การสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินาที่ใช้แล้ว

นายธัชชา สามพิมพ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมสิ่งแวดล้อม ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

SYNTHESIS OF Na-A ZEOLITE FROM SPENT SILICA - ALUMINA

Mr. Tatcha Sampim

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Environmental Engineering Department of Environmental Engineering Faculty of Engineering Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินาที่ใช้แล้ว
โดย	นายธัชชา สามพิมพ์
สาขาวิชา	วิศวกรรมสิ่งแวดล้อม
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	รองศาสตราจารย์ ดร.เพ็ชรพร เชาวกิจเจริญ
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	อาจารย์ ดร. ดวงกมล นันทศรี

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

.....คณบดีคณะวิศวกรรมศาสตร์

(รองศาสตราจารย์ ดร.บุญสม เลิศหิรัญวงศ์)

คณะกรรมการสอบวิทยานิพนธ์

.....ประธานกรรมการ (รองศาสตราจารย์ ดร. อรทัย ชวาลภาฤทธิ์)

..... อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(รองศาสตราจารย์ ดร.เพ็ชรพร เชาวกิจเจริญ)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม

(อาจารย์ ดร. ดวงกมล นันทศรี)

.....กรรมการ (ผู้ช่วยศาสตราจารย์ ดร. วิบูลย์ลักษณ์ พึ่งรัศมี)

.....กรรมการภายนอกมหาวิทยาลัย

(รองศาสตราจารย์ ดร.ดวงรัตน์ อินทร)

ชัชชา สามพิมพ์ : การสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินาที่ใช้แล้ว. (SYNTHESIS OF Na-A ZEOLITE FROM SPENT SILICA - ALUMINA) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ.ดร.เพ็ชรพร เชาวกิจเจริญ, อ.ที่ปรึกษาวิทยานิพนธ์ ร่วม อ.ดร. ดวงกมล นันทศรี,134 หน้า.

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาสภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอจาก กากซิลิกา-อะลูมินาที่ใช้แล้ว ซึ่งปรับสภาพด้วยการร่อนผ่านตะแกรงขนาด 200 เมช และเผาที่ อุณหภูมิ 700 องศาเซลเซียส มาใช้เป็นแหล่งของซิลิกา-อะลูมินาในการสังเคราะห์ซีโอไลต์เอ การทดลองนี้จะใช้องค์ประกอบเริ่มต้นเดียวกันตามสัดส่วนโดยโมลดังนี้ Al₂O₃ : 1.926 SiO₂ : 3.165 Na₂O : 128 H₂O โดยแบ่งวิธีการสังเคราะห์ออกเป็น 3 ส่วนคือ ศึกษาการสังเคราะห์ ด้วยวิถีไฮโดรเทคร์มัล ศึกษาการสังเคราะห์ด้วยวิถีไมโครเวฟ และศึกษาการสังเคราะห์ด้วยวิถี สภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอ คือ การสังเคราะห์ด้วยวิธี แบบผสม ไฮโดรเทอร์มัล โดยละลายกากที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการกรอง กากที่ไม่ละลายทิ้งจากนั้นผสมสารตั้งต้นที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที สุดท้ายสังเคราะห์ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 3 และ 4 ชั่วโมง ผลการศึกษาพบว่า ซีโอไลต์เอที่สังเคราะห์ได้มีค่าความเป็นผลึกเท่ากับ 97.03 และ 100 เปอร์เซ็นต์ ตามลำดับ ซึ่ง ซีโอไลต์เอที่สังเคราะห์ได้มีลักษณะโครงสร้างภายนอกเป็นทรงสี่เหลี่ยมลูกบาศก์ที่ชัดเจนจาก การตรวจสอบด้วยกล้องจุลทรรศน์อิเล็คตรอนแบบส่องกราด และพบว่ามีค่าความสามารถใน การแลกเปลี่ยนแคลเซียม เท่ากับ 277.01 และ 293.50 มิลลิกรัมของแคลเซียมคาร์บอเนตต่อ กรัมของซีโอไลต์แอนไฮดรัส ตามลำดับ ซึ่งพบว่าผ่านเกณฑ์มาตรฐานอุตสาหกรรม (มอก. 1422/2540) ทั้งสองสภาวะ โดยได้กำหนดมาตรฐานไว้ที่ 270 มิลลิกรัมของแคลเซียม คาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส

ภาควิชา <u>วิศวกรรมสิ่งแวดล้อม</u>	ลายมือชื่อนิสิต
สาขาวิชา วิศวกรรมสิ่งแวดล้อม	ูลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา 2553	ูลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

##5170327221 : MAJOR ENVIRONMENTAL ENGINEERING

KEYWORDS : ALUMINA-SILICA WASTE/ Na-A ZEOLITE / WASTE UTILIZATION/ HYDROTHERMAL/ MICROWAVE

TATCHA SAMPIM : SYNTHESIS OF Na-A ZEOLITE FROM SPENT SILICA- ALUMINA. THESIS ADVISOR : ASSOC.PROF. PETCHPORN CHAWAKITCHAREON, Ph.D., THESIS CO-ADVISOR : DUANGAMOL NUNTASRI, Ph.D., 134 pp.

This research investigated the synthesis of Na-A zeolite by using spent silicaalumina, that submitted to screening at 200 mesh and to calcination at 700 °C, were used as a silica-alumina source for Na-A zeolite synthesis. This experiment using the same starting material following composition: Al_2O_3 : 1.926 SiO_2 : 3.165 Na_2O : 128 H_2O . The method of synthesis was devided into 3 parts. Part I, the effects of hydrothermal synthesis. Part II, the effects of microwave synthesis. Part III, the effects of mixed synthesis. The optimum conditions to synthesize Na-A zeolite was reported. Pretreated Silica-alumina was dissolved with sodium hydroxide solution at 60 °C for 24 h. Then, filtered the insoluble waste left. After that, Mixed the reactant rapidly at 60 °C for 10 min. Finally, synthesized at 90 °C for 3 and 4 h, The result indicated that the synthesize Na-A zeolite giving the crystallinity of 97.03 % and 100 % respectively. The scanning electron microscope reported that the synthesize Na-A zeolite were obviously cubic in shape. The cation exchange capacities were found at 277.01 and 293.50 mg of calcium/g of zeolite anhydrous respectively. The both values still within the TIS 1422/2540 (270 mg of calcium/g of zeolite anhydrous).

Department : Environmental Engineering	Student's Signature
Field of Study : Environmental Engineering	Advisor's Signature
Academic Year : 2010	Co-Advisor's Signature

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงด้วยความอนุเคราะห์ช่วยเหลือจากบุคคลหลายท่าน ผู้วิจัย จึงขอกราบขอบพระคุณต่อผู้ที่ให้ความอนุเคราะห์ดังต่อไปนี้

รองศาสตราจารย์ ดร.เพ็ชรพร เชาวกิจเจริญ อาจารย์ที่ปรึกษาวิทยานิพนธ์ ผู้ให้ คำปรึกษา แนะแนวทาง หลักการในการดำเนินงานวิจัย และแก้ไขในสิ่งที่บกพร่องมาตลอด ระยะเวลาการทำงานวิจัย ซึ่งมีส่วนสำคัญมากในการทำให้งานวิจัยนี้สำเร็จลุล่วงไปด้วยดี

อาจารย์ ดร. ดวงกมล นันทศรี อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม ผู้ให้คำปรึกษา เอื้อเฟื้อ อุปกรณ์ในการทำงานวิจัย แนะแนวทาง หลักการในการดำเนินงานวิจัย และแก้ไขในสิ่งที่บกพร่อง มาตลอดระยะเวลาการทำงานวิจัย ซึ่งมีส่วนสำคัญมากในการทำให้งานวิจัยนี้สำเร็จลุล่วงไปด้วยดี รองศาสตราจารย์ ดร.อรทัย ชวาลภาฤทธิ์ ที่กรุณาเป็นประธานในการสอบวิทยานิพนธ์ ตลอดจน ผู้ช่วยศาสตราจารย์ ดร. วิบูลย์ลักษณ์ พึ่งรัศมี และ รองศาสตราจารย์ ดร.ดวงรัตน์ อินทร ที่ได้ให้คำปรึกษาจนวิทยานิพนธ์สำเร็จได้ด้วยดี

คณาจารย์ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย ทุกท่านที่ได้อบรมสั่งสอนและให้ความรู้

ขอขอบคุณ ทุนอุดหนุนวิทยานิพนธ์ ปีการศึกษา 2553 จากบัณฑิตวิทยาลัย จุฬาลงกรณ์ มหาวิทยาลัย ที่ได้สนับสนุนค่าใช้จ่ายจนวิทยานิพนธ์สำเร็จได้ด้วยดี

ขอบคุณเพื่อนๆ พี่ๆ และน้องๆ ทั้งที่คณะวิทยาศาสตร์และคณะวิศวกรรมศาสตร์ทุกคนที่ ให้ความช่วยเหลือ ให้กำลังใจ ให้คำปรึกษา และดูแลกันและกันในระหว่างการทำวิจัยมาโดย ตลอด

สารบัญ

บทคัดย่อภาษาไทย	ঀ
บทคัดย่อภาษาอังกฤษ	ବ
กิตติกรรมประกาศ	ନ୍ଥ
สารบัญ	ป
สารบัญตาราง	ฏ
สารบัญภาพ	ณ

บทที่ 1 บทนำ

1.1	ความเป็นมาและความสำคัญของปัญหา	1
1.2	วัตถุประสงค์	2
1.3	ขอบเขตการวิจัย	2
1.4	ประโยชน์ที่คาดว่าจะได้รับ	3

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 ซีโอไลต์	4
2.2 โครงสร้างและองค์ประกอบทางเคมีของซีโอไลต์	6
2.3 ซีโอไลต์เอ	18
2.4 การเกิดซีโอไลต์	18
2.4.1 ซีโอไลต์ที่เกิดขึ้นเองตามธรรมชาติ	18
2.4.2 ซีโอไลต์ที่ได้จากการสังเคราะห์ทางเคมี	19
2.5 กระบวนการสังเคราะห์ของซีโอไลต์	20
2.5.1 การสังเคราะห์ซีโอไลต์ใช้วิธีไฮโดรเทอร์มัล	20
2.5.2 การสังเคราะห์ซีโอไลต์ใช้วิธีไมโครเวฟ	21
2.6 กลไกการเกิดผลึก	21
2.6.1 การอิ่มตัวยวดยิ่ง	22
2.6.2 การเกิดนิวเคลียส	22
2.6.3 การเติบโตของผลึกซีโอไลต์	22

2.7	สมบัติที่สำ	าคัญของซีโอไลต์	23
	2.7.1	การแลกเปลี่ยนไอออน	24
	2.7.2	การดูดซับน้ำ	24
	2.7.3	การคัดขนาดและรูปร่างของโมเลกุลที่ผ่านเข้าออก	24
	2.7.4	สมบัติที่สำคัญอื่นๆ	24
2.8	การประยุ	ุกต์ใช้ซีโอไลต์ในปัจจุบัน	24
	2.8.1	สารลดความกระด้างของน้ำ (water softener)	24
	2.8.2	ตัวแลกเปลี่ยนประจุ (ion exchange resin)	25
	2.8.3	ตัวดูดขับ (adsorption)	25
	2.8.4	ตัวเร่งปฏิกิริยา และตัวแยกโมเลกุล	25
	2.8.5	ประโยชน์อื่นๆ	26
2.9	กระบวนเ	าารผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์	26
	2.9.1	สารแอนทราควินโนน	28
	2.9.2	ความเป็นพิษของสารแอนทราควินโนน	28
2.1() งานวิจัย	ที่เกี่ยวข้อง	28
	2.10.2	 งานวิจัยการนำกากซิลิกา-อะลูมินาไปใช้ประโยชน์ 	28
	2.10.2	2 งานวิจัยการสังเคราะห์ซีโอไลต์	29

บทที่ 3 แผนการทดลองและการดำเนินการวิจัย

3.1	วัตถุดิบ		35
3.2	สารเคมีที่ใ	ช้ในการทดลอง	35
3.3	เครื่องมือแต	งะอุปกรณ์ที่ใช้ในงานวิจัย	35
	3.3.1	เครื่องมือที่ใช้ในการวิจัย	35
	3.3.2	เครื่องมือที่ใช้ในการวิเคราะห์	38
3.4	การดำเนินง	านวิจัย	39
	3.4.1 ศึกษา	าลักษณะสมบัติของกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุงเบื้องต้น	39
	3.4.2 ศึกษา	าการสังเคราะห์ซีโอไลต์เอด้วยวิธีต่างๆ	39

3.4.2.1 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอร์มัล
3.4.2.1.1 ศึกษาสภาวะที่เหมาะสมในการละลายกากซิลิกา-อะลูมินาที่
ผ่านการปรับปรุงเบื้องต้น
1) ศึกษาผลของการสังเคราะห์ซีโอไลต์เอจากกากซิลิกา- อะลูมินา
ในขั้นตอนเดียว
2) ศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้องในการ
สังเคราะห์ซีโอไลต์เอ42
3) ศึกษาการละลายกากที่อุณหภูมิ 60 องศาเซลเซียส ในการ
สังเคราะห์ซีโอไลต์เอ43
3.4.2.1.2 ศึกษาสภาวะที่เหมาะสมในการผสมสารตั้งต้น
1) ศึกษาผลของเวลาในการผสมสารตั้งต้น
2) ศึกษาผลของการกรองกากที่ไม่ละลายก่อนการผสมสารตั้งต้น 45
3) ศึกษาผลของอุณหภูมิในการผสมสารตั้งต้น
3.4.2.1.3 ศึกษาสภาวะอุณหภูมิและเวลาที่เหมาะสมในการสังเคราะห์
ด้วยวิธีไฮโดรเทอร์มัล
3.4.2.2 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไมโครเวฟ
3.4.2.3 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีแบบผสม
3.4.2.3.1 ศึกษาผลของเวลาในการสังเคราะห์ด้วยคลื่นไมโครเวฟ
3.4.2.3.2 ศึกษาผลของเวลาในการละลายด้วยคลื่นไมโครเวฟ
3.4.2.4 ศึกษาการปรับปรุงขั้นตอนการละลายในการสังเคราะห์ซีโอไลต์เอ 51
3.4.2.4.1 ศึกษาผลของอุณหภูมิในการละลายด้วยโซเดียมไฮดรอกไซด์ 51
3.4.2.4.2 ศึกษาผลของเวลาในการละลายด้วยโซเดียมไฮดรอกไซด์52
3.4.3 ศึกษาเปรียบเทียบลักษณะสมบัติต่างๆของซีโอไลต์เอที่สังเคราะห์แต่ละวิธี.53

บทที่ 4 ผลการทดลองและวิจารณ์ผลการทดลอง

4.1 วิเคราะห์สมบัติของกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุงเบื้องต้น	54
4.1.1 วิเคราะห์องค์ประกอบของธาตุต่างๆ ในกากซิลิกา-อะลูมินาที่ใช้แล้วด้วย	
เทคนิคเอกซ์เรย์ฟลูออเรสเซนซ์ (X-ray fluorescence : XRF)	55

	v
หา	นา

4.1.2 วิเคราะห์โครงสร้างผลึกในกากซิลิกา-อะลูมินาที่ใช้แล้วด้วยเทคนิค
เอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD <u>)</u>
56
4.2 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีต่างๆ
4.2.1 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอร์มัล
4.2.1.1 ศึกษาสภาวะที่เหมาะสมในขั้นตอนการละลายกากซิลิกา-อะลูมินา57
1) ศึกษาผลของการสังเคราะห์ซีโอไลต์เอจาก
กากซิลิกา-อะลูมินาในขั้นตอนเดียว
2) ศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้อง
ในการสังเคราะห์ซีโอไลต์เอ
3) ศึกษาการละลายกากที่อุณหภูมิ 60 องศาเซลเซียส
ในการสังเคราะห์ซีโอไลต์เอ
4.2.1.2 ศึกษาสภาวะที่เหมาะสมในการผสมสารตั้งต้น
1) ศึกษาผลของเวลาในการผสมสารตั้งต้น
2) ศึกษาผลของการกรองกากที่ไม่ละลายในการผสมสารตั้งต้น 62
3) ศึกษาผลของอุณหภูมิในการผสมสารตั้งต้น
4.2.1.3 ศึกษาสภาวะอุณหภูมิและเวลาที่เหมาะสมในการสังเคราะห์
ด้วยวิธีไฮโดรเทอร์มัล
4.2.2 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไมโครเวฟ
4.2.3 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีแบบผสม
4.2.3.1 ศึกษาผลของเวลาในการสังเคราะห์ด้วยคลื่นไมโครเวฟ
4.2.3.2 ศึกษาผลของเวลาในการละลายด้วยคลื่นไมโครเวฟ
4.2.4 ศึกษาการปรับปรุงขั้นตอนการละลายในการสังเคราะห์ซีโอไลต์เอ
4.2.4.1 ศึกษาผลของอุณหภูมิในการละลายด้วยโซเดียมไฮดรอกไซด์
4.2.4.2 ศึกษาผลของเวลาในการละลายด้วยโซเดียมไฮดรอกไซด์
4.3 ศึกษาเปรียบเทียบลักษณะสมบัติต่างๆของซีโอไลต์เอที่สังเคราะห์แต่ละวิธี 80
4.4 การคำนวณพลังงานที่ใช้ในการสังเคราะห์แต่ละวิธี
4.4.1 ปริมาณพลังงานในขั้นตอนการปรับปรุงกากซิลิกา-อะลูมินา

หน้า

ฎ

	4.4.2 ปรมาณพลงงานในขนตอนการละลายกากซลกา-อะลูมนาดวยเครอง	
	กวนแบบให้ความร้อนเป็นเวลา 24 ชั่วโมง	8
	4.4.3 ปริมาณพลังงานในขั้นตอนการละลายกากซิลิกา-อะลูมินาด้วย	
	ไมโครเวฟเป็นเวลา 2 ชั่วโมง	{
	4.4.4 ปริมาณพลังงานในขั้นตอนการผสมสารตั้งต้นด้วยเครื่องกวนแบบให้	
	ความร้อนเป็นเวลา 1/6 ชั่วโมง	8
	4.4.5 ปริมาณพลังงานในขั้นตอนการสังเคราะห์ด้วยตู้อบไฟฟ้า เป็นเวลา 3	
	ชั่วโมง	{
	4.4.6 ปริมาณพลังงานในขั้นตอนการสังเคราะห์ด้วยตู้อบไฟฟ้า เป็นเวลา 4	
	ซั่วโมง	۶
4.5 1 ท ที่ 5 สรุบ 5 1 1	ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ ไผลการทดลองและข้อเสนอแนะ สาปยอกวาทดออง	
4.5 ท ที่ 5 สรุบ 5.1	ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ ผลการทดลองและข้อเสนอแนะ สรุปผลการทดลอง	
4.5) ท ที่ 5 สรุบ 5.1 ⁻ 5.2 ⁻	ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ ผลการทดลองและข้อเสนอแนะ สรุปผลการทดลอง ข้อเสนอแนะ	. 8
4.5) ท ที่ 5 สรุบ 5.1 ⁻ 5.2 ⁻ เยการอ้าง	ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ ผลการทดลองและข้อเสนอแนะ สรุปผลการทดลอง	8 8
4.5) ท ที่ 5 สรุบ 5.1 • 5.2 • ยการอ้าง ฤคผนวก	ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ ผลการทดลองและข้อเสนอแนะ สรุปผลการทดลอง	3 2
4.5 เ ท ที่ 5 สรุบ 5.1 • 5.2 • ยการอ้าง าคผนวก ภาค	ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ ผลการทดลองและข้อเสนอแนะ สรุปผลการทดลอง	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4.5 เ ท ที่ 5 สรุบ 5.1 • 5.2 • บยการอ้าง ภค ผนวก ภาค ภาค	ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ ผลการทดลองและข้อเสนอแนะ สรุปผลการทดลอง	3 8
4.5 เ ท ที่ 5 สรุบ 5.1 - 5.2 - บยการอ้าง ภาค ภาค ภาค ภาค	ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ !ผลการทดลองและข้อเสนอแนะ สรุปผลการทดลอง	3 8

สารบัญตาราง

И	เน้า
ตารางที่ 2.1 ขนาดของช่องเปิดของซีโอไลต์ชนิดต่างๆ	10
ตารางที่ 2.2 ซีโอไลต์ต่างๆ แบ่งตามลักษณะโครงสร้างและรูปทรงของวงแหวน	12
ตารางที่ 2.3 ซีโอไลต์ที่เกิดขึ้นเองตามธรรมชาติและที่สามารถสังเคราะห์ได้	20
ตารางที่ 2.4 ส่วนประกอบของซิลิกา-อะลูมินาที่ใช้แล้ว	27
ตารางที่ 4.1 องค์ประกอบทางเคมีของกากซิลิกา-อะลูมินาที่ไม่ผ่านและผ่านการปรับปรุง	
เปื้องต้น	56
ตารางที่ 4.2 ตารางเปรียบเทียบผลการสังเคราะห์ระหว่างงานวิจัยต่างๆกับงานวิจัยนี้	69
ตารางที่ 4.3 แสดงเปอร์เซ็นต์กากซิลิกา-อะลูมินาที่ละลายที่อุณหภูมิห้องและที่ 60	
องศาเซลเซียส เป็นเวลา 24 ชั่วโมง	78
ตารางที่ 4.4 แสดงเปอร์เซ็นต์กากซิลิกา-อะลูมินาที่ละลายที่ 60 องศาเซลเซียส เป็นเวลา	
6, 12 และ 24 ชั่วโมง	80
ตารางที่ 4.5 แสดงสมบัติต่างๆ ของซีโอไลต์เอที่สังเคราะห์จากแต่ละสภาวะ	81
ตารางที่ 4.6 ค่า work index สำหรับแร่ทั่วไป	82
ตารางที่ 4.7 แสดงพลังงานที่ใช้ทั้งหมดต่อน้ำหนักซีโอไลต์เอในการสังเคราะห์แต่ละวิธี	84
ตารางที่ ก.1 แสดงค่าค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของปริมาตรโพแทสเซียมไฮดรอกไซด์	
ส่ใช้ ที่ใช้	94
ตารางที่ ก.2 แสดงค่าค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของปริมาณโซเดียมออกไซด์	95
ตารางที่ ก.3 แสดงค่าค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของปริมาณซิลิกอนออกไซด์	96
ตารางที่ ข.1 แสดงการคำนวณองค์ประกอบในการสังเคราะห์ซีโอไลต์เอ	97
ตารางที่ ข.2 แสดงปริมาณน้ำหนักของสารตั้งต้นแต่ละชนิดในการสังเคราะห์สารทั้งหมด	
90 กรัม	98
ตารางที่ ค.1 แสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของปริมาตรของสารละลายมาตรฐาน	
อื่ดีที่เอ	100
ตารางที่ ค.2 แสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของน้ำหนักที่สูญเสียเนื่องจากการเผาที่	
ลภาวะที่ 1-4	102
ตารางที่ ค.3 แสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของค่าความสามารถในการแลกเปลี่ยน	
แคลเซียมที่สภาวะที่ 1-4	104

สารบัญตาราง (ต่อ)

	หน้า
ตารางที่ ง.1 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง	. 105
ตารางที่ ง.2 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง	106
ตารางที่ ง.3 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง	106
ตารางที่ ง.4 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 110 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง	107
ตารางที่ ง.5 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง	108
ตารางที่ ง.6 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง	109
ตารางที่ ง.7 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง	110
ตารางที่ ง.8 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 110 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง	111
ตารางที่ ง.9 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง	112
ตารางที่ ง.10 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง	.113
ตารางที่ ง.11 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง	114
ตารางที่ ง.12 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 110 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง	.115
ตารางที่ ง.13 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง	.116
ตารางที่ ง.14 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง	117

สารบัญตาราง (ต่อ)

หน้	์า
ตารางที่ ง.15 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง11	8
ตารางที่ ง.16 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่	
อุณหภูมิ 110 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง11	9
ตารางที่ ง.17 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่	
สภาวะเวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 1:1 ชั่วโมง	20
ตารางที่ ง.18 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่	
สภาวะเวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 2:1 ชั่วโมง	!1
ตารางที่ ง.19 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่	
สภาวะเวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 2:2 ชั่วโมง	2
ตารางที่ ง.20 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่	
สภาวะเวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 2:3 ชั่วโมง	3
ตารางที่ ง.21 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่	
สภาวะเวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 3:2 ชั่วโมง	4
ตารางที่ ง.22 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่	
สภาวะเวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 3:3 ชั่วโมง	25
ตารางที่ ง.23 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้	
คลื่นไมโครเวฟในขั้นตอนการสังเคราะห์ ที่เวลา 0.5 ชั่วโมง 12	26
ตารางที่ ง.24 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้	
คลื่นไมโครเวฟในขั้นตอนการสังเคราะห์ ที่เวลา 1 ชั่วโมง	27
ตารางที่ ง.25 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้	
คลื่นไมโครเวฟในขั้นตอนการสังเคราะห์ ที่เวลา 2 ชั่วโมง	28
ตารางที่ ง.26 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้	
คลื่นไมโครเวฟในขั้นตอนการสังเคราะห์ ที่เวลา 3 ชั่วโมง	29
ตารางที่ ง.27 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้	
คลื่นไมโครเวฟในขั้นตอนการละลาย ที่เวลา 0.5 ชั่วโมง	30

สารบัญตาราง (ต่อ)

หน้า	
ตารางที่ ง.28 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้	
คลื่นไมโครเวฟในขั้นตอนการละลาย ที่เวลา 1 ชั่วโมง	1
ตารางที่ ง.29 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้	
คลื่นไมโครเวฟในขั้นตอนการละลาย ที่เวลา 2 ชั่วโมง	2

ตารางที่ ง.30	การวิเคราะห์ค่า	ความเป็นผลึกขเ	องซีโอไลต์ที่สังเคร	กะห์ด้วยวิธีแบบผล	งม โดยใช้
คลื่นไมโครเวท	ฟในขั้นตอนการล	ะลาย ที่เวลา 3 ช่	ชั่วโมง		133

สารบัญภาพ

	หน้า
ภาพที่ 2.1 โครงสร้างทรงสี่หน้าของซิลิกอน [SiO4] ⁴⁻ และอะลูมิเนียม [AIO4] ⁵⁻ และการเชื่อมต่	ମ
ในผลึกซีโอไลต์	6
ภาพที่ 2.2 รูปทรงสี่หน้าของออกซิเจนโคออร์ดิเนตกับซิลิกอนหรืออะลูมิเนียมในหน่วยย่อย	
ของซีโอไลต์	7
ภาพที่ 2.3 หน่วยโครงสร้างทุติยภูมิในโครงสร้างของซีโอไลต์	7
ภาพที่ 2.4 หน่วยโครงสร้างรูปทรงหลายหน้าของซีโอไลต์	. 8
ภาพที่ 2.5 การเกิดโครงสร้างของผลึกแบบต่างๆ	9
ภาพที่ 2.6 โครงสร้างสามมิติของซีโอไลต์ Linde Type A (LTA) ซีโอไลต์ฟูจาไซท์ Faujasite	
และ ซีโอไลต์ ZSM-5 (MFI)	11
ภาพที่ 2.7 โครงสร้างของซีโอไลต์ชนิด ZSM-5	11
ภาพที่ 2.8 ซีโอไลต์ต่างๆ แบ่งตามลักษณะโครงสร้างและรูปทรงของวงแหวน	12
ภาพที่ 2.9 โครงสร้างของ Analcite Group	14
ภาพที่ 2.10 โครงสร้างของ Natrolite Group	14
ภาพที่ 2.11 โครงสร้างของ Chabazite Group	 .14
ภาพที่ 2.12 โครงสร้างของ Phillipsite Group	 .15
ภาพที่ 2.13 โครงสร้างของ Heulandite Group	15
ภาพที่ 2.14 โครงสร้างของ Modernite Group	<u></u> 15
ภาพที่ 2.15 โครงสร้างของ Mordenite Group	16
ภาพที่ 2.16 โครงสร้างของ Faujasite Group	17
ภาพที่ 2.17 โครงสร้างของ Melanophlogite Group	. 17
ภาพที่ 2.18 โครงสร้างของ Lovdarite Group	17
ภาพที่ 2.19 โครงสร้างของซีโอไลต์เอ	. 18
ภาพที่ 2.20 การเกิดซีโอไลต์จากอนุภาคของเจล	22
ภาพที่ 2.21 ประจุลบที่เกิดจากการแทนที่ด้วย (AIO ₂) ⁻ หรือ (AIO ₅) ⁵⁻ ในโครงสร้างของซีโอไลต์	. 23
ภาพที่ 2.22 ผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์ (H ₂ O ₂)	. 27
ภาพที่ 2.23 สูตรโครงสร้างของสารแอนทราควินโนน	28
ภาพที่ 3.1 ขั้นตอนการวิจัย	34
ภาพที่ 3.2 ชุดประกอบเหล็กไร้สนิม	36

สารบัญภาพ (ต่อ)

	หน้า
ภาพที่ 3.3 เทฟลอน	. 36
ภาพที่ 3.4 ชุดเครื่องแก้วรีฟลักซ์ต่อกับเครื่องไมโครเวฟ	. 36
ภาพที่ 3.5 ตู้อบลมร้อน (Hot Air Oven)	37
ภาพที่ 3.6 เตาเผาไฟฟ้า (muffle furnace)	., 37
ภาพที่ 3.7 แผนผังแสดงการศึกษาลักษณะสมบัติของกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุง	
เปื้องต้น	. 39
ภาพที่ 3.8 แผนผังแสดงการสังเคราะห์ซีโอไลต์เอด้วยวิธีต่างๆ	. 39
ภาพที่ 3.9 แผนผังแสดงการศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอร์มัล	.40
ภาพที่ 3.10 แผนผังแสดงสภาวะต่างๆ ในการละลายกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุง	
เบื้องต้น	. 40
ภาพที่ 3.11 แผนผังแสดงการศึกษาผลของการสังเคราะห์ในขั้นตอนเดียว	. 41
ภาพที่ 3.12 แผนผังแสดงการศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้อง	42
ภาพที่ 3.13 แผนผังแสดงการศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิ 60	
องศาเซลเซียส	43
ภาพที่ 3.14 แผนผังแสดงละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้อง	.44
ภาพที่ 3.15 แผนผังแสดงการศึกษาผลของการกรองกากที่ไม่ละลายก่อนการผสมสารตั้งต้น	45
ภาพที่ 3.16 แผนผังแสดงการศึกษาผลของอุณหภูมิในการผสมสารตั้งต้น	.46
ภาพที่ 3.17 แผนผังแสดงการศึกษาสภาวะอุณหภูมิและเวลาในการสังเคราะห์ด้วยวิธี	
ไฮโดรเทอร์มัล	. 47
ภาพที่ 3.18 แผนผังแสดงการศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไมโครเวฟ	48
ภาพที่ 3.19 แผนผังแสดงการศึกษาผลของเวลาในการสังเคราะห์ด้วยคลื่นไมโครเวฟ	.49
ภาพที่ 3.20 แผนผังแผนผังแสดงการศึกษาผลของเวลาในการละลายด้วยคลื่นไมโครเวฟ	.50
ภาพที่ 3.21 แผนผังแสดงการศึกษาผลของอุณหภูมิในการละลายด้วยโซเดียมไฮดรอกไซด์	51
ภาพที่ 3.22 แผนผังแสดงการศึกษาผลของเวลาในการละลายด้วยโซเดียมไฮดรอกไซด์	.52
ภาพที่ 3.23 แผนผังแสดงการศึกษาเปรียบเทียบลักษณะสมบัติต่างๆของซีโอไลต์เอที่สังเคราะ	ะห์
แต่ละวิธี	53
ภาพที่ 4.1 กากซิลิกา-อะลูมินาก่อนทำการปรับปรุงเบื้องต้น	.54
ภาพที่ 4.2 กากซิลิกา-อะลูมินาหลังทำการปรับปรุงเบื้องต้น	.54

สารบัญภาพ (ต่อ)

หน้า
ภาพที่ 4.3 ดิฟแฟรกโทแกรมของกากซิลิกา-อะลูมินาที่ไม่ผ่านและผ่านการปรับปรุงเบื้องต้น57
ภาพที่ 4.4 ดิฟแฟรกโทแกรมของซีโอไลต์เอที่สังเคราะห์ด้วยขั้นตอนเดียว ที่ 90 องศาเซลเซียส
เป็นเวลา 0.5, 1, 2, 3, 6 และ 12 ชั่วโมง58
ภาพที่ 4.5 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากสภาวะการละลายที่อุณหภูมิห้อง เป็นเวลา 30
นาทีแล้วทำการสังเคราะห์ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 2, 3, 6 และ 12
ชั่วโมง
ภาพที่ 4.6 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากสภาวะการละลายที่อุณหภูมิ 60 องศาเซลเซียส
เป็นเวลา 24 ชั่วโมง แล้วทำการสังเคราะห์ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา
4 ชั่วโมง60
ภาพที่ 4.7 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากสภาวะการผสมสารตั้งต้นที่อุณหภูมิ
องศาเซลเซียส เป็นเวลา 10 นาที และ 2 ชั่วโมง แล้วทำการสังเคราะห์ ที่
อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง61
ภาพที่ 4.8 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากสภาวะการไม่กรองและกรองกากซิลิกา-
อะลูมินาที่ไม่ละลายก่อนผสมสารตั้งต้นที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา
10 นาที แล้วทำการสังเคราะห์ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง 62
ภาพที่ 4.9 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากสภาวะการผสมสารตั้งต้นที่อุณหภูมิห้องและ
ที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที แล้วทำการสังเคราะห์ ที่อุณหภูมิ
90 องศาเซลเซียสเป็นเวลา 4 ชั่วโมง63
ภาพที่ 4.10 ดิฟแฟรกโทแกรมของซีโอไลต์ที่สังเคราะห์จากอุณหภูมิและเวลาต่างๆ65
ภาพที่ 4.11 กราฟแสดงค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์จากอุณหภูมิและเวลา
ต่ำงๆ
ภาพที่ 4.12 โครงสร้างภายนอกของซีโอไลต์สังเคราะห์ที่อุณหภูมิ 80 90 100 และ 110
องศาเซลเซียส เป็นวลา 2, 3, 4 และ 6 ชั่วโมง ด้วยกำลังขยาย 10,000 เท่า68
ภาพที่ 4.13 แสดงโครงสร้างภายนอกของซีโอไลต์ที่สังเคราะห์จากงานต่างๆ (ก) Hiroaki และ
Sridhar (ข) งานวิจัยนี้70
ภาพที่ 4.14 ดิฟแฟรกโทแกรมของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะต่างๆ72
ภาพที่ 4.15 กราฟแสดงความสัมพันธ์ระหว่างค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วย
วิธีไมโครเวฟกับเวลาที่ใช้ละลายต่อเวลาที่ใช้สังเคราะห์ด้วยคลื่นไมโครเวฟ73

