8087000*	1.0754414	.031
		.07	4.0754333*	1.0754414	.005
		.10	1.1333333	1.0754414	.323
	.07	.00	-6.8841333 [*]	1.0754414	.000
		.05	-4.0754333*	1.0754414	.005
		.10	-2.9421000*	1.0754414	.026
	.10	.00	-3.9420333*	1.0754414	.006
		.05	-1.1333333	1.0754414	.323
		.07	2.9421000*	1.0754414	.026
Mn4	.00	.05	30.2891667*	8.5010199	.007
		.07	80.6068333*	8.5010199	.000
		.10	43.1882333*	8.5010199	.001
	.05	.00	-30.2891667*	8.5010199	.007
		.07	50.3176667*	8.5010199	.000
		.10	12.8990667	8.5010199	.168
	.07	.00	-80.6068333*	8.5010199	.000
		.05	-50.3176667*	8.5010199	.000
		.10	-37.4186000*	8.5010199	.002
	.10	.00	-43.1882333*	8.5010199	.001
	-	.05	-12.8990667	8.5010199	.168
		.07	37.4186000*	8.5010199	.002

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni4	.00	.05	-4.4694000*	.7844669	.000
		.07	.2663000	.7844669	.743
		.10	4094667	.7844669	.616
	.05	.00	4.4694000*	.7844669	.000
		.07	4.7357000*	.7844669	.000
		.10	4.0599333*	.7844669	.001
	.07	.00	2663000	.7844669	.743
		.05	-4.7357000*	.7844669	.000
		.10	6757667	.7844669	.414
	.10	.00	.4094667	.7844669	.616
		.05	-4.0599333*	.7844669	.001
		.07	.6757667	.7844669	.414
Pb4	.00	.05	-20.9417667	13.9258362	.171
		.07	-10.4056333	13.9258362	.476
		.10	-24.7288000	13.9258362	.114
	.05	.00	20.9417667	13.9258362	.171
		.07	10.5361333	13.9258362	.471
		.10	-3.7870333	13.9258362	.793
	.07	.00	10.4056333	13.9258362	.476
		.05	-10.5361333	13.9258362	.471
		.10	-14.3231667	13.9258362	.334
	.10	.00	24.7288000	13.9258362	.114
		.05	3.7870333	13.9258362	.793
		.07	14.3231667	13.9258362	.334
Zn4	.00	.05	.7835333	2.1190344	.721
		.07	15.1213667*	2.1190344	.000
		.10	6.3956000*	2.1190344	.017
	.05	.00	7835333	2.1190344	.721
		.07	14.3378333*	2.1190344	.000
		.10	5.6120667*	2.1190344	.029
	.07	.00	-15.1213667*	2.1190344	.000
		.05	-14.3378333*	2.1190344	.000
		.10	-8.7257667*	2.1190344	.003
	.10	.00	-6.3956000*	2.1190344	.017
		.05	-5.6120667*	2.1190344	.029
		.07	8.7257667*	2.1190344	.003

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.630	3	.210	20.296	.000
Col	Within Groups	.083	8	.010		
	Total	.713	11			
	Between Groups	.057	3	.019	1.481	.292
Cr1	Within Groups	.103	8	.013		
	Total	.161	11			
	Between Groups	47.444	3	15.815	1388.857	.000
Cu1	Within Groups	.091	8	.011		
	Total	47.535	11			
	Between Groups	17323.911	3	5774.637	28.575	.000
Mn1	Within Groups	1616.668	8	202.084		
	Total	18940.579	11			
	Between Groups	1.603	3	.534	18.434	.001
Ni1	Within Groups	.232	8	.029		
	Total	1.835	11			
	Between Groups	1.715	3	.572	42.019	.000
Pb1	Within Groups	.109	8	.014		
	Total	1.824	11			
	Between Groups	6.496	3	2.165	8.255	.008
Zn1	Within Groups	2.099	8	.262		
	Total	8.595	11			

Table E-1.13a Day 30; BCR1 ANOVA

 Table E-1.13b Day 30; BCR1 Post Hoc Tests

Dependent Variable	, in the second s	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Col	.00	.05	1553667	.0830483	.098
		.07	.2066000*	.0830483	.038
		.10	.4553000*	.0830483	.001
	.05	.00	.1553667	.0830483	.098
		.07	.3619667*	.0830483	.002
		.10	.6106667*	.0830483	.000
	.07	.00	2066000*	.0830483	.038
		.05	3619667*	.0830483	.002
		.10	.2487000*	.0830483	.017
	.10	.00	4553000*	.0830483	.001
		.05	6106667*	.0830483	.000
		.07	2487000*	.0830483	.017
Cr1	.00	.05	.1329000	.0928594	.190
		.07	.0984333	.0928594	.320
		.10	.1904667	.0928594	.074
	.05	.00	1329000	.0928594	.190
		.07	0344667	.0928594	.720
		.10	.0575667	.0928594	.553
	.07	.00	0984333	.0928594	.320
		.05	.0344667	.0928594	.720
		.10	.0920333	.0928594	.351
	.10	.00	1904667	.0928594	.074
		.05	0575667	.0928594	.553
		.07	0920333	.0928594	.351
Cul	.00	.05	4.5161000*	.0871278	.000
		.07	4.6160000*	.0871278	.000
		.10	4.6401000*	.0871278	.000
	.05	.00	-4.5161000*	.0871278	.000
		.07	.0999000	.0871278	.285
		.10	.1240000	.0871278	.192
	.07	.00	-4.6160000*	.0871278	.000
		.05	0999000	.0871278	.285
		.10	.0241000	.0871278	.789
	.10	.00	-4.6401000*	.0871278	.000
		.05	1240000	.0871278	.192
		.07	0241000	.0871278	.789
Mn1	.00	.05	-1.0626470E2	11.6069964	.000
		.07	-65.9609667*	11.6069964	.000
		.10	-62.4189667*	11.6069964	.001
	.05	.00	106.2647000*	11.6069964	.000
		.07	40.3037333*	11.6069964	.008
		.10	43.8457333*	11.6069964	.005
	.07	.00	65.9609667 [*]	11.6069964	.000
		.05	-40.3037333*	11.6069964	.008
		.10	3.5420000	11.6069964	.768
	.10	.00	62.4189667 [*]	11.6069964	.001
		.05	-43.8457333*	11.6069964	.005
		.07	-3.5420000	11.6069964	.768