สารบัญภาพ (ต่อ)

หน้า

ภาพที่ 4.16 ดิฟแฟรกโทแกรมของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่นไมโครเวฟ	
ในขั้นตอนการสังเคราะห์ ที่เวลาต่างๆ7	4
ภาพที่ 4.17 กราฟแสดงความสัมพันธ์ระหว่างค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วย	
วิธีแบบผสม กับเวลาที่ใช้ในการสังเคราะห์ด้วยคลื่นไมโครเวฟ 7	5
ภาพที่ 4.18 ดิฟแฟรกโทแกรมของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่นไมโครเวฟ	
ในขั้นตอนการละลาย ที่เวลาต่างๆ7	6
ภาพที่ 4.19 กราฟแสดงความสัมพันธ์ระหว่างค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วย	
วิธีแบบผสมกับเวลาที่ใช้ในการละลายด้วยคลื่นไมโครเวฟ7	7
ภาพที่ 4.20 ดิฟแฟรกโทแกรมของซีโอไลต์ โดยละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้องและ	
ที่ 60 องศาเซลเซียสเป็นเวลา 24 ชั่วโมง7	9
ภาพที่ 4.21 ดิฟแฟรกโทแกรมของซีโอไลต์ โดยละลายกากซิลิกา-อะลูมินาที่ 60 องศาเซลเซียส	
เป็นเวลา 6 12 และ 24 ชั่วโมง8	0
ภาพที่ 4.22 โครงสร้างภายนอกของซีโอไลต์เอที่สังเคราะห์จากแต่ละสภาวะดังนี้	
(ก) สภาวะที่ 1 (ข) สภาวะที่ 2 (ค) สภาวะที่ 3 และ (ง) สภาวะที่ 4	2
ภาพที่ 4.23 แผนผังผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้	5

บทที่ 1

บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

จากการพัฒนาด้านอุตสาหกรรมอย่างรวดเร็ว ส่งผลให้ประเทศไทยประสบปัญหาเกี่ยวกับ การจัดการของเสียที่มีปริมาณเพิ่มขึ้นอย่างต่อเนื่อง ซึ่งหากไม่สามารถจัดการของเสียได้อย่างมี ระบบของเสียเหล่านี้จะก่อปัญหาต่อสภาวะแวดล้อม ดังปัญหาในอดีตที่เกิดขึ้นบริเวณพื้นที่ชายฝั่ง ทะเลตะวันออกที่มีอุตสาหกรรมหลากหลายประเภท ได้มีการลักลอบนำของเสียอุตสาหกรรมไปทิ้ง ในที่สาธารณะหรือตามแนวเขตป่า หรือการปล่อยของเสียลงสู่แหล่งน้ำธรรมชาติ เช่น ทะเล แม่น้ำ เป็นต้น ในปัจจุบันหน่วยงานต่างๆไร้มให้ความสำคัญในการจัดการของเสีย ไม่ว่าจะเป็นการ รับรององค์กรด้วยมาตรฐานต่างๆ ซึ่งจะตรวจสอบกระบวนการการผลิตโดยไม่ให้เกิดผลกระทบต่อ สิ่งแวดล้อม การแข่งขันทางการค้าซึ่งบังคับเรื่องการจัดการของเสียโดยผู้ผลิตจะต้องรับภาระใน การจัดการของเสียที่เกิดขึ้น และที่สำคัญคือแนวโน้มการบังคับใช้กฎหมายในการจัดการของเสียที่ เคร่งครัดขึ้น โรงงานต่างๆ จึงพยายามจัดการของเสียที่เกิดขึ้น แต่เนื่องจากการจัดการของเสียโดย การฝังกลบมีข้อจำกัดหลายด้าน เช่น พื้นที่ที่เหมาะสมแก่การทำเป็นหลุมฝังกลบมีจำนวนลดลง อีกทั้งภาระการกำจัดค่อนข้างสูง ดังนั้นงานวิจัยนี้จึงได้พยายามจัดการทากทิลิกา-อะลูมินาที่ใช้ แล้วจากอุตสาหกรรมผลิตไฮโดรเจนเปร์ออกไซด์ด้วยวิธีนำของเสียกลับมาใช้ใหม่ (waste recycling) เพื่อลดปริมาณของเสียที่ต้องกำจัดตามหลักการจัดการของเสีย โดยผ่านกระบวนการ ให้ได้วัลดุใหม่ซึ่ง ได้แก่ ซีโอไลต์เอ

ซีโอไลต์ (zeolite) เป็นผลึกของสารอะลูมิโนซิลิเกต (aluminosilicate) โครงสร้างของ ซีโอไลด์เป็นผลึกที่มีการจัดเรียงตัวอย่างเป็นระเบียบ และมีความพรุนสม่ำเสมอตลอดทั้ง โครงสร้าง ประโยชน์ของซีโอไลต์มี 3 ด้านหลัก คือ ใช้เป็นตัวแลกเปลี่ยนประจุ เป็นตัวเร่ง ปฏิกิริยา และเป็นตัวดูดซับ ปัจจัยสำคัญในการประยุกต์ใช้ซีโอไลต์ในอุตสาหกรรมคือ ขนาดของ โพรงซีโอไลต์ และสมบัติทางเคมีของอะตอมที่ล้อมรอบ เนื่องจากซีโอไลต์มีสมบัติในการเลือกทำ ปฏิกิริยาตามรูปร่างอันเป็นหลักการพื้นฐานของกระบวนการดูดซับระดับโมเลกุล ซีโอไลต์จึงเป็น ตัวดูดซับในกระบวนการทำให้บริสุทธิ์ (purification) และการแยกสาร (separation) และ เนื่องจากประจุบวกของโลหะที่เกาะกับซีโอไลต์เกาะกันอยู่อย่างหลวมๆ จึงพร้อมที่จะแลกประจุกับ โลหะอื่นเมื่ออยู่ในสารละลายได้ นอกจากนั้นซีโอไลต์ยังถูกใช้เป็นตัวเร่งปฏิกิริยาในอุตสาหกรรม ปิโตรเคมีโดยเฉพาะในการทำไฮโดรคาร์บอนโมเลกุลใหญ่แตกออกกลายเป็นโมเลกุลที่เล็กลง (hydrocarbon cracking) งานวิจัยที่ผ่านมาได้มีการพยายามนำกากซิลิกา-อะลูมินาที่ใช้แล้วมาพัฒนาเพื่อ ประยุกต์ใช้ในงานด้านต่างๆ เช่น นำมาใช้ในการทำวัสดุปูพื้น (ไลทิพย์ อภิธรรมวิริยะ, 2542) นำมาใช้ในการทำเป็นตัวทนไฟในเซรามิก (สาโรจน์ ปัชโชติพงษ์, 2545) และนำมาใช้ในการทำ คอนกรีตบล็อกประสานปูพื้น (หฤษฏ์ ธิตินันท์, 2546) จากงานวิจัยที่ผ่านมาส่วนใหญ่จะเป็นนำ กากซิลิกา-อะลูมินาที่ใช้แล้วไปประยุกต์ใช้ในงานทางด้านโยธา หากสามารถนำกากซิลิกา-อะลูมินาที่ใช้แล้วไปประยุกต์ใช้ในงานด้านอื่นๆ จะเป็นการเพิ่มทางเลือกในการจัดการของเสีย โดยซีโอไลต์ได้ถูกใช้เป็นตัวดูดซับอย่างแพร่หลาย เนื่องจากซีโอไลต์ที่ใช้เป็นตัวดูดซับส่วนใหญ่ที่ ใช้เป็นวัสดุที่มีราคาแพงและประเทศไทยยังต้องพึ่งพาการนำเข้าจากต่างประเทศเป็นหลัก จึงมี ผู้วิจัยพยายามสังเคราะห์ซีโอไลต์จากเศษวัสดุต่างๆ อย่างหลากหลาย เช่น การสังเคราะห์ซีโอไลต์ จากเถ้าลอยถ่านหิน (มนตรี ทองคำ, 2542)การสังเคราะห์ซีโอไลต์กากเถ้าลอยถ่านหินและจาก เถ้าซานอ้อย (อนรรฆอร พันธุไพศาล, 2549) การสังเคราะห์ซีโอไลต์เอกซ์จากดินขาวธรรมชาติ (มนธวัล บุญส่งประเสริฐ, 2550) ดังนั้นการสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินาที่ใช้แล้ว

1.2 วัตถุประสงค์

1.2.1 ศึกษาผลของการปรับปรุงกากซิลิกา-อะลูมินาเบื้องต้นด้วยการบด ร่อนผ่าน ตะแกรงขนาด 200 เมช และเผาที่อุณหภูมิ 700 องศาเซลเซียส

1.2.2 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีต่างๆ ได้แก่ วิธีไฮโดรเทอร์มัล วิธีไมโครเวฟ และวิธีแบบผสม

1.2.3 ศึกษาเปรียบเทียบลักษณะสมบัติต่างๆ ได้แก่ ค่าความเป็นผลึก ค่าความสามารถ ในการแลกเปลี่ยนแคลเซียมของซีโอไลต์เอที่สังเคราะห์ได้แต่ละวิธี

1.2.4 ศึกษาเปรียบเทียบพลังงานที่ใช้ทั้งหมดต่อน้ำหนักซีโอไลต์เอ (หน่วยกิโลวัตต์ต่อ กรัม)ในการสังเคราะห์แต่ละวิธี

1.3 ขอบเขตการวิจัย

งานวิจัยนี้เป็นการสังเคราะห์ซีโอไลต์เอจากซิลิกา-อะลูมินาที่ใช้แล้วโดยนำกากซิลิกา-อะลูมินาที่ใช้แล้วจากโรงงานผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์ ดำเนินการทดลองในส่วน การสังเคราะห์ซีโอไลต์เอ ที่ห้องปฏิบัติการ ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย และดำเนินการทดลองในส่วนการทดสอบเปรียบเทียบสมบัติระหว่าง ซีโอไลต์เอที่ สังเคราะห์กับซีโอไลต์เอทางการค้า ที่ห้องปฏิบัติการ ภาควิชาวิศวกรรมสิ่งแวดล้อม จุฬาลงกรณ์ มหาวิทยาลัย โดยมีขอบเขตการศึกษาดังนี้ 1.3.1 การปรับปรุงเบื้องต้นกากซิลิกา-อะลูมินาด้วยการบดและร่อนผ่านตะแกรงขนาด
 200 เมช และเผาที่อุณหภูมิ 700 องศาเซลเซียส

1.3.2 กระบวนการในการสังเคราะห์ซีโอไลต์เอแบ่งเป็น 3 วิธี ได้แก่ วิธีไฮโดรเทอร์มัล วิธีไมโครเวฟ และ วิธีแบบผสม

1.3.3 ลักษณะสมบัติที่ใช้เปรียบเทียบระหว่างซีโอไลต์เอที่สังเคราะห์ได้คุณภาพสูงจาก แต่ละสภาวะ ได้แก่ ค่าความเป็นผลึก ความสามารถในการแลกเปลี่ยนแคลเซียม

1.3.4 เปรียบเทียบพลังงานที่ใช้ทั้งหมดต่อน้ำหนักซีโอไลต์เอในการสังเคราะห์แต่ละวิธี

1.4 ประโยชน์ที่คาดว่าจะได้รับ

1.4.1 ได้สภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินาที่ใช้แล้ว

1.4.2 ได้ข้อสรุปในการเปรียบเทียบลักษณะสมบัติต่างๆ ซีโอไลต์เอที่สังเคราะห์ได้

1.4.3 เป็นการเพิ่มมูลค่าให้กับกากซิลิกา-อะลูมินาที่ใช้แล้ว อีกทั้งเป็นการลดการนำเข้า ซีโอไลต์เอจากต่างประเทศ

 1.4.4 เป็นการเพิ่มทางเลือกในการจัดการขยะของเสียประเภทกากซิลิกา-อะลูมินาที่ใช้ แล้วจากงานวิจัยในปัจจุบัน เช่น การทำเป็นตัวทนไฟในเซรามิก และ การทำคอนกรีตบล็อค ประสานปูพื้น

บทที่ 2

เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 ซีโอไลต์ (อ้างถึงใน มลธวัล บุญส่งประเสริฐ, 2550)

ซีโอไลต์มีรากศัพท์มาจากภาษากรีก zein แปลว่า to boil และ lithos แปลว่า stone รวม ความหมายก็คือ boiling stone หรือ หินเดือด เนื่องจากเมื่อให้ความร้อนแก่ซีโอไลต์ธรรมชาติ แล้วสามารถเห็นการระเหยของน้ำได้ ซีโอไลต์ (zeolite) เป็นผลึกของสารประกอบอะลูมิโนซิลิเกต (aluminosilicate) ของโลหะแอลคาไลน์ (Na⁺, K⁺, Rb⁺, Cs⁺) โลหะแอลคาไลน์เอิร์ท (Mg⁺, Ca⁺) หรือไอออนบวกอื่นๆ เช่น NH⁺,H₃O⁺,H⁺,TMA⁺ (tetramethylammonium ion) เป็นต้น โครงสร้าง มีลักษณะเป็นรูพรุนสม่ำเสมอจำนวนมาก ซีโอไลต์สามารถนำมาใช้งานได้หลากหลายขึ้นกับ โครงสร้าง รูพรุนและสมบัติของซีโอไลต์แต่ประเภท เช่น ใช้เป็นตัวแลกเปลี่ยนประจุ (ion exchange resin) เป็นเร่งปฏิกิริยา (catalyst) และเป็นตัวดูดซับ (adsorbent)

ประวัติซีโอไลต์ถูกพบครั้งแรกโดย Cronstedt ในปี ค.ศ. 1756 ซึ่งเป็นซีโอไลต์ธรรมชาติ ชนิดสไตไบท์ (stilbite) ต่อมาในปี ค.ศ. 1777 Fontana ได้อธิบายปรากฏการณ์การดูดซับของ ถ่านชาร์ ในปี ค.ศ. 1840 Damour ได้ค้นพบว่าน้ำที่อยู่ในโครงผลึกของซีโอไลต์ จะถูกกำจัดไปด้วย กระบวนการดีไฮเดรชัน (dehydration) แล้วจะทำให้ได้ซีโอไลต์ที่มีโครงสร้างเป็นรูพรุนคล้าย ฟองน้ำ (spongy-framework) ซึ่งสามารถดูดซับแอลกอฮอล์ เบนซีน คลอโรฟอร์ม คาร์บอนไดซัลไฟด์ และปรอทได้ ในปี ค.ศ. 1845 Thomson ได้ทดลองพบว่าดินสามารถดูดซับ เกลือแอมโมเนียได้ เมื่อเทสารละลายของเกลือแอมโมเนียมบนดินและกรองจะได้สารละลายของ แคลเซียมผ่านลงมา ส่วนเกลือแอมโมเนียมถูกดินดูดซับไว้ ต่อมา Way ได้แสดงให้เห็นว่าการดูด ซับที่เกิดขึ้น เกิดจากสารประกอบซิลิเกตไฮเดรตในดิน

ในปี ค.ศ. 1862 Claire Deville ได้สังเคราะห์ซีโอไลต์ชนิดเลวี่ไนท์ (Levynite) โดยให้ ความร้อนแก่สารละลายผสมของโพแทสเซียมซิลิเกตกับโซเดียมอะลูมิเนตที่อุณหภูมิ 170 องศาเซลเซียส และในปี ค.ศ. 1882 Schulten สามารถสังเคราะห์ซีโอไลต์ชนิดอะนาลไซม์ (Analcime) ได้ ในปี ค.ศ. 1909 Grandjean ได้ทดลองการดูดซับแก๊สของซีโอไลต์ชนิดชาบาไซท์ (Chabazite) พบว่า ซีโอไลต์ชนิดนี้สามารถดูดซับแอมโมเนีย อากาศ ไฮโดรเจน คาร์บอนไดซัลไฟด์ ไฮโดรเจนซัลไฟด์ ไอโอดีน โบรมีน และไอปรอทที่อุณหภูมิสูง ในปี ค.ศ. 1925 Weigel และ Steinhof ค้นพบว่าซีโอไลต์มีสมบัติในการเลือกดูดซับสารอินทรีย์โมเลกุลขนาดเล็ก และปล่อยสารอินทรีย์โมเลกุลใหญ่ออกมา ซึ่งปรากฏการณ์นี้สามารถอธิบายได้โดย McBain ในปี ค.ศ. 1932 และเรียกปรากฏการณ์นี้ว่า Molecular sieving หรือตะแกรงร่อนโมเลกุล (Szostak, 1989)

ปี ค.ศ. 1930 ได้มีการอธิบายโครงสร้าง และสมบัติของซีโอไลต์ในการเปลี่ยนไอออนการ ดูดซับ และตะแกรงร่อนโมเลกุล และในปีเดียวกันนี้ Barrer และ Sameshima ได้สังเคราะห์ ซีโอไลต์ขึ้นเป็นครั้งแรก และในปี ค.ศ. 1933 Dent Smith ได้ตรวจสอบโครงสร้างของซีโอไลต์ชนิด ชาบาไซท์ (Chabazite) ในปี ค.ศ. 1940 Milton ได้เริ่มทำการศึกษาการสังเคราะห์ซีโอไลต์เพื่อใช้ ในกระบวนการแยกแก๊สและการทำอากาศให้บริสุทธิ์ และในปี ค.ศ. 1954 Union Carbide Corporation สามารถสังเคราะห์ซีโอไลต์เพื่อใช้ในอุตสาหกรรมเป็นครั้งแรก โดยใช้ในกระบวนการ แยกและการทำให้สารบริสุทธิ์ ต่อมา Reed และ Breck ได้สังเคราะห์ซีโอไลต์สำหรับใช้ในการ แลกเปลี่ยนไอออนเป็นครั้งแรก ต่อมาในปี ค.ศ. 1956 ได้มีรายงานเกี่ยวกับโครงสร้างที่เป็นรูปทรง สี่เหลี่ยมของ Faujasite ซึ่งเกิดจากธรรมชาติ และซีโอไลต์เอที่สังเคราะห์ขึ้น และในปี ค.ศ. 1962 บริษัท Mobil oil ได้มีการนำซีโอไลต์เอที่สังเคราะห์ขึ้นไปใช้ในอุตสาหกรรมปิโตรเลียม

หลังจากนั้นการพัฒนาซีโอไลต์เพื่อตัวเร่งปฏิกิริยาได้ดำเนินไปอย่างรวดเร็ว ในปี ค.ศ. 1980 มีการค้นพบซีโอไลต์ที่เกิดขึ้นเองตามธรรมชาติกว่า 40 ชนิด และซีโอไลต์ที่ได้จากการ สังเคราะห์กว่า 100 ชนิด ซีโอไลต์ที่พบตามธรรมชาติ (natural or mineral zeolite) อาจอยู่ในรูป ของแร่ธาตุส่วนมากค้นพบจากการทำเหมืองแร่ในพื้นที่หลายแห่งของโลก เป็นกลุ่มผลึกอะลูมิโน ซิลิเกตของโลหะแอลคาไลน์ ตัวอย่างเช่นซีโอไลต์ชนิดฟูจาไซท์ (Faujasite), อีริโอไนท์ (Erionite), ชาบาไซท์ (Chabazite) และออฟเฟอร์ไทท์ (Offertite) เป็นต้น ซีโอไลต์ธรรมชาติเดิมนำมาใช้ ประโยชน์ในงานก่อสร้าง หลังจากได้ค้นพบว่าซีโอไลต์มีสมบัติของตะแกรงร่อนโมเลกุลและการ แลกเปลี่ยนไอออน จึงได้นำซีโอไลต์มาใช้เป็นตัวดูดซับในการแยกแอมโมเนียในกระบวนการกำจัด ้น้ำเสีย สำหรับซีโอไลต์ที่สังเคราะห์ขึ้นในช่วงแรกการสังเคราะห์ทำขึ้นภายใต้ความดันและอุณหภูมิ สูง ซึ่งส่งผลให้ซีโอไลต์ที่สังเคราะห์ได้เป็นชนิดเดียวกันกับที่พบในหินบะซอลต์ ต่อมาในปี ค.ศ. 1959 Milton และคณะทำงานของบริษัท Union Carbide Corporation ได้พัฒนาวิธีในการ สังเคราะห์ซีโอไลต์โดยใช้อุณหภูมิในการสังเคราะห์ต่ำ สารตั้งต้นในการสังเคราะห์มีความว่องไวใน การเกิดปฏิกิริยาสูง ทำปฏิกิริยาในภาชนะปิด หรือระบบปิด ซึ่งกระบวนการและเทคนิคนี้ได้มีการ พัฒนาและขยายออกไปเพื่อใช้ในการสังเคราะห์ซีโอไลต์ซึ่งสามารถทำได้โดยใช้กระบวน การไฮโดรเทอร์มัล (hydrothermal Process) โดยทำปฏิกิริยาที่อุณหภูมิประมาณ 100-200 ้องศาเซลเซียส และความดันสูง ตามระยะเวลาที่กำหนดภายใต้ปริมาณน้ำที่มีมากเกินพอ อย่างไร ก็ตามได้มีวิธีการใหม่ในการสังเคราะห์ซีโอไลต์โดยใช้อุณหภูมิต่ำตั้งแต่อุณหภูมิห้องจนถึงจุดเดือด ของน้ำ ตัวอย่างเช่น ซีโอไลต์เอ เอกซ์ และ วาย เป็นต้น ซีโอไลต์ที่ได้จากการสังเคราะห์สามารถ

นำไปใช้งานแพร่หลายในเชิงพาณิชย์มากกว่าซีโอไลต์ที่เกิดตามธรรมชาติเนื่องจากมีองค์ประกอบ ที่แน่นอนและมีความบริสุทธิ์สูงกว่า (Dyer, 1988)

2.2 โครงสร้างและองค์ประกอบทางเคมีของซีโอไลต์

โครงสร้างของซีโอไลต์มีลักษณะเป็นโครงร่าง 3 มิติ หน่วยย่อยของซีโอไลต์ประกอบด้วย อะตอมของซิลิกอน (หรืออะลูมิเนียม) หนึ่งอะตอม และออกซิเจนสี่อะตอม สร้างพันธะกันเป็นรูป สามเหลี่ยมสี่หน้า (tetrahedral) โดยอะตอมของซิลิกอน (หรืออะลูมิเนียม) อยู่ตรงกลางล้อมรอบ ด้วยอะตอมของออกซิเจนที่มุมทั้งสี่ ซึ่งโครงสร้างสามเหลี่ยมสี่หน้านี้จะเชื่อมต่อกันที่มุม (ใช้ออกซิเจนร่วมกัน) ก่อให้เกิดเป็นโครงสร้างที่ใหญ่ขึ้นและเกิดเป็นช่องว่างระหว่างโมเลกุล ดังภาพที่ 2.1 ทำให้ซีโอไลต์เป็นผลึกแข็งมีรูพรุนและช่องว่างหรือโพรงที่ต่อเชื่อมกันอย่างเป็น ระเบียบในสามมิติขนาดตั้งแต่ 2-10 อังสตรอม (1 อังสตรอมเท่ากับ 1×10⁻¹⁰ เมตร) (Szostak, 1989)

ภาพที่ 2.1 โครงสร้างทรงสี่หน้าของซิลิกอน [SiO₄]⁴ และอะลูมิเนียม [AlO₄]⁵ และการเชื่อมต่อในผลึกซีโอไลต์ (Szostak, 1989)

นอกจากซิลิกอน (หรืออะลูมิเนียม) และออกซิเจนแล้ว ในโครงสร้างโมเลกุลของซีโอไลต์ ยังมีประจุบวกของโลหะ เช่น โซเดียม โพแทสเซียม แคลเซียม เกาะอยู่อย่างหลวมๆ และยังมี โมเลกุลของน้ำเป็นองค์ประกอบอยู่ในช่องว่างในโครงผลึก ซึ่งสามารถกำจัดออกได้โดยให้ความ ร้อน ซีโอไลต์มีสูตรโมเลกุลทั่วไปดังนี้ (Szostak, 1989)

 $\mathsf{M}_{2/n}[(\mathsf{AIO}_2)\mathsf{x}(\mathsf{SiO}_2)\mathsf{y}].\mathsf{zH}_2\mathsf{O}$

- โดยที่ n คือ จำนวนวาเลนซ์อิเล็คตรอนของไอออนบวก (M)
 - x,y คือ เป็นเลขจำนวนเต็ม (x/y มากกว่าหรือเท่ากับ 1 ซึ่งมักใช้เป็นดัชนีตัว หนึ่งสำหรับแบ่งชนิดของซีโอไลต์)
 - z คือ เป็นจำนวนโมลของน้ำที่มีอยู่ในผลึกของซีโอไลต์
 - M คือ เป็นโลหะหมู่ I หรือหมู่ II ซึ่งมีประจุบวกเท่ากับ n เพื่อดุลประจุลบ ณ ตำแหน่งของอะตอมอะลูมิเนียม

หน่วยโครงสร้างปฐมภูมิ (primary units) ของซีโอไลต์คือ รูปทรงสี่หน้าของออกซิเจน โคออร์ดิเนตกับซิลิกอน (SiO₄) หรืออะลูมิเนียม (AIO₄) ดังภาพที่ 2.2 และเมื่อหลายหน่วยของ โครงสร้างปฐมภูมิจับตัวกันกลายเป็นหน่วยโครงสร้างทุติยภูมิ (secondary building units) เกิด เป็นรูปสี่เหลี่ยมต่างๆ เป็นวงเดี่ยว เช่น S4R, S6R หรือต่อเป็นวงคู่ เช่น D4R, D6R ดังภาพที่ 2.3 ตำแหน่งมุมแทนซิลิกอนหรืออะลูมิเนียมเส้นตรงแทนอะตอมของออกซิเจน

ภาพที่ 2.2 รูปทรงสี่หน้าของออกซิเจนโคออร์ดิเนตกับซิลิกอนหรืออะลูมิเนียม ในหน่วยย่อยของซีโอไลต์ (หน่วยโครงสร้างปฐมภูมิ) (เลิศ รักสันติชาติ, 2545)

ภาพที่ 2.3 หน่วยโครงสร้างทุติยภูมิในโครงสร้างของซีโอไลต์ (Dyer, 1988)

(a) single four ring (S4R)

- (b) single six ring
- (c) single eight ring (S8R)
- (d) double four ring (D4R)
- (e) double six ring (D6R)
- (f) complex 4-1
- (g) complex 5-1
- (h) complex 4-4-1

หน่วยโครงสร้างรูปทรงหลายหน้า (polyhedral units) เป็นรูปทรงสมมาตรขนาดใหญ่ซึ่ง เกิดขึ้นจากโครงสร้างปฐมภูมิหลายโครงสร้างต่อกันเป็นรูปทรงที่สลับซับซ้อนมากยิ่งขึ้นดังตัวอย่าง ในภาพที่ 2.4

- ทรงเหลี่ยมยี่สิบหกหน้า หรือ แอลฟา $\, lpha \,$ (truncated cuboctahedron)
- ทรงเหลี่ยมแปดหน้ามุมตัด หรือ เบต้า eta (truncated octahedron type)
- ทรงเหลี่ยมสิบแปดหน้า หรือ แกรมมา γ (18-hedron)
- ทรงเหลี่ยมสิบเอ็ดหน้า หรือ แอฟซีลอน **ɛ** (11-hedron)

ภาพที่ 2.4 หน่วยโครงสร้างรูปทรงหลายหน้าของซีโอไลต์ (เลิศ รักสันติชาติ, 2545)

เมื่อหน่วยโครงสร้างทุติยภูมิทั้งแบบวงเดี่ยวและวงคู่และหน่วยโครงสร้างรูปทรงหลายหน้า มารวมกันจะเกิดเป็นโครงสร้างซีโอไลต์ ลักษณะโครงสร้างของซีโอไลต์จะประกอบด้วยโพรง (cavity) หรือช่องว่างซึ่งมีเส้นผ่านศูนย์กลางประมาณ 3-10 อังสตรอมดังภาพที่ 2.5 ตัวอย่าง โครงสร้างซีโอไลต์ได้แก่ ซีโอไลต์ชนิดฟูจาไซท์ Faujasite ซึ่งเกิดจากทรงเหลี่ยมแปดหน้ามุมตัด หรือ β cage ที่มีโพรงขนาดเส้นผ่านศูนย์กลางประมาณ 8 อังสตรอม เชื่อมต่อกันด้วยปริซึมทรง หกเหลี่ยม (hexagonal prism) เป็นโครงสร้างทรงลูกบาศก์ (cubic structure) ทำให้เกิดโพรง ขนาดใหญ่หรือซูเปอร์เคจ (super cage) (จตุพร วิทยาคุณ และ นุรักษ์ กฤษดานุรักษ์, 2547)

ภาพที่ 2.5 การเกิดโครงสร้างของผลึกแบบต่างๆ (Farrauto และ Bartholomew, 1997)

โครงสร้างของซีโอไลต์ประกอบด้วยรูพรุนหรือช่องเปิดที่มีขนาดและรูปร่างที่แน่นอนซึ่ง ประกอบด้วยอะตอมออกซิเจนจัดเรียงเป็นวงแหวนขนาดของวงแหวนแทนด้วยสัญลักษณ์ nOR เมื่อ n คือจำนวนของอะตอมออกซิเจนซึ่งต่อกันเป็นวง และ OR คือ โครงสร้างของออกซิเจนที่ต่อ กันเป็นวง ตัวอย่างเช่น 10CR คือวงแหวนที่ประกอบด้วยอะตอมออกซิเจนจำนวน 10 อะตอม และ เนื่องจากขนาดอะตอมของออกซิเจนใหญ่กว่าอะตอมของซิลิกอนและ อะลูมิเนียม ดังนั้นผิว ภายใน (internal surface) โพรงของซีโอไลต์จึงประกอบด้วยอะตอมของออกซิเจนเกือบทั้งหมด ขนาดของรูพรุนหรือช่องเปิดในซีโอไลต์ซึ่งแสดงด้วยตารางที่ 2.1 แบ่งออกได้เป็น 3 ขนาด คือ (Szostak, 1989)

รูพรุนขนาดเล็ก (ขนาดรูพรุนน้อยกว่า 5 อังสตอม หรือ 8OR) เช่น ซีโอไลต์ชนิด
 Na - A (LTA) ที่มีโครงสร้างประกอบด้วยโพรงสามมิติ (3-dimension channel) เกิดจากการ
 เชื่อมต่อกันของรูปทรงสี่หน้าของซิลิเกตและอะลูมิเนตเป็นทรงเหลี่ยมแปดหน้ามุมตัด (β or sodalite cage) ซึ่งจะเชื่อมต่อกันผ่าน D4R (double 4-rings) ดังภาพที่ 2.5

 รูพรุนขนาดกลาง (ขนาดรูพรุน 5-6 อังสตอม หรือ 10OR) เช่น ซีโอไลต์ ZSM-5 (MFI)
 โครงสร้างของซีโอไลต์ ZSM-5 ประกอบด้วยช่องเปิดสองระบบเชื่อต่อกัน ช่องเปิดระบบแรกมี ลักษณะเป็น sinusoidal วางตัวในทิศแกน z [001] มีขนาดเท่ากับ 5.4 x 5.6 อังสตรอม และช่อง เปิดอีกระบบเป็นท่อตรงในทิศแกน y [010] มีขนาดเท่ากับ 5.1 x 5.6 อังสตรอม โดยช่องเปิดทั้ง สองระบบประกอบด้วยอะตอมออกซิเจน 10 อะตอม เชื่อมต่อเป็นวงรี (elliptical)

 รูพรุนขนาดใหญ่ (ขนาดของรูพรุน 7-8 อังสตอม หรือ 1200R) เช่น ซีโอไลต์ฟูจาไซท์ (Faujasite) ชนิดเอกซ์และวายช่องเปิดของซีโอไลต์กลุ่มนี้เป็นวงแหวนที่ประกอบด้วยออกซิเจน ทั้งหมด 12 อะตอม โดยโครงสร้างเกิดการเชื่อมต่อกันของทรงเหลี่ยมแปดหน้ามุมตัดผ่าน D6R (double 6-rings) ทำให้เกิดโพรงขนาดใหญ่ (supercage) หรือ โพรงแอลฟา (α cage) ที่มี ออกซิเจนล้อมรอบ 12 อะตอม ที่มีขนาดเส้นผ่านศูนย์กลางของโพรงเท่ากับ 13 อะตอม

Zeolite	Number of Rings	Pore diameter (Å)	Pore Chennal Structure
Zeolite A	8-membered oxygen ring	4.1	Intersection
ZSM - 48	10-membered oxygen ring	5.3 x 5.6	Intersection
ZSM - 5	10-membered oxygen ring	5.3 x 5.6	Intersection
		5.1 x 5.3	
Zeolite Y	12-membered oxygen ring	7.4	One dimensional
AIPO ₄ - 5	12-membered oxygen ring	7.3	Intersection

ตารางที่ 2.1 ขนาดของช่องเปิดของซีโอไลต์ชนิดต่างๆ (Szostak, 1989)

LTA

framework viewed along [001]

FAU

framework viewed along [111]

framework viewed along [010]

ภาพที่ 2.6 โครงสร้างสามมิติของซีโอไลต์ Linde Type A (LTA) ซีโอไลต์ฟูจาไซท์ Faujasite และ ซีโอไลต์ ZSM-5 (MFI) (Baerlocher และคณะ, 2001)

top view of channels

ภาพที่ 2.8 ซีโอไลต์ต่างๆ แบ่งตามลักษณะโครงสร้างและรูปทรงของวงแหวน (Szostak, 1989)

12-membered oxygen ring	10-membered oxygen ring	8-membered oxygen ring	
Faujasite (Type X , Y)	ZSM-5 (Silicate)	Type A, ZK-5	
Mordenite	ZSM-11	Bikitate	
Cancrinite	Dachiardite	Brewsterite	
Gmelinite	Epistilbite	Charbrzite	
Type L	Ferrierite	TMA-E (AB)	
Mazzite	Laumontite	Edingtonite	
Offretite	Stilbite	Erionite	
Omega	ZSM-23	Gismondine	
ZSM-12	Theta-1 (ZSM-22)	Heulandite	
Beta	Eu-1 (ZSM-50)	Levyne	
	ZSM-48 (Eu-2)	Merlinoite	
		Natrolite	
		Phillipsite	
		Paulingite	
		Rho	
		Thomsonite	
		Yugawaralite	

ตารางที่ 2.2 ซีโอไลต์ต่างๆแบ่งตามลักษณะโครงสร้างและรูปทรงของวงแหวน (Szostak, 1989)

นอกจากนี้หน่วยโครงสร้างทิตุยภูมิของซีโอไลต์ดังที่กล่าวมาแล้วข้างต้นสามารถใช้เป็น เกณฑ์ในการแบ่งประเภทของซีโอไลต์ตามลักษณะการเชื่อมต่อกันดังนี้ (Breck, 1974) ประเภท ของซีโอไลต์ที่แบ่งตามลักษณะการเชื่อมต่อของหน่วยโครงสร้างทุติยภูมิในโครงสร้างของซีโอไลต์ ได้แก่

- Analcite Group เกิดจากการเชื่อมต่อกันของ 4-rings กับ 6-rings โดยมี 2 รูปแบบ คือ Analcite และ Laumontite ดังภาพที่ 2.9
- Natrolite Group มีลักษณะโครงสร้างเป็นสายโซ่ที่เกิดจากการเชื่อมต่อกันของ
 4-rings จำนวน 4 วง โดยการเชื่อมต่อกันจะมี 3 รูปแบบ คือ Natrolite, Edingtonite
 และ Thosonite ดังภาพที่ 2.10
- Chabazite Group โครงสร้างประกอบไปด้วย 6-rings ต่อขนานกันซึ่งมีการเชื่อมต่อ กันหลายรูปแบบ เช่น Offretite และ Reionite ดังภาพที่ 2.11
- 4. Phillipsite Group โครงสร้างประกอบไปด้วย 4-rings ต่อขนานกัน ดังภาพที่ 2.12
- 5. Heulandite Group โครงสร้างเกิดจาก 5-rings 4 วงเชื่อมต่อกันกับ 4-rings 2 วง ซึ่ง เป็นโครงสร้างกลางของกลุ่ม ดังภาพที่ 2.13
- Mordenite Group โครงสร้างเกิดจาก 5-rings 4 วงเชื่อมต่อกันเป็นโครงสร้างกลาง ของกลุ่ม โครงสร้างใน Mordenite Group มีทั้งหมด 7 รูปแบบ คือ mordenite, epistilbite, ferrierite, bikitaite, dachiardite, ZSM-5 และ ZSM-11 ดังภาพที่ 2.14
- 7. Faujasite Group ซีโอไลต์ในกลุ่มนี้แบ่งออกเป็น Sodalite และ ZK-5 ดังภาพที่ 2.15
- Melanophlogite Group ในกลุ่มนี้ประกอบไปด้วย ZSM-39 และ melanophlogite ซึ่งแต่ละหน่วยที่ประกอบเป็น ZSM-39 และ melanophlogite จะมีหลายรูปแบบ เช่น 12-hedron, 12-hedron, 12-hedron, และ 12-hedron ดังภาพที่ 2.16
- 9. Lovdarite Droup เกิดจากการเชื่อมต่อกันของ 4-rings และ 8-rings ดังภาพที่ 2.17

ภาพที่ 2.9 โครงสร้างของ Analcite Group (Baerlocher และคณะ, 2001)

ภาพที่ 2.10 โครงสร้างของ Natrolite Group (Baerlocher และคณะ, 2001)

ภาพที่ 2.11 โครงสร้างของ Chabazite Group (Baerlocher และคณะ, 2001)

ภาพที่ 2.12 โครงสร้างของ Phillipsite Group (Baerlocher และคณะ, 2001)

ภาพที่ 2.13 โครงสร้างของ Heulandite Group (Baerlocher และคณะ, 2001)

ภาพที่ 2.14 โครงสร้างของ Modernite Group (Baerlocher และคณะ, 2001)

Ferrierite (FER) orthorhombic, Immm

dachiardite (DAC) monoclinic, C12/m1

bikitaite (BIK) triclinic, P1

ZSM-11 tetragonal, I4m2

ภาพที่ 2.18 โครงสร้างของ Lovdarite Group (Baerlocher และคณะ, 2001)
2.3 ซีโอไลต์เอ

เป็นซีโอไลต์มีโครงสร้าง 3 มิติ โดยมีช่องว่างเป็นโพรงอยู่ตรงกลาง โดยเส้นผ่านศูนย์กลาง ของช่องว่างจะขึ้นกับอะตอมของออกซิเจนทั้งแปดที่ล้อมรอบซึ่งมีขนาดประมาณ 4.2 อังสตรอม โดยบริเวณมุมทั้งสี่จะมีช่องที่เรียกว่า โซดาไลต์ เชื่อมต่อกันเป็นโครงสร้างทรงลูกบาศก์ ดังภาพที่ 2.19

ภาพที่ 2.19 โครงสร้างของซีโอไลต์เอ (Baerlocher และคณะ, 2001)

2.4 การเกิดซีโอไลต์ (จตุพร วิทยาคุณ และ นุรักษ์ กฤษดานุรักษ์, 2547)

ซีโอไลต์แบ่งตามการกำเนิดได้ 2 วิธี คือ ซีโอไลต์ที่เกิดขึ้นตามธรรมชาติ และซีโอไลต์ที่ ได้จากการสังเคราะห์ทางเคมี

2.4.1 ซีโอไลต์ที่เกิดขึ้นเองตามธรรมชาติ (mineral zeolite or natural occurring zeolite) ส่วนมากค้นพบจากการทำเหมืองแร่ซีโอไลต์จากธรรมชาติเป็นกลุ่มผลึกอะลูมิโนซิลิเกตของโมโน หรือไดวาเลนท์เบส (mono or divalent bases) อาจมีการสูญเสียน้ำในผลึกบ้างบางส่วนหรือ ทั้งหมด โดยที่โครงสร้างจะไม่มีการเปลี่ยนแปลงตัวอย่างซีโอไลต์จากธรรมชาติได้แก่ Faujasite, Erionite, Chabazite, offertite, Gmelinite, Mordenite และ Heulandite เป็นต้น โดยประเภทของ ซีโอไลต์ที่เกิดขึ้นเองตามธรรมชาติสามารถแบ่งได้ตาม Hydrological system ดังนี้

 Saline, Alkaline Lakes ซีโอไลต์ชนิดนี้สามารถแบ่งออกเป็น 2 ชนิด ตามการ เปลี่ยนแปลงของผิวโลก คือ arid region และ semiarid region การตกตะกอนในลักษณะนี้จะทำ ให้เกิดระบบ close resin และควบคุมการเปลี่ยนแปลงของ clastic material และ basin edge

2. Saline, Alkaline Soils ภาวะภูมิอากาศเป็นตัวควบคุมการเกิดซีโอไลต์ชนิดนี้ การก่อตัวใน arid region และ semiarid region เกิดจากการระเหยของน้ำผิวดินที่เกิดจากโซเดียมคาร์บอเนต และโซเดียมไบคาร์บอเนต โดยน้ำฝนจะไหลซึมผ่านชั้นดิน แล้วจะละลายโซเดียมคาร์บอเนตและ โซเดียมไบคาร์บอเนต ทำให้ค่าความเป็นกรด-เบสสูงขึ้นและทำให้เกิดอะลูมิโนซิลิเกตในพื้นดินขึ้น

3. Marine Sediments ซีโอไลต์ชนิดนี้เกิดจากการตกตะกอนที่อยู่ในทะเลภายใต้อุณหภูมิต่ำ และค่าความเป็นกรด-เบสที่เป็นกลาง

4. Open Hydrologic System ซีโอไลต์ชนิดนี้เกิดจากการเปลี่ยนแปลงของน้ำใต้ดินที่ไหล ผ่าน porous pyroclastic ซึ่งทำปฏิกิริยากับ vitric ash

5. Hydrothermal System ซีโอไลต์ชนิดนี้เกิดจากระบบที่มีแอลคาไลน์กับสารละลายกรด อ่อน การตกตะกอนถูกกำหนดจากปัจจัยของอุณหภูมิ ความสามารถของการเปียกได้ของแร่หิน และลักษณะของของไหลที่ไหลผ่าน ในส่วนที่ตื้นและเย็นที่สุดจะเกิดซีโอไลต์ชนิด mordenite และ clinoptilolite สำหรับในส่วนที่ลึกและร้อนกว่าจะเกิดซีโอไลต์ชนิด analcime และ laumonite

6. Burial Diagenetic System ซีโอไลต์ชนิดนี้จะอยู่ในตะกอนที่เกิดจากภูเขาไฟ (volcanolastic sediment)

 Magmatic System ซีโอไลต์ชนิดนี้เป็นซีโอไลต์ที่ตกผลึกอยู่ระหว่างชั้นของหินแมกมาที่ เกิดขึ้นจากอันตรกิริยาของของเหลวกับหินที่อยู่ล้อมรอบซีโอไลต์ ส่วนมากจะพบในหินอัคนีและ อาจพบบ้างใน imerstitial และ globules

8. ซีโอไลต์ที่พบบนปากปล่องภูเขาไฟเป็นซีโอไลต์ในประเทศเยอรมันนี้ ช่องว่างภายในผลึก จะเต็มไปด้วย analcime, clinoptilolite, erionite, harmotone และ phillipsite

2.4.2 ซีโอไลต์ที่ได้จากการสังเคราะห์ทางเคมี (synthetic zeolite)

เกิดจากการทำปฏิกิริยาของออกไซด์พื้นฐานต่างๆ เช่น Al₂O₃, SiO₂, Na₂O และ K₂O ใน ระบบที่มีน้ำ การสังเคราะห์ทำได้ทั้งในลักษณะที่เป็นเจล เป็นรูพรุน และลักษณะที่คล้ายเม็ดทราย ซึ่งเป็นประโยชน์ในการที่จะได้ซีโอไลต์ที่มีองค์ประกอบและโครงสร้างตามวัตถุประสงค์ของการใช้ งาน ตัวอย่างซีโอไลต์ที่เกิดขึ้นตามธรรมชาติและที่ได้จากการสังเคราะห์ ดังตารางที่ 2.3

องค์ประกอบหลักในการสังเคราะห์ซีโอไลต์ ประกอบด้วย

1. อะลูมิเนียม การสังเคราะห์ชีโอไลต์ในการทดลองโดยทั่วไปจะใช้สารประกอบของโลหะ
อะลูมิเนต (metal aluminates) เป็นสารตั้งต้น ส่วนใหญ่ที่นิยมใช้กัน คือ โซเดียมอะลูมิเนตหรือ
บางครั้งอาจใช้แหล่งแร่อะลูมิเนียมตามธรรมชาติ เช่น แก้ว (feldspar) เฟลด์สปาร์ (felspatoides)
อะลูมิเนียมไฮดรอกไซด์ (Al(OH)₃) และ อะลูมิเนียมอัลคอกไซด์ (AlO(OH))

ชิลิกอน โดยทั่วไปจะใช้สารละลายของซิลิกา เช่น ซิลิกาโซลเจล โดยมีซิลิการ้อยละ
30 โดยน้ำหนัก บางครั้งอาจใช้ซิลิกาเจล แก้ว ทรายแร่ เป็นต้น

 3. ไอออนบวก ได้แก่ ไอออนของโลหะหมู่หนึ่งและหมู่สองที่อยู่ในรูปของไฮดรอกไซด์ นอกจากนี้สามารถได้จากสารประกอบออกไซด์และเกลือชนิดอื่นๆ ของโลหะหมู่หนึ่งและหมู่สอง ได้ สารเคมีอื่นๆ เช่น สารประกอบอินทรีย์ (organic compounds) ที่แตกตัวให้ไอออน บวก ซึ่งเรียกว่า สารโครงสร้าง (template) โดยใส่ในเจลเพื่อช่วยในการตกผลึกของซีโอไลต์ เช่น เตตระเอทิลแอมโมเนียมไฮดรอกไซด์ เตตระโพรพิลแอมโมเนียมไฮดรอกไซด์ เป็นต้น

ชื่อ	รูปแบบผลึก	องค์ประกอบทางเคมี	
A	isometric	Na ₁₂ Al ₁₂ Si ₁₂ O ₄₈ ·27H ₂ O	
Cancrinite	hexagonal	Na ₆ Al ₆ Si ₆ O ₂₄ ·2H ₂ O	
Charbazite	rhombohedral	(Ca,Na) ₂ Al ₄ Si ₈ O ₂₄ ·13H ₂ O	
Erionite	hexagonal	(Ca,K ₂ ,Na ₂) ₄ Al ₈ Si ₂₆ O ₇₂ ·27H ₂ O	
Faujasite	isometric	Na ₁₃ Ca ₁₁ Mg ₉ K ₂ Al ₅₅ Si ₃₇ O ₃₆₄ ·235H ₂ O	
Х	isometric	Na ₈₆ Al ₈₆ Si ₁₀₆ O ₃₈₄ ·264H ₂ O	
Y	isometric	Na ₅₆ Al ₅₆ Si ₁₃₆ O ₃₈₄ ·250H ₂ O	
Gemlinite	hexagonal	(Na, etc) ₈ Al ₆ Si ₁₆ O ₄₈ ·24H ₂ O	
L	hexagonal	K ₉ Al ₉ Si ₁₂₇ O ₇₂ ·22H ₂ O	
Mazzite	hexagonal	K _{2.5} Mg _{2.1} Ca _{1.4} Na _{0.3} Al ₁₀ Si ₂₆ O ₇₂ :28H ₂ O	
Mordenite	orthorombic	Na ₈ Al ₈ Si ₄₀ O ₉₀ ·24H ₂ O	
Offretite	hexagonal	K Ca Mg Al ₁₅ Si ₁₃ O ₃₀ ·15H ₂ O	
Sodalite	isometric	Na ₆ Al ₆ Si ₆ O ₂₄ ·2NaCl	
ZK-5	isometric	Na ₃₀ Al ₃₀ Si ₆₆ O ₁₉₂ ·98H ₂ O	

ตารางที่ 2.3 ซีโอไลต์ที่เกิดขึ้นเองตามธรรมชาติและที่สามารถสังเคราะห์ได้ (Smith, 1976)

2.5 กระบวนการสังเคราะห์ของซีโอไลต์

2.5.1 การสังเคราะห์ซีโอไลต์ใช้วิธีไฮโดรเทอร์มัล

การสังเคราะห์ซีโอไลต์ใช้วิธีไฮโดรเทอร์มัล (hydrothermal process) โดยใช้ สารประกอบอะลูมินา เช่น โซเดียมอะลูมิเนต (sodium aluminates) หรือ โซเดียมซัลเฟต (aluminum sulfate) และซิลิกา เช่น โซเดียมวอเตอร์กลาส (sodium water glass) สารละลาย ซิลิกา (silica solution) ทำปฏิกิริยากับเบส เช่น โซเดียมไฮดรอกไซด์หรือควอเตอร์นารี่ แอมโมเนียมแคทไออน(Quaternary ammonium cations : NR₄⁺) เกิดเป็นเจลที่มีลักษณะเป็นสาร เนื้อเดียวกันซึ่งอยู่ในสภาพสารละลายอิ่มตัวยวดยิ่ง (analkaline supersaturated solution) และ แปลงสภาพเป็นโครงสร้างรูพรุนของผลึกอะลูมิโนซิลิเกต (microporouscrystalline aluminosilicate) ภายในเวลาที่กำหนด อุณหภูมิการเกิดผลึกจะอยู่ในช่วงประมาณ 150 องศา เซลเซียสหรือสูงกว่านั้น และความดันเท่ากับความดันของไอน้ำอิ่มตัวในขณะนั้น บางครั้งในระบบ อาจเกิดเป็นผลึกซีโอไลต์มากกว่าหนึ่งชนิด ซึ่งเรียกกระบวนการทางเคมีนี้ว่ากระบวนการซีโอไลทิ เซชัน (zeolitization) ขั้นตอนสำคัญในการเกิดซีโอไลทิเซชันได้เป็นซีโอไลต์ที่ต้องการได้แก่ ระยะเวลาการปล่อยให้ตกผลึก (aging period) และกลไกการเกิดผลึก (mechanism of crystallization)

ระยะเวลาการปล่อยให้ตกผลึก คือช่วงเวลาและปรากฏการณ์ที่เกิดขึ้นภายหลังการ เตรียมเจล โดยที่อุณหภูมิของเจลมีค่าต่ำกว่าอุณหภูมิการเกิดผลึก สิ่งหนึ่งที่สำคัญในช่วง ระยะเวลาการปล่อยให้ตกผลึก คือการละลายหรือดีพอลิเมอไรเซชัน (depolymerization) ของ ซิลิกาด้วยเบส ซึ่งการละลายดังกล่าวเป็นการเพิ่มความเข้มข้นของซิลิกาผลิตภัณฑ์เริ่มแรกที่ได้อยู่ ในรูปของโมโนเมอริกซิลิเกตแอนไอออน (monomeric silicate anions) หลังจากนั้นจะถูก เปลี่ยนไปเป็นโอลิโกเมอริก (oligomeric species) โดยผ่านกระบวนการพอลิเมอไรเซชันแบบ ควบแน่น (condensation polymerization) ระหว่างโอลิโกเมอริกซิลิเกตกับโมโนเมอริก แอมโมเนียมไฮดรอกไซด์ไอออน (AI(OH),) เกิดเป็นโครงสร้างอะลูมิโนซิลิเกต

2.5.2 การสังเคราะห์ซีโอไลต์ใช้วิธีไมโครเวฟ

การสังเคราะห์ชีโอไลต์ใช้วิธีไมโครเวฟ (microwave process) เป็นวิธีการสังเคราะห์ ซีโอไลต์อีกรูปแบบหนึ่งที่ได้มีการนำมาประยุกต์ใช้ซึ่งในขั้นตอนการเกิดซีโอไลต์จะคล้ายคลึงกับ การสังเคราะห์ซีโอไลต์ใช้วิธีไฮโดรเทอร์มัล (hydrothermal process) แต่วิธีการนี้มีความต่างกันที่ รูปแบบของพลังงานที่ใช้ในการสังเคราะห์ โดยการสังเคราะห์ซีโอไลต์ด้วยวิธีไมโครเวฟจะใช้ พลังงานคลื่นแม่เหล็กไฟฟ้าไปกระตุ้นโมเลกุลให้เกิดความร้อนแทนการใช้ตู้อบ โดยไมโครเวฟจะใช้ พลังงานคลื่นแม่เหล็กไฟฟ้าไปกระตุ้นโมเลกุลให้เกิดความร้อนแทนการใช้ตู้อบ โดยไมโครเวฟจะใช้ พลังงานคลื่นแม่เหล็กไฟฟ้าไปกระตุ้นโมเลกุลให้เกิดความร้อนแทนการใช้ตู้อบ โดยไมโครเวฟจะใช้ มีความถี่ที่สั้นกว่า หัวใจสำคัญของเตาไมโครเวฟ คือตัวแม็กนิตรอนที่จะเป็นตัวเปลี่ยนพลังงาน ไฟฟ้าเป็นคลื่นไมโครเวฟ ระบบการทำงานของเตาไมโครเวฟ คลื่นไมโครเวฟจะพุ่งเข้าสู่สารจากทุก ทิศทุกทางโดยรอบของผนังเตาด้านในแล้วแผ่กระจายไปสู่สาร เมื่อคลื่นไปกระทบสารทำให้ โมเลกุลของสารเกิดการสั่นและเสียดสีกัน ก่อให้เกิดเป็นพลังงานความร้อนแก่สาร ทำให้ทุก โมเลกุลได้รับพลังงานอย่างทั่วถึงและสม่ำเสมอทั้งบริเวณที่เป็นพื้นผิวและบริเวณที่อยู่ภายใน ซึ่ง จะสามารถลดความแปรผันของอุณหภูมิเนื่องจากการนำความร้อนและลดระยะเวลาในการ สังเคราะห์ ซึ่งช่วยเพิ่มประสิทธิภาพในการลดพลังงานที่ใช้ในการสังเคราะห์ได้

2.6 กลไกการเกิดผลึก

กลไกการเกิดผลึกแบ่งเป็น 3 ขั้นตอน ได้แก่การอิ่มตัวยวดยิ่ง (supersaturation) การเกิด นิวเคลียส (nucleation) และการเติบโตของผลึกซีโอไลต์ (crystal growth) ดังภาพที่ 2.20

ภาพที่ 2.20 การเกิดซีโอไลต์จากอนุภาคของเจล (จตุพร วิทยาคุณ และ นุรักษ์ กฤษดานุรักษ์, 2547)

2.6.1 การอิ่มตัวยวดยิ่ง (supersaturation) เป็นขั้นตอนที่เกิดขึ้นระหว่างตกผลึก และเกิดได้มากขึ้นเมื่ออุณหภูมิสูงขึ้น ในขั้นตอนนี้ความเข้มข้นขององค์ประกอบอะลูมิเนียมและ ซิลิกอนที่ถูกละลายจะเพิ่มมากขึ้น ทำให้เกิดการเปลี่ยนแปลงสภาพของสารละลายจากสารละลาย ที่มีเสถียรภาพไปเป็นสารละลายที่มีเสถียรภาพไม่แน่นอน (metastable solution) และสุดท้ายอยู่ ในสภาพที่มีการเปลี่ยนแปลงอยู่เสมอ (labilesolution) 2.6.2 การเกิดนิวเคลียส (nucleation) ของสารละลายอิ่มตัวยวดยิ่งแบ่งออกเป็น
2 ขั้นตอน ขั้นตอนแรก คือ การเกิดนิวเคลียสขั้นปฐมภูมิ (primary nucleation) ซึ่งสามารถแบ่ง
ออกเป็นการเกิดนิวเคลียสแบบเนื้อเดียว (homogeneous nucleation) และแบบเนื้อผสม
(heterogeneous nucleation) โดยที่การเกิดนิวเคลียสแบบหลังเกิดจากการเหนี่ยวนำของสิ่ง
แปลกปลอมที่มีอยู่ในสารละลาย (impurities or foreign particles) และขั้นตอนที่สองคือการเกิด
นิวเคลียสขั้นทุติยภูมิ (secondary nucleation) ซึ่งเกิดขึ้นจากการเหนี่ยวนำของผลึกที่เกิดขึ้น

2.6.3 การเติบโตของผลึกซีโอไลต์เป็นปรากฏการณ์ที่เกิดขึ้นหลังจากการเกิด นิวเคลียส โดยนิวเคลียสจะเกิดการเติบโตโดยการเพิ่มหรือควบแน่นขององค์ประกอบที่ละลายอยู่ กลายเป็นผลึกซีโอไลต์ที่มีขนาดใหญ่ขึ้นและสมบูรณ์มากขึ้น

ลักษณะของซีโอไลต์ที่เกิดขึ้นจะขึ้นอยู่กับปัจจัยหลายอย่าง ซึ่งประกอบไปด้วยอัตราส่วน ของโมลาร์ซิลิกอนออกไซด์ต่อโมลาร์อะลูมิเนียมออกไซด์ (SiO₂/Al₂O₃) ของสารตั้งต้น อุณหภูมิ ในการทำปฏิกิริยา ค่าความเป็นกรด-ด่างของสารละลาย ปริมาณน้ำที่เติมเข้าไป ช่วงระยะเวลาใน การทำปฏิกิริยา อัตราเร็วในการกวน และปริมาณของประจุบวกของทั้งสารอินทรีย์และสาร อนินทรีย์ที่ปะปนอยู่ โดยปกติการต่อตัวขึ้นของซีโอไลต์มีความสลับซับซ้อนมาก

2.7 สมบัติที่สำคัญของซีโอไลต์ (Bruce, 1991)

เมื่อพิจารณาหน่วยโครงสร้างพื้นฐานของซีโอไลต์ พบว่าถ้าทุกหน่วยเป็น [SiO₄]⁴⁻ สูตร อย่างง่าย (empirical) ของสารนี้คือ SiO₂ นั่นเอง ซึ่งมีสภาพประจุเป็นกลาง แต่ถ้าแทนที่ [SiO₄]⁴⁻ ด้วย [AIO₄]⁵⁻ จะได้สูตรอย่างง่ายคือ (AIO₂)⁻ ดังนั้นจึงมีประจุลบสำหรับทุกหน่วยของ (AIO₂)⁻ หรือ [AIO₄]⁵⁻ ดังแสดงในภาพที่ 2.21

ภาพที่ 2.21 ประจุลบที่เกิดจากการแทนที่ด้วย (AIO₂)⁻ หรือ (AIO₅)⁵-ในโครงสร้างของซีโอไลต์ (เลิศ รักสันติชาติ, 2545) ตำแหน่งประจุลบที่เกิดขึ้นจะอยู่บริเวณรอบอะลูมิเนียมออกไซด์ ((AIO₂)⁻, (AIO₅)⁵⁻) ซึ่งจะ มีไอออนประจุบวกของโลหะ (metal cation) มายึดเหนี่ยวด้วยแรงคูลอมบ์ (Coulombic force) เพื่อให้เกิดสมดุลในโครงสร้างทางประจุ ดังนั้นจำนวนประจุบวกที่พบในซีโอไลต์จะขึ้นกับจำนวน หน่วย อะลูมิเนียมออกไซด์ ((AIO₂)⁻, (AIO₅)⁵⁻) และเลขออกซิเดชันของประจุบวก (ประจุบวกหนึ่ง สำหรับโลหะแอลคาไลน์ และประจุบวกสองสำหรับโลหะแอลคาไลน์เอิร์ต) ดังนั้นซีโอไลต์จึงมี สมบัติในการแลกเปลี่ยนประจุบวกได้ ประจุบวกและโมเลกุลของน้ำเป็นส่วนที่อยู่นอกโครงสร้าง ตาข่าย (framework network) ของซีโอไลต์ ดังนั้นการแลกเปลี่ยนประจุบวกหรือการกำจัดน้ำออก จากโครงสร้างของซีโอไลต์จึงไม่ทำให้โครงสร้างของซีโอไลต์เสียหาย

2.7.1 การแลกเปลี่ยนไอออน ซีโอไลต์สามารถเกิดการแลกเปลี่ยนไอออนประจุบวกของ โลหะที่อยู่ในผลึกกับไอออนประจุบวกอื่นๆ ในสารละลายได้ โดยกระบวนการแลกเปลี่ยนประจุนี้ ผันกลับได้

2.7.2 การดูดซับน้ำ ซีโอไลต์สามารถดูดซับน้ำเข้าไปในช่องว่างบริเวณผนังด้านในของ โพรงชนิดต่างๆ ได้ และสามารถกำจัดน้ำออกได้ที่อุณหภูมิสูงพอ

2.7.3 การคัดขนาดและรูปร่างของโมเลกุลที่ผ่านเข้าออก ภายในโครงสร้างของซีโอไลต์ ประกอบด้วยโพรงซึ่งมีทางให้โมเลกุลของสารใดๆ ผ่านเข้าออกได้เรียกว่าปากโพรง (aperture) โดยที่โมเลกุลที่มีรูปร่างและขนาดเล็กกว่าหรือขนาดเดียวกับปากโพรงเท่านั้นจึงจะสามารถผ่าน เข้าออกจากโพรงของซีโอไลต์ได้ ทำให้ซีโอไลต์มีสมบัติในการกรองแยกโมเลกุล

2.7.4 สมบัติที่สำคัญอื่นๆ ได้แก่ ความหนาแน่นของตำแหน่งกรด (acid site density) ความแรงของกรด (acid strength) และขนาดรูพรุน (pore size)

2.8 การประยุกต์ใช้ซีโอไลต์ในปัจจุบัน (จำรัส ลิ้มตระกูล, 2540)

จากสมบัติที่สำคัญของซีโอไลต์จึงได้มีการนำซีโอไลต์ไปใช้งานในด้านต่างๆ ซึ่งการใช้ ประโยชน์จากซีโอไลต์ถูกกำหนดด้วยสมบัติพื้นฐานในระดับโมเลกุลของสาร ซึ่งมีอยู่สามด้าน หลักๆ ด้วยกัน ได้แก่ เป็นตัวแลกเปลี่ยนประจุ (ion exchange) เป็นตัวดูดซับ (adsorption) และ เป็นตัวเร่งปฏิกิริยา (catalysis)

2.8.1 สารลดความกระด้างของน้ำ (water softener)

เนื่องจากประจุบวกของโลหะที่เกาะกับซีโอไลต์นั้นเกาะอยู่อย่างหลวมๆ จึงพร้อมที่จะแลก ประจุกับโลหะอื่นเมื่ออยู่ในสารละลายได้ โดยโลหะแอลคาไลน์ เช่น โซเดียม หรือโพแทสเซียมที่ เกาะกับซีโอไลต์จะแลกเปลี่ยนประจุกับแคลเซียม และแมกนีเซียม ซึ่งเป็นประจุของโลหะในน้ำที่ เป็นตัวการทำให้น้ำกระด้าง นอกจากนี้ยังมีการนำซีโอไลต์มาใช้เป็นส่วนผสมในผงซักฟอกแทน ฟอสเฟต เนื่องจากฟอสเฟตเป็นพิษต่อสิ่งแวดล้อม 2.8.2 ตัวแลกเปลี่ยนประจุ (ion exchange resin)

จากสมบัติการแลกเปลี่ยนไอออนประจุบวกของซีโอไลต์จึงมีการนำซีโอไลต์ไปใช้ในเรซิน เพื่อแลกเปลี่ยนประจุกับไอออนบวกต่างๆ ได้แก่ Zn²⁺, Sn²⁺, Ba²⁺, Ca²⁺, Ni²⁺, Cd²⁺, Hg²⁺ และ Ma²⁺ เป็นต้น โดยการแลกเปลี่ยนไอออนประจุบวกของซีโอไลต์ขึ้นกับชนิดและความเข้มข้นของ ไอออนบอกที่ทำการแลกเปลี่ยนประจุกับซีโอไลต์ อุณหภูมิที่ใช้ในการแลกเปลี่ยนประจุ ตัวทำ ละลาย และโครงสร้างของซีโอไลต์

2.8.3 ตัวดูดซับ (adsorption)

เนื่องจากซีโอไลต์มีสมบัติในการเลือกทำปฏิกิริยาตามรูปร่างอันเป็นหลักการพื้นฐานของ กระบวนการดูดซับระดับโมเลกุล โดยสามารถเลือกให้มีการเลือกดูดซับเฉพาะบางโมเลกุลและ เนื่องจากซีโอไลต์สามารถดูดซับน้ำได้ดีและสามารถเกิดปฏิกิริยาแบบย้อนกลับได้เมื่อมีการให้ ความร้อน จึงได้มีการนำซีโอไลต์มาใช้เป็นตัวดูดซับในกระบวนการทำสารให้บริสุทธิ์ (purification) และการแยกสาร (separation) เมื่อซีโอไลต์สามารถดูดซับน้ำหรือไอน้ำในสารที่ต้องการทำให้ บริสุทธิ์หรือสารที่ต้องการแยก และน้ำในซีโอไลต์จะระเหยออกเมื่อมีการให้ความร้อน นอกจากนี้ ซีโอไลต์ยังใช้ในการดูดซับสารอื่น เช่น แก๊สไอโอดีน ตะกั่ว หรือแอมโมเนีย ซึ่งเกิดปฏิกิริยาแบบ ย้อนกลับเช่นเดียวกับการดูดซับน้ำ และซีโอไลต์บางชนิดจะไม่ทำปฏิกิริยากับน้ำแต่ละดูดซับ เฉพาะโมเลกุลอินทรีย์เท่านั้น

2.8.4 ตัวเร่งปฏิกิริยาและตัวแยกโมเลกุล (catalysis and molecular sieve)

การใช้ชีโอไลต์เป็นตัวเร่งปฏิกิริยา จัดว่าเป็นการเพิ่มมูลค่าให้กับชีโอไลต์อย่างมาก โดยเฉพาะในอุตสาหกรรมปิโตรเคมี ในแต่ละปีประเทศไทยต้องนำเข้าตัวเร่งปฏิกิริยาเพื่อใช้ใน อุตสาหกรรมเคมีกว่าพันล้านบาท และมากกว่าร้อยละ 80 ของตัวเร่งปฏิกิริยาคือซีโอไลต์ ด้วยเหตุ ที่ข้อดีของชีโอไลต์มีสถานะเป็นของแข็งที่มีจุดหลอมเหลวสูงทำให้คงทนกว่า และนำกลับมาใช้ ใหม่ได้ง่ายกว่าสารเร่งปฏิกิริยาที่อยู่ในสถานะของเหลวหรือแก๊ส ทำให้ไม่สิ้นเปลืองพลังงานและ เป็นมิตรกับสิ่งแวดล้อม สมบัติการเป็นตัวแยกโมเลกุล (molecular sieve) ของชีโอไลต์ขึ้นอยู่กับ ขนาดของช่องว่างที่อยู่ระหว่างโครงสร้างหน่วยย่อยและสามารถควบคุมขนาดของช่องนี้ โดย ควบคุมอุณหภูมิและไอออนประจุบวกที่อยู่ภายในหรืออยู่รอบๆ ช่องว่าง ทำให้บังช่องว่างนี้ไว้ บางส่วน และนักเคมีสามารถเพิ่มหรือลดขนาดช่องว่างนี้ได้ โดยการปรับปัจจัยสองประการ ดังกล่าว จึงมีการสังเคราะห์สารที่มีโครงสร้างคล้ายชีโอไลต์ และใช้สารกลุ่มนี้เป็นตัวแยกโมเลกุล และใช้สารดังกล่าวเป็นตัวเร่งปฏิกิริยาในอุตสาหกรรมปิโตรเคมี ซึ่งนอกจากจะเป็นการประหยัด พลังงานและลดขั้นตอนเนื่องจากการเกิดปฏิกิริยาเคมีเร็วขึ้นแล้วยังสามารถสร้างมูลค่าของสารตั้ง ต้นให้ออกมาเฉพาะผลิตภัณฑ์ที่ต้องการ เช่น เพิ่มค่าออกเทนของน้ำมัน โดยกำจัดองค์ประกอบที่ เป็นสารตรงหรือแยกสารไฮโดรคาร์บอนชนิดอิ่มตัวออกจากชนิดไม่อิ่มตัว เป็นต้น 2.8.5 ประโยชน์อื่นๆ