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Nil	.00	.05	7370000 [*]	.1389996	.001
1111	.00	.07	8749667*	.1389996	.000
		.10	8869000*	.1389996	.000
	.05	.00	.7370000*	.1389996	.001
		.07	1379667	.1389996	.350
		.10	1499000	.1389996	.312
	.07	.00	.8749667*	.1389996	.000
		.05	.1379667	.1389996	.350
		.10	0119333	.1389996	.934
	.10	.00	.8869000*	.1389996	.000
		.05	.1499000	.1389996	.312
		.07	.0119333	.1389996	.934
Pb1	.00	.05	.7037667*	.0952344	.000
		.07	.8333667*	.0952344	.000
		.10	.9877000*	.0952344	.000
	.05	.00	7037667*	.0952344	.000
		.07	.1296000	.0952344	.211
		.10	.2839333*	.0952344	.018
	.07	.00	8333667*	.0952344	.000
		.05	1296000	.0952344	.211
		.10	.1543333	.0952344	.144
	.10	.00	9877000*	.0952344	.000
		.05	2839333*	.0952344	.018
		.07	1543333	.0952344	.144
Zn1	.00	.05	.9472333	.4181842	.053
		.07	1.0688333*	.4181842	.034
		.10	2.0770333*	.4181842	.001
	.05	.00	9472333	.4181842	.053
		.07	.1216000	.4181842	.779
		.10	1.1298000*	.4181842	.027
	.07	.00	-1.0688333*	.4181842	.034
		.05	1216000	.4181842	.779
		.10	1.0082000^{*}	.4181842	.042
	.10	.00	-2.0770333*	.4181842	.001
		.05	-1.1298000*	.4181842	.027
		.07	-1.0082000*	.4181842	.042

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	6.789	3	2.263	13.746	.002
Co2	Within Groups	1.317	8	.165		
	Total	8.106	11			
	Between Groups	24.753	3	8.251	8.159	.008
Cr2	Within Groups	8.090	8	1.011		
	Total	32.843	11			
	Between Groups	158.224	3	52.741	659.826	.000
Cu2	Within Groups	.639	8	.080		
	Total	158.864	11			
	Between Groups	10769.457	3	3589.819	2.251	.160
Mn2	Within Groups	12755.570	8	1594.446		
	Total	23525.027	11			
	Between Groups	4.024	3	1.341	8.635	.007
Ni2	Within Groups	1.243	8	.155		
	Total	5.266	11			
	Between Groups	101.107	3	33.702	3.901	.055
Pb2	Within Groups	69.109	8	8.639		
	Total	170.217	11			
	Between Groups	29.309	3	9.770	7.513	.010
Zn2	Within Groups	10.403	8	1.300		
	Total	39.712	11			

Table E-1.14a Day 30; BCR2 ANOVA

 Table E-1.14b
 Day 30; BCR2 Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co2	.00	.05	8773000*	.3312996	.029
		.07	-2.0139667*	.3312996	.000
		.10	4174667	.3312996	.243
	.05	.00	.8773000*	.3312996	.029
		.07	-1.1366667*	.3312996	.009
		.10	.4598333	.3312996	.203
	.07	.00	2.0139667*	.3312996	.000
		.05	1.1366667*	.3312996	.009
		.10	1.5965000^*	.3312996	.001
	.10	.00	.4174667	.3312996	.243
		.05	4598333	.3312996	.203
		.07	-1.5965000*	.3312996	.001
Cr2	.00	.05	1.0682000	.8210724	.229
		.07	3.1086333*	.8210724	.005
		.10	3.4776667*	.8210724	.003
	.05	.00	-1.0682000	.8210724	.229
		.07	2.0404333*	.8210724	.038
		.10	2.4094667*	.8210724	.019
	.07	.00	-3.1086333*	.8210724	.005
		.05	-2.0404333*	.8210724	.038
		.10	.3690333	.8210724	.665
	.10	.00	-3.4776667*	.8210724	.003
		.05	-2.4094667*	.8210724	.019
		.07	3690333	.8210724	.665
Cu2	.00	.05	6.4329667 [*]	.2308426	.000
		.07	8.1481000*	.2308426	.000
		.10	9.4554333*	.2308426	.000
	.05	.00	-6.4329667*	.2308426	.000
		.07	1.7151333*	.2308426	.000
		.10	3.0224667*	.2308426	.000
	.07	.00	-8.1481000*	.2308426	.000
		.05	-1.7151333*	.2308426	.000
		.10	1.3073333*	.2308426	.000
	.10	.00	-9.4554333*	.2308426	.000
		.05	-3.0224667*	.2308426	.000
		.07	-1.3073333*	.2308426	.000
Mn2	.00	.05	42.5274667	32.6031314	.228
		.07	40.2354000	32.6031314	.252
		.10	84.6907667*	32.6031314	.032
	.05	.00	-42.5274667	32.6031314	.228
		.07	-2.2920667	32.6031314	.946
		.10	42.1633000	32.6031314	.232
	.07	.00	-40.2354000	32.6031314	.252
		.05	2.2920667	32.6031314	.946
		.10	44.4553667	32.6031314	.210
	.10	.00	-84.6907667*	32.6031314	.032
		.05	-42.1633000	32.6031314	.232
		.07	-44.4553667	32.6031314	.210