การใช้งานซีโอไลต์ในประโยชน์ด้านอื่นๆ เช่น ใช้ในการเกษตร การเลี้ยงสัตว์ และการ ก่อสร้างในเชิงการเกษตรนั้น เป็นวิธีการที่เรียกว่า ซีโอโพนิก (Zeoponic) หมายถึง การนำซีโอไลต์ ธรรมชาติมาปรับเปลี่ยนองค์ประกอบบริเวณที่มีการแลกเปลี่ยนประจุ ใส่ประจุบวกที่เป็น สารอาหารของพืชลงไปแทน ทำให้โมเลกุลของซีโอไลต์กลายเป็นแหล่งอาหารของพืช ซึ่ง สารอาหารนั้นๆ จะค่อยๆ ถูกปลดปล่อยออกมาทำให้สารอาหารไม่ถูกชะล้างไปโดยง่าย เป็นการ ประหยัดสารอาหารได้

2.9 กระบวนการผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์

กระบวนการผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์ เกิดจากการทำปฏิกิริยาระหว่าง ก๊าซไฮโดรเจนและก๊าซออกซิเจน โดยมีสาร Working Solution (EQ) เป็นสารที่ทำให้เกิดการ รวมตัวของก๊าซทั้งสองชนิด ได้เป็นสารประกอบไฮโดรเจนเปอร์ออกไซด์ โดยมีปฏิกิริยาที่เกี่ยวข้อง กับกระบวนการผลิตดังภาพ 2.23

ภาพที่ 2.23 แสดงปฏิกิริยาการผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์ (http://en.wikipedia.org/wiki/Hydrogen_peroxide., 2553 : ออนไลน์)

ในขณะที่สาร Working Solution (EQ) เมื่อใช้ครบ 1 รอบการทำงานจะเกิดความขึ้นและมี สิ่งสกปรกปนเปื้อน จึงมีการใช้สารซิลิกา-อะลูมินาในการดูดความขึ้นและสิ่งสกปรกออก สำหรับ สาร Working Solution (EQ) ที่ใช้เป็นสารประเภทแอนทราควิโนน ซึ่งมีสีน้ำตาลแดง ส่งผลให้กาก ซิลิกา-อะลูมินาที่ใช้แล้วมีสีน้ำตาลแดงเนื่องจากการปนเปื้อนสารแอนทราควิโนน ซึ่งใน กระบวนการนี้จะก่อให้เกิดของเสียประเภทสารประกอบซิลิกา-อะลูมินา โดยประมาณการได้ว่าจะ เกิดของเสียซิลิกา-อะลูมินาที่ใช้แล้วเป็นจำนวนมากกว่า 100 ตันต่อปี ดังนั้นนอกจากจะทำให้เกิด ของเสียซิลิกา-อะลูมินาที่ใช้แล้วทางโรงงานอุตสาหกรรมที่ผลิตสารประกอบไฮโดรเจนเปอร์ ออกไซด์ยังต้องรับภาระค่าใช้จ่ายในการกำจัดกากของเสียซิลิกา – อะลูมินาที่ใช้แล้วอีกด้วย

ส่วนประกอบ	ปริมาณ	
	มิลลิกรัม/กรัม	เปอร์เซ็นต์
อะลูมิเนียมออกไซด์	550-630	55.0-63.0
ซิลิกอนออกไซด์	120-160	12.0-16.0
เกลือละลายน้ำ	70-130	7.0-13.0
ความชื้น	100	10
เอทิลเททระไฮโดรแอนทราควิโนน	23.08	2.31
เอทิลแอนทราควิโนน	9.85	0.99
เอทิลไดไฮดรอกซิลแอนทราควิโนน	6.61	0.66

ตารางที่ 2.4 ส่วนประกอบของซิลิกา-อะลูมินาที่ใช้แล้ว (สาโรจน์ ปัชโชติพงษ์, 2545)

ภาพที่ 2.23 การผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์ (H₂O₂) (ไลทิพย์ อภิธรรมวิริยะ, 2542)

2.9.1 สารแอนทราควินโนน (Anthraquinone) (สาโรจน์ ปัชโชติพงษ์, 2545)

สารแอนทราควินโนนที่ใช้เป็น Working Solution (EQ) ในกระบวกการผลิตสารประกอบ ไฮโดรเจนเปอร์ออกไซด์มีสูตรทางเคมีทั่วไปคือ C₁₄H₈O₂ มวลโมเลกุลเท่ากับ 208.21 กรัมต่อโมล มีลักษณะเป็นผลึกรูปเข็ม มีจุดหลอมเหลวที่ 286 องศาเซลเซียส จุดหลอมเหลวที่ 379.8 องศา เซลเซียส ถูกใช้ในการอุตสาหกรรมผลิตสีย้อมและเม็ดสี ใช้เป็นสารเพิ่ม (additive) ในการผลิต กระดาษ ใช้เป็นสารเร่งปฏิกิริยาในการผลิตน้ำมันพืช ใช้เป็นตัวเร่งในการเคลือบนิกเกิลด้วยไฟฟ้า และใช้เป็นสารไล่นก โดยมีสูตรโครงสร้างดังภาพที่ 2.24

ภาพที่ 2.24 สูตรโครงสร้างของสารแอนทราควินโนน (http://en.wikipedia.org/wiki/Anthraquinone., 2553 : ออนไลน์)

2.9.2 ความเป็นพิษของสารแอนทราควินโนน (สาโรจน์ ปัชโชติพงษ์, 2545) การศึกษาความเป็นพิษของแอนทราควินโนน โดยการนำสารแอนทราควินโนนให้หนูและ ลูกหนูทั้งเพศผู้และเพศเมียกินในปริมาณและระยะเวลาต่างๆ ซึ่งแบ่งออกเป็นการศึกษาใน ระยะเวลา 14 สัปดาห์ ใช้หนูและลูกหนูทั้งเพศผู้และเพศเมียอย่างละ 50 ตัว และ 60 ตัว แล้ว ศึกษาการรอดชีวิต น้ำหนักตัว และการกินอาหาร พบว่า หนูในชุดควบคุมและชุดทดลองให้ผลการ ทดลองที่คล้ายคลึงกัน หรืออาจกล่าวสรุปได้ว่าสารแอนทราควินโนนไม่มีความเป็นพิษ

2.10 งานวิจัยที่เกี่ยวข้อง

2.10.1 งานวิจัยการนำกากซิลิกา-อะลูมินาไปใช้ประโยชน์

สาโรจน์ ปัชโซติพงษ์ (2545) ศึกษาการนำกากซิลิกา-อะลูมินาที่ใช้แล้วมาเป็นวัตถุดิบ ผลิตเซรามิกโดยใช้แทนอะลูมินาบริสุทธิ์ซึ่งทำหน้าที่ร่วมกับดินดำและหินพันม้า ผลปรากฏว่า เซรามิกที่ผลิตได้จากกากซิลิกา-อะลูมินาที่ใช้แล้วมีคุณสมบัติดีที่สุดที่อัตราส่วนของกากซิลิกา-อะลูมินาที่ใช้แล้ว 40 เปอร์เซ็นต์ โดยใช้ขนาด 100 เมช ณ อุณหภูมิที่ใช้ในการเผา 1100 องศาเซลเซียส และอัตราการเพิ่มอุณหภูมิในการเผาเป็น 3 องศาเซลเซียสต่อนาที โดยมีค่า เปอร์เซ็นต์การหดตัวหลังเผาเท่ากับ 11.42 เปอร์เซ็นต์ ค่าความหนาแน่นหลังเผาเท่ากับ 2 กรัมต่อ ลูกบาศก์เซนติเมตร ค่าการดูดซึมของน้ำเท่ากับ 11 เปอร์เซ็นต์ และค่ากำลังรับแรงดัดหลังเผา เท่ากับ 247.34 กิโลกรัมต่อตารางเซนติเมตร ผลการศึกษาประสิทธิภาพในการลดการซะละลาย พบว่าค่าที่ได้ผ่านเกณฑ์มาตรฐาน ผลการตรวจสอบเฟสที่เกิดขึ้นโดยเครื่องเอ็กเรย์ ดิฟแฟรกโตมิเตอร์ พบว่าแท่งทดสอบเซรามิกมีความแข็งสูงเนื่องจากพบเฟสของคอรันดัม แต่ไม่ พบเฟสของมัลไลท์ ซึ่งเป็นเฟสที่ให้ความแข็งแรงสูง นอกจากนี้ ผลการประมาณการค่าใช้จ่าย เบื้องต้น พบว่าในการผลิตเซรามิกจากซิลิกา-อะลูมินาที่ใช้แล้ว มีค่าใช้จ่าย 94 บาทต่อกิโลกรัม ของเซรามิกที่ผลิตได้

หฤษฏ์ ธิตินันท์ (2546) ศึกษาการนำกากซิลิกา-อะลูมินาที่ใช้แล้วมาใช้ประโยชน์เป็นวัสดุ แทนที่ในซีเมนต์ปอร์ตแลนด์เพื่อผลิตคอนกรีตบล็อกประสานปูพื้น โดยทำการทดลองศึกษาปัจจัย ต่างๆ ได้ผลการทดลองดังนี้ ความสามารถทำงานได้ของคอนกรีตสดลดลงตามสัดส่วนการเพิ่มขึ้น ของวัสดุผสมและอัตราส่วนกากซิลิกา-อะลูมินาที่ใช้แล้วต่อวัสดุประสานโดยสัดส่วนซีเมนต์ต่อ ทรายต่อหินเกล็ดที่เหมาะสมต่อการผลิตคอนกรีตบล็อกประสานปูพื้น คือ 1:1.2:1.8 และการบด กากซิลิกา-อะลูมินาที่ใช้แล้วให้มีขนาดอนุภาคเล็กกว่า 150 ไมครอน โดยไม่จำเป็นต้องเผาจะทำ ให้ได้วัสดุที่มีความเหมาะสมที่สุด เนื่องจากสามารถแทนที่ซีเมนต์ได้ในปริมาณมากขึ้น โดยที่ สภาวะเหมาะสมต่อการผลิตสามารถแทนที่ซีเมนต์ด้วยกากซิลิกา-อะลูมินาที่ใช้แล้วขนาดอนุภาค เล็กกว่า 150 ไมครอนได้ในสัดส่วน 0.15 เท่าของวัสดุประสาน ทำให้คอนกรีตบล็อกประสานปูพื้น มีสมบัติทางกายภาพที่ระยะเวลาบ่ม 28 วัน ผ่านเกณฑ์มาตรฐานผลิตภัณฑ์คอนกรีตบล็อก ประสานปูพื้นของกระทรวงอุตสาหกรรม โดยคอนกรีตบล็อกปูพื้นที่กล่าวข้างต้นมีราคา 2.74 บาท ต่อก้อนและมีน้ำหนัก 4.40 กิโลกรัม

2.10.2 งานวิจัยการสังเคราะห์ซีโอไลต์

Kolay และคณะ (2001) ศึกษาการสังเคราะห์ซีโอไลต์เอจากขี้เถ้าที่มาจากการเผาตะกอน จากบ่อบำบัดน้ำเสีย โดยการทดลองนี้ได้นำขี้เถ้ามาสังเคราะห์โดยไปทำปฏิกิริยากับสารละลาย โซเดียมไฮดรอกไซด์ ความเข้มข้น 3.5 นอร์มัล พบว่า ขี้เถ้าผ่านการทำปฏิกิริยากับสารละลาย โซเดียมไฮดรอกไซด์ ความเข้มข้น 3.5 นอร์มัล ที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง มีโครงสร้างเป็นมัลไลต์และควอตซ์ ซึ่งเป็นโครงสร้างเดียวกับขี้เถ้าจากการเผา แสดงว่าที่สภาวะนี้ ไม่เกิดโครงสร้างของซีโอไลต์ แต่เมื่อเพิ่มเวลาเป็น 24, 36 และ 48 ชั่วโมง พบว่าเกิดโครงสร้างของ ซีโอไลต์พี โดยเกิดโครงสร้างซีโอไลต์พีสูงที่สุดเมื่อสังเคราะห์เป็นเวลา 24 ชั่วโมง

และ Edoardo (2003) ศึกษาพบว่าซีโอไลต์เอบริสทธิ์สามารถเกิดขึ้นได้ใน Lucio กระบวนการสังเคราะห์ด้วยเวลาแค่ 1 ชั่วโมง โดยการให้ความร้อนด้วยคลื่นไมโครเวฟที่ความดัน บรรยากาศ ข้อดีของการสังเคราะห์โดยวิธีไมโครเวฟคือการลดปริมาณน้ำในซีโอไลต์ที่สังเคราะห์ได้ อีกทั้งลดเวลาในการสังเคราะห์ ซึ่งเป็นข้อดีในด้านของพลังงานที่ใช้ในการสังเคราะห์ลดลง แต่ อย่างไรก็ตามการสังเคราะห์ด้วยวิธีไมโครเวฟมีข้อจำกัดจากการใช้เวลาในการให้ความร้อนที่สั้น ้ส่งผลให้ผลึกที่ได้ไม่สมบูรณ์อีกทั้งเกิดเฟสปนเปื้อน เช่น เฟสของไฮดรอกซีโซดาไลต์ เนื่องจากเวลา ที่สั้นเกินไปจะทำให้ขั้นตอนการเกิดผลึกตั้งต้นเกิดไม่สมบูรณ์ สำหรับในขั้นตอนการสังเคราะห์ พบว่า การให้ความร้อนด้วยคลื่นไมโครเวฟในขั้นตอนเดียวนั้นไม่เหมาะสม จึงพัฒนาการ ้สังเคราะห์เป็นสามขั้นตอน คือ ขั้นที่หนึ่งเป็นการละลายสารตั้งต้นทั้งหมดโดยพยายามให้เป็นเนื้อ เดียวกันมากที่สุดเพื่อพร้อมที่จะเกิดเป็นผลึกตั้งต้นในขั้นต่อไป เพราะฉะนั้นในขั้นตอนนี้จึงใช้คลื่น ไมโครเวฟที่มากเกินพอเพื่อให้เกิดการสั่นของโมเลกุลจนเกิดความร้อนเพียงพอที่จะละลายและ ผสมสารตั้งต้นจนเป็นเนื้อเดียวกัน ในขั้นตอนนี้ถือเป็นขั้นตอนสำคัญในการสังเคราะห์ซีโอไลต์ นอกจากนี้ในงานวิจัยได้ทดลองเปรียบเทียบประสิทธิภาพการสังเคราะห์ด้วยรีแอคเตอร์รูปทรง ้ต่างกันพบว่ารีแอคเตอร์ทรงกระบอกสามารถสังเคราะห์ได้ดีกว่ารีแอคเตอร์ทรงกลม ในขั้นที่สอง และขั้นที่สามเป็นการให้ความร้อนเพื่อให้เจลที่ได้จากขั้นที่หนึ่งเกิดผลึกตั้งต้นและสามารถ ้เหนี่ยวนำให้ผลึกโตขึ้นเป็นซีโอไลต์ จากการทดลองพบว่าในขั้นที่หนึ่งการใช้กำลังไมโครเวฟเท่ากับ 360 วัตต์ เป็นเวลา 50 นาที และในขั้นที่สองใช้กำลังไมโครเวฟเท่ากับ 900 วัตต์ เป็นเวลา 10 นาที จะให้ผลดีที่สุด ได้ค่าความเป็นผลึก 99 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการสังเคราะห์แบบ ไฮโดรเทอร์มัลที่อุณหภูมิ 100 องศาเซลเซียส เมื่อวิเคราะห์ด้วยกล้องจุลทรรศน์แบบส่องกราด พบว่า ผลึกที่ได้มีขนาด 1-4 ไมโครเมตร ซึ่งไม่ต่างกับการสังเคราะห์แบบไฮโดรเทอร์มัลแต่การ สังเคราะห์แบบไมโครเวฟพบผลึกนาด 0.1 ไมโครเมตร แสดงว่า ในการสังเคราะห์ได้ผ่านการเกิด ้ผลึกตั้งต้นจริง แต่ผลึกเหล่านี้ไม่สามารถเหนี่ยวนำให้โตได้ จึงมีขนาดเล็กกว่าผลึกของโครงสร้าง ลื่นที่เกิดขึ้น

Fernandes และ Malachinh (2005) ศึกษาการสังเคราะห์ซีโอไลต์เอกซ์และซีโอไลต์เอ โดยนำเปลือกหอยมาปรับปรุงคุณภาพเบื้องต้น โดยการบดคัดขนาดเล็กกว่า 0.044 มิลลิเมตร จากนั้นนำมาย่อยด้วยกรดเพื่อกำจัดโลหะอื่นๆ เช่น เหล็ก และเผาที่อุณหภูมิ 800 องศาเซลเซียส เพื่อกำจัดสารอินทรีย์ จากนั้นชั่งน้ำหนักมา 2 กรัม ผสมกับโซเดียมอะลูมิเนต 0.95 กรัม และ สารละลายโซเดียมไฮดรอกไซด์ 4 กรัม ใส่ออโตเครฟ อบที่อุณหภูมิ 100 องศาเซลเซียส ทำการ แปรค่าเวลาการทำปฏิกิริยาเป็นเวลา 6 ถึง 12 ชั่วโมง จากนั้นทิ้งให้เย็น ล้างด้วยน้ำดีไอออไนเซชัน จนค่าความเป็นกรด-เบสเป็นกลาง สภาวะที่เหมาะสมคือ 12 ชั่วโมง ทำการวิเคราะห์เปอร์เซ็นต์ ผลึกที่เกิดขึ้นพบว่าเกิดซีโอไลต์เอ 20.9 เปอร์เซ็นต์ และพบซีโอไลต์ชนิดเอกซ์ 71.9 เปอร์เซ็นต์ Takaaki และคณะ (2006) ศึกษาการสังเคราะห์ขี้เถ้าตะกอนกระดาษจากการรีไซเคิลเป็น ซีโอไลต์ โดยทำปฏิกิริยากับสารละลายโซเดียมไฮดรอกไซด์ ความเข้มข้น 3 โมลาร์ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง โดยขี้เถ้าตะกอนกระดาษนี้มีปริมาณของซิลิกาอยู่ในปริมาณที่ น้อย ในงานวิจัยนี้จึงเติมดินเบาเพื่อเพิ่มปริมาณของซิลิกาให้เหมาะสมแก่การสังเคราะห์ซีโอไลต์ ซึ่งในการผสมดินเบานั้นจะทำการละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ ความเข้มข้น 3 โมลาร์ แล้วทำการกรองกากที่ไม่ละลายทิ้งก่อนจากนั้นจึงนำมาทำปฏิกิริยากับตะกอนกระดาษ จากการทดลองพบว่า การไม่เติมดินเบาเมื่อวิเคราะห์ผลิตภัณฑ์ที่ได้พบว่าเป็นโครงสร้างของ ไฮดรอกซีโซดาไลต์ แต่เมื่อเติมดินเบาในปริมาณ 20 กรัมต่อลิตร พบว่าสามารถเกิดซีโอไลต์พีได้ แต่ก็ยังเกิดเฟสอื่นปนเปื้อน

Ivan และคณะ (2007) ศึกษาการสังเคราะห์ซีโอไลต์เอกซ์จากดินขาวที่ผ่านการกำจัด อะลูมิเนียมด้วยกรดซัลฟีวริกเพื่อปรับให้อัตราส่วนซิลิกาต่ออะลูมินามีค่าสูงขึ้น โดยตัวแปรที่ ทำการศึกษาได้แก่ อุณหภูมิ เวลา ความเร็วรอบในการกวน อัตราส่วนซิลิกาต่ออะลูมินา และ อัตราส่วนโซเดียมออกไซด์ต่อซิลิกา พบว่าภาวะที่เหมาะสมในขั้นตอนของการเกิดเจล (GeI formation Step) มีความเร็วที่ใช้ในการกวนเท่ากับ 450 รอบต่อนาที ที่อุณหภูมิเท่ากับ 60 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง ในขั้นตอนปล่อยให้ตกผลึก (Aging Step) สภาวะที่ เหมาะสมคือ ที่อุณหภูมิเท่ากับ 60 องศาเซลเซียส เป็นเวลา 1 วัน และในขั้นตอนของการเกิดผลึก (Crystallization Step) ภาวะที่เหมาะสมคืออุณหภูมิเท่ากับ 80 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง โดยที่อัตราส่วนของซิลิกาต่ออะลูมินาเท่ากับ 3.2 และอัตราส่วนโซเดียมออกไซด์ต่อซิลิกา เท่ากับ 1 เป็นอัตราส่วนที่เหมาะสมที่สุดในการสังเคราะห์ซีโอไลต์เอกซ์

Anuwattana และคณะ (2008) ศึกษาการสังเคราะห์ซีโอไลต์แซดเอสเอ็มห้าจากกากของ เสียจากการถลุงเหล็กด้วยวิธีไฮโดรเทอร์มัลและไมโครเวฟ โดยสภาวะที่เหมาะสมจากการ สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัล คือ ที่อุณหภูมิ 150 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ในส่วน การสังเคราะห์แบบไมโครเวฟนั้นจำเป็นต้องทำให้เวลาในการผสมก่อนทำการสังเคราะห์ที่ 80 องศาเซลเซียสก่อน เป็นเวลา 30 นาที จากนั้นให้ความร้อนด้วยเครื่องไมโครเวฟที่อุณหภูมิ 150 องศาเซลเซียส พบว่าเกิดโครงสร้างของซีโอไลต์แซดเอสเอ็มห้าหลังจากทำปฏิกิริยาไปแล้วอย่างต่ำ 4 ชั่วโมง อย่างไรก็ตามขนาดผลึกที่ได้จากทั้งสองวิธีต่างกันโดยวิธีไฮโดรเทอร์มัลสามารถ สังเคราะห์ได้ผลึกที่มีขนาดประมาณ 3 ไมโครเมตร ซึ่งโตกว่าการสังเคราะห์แบบไมโครเวฟที่มี ขนาดประมาณ 0.3 ไมโครเมตร

Anuwattana และ Khummongkol (2009) ศึกษาการสังเคราะห์ซีโอไลต์เอจากของเสีย อุตสาหกรรม 2 แหล่ง ได้แก่ ตะกรันเตาหลอมจากโรงงานหล่อเหล็กซึ่งมีปริมาณซิลิกาสูง และกาก ของเสียจากโรงงานเคลือบอะลูมิเนียมซึ่งมีปริมาณอะลูมินาสูง นำมาปรับปรุงคุณสมบัติเบื้องต้น โดยการแช่กรดและเผาที่อุณหภูมิ 700 องศาเซลเซียส เพื่อกำจัดโลหะปนเปื้อนอื่นๆ และ สารอินทรีย์ตามลำดับ จากนั้นนำมาสังเคราะห์เจลโดยผสมกับสารละลายโซเดียมไฮดรอกไซด์ เข้มข้น 3 โมล ทำการศึกษาโดยแปรค่าสัดส่วนความเข้มข้นต่อโมลาร์ของ ซิลิกาออกไซด์ต่อน้ำ เป็น 2.36 4.17 5.07 5.46 7.88 และ 35.47 ที่อุณหภูมิห้อง เป็นเวลา 10 นาที จากนั้นศึกษา สภาวะที่เหมาะสมในการสังเคราะห์ ซีโอไลต์เอโดยนำมาเผาที่ 90 องศาเซลเซียส ทำการแปรค่า เวลาในการทำปฏิกิริยาเป็น 1 ถึง 9 ชั่วโมง เมื่อครบตามเวลานำมาตั้งให้อุณหภูมิลดลงจนถึง อุณหภูมิห้องแล้วล้างด้วยน้ำดีไอออไนเซชันจนเป็นเบสอ่อนๆ ค่าความเป็นกรด-เบสประมาณ 8 จึง นำไปอบที่อุณหภูมิ 105 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ผลการทดลองปรากฏว่า สภาวะที่ เหมาะสมในการสังเคราะห์เจลโดยแปรค่าสัดส่วนความเข้มข้นต่อโมลของซิลิกาออกไซด์ต่อน้ำเป็น 4.17 และสภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอ โดยเวลาในการทำปฏิกิริยาเป็นเวลา 3 ชั่วโมง

Hiroaki และ Sridhar (2009) ศึกษาการสังเคราะห์ซีโอไลต์เอ หรือซีโอไลต์เอกซ์ โดย กระบวนการไฮโดรเทอร์มัล โดยนำแกลบข้าวที่ผ่านกระบวนการคาร์โบไนซ์ ที่อุณหภูมิเท่ากับ 600 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง จากนั้นนำมาสังเคราะห์ซีโอไลต์แต่ละซนิดโดยปรับอัตราส่วน ต่อโมล สำหรับซีโอไลต์เออัตราส่วนเป็นดังนี้ สัดส่วนโมลของซิลิกาออกไซด์ต่อโมลของอะลูมินา ออกไซด์ เท่ากับ 2 สัดส่วนโมลของน้ำต่อโมลของโซเดียมออกไซด์ เท่ากับ 40 และสัดส่วนโมลของ โซเดียมออกไซด์ต่อโมลของซิลิกาออกไซด์ เท่ากับ 2.7 สำหรับซีโอไลต์เอกซ์ อัตราส่วนเป็นดังนี้ สัดส่วนโมลของซิลิกาออกไซด์ เท่ากับ 2.7 สำหรับซีโอไลต์เอกซ์ อัตราส่วนเป็นดังนี้ สัดส่วนโมลของซิลิกาออกไซด์ เท่ากับ 37 และสัดส่วนโมลของโซเดียมออกไซด์ต่อโมลของซิลิกา ออกไซด์ เท่ากับ 23.3 นำแกลบข้าว สารละลายโซเดียมไฮดรอกไซด์ โซเดียมอะลูมิเนตและน้ำ ดีไอออไนเซชันมาผสมตามอัตราส่วนให้ความร้อนที่อุณหภูมิ 90 องศาเซลเซียส ทำการแปรค่า เวลาการทำปฏิกิริยาเป็นเวลา 2 ถึง 6 ชั่วโมง สำหรับซีโอไลต์เอเป็นเวลา 3 ชั่วโมง และสำหรับ ซีโอไลต์ชนิดเอกซ์เป็นเวลา 6 ชั่วโมง เมื่อนำซีโอไลต์ทั้งสองชนิดมาทดสอบปรากฏว่าซีโอไลต์เอวัด ค่าความสามารถการแลกเปลี่ยนประจุบวก เท่ากับ 317 มิลลิอิคิวาเลนท์ต่อ 100 กรัม พื้นที่ผิว เท่ากับ 171 ตารางเมตรต่อกรัม ซีโอไลต์เอกซ์วัดค่าความสามารถการแลกเปลี่ยนประจุบวก เท่ากับ 506 มิลลิอิคิวาเลนท์ต่อ 100 กรัม พื้นที่ผิวเก่ากับ 676 ตารางเมตรต่อกรัม

มนธวัล บุญส่งประเสริฐ (2550) ศึกษาการสังเคราะห์ซีโอไลต์เอกซ์ จากดินขาวธรรมชาติ โดยวิธีไฮโดรเทอร์มัล (Hydrothermal) ซึ่งได้ทำการปรับปรุงคุณภาพโดยบดและคัดขนาดด้วย ตะแกรงขนาด 325 เมช และเผาที่อุณหภูมิ 700 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง จากนั้นรีฟลักซ์ กับสารละลายกรดไฮโดรคลอริกเข้มข้น 1 โมลาร์ ที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง และหลอมเหลวดินขาวกับโซเดียมไฮดรอกไซด์ที่อุณหภูมิ 550 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง เมื่อปรับสภาพแล้ว จากนั้นทำการศึกษาหาสภาวะที่เหมาะสมได้ดังนี้ อุณหภูมิ ไฮโดรเทอร์มัล คือ 90 องศาเซลเซียส เวลาที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอกซ์ 48 ชั่วโมง อัตราส่วนซิลิกาต่ออะลูมินาที่ดีที่สุด คือ 3.0 และอัตราส่วนโซเดียมไฮดรอกไซด์ต่ออะลูมินาที่ เหมาะสม คือ 12 ซีโอไลต์เอกซ์ที่เกิดขึ้นมีร้อยละผลได้เท่ากับ 88.4 มีพื้นที่ผิวเท่ากับ 395.30 และซี โอไลต์เอกซ์ใช้ในอุตสาหกรรมมีพื้นที่ผิวเท่ากับ 473.37 และจากการทดลองการดูดซับ คลอไรด์ ในเฮกเซนมีร้อยละการกำจัดเท่ากับ 30.24 และมีความสามารถในการดูดซับเท่ากับ 293.3 มิลลิกรัมต่อกรัมของตัวดูดซับ

บทที่ 3

แผนการทดลองและการดำเนินการวิจัย

การวิจัยนี้ศึกษาผลของตัวแปรต่างๆ ที่มีผลต่อการสังเคราะห์ซีโอไลต์เอจากกากซิลิกา – อะลูมินาที่ใช้แล้วด้วยวิธีการไฮโดรเทอร์มัล วิธีไมโครเวฟ และวิธีแบบผสม เพื่อหาสภาวะที่ เหมาะสมในการสังเคราะห์ซีโอไลต์เอ โดยเปรียบเทียบลักษณะสมบัติของซีโอไลต์เอที่สังเคราะห์ได้ และปริมาณพลังงานที่ใช้ในแต่ละวิธี โดยขั้นตอนการวิจัยแสดงดังภาพที่ 3.1

ภาพที่ 3.1 ขั้นตอนการวิจัย

3.1 วัตถุดิบ

กากซิลิกา-อะลูมินาที่ใช้แล้วจากกระบวนการดูดซับสิ่งสกปรกและความชื้นจากไฮโดรเจน เปอร์ออกไซด์ในกระบวนการผลิตไฮโดรเจนเปอร์ออกไซด์จากโรงงานอุตสาหกรรม

3.2 สารเคมีที่ใช้ในการทดลอง

- สารวอเตอร์กลาส (water glass) จากโรงงานผลิตวอเตอร์กลาส (มีรายละเอียด การหาองค์ประกอบทางเคมีของวอเตอร์กลาสโดยการไทเทรต ดังแสดงใน ภาคผนวก ก)
- 2. โซเดียมไฮดรอกไซด์ (NaOH)
- 3. น้ำดีไอออไนเซชัน

3.3 เครื่องมือและอุปกรณ์ที่ใช้ในงานวิจัย

3.3.1 เครื่องมือที่ใช้ในการวิจัย

- 1. ชุดออโตเครฟ ภายนอกทำจากเหล็กไร้สนิมภายในทำจากเทฟลอน (ภาพที่ 3.2)
- 2. เทฟลอน (ภาพที่ 3.3)
- ชุดเครื่องแก้วรีฟลักซ์สำหรับเครื่องไมโครเวฟ (ภาพที่ 3.4)
- 4. ตู้อบลมร้อน (Hot Air Oven) (ภาพที่ 3.5)
- 5. เตาเผาไฟฟ้า (muffle furnace) (ภาพที่ 3.6)
- 6. เตาไมโครเวฟ
- 7. ตะแกรงร่อน 200 เมช
- 8. ชุดเครื่องกวนแม่เหล็ก (stirring bar)
- 9. เครื่องกวนสารแบบให้ความร้อน (Hot Plate stirrer)
- 10. ชุดกรองสุญญากาศ
- 11. เครื่องชั่งน้ำหนักความละเอียด 4 ตำแหน่ง
- 12. เครื่องวัดความเป็นกรดด่าง (pH-meter)
- 13. เครื่องบดสาร (tube mull)
- 14. เทอร์โมมิเตอร์
- 15. กระดาษกรองวัตแมน เบอร์ 1

ภาพที่ 3.2 ชุดประกอบเหล็กไร้สนิม

ภาพที่ 3.3 เทฟลอน

ภาพที่ 3.4 ชุดเครื่องแก้วรีฟลักซ์ต่อกับเครื่องไมโครเวฟ

ภาพที่ 3.5 ตู้อบลมร้อน (Hot Air Oven)

ภาพที่ 3.6 เตาเผาไฟฟ้า (muffle furnace)

3.3.2 เครื่องมือที่ใช้ในการวิเคราะห์

1. เครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD)

ในงานวิจัยนี้ใช้เครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ยี่ห้อ Rigaku D/MAX-220 Ultima⁺ โดยเทคนิคเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) เป็นเทคนิคที่อาศัยหลักการของการที่เมื่อรังสีเอกซ์พลังงานสูงที่ทราบความยาวคลื่นไป กระทบชิ้นงานจะทำให้อิเล็กตรอนที่อยู่ในวงของอะตอมอนุภาคที่เป็นเป้าหลุดออกมา ทำให้เกิด ออร์บิทัลว่างขึ้น อะตอมจะมีเสถียรภาพต่ำลง อิเล็กตรอนในชั้นที่มีพลังงานสูงกว่าก็จะเข้ามา แทนที่ออร์บิทัลที่ว่างอยู่ การเข้ามาแทนที่จะเกิดการคายพลังงานส่วนหนึ่งออกมาในรูปความร้อน และรังสีเอกซ์ ซึ่งเกิดการเลี้ยวเบนของรังสีที่มุมต่างๆกัน โดยมีตัวดีเทคเตอร์เป็นตัวรับข้อมูล เนื่องจากสารประกอบและธาตุที่มีส่วนผสมหรือโครงสร้างต่างกันจะทำให้เกิดการเลี้ยวเบนเป็นมุม ที่มีองศาต่างกัน ข้อมูลที่ได้รับสามารถบ่งบอกชนิดของสารประกอบที่มีอยู่ในสารตัวอย่างและ สามารถนำมาใช้ศึกษารายละเอียดเกี่ยวกับโครงสร้างของผลึกของสารตัวอย่างนั้นๆ นอกจากนี้ ข้อมูลที่ได้ยังสามารถนำมาหาปริมาณคร่าวๆ ของปริมาณความเป็นผลึกได้

2. เครื่องเอกซ์เวย์ฟลูออเรสเซนซ์ (X-ray fluorescence : XRF)

เทคนิคเอกซ์เรย์ฟลูออเรสเซนซ์ (X-ray fluorescence : XRF) เป็นเทคนิคที่อาศัยหลักการ ของการที่เมื่อรังสีเอกซ์ที่มีพลังงานสูงไปกระทบชิ้นงาน ทำให้ชิ้นงานเกิดการปล่อยโฟตอนออกมา เนื่องจากโฟตอนที่ถูกปล่อยออกมาจากธาตุต่างชนิดในชิ้นงานจะมีความยาวคลื่นและพลังงานที่ ต่างกัน และเนื่องจากปริมาณของโฟตอน (photon) ที่เปล่งออกมาขึ้นอยู่กับปริมาณของธาตุนั้นใน สารนั้นๆ ข้อมูลนี้จึงสามารถนำมาวิเคราะห์หาปริมาณของธาตุและธาตุองค์ประกอบในสาร ตัวอย่างได้

3. กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (scanning electron microscope : SEM)

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (scanning electron microscope : SEM) เป็น เครื่องมือที่ใช้วิเคราะห์ลักษณะสัณฐาน (morphology) และขนาดของตัวเร่งปฏิกิริยา เป็นเทคนิคที่ ใช้ในการช่วยให้เห็นลักษณะผิวหน้าของตัวเร่งปฏิกิริยาถึงระดับอะตอม ซึ่งใช้ลำอิเล็กตรอนแทน แสง โดยแหล่งกำเนิดอิเล็กตรอนแบบปืนอิเล็กตรอน (electron gun) ปล่อยอิเล็กตรอนปฐมภูมิโดย มีเลนส์รวมแสง (condenser lens) ทำหน้าที่บังคับให้ลำอิเล็กตรอนมีขนาดและความเข้ม เหมาะสมกับตัวอย่าง โดยมีขดลวดการส่องกราด (scanning coil) ทำหน้าที่บังคับให้อิเล็กตรอน เคลื่อนที่ในแนวนอนและแนวตั้งบนระนาบของตัวอย่าง โดยเลนส์ใกล้วัตถุเป็นเลนส์อิเล็กตรอนที่ ทำให้เกิดภาพชัดขึ้นและตรวจวัด (detector) ทำหน้าที่เปลี่ยนสัญญาณอิเล็กตรอนให้เป็น สัญญาณไฟฟ้าหรือสัญญาณภาพของข้อมูลเกี่ยวกับลักษณะผิวหน้าและลักษณะตัวอย่าง

3.4 การดำเนินงานวิจัย

3.4.1 ศึกษาลักษณะสมบัติของกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุงเบื้องต้น

โดยบดด้วยเครื่องบด(Tube Mill) ทำการร่อนผ่านตะแกรงขนาด 200 เมช จากนั้นนำไปเผาที่ อุณหภูมิ 700 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง นำกากที่ผ่านการปรับปรุงเบื้องต้นไปวิเคราะห์ด้วย เครื่องเอกซ์เรย์ฟลูออเรสเซนซ์ (X-ray fluorescence : XRF) และเครื่องเอกเรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังภาพที่ 3.7 โดยเปรียบเทียบกับกากที่ไม่ผ่านการปรับสภาพ

ภาพที่ 3.7 แผนผังแสดงการศึกษาลักษณะสมบัติของกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุง เบื้องต้น

3.4.2 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีต่างๆ

ในการสังเคราะห์ซีโอไลต์เอจะสังเคราะห์ด้วยกัน 3 วิธี ดังภาพที่ 3.8 คือ วิธีไฮโดรเทอร์มัล วิธีไมโครเวฟ และวิธีแบบผสม สารตั้งต้นในการสังเคราะห์ประกอบด้วย กากซิลิกา-อะลูมินาที่ผ่าน การปรับปรุงเบื้องต้น วอเตอร์กลาส โซเดียมไฮดรอกไซด์ และน้ำดีไอออไนเซชัน โดยควบคุม สัดส่วนโมลเป็น 3.165 Na₂O : Al₂O₃ : 1.926 SiO₂ : 128 H₂O ทำการคำนวณน้ำหนักที่ใช้ในการ สังเคราะห์ของสารตั้งต้นแต่ละชนิด ดังภาคผนวก ข ซึ่งจะใช้กากซิลิกา-อะลูมินาที่ผ่านการปรับปรุง เบื้องต้น 3.98 กรัม วอเตอร์กลาส 8.16 กรัม โซเดียมไฮดรอกไซด์ 10.67 กรัม และน้ำ 67.19 กรัม

ภาพที่ 3.8 แผนผังแสดงการสังเคราะห์ซีโอไลต์เอด้วยวิธีต่างๆ

3.4.2.1 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอร์มัล

วิธีไฮโดรเทอร์มัลเป็นการสังเคราะห์วิธีหนึ่งที่ใช้สังเคราะห์ซีโอไลต์อย่างแพร่หลาย งานวิจัยนี้ได้แบ่งขั้นตอนออกเป็น 3 ขั้นตอน ได้แก่ ขั้นตอนแรกเป็นการละลายกากซิลิกา-อะลูมินา ขั้นตอนที่สองเป็นการผสมสารตั้งต้น โดยในสองขั้นตอนแรกนี้จะใช้เครื่องกวนแบบให้ความร้อนใน การให้ความร้อนและปั้นกวนปฏิกิริยา ส่วนขั้นตอนสุดท้ายเป็นการสังเคราะห์โดยใช้ตู้อบลมร้อน เป็นแหล่งให้ความร้อนแก่ปฏิกิริยา ดังแสดงในภาพที่ 3.9

ภาพที่ 3.9 แผนผังแสดงการศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอร์มัล

3.4.2.1.1 ศึกษาสภาวะที่เหมาะสมในการละลายกากซิลิกา-อะลูมินาที่ผ่านการ ปรับปรุงเบื้องต้น

ในขั้นตอนการละลายกากซิลิกา-อะลูมินาเป็นการละลายกากซิลิกา-อะลูมินาด้วย สารละลายโซเดียมไฮดรอกไซด์ที่แบ่งออกมาสามในสี่ส่วน โดยแบ่งการทดลองย่อยออกเป็นสาม ส่วน ดังแสดงในภาพที่ 3.10

ภาพที่ 3.10 แผนผังแสดงสภาวะต่างๆ ในการละลายกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุง เบื้องต้น

1) ศึกษาผลของการสังเคราะห์ในขั้นตอนเดียว

ชั่งสารตั้งต้นตามกำหนด ผสมสารตั้งต้นทั้งหมดโดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อ นาที เป็นเวลา 30 นาที ด้วยเครื่องกวนแบบให้ความร้อน จากนั้นใส่ในออโตเครฟ นำเข้าตู้อบไฟฟ้า ทำการแปรค่าเวลาเป็น 0.5, 1, 2, 3, 6 และ 12 ชั่วโมง ที่อุณหภูมิ 90 องศาเซลเซียส เมื่อครบเวลา นำออกมาตั้งทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจนค่าความ เป็นกรด-ด่างประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.11

ภาพที่ 3.11 แผนผังแสดงการศึกษาผลของการสังเคราะห์ในขั้นตอนเดียว

2) ศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้อง

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 30 นาที ที่อุณหภูมิห้อง จากนั้นผสมกับ วอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือ ปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาทีเป็นเวลา 10 นาที ใส่ในออโตเครฟนำเข้าตู้อบไฟฟ้า ทำการแปรค่าเวลาเป็น 2, 3 และ 6 ชั่วโมง ที่อุณหภูมิ 90 องศาเซลเซียส เมื่อครบเวลานำออกมาตั้งทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับ อุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจนค่าความเป็นกรด-ด่างประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.12

ภาพที่ 3.12 แผนผังแสดงการศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้อง

3) ศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิ 60 องศาเซลเซียส

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส ทำการแปรค่าระหว่างใช้คลื่นอัลตร้าโซนิกละลายเป็นเวลา 30 นาที กับไม่ใช้คลื่นอัลตร้าโซนิก จากนั้นผสมกับวอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือ โดยปั่นกวนที่ ความเร็วรอบ 200 รอบต่อนาทีเป็นเวลา 10 นาที ใส่ในออโตเครฟน้าเข้าตู้อบไฟฟ้า อบที่ 90 องศาเซลเซียสเป็นเวลา 4 ชั่วโมง เมื่อครบเวลานำออกมาตั้งทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับ อุณหภูมิห้องล้าง ด้วยน้ำดีไอออไนเซชันจนค่าความเป็นกรด-ด่างประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.13

ภาพที่ 3.13 แผนผังแสดงการศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิ 60 องศาเซลเซียส

3.4.2.1.2 ศึกษาสภาวะที่เหมาะสมในการผสมสารตั้งต้น

1) ศึกษาผลของเวลาในการผสมสารตั้งต้น

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส จากนั้นผสมกับวอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือ ทำการแปรค่า เวลาในการผสมระหว่าง 10 นาทีกับ 2 ชั่วโมง โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที ใส่ใน ออโตเครฟนำเข้าตู้อบไฟฟ้า อบที่ 90 องศาเซลเซียสเป็นเวลา 4 ชั่วโมง เมื่อครบเวลานำออกมาตั้ง ทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจนค่าความเป็นกรด-ด่าง ประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ด้วยเครื่อง เอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.14

2) ศึกษาผลของการกรองกากที่ไม่ละลายก่อนการผสมสารตั้งต้น

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส ทำการแปรค่าระหว่างกรองกากที่ไม่ละลายทิ้งกับการไม่กรอง จากนั้นผสมกับวอเตอร์กลาสที่ ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือ โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 10 นาที ใส่ในออโตเครฟนำเข้าตู้อบไฟฟ้า อบที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง เมื่อครบเวลานำออกมาตั้งทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้องล้างด้วยน้ำดีไอออไนเซชัน จนค่าความเป็นกรด-ด่างประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำ การวิเคราะห์ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดง ขั้นตอนในภาพที่ 3.15

3) ศึกษาผลของอุณหภูมิในการผสมสารตั้งต้น

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส จากนั้นผสมกับวอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือ โดยทำการแปร ค่าอุณหภูมิในการผสมระหว่างที่อุณหภูมิห้องกับที่อุณหภูมิ 60 องศาเซลเซียส ปั่นกวนที่ความเร็ว รอบ 200 รอบต่อนาทีเป็นเวลา 10 นาที ใส่ในออโตเครฟนำเข้าตู้อบไฟฟ้า อบที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง เมื่อครบเวลานำออกมาตั้งทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้อง ล้าง ด้วยน้ำดีไอออไนเซชันจนค่าความเป็นกรด-ด่างประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็น เวลา 24 ชั่วโมง ทำการวิเคราะห์ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.16

ภาพที่ 3.16 แผนผังแสดงการศึกษาผลของอุณหภูมิในการผสมสารตั้งต้น

3.4.2.1.3 ศึกษาสภาวะอุณหภูมิและเวลาในการสังเคราะห์ด้วยวิธีไฮโดรเทอร์มัล

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส จากนั้นผสมกับวอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือที่อุณหภูมิ 60 องศาเซลเซียส โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาทีเป็นเวลา 10 นาที ใส่ในออโตเครฟ นำเข้าตู้อบไฟฟ้า ทำการแปรค่าเวลาในการสังเคราะห์เป็นเวลา 2, 3, 4 และ 6 ชั่วโมง และทำการ แปรค่าอุณหภูมิในการสังเคราะห์ เป็น 80, 90, 100 และ 110 องศาเซลเซียส เมื่อครบเวลานำ ออกมาตั้งทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจนค่าความ เป็นกรด-ด่างประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.17

3.4.2.2 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไมโครเวฟ

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น ใส่ในขวดก้นกลมต่อกับชุดอุปกรณ์รีฟลักซ์เข้าในเครื่องไมโครเวฟ ทำการละลายด้วยคลื่น ไมโครเวฟ 300 วัตต์ เมื่อครบตามเวลาทำการกรองกากที่ไม่ละลายทิ้ง จากนั้นผสมกับวอเตอร์ กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือที่อุณหภูมิ 60 องศาเซลเซียส โดยปั่น กวนที่ความเร็วรอบ 200 รอบต่อนาทีเป็นเวลา 10 นาที ใส่ในขวดก้นกลมต่อกับชุดอุปกรณรีฟลักซ์ เข้าในเครื่องไมโครเวฟ ทำการสังเคราะห์ด้วยคลื่นไมโครเวฟ 300 วัตต์ โดยการแปรค่าเวลาในการ ละลายต่อเวลาในการสังเคราะห์เป็นดังนี้ 1:1, 2:1, 2:2, 2:3, 3:2, 3:3 ชั่วโมง ตามลำดับ เมื่อ ครบเวลานำออกมาตั้งทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจน ค่าความเป็นกรด-ด่างประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการ วิเคราะห์ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนใน ภาพที่ 3.18

3.4.2.3 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีแบบผสม

3.4.2.3.1 ศึกษาผลของเวลาในการสังเคราะห์ด้วยคลื่นไมโครเวฟ

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส การกรองกากที่ไม่ละลายทิ้ง จากนั้นผสมกับวอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียม ไฮดรอกไซด์ที่เหลือที่อุณหภูมิ 60 องศาเซลเซียสโดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็น เวลา 10 นาที ใส่ในขวดก้นกลมต่อกับชุดอุปกรณ์กลั่นเข้าในเครื่องไมโครเวฟ ทำการสังเคราะห์ ด้วยคลื่นไมโครเวฟ 300 วัตต์ แปรค่าเวลาเป็น 0.5, 1, 2 และ 3 ชั่วโมง เมื่อครบเวลานำออกมาตั้ง ทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจนค่าความเป็นกรด-ด่าง ประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ด้วยเครื่อง เอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.19

ภาพที่ 3.19 แผนผังแสดงการศึกษาผลของเวลาในการสังเคราะห์ด้วยคลื่นไมโครเวฟ

3.4.2.3.2 ศึกษาผลของเวลาในการละลายด้วยคลื่นไมโครเวฟ

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น ใส่ในขวดก้นกลมต่อกับซุดอุปกรณ์รีฟลักซ์เข้าในเครื่องไมโครเวฟ ทำการละลายด้วยคลื่น ไมโครเวฟ 300 วัตต์ แปรค่าเวลาเป็น 0.5, 1, 2 และ 3 ชั่วโมง เมื่อครบตามเวลาทำการกรองกากที่ ไม่ละลายทิ้ง จากนั้นผสมกับวอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือที่ อุณหภูมิ 60 องศาเซลเซียส โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 10 นาที ใส่ใน ออโตเครฟนำเข้าตู้อบไฟฟ้า อบที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง เมื่อครบเวลานำออกมาตั้ง ทิ้งไว้ให้อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจนค่าความเป็นกรด-ด่าง ประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ด้วยเครื่อง เอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.20

ภาพที่ 3.20 แผนผังแผนผังแสดงการศึกษาผลของเวลาในการละลายด้วยคลื่นไมโครเวฟ

3.4.2.4 ศึกษาการปรับปรุงขั้นตอนการละลายในการสังเคราะห์ซีโอไลต์เอ

3.4.2.4.1 ศึกษาผลของอุณหภูมิในการละลายด้วยโซเดียมไฮดรอกไซด์

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 24 ชั่วโมง ทำการแปรค่าอุณหภูมิในการ ละลายระหว่างที่อุณหภูมิห้องกับ ที่อุณหภูมิ 60 องศาเซลเซียส ทำการกรองกากที่ไม่ละลายทิ้ง จากนั้นผสมกับวอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือที่อุณหภูมิ 60 องศาเซลเซียสโดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 10 นาที ใส่ในออโตเครฟ นำเข้าตู้อบไฟฟ้า อบที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง เมื่อครบเวลานำออกมาตั้งทิ้งไว้ให้ อุณหภูมิลดลงจนเท่ากับอุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจนค่าความเป็นกรด-ด่าง ประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ด้วยเครื่อง เอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.21

ภาพที่ 3.21 แผนผังแสดงการศึกษาผลของอุณหภูมิในการละลายด้วยโซเดียมไฮดรอกไซด์

3.4.2.4.2 ศึกษาผลของเวลาในการละลายด้วยโซเดียมไฮดรอกไซด์

ชั่งสารตั้งต้นตามกำหนด ละลายโซเดียมไฮดรอกไซด์ด้วยน้ำดีไอออไนเซชันจากนั้นแบ่ง สารละลายโซเดียมไฮดรอกไซด์ออกมาสามในสี่ส่วนเพื่อละลายกับกากที่ผ่านการปรับปรุงเบื้องต้น โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที ทำการแปรค่าเวลาในการละลายเป็นเวลา 6, 12 และ 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส ทำการกรองกากที่ไม่ละลายทิ้ง จากนั้นผสมกับ วอเตอร์กลาสที่ละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ที่เหลือที่อุณหภูมิ 60 องศาเซลเซียส โดยปั่นกวนที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 10 นาที ใส่ในออโตเครฟนำเข้าตู้อบไฟฟ้า อบที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง เมื่อครบเวลานำออกมาตั้งทิ้งไว้ให้อุณหภูมิลดลงจน เท่ากับอุณหภูมิห้อง ล้างด้วยน้ำดีไอออไนเซชันจนค่าความเป็นกรด-ด่างประมาณ 9 อบที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ทำการวิเคราะห์ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังแสดงขั้นตอนในภาพที่ 3.22

ภาพที่ 3.22 แผนผังแสดงการศึกษาผลของเวลาในการละลายด้วยโซเดียมไฮดรอกไซด์

3.4.3 ศึกษาเปรียบเทียบลักษณะสมบัติต่าง ๆของซีโอไลต์เอที่สังเคราะห์แต่ละวิธี

นำซีโอไลต์เอที่สภาวะที่ดีที่สุดจากการสังเคราะห์แต่ละวิธีมาวิเคราะห์สมบัติต่างๆ ได้แก่ ลักษณะโครงสร้างของผลึกและค่าความเป็นผลึก (Crystallinity) ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโต มิเตอร์ (X-ray diffractometer : XRD) ลักษณะสัณฐาน (Morphology) ด้วยกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด (scanning electron microscope : SEM) ค่าความสามารถในการ แลกเปลี่ยนประจุบวก (Cationic Exchange Capacity) (มอก.1422-2540) ดังแสดงขั้นตอนใน ภาพที่ 3.23

ภาพที่ 3.23 แผนผังแสดงการศึกษาเปรียบเทียบลักษณะสมบัติต่างๆของซีโอไลต์เอที่ สังเคราะห์แต่ละวิธี
บทที่ 4

ผลการทดลองและวิจารณ์ผลการทดลอง

4.1 การวิเคราะห์ลักษณะสมบัติของกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุงเบื้องต้น

งานวิจัยนี้ศึกษาการนำกากซิลิกา-อะลูมินามาสังเคราะห์เป็นซีโอไลต์เอ กากซิลิกา-อะลูมินาเป็นกากของเสียที่เกิดจากกระบวนการผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์ของ โรงงานผลิตไฮโดรเจนเปอร์ออกไซด์ มีลักษณะทางกายภาพเป็นเกล็ดสีน้ำตาลแดงขนาดเฉลี่ย ประมาณ 1-3 เซนติเมตร ดังภาพ 4.1 หลังจากนำกากซิลิกา-อะลูมินามาปรับปรุงเบื้องต้นโดยการ บดด้วยเครื่องบด (Tube Mill) ทำการร่อนผ่านตะแกรงขนาด 200 เมช จากนั้นนำไปเผาที่อุณหภูมิ 700 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง พบว่าลักษณะทางกายภาพเปลี่ยนไปเป็นผงสีขาว ดังภาพ 4.2

ภาพที่ 4.1 กากซิลิกา-อะลูมินาก่อนทำการปรับปรุงเบื้องต้น

ภาพที่ 4.2 กากซิลิกา-อะลูมินาหลังทำการปรับปรุงเบื้องต้น

4.1.1 วิเคราะห์องค์ประกอบของธาตุต่างๆ ในกากซิลิกา-อะลูมินาที่ใช้แล้วด้วยเทคนิค เอกซ์เรย์ฟลูออเรสเซนซ์ (X-ray fluorescence : XRF)

เนื่องจากในการสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินานั้น จำเป็นต้องละลาย องค์ประกอบภายในกากออกมาในรูปของสารละลายด้วยสารละลายโซเดียมไฮดรอกไซด์ การบด และร่อนทำให้กากซิลิกา-อะลูมินามีขนาดเล็กลงจะช่วยเพิ่มพื้นที่ผิวสัมผัสทำให้ช่วยเพิ่ม ประสิทธิภาพในการละลายกาก นอกจากนี้ ในขั้นตอนการกำจัดความชื้นและสิ่งสกปรกออกจาก working solution (EQ) ซึ่งเป็นสารประเภทแอนทราควิโนนโดยใช้กากซิลิกา-อะลูมินาเป็นตัวดูด ซับนั้น จะทำให้กากซิลิกา-อะลูมินาที่ใช้แล้วปนเปื้อนด้วยความชื้นและสิ่งสกปรกและสาร แอนทราควิโนนซึ่งมีสีน้ำตาลแดง ดังนั้นในการสังเคราะห์หากไม่กำจัดสารแอนทราควิโนนออก ก่อน จะทำให้ซีโอไลต์ที่สังเคราะห์ได้มีสีน้ำตาลแดงปนเปื้อนจากสารแอนทราควิโนน นอกจากนี้ พบว่าสารอินทรีย์เป็นตัวรบกวนการสังเคราะห์ทำให้ได้ซีโอไลต์ที่ไม่บริสุทธิ์ ในงานวิจัยนี้จะทำการ กำจัดสารแอนทราควิโนนและสารอินทรีย์ต่างๆ โดยการเผาที่อุณหภูมิ 700 องศาเซลเซียส เป็น เวลา 3 ชั่วโมง

การวิเคราะห์องค์ประกอบทางเคมีของกากซิลิกา-อะลูมินาที่ไม่ผ่านการปรับปรุงเบื้องต้น เปรียบเทียบกับกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุงเบื้องต้นโดยการบด ร่อนผ่านตะแกรงขนาด 200 เมช และเผาที่อุณหภูมิ 700 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง ด้วยเทคนิคเอกซ์เรย์ ฟลูออเรสเซนซ์ (X-ray fluorescence : XRF) แสดงผลในรูปร้อยละโดยน้ำหนักของสารประกอบ ออกไซด์ของธาตุ ดังตาราง 4.1 พบว่าอะลูมินา (Al₂O₃) เพิ่มจาก 54.02 เปอร์เซ็นต์ เป็น 74.68 เปอร์เซ็นต์และซิลิกา (Si₂O) เพิ่มจาก 11.70 เปอร์เซ็นต์ เป็น 14.74 เปอร์เซ็นต์ นอกจากนี้พบว่า สารอินทรีย์ลดลงจาก 26.15 เปอร์เซ็นต์เป็น 0.09 เปอร์เซ็นต์ โดยผลของร้อยละอะลูมินา (Al₂O₃) และซิลิกา (Si₂O)ที่เพิ่มขึ้น เนื่องจากหลังปรับปรุงเบื้องต้นมีสัดส่วนน้ำหนักของสารอินทรีย์ที่ลดลง

จากการสังเคราะห์ซีโอไลต์เอในงานวิจัยนี้ จะใช้สัดส่วนโดยโมลเป็น 3.165 Na₂O : Al₂O₃ : 1.926 SiO₂ : 128 H₂O ซึ่งจากการปรับปรุงกากซิลิกา-อะลูมินา พบว่ามีองค์ประกอบของซิลิกา ต่ำกว่าสัดส่วนที่ต้องการอยู่ค่อนข้างมาก ในการสังเคราะห์จึงต้องเติมสารที่มีองค์ประกอบของ ซิลิกาในปริมาณที่สูงเพื่อให้ได้สัดส่วนโดยโมลตามกำหนด ในงานวิจัยนี้ได้เลือกวอเตอร์กลาสซึ่งมี องค์ประกอบของซิลิกาในปริมาณที่สูง ซึ่งการคำนวณสัดส่วนปริมาณของสารตั้งต้นแสดงใน ภาคผนวก ข

สำหรับวอเตอร์กลาสที่นำมาใช้ในการสังเคราะห์ได้จากโรงงานผลิตวอเตอร์กลาส โดยทำ การละลายทรายซึ่งมีองค์ประกอบของซิลิกาด้วยสารละลายโซเดียมไฮดรอกไซด์ที่อุณหภูมิสูง เมื่อ ทำการลดอุณหภูมิในภายหลังจะได้วอเตอร์กลาสเป็นของเหลวใสมีลักษณะค่อนข้างหนืด ซึ่งข้อดี ของวอเตอร์กลาส คือ เป็นสารอยู่ในสถานะของเหลวหนืดซึ่งทำให้สามารถละลายได้ง่ายกว่าสารที่ อยู่สถานะของแข็ง เช่น ดินเบา (Diatomite) นอกจากนี้ต้นทุนการผลิตวอเตอร์กลาสไม่สูงนักเมื่อ เทียบกับสารเคมี สำหรับวิธีการวิเคราะห์และปริมาณองค์ประกอบต่างๆ ในวอเตอร์กลาส ได้แสดง ในภาคผนวก ก

องค์ประกอบทางเคมี	ก่อนปรับปรุงเบื้องต้น	หลังปรับปรุงเบื้องต้น
	(เปอร์เซ็นต์โดยน้ำหนัก)	(เปอร์เซ็นต์โดยน้ำหนัก)
Al_2O_3	54.02	74.68
Si ₂ O	11.70	14.74
SO ₃	4.41	5.71
Na ₂ O	3.17	4.13
CaO	0.42	0.52
Fe ₂ O ₃	0.05	0.09
K ₂ O	0.08	0.03
CI	-	0.01
Organic	26.15	0.09

ตารางที่ 4.1 องค์ประกอบทางเคมีของกากซิลิกา-อะลูมินาที่ก่อนและหลังผ่านการปรับปรุง เบื้องต้น

4.1.2 วิเคราะห์โครงสร้างผลึกในกากซิลิกา-อะลูมินาที่ใช้แล้วด้วยเทคนิคเอกซ์เรย์ ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD)

จากการวิเคราะห์โครงสร้างผลึกของกากซิลิกา-อะลูมินาที่ไม่ผ่านการปรับปรุงเบื้องต้น เปรียบเทียบกับกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุงเบื้องต้น ด้วยเทคนิคเอกซ์เรย์ดิฟแฟรกโต มิเตอร์ (X-ray diffractometer : XRD) พบว่าก่อนทำการปรับปรุงเบื้องต้นปรากฏพีคความเข้มข้น ต่ำ ซึ่งลักษณะพีคนี้ไม่สูงพอที่จะสรุปว่ากากมีโครงสร้างเป็นผลึก แสดงว่ากากก่อนการปรับปรุง เบื้องต้นเป็นของแข็งอสัณฐาน เพราะฉะนั้นลักษณะพีคที่เกิดขึ้นเป็นผลมาจากสารอินทรีย์ต่างๆ โดยเฉพาะสารแอนทราควิโนนในกากที่อาจกจับตัวกับเป็นชั้นๆ ซึ่งส่งผลต่อการวิเคราะห์ทำให้เกิด พีคเล็กๆ แต่เมื่อทำการปรับปรุงเบื้องต้น ซึ่งสามารถกำจัดสารอินทรีย์ออกไปได้ ลักษณะพีคเล็กๆ ความเข้มต่ำก็หายไปเช่นกัน ดังภาพที่ 4.3

ภาพที่ 4.3 ดิฟแฟรกโทแกรมของกากซิลิกา-อะลูมินาที่ไม่ผ่านและผ่านการปรับปรุงเบื้องต้น

4.2 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีต่าง ๆ

ในการสังเคราะห์ซีโอไลต์เอจะสังเคราะห์จากกากซิลิกา-อะลูมินาที่ผ่านการปรับปรุง เบื้องต้น ด้วย 3 วิธี คือ วิธีไฮโดรเทอร์มัล วิธีไมโครเวฟ และวิธีแบบผสม

4.2.1 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอร์มัล

วิธีไฮโดรเทอร์มัลเป็นการสังเคราะห์วิธีหนึ่งที่ใช้สังเคราะห์ซีโอไลต์อย่างแพร่หลาย ซึ่งทำ การสังเคราะห์โดยบรรจุสารในออโตเครฟและใช้ตู้อบเป็นแหล่งให้ความร้อนแก่ปฏิกิริยา ในการ สังเคราะห์วิธีนี้ประกอบด้วย 3 ขั้นตอน ได้แก่ ขั้นตอนการละลายกากซิลิกา-อะลูมินา ขั้นตอนการ ผสมสารตั้งต้น และขั้นตอนการสังเคราะห์

4.2.1.1 ศึกษาสภาวะที่เหมาะสมในขั้นตอนการละลายกากซิลิกา-อะลูมินา

ในขั้นตอนการละลายกากซิลิกา-อะลูมินาเป็นขั้นตอนที่สำคัญอย่างยิ่งเนื่องจาก ซีโอไลต์เอที่สังเคราะห์จะเกิดจากองค์ประกอบที่อยู่ในรูปของเหลวที่ถูกละลายด้วยสารละลาย โซเดียมไฮดรอกไซด์เท่านั้น ซึ่งในการละลายจะให้ความร้อนและปั่นกวนด้วยความเร็ว 200 รอบต่อ นาทีด้วยเครื่องกวนแบบให้ความร้อน ดังนั้นขั้นตอนการละลายกากซิลิกา-อะลูมินาจึงต้องการ สภาวะที่กากซิลิกา-อะลูมินาละลายได้ องค์ประกอบทางเคมีที่เหมาะสมที่จะสามารถเกิด โครงสร้างซีโอไลต์เอได้

1) ศึกษาผลของการสังเคราะห์ชีโอไลต์เอจากกากซิลิกา-อะลูมินาใน ขั้นตอนเดียว

ศึกษาการสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินาด้วยขั้นตอนเดียว ซึ่งเป็น การผสมสารตั้งต้นทั้งหมดในขั้นตอนเดียวโดยไม่มีขั้นตอนการละลาย จากนั้นทำการสังเคราะห์ที่ 90 องศาเซลเซียสเป็นเวลา 0.5, 1, 2, 3, 6 และ 12 ชั่วโมง ตามลำดับ เมื่อนำไปวิเคราะห์ โครงสร้างผลึกที่เกิดขึ้นด้วยเทคนิคเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer : XRD) ดังภาพ 4.4 พบว่าทุกสภาวะปรากฏพีคไม่ตรงกับซีโอไลต์เออ้างอิงแสดงว่าเกิดโครงสร้างซีโอไลต์ เอไม่สมบูรณ์เนื่องจากวิธีนี้ไม่มีขั้นตอนการละลายทำให้กากซิลิกา-อะลูมินา ทำให้กากซิลิกา-อะลูมินาละลายได้ไม่เพียงพอที่จะเกิดโครงสร้างซีโอไลต์เอที่สมบูรณ์

ภาพที่ 4.4 ดิฟแฟรกโทแกรมของซีโอไลต์เอที่สังเคราะห์ด้วยขั้นตอนเดียว ที่ 90 องศาเซลเซียส เป็นเวลา 0.5, 1, 2, 3, 6 และ 12 ชั่วโมง

2) ศึกษาการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้องในการสังเคราะห์

ซีโอไลต์เอ

ศึกษาการละลายกากซิลิกา-อะลูมินา โดยแบ่งสารละลายโซเดียมไฮดรอกไซด์มา สามในสี่ส่วนละลายกากซิลิกา-อะลูมินา ที่อุณหภูมิห้อง เป็นเวลา 30 นาที แล้วผสมกับวอเตอร์ กลาสที่ ละลายในสารละลายโซเดียมไฮดรอกไซด์ที่เหลือ เป็นเวลา 10 นาที แล้วทำการสังเคราะห์ ที่ 90 องศาเซลเซียส เป็นเวลา 2, 3, 6 และ 12 ชั่วโมง ดังภาพ 4.5 พบว่าทุกสภาวะปรากฏพีคไม่ ตรงกับซีโอไลต์เออ้างอิง แสดงว่าการละลายกากที่อุณหภูมิห้อง เป็นเวลา 30 นาที ยังมีอุณหภูมิ และเวลาที่ต่ำเกินไปซึ่งไม่สามารถละลายองค์ประกอบในกากซิลิกา-อะลูมินาให้เพียงพอต่อการ สังเคราะห์ซีโอไลต์เอ

ภาพที่ 4.5 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากการละลายที่อุณหภูมิห้อง เป็นเวลา 30 นาที แล้ว ทำการสังเคราะห์ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 2, 3, 6 และ 12 ชั่วโมง

3) ศึกษาการละลายกากที่อุณหภูมิ 60 องศาเซลเซียสในการสังเคราะห์

ซีโอไลต์เอ

ศึกษาการเพิ่มอุณหภูมิและเวลาในการละลายกากซิลิกา-อะลูมินาโดยแบ่ง สารละลายโซเดียมไฮดรอกไซด์มาสามในสี่ส่วนละลายกากซิลิกา-อะลูมินา ที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จากนั้นละลายต่อด้วยคลื่นอัลตร้าโซนิก เป็นเวลา 30 นาที เปรียบเทียบกับการไม่ใช้คลื่นอัลตร้าโซนิก แล้วผสมกับวอเตอร์กลาสที่ละลายในสารละลาย โซเดียมไฮดรอกไซด์ที่เหลือ เป็นเวลา 10 นาที แล้วทำการสังเคราะห์ที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง ดังภาพ 4.6 พบว่าเกิดพีคตรงกับซีโอไลต์เออ้างอิงค่อนข้างสมบูรณ์แต่ก็ปรากฏพีคไม่ตรง กับโครงสร้างซีโอไลต์เอที่ 2theta ประมาณ 14 degree ทั้งที่ใช้และไม่ใช้คลื่นอัลตร้าโซนิก ดังนั้น สรุปได้ว่าสภาวะที่เหมาะสมในการละลายกากซิลิกา-อะลูมินาเพื่อสังเคราะห์ชีโอไลต์เอ คือ ที่ อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง เนื่องจากสามารถละลายกากซิลิกา-อะลูมินาได้ องค์ประกอบทางเคมีที่เพียงพอต่อการเกิดซีโอไลต์เอ อย่างไรก็ตามยังคงมีโครงสร้างอื่นเกิดร่วม ด้วย ในส่วนของการใช้คลื่นอัลตร้าโซนิกช่วยละลายนั้นไม่มีผลต่อการเกิดซีโอไลต์เอ

ภาพที่ 4.6 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากการละลายที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง แล้วทำการสังเคราะห์ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

4.2.1.2 ศึกษาสภาวะที่เหมาะสมในการผสมสารตั้งต้น

หลังจากได้สภาวะในการละลายที่เหมาะสมแล้วซึ่งสามารถสังเคราะห์ได้ ซีโอไลต์เอที่ค่อนข้างสมบูรณ์แต่ก็มีโครงสร้างอื่นที่ไม่ใช่ซีโอไลต์เอเกิดร่วมด้วย ในขั้นตอนการผสม นี้จึงศึกษาหาวิธีการกำจัดโครงสร้างที่ไม่ใช่ซีโอไลต์เอ รวมทั้งศึกษาผลของอุณหภูมิและเวลาใน การผสมสารตั้งต้นที่มีต่อการสังเคราะห์ซีโอไลต์เอ