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni2	.00	.05	-1.2257333*	.3217960	.005
		.07	-1.3406667*	.3217960	.003
		.10	-1.4174667*	.3217960	.002
	.05	.00	1.2257333*	.3217960	.005
		.07	1149333	.3217960	.730
		.10	1917333	.3217960	.568
	.07	.00	1.3406667*	.3217960	.003
		.05	.1149333	.3217960	.730
		.10	0768000	.3217960	.817
	.10	.00	1.4174667*	.3217960	.002
		.05	.1917333	.3217960	.568
		.07	.0768000	.3217960	.817
Pb2	.00	.05	-2.1671000	2.3998134	.393
		.07	4.0959000	2.3998134	.126
		.10	4.8808333	2.3998134	.076
	.05	.00	2.1671000	2.3998134	.393
		.07	6.2630000 [*]	2.3998134	.031
		.10	7.0479333*	2.3998134	.019
	.07	.00	-4.0959000	2.3998134	.126
		.05	-6.2630000*	2.3998134	.031
		.10	.7849333	2.3998134	.752
	.10	.00	-4.8808333	2.3998134	.076
		.05	-7.0479333*	2.3998134	.019
		.07	7849333	2.3998134	.752
Zn2	.00	.05	-4.1490333*	.9310702	.002
		.07	-3.3940667*	.9310702	.007
		.10	-2.5626333*	.9310702	.025
	.05	.00	4.1490333*	.9310702	.002
		.07	.7549667	.9310702	.441
		.10	1.5864000	.9310702	.127
	.07	.00	3.3940667*	.9310702	.007
		.05	7549667	.9310702	.441
		.10	.8314333	.9310702	.398
	.10	.00	2.5626333*	.9310702	.025
		.05	-1.5864000	.9310702	.127
		.07	8314333	.9310702	.398

		1	ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	4.852	3	1.617	.589	.639
Co3	Within Groups	21.982	8	2.748		
	Total	26.835	11			
	Between Groups	20.287	3	6.762	7.780	.009
Cr3	Within Groups	6.954	8	.869		
	Total	27.241	11			
	Between Groups	137.266	3	45.755	8.108	.008
Cu3	Within Groups	45.146	8	5.643		
	Total	182.413	11			
	Between Groups	169.480	3	56.493	10.084	.004
Mn3	Within Groups	44.820	8	5.602		
	Total	214.300	11			
	Between Groups	.060	3	.020	1.704	.243
Ni3	Within Groups	.094	8	.012		
	Total	.153	11			
	Between Groups	6.302	3	2.101	12.569	.002
Pb3	Within Groups	1.337	8	.167		
	Total	7.639	11			
	Between Groups	8.830	3	2.943	7.469	.010
Zn3	Within Groups	3.152	8	.394		
	Total	11.982	11			

Table E-1.15a Day 30; BCR3 ANOVA

 Table E-1.15b Day 30; BCR3 Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co3	.00	.05	-1.3362333	1.3534639	.352
		.07	-1.7104667	1.3534639	.242
		.10	-1.0381333	1.3534639	.465
	.05	.00	1.3362333	1.3534639	.352
		.07	3742333	1.3534639	.789
		.10	.2981000	1.3534639	.831
	.07	.00	1.7104667	1.3534639	.242
		.05	.3742333	1.3534639	.789
		.10	.6723333	1.3534639	.633
	.10	.00	1.0381333	1.3534639	.465
		.05	2981000	1.3534639	.831
		.07	6723333	1.3534639	.633
Cr3	.00	.05	-1.2117000	.7612233	.150
		.07	-2.9889333*	.7612233	.004
		.10	-3.1293000*	.7612233	.003
	.05	.00	1.2117000	.7612233	.150
		.07	-1.7772333*	.7612233	.048
		.10	-1.9176000*	.7612233	.036
	.07	.00	2.9889333 [*]	.7612233	.004
		.05	1.7772333*	.7612233	.048
		.10	1403667	.7612233	.858
	.10	.00	3.1293000*	.7612233	.003
		.05	1.9176000^{*}	.7612233	.036
		.07	.1403667	.7612233	.858
Cu3	.00	.05	-7.0812333*	1.9396339	.006
		.07	-8.0570333*	1.9396339	.003
		.10	-8.1196000 [*]	1.9396339	.003
	.05	.00	7.0812333*	1.9396339	.006
		.07	9758000	1.9396339	.628
		.10	-1.0383667	1.9396339	.607
	.07	.00	8.0570333 [*]	1.9396339	.003
		.05	.9758000	1.9396339	.628
		.10	0625667	1.9396339	.975
	.10	.00	8.1196000 [*]	1.9396339	.003
		.05	1.0383667	1.9396339	.607
		.07	.0625667	1.9396339	.975
Mn3	.00	.05	-5.2038000*	1.9326110	.027
		.07	-7.9792000*	1.9326110	.003
		.10	-10.0129667*	1.9326110	.001
	.05	.00	5.2038000*	1.9326110	.027
		.07	-2.7754000	1.9326110	.189
		.10	-4.8091667*	1.9326110	.038
	.07	.00	7.9792000*	1.9326110	.003
		.05	2.7754000	1.9326110	.189
		.10	-2.0337667	1.9326110	.323
	.10	.00	10.0129667*	1.9326110	.001
		.05	4.8091667*	1.9326110	.038
		.07	2.0337667	1.9326110	.323