1) ศึกษาผลของเวลาในการผสมสารตั้งต้น

หลังจากได้สภาวะละลายกากซิลิกา-อะลูมินาที่ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ในการทดลองนี้ศึกษาการผสมสารตั้งต้นที่เหลือคือวอเตอร์กลาสที่ละลายด้วยหนึ่งใน สี่ส่วนของสารละลายโซเดียมไฮดรอกไซด์ ที่ 60 องศาเซลเซียส โดยการแปรค่าเวลาในการผสม เป็น 10 นาที เปรียบเทียบกับ 2 ชั่วโมง แล้วทำการสังเคราะห์ที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง ดังภาพ 4.7 พบว่าเกิดพีคตรงกับซีโอไลต์เออ้างอิงค่อนข้างสมบูรณ์แต่ก็ปรากฏพีคไม่ตรง กับโครงสร้างซีโอไลต์เอที่ 2theta ประมาณ 14 degree โดยทั้งสองสภาวะได้พีคไม่แตกต่างกัน ดังนั้นสรุปได้ว่าระยะเวลาในการผสมสารตั้งต้นไม่มีผลต่อการเกิดซีโอไลต์เอ

ภาพที่ 4.7 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากสภาวะการผสมสารตั้งต้นที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที และ 2 ชั่วโมง แล้วทำการสังเคราะห์ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

2) ศึกษาผลของการกรองกากที่ไม่ละลายในการผสมสารตั้งต้น

หลังจากได้สภาวะการละลายกากซิลิกา-อะลูมินาที่ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ในการทดลองนี้พยายามกำจัดโครงสร้างที่ไม่ใช่ชีโอไลต์เอ โดยทำการกรองกากที่ไม่ ละลายทิ้งเปรียบเทียบกับการไม่กรอง ก่อนทำการผสมสารตั้งต้นที่เหลือคือวอเตอร์กลาสที่ละลาย ด้วยหนึ่งในสี่ส่วนของสารละลายโซเดียมไฮดรอกไซด์ ที่ 60 องศาเซลเซียส เป็นเวลา 10 นาที แล้ว ทำการสังเคราะห์ที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง ดังภาพ 4.8 พบว่าที่สภาวะการไม่กรอง กากที่ไม่ละลายยังคงปรากฏพีคไม่ตรงกับโครงสร้างซีโอไลต์เออ้างจิงที่ 2theta ประมาณ 14 degree แต่ที่สภาวะการกรองกากที่ไม่ละลายทิ้งก่อนผสมกับสารตั้งต้นที่เหลือปรากฏว่าพีคที่ เกิดขึ้นตรงกับชีโอไลต์เออ้างจิงโดยสมบูรณ์ แสดงว่าพีคที่ 2theta ประมาณ 14 degree ซึ่งไม่ตรง กับซีโอไลต์เออ้างจิงเกิดจากกากซิลิกา-อะลูมินาที่ไม่ละลาย โดยในงานวิจัยอื่นๆ เช่น (Takaaki, 2006) พบว่าในการเพิ่มปริมาณของซิลิกอนออกไซด์โดยการเติมดินเบานั้นจะต้องทำการละลาย ด้วยสารละลายโซดียมไฮดรอกไซด์ แล้วทำการกรองกากที่ไม่ละลายทิ้งจะนำเอาเฉพาะสารละลาย มาผสมเพื่อทำการสังเคราะห์ซีโอไลต์เท่านั้น นอกจากนี้ (Breck, 1974) กล่าวไว้ในหนังสือ Zeolite Molecular Sieves. Structure, chemistry and use ว่าในชั้นตอนการผสมสารตั้งต้นนั้นควรอยู่ใน รูปของสถานะของเหลว เนื่องจากสถานะของเหลวจะช่วยในการผสมให้เป็นสารเนื้อเดียวและเกิด ผลึกตั้งต้นที่เสถียรล่งผลให้ผลึกโตได้ดีกว่าการผสมในสถานะอื่นๆ

ภาพที่ 4.8 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากสภาวะการไม่กรองและกรองกากซิลิกา-อะลูมินาที่ ไม่ละลายก่อนผสมสารตั้งต้นที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที แล้วทำ การสังเคราะห์ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

3) ศึกษาผลของอุณหภูมิในการผสมสารตั้งต้น

หลังจากได้สภาวะการละลายกากซิลิกา-อะลูมินาที่ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมงและต้องทำการกรองกากซิลิกา-อะลูมินาที่ไม่ละลายก่อนการผสมสารตั้งต้นแล้ว ในการ ทดลองนี้ศึกษาการผสมสารตั้งต้นที่เหลือคือวอเตอร์กลาสที่ละลายด้วยหนึ่งในสี่ส่วนของ สารละลายโซเดียมไฮดรอกไซด์ โดยการแปรค่าอุณหภูมิในการผสมที่อุณหภูมิห้องเปรียบเทียบกับ ที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที แล้วทำการสังเคราะห์ที่ 90 องศาเซลเซียส เป็น เวลา 4 ชั่วโมง ดังภาพ 4.8 พบว่าผลการทดลองที่ได้ของทั้งสองสภาวะไม่แตกต่างกัน คือ เกิดพีค ตรงกับกับซีโอไลต์เออ้างอิงทุกพีค แสดงว่าอุณหภูมิในการผสมสารตั้งต้นไม่มีผลต่อการสังเคราะห์ ซีโอไลต์เอ

ภาพที่ 4.9 ดิฟแฟรกโทแกรมของซีโอไลต์เอจากสภาวะการผสมสารตั้งต้นที่อุณหภูมิห้องและ ที่ อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที แล้วทำการสังเคราะห์ ที่อุณหภูมิ 90 องศาเซลเซียสเป็นเวลา 4 ชั่วโมง

4.2.1.3 ศึกษาสภาวะอุณหภูมิและเวลาที่เหมาะสมในการสังเคราะห์ด้วย วิธีไฮโดรเทอร์มัล

หลังจากทำการละลายกากซิลิกา-อะลูมินาที่ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง และ กรองกากที่ไม่ละลายทิ้งแล้วผสมสารตั้งต้นที่เหลือ คือ วอเตอร์กลาสที่ละลายด้วยหนึ่งในสี่ส่วน ของสารละลายโซเดียมไฮดรอกไซด์ ที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที ในการ ทดลองนี้ศึกษาผลของอุณหภูมิและเวลาที่มีผลต่อการสังเคราะห์ซีโอไลต์เอ โดยทำการแปรค่าเวลา ในการสังเคราะห์เป็น 2 3 4 และ 6 ชั่วโมง และแปรค่าอุณหภูมิในการสังเคราะห์ที่ 80, 90, 100 และ 110 องศาเซลเซียส ดังภาพ 4.10 พบว่ามีเพียง 4 สภาวะที่เกิดพีคซีโอไลต์เอที่ไม่สมบูรณ์ ได้แก่ ที่อุณหภูมิ 80, 90, 100 เป็นเวลา 2 ชั่วโมง และ อุณหภูมิที่ 80 เป็นเวลา 3 ชั่วโมง ส่วน สภาวะที่เหลือเกิดพีคซีโอไลต์เอโดยสมบูรณ์ทั้งหมด เมื่อวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์เอ ที่สังเคราะห์ได้ที่สภาวะต่างๆ จากภาพ 4.9 พบว่าที่สภาวะที่เกิดพีคซีโอไลต์เอที่ไม่สมบูรณ์มีค่า ความเป็นผลึกที่ต่ำมาก เท่ากับ 0, 1.28, 9.21 และ 5.88 เปอร์เซ็นต์ ตามลำดับ ซึ่งเป็นผลจาก ขั้นตอนการเกิดผลึกนั้นต้องการเวลาและอุณหภูมิที่เหมาะสมเพื่อเหนี่ยวนำให้เกิดผลึกและโตเป็น ผลึกที่สมบูรณ์แต่ในสภาวะทั้งสี่นี้ใช้เวลาและอุณหภูมิที่เหมาะสมเพื่อเหนี่ยวนำให้เกิดผลึกและโตเป็น ผลึกที่สมบูรณ์แต่ในสภาวะทั้งสี่นี้ใช้เวลาและอุณหภูมิต่ำเกินไปทำให้ไม่เพียงพอต่อการเกิดผลึก สำหรับสภาวะอื่นๆ นอกเหนือจาก 4 สภาวะนี้ มีค่าความเป็นผลึกอยู่ระหว่าง 80 -100 เปอร์เซ็นต์ แต่สภาวะที่มีค่าความเป็นผลึกสูงที่สุด คือ การสังเคราะห์ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง ซึ่งมีค่าความเป็นผลึกสูงที่สุด คือ การสังเคราะห์ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา หลาวะดีที่สุดในการสังเคราะห์ซีโอไลต์เอโดยค่าความเป็นผลึกในภาพ 4.11 มีความสัมพันธ์แบบ ทิศทางเดียวกับกับความเข้มของดิฟแฟรกโทแกรมในภาพ 4.10 ซึ่งหากความเข้มของดิฟแฟรกโท แกรมสูงขึ้นจะส่งผลให้ค่าความเป็นผลึกมีค่าสูงตามไปด้วยและจะแสดงถึงซีโอไลต์เอที่เกิดมีความ สมบูรณ์เช่นกัน

ภาพที่ 4.10 ดิฟแฟรกโทแกรมของซีโอไลต์ที่สังเคราะห์จากอุณหภูมิและเวลาต่างๆ

ภาพที่ 4.11 กราฟแสดงค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์จากอุณหภูมิและเวลาต่างๆ

การวิเคราะห์โครงสร้างภายนอกของซีโอไลต์เอที่สังเคราะห์ได้ด้วยกล้องจุลทรรศน์ อิเล็กตรอนแบบสองกราด (scanning electron microscope : SEM) ที่กำลังขยาย 10,000 เท่า โดยตามทฤษฏีซีโอไลต์เอจะมีลักษณะเป็นรูปทรงสี่เหลี่ยมลูกบาศก์ การวิเคราะห์วิธีนี้สามารถ บ่งบอกลักษณะซีโอไลต์เอที่เกิดขึ้นได้ว่ามีความสมบูรณ์ตามทฤษฏีมากน้อยเพียงใด ดังภาพ 4.12 เป็นการสังเคราะห์ซีโอไลต์เอที่อุณหภูมิต่างๆ เป็นเวลา 2 ชั่วโมง พบว่าการสังเคราะห์ที่อุณหภูมิ 80, 90 และ100 องศาเซลเซียส ไม่พบโครงสร้างใดๆ แสดงว่าที่สภาวะนี้ไม่เหมาะสมต่อการ สังเคราะห์ซีโอไลต์เอ เนื่องจากเวลาและอุณหภูมิที่ใช้ในปฏิกิริยาน้อยเกินไปไม่เพียงพอต่อการเกิด ผลึก แต่เมื่อเพิ่มอุณหภูมิการสังเคราะห์เป็นที่อุณหภูมิ 110 องศาเซลเซียส พบว่าเกิดโครงสร้าง ทรงสี่เหลี่ยมลูกบาศก์ขนาดประมาณ 1 ไมโครเมตร แต่ลักษณะเหลี่ยมมุมที่ปรากฏไม่ชัดเจน เมื่อ ทำการเพิ่มเวลาในการสังเคราะห์เป็น 3 ชั่วโมง ที่อุณหภูมิต่างๆ พบว่าการสังเคราะห์ที่อุณหภูมิ 80 องศาเซลเซียส ไม่พบโครงสร้างใดๆ เนื่องจากเวลาและอุณหภูมิที่ใช้ในปฏิกิริยาน้อยเกินไปไม่ เพียงพอต่อการเกิดผลึก แต่เมื่อเพิ่มอุณหภูมิในการสังเคราะห์เป็นที่อุณหภูมิ 90, 100 และ 110 องศาเซลเซียส ปรากกฎว่าเกิดโครงสร้างทรงสี่เหลี่ยมลูกบาศก์ขนาดประมาณ 1 ไมโครเมตร และ

้ลักษณะเหลี่ยมมุมที่ปรากฏชัดเจนขึ้นกว่าการสังเคราะห์ที่เวลา 2 ชั่วโมง แสดงว่าการเพิ่มเวลา จาก 2 ชั่วโมงเป็น 3 ชั่วโมง ทำให้ได้ซีโอไลต์เอที่มีความสมบูรณ์ขึ้น จากนั้นทำการเพิ่มเวลาในการ ้สังเคราะห์ขึ้นอีกเป็น 4 ชั่วโมงที่อุณหภูมิต่างๆ เมื่อวิเคราะห์โครงสร้างภายนอกที่เกิดขึ้น พบว่าเกิด ้โครงสร้างทรงสี่เหลี่ยมลูกบาศก์ของซีโอไลต์เอที่ทุกอุณหภูมิ โดยที่อุณหภูมิ 80 องศาเซลเซียส ได้ รูปทรงสี่เหลี่ยมลูกบาศก์ไม่ชัดเจนและมีขนาดที่เล็กกว่าสภาวะอื่น ส่วนที่อุณหภูมิ 90, 100 และ 110 องศาเซลเซียส พบโครงสร้างรูปทรงสี่เหลี่ยมลูกบาศก์ที่ชัดเจน ขนาดใหญ่กว่า 1 ไมโครเมตร และพบว่าโครงสร้างซีโอไลต์เอเกิดชัดเจนที่สุดที่อุณหภูมิ 90 องศาเซลเซียส แสดงว่า เวลาและ อุณหภูมิที่เหมาะสมต่อการเกิดและโตเป็นผลึกที่สมบูรณ์โดยมีขนาดที่ใหญ่และโครงสร้างเหลี่ยมที่ ้ชัดเจน คือ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง จากนั้นเพิ่มเวลาในการสังเคราะห์ขึ้น อีกเป็น 6 ชั่วโมง ที่อุณหภูมิต่างๆ พบว่าทุกสภาวะเกิดโครงสร้างรูปทรงสี่เหลี่ยมลูกบาศก์ที่ชัดเจน แต่มีขนาดประมาณ 1 ไมโครเมตร แสดงว่าเวลาที่ใช้ในการสังเคราะห์ 6 ชั่วโมง เป็นเวลาที่เกินช่วง ที่เหมาะสม ทำให้ได้ซีโอไลต์เอที่มีโครงสร้างเล็กลงเมื่อเทียบกับการสังเคราะห์ที่ 4 ชั่วโมง ดังนั้น สามารถสรุปได้ว่าในการสังเคราะห์ซีโอไลต์เอต้องการเวลาและอุณหภูมิที่เหมาะสมเท่านั้น หาก ้ปัจจัยอย่างใดอย่างหนึ่งน้อยเกินไปจะส่งผลให้ไม่เกิดซีโอไลต์เอ ในทางกลับกับหากปัจจัยอย่างใด ้อย่างหนึ่งมากเกินไปจะส่งผลให้ได้ผลึกซีโอไลต์ที่มีขนาดเล็กลง ซึ่งในงานวิจัยนี้ได้เวลาและ อุณหภูมิที่เหมาะสม คือ ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

110 °t	CONTRACTOR OF THE STATE	201V X13-200 Im 0662 10 20 SE1	130 0C 0: 1.200 mm 000 701 10 100	2010 X10-200 Inv 0077 10 20 8E1	โมง ด้วยกำลังขยาย 10,000 เท่า
100 °"	132 GC GI FROG ANI BOO-BIX UNG	284V X10.606 Im 0039 IB 26 KE	THE THE PAR IN 16 26 11		เลเซียส เป็นเวลา 2, 3, 4 และ 6 ชั่ว
л _° 06	26M X15,000 LM 0347 10 30 EE1		Tank Xie ee in de ei		เกูมิ 80, 90, 100 และ 110 องศาเข
80 °"	132 OC 01 1668 0001 000 1012 012	132 BC 61 2000 mil 000 01 10		201V X10-208 Imm 0406 10 30 SEL	ยนอกของซีโอไลต์สังเคราะห์ที่อุณข
ಸೆಗಿಗುಜ	2 ชั่วใม่ง	3 ชั่วใมง	4 ชั้วในง	6 ซั่าใมง	ภาพที่ 4.12 โครงสร้างภาะ

เมื่อทำการเปรียบเทียบการสังเคราะห์ชีโอไลต์กับงานวิจัยอื่น ดังแสดงในตารางที่ 4.2 พบว่าในปี 2001 Kolay และคณะทำการสังเคราะห์ซีโอไลต์พีจากขี้เถ้าจากการเผาตะกอนบึง บำบัด (Lagooon ash) พบว่าสภาวะที่ดีที่สุดในการสังเคราะห์ คือ การทำปฏิกิริยาที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 48 ชั่วโมง แต่ในการสังเคราะห์เกิดเฟสปนเปื้อน ได้แก่ ควอตซ์ และมัลไลต์ ซึ่งเป็นเฟสเดียวกับขี้เถ้าจากการเผาตะกอนบึงบำบัด (Lagooon ash) ต่อมาในปี 2006 Takaaki และคณะ ได้ทำการสังเคราะห์ซีโอไลต์จากตะกอนกระดาษ (Paper Sludge) ได้ เป็นซีโอไลต์พี โดยทำปฏิกิริยาที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง เกิดเฟสปนเปื้อน ได้แก่ เจเลนไนท์ ซึ่งเป็นเฟสเดียวกับตะกอนกระดาษที่นำมาสังเคราะห์ ต่อมาในปี 2009 Anuwattana และคณะ ได้สังเคราะห์ซีโอไลต์เอจากกากตะกรันเตาหลอมเหล็ก(Cupola slag) และตะกอนอะลูมิเนียม (Aluminium sludge) โดยทำปฏิกิริยาที่ 90 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง เกิดเฟสปนเปื้อนได้แก่ ไฮดรอกซีโซดาไลต์และของแข็งอสัณฐาน โดยไฮดรอกซีโซดาไลต์ เกิดจากในการสังเคราะห์เกิดปฏิกิริยาไม่สมบูรณ์ ส่วนของแข็งอสัณฐานเกิดจากกากของเสียที่ไม่ ละฉายด้วยสารละลายเบส

งานวิจัย	สังเคราะห์จาก	ซีโอไลต์ ที่ได้	เฟสปนเปื้อน	สภาวะ
Kolay และคณะ	Lagoon ash	ซีโอไลต์พี	ควอตซ์ และ	100 [°] ซ
(2001)			มัลไลต์	48 ชม.
Takaaki และคณะ	Paper sludge	ซีโอไลต์พี	เจเลนไนท์	90 °୩
(2006)				24 ชม.
Anuwattana และคณะ	Cupola slag,	ซีโอไลต์เอ	ไฮดรอกซีโซดาไลต์,	90 [°] ฃ
(2009)	Aluminium		ของแข็งอสัณฐาน	3 ขม.
	sludge			
Hiroaki และ Sridhar	Carbonize rice	ซีโอไลต์เอ	ไม่พบเฟสปนเปื้อน	90 °ฃ
(2009)	husk			3 ขม.
งานวิจัยนี้ (2010)	Silica - Alumina	ซีโอไลต์เอ	ไม่พบเฟสปนเปื้อน	90 [°] ฃ
	waste,			4 ขม.
	waterglass			

ตารางที่ 4.2 ตารางเปรียบเทียบผลการสังเคราะห์ระหว่างงานวิจัยต่างๆ กับงานวิจัยนี้

จากงานวิจัยที่กล่าวไปข้างต้นมีข้อจำกัดในเรื่องของการเกิดเฟสปนเปื้อนอื่นๆ ที่เกิด ร่วมกับซีโอไลต์เอที่สังเคราะห์ ซึ่งงานวิจัยทั้งหมดที่กล่าวข้างต้นพบว่าเฟสที่ปนเปื้อนเกิดจากกากที่ นำมาสังเคราะห์ไม่สามารถละลายในสารละลายเบสได้ทำให้ผสมกับซีโอไลต์ที่สังเคราะห์ได้ ภายหลัง

แต่งานวิจัยของ Hiroaki และ Sridhar ในปี 2009 ได้ทำการสังเคราะห์ซีโอไลต์เอจาก แกลบข้าวที่ผ่านการคาร์บอไนซ์ โดยทำปฏิกิริยาที่ 90 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง พบว่าได้ ซีโอไลต์เอที่ไม่มีเฟสอื่นปนเปื้อน เนื่องจากแกลบข้าวที่ผ่านการคาร์บอไนซ์สามารถละลายได้ดีใน สารละลายเบสทำให้ไม่พบเฟสปนเปื้อนจากกากที่ไม่ละลาย

ในงานวิจัยนี้สามารถสังเคราะห์ซีโอไลต์เอโดยไม่มีเฟสอื่นผสมซึ่งเป็นข้อดีเหนืองานวิจัย ดังกล่าวในข้างต้นที่พบเฟสปนเปื้อน โดยพบว่าขั้นตอนสำคัญในการกำจัดเฟสปนเปื้อนคือการ กรองกากที่ไม่ละลายทิ้ง สำหรับปฏิกิริยาทำที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง และ เมื่อทำการเปรียบโครงสร้างภายนอกของซีโอไลต์เอที่สังเคราะห์ได้กับงานวิจัยของ Hiroaki และ Sridhar ซึ่งไม่พบเฟสปนเปื้อนเช่นเดียวกับงานวิจัยนี้ พบว่าซีโอไลต์เอจากงานวิจัยนี้เกิดโครงสร้าง ที่เป็นทรงสี่เหลี่ยมลูกบาศก์ที่ชัดเจนกว่าซีโอไลต์เอที่สังเคราะห์จากงานวิจัยของ Hiroaki และ Sridhar ดังรูปที่ 4.13

รูปที่ 4.13 แสดงโครงสร้างภายนอกของซีโอไลต์ที่สังเคราะห์จากงานต่างๆ (ก) Hiroaki และ Sridhar (ข) งานวิจัยนี้

4.2.2 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไมโครเวฟ

การทดลองนี้ศึกษาการสังเคราะห์ด้วยวิธีไมโครเวฟ ซึ่งเป็นทางเลือกในการสังเคราะห์ซี โอไลต์เอนอกเหนือจากวิธีไฮโดรเทอร์มัล ในงานวิจัยนี้จะประยุกต์เครื่องไมโครเวฟชนิดที่ใช้ใน บ้านเรือนทั่วไปโดยติดตั้งอุปกรณ์ในการรีฟลักซ์ชุดกลั่นและเครื่องกวน โดยจะใช้คลื่นไมโครเวฟ กำลัง 300 วัตต์ เป็นแหล่งให้พลังงานแก่ปฏิกิริยาในขั้นตอนการละลายกากซิลิกา-อะลูมินาและ ขั้นตอนการสังเคราะห์แทนการใช้เครื่องกวนแบบให้ความร้อนและตู้อบ ในการสังเคราะห์ได้แปรค่า เวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ ดังนี้ 1:1, 2:1, 2:2, 2:3, 3:2 และ 3:3 ชั่วโมง ตามลำดับ จากภาพ 4.14 พบว่าทุกสภาวะเกิดพีคซีโอไลต์เอที่ไม่สมบูรณ์ มีความเข้มของ พีคต่ำ อีกทั้งปรากฏพีคไม่ตรงกับโครงสร้างซีโอไลต์เอที่ 2theta ประมาณ 14 degree

เมื่อวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์เอที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะต่างๆ จากภาพ 4.15 พบว่าซีโอไลต์เอที่สังเคราะห์ด้วยวิธีไมโครเวฟที่ทุกสภาวะมีค่าความเป็นผลึกอยู่ ในช่วงประมาณ 10-50 เปอร์เซ็นต์ ซึ่งสอดคล้องกับดิฟแฟรกโทแกรม ดังภาพ 4.15 พบว่าซีโอไลต์ เอที่สังเคราะห์ได้มีความเข้มของพีคค่อนข้างต่ำ อีกทั้งเกิดโครงสร้างอื่นร่วมกับซีโอไลต์เออีกด้วย ดังนั้นการสังเคราะห์ด้วยวิธีไมโครเวฟจึงไม่เหมาะสมต่อการสังเคราะห์ซีโอไลต์เอเมื่อเทียบกับวิธี ไฮโดรเทอร์มัล สาเหตุเนื่องจากอุปกรณ์เครื่องไมโครเวฟที่ใช้ในงานวิจัยนี้มีข้อจำกัดในเรื่องของการ ที่สามารถปล่อยพลังงานได้เฉพาะ 300 วัตต์ ซึ่งไม่ทราบค่าอุณหภูมิแท้จริงในการทำปฏิกิริยา โดย อุณหภูมิที่เกิดขึ้นในปฏิกิริยาจริงอาจไม่ใช้อุณหภูมิที่เหมาะสมต่อการเกิดซีโอไลต์เอจากการ ทดลองตอนที่ผ่านมาที่ 90 องศาเซลเซียส นอกจากนี้ลักษณะพลังงานที่ปล่อยออกมาเป็นช่วงๆ ไม่ สม่ำเสมอ ทำให้ความร้อนที่ให้แก่ปฏิกิริยาไม่คงที่ ส่งผลให้การเกิดผลึกจึงไม่สมบูรณ์ เพราะฉะนั้น การสังเคราะห์ด้วยวิธีไมโครเวฟด้วยเครื่องมือในงานวิจัยนี้จึงได้ผลไม่ดีเท่าการสังเคราะห์แบบ ไฮโดรเทอร์มัล แต่หากสามารถเปลี่ยนเครื่องไมโครเวฟในการสังเคราะห์ให้เป็นชนิดสำหรับ สังเคราะห์สารโดยเฉพาะ ซึ่งจะสามารถควบคุมอุณหภูมิและกำลังคลื่นที่ปล่อยให้คงที่ได้อาจ สามารถลังเคราะห์ซีโอไลต์เอที่สมบูรณ์กว่าในงานวิจัยนี้

จากงานวิจัย Lucio และ Edoardo (2003) ได้ทำการเปรียบเทียบการสังเคราะห์ซีโอไลต์เอ ระหว่างวิธีไฮโดรเทอร์มัลกับวิธีไมโครเวฟ พบว่าการสังเคราะห์ด้วยวิธีไมโครเวฟมีข้อดีที่สามารถ ลดเวลาในการสังเคราะห์ปฏิกิริยา เนื่องจากการวิธีไมโครเวฟเป็นการใช้คลื่นไมโครเวฟไปกระตุ้น ให้เกิดการสั่นของโมเลกุลจนเกิดความร้อนในระดับโมเลกุลทำให้ปฏิกิริยาเกิดความร้อนอย่าง รวดเร็ว ส่วนวิธีไฮโดรเทอร์มัลเป็นการให้ความร้อนโดยการแผ่รังสีของตู้อบอาจเกิดการสูญเสีย ความร้อนรวมถึงความร้อนที่ให้แก่ปฏิกิริยาไม่มีความสม่ำเสมอที่สำคัญปฏิกิริยาจะเกิดความร้อน ข้ากว่า อย่างไรก็ตามการสังเคราะห์ด้วยวิธีไมโครเวฟก็มีข้อเสียในเรื่องของการลดเวลานั้นจะส่งผล ให้เวลาในการเติบโตของผลึกลดลงเช่นกันทำให้การสังเคราะห์ด้วยวิธีไมโครเวฟนั้นได้ผลึกที่มี ขนาดเล็กกว่าการสังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลอีกทั้งอาจเกิดเฟสอื่นปนเปื้อนได้ ซึ่งให้ผล เช่นเดียวกับงานวิจัยของAnuwattana และคณะ(2008) ที่ทำการสังเคราะห์ซีโอไลต์แซดเอชเอ็มห้า (ZSM-5)โดยเปรียบเทียบการสังเคราะห์ซีโอไลต์เอระหว่างวิธีไฮโดรเทอร์มัลกับวิธีไมโครเวฟ พบว่า ซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟมีขนาดเล็กกว่าซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัล

ภาพที่ 4.14 ดิฟแฟรกโทแกรมของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะต่างๆ

ภาพที่ 4.15 กราฟแสดงความสัมพันธ์ระหว่างค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธี ไมโครเวฟกับเวลาที่ใช้ละลายต่อเวลาที่ใช้สังเคราะห์ด้วยคลื่นไมโครเวฟ

4.2.3 ศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีแบบผสม

จากการทดลองที่ผ่านมา ผลปรากฏว่าการใช้ไมโครเวฟเพียงอย่างเดียวไม่เหมาะสมต่อ การสังเคราะห์ซีโอไลต์เอเนื่องจากข้อจำกัดของเครื่องมือที่ใช้ในงานวิจัยนี้ดังกล่าวไปแล้วนั้น ดังนั้นการทดลองในตอนนี้ จึงพยายามทดลองปรับเปลี่ยนการสังเคราะห์ซีโอไลต์เอเป็นวิธีแบบ ผสม ซึ่งเป็นการผสมการสังเคราะห์วิธีไฮโดรเทอร์มัลกับวิธีไมโครเวฟ โดยแบ่งการทดลองเป็นสอง ขั้นตอนดังนี้

1.ทำการละลายตามวิธีไฮโดรเทอร์มัล จากนั้นสังเคราะห์ด้วยวิธีไมโครเวฟ
 2.ทำการละลายตามวิธีไมโครเวฟ จากนั้นสังเคราะห์ด้วยวิธีไฮโดรเทอร์มัล

4.2.3.1 ศึกษาผลของเวลาในการสังเคราะห์ด้วยคลื่นไมโครเวฟ

ในขั้นตอนการละลายทำการละลายกากซิลิกา-อะลูมินาที่ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จากนั้นทำการแปรค่าเวลาในการสังเคราะห์ซีโอไลต์เอตามวิธีไมโครเวฟ ด้วยคลื่น ไมโครเวฟ 300 วัตต์ เป็นเวลา 0.5, 1, 2 และ 3 ชั่วโมง จากภาพ 4.16 พบว่าเกิดโครงสร้างซีโอไลต์ เอไม่สมบูรณ์ทุกสภาวะ เมื่อวิเคราะห์ค่าความเป็นผลึก จากภาพ 4.17 พบว่าเมื่อสังเคราะห์ด้วยคลื่นไมโครเวฟ 300 วัตต์ เป็นเวลา 1 ชั่วโมง ได้ค่าความเป็นผลึกสูงสุดเพียงแค่ 52.44 เปอร์เซ็นต์ แสดงว่าการ สังเคราะห์แบบผสมโดยใช้คลื่นไมโครเวฟในขั้นตอนการสังเคราะห์ จะได้ค่าความเป็นผลึกต่ำและ ยังเกิดเฟสอื่นปนเปื้อนอีกด้วย เป็นผลอันเนื่องจากสาเหตุเดียวกันกับการทดลองตอนที่แล้วที่ กล่าวถึงข้อจำกัดของเครื่องไมโครเวฟในงานวิจัยนี้ ดังนั้นการเลือกใช้วิธีแบบผสมโดยใช้คลื่น ไมโครเวฟในการสังเคราะห์จึงไม่เหมาะสมต่อการสังเคราะห์ซีโอไลต์เอ

ภาพที่ 4.16 ดิฟแฟรกโทแกรมของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่นไมโครเวฟใน ขั้นตอนการสังเคราะห์ ที่เวลาต่างๆ

ภาพที่ 4.17 กราฟแสดงความสัมพันธ์ระหว่างค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ ด้วยวิธีแบบผสม กับเวลาที่ใช้ในการสังเคราะห์ด้วยคลื่นไมโครเวฟ

4.2.3.2 ศึกษาผลของเวลาในการละลายด้วยคลื่นไมโครเวฟ

หลังจากทำการทดลองใชคลื่นไมโครเวฟในการสังเคราะห์แล้วไม่ได้ผลที่ดี ในการทดลองนี้ จึงได้เปลี่ยนมาใช้คลื่นไมโครเวฟในการละลายแทน โดยทำการแปรค่าเวลาในการละลายกาก ซิลิกา-อะลูมินาตามวิธีไมโครเวฟ ด้วยคลื่นไมโครเวฟ 300 วัตต์ เป็นเวลา 0.5, 1, 2 และ 3 ชั่วโมง จากนั้นทำการสังเคราะห์ตามวิธีไฮโดรเทอร์มัล ที่ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง จากภาพ 4.18 พบว่าเกิดโครงสร้าง ซีโอไลต์เอทุกสภาวะการทดลอง

ภาพที่ 4.18 ดิฟแฟรกโทแกรมของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่นไมโครเวฟใน ขั้นตอนการละลาย ที่เวลาต่างๆ

เนื่องจากในวิธีนี้ไม่ใช้เครื่องไมโครเวฟการสังเคราะห์จึงไม่มีข้อจำกัดเหมือนในการทดลอง ที่แล้ว สำหรับการทดลองนี้จะใช้คลื่นไมโครเวฟในขั้นตอนการละลายกากที่เวลาต่างแทนการ ละลายด้วยเครื่องกวนแบบให้ความร้อนที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง หาก พิจารณาในแง่ของการละลายซึ่งเป็นตัวแปรในการทดลองนี้ หลักสำคัญก็คืออุณหภูมิและเวลาที่ใช้ ในการละลาย หากทำการเพิ่มอุณหภูมิและเวลาในการละลายย่อมส่งผลให้การละลายเพิ่มขึ้น เรื่อยๆจนถึงจุดขีดสุดซึ่งไม่สามารถละลายกากเพิ่มได้อีกต่อไป จากดังกล่าวสำหรับการสังเคราะห์ ซีโอไลต์โดยละลายด้วยเครื่องกวนแบบให้ความร้อนที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ถือเป็นสภาวะการละลายที่เป็นขีดสุดในการทดลองนี้ พบว่าสามารถสังเคราะห์ซีโอไลต์เอมี ค่าความเป็นผลึก เท่ากับ 100 เปอร์เซ็นต์ เมื่อเปลี่ยนเป็นใช้คลื่นไมโครเวฟในการละลายที่เวลา ต่างๆ จากนั้นทำการวิเคราะห์ค่าความเป็นผลึก จากภาพ 4.19 พบว่าค่าความเป็นผลึกสูงขึ้นตาม เวลาที่ใช้ จนที่ได้ค่าความเป็นผลึกสูงสุด เท่ากับ 85.39 เปอร์เซ็นต์ ที่สภาวะการละลายกากซิลิกา อะลูมินาด้วยคลื่นไมโครเวฟ 300 วัตต์ เป็นเวลา 2 ชั่วโมง เมื่อเพิ่มเวลาเป็น 3 ชั่วโมง ค่าความเป็น ผลึกควรจะเพิ่มขึ้น แต่จากภาพที่ 4.19 พบว่าค่าความเป็นผลึก เท่ากับ 74.76 เปอร์เซ็นต์ ซึ่งลดลง เล็กน้อยไม่ถึง 10เปอร์เซ็นต์ อย่างไรก็ตามค่าความเป็นผลึกที่ลดลงนี้ถือว่าแตกต่างอย่างไม่มี นัยสำคัญ เนื่องจากในการวิเคราะห์ค่าความเป็นผลึกนั้นอาจเกิดความผิดพลาดจากการเตรียม สารรวมถึงเครื่องมือในการวิเคราะห์ซึ่งในการวิเคราะห์หากค่าความเป็นผลึกแตกต่างกันไม่เกิน 10 เปอร์เซ็นต์ ถือว่าสารที่วิเคราะห์มีลักษณะใกล้เคียงกัน

ดังนั้นสามารถสรุปได้ว่าที่สภาวะการละลายกากซิลิกาอะลูมินาด้วยคลื่นไมโครเวฟ 300 วัตต์ เป็นเวลา 2 ชั่วโมง ได้ค่าความเป็นผลึกสูงสุด เท่ากับ 85.39 เปอร์เซ็นต์ ใกล้เคียงกับสภาวะที่ ดีที่สุดจากการสังเคราะห์ด้วยวิธีไฮโดรเทอร์มัล ที่ 100 เปอร์เซ็นต์ วิธีนี้จึงอาจเป็นทางเลือกหนึ่งใน การสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินาที่ใช้แล้ว

ภาพที่ 4.19 กราฟแสดงความสัมพันธ์ระหว่างค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธี แบบผสมกับเวลาที่ใช้ในการละลายกากซิลิกา-อะลูมินาด้วยคลื่นไมโครเวฟ

4.2.4 ศึกษาการปรับปรุงขั้นตอนการละลายในการสังเคราะห์ซีโอไลต์เอ

จากการทดลองด้วยวิธีไฮโดรเทอร์มัลได้ทำการละลายกากเป็นเวลา 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส ซึ่งเป็นสภาวะที่สามารถละลายกากซิลิกา-อะลูมินาได้สูงที่สุด ในการทดลองนี้ ได้ทำการปรับปรุงขั้นตอนการละลายกากซิลิกา-อะลูมินาในแง่ของการลดพลังงานของการ สังเคราะห์ โดยศึกษาผลของการลดอุณหภูมิและเวลาในขั้นตอนการละลายกากซิลิกา-อะลูมินา ที่มีต่อการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอร์มัล

4.2.4.1 ศึกษาผลของอุณหภูมิในการละลายด้วยโซเดียมไฮดรอกไซด์

ทำการปรับปรุงการละลายกากซิลิกา-อะลูมินาโดยลดอุณหภูมิการละลายที่อุณหภูมิ 60 องศาเซลเซียส เปรียบเทียบกับที่อุณหภูมิห้อง ดังตาราง 4.3 พบว่าเปอร์เซ็นต์กากซิลิกา-อะลูมินา ที่ละลายลดลงจาก 43.71 เปอร์เซ็นต์ เป็น 21.61 เปอร์เซ็นต์ แสดงว่าการลดอุณหภูมิในการ ละลายทำให้กากซิลิกา-อะลูมินาละลายได้ลดลง

เมื่อนำไปทำการสังเคราะห์ซีโอไลต์ ดังภาพ 4.20 ปรากฏว่าที่สภาวะการละลายกาก ซิลิกา-อะลูมินาที่อุณหภูมิห้องไม่พบพีคของซีโอไลต์เอ โดยมีค่าความเป็นผลึก เท่ากับ 0 เปอร์เซ็นต์ ดังนั้นการละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้องไม่สามารถละลายองค์ประกอบ ของกากซิลิกา-อะลูมินาออกมาได้เพียงพอต่อการสังเคราะห์ซีโอไลต์เอ

ตารางที่ 4.3 แสดงเปอร์เซ็นต์กากซิลิกา-อะลูมินาที่ละลายที่อุณหภูมิห้องและที่ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง

สภาวะการละลาย	กากซิลิกา-อะลูมินาที่ละลาย	ค่าความเป็นผลึก
	(เปอร์เซ็นต์)	(เปอร์เซ็นต์)
24 ชั่วโมง ที่ 60 องศาเซลเซียส	43.71	100
24 ชั่วโมง ที่ อุณหภูมิห้อง	21.61	0

ภาพที่ 4.20 ดิฟแฟรกโทแกรมของซีโอไลต์ โดยละลายกากซิลิกา-อะลูมินาที่อุณหภูมิห้องและที่ 60 องศาเซลเซียสเป็นเวลา 24 ชั่วโมง

การทดลองตอนที่ 2.4.2 ศึกษาผลของเวลาในการละลายด้วยโซเดียมไฮดรอกไซด์

หลังจากทำการปรับลดอุณหภูมิในการละลายกากซิลิกา-อะลูมินาแล้วพบว่าไม่สามารถ ละลายองค์ประกอบในกากซิลิกา-อะลูมินได้เพียงพอต่อการสังเคราะห์ซีโอไลต์เอ ในการทดลองนี้ จึงได้ปรับลดเวลาในการละลายเป็น 12 ชั่วโมง และ 6 ชั่วโมง ที่ 60 องศาเซลเซียส เปรียบเทียบกับ การละลาย 24 ชั่วโมง ที่ 60 องศาเซลเซียส ดังตาราง 4.4 พบว่าการละลายกากซิลิกา-อะลูมินา เป็นเวลา 6 ชั่วโมง ที่ 60 องศาเซลเซียส สามารถละลายกากซิลิกา-อะลูมินาได้ 26.63 เปอร์เซ็นต์ ซึ่งค่อนข้างแตกต่างกับการละลายกากซิลิกา-อะลูมินาเป็นเวลา 24 ชั่วโมง ที่ 60 องศาเซลเซียส ส่วนการละลายกากซิลิกา-อะลูมินาเป็นเวลา 12 ชั่วโมง สามารถละลายกากซิลิกา- อะลูมินาได้ 41.71 เปอร์เซ็นต์ พบว่าการละลายกากซิลิกา-อะลูมินาเป็นเวลา 12 ชั่วโมง ที่ 60 องศาเซลเซียส สามารถละลายกากซิลิกา-อะลูมินาได้ใกล้เคียงกับการละลายกากซิลิกา-อะลูมินาเป็นเวลา 24 ชั่วโมง แต่เมื่อทำการสังเคราะห์ซีโอไลต์เอต่อ ดังภาพ 4.21 ปรากฏว่าพบพีคซีโอไลต์เอที่สภาวะ การละลายกากซิลิกา-อะลูมินาได้ใกล้เคียงกับการละลายกากซิลิกา-อะลูมินาเป็นเวลา 24 ชั่วโมง แต่เมื่อทำการสังเคราะห์ซีโอไลต์เอต่อ ดังภาพ 4.21 ปรากฏว่าพบพีคซีโอไลต์เอที่สภาวะ การละลายกากซิลิกา-อะลูมินาไปนเวลา 12 ชั่วโมง ที่ 60 องศาเซลเซียส แต่มีค่าความเป็นผลึก เท่ากับ 60.77 เปอร์เซ็นต์ ซึ่งลดลงไปกว่า 40 เปอร์เซ็นต์ ส่วนที่สภาวะการละลายกากซิลิกา-อะลูมินา เป็นเวลา 6 ชั่วโมง ที่ 60 องศาเซลเซียส ไม่พบพีคใดโดยมีค่าความเป็นผลึก เท่ากับ 0 เปอร์เซ็นต์ ซึ่งสอดคล้องกับเปอร์เซ็นต์กากซิลิกา-อะลูมินาที่ละลายที่มีค่าต่ำทำให้ไม่สามารถ ละลายองค์ประกอบของกากซิลิกา-อะลูมินาออกมาได้เพียงพอต่อการสังเคราะห์ซีโอไลต์เอ

สภาวะการละลาย	กากซิลิกา-อะลูมินาที่ละลาย	ค่าความเป็นผลึก	
	(เปอร์เซ็นต์)	(เปอร์เซ็นต์)	
24 ชั่วโมง ที่ 60 องศาเซลเซียส	43.71	100	
12 ชั่วโมง ที่ 60 องศาเซลเซียส	41.71	60.77	
6 ชั่วโมง ที่ 60 องศาเซลเซียส	26.63	0	

ตารางที่ 4.4 แสดงเปอร์เซ็นต์กากซิลิกา-อะลูมินาที่ละลายที่ 60 องศาเซลเซียสเป็นเวลา 6, 12 และ 24 ชั่วโมง

ภาพที่ 4.21 ดิฟแฟรกโทแกรมของซีโอไลต์ โดยละลายกากซิลิกา-อะลูมินาที่ 60 องศาเซลเซียส เป็นเวลา 6, 12 และ 24 ชั่วโมง

4.3 ศึกษาเปรียบเทียบลักษณะสมบัติต่างๆ ของซีโอไลต์เอที่สังเคราะห์แต่ละวิธี

ในการทดลองนี้จะทำการเปรียบเทียบลักษณะสมบัติต่างของซีโอไลต์เอที่สังเคราะห์ได้ โดยเปรียบเทียบที่สภาวะดังนี้ สภาวะที่ 1 กากที่ผ่านการปรับปรุงเบื้องต้น สภาวะที่ 2 ซีโอไลต์เอที่ สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลเป็นเวลา 3 ชั่วโมง ที่อุณหภูมิ 90 องศาเซลเซียส สภาวะที่ 3 ซีโอไลต์เอที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลเป็นเวลา 4 ชั่วโมง ที่อุณหภูมิ 90 องศาเซลเซียส สภาวะที่ 4 ซีโอไลต์เอที่สังเคราะห์ด้วยวิธีแบบผสมที่ละลายด้วยคลื่นไมโครเวฟ 300 วัตต์ 2 ชั่วโมง จากนั้นสังเคราะห์เป็นเวลา 4 ชั่วโมง ที่อุณหภูมิ 90 องศาเซลเซียส เมื่อทำการวิเคราะห์ค่าความเป็นผลึกและค่าความสามารถในการแลกเปลี่ยนแคลเซียม ดังตาราง 4.5 พบว่าสภาวะที่ 3 มีค่าความเป็นผลึกสูงสุด คือ 100 เปอร์เซ็นต์ และมีค่า ความสามารถในการแลกเปลี่ยนแคลเซียมสูงสุดเช่นกัน คือ 293.5 มิลลิกรัมของแคลเซียม คาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส ซึ่งผ่านมาตรฐานกำหนดที่ 270 มิลลิกรัมของแคลเซียม คาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส ซึ่งผ่านมาตรฐานกำหนดที่ 270 มิลลิกรัมของแคลเซียม คาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส นอกจากนี้พบว่าที่สภาวะที่ 2 มีค่าความเป็นผลึก คือ 97.03 เปอร์เซ็นต์ และมีค่าความสามารถในการแลกเปลี่ยนแคลเซียม คือ 277.01 มิลลิกรัมของ แคลเซียมคาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส ซึ่งผ่านมาตรฐานกำหนดที่ 270 มิลลิกรัมของ แคลเซียมคาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส ซึ่งผ่านมาตรฐานกำหนดที่ 270 มิลลิกรัมของ แคลเซียมคาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส ซึ่งผ่านมาตรฐานกำหนดที่ 270 มิลลิกรัมของ แคลเซียม ไม่ผ่านมาตรฐานกำหนด จะเห็นค่าทั้งสองสภาวะนี้มีค่าความสามารถในการแลกเปลี่ยน แคลเซียม ไม่ผ่านมาตรฐานกำหนด จะเห็นค่าทั้งสองมีความสัมพันธ์ไปในทิศทางเดียวกันคือเมื่อ ค่าความเป็นผลึกสูงขึ้นจะมีค่าความสามารถในการแลกเปลี่ยน สามารถสรุปได้ว่าที่สภาวะ 2 และ 3 เท่านั้นที่เหมาะสมต่อการสังเคราะห์ด้วยวิธีอื่นๆ ไม่เหมาะสม ต่อการสังเคราะห์ดีวยวิธีไฮโลจ์เอ

สภาวะที่	ค่าความเป็นผลึก ค่าความสามารถในการแลกเปลี่ยนแคลเซียม		
	(เปอร์เซ็นต์)	(มก.ของแคลเซียมคาร์บอเนตต่อก.ของซีโอไลต์แอนไฮดรัส) *	
1	0	67.04	
2	97.03	277.01	
3	100	293.50	
4	85.39	219.86	

ตารางที่ 4.5 แสดงสมบัติต่างๆ ของซีโอไลต์เอที่สังเคราะห์จากแต่ละสภาวะ

* ค่ามาตรฐานของความสามารถในการแลกเปลี่ยนแคลเซียมต้องไม่ต่ำกว่า 270 มิลลิกรัมของ แคลเซียมคาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส

ทำการวิเคราะห์โครงสร้างภายนอกด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (scanning electron microscope : SEM) ที่กำลังขยาย 10,000 เท่า ดังภาพ 4.22 เมื่อทำการ เปรียบเทียบโครงสร้างซีโอไลต์เอที่สังเคราะห์จากสภาวะต่างๆ พบว่าเกิดโครงสร้างที่สมบูรณ์คือ เป็นรูปทรงสี่เหลี่ยมลูกบาศก์ชัดเจนที่สุดที่สภาวะที่ 3 คือการสังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลเป็น เวลา 4 ชั่วโมง ที่อุณหภูมิ 90 องศาเซลเซียส ซึ่งส่งผลให้คุณสมบัติอื่น ได้แก่ ค่าความเป็นผลึก ค่าความสามารถในการแลกเปลี่ยนแคลเซียมมีค่าสูงสุดตามไปด้วย

ภาพที่ 4.22 โครงสร้างภายนอกของซีโอไลต์เอที่สังเคราะห์จากแต่ละสภาวะดังนี้ (ก) สภาวะที่ 1 (ข) สภาวะที่ 2 (ค) สภาวะที่ 3 และ (ง) สภาวะที่ 4

4.4 การคำนวณพลังงานที่ใช้ในการสังเคราะห์แต่ละวิธี

4.4.1 ปริมาณพลังงานในขั้นตอนการปรับปรุงกากซิลิกา-อะลูมินา - ปริมาณพลังงานในการบดกากซิลิกา-อะลูมินา (Charles, 1957) พลังงานสำหรับการบดกากซิลิกา-อะลูมินา 2 x 10 ⁻⁴ ตัน/ชั่วโมง ถ้า 80% ของสารตั้งต้นผ่าน ตะแกรง 5 มิลลิเมตร และ 80% ของผลิตภัณฑ์ผ่านตะแกรง 0.075 มิลลิเมตร

วิธีทำ

Materail	Specific gravity	Work Index, W _i
Bauxite	2.20	8.78
Coke	1.31	15.13
Limestone	2.66	12.74
Shale	2.63	15.87

ตารางที่ 4.6 ค่า work index สำหรับแร่ทั่วไป

จากสมการ

$$\frac{p}{\dot{m}} = 0.3162 W_i (\frac{1}{\sqrt{D_{pb}}} - \frac{1}{\sqrt{D_{pa}}})$$

จากตาราง 4.6 Work index ของกากซิลิกา-อะลูมินาประมาณเท่ากับแร่บอกไซด์ (bauxite) เท่ากับ 8.78 ค่าอื่น ๆ ที่จะแทนในสมการ 6.10 ได้แก่

m = ปริมาณสารที่บด, 2 x 10 ⁻³ ตัน/ชั่วโมง

Dpa = ขนาดของสารก่อนบด , 20 มิลลิเมตร

Dpb = ขนาดของสารหลังบด, 0.075 มิลลิเมตร

กำลังที่ต้องใช้ คือ

P = 2 x 10⁻³ x 0.3162 x 8.78
$$\left(\frac{1}{\sqrt{0.075}} - \frac{1}{\sqrt{20}}\right)$$

= 0.02 หน่วย

4.4.1 ปริมาณพลังงานในการเผากากซิลิกา-อะลูมินาเป็นเวลา 3 ชั่วโมง
เมื่อใช้อุณหภูมิ 1200 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้าสูงสุด 8,000 วัตต์
ขั้นตอนนี้ใช้อุณหภูมิ 700 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้า 8,000 x 700 วัตต์

1200

ดังนั้น พลังงานไฟฟ้าที่ใช้ (หน่วย) = 4666 x 3 / 1000

```
= 14 หน่วย
```

4.4.2 ปริมาณพลังงานในขั้นตอนการละลายกากซิลิกา-อะลูมินาด้วยเครื่องกวนแบบให้ ความร้อนเป็นเวลา 24 ชั่วโมง

เมื่อใช้อุณหภูมิ 200 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้าสูงสุด1,520 วัตต์ ขั้นตอนนี้ใช้อุณหภูมิ 60 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้า 1,520 x 60 วัตต์

200

ดังนั้น พลังงานไฟฟ้าที่ใช้ (หน่วย) = 456 x 24 / 1000

= 11 หน่วย

4.4.3 ปริมาณพลังงานในขั้นตอนการละลายกากซิลิกา-อะลูมินาด้วยไมโครเวฟ เป็นเวลา 2 ชั่วโบง

2 ชวเมง

ไมโครเวฟมีกำลังไฟฟ้า 300 วัตต์

ดังนั้น พลังงานไฟฟ้าที่ใช้ (หน่วย) = 300 x 2 / 1000

```
= 0.6 หน่วย
```

4.4.4 ปริมาณพลังงานในขั้นตอนการผสมสารตั้งต้นด้วยเครื่องกวนแบบให้ความร้อนเป็น เวลา 1/6 ชั่วโมง

เมื่อใช้อุณหภูมิ 200 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้าสูงสุด1,520 วัตต์ ขั้นตอนนี้ใช้อุณหภูมิ 60 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้า 1,520 x 60 วัตต์

เครื่องกวนแบบให้ความร้อนมีกำลังไฟฟ้า 456 วัตต์

ดังนั้น พลังงานไฟฟ้าที่ใช้ (หน่วย) = 1520 x 1/6 / 1000

= 0.08 หน่วย

4.4.5 ปริมาณพลังงานในขั้นตอนการสังเคราะห์ด้วยตู้อบไฟฟ้า เป็นเวลา 3 ชั่วโมง เมื่อใช้อุณหภูมิ 250 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้าสูงสุด1,200 วัตต์ ขั้นตอนนี้ใช้อุณหภูมิ 90 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้า 1,200 x 90 วัตต์

250

ดังนั้น พลังงานไฟฟ้าที่ใช้ (หน่วย) = 432 × 3 / 1000

= 1.3 หน่วย

4.4.6 ปริมาณพลังงานในขั้นตอนการสังเคราะห์ด้วยตู้อบไฟฟ้า เป็นเวลา 4 ชั่วโมง เมื่อใช้อุณหภูมิ 250 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้าสูงสุด1,200 วัตต์ ขั้นตอนนี้ใช้อุณหภูมิ 90 องศาเซลเซียส เตาเผาไฟฟ้ามีกำลังไฟฟ้า 1,200 x 90 วัตต์

250

ดังนั้น พลังงานไฟฟ้าที่ใช้ (หน่วย) = 432 x 4 / 1000

= 1.8 หน่วย

	ปริมาณพลังงานไฟฟ้าที่ใช้ (หน่วยหรือยูนิต)				น้ำหนัก	พลังงานที่ใช้	
สภาวะ ส่ ที่	การ ปรับปรุง เบื้องต้น	การ ละลาย กาก	การผสม สารตั้งต้น	การ สังเคราะห์	รวท	ซีโอไลต์เอ ที่ได้ (กรัม)	ทั้งหมดต่อ น้ำหนัก ซีโอไลต์เอ (หน่วยต่อ กรัม)
1	14.02	-	-	-	14.02	100	0.1578
2	14.02	11.48	0.08	1.3	26.88	40	0.6720
3	14.02	11.48	0.08	1.8	27.38	40	0.6845
4	14.02	0.6	0.08	1.8	16.50	8	2.0625

ตาราง 4.7 แสดงพลังงานที่ใช้ทั้งหมดต่อน้ำหนักซีโอไลต์เอในการสังเคราะห์แต่ละวิธี

การคำนวณพลังงานที่ใช้ในการสังเคราะห์ซีโอไลต์เอในแต่ละวิธี โดยคิดจากเครื่องมือที่ใช้ จริงระดับการทดลองในงานวิจัยนี้ ซึ่งสามารถสรุปการใช้พลังงานแบบคร่าวๆ จากตารางที่ 4.7ใน สภาวะที่ 2 และ3 นั้นได้ค่าการใช้พลังงานใกล้เคียงกัน เนื่องจากการสังเคราะห์ด้วยวิธี ไฮโดรเทอร์มัลเช่นเดียวกัน ซึ่งค่าที่ได้น้อยกว่าสภาวะที่ 4 ที่สังเคราะห์ด้วยวิธีไมโครเวฟ เป็นผลมา จากข้อจำกัดของเครื่องมือ โดยสภาวะที่ 4 มีการใช้พลังงานที่ใช้ทั้งหมดต่อน้ำหนักซีโอไลต์เอเป็น กรัมค่อนข้างสูง เนื่องจากวิธีไมโครเวฟนี้สามารถสังเคราะห์ได้สารเพียง 8 กรัมต่อครั้ง แต่ใน สภาวะที่ 2 และ 3 มีการใช้พลังงานที่ใช้ทั้งหมดต่อน้ำหนักซีโอไลต์เอเป็นกรัมที่ต่ำกว่าเนื่องจากวิธี ไฮโดรเทอร์มัลสามารถสังเคราะห์ได้สารในปริมาณที่มากกว่าเท่ากับ 40 กรัมต่อครั้ง

4.5 ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้

ผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้ได้แสดงปริมาณวัตถุดิบที่ใช้ไปรวมถึงผลิตภัณฑ์ และของเสียที่เกิดในการสังเคราะห์ซีโอไลต์เอ ดังภาพที่ 4.23

ภาพที่ 4.23 แผนผังผลกระทบต่อสิ่งแวดล้อมในงานวิจัยนี้

จากกระบวนการการสังเคราะห์ซีโอไลต์เอ ดังแสดงในภาพที่ 4.23 เมื่อนำกากของเสีย ซิลิกา-อะลูมินามาทำการปรับปรุงเบื้องต้นเพื่อกำจัดสารอินทรีย์ ส่งผลให้น้ำหนักหายไปประมาณ 26 เปอร์เซนต์เมื่อเทียบกับกากของเสียเริ่มต้น จากนั้นนำกากที่ผ่านการปรับปรุงเบื้องต้นมา สังเคราะห์ซีโอไลต์เอ พบว่าเกิดกากโซดาไลท์ที่ไม่ละลายต้องทำการกรองทิ้งเป็น 50 เปอร์เซ็นต์ ของน้ำหนักกากหลังการปรับปรุงหรือคิดเป็นน้ำหนักประมาณ 2 กรัม ต่อมานำซีโอไลต์เอที่ สังเคราะห์ได้ไปล้างด้วยน้ำดีไอออไนเซชันซึ่งจะเกิดน้ำล้างมีค่าความเป็นกรด-เบส ประมาณ 10.5 ปริมาตร 15 ลิตร และได้ซีโอไลต์เอจากการสังเคราะห์เป็น 75 เปอร์เซ็นต์ของน้ำหนักกากหลังการ ปรับปรุงหรือประมาณ 3 กรัม

บทที่ 5

สรุปผลการทดลองและข้อเสนอแนะ

5.1 สรุปผลการทดลอง

จากการศึกษาการสังเคราะห์ซีโอไลต์เอจากกากซิลิกา-อะลูมินาด้วยวิธีต่างๆ เพื่อหา สภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอ ได้ข้อสรุปโดยแบ่งเป็นขั้นตอนดังนี้

5.1.1 การปรับปรุงกากซิลิกา-อะลูมินาเบื้องต้น

การปรับปรุงกากซิลิกา-อะลูมินาเบื้องต้นโดยนำกากซิลิกา-อะลูมินามาบดด้วยเครื่องบด(Tube Mill) จากนั้นนำไปร่อนผ่านตะแกรงขนาด 200 เมช และเผาที่อุณหภูมิ 700 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง พบว่าอะลูมินา (Al₂O₃) เพิ่มจาก 54.02 เปอร์เซ็นต์ เป็น 74.68 เปอร์เซ็นต์และซิลิกา (Si₂O) เพิ่มจาก 11.70 เปอร์เซ็นต์ เป็น 14.74 เปอร์เซ็นต์ นอกจากนี้พบว่าสารอินทรีย์ลดลงจาก 26.15 เปอร์เซ็นต์เป็น 0.09 เปอร์เซ็นต์

5.1.2 สภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอร์มัล

สภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอด้วยวิธีไฮโดรเทอรมัลไม่สามารถสังเคราะห์ ซีโอไลต์เอได้ในขั้นตอนเดียว จำเป็นต้องแบ่งขั้นตอนการสังเคราะห์ออกเป็น 3 ขั้นตอน ได้แก่ ขั้นตอนการละลายกากซิลิกา-อะลูมินา ขั้นตอนการผสมสารตั้งต้น และขั้นตอนการสังเคราะห์ แต่ ละขั้นตอนมีข้อสรุปดังนี้

- สภาวะที่เหมาะสมในขั้นตอนการละลายกากซิลิกา-อะลูมินา คือ การละลายกากซิลิกา-อะลูมินาด้วยเครื่องกวนแบบให้ความร้อนที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ปั่น กวนที่ความเร็ว 200 รอบต่อนาที

- สภาวะที่เหมาะสมในขั้นตอนการผสมสารตั้งต้น คือ การผสมสารตั้งต้นด้วยเครื่องกวน แบบให้ความร้อนที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที ปั่นกวนที่ความเร็ว 200 รอบต่อ นาที

- สภาวะที่เหมาะสมในขั้นตอนการสังเคราะห์ คือ การสังเคราะห์ในออโตเครฟด้วยตู้อบ ไฟฟ้าที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง 5.1.3 สภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอด้วยวิธีไมโครเวฟ

จากการศึกษาการสังเคราะห์ซีโอไลต์เอด้วยวิธีไมโครเวฟโดยใช้คลื่นไมโครเวฟขนาด 300 วัตต์ เป็นแหล่งพลังงานแทนการใช้เครื่องกวนแบบให้ความร้อนและตู้อบไฟฟ้าสรุปได้ว่าวิธีนี้ไม่ เหมาะสมต่อการสังเคราะห์ซีโอไลต์เอ เนื่องจากไม่มีสภาวะใดที่สังเคราะห์ซีโอไลต์เอได้ค่าความ เป็นผลึกเกิน 50 เปอร์เซ็นต์ โดยสภาวะที่สังเคราะห์ซีโอไลต์เอได้ค่าความเป็นผลึกสูงสุด คือ การ ละลายด้วยไมโครเวฟ 2 ชั่วโมง และสังเคราะห์ต่อด้วยไมโครเวฟ 1 ชั่วโมง มีค่าความเป็นผลึก เท่ากับ 48.28 เปอร์เซ็นต์

5.1.4 สภาวะที่เหมาะสมในการสังเคราะห์ซีโอไลต์เอด้วยวิธีแบบผสม

การสังเคราะห์ซีโอไลต์เอด้วยวิธีผสมเป็นการสังเคราะห์ที่ผสมจากวิธีไฮโดรเทอร์มัลและวิธี ไมโครเวฟ โดยการใช้คลื่นไมโครเวฟ 300 วัตต์ เป็นแหล่งพลังงานในการสังเคราะห์ขั้นตอนใด ขั้นตอนหนึ่ง โดยแบ่งเป็น 2 แบบ แบบแรก คือ การใช้คลื่นไมโครเวฟในขั้นตอนการสังเคราะห์ แบบที่สอง คือ การใช้คลื่นไมโครเวฟในขั้นตอนการละลาย ได้ข้อสรุปดังนี้

 การใช้คลื่นไมโครเวฟในขั้นตอนการสังเคราะห์ ได้สภาวะที่ดีที่สุดในการสังเคราะห์ ซีโอไลต์เอ คือ การใช้เวลาในสังเคราะห์ 1 ชั่วโมง มีค่าความเป็นผลึกเท่ากับ 52.44 เปอร์เซ็นต์ ดังนั้นการสังเคราะห์วิธีนี้ไม่เหมาะสมต่อการสังเคราะห์ซีโอไลต์เอ เนื่องจากค่าความเป็นผลึกที่ได้ มีค่าต่ำ

การใช้คลื่นไมโครเวฟในขั้นตอนการละลาย ได้สภาวะที่ดีที่สุดในการสังเคราะห์ซีโอไลต์
 เอ คือ การใช้เวลาในละลาย 2 ชั่วโมง มีค่าความเป็นผลึกเท่ากับ 85.39 เปอร์เซ็นต์ ดังนั้นการใช้
 ไมโครเวฟในขั้นตอนการละลายสามารถสังเคราะห์ซีโอไลต์เอได้ค่าความเป็นผลึกสูงกว่าการใช้
 ไมโครเวฟในขั้นตอนการสังเคราะห์

5.1.5 การปรับปรุงขั้นตอนการละลายในการสังเคราะห์ซีโอไลต์เอ

จากการปรับปรุงขั้นตอนการละลายโดยการปรับลดอุณหภูมิและเวลา ได้ข้อสรุปดังนี้ - การปรับลดจากอุณหภูมิ 60 องศาเซลเซียสเป็นที่อุณหภูมิห้อง พบว่าน้ำหนักที่ละลายได้ ลดลงจาก 43.74 เปอร์เซ็นต์ เป็น 21.61 เปอร์เซ็นต์ และเมื่อทำการสังเคราะห์ไม่พบโครงสร้างซี โอไลต์เอ ดังนั้นไม่สามารถปรับลดอุณหภูมิในขั้นตอนการละลายได้

 การปรับลดเวลาจาก 24 ชั่วโมง เป็น 12 และ 6 ชั่วโมง พบว่าน้ำหนักที่ละลายได้ลดลง จาก 43.74 เปอร์เซ็นต์ เป็น 41.71 เปอร์เซ็นต์ และ 26.63 เปอร์เซ็นต์ ตามลำดับ และเมื่อทำการ สังเคราะห์ต่อพบโครงสร้างซีโอไลต์เอเฉพาะที่สภาวะการละลายเป็นเวลา 12 ชั่วโมง ดังนั้นการ ปรับลดเวลาที่เหมาะสม คือการละลายเป็นเวลา 12 ชั่วโมงเท่านั้น แต่ก็ส่งผลให้ค่าความเป็นผลึก ลดลงจาก 100 เปอร์เซ็นต์ เป็น 60.77 เปอร์เซ็นต์ ส่วนการละลายเป็นเวลา 6 ชั่วโมงไม่เหมาะสม ต่อการละลายกากซิลิกา-อะลูมินา

5.1.6 การเปรียบเทียบลักษณะสมบัติต่างๆ ของซีโอไลต์เอที่สังเคราะห์แต่ละวิธี

- เมื่อทำการปรียบเทียบสมบัติต่างๆ ของซีโอไลต์เอที่สังเคราะห์แต่ละวิธี ได้สภาวะที่มีค่า ความสามารถในการแลกเปลี่ยนแคลเซียมผ่านค่ามาตรฐาน คือ การสังเคราะห์ด้วยวิธีไฮโดรเทอร์ มัลที่อุณหภูมิ 90 องศาเซลเซียสเป็นเวลา 3 และ 4 ชั่วโมง โดยมีค่าความเป็นผลึกเท่ากับ 97.03 และ 100 เปอร์เซ็นต์ ตามลำดับ ส่วนการสังเคราะห์วิธีอื่นไม่ผ่านมาตรฐานค่าความสามารถในการ แลกเปลี่ยนแคลเซียม

จากที่สรุปผลการทดลองในแต่ละขั้นตอนดังที่กล่าวมา สามารถกล่าวโดยรวมได้ว่า งานวิจัยนี้สามารถสังเคราะห์ได้ซีโอไลต์เอที่บริสุทธิ์ โดยวิธีที่เหมาะสมที่สุดในการสังเคราะห์ คือ วิธีไฮโดรเทอร์มัล ที่สภาวะดังนี้ ละลายกากที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง แล้ว ทำการกรองซึ่งในขั้นตอนนี้สามารถกำจัดเฟสปนเปื้อนทำให้ได้ซีโอไลต์เอที่บริสุทธิ์ จากนั้นผสม สารตั้งต้นที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 10 นาที แล้วสังเคราะห์ที่อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง อย่างไรก็ตามวิธีการสังเคราะห์แบบอื่นก็สามารถที่จะสังเคราะห์ ชีโอไลต์เอได้เช่นกันแต่ได้ค่าความเป็นผลึกที่ต่ำกว่า โดยสภาวะที่ดีที่สุดในการสังเคราะห์ด้วยวิธี ไมโครเวฟได้ค่าความเป็นผลึก เท่ากับ 48.28 เปอร์เซ็นต์ และสภาวะที่ดีที่สุดในการสังเคราะห์ด้วย วิธีแบบผสมได้ค่าความเป็นผลึก เท่ากับ 85.39 เปอร์เซ็นต์

5.2 ข้อเสนอแนะ

5.2.1 ควรศึกษาการแปรค่าปริมาณกากซิลิกา-อะลูมินาในการสังเคราะห์ซีโอไลต์เอ เนื่องจากในงานวิจัยนี้ไม่สามารถละลายกากซิลิกา-อะลูมินาได้เท่ากับที่คำนวณไว้ จึงอาจปรับโดย เพิ่มปริมาณกากเริ่มต้นให้มีปริมาณสูงขึ้นเพื่อให้ได้น้ำหนักที่สามารถละลายได้เท่ากับที่คำนวณไว้

5.2.2 ควรศึกษาการสังเคราะห์ซีโอไลต์เอจากกากของเสียชนิดอื่นๆ ที่มีองค์ประกอบของ ซิลิกาและอะลูมินา

5.2.3 ควรศึกษาการปรับลดอุณหภูมิในการเผากากซิลิกา-อะลูมินาจากเดิมเผาที่อุณหภูมิ 700 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง เพื่อหาสภาวะการปรับลดอุณหภูมิที่ได้องค์ประกอบทาง เคมีไม่แตกต่างจากเดิม เพื่อช่วยลดพลังงานในกระบวนการสังเคราะห์

5.2.4 ควรศึกษาการนำกากซิลิกา-อะลูมินาที่ไม่ละลายที่ได้จากการกรองทิ้ง โดยวิเคราะห์ ค่าความสามารถในการแลกเปลี่ยนแคลเซียม และนำไปใช้ประโยชน์ในด้านอื่นๆต่อไป เช่นดูดซับ โลหะหนัก ดูดซับแก๊สแอมโมเนีย เป็นต้น
รายการอ้างอิง

ภาษาไทย

- จตุพร วิทยาคุณ และ นุรักษ์ กฤษดานุรักษ์. 2547. <u>การเร่งปฏิกิริยาพื้นฐานและการประยุกต์</u>. กรุงเทพฯ : โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์.
- จำรัส ลิ้มตระกูล. 2540. เคมีของซีโอไลต์. <u>วารสารวิทยาศาสตร์</u> 51, 6 (พฤศจิกายน-ธันวาคม) : 420-423.
- ประเสริฐ เรื่องยศสกุล และ ปียะวัฒน์ แปงพั้วะ. 2551. <u>การเตรียมซีโอไลต์จากวัตถุดิบในประเทศ</u> เพื่ออุตสาหกรรมผงซักฟอก. ปริญญานิพนธ์บัณฑิต ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- ภาพสูตรโครงสร้างของสารแอนทราควินโนน. [ออนไลน์]. แหล่งที่มา: http://en.wikipedia.org/wiki/Anthraquinone. [2553, มกราคม 15]
- ภาพแสดงปฏิกิริยาการผลิตสารประกอบไฮโดรเจนเปอร์ออกไซด์. [ออนไลน์]. แหล่งที่มา: http://en.wikipedia.org/wiki/Hydrogen_peroxide. [2553, มกราคม 15]
- มนตรี ทองคำ. 2542. <u>การสังเคราะห์ซีโอไลต์จากเถ้าลอยถ่านหิน</u>. วิทยานิพนธ์ปริญญา มหาบัณฑิต ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- มนธวัล บุญส่งประเสริฐ. 2550. การ<u>สังเคราะห์ซีโอไลต์Na-X จากดินขาวธรรมชาติ</u>. วิทยานิพนธ์ ปริญญามหาบัณฑิต ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- เลิศ รักสันติชาติ. 2545. <u>การฟื้นฟูสภาพซีโอไลต์ชนิดเอ็กซ์ที่ใช้แล้วสำหรับดูดซับเอทีลีนไกคอล.</u> วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- ไลทิพย์ อภิธรรมวิริยะ. 2542. <u>การนำซิลิกา-อลูมินาที่ใช้แล้วมาใช้ประโยชน์ในการทำวัสดุปูพื้น.</u> วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- สาโรจน์ ปัชโชติพงษ์ 2545. <u>การนำซิลิกา-อลูมินาที่ใช้แล้วมาใช้ประโยชน์เป็นตัวทนไฟในการทำ</u> <u>เซรามิก</u>. วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- หฤษฏ์ ธิตินันท์. 2546. <u>การนำซิลิกา-อลูมินาที่ใช้แล้วมาใช้ประโยชน์เพื่อการผลิตคอนกรีตบล็อก</u>. วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.