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Ni3	.00	.05	0686000	.0882950	.460
		.07	1938667	.0882950	.059
		.10	1157667	.0882950	.226
	.05	.00	.0686000	.0882950	.460
		.07	1252667	.0882950	.194
		.10	0471667	.0882950	.608
	.07	.00	.1938667	.0882950	.059
		.05	.1252667	.0882950	.194
		.10	.0781000	.0882950	.402
	.10	.00	.1157667	.0882950	.226
		.05	.0471667	.0882950	.608
		.07	0781000	.0882950	.402
Pb3	.00	.05	6645667	.3338036	.082
		.07	-1.7875667*	.3338036	.001
		.10	-1.6073667*	.3338036	.001
	.05	.00	.6645667	.3338036	.082
		.07	-1.1230000*	.3338036	.010
		.10	9428000*	.3338036	.022
	.07	.00	1.7875667*	.3338036	.001
		.05	1.1230000*	.3338036	.010
		.10	.1802000	.3338036	.604
	.10	.00	1.6073667*	.3338036	.001
		.05	.9428000*	.3338036	.022
		.07	1802000	.3338036	.604
Zn3	.00	.05	9659667	.5125435	.096
		.07	-1.2372333*	.5125435	.042
		.10	-2.4067000*	.5125435	.002
	.05	.00	.9659667	.5125435	.096
		.07	2712667	.5125435	.611
		.10	-1.4407333*	.5125435	.023
	.07	.00	1.2372333*	.5125435	.042
		.05	.2712667	.5125435	.611
		.10	-1.1694667	.5125435	.052
	.10	.00	2.4067000*	.5125435	.002
		.05	1.4407333*	.5125435	.023
		.07	1.1694667	.5125435	.052

ANOVA										
		Sum of Squares	df	Mean Square	F	Sig.				
	Between Groups	.659	3	.220	.501	.692				
Co4	Within Groups	3.504	8	.438						
	Total	4.163	11							
	Between Groups	76.688	3	25.563	.418	.745				
Cr4	Within Groups	488.873	8	61.109						
	Total	565.561	11							
Cu4	Between Groups	35.828	3	11.943	3.334	.077				
	Within Groups	28.654	8	3.582						
	Total	64.482	11							
	Between Groups	1120.690	3	373.563	.624	.619				
Mn4	Within Groups	4787.936	8	598.492						
	Total	5908.626	11							
	Between Groups	3.449	3	1.150	1.201	.370				
Ni4	Within Groups	7.656	8	.957						
	Total	11.105	11							
	Between Groups	2.311	3	.770	1.017	.434				
Pb4	Within Groups	6.059	8	.757						
	Total	8.370	11							
	Between Groups	83.684	3	27.895	.868	.496				
Zn4	Within Groups	257.093	8	32.137						
	Total	340.777	11							

Table E-1.16a Day 30; RES ANOVA

 Table E-1.16b
 Day 30; RES Post Hoc Tests

Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
Co4 .00		.05	.2347667	.5403902	.675
		.07	.5470333	.5403902	.341
		.10	0427000	.5403902	.939
	.05	.00	2347667	.5403902	.675
		.07	.3122667	.5403902	.579
		.10	2774667	.5403902	.622
	.07	.00	5470333	.5403902	.341
		.05	3122667	.5403902	.579
		.10	5897333	.5403902	.307
	.10	.00	.0427000	.5403902	.939
		.05	.2774667	.5403902	.622
		.07	.5897333	.5403902	.307
Cr4	.00	.05	6.0906333	6.3827421	.368
		.07	2.8654000	6.3827421	.665
		.10	6.0389000	6.3827421	.372
	.05	.00	-6.0906333	6.3827421	.368
		.07	-3.2252333	6.3827421	.627
		.10	0517333	6.3827421	.994
	.07	.00	-2.8654000	6.3827421	.665
		.05	3.2252333	6.3827421	.627
		.10	3.1735000	6.3827421	.632
	.10	.00	-6.0389000	6.3827421	.372
		.05	.0517333	6.3827421	.994
		.07	-3.1735000	6.3827421	.632
Cu4	.00	.05	3.7878333*	1.5452665	.040
		.07	4.5588000^{*}	1.5452665	.018
		.10	2.5678000	1.5452665	.135
	.05	.00	-3.7878333*	1.5452665	.040
		.07	.7709667	1.5452665	.631
		.10	-1.2200333	1.5452665	.453
	.07	.00	-4.5588000*	1.5452665	.018
		.05	7709667	1.5452665	.631
		.10	-1.9910000	1.5452665	.234
	.10	.00	-2.5678000	1.5452665	.135
		.05	1.2200333	1.5452665	.453
		.07	1.9910000	1.5452665	.234
Mn4	.00	.05	12.3658000	19.9748512	.553
		.07	26.7372333	19.9748512	.218
		.10	17.5735000	19.9748512	.405
	.05	.00	-12.3658000	19.9748512	.553
		.07	14.3714333	19.9748512	.492
		.10	5.2077000	19.9748512	.801
	.07	.00	-26.7372333	19.9748512	.218
		.05	-14.3714333	19.9748512	.492
		.10	-9.1637333	19.9748512	.659
	.10	.00	-17.5735000	19.9748512	.405
		.05	-5.2077000	19.9748512	.801
		.07	9.1637333	19.9748512	.659

Ni4 .00 .05 .4327667 .7987255 .603 .07 6971333 .7987255 .408 .10 9044333 .7987255 .290 .05 .00 4327667 .7987255 .603 .07 -1.1299000 .7987255 .195 .10 -1.3372000 .7987255 .133 .07 .00 .6971333 .7987255 .195 .10 -1.299000 .7987255 .195 .105 .10 2073000 .7987255 .195 .10 2073000 .7987255 .802 .10 .00 .9044333 .7987255 .802 .10 .00 .9044333 .7987255 .802 .10 .00 .5353000 .7106038 .473 .07 .4749000 .7106038 .473 .07 .0533000 .7106038 .463 .05 .0604000 .7106038 .163 .07 <t< th=""><th>Dependent Variable</th><th>(I) Condition</th><th>(J) Condition</th><th>Mean Difference (I-J)</th><th>Std. Error</th><th>Sig.</th></t<>	Dependent Variable	(I) Condition	(J) Condition	Mean Difference (I-J)	Std. Error	Sig.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ni4	.00	.05	.4327667	.7987255	.603
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07	6971333	.7987255	.408
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.10	9044333	.7987255	.290
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.05	.00	4327667	.7987255	.603
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07	-1.1299000	.7987255	.195
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.10	-1.3372000	.7987255	.133
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07	.00	.6971333	.7987255	.408
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.05	1.1299000	.7987255	.195
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.10	2073000	.7987255	.802
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.10	.00	.9044333	.7987255	.290
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.05	1.3372000	.7987255	.133
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07	.2073000	.7987255	.802
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pb4	.00	.05	.5353000	.7106038	.473
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07	.4749000	.7106038	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.10	5565000	.7106038	.456
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.05	.00	5353000	.7106038	.473
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07	0604000	.7106038	.934
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.10	-1.0918000	.7106038	.163
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07	.00	4749000	.7106038	.523
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.05	.0604000	.7106038	.934
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.10	-1.0314000	.7106038	.185
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.10	.00	.5565000	.7106038	.456
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.05	1.0918000	.7106038	.163
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07	1.0314000	.7106038	.185
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zn4	.00	.05	4.6001667	4.6286551	.349
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.07	6.9966000	4.6286551	.169
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.10	2.0005000	4.6286551	.677
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.05	.00	-4.6001667	4.6286551	.349
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.07		4.6286551	.619
.05 -2.3964333 4.6286551 .619 .10 -4.9961000 4.6286551 .312 .10 .00 -2.0005000 4.6286551 .677 .05 2.5996667 4.6286551 .590			.10	-2.5996667	4.6286551	.590
.10 -4.9961000 4.6286551 .312 .10 .00 -2.0005000 4.6286551 .677 .05 2.5996667 4.6286551 .590		.07	.00	-6.9966000	4.6286551	.169
.10 -4.9961000 4.6286551 .312 .10 .00 -2.0005000 4.6286551 .677 .05 2.5996667 4.6286551 .590			.05	-2.3964333	4.6286551	.619
.05 2.5996667 4.6286551 .590			.10		4.6286551	.312
.05 2.5996667 4.6286551 .590		.10	.00	-2.0005000	4.6286551	.677
07 4 9961000 4 6286551 312			.05	2.5996667		.590
.07 1.0901000 1.0200001 .012			.07	4.9961000	4.6286551	.312

Appendix F

. reg Co, BCR1

Source	SS	df	MS		Number of obs =	48
Model Residual	. 135216639 . 235781587	2 .06 45 .005			F(2, 45) = 12 Prob > F = 0.0 R-squared = 0.3 Adj R-squared = 0.3	0000 3645
Total	. 370998227	47 .007	893579		Root MSE $= .07$	7239
co1	Coef.	Std. Err.	t	P> t	[95% Conf. Interv	val]
time	.0012652	.000961	1.32	0.195	0006705 . 0032	2008
om	0140829	.0028703	-4.91	0.000	0198639 0083	3019
_cons	1.052789	. 0228149	46.14	0.000	1.006837 1.09	9874

. reg Cr, BCR1

·

Source	SS	df	MS		Number of obs $F(2, 45)$	10
Model Residual 	. 594186076 2. 14776932 2. 7419554	2 . 297 45 . 047 47 . 058	728207		- (_)/	$= 0.0041 \\ = 0.2167 \\ = 0.1819$
cr1	Coef.	Std. Err.	t	P> t	[95% Conf.	 Interval]
time om _cons	0074909 0208263 2812894	. 0029006 . 0086628 . 0688584	-2.58 -2.40 -4.09	0. 013 0. 020 0. 000	0382741	0016489 0033784 1426015

. . reg Cu, BCR1

Source	SS	df	MS		Number of obs = 48
+					F(2, 45) = 150.32
Model	42.2364248	2	21.1182124		Prob > F = 0.0000
Residual	6. 32204413	45	.140489869		R-squared = 0.8698
+					Adj R -squared = 0.8640
Total	48.5584689	47	1.03315891		Root MSE = .37482
cul	Coef.	Std. I	Err. t	P> t	[95% Conf. Interval]
time	0124266	. 00497	764 -2.50	0.016	0224496 0024036
om	2550139	.01486	626 -17.16	0.000	2849486 2250791
_cons	1.656986	.11813	386 14.03	0.000	1. 419043 1. 894929

. reg Mn, BCR1						
Source	SS	df		MS		Number of obs = 48 F(2, 45) = 9.73
Model Residual	. 12680334 . 293191524	_		5340167 5515367		Prob > F = 0.0003 R-squared = 0.3019 Adj R-squared = 0.2709
Total	. 419994865	47	. 008	936061		Root MSE = $.08072$
mn1	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
time om _cons	. 0038432 . 0082235 6. 339895	. 0010 . 0032 . 0254	007	3. 59 2. 57 249. 20	0.001 0.014 0.000	.0016848 .0060017 .001777 .01467 6.288653 6.391136

. reg Ni, BCR1

Source	SS	df	MS		Number of obs	= 48
+					F(2, 45)	= 0.95
Model	.093517701	2	.04675885		Prob > F	= 0.3930
Residual	2.20656138	45	.049034697		R-squared	= 0.0407
+					Adj R-squared	= -0.0020
Total	2.30007908	47	.048937853		Root MSE	= .22144
nil	Coef.	Std. E	Err. t	P> t	[95% Conf.	[Interval]
+						
time	0004642	. 002	-0.16	6 0.875	0063857	.0054572
om	.0120465	. 00878	306 1.37	0.177	0056385	.0297315
_cons	.6654635	. 06979	945 9.53	0.000	.5248902	. 8060367

. reg Pb, BCR1

.

Source	SS	df	MS		Number of obs $F(2, 45)$	10
Model Residual Total	10. 7381783 9. 32339879 20. 0615771	2 5.36 45 .20 47 .426	718664		Prob > F R-squared Adj R-squared Root MSE	$= 0.0000 \\ = 0.5353 \\ = 0.5146$
pb1	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
time om _cons	0013383 1298767 . 296179	. 0060433 . 018049 . 1434664	-0. 22 -7. 20 2. 06	0. 826 0. 000 0. 045	0135101 1662292 . 0072229	

reg Zn, BCR1

Source	SS	df	MS		Number of obs	= 48
+					F(2, 45)	= 43.80
Model	. 354243308	2.177	121654		Prob > F	= 0.0000
Residual	.181957837	45 .004	043507		R-squared	= 0.6607
+					Adj R-squared	= 0.6456
Total	.536201145	47 .011	408535		Root MSE	= .06359
zn1	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
+						
time	. 0031852	. 0008443	3.77	0.000	.0014848	.0048856
om	0215984	.0025215	-8.57	0.000	0266768	0165199
_cons	2.095627	. 0200423	104.56	0.000	2.05526	2.135995

. reg Co, BCR2

Source	SS	df		MS		Number of obs	=	48
+						F(2, 45)	=	6.62
Model	.181131616	2	. 090	565808		Prob > F	=	0.0030
Residual	.616046917	45	. 013	689931		R-squared	=	0.2272
+						Adj R-squared	=	0.1929
Total	.797178533	47	. 016	961245		Root MSE	=	.117
co2	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
+ time	. 0004652	. 0015		0, 30	0. 766	0026636		. 003594
time								
om	. 0168187	.0046	395	3.63	0.001	.0074742		0261631
_cons	1.449244	. 0368	782	39.30	0.000	1. 374968	1	. 523521

. . reg Cr, BCR2

Source	SS	df	MS		Number of obs $F(2, 45)$	
+	1. 84139713 . 15811176 1. 99950889	2 . 920 45 . 003 47 . 042	3513595		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.9209 = 0.9174
cr2	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
time om _cons	. 0159629 0249478 2. 570786	.000787 .0023504 .0186829	20. 28 -10. 61 137. 60	0.000 0.000 0.000	. 0143778 0296818 2. 533156	. 017548 0202138 2. 608415

. reg Cu, BCR2

Source	SS	df	MS		Number of obs	= 48
+-					F(2, 45)	= 294.48
Model	19.0776459	2 9.53	3882293		Prob > F	= 0.0000
Residual	1.45766179	45 .032	2392484		R-squared	= 0.9290
+-					Adj R-squared	= 0.9259
Total	20.5353076	47.436	5921439		Root MSE	= .17998
cu2	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
+-						
time	.0075445	.0023895	3.16	0.003	.0027317	.0123573
om	1717224	.0071366	-24.06	0.000	1860963	1573485
_cons	2.302347	.0567272	40.59	0.000	2.188092	2.416601

.. reg Mn, BCR2

Source	SS	df		MS		Number of obs =	48
+						F(2, 45) =	9.77
Model	.211089214	2	. 105	544607		Prob > F =	0.0003
Residual	.486016052	45	. 010	800357		R-squared =	0.3028
+						Adj R-squared =	0.2718
Total	.697105266	47	.014	832027		Root MSE =	. 10392
mn2	Coef.	Std.	Err.	t	P> t	[95% Conf. I	nterval]
time	. 0052886	. 0013	 798	3.83	0.000	. 0025096	. 0080676
om	0090786	.0041	209	-2.20	0.033	0173785 -	.0007787
_cons	6. 53553	. 0327	558	199.52	0.000	6. 469556	6. 601503

. reg Ni, BCR2

Source	SS	df	MS		Number of $obs = 48$
Model Residual Total	. 558150921 . 381289915 . 939440836	45.			F(2, 45) = 32.94 $Prob > F = 0.0000$ $R-squared = 0.5941$ $Adj R-squared = 0.5761$ $Root MSE = .09205$
ni2	Coef.	Std. Er	r. t	P> t	[95% Conf. Interval]
time om _cons	. 0275592	. 001222 . 0036 . 029012	5 7.55	0. 005 0. 000 0. 000	0061 001177 . 0202077 . 0349107 1. 371333 1. 488203

. reg Pb, BCR2

Source	SS	df	MS		Number of obs	= 48
+					F(2, 45)	= 32.28
Model	1.55091567	2.7754	457834		Prob > F	= 0.0000
Residual	1.08089364	45 . 0240	019859		R-squared	= 0.5893
+					Adj R-squared	= 0.5710
Total	2.6318093	47 .0559	995943		Root MSE	= .15498
pb2	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
+						
time	.015164	.0020577	7.37	0.000	.0110197	.0193084
om	0196838	.0061455	-3.20	0.002	0320615	0073062
_cons	2.945271	.0488489	60.29	0.000	2.846885	3.043658

. reg Zn, BCR2

Source	SS	df	MS		Number of obs	= 48
+-					F(2, 45)	= 79.58
Model	1.36387329	2.681	936644		Prob > F	= 0.0000
Residual	.385611642	45 .008	3569148		R-squared	= 0.7796
+-					Adj R-squared	= 0.7698
Total	1.74948493	47 .037	223084		Root MSE	= .09257
zn2	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
+-						
time	. 0133105	. 001229	10.83	0.000	.0108351	.0157859
om	.0237516	.0036706	6.47	0.000	.0163586	.0311446
_cons	2.122321	.0291768	72.74	0.000	2.063556	2.181086

. reg Co, BCR3

Source	SS	df	MS		Number of obs $F(2, 45)$	= 48 = 9.46
Model Residual	. 833307684 1. 98114664	$\begin{array}{ccc} 2 & . 416 \\ 45 & . 044 \end{array}$			Prob > F R-squared Adi R-squared	= 0.0004 = 0.2961
Total	2. 81445433	47 .059	882007		Root MSE	
co3	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
time	0037246	. 0027858	-1.34	0. 188	0093354	.0018862
om	. 0344455	.00832	4.14	0.000	.0176881	.0512028
_cons	1.826543	. 0661335	27.62	0.000	1. 693343	1.959742

. reg Cr, BCR3

Source	SS	df	MS		Number of obs	= 48
+-					F(2, 45)	= 54.28
Model	4. 59597163	2 2.297	798582		Prob > F	= 0.0000
Residual	1.90521318	45 .0423	338071		R-squared	= 0.7069
+-					Adj R-squared	= 0.6939
Total	6.50118481	47 . 1383	323081		Root MSE	= .20576
cr3	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
+-						
time	0044556	.0027319	-1.63	0.110	0099579	.0010466
om	. 08396	. 008159	10.29	0.000	.067527	. 1003931
_cons	1.167014	.0648537	17.99	0.000	1.036392	1.297636

. reg Cu, BCR3

•

Source	SS	df	MS		Number of obs	= 48
+					F(2, 45)	= 63.64
Mode1	5. 49917813	2 2.	. 74958907		Prob > F	= 0.0000
Residual	1.9443148	45 .0	043206996		R-squared	= 0.7388
+					Adj R-squared	= 0.7272
Total	7.44349294	47 .	. 15837219		Root MSE	= .20786
cu3	Coef.	Std. Er:	 r. t	P> t	[95% Conf.	Interval]
+						
time	0006237	. 0027598	8 -0.23	0.822	0061821	.0049348
om	.0929679	. 0082423	3 11.28	0.000	.0763671	. 1095688
_cons	1.84279	.0655158	8 28.13	0.000	1.710834	1.974745

. reg Mn, BCR3

•

Source	SS	df	MS		Number of obs $F(2, 45)$	10
Model Residual	5. 46392109 6. 63716206	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			F(2,45) Prob > F R-squared Adi R-squared	= 0.0000 = 0.4515
Total	12.1010831	47 . 257	469854		Root MSE	
mn3	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
time	0148663	. 0050989	-2.92	0.006	0251361	0045966
om	.0813617	.0152285	5.34	0.000	. 0506899	.1120334
_cons	3. 037158	. 121047	25.09	0.000	2. 793357	3. 28096

. reg Ni, BCR3

Source	SS	df	MS		Number of obs = 48	
 Model Residual Total	5. 64284649 4. 11208656 9. 75493304	2 2.82 45 .091 47 .207	379701		F(2,45) = 30.88 Prob > F = 0.0000 R-squared = 0.5785 Adj R-squared = 0.5597 Root MSE = .30229	
ni3	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
time om _cons	022506 . 0659875 . 5284057	. 0040135 . 0119866 . 0952783	-5.61 5.51 5.55	0.000 0.000 0.000	0305895 0144224 . 0418453 . 0901298 . 3365053 . 7203061	

. reg Pb, BCR3

•

Source	SS	df	MS		Number of obs $F(2, 45)$	= 48 = 121.22
Model Residual + Total	4. 90483078 . 910414731 5. 81524551	2 2.45 45 .020 47 .123	231438		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8434
pb3	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
time om _cons	0143415 . 0766641 1. 15608	. 0018885 . 0056401 . 0448314	-7. 59 13. 59 25. 79	0. 000 0. 000 0. 000	0181451 . 0653044 1. 065785	010538 . 0880238 1. 246375

. reg Zn, BCR3

•

Source	SS	df	MS		Number of obs F(2, 45)	10
Model Residual	1. 24338984 2. 35444429	2 .621 45 .052			Prob > F R-squared Adj R-squared	= 0.0001 = 0.3456
Total	3. 59783413	47 .076	549662		Root MSE	= .22874
zn3	Coef.	Std. Err.	t	$P \ge t $	[95% Conf.	Interval]
time	. 0038254	. 0030369	1.26	0. 214	0022912	. 009942
om	.042714	. 00907	4.71	0.000	. 024446	.060982
_cons	1.542069	. 0720953	21.39	0.000	1. 396861	1. 687276

. reg Co, BCR4

Source	SS	df	MS		Number of obs $F(2, 45)$	10
Model Residual Total	. 383569749 . 30271612 . 686285869	2 . 191 45 . 006 47 . 014	727025		F(2, 45) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.5589
co4	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
time om _cons	. 0071018 0123782 1. 95713	. 0010889 . 0032522 . 0258512	6. 52 -3. 81 75. 71	0.000 0.000 0.000	. 0049086 0189285 1. 905063	. 0092951 0058278 2. 009197

. reg Cr, BCR4

•

Source	SS	df	MS		Number of obs	= 48
+					F(2, 45)	= 38.15
Mode1	.417692947	2.2	208846473		Prob > F	= 0.0000
Residual	.246322366	45 .	00547383		R-squared	= 0.6290
+					Adj R-squared	= 0.6126
Total	.664015313	47 .0	014127985		Root MSE	= .07399
cr4	Coef.	Std. Er:	r. t	P> t	[95% Conf.	Interval
+						010554
time	.0085755	. 0009823	8.73	0.000	.0065971	. 010554
om	0008871	. 002933	7 -0.30	0.764	0067959	.0050217
_cons	4.450428	. 0233193	3 190.85	0.000	4.40346	4.497395

. reg Cu, BCR4

•

Source	SS	df	MS		Number of obs $F(2, 45)$	
Model Residual	1. 63690619 . 863143989	$\begin{array}{c}2&.818\\45&.019\end{array}$			Prob > F R-squared Adj R-squared	= 0.0000 = 0.6547
Total	2. 50005017	47 .053	192557		Root MSE	
cu4	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
time	0166915	. 0018388	-9.08	0.000	020395	012988
om	0094145	.0054917	-1.71	0.093	0204754	.0016463
_cons	3.982373	. 043652	91.23	0.000	3. 894454	4. 070293

. reg Mn, BCR4

Source	SS	df	MS		Number of obs	= 48
+					F(2, 45)	= 1.38
Mode1	.058913474	2.029	456737		Prob > F	= 0.2625
Residual	.961963951	45 .021	376977		R-squared	= 0.0577
+					Adj R-squared	= 0.0158
Total	1.02087742	47 .021	720796		Root MSE	= .14621
·						
mn4	Coef.	Std. Err.	t	P > t	[95% Conf.	[Interval]
+						
time	0018191	.0019412	-0.94	0.354	0057288	.0020907
om	0079445	.0057976	-1.37	0.177	0196214	.0037324
_cons	6.016562	.0460832	130.56	0.000	5.923746	6.109379

. reg Ni, BCR4

•

Source	SS	df	MS		Number of obs = 48
+-					F(2, 45) = 1.44
Model	.095709841	2	.04785492		Prob > F = 0.2483
Residual	1.49824708	45	.03329438		R-squared = 0.0600
+					Adj R -squared = 0.0183
Total	1.59395692	47	. 033913977		Root MSE = .18247
ni4	Coef.	Std. E	Err. t	P> t	[95% Conf. Interval]
time	003971	. 00242	226 -1.64	0. 108	0088503 .0009084
om	. 0031359	.00723	0. 43	0.667	0114367 .0177086
_cons	2.310835	. 05751	40.18	0.000	2. 195001 2. 426669

. reg Pb, BCR4

.

Source	SS	df	MS		Number of obs = 48 F(2, 45) = 0.06
Model Residual Total	. 06672509 25. 8627813 25. 9295064	45	. 033362545 . 574728473 . 551691625		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
pb4	Coef.	Std. E	Err. t	P> t	[95% Conf. Interval]
time om _cons	. 0009137 . 0098725 2. 860025	. 01006 . 0300 . 23894	061 0.33	0. 928 0. 744 0. 000	0193588 . 0211862 0506733 . 0704184 2. 378762 3. 341288

. reg Zn, BCR4								
Source	SS	df		MS		Number of obs		48
+	. 060442642 . 69177353 . 752216173	45	. 015			F(2,45) Prob > F R-squared Adj R-squared Root MSE	= = =	
zn4					P> t	[95% Conf.	 In	terval]
time om _cons	002616 0058303 4. 286212	. 0016 . 0049 . 0390	0164	-1.59 -1.19 109.68	0. 119 0. 242 0. 000	0059315 0157325 4. 207503		0006995 0040718 . 364922

BIOGRAPHY

Name:	Ms. Lalita Chunhacherdchai
Date of Birth:	January 4, 1983
Nationality:	Thai
University Education:	2002-2005 Bachelor Degree of Applied Science in
	Agro-Industrial Technology,
	King Mongkut's Institute of Technology North
	Bangkok , Bangkok, Thailand

Presentation:

Lalita Chunhacherdchai, Srilert Chotpantarat and Chantra Tongcumpou. Investigating of heavy metals in different depths of soil tailings from Akara Gold Mine, Thailand using three-step modified BCR sequential extraction. The proceeding of 2nd International Conference on Environmental Science and Technology (ICEST 2011). Peninsula.Excelsior Hotel, Singapore, February 26 - 28, 2011. Organized by Asia-Pacific Chemical, Biological & Environmental Engineering Society (APCBEES) and The Institute of Electrical and Electronics Engineers (IEEE).