- อนรรฆอร พันธุไพศาล. 2549. <u>การสังเคราะห์ซีโอไลต์จากเถ้าลอยถ่านหินและจากเถ้าลอยชาน</u> <u>อ้อยเพื่อกำจัดตะกั่วในน้ำเสียอุตสาหกรรม</u>. วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชา วิทยาศาสตร์สิ่งแวดล้อม คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- อุตสาหกรรม, กระทรวง. 2540. มาตรฐานกระทรวงอุตสาหกรรม 1422-2540 (พ.ศ. 2540). กำหนด มาตรฐานผลิตภัณฑ์ อุตสาหกรรมซีโอไลต์สำหรับอุตสาหกรรมสารซักฟอก.

ภาษาอังกฤษ

- Anuwattana, R. Kenneth, J.B. Asavapisit, S. and Khummongkol, P. 2008. Conventional and microwave hydrothermal synthesis of zeolite ZSM-5 from the cupola slag. <u>Microporous and Mesoporous Materials.</u> 111 : 260-266.
- Anuwattana, R. and Khummongkol, P. 2009. Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge. <u>Journal of Hazardous</u> <u>Materials</u>. 166 : 227-232.
- Baerlocher, Ch. Meier, W.M. and Olson, D.H. 2001. <u>Atlas of Zeolite Structure Types</u>. 5th ed. Zurich Switzerland : ELESEVIER.
- Bhatia, S. 1990. <u>Zeolite Catalysis</u>. Principles and applications. Boca Raton, Florida : CRC Press, inc.
- Breck, D.W. 1974. <u>Zeolite Molecular Sieves</u>. Structure, chemistry and use. New York : John Wiley & Sons.
- Bruce, C. Gates. 1991. Catalytic Chemistry. New York : John Wiley & Sons.
- Charles, R.J. 1957. Energy Size Reduction Relationships in Comminution. Min.Engg.
- Dyer A. 1988. <u>An Introduction to Zeolite Molecular Sieves</u>. New York : John Wiley & Sons.
- Farrauto, R.J. and Bartholomew, C.H. 1997. <u>Fundamentals of industrial catalytic</u> <u>process</u>. London ; Blackie Academic & Professional.
- Fernandes Machado, N.R.C. and Malachinh Miotto, D.M. 2005. Synthesis of Na-a and Na-X zeolites from oil shale ash. <u>Fuel</u>. 84 : 2289-2294.
- Hiroaki, A. and Sridhar, K. 2009. Synthesis of Na-a and/ or Na-X zeolite/porous carbon composites from carbonized rice husk. Journal of solid State Chemistry. 182 : 1749-1753.

- Ivan, C. Fernando, G.C. and Jose, C. 2007. Synthesis of X-type Zeolite from Dealuminated Kaolin by Reaction with Sulfuric Acid at High Temperature. <u>Ind.</u> <u>Eng. Chem. Res</u>. 46 : 1029-1038.
- Kolay, P.K. Singh, D.N. and Muti, M.V.R. 2001. Synthesis of zeolites from a lagoon ash. <u>Fuel</u>. 80 : 739-745.
- Lucio, B. and Edoardo, P. 2003. Microwave assisted crystallization of zeolite A from dense gels. Journal of crystal Growth. 247 ; 555-562.
- Smith, J.V. 1976. Zeolite Chemistry and Catalysis. J.A. Rabo Ed. ACS Monograph 171,
- Szostak, R. 1989. <u>Molecular sieves principles of synthesis and identification</u>. New York : Van Nostrand Reinhold.
- Takaaki, W. Miokok, H. Keiko, K. Hiroji, I. Osamu, T. Kashiko, I. Takashi, N. Robert, T.D. and John, F.R. 2006. Zeolitesynthesis from paper sludge ash low temperature (90°C) with addition of diatomite. <u>Jounal of Hazardous Materials</u>. B132 : 244-252.

ภาคผนวก

ภาคผนวก ก การหาองค์ประกอบของวอเตอร์กลาสโดยการไทเทรต (ประเสริฐ เรื่องยศสกุล และ ปิยะวัฒน์ แปงพั๊วะ., 2551)

<u>ตอนที่ 1</u> หาความเข้มข้นที่แน่นอนของไฮโดรคลอริก ความเข้มข้นของโพแทสเซียมไฮดรอกไซด์ ชั่งโพแทสเซียมไฮดรอกไซด์ 7.080 กรัม ในขวดวัดปริมาตร 250.00 มิลลิลิตร สารละลายโพแทสเซียมไฮดรอกไซด์ความเข้มข้น 0.5047 โมลาร์ นำสารละลายโพแทสเซียมไฮดรอกไซด์ที่เตรียมได้ไทเทรตกับสารละลายไฮโดรคลอริก 10.00 มิลลิลิตร ได้ผลดังตาราง ก.1

		-1 14 14 -	
	ปริมาตรของโพแท	สเซียมไฮดรอกไซด์	ปริมาตร
ขวดที่	(มิลลี	ลิตร)	โพแทสเซียมไฮดรอกไซด์ที่ใช้
	เริ่มต้น	สิ้นสุด	(มิลลิลิตร)
1	0.00	9.80	9.80
2	10.00	19.80	9.80
3	20.00 29.80		9.80
	ค่าเฉลี่ย ± ค่าเบี่	ยงเบนมาตรฐาน	9.80± 0.00

ตารางที่ ก.1 แสดงค่าค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของปริมาตรโพแทสเซียมไฮดรอกไซด์ที่ใช้

ความเข้มข้นของสลล.ไฮโดรคลอริก = ปริมาตร x ความเข้มข้นของสลล.โพแทสเซียมไฮดรอกไซด์

ปริมาตรของสลล.ไฮโดรคลอริก

= 9.83 x 0.5047 / 10.00 โมลาร์

= 0.4946 โมลาร์

<u>ตอนที่ 2</u> หาปริมาณโซเดียมออกไซด์ในวอเตอร์กลาส

ชั่งวอเตอร์กลาสประมาณ 0.50 กรัม เติมน้ำดีไอออไนเซชัน 50 มิลลิลิตร ใช้เมทิลเรดเป็น อินดิเคเตอร์ไทเทรตด้วยสารละลายไฮโดรคลอริกจากสารละลายสีเหลืองให้เป็นสีส้ม

> $Na_2O + H_2O \longrightarrow 2NaOH$ $NaOH + HCI \longrightarrow NaCI + H_2O$

จากปฏิกิริยาดังกล่าวเป็นปฏิกิริยาสะเทินซึ่งเมทิลเรดเป็นอินดิเคเตอร์ เปลี่ยนสารละลายจากสี เหลืองในช่วงเบสไปเป็นสีส้มในช่วงกรด

a 2 2 2 2 2 2	ปริมาตรของไฮ (มิลลิลิ	เโดรคลอริก ตร)	ปริมาตร ไฮโดรคลอริกที่ใช้	น้ำหนัก วอเตอร์กลาส	โซเดียมออกไซด์ (ร้อยอะ)	
Π.9Ν.ΝΙ	เริ่มต้น	เริ่มต้น สิ้นสุด		(กรัม)	(1.□□.□.∞)	
1	0.00 3.70		3.70	0.50	11.35	
2	5.00	8.60	3.60	0.50	11.04	
3	10.00 13.45		3.45	3.45 0.51		
			ค่าเฉลี่ย ± ค่าเบี่ย [ุ]	10.92 ± 0.50		

ตารางที่ ก.2 แสดงค่าค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของปริมาณโซเดียมออกไซด์

หาปริมาณโซเดียมออกไซด์จากสูตร

%Na₂O = (3.1x V_{HCI}X[HCI]) / (water glass weight) = 10.92 ± 0.50 %

<u>ตอนที่ 3</u> หาปริมาณซิลิกอนออกไซด์ในวอเตอร์กลาส

ชั่งวอเตอร์กลาสประมาณ 0.50 กรัม เติมน้ำดีไอออไนเซชัน 50 มิลลิลิตร และเติมโซเดียม ฟลูออไรด์ 2.5 กรัม คนจนสารละลายเป็นเนื้อเดียวกันไทเทรตด้วยสารละลายไฮโดรคลอริกใช้ เมทิลเรดเป็นอินดิเคเตอร์ จากสารละลายสีเหลืองให้เป็นสีชมพู โดยในขั้นแรกจะเกิดกรด ไฮโดรฟลูออริก ดังสมการที่ 3.1 ซึ่งกรดไฮโดรฟลูออริกที่เกิดขึ้นจะเกิดปฏิกิริยาต่อกับโซเดียม ซิลิเกต ทำให้ได้ซิลิกอนฟลูออไรด์ (Silicon fluoride) และสามารถคำนวณโดยเปรียบเทียบ อัตราส่วนโมลของสารละลายไฮโดรคลอริกกับโซเดียมซิลิเกตจากสมการเพื่อหาปริมาณของ ซิลิกอนออกไซด์ จากสารตัวอย่าง

 $NaF + HCI \longrightarrow HF + NaCI \qquad \dots 3.1$ $Na_2SiO_3 + 6HF \longrightarrow SiF_4 + 3H_2O + NaF \qquad \dots 3.2$

 $Na_2SiO_3 + 4HF + 6HCI \longrightarrow SiF_4 + 6NaCI + 3H_2O \dots 3.3$

หลังจากนั้นไทเทรตกลับด้วยสารละลายโพแทสเซียมไฮดรอกไซด์จนสารละลายเป็นสี เหลืองดังสมการที่ 3.4 ทั้งนี้ในสมการที่ 3.1 จะใส่กรดไฮโดรคลอริกที่มากพอเพื่อให้แน่ใจว่าจะเกิด กรดไฮโดรฟลูออริกที่สามารถทำปฏิกิริยากับโซเดียมซิลิเกตได้อย่างพอดี ดังนั้นจึงมีการไทเทรต กลับเพื่อให้ทราบปริมาณที่แน่นอนของกรดไฮโดรคลอริกที่ใช้ในปฏิกิริยา

ตารางที่ ก.3 แสดงค่าค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของปริมาณซิลิกอนออกไซด์

	ปริมาเ	୭୨୩୦୬		ปริมาตรของ		ปริมาตร		
	ไฮโดรเ	ไฮโดรคลอริก ปริมาตร		โพแทส	สเซียม	โพแทสเซียม	น้ำหนัก	22001
	ที่	ไข้	ไฮโดรคลอ	ไฮดรอกไซด์ที่ใช้		ไฮดรอกไซด์	วอเตอร์	ขตกขน
ขาด สู่	(มิลลิ	ເລື່ອງ)	ริกที่ใช้	(มิลลิลิตร)		ที่ใช้	กลาส	ข้อมอะง
νI	เริ่มต้น	สิ้นสุด	(มิลลิลิตร)	เริ่มต้น	สิ้นสุด	(มิลลิลิตร)	(กรัม)	(1,5582)
1	0.00	27.50	27.50	0.00	1.50	1.50	0.52	37.11
2	0.00	28.00	28.00	0.00	1.70	1.90	0.52	37.53
3	0.00	27.90	27.90	0.00	1.35	1.35	0.52	37.90
						ค่าเฉลี	ၛ	37.51
						± ค่าเบี่ยงเบน	มาตรฐาน	± 0.40

หาปริมาณซิลิกอนออกไซด์จากสูตร

 $\text{SiO}_2 = 1.5022 \text{ x} ((V_{HCI} \text{ x} [HCI]) - V_{KOH} \text{ x} [KOH]) / (water glass weight)$

= 37.51 ± 0.40 %

ภาคผนวก ข การคำนวณองค์ประกอบในการสังเคราะห์ซีโอไลต์เอ

ซีโอไลต์เอต้องมีองค์ประกอบต่อโมลดังนี้ 1Al₂O₃ : 1.926SiO₂ : 3.165Na₂O : 128H₂O ตารางที่ ข.1 แสดงการคำนวณองค์ประกอบในการสังเคราะห์ซีโอไลต์เอ

สาร	น้ำหนัก	%Al ₂ O ₃	%SiO ₂	%Na ₂ O	%H ₂ O	Al_2O_3	SiO ₂	Na ₂ O	H ₂ O
	สาร								
	(กรัม)								
กาก	125.87	74.68	14.68	4.13	-	1	0.31	0.08	-
ซิลิกา-									
อะลูมินา									
วอเตอร์	258.00	-	37.51	10.92	51.48	-	1.616	0.45	7.37
กลาส									
โซเดียม	337.28	-	-	50	50	-	-	2.64	2.64
ไฮดรอก									
ไซด์									
น้ำ	2123.82	-	-	-	100	-	-	-	117.99
						1	1.926	3.17	128

1. หาปริมาณกากซิลิกา-อะลูมินาที่ใช้

ต้องการ Al₂O₃ 1 mol x 94 g/mol = 94 กรัม

มี่ Al₂O₃ 74.68 กรัม จากกากซิลิกา-อะลูมินา 100 กรัม

ต้องการ Al₂O₃ 94.00 กรัม ต้องใช้กากซิลิกา-อะลูมินา = [100 x 94/74.68] = 125.87 กรัม

- จะมี SiO₂ = [14.68 x 125.87 / 100 x 60] = 0.31 โมล

- จะมี่ Na₂O = [4.13 x 125.87 / 100 x 62] = 0.08 โมล

2. หาปริมาณวอเตอร์กลาสที่ใช้

ต้องการ SiO₂ (1.926-0.31) = 1.616 mol x 60 g/mol = 96.96 กรัม

มี SiO₂ 37.51 กรัม จากวอเตอร์กลาส 100 กรัม

ต้องการ SiO₂ 96.96 กรัม ต้องใช้วอเตอร์กลาส = [100 x 96.96/37.58] = 258.00 กรัม

- จะมี่ Na₂O = 0.45 โมล [10.92 x 258.00 / 100 x 62]

- จะมี่ H₂O = 7.37 โมล [51.48 x 258.00 / 100 x 18]

.40 X 200.00 / 100 /

3. หาปริมาณโซเดียมไฮดรอกไซด์ที่ใช้

ต้องการ Na₂O (3.165-0.37-0.08) = 2.72 mol x 62 g/mol = 168.64 กรัม

มี Na₂O 50.00 กรัม จากโซเดียมไฮดรอกไซด์ 100.00 กรัม

ต้องการ Na₂O 168.64 กรัม ต้องใช้โซเดียมไฮดรอกไซด์ = [100 x 168.64/50.00] = 337.28 กรัม

- จะมีน้ำ = 2.72 โมล

4. หาปริมาณน้ำที่ใช้

ต้องการน้ำ (128-6.01-2.72) = 117.99 mol x 18 g/mol = 2123.82 กรัม

ตารางที่ ข.2 แสดงปริมาณน้ำหนักของสารตั้งต้นแต่ละชนิดในการสังเคราะห์สารทั้งหมด 90 กรัม

สาร	น้ำหนักสาร	น้ำหนักสารในการ		
	จากการคำนวณ (กรัม)	สังเคราะห์ 90กรัม		
กากซิลิกา-อะลูมินา	125.87	3.98		
วอเตอร์กลาส	258.00	8.16		
โซเดียมไฮดรอกไซด์	337.28	10.67		
น้ำ	2123.82	67.19		
น้ำหนักรวม	2844.97	90		

ดังนั้นในการสังเคราะห์สารปริมาณ 90 กรัมจะต้องใช้สารตั้งต้นดังต่อไปนี้

- กากซิลิกา-อะลูมินา = 3.98 กรัม
- วอเตอร์กลาส = 8.16 กรัม
- โซเดียมไฮดรอกไซด์ = 10.67 กรัม
- น้ำ = 67.19 กรัม

ภาคผนวก ค วิธีวิเคราะห์ความสามารถในการแลกเปลี่ยนแคลเซียม (มอก. 1422-2540)

วิธีวิเคราะห์ความสามารถในการแลกเปลี่ยนแคลเซียม ตามกำหนดมาตรฐานผลิตภัณฑ์ อุตสาหกรรมซีโอไลต์สำหรับอุตสาหกรรมสารซักฟอก มาตรฐานกระทรวงอุตสาหกรรม 1422-2540 (พ.ศ. 2540) มีรายละเอียดของการวิเคราะห์ดังต่อไปนี้

<u>เครื่องมือที่ใช้</u>

- 1. เครื่องกวนไฟฟ้าพร้อมแท่งแม่เหล็ก
- 2. นาฬิกาจับเวลา
- 3. กระบอกฉีดยา (ปราศจากเข็มฉีดยา) ขนาด 30 ลูกบาศก์เซนติเมตร
- 4. เครื่องกรองสุญญากาศ
- 5. กระดาษกรองวัตแมน เบอร์ 42
- 6. ขวดรูปชมพู่ ขนาด 250 มิลลิลิตร

<u>วิธีเตรียมสารละลาย</u>

<u>สารเคมี สารละลายและวิธีเตรียม</u>

- สารละลายแลกเปลี่ยนแคลเซียม (calcium exchange solution) 1000 มิลลิกรัมต่อกิโลกรัม

ชั่งแคลเซียมคลอไรด์ไดไฮเดรต 2.938 กรัม ให้ทราบมวลแน่นอน ละลายด้วยน้ำกลั่นถ่าย ใส่ขวดแก้วปริมาตรขนาด 2000 ลูกบาศก์เซนติเมตร ปรับความเป็นกรด-ด่างของสารละลายให้ได้ 10.0 ด้วยสารละลายแอมโมเนียมไฮดรอกไซด์ ร้อยละ 28 โดยน้ำหนัก และกรดไฮโดรคลอริก เข้มข้น ความหนาแน่น 1.19 กรัมต่อลูกบาศก์เซนติเมตร แล้วเจือจางด้วยน้ำกลั่นจนถึงขีดปริมาตร - สารละลายโซเดียมไฮดรอกไซด์ 1 โมลต่อลูกบาศก์เดซิเมตร

ชั่งโซเดียมไฮดรอกไซด์ 40 กรัม ละลายด้วยน้ำกลั่น ถ่ายใส่ขวดแก้วปริมาตรขนาด 1000 ลูกบาศก์เซนติเมตร แล้วเจือจางด้วยน้ำกลั่นจนถึงขีดปริมาตร

- สารละลายบัฟเฟอร์

ชั่งแอมโมเนียมคลอไรด์ 67.5 กรัม ละลายด้วยน้ำกลั่น 300 ลูกบาศก์เซนติเมตร เตมสาร ละลายแอมโมเนียมไฮดรอกไซด์ ร้อยละ 28 โดยน้ำหนัก 570 ลูกบาศก์เซนติเมตร ถ่ายใสขวด แก้วปริมาตรขนาด 1000 ลูกบาศก์เซนติเมตร แล้วเจือจางด้วยน้ำกลั่นจนถึงขีดปริมาตร

- ไฮดรอกซีแนฟทอลบลูอินดิเคเตอร์

- สารละลายมาตรฐานอีดีทีเอ 0.005 โมลต่อลูกบาศก์เดซิเมตร

ชั่งไดโซเดียมเอทิลีนไดแอมีนเททระแอซีเทตไดไฮเดรต (disodium ethylenediamine tetraacetate dihydrate) 3.734 กรัม ละลายด้วยน้ำกลั่น ถ่ายใส่ขวดแก้วปริมาตร 2000 ลูกบาศก์ เซนติเมตร แล้วเจื้อจางด้วยน้ำกลั่นจนถึงขีดเริ่มาตร

สอบเทียบความเข้มข้นของสารละลายมาตรฐานอีดีทีเอโดยชั่งแคลเซียมคาร์บอเนต(ที่ อบแห้งที่อุณหภูมิ 200 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง และตั้งทิ้งไว้ให้เย็นในเดซิเคเตอร์แล้ว) ประมาณ 0.5 กรัม ให้ทราบมวลแน่นอนถึง 0.0001 กรัม ใส่ลงในขวดแก้วปริมาตรขนาด 500 ลูกบาศก์เซนติเมตร ละลายด้วยกรดไฮโดรคลอริกเข้มข้น ความหนาแน่น 1.19 กรัมต่อลูกบาศก์ เซนติเมตร 0.8 ลูกบาศก์เซนติเมตร แล้วเจือจางด้วยน้ำกลั่นจนถึงขีดปริมาตร ใช้ปีเปตดูด สารละลายนี้ 10.0 ลูกบาศก์เซนติเมตร ใส่ในขวดแก้วรูปกรวยขนาด 125 ลูกบาศก์เซนติเมตร เติมสารละลายโซเดียมไฮดรอกไซด์ 5 ลูกบาศก์เซนติเมตร สารละลายบัฟเฟอร์ 2 ลูกบาศก์ เซนติเมตร และไฮดรอกซีแนฟทอลบลูอินดิเคเตอร์ 0.1 กรัม นำไปไทเทรตกับสารละลายมาตรฐาน ้อีดีทีเอจนถึงจุดยุติเมื่อสีของสารละลายเปลี่ยนจากสีแดงเป็นสีน้ำเงิน คำนวณหาความเข้มข้นของ สารละลายมาตรฐานอีดีทีเอ

ขวดที่	ปริมาตรของสา อีดีทีเอเป็นลูก เริ่มต้น	รละลายมาตรฐาน เบาศก์เซนติเมตร สิ้นสุด	ปริมาตรของสารละลายมาตรฐาน อีดีทีเอเป็นลูกบาศก์เซนติเมตร
1	0.00	19.20	19.20
2	20.00 29.25		19.25
3	0.00	19.20	19.20
	ค่าเฉลี่ย ± ค่าเ	เ ปี่ยงเบนมาตรฐาน	19.21 ± 0.03
	สารละล	ายมาตรฐานอีดีทีเอ	= m
	โมลต่อล	เกบาศก์เดซิเมตร	V x 100.09 x 50

ตารางที่ ค.1 แสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของปริมาตรของสารละลายมาตรฐานอีดีทีเอ

โมลต่อลูกบาศก้เดซีเมตร

เมื่อ m คือ มวลของแคลเซียมคาร์บอเนต เป็นมิลลิกรัม

V คือ ปริมาตรของสารละลายมาตรฐานอีดีทีเอที่ใช้ไทเทรต เป็นลูกบาศก์เซนติเมตร สารละลายมาตรฐานอีดีทีเอ = 0.0052 โมลต่อลูกบาศก์เดซิเมตร

<u>วิธีวิเคราะห์</u>

สภาวะในการทดลองได้แก่ สภาวะที่ 1 กากที่ผ่านการปรับปรุงเบื้องต้น สภาวะที่ 2 ซีโอไลต์เอที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลเป็นเวลา 3 ชั่วโมงที่อุณหภูมิ 90 องศาเซลเซียส สภาวะที่ 3 ซีโอไลต์เอที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลเป็นเวลา 4 ชั่วโมงที่อุณหภูมิ 90 องศาเซลเซียส สภาวะที่ 4 ซีโอไลต์เอที่สังเคราะห์ด้วยวิธีแบบผสมที่ละลายด้วยคลื่นไมโครเวฟ 300 วัตต์ 2 ชั่วโมง และสังเคราะห์เป็นเวลา 4 ชั่วโมงที่อุณหภูมิ 90 องศาเซลเซียส

 1. ชั่งซีโอไลต์ 0.5 กรัม ในครูซิเบิลพร้อมฝา ให้ทราบมวลแน่นอน แล้วนำครูซิเบิลไปเผาใน เตาเผาที่อุณหภูมิ 600 องศาเซลเซียส ± 20 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง ปิดฝาครูซิเบิลนำ ออกจากเตาเผา ตั้งทิ้งไว้ให้เย็นในเดซิเคเตอร์จนถึงอุณหภูมิห้อง แล้วชั่ง คำนวณหาน้ำหนักที่ สูญเสียเนื่องจากการเผา จากสูตร

ีเมื่อ M₁ คือ มวลตัวอย่างก่อนเผา เป็นกรัม

M₂ คือ มวลตัวอย่างหลังเผา เป็นกรัม

2. ใส่สารละลายแลกเปลี่ยนแคลเซียม 250 ลูกบาศก์เซนติเมตร ลงในบีกเกอร์ขนาด
 400 ลูกบาศก์เซนติเมตร ใส่แท่งแม่เหล็ก ปิดปากบีกเกอร์ด้วยกระจกนาฬิกา ตั้งไว้ในอ่างน้ำที่
 อุณหภูมิ 25 องศาเซลเซียส ± 1 องศาเซลเซียส ซึ่งตั้งอยู่บนเครื่องกวนไฟฟ้า เปิดเครื่องกวนไฟฟ้า
 ให้หมุนด้วยอัตราเร็วเกิน 600 รอบต่อนาที เป็นเวลาไม่น้อยกว่า 15 นาที

3.ชั่งตัวอย่างประมาณ 0.5 กรัม ให้ทราบมวลแน่นอน แล้วถ่ายลงในสารละลาย แลกเปลี่ยนแคลเซียมอย่างรวดเร็วพร้อมกับจับเวลาด้วยนาฬิกาจับเวลาทันที เมื่อครบเวลา 15 นาที ใช้กระบอกฉีดยาดูดสารละลายแขวนลอย 15 ลูกบาศก์เซนติเมตร มากรองอย่างเร็ว โดยใช้ เวลาไม่เกิน 15 วินาที ด้วยเครื่องกรองสุญญากาศและกระดาษกรองวัตแมน เบอร์ 42 ให้ส่วน ปลายของกรวยยื่นเข้าไปในคอขวดกรองขนาด 1,000 ลูกบาศก์เซนติเมตร โดยมีหลอดทดลอง บรรจุอยู่เพื่อเก็บสารละลายส่วนใสไว้ ถอดเครื่องกรองสุญญกาศ สารละลายที่กรองได้ต้องใส ถ้า ไม่ใสให้ทำการกรองใหม่อีกครั้ง

สภาวะ	ครั้ง	มวลตัวอย่า	าง เป็นกรัม	น้ำหนักที่สูญเสีย	ค่าเฉลี่ย ±
ที่ที	ที่	ก่อนเผา	หลังเผา	เนื่องจากการเผา ร้อยละ	ค่าเบี่ยงเบนมาตรฐาน
	1	0.5000	0.4341	13.18	
1	2	0.4999	0.4300	13.98	13.30 ± 0.63
	3	0.5000	0.4363	12.74	
	1	0.5001	0.4350	13.02	
2	2	0.4999	0.4207	15.84	14.51 ± 1.42
	3	0.4999	0.4265	14.68	
	1	0.5000	0.4296	14.08	
3	2	0.5000	0.4196	16.08	15.17 ± 1.01
	3	0.5001	0.4234	15.34	
	1	0.5000	0.4371	12.58	
4	2	0.4999	0.4489	10.20	11.42 ± 1.19
	3	0.5000	0.4427	11.46	

ตารางที่ ค.2 แสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของน้ำหนักที่สูญเสียเนื่องจากการเผาที่ สภาวะที่ 1-4

 4. ใช้ปีเปตดูดสารละลายส่วนใสที่กรองได้ 10.0 ลูกบาศก์เซนติเมตร ใส่ลงในขวดแก้ว ปริมาตรขนาด 125 ลูกบาศก์เซนติเมตร เติมสารละลายโซเดียมไฮดรอกไซด์ 5 ลูกบาศก์ เซนติเมตร สารละลายบัฟเฟอร์ 2 ลูกบาศก์เซนติเมตร และไฮดรอกซีแนฟทอลบลูอินดิเคเตอร์
 0.1 กรัม ไทเทรตด้วยสารละลายมาตรฐานอีดีทีเอจนถึงจุดยุติเมื่อสารละลายเปลี่ยนจากสีแดงเป็น สีน้ำเงิน

5. ทำแบลงค์เปรียบเทียบ ถ้าปริมาตรของสารละลายมาตรฐานอีดีทีเอที่ใช้ในการไทเทรต
 2 ครั้ง ต่างกันเกิน 0.10 ลูกบาศก์เซนติเมตร ให้ทำแบลงค์เปรียบเทียบใหม่

คำนวณหาความสามารถในการแลกเปลี่ยนแคลเซียม จากสูตร ความสามารถในการแลกเปลี่ยนแคลเซียม = (V₂ – V₁) x c x 100.09 x 25 x 100 มิลลิกรัมของแคลเซียมคาร์บอเนตต่อกรัม m (100-L) ของซีโอไลต์แอนไฮดรัส

- เมื่อ V₁ คือ ปริมาตรของสารละลายมาตรฐานอีดีทีเอ ที่ใช้ไทเทรตกับสารละลายตัวอย่าง เป็นลูกบาศก์เซนติเมตร
 - V₂ คือ ปริมาตรของสารละลายมาตรฐานอีดีทีเอที่ใช้ไทเทรตกับแบลงค์ เป็นลูกบาศก์เซนติเมตร
 - c คือ ความเข้มข้นของสารละลายมาตรฐานอีดีทีเอ เป็นโมลต่อลูกบาศก์เดซิเมตร
- 100.09 คือ น้ำหนักโมเลกุลของแคลเซียมคาร์บอเนต
 - m คือ มวลของตัวอย่าง เป็นกรัม
 - L คือ น้ำหนักที่สูญเสียเนื่องจากการเผา เป็นร้อยละ

-						
สภาวะ	% LOI	Wt. of	Blank	Volume of	CEC	average ±
	(L)	sample	(V ₂)	EDTA		SD.
		(m)		(V ₁)		
1		0.4999	20.50	18.25	67.55	
	13.30	0.5000	20.50	18.30	66.03	67.04
		0.5000	20.50	18.25	67.53	
2		0.5000	20.45	11.30	278.53	
	14.51	0.4999	20.45	11.40	275.54	277.01
		0.5001	20.45	11.35	276.95	
3		0.4999	20.55	11.00	293.03	
	15.17	0.5000	20.55	10.90	296.03	293.50
		0.5000	20.55	11.05	291.43	
4		0.4999	20.30	12.80	220.38	
	11.42	0.5000	20.30	12.80	220.34	219.86
		0.5000	20.30	12.85	218.87	

ตารางที่ ค.3 แสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐานของค่าความสามารถในการแลกเปลี่ยน แคลเซียมที่สภาวะที่ 1-4

โดยที่	% LOI (L)	คือ	น้ำหนักที่สูญเสียเนื่องจากการเผา เป็นร้อยละ
	Wt. of sample (m)	คือ	มวลของตัวอย่าง เป็นกรัม
	Blank (V_2)	คือ	ปริมาตรของสารละลายมาตรฐานอีดีทีเอที่ใช้ไทเทรต
			กับแบลงค์ เป็นลูกบาศก์เซนติเมตร
	Volume of EDTA (V_1)	คือ	ปริมาตรของสารละลายมาตรฐานอีดีทีเอที่ใช้ไทเทรต
			กับแบลงค์ เป็นลูกบาศก์เซนติเมตร
	CEC	คือ	ค่าความสามารถในการแลกเปลี่ยนแคลเซียม เป็นมิลลิกรัม
			ของแคลเซียมคาร์บอเนตต่อกรัมของซีโอไลต์แอนไฮดรัส
	average ± SD.	คือ	ค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน

ภาคผนวก ง วิธีวิเคราะห์ความค่าความเป็นผลึก

การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์เอที่สังเคราะห์ได้ด้วยเครื่องเอกซ์เรย์ดิฟแฟรก โตมิเตอร์ (X-ray diffractometer : XRD) ยี่ห้อ Rigaku D/MAX-220 Ultima⁺ จากนั้นทำการ วิเคราะห์ค่าความเป็นผลึก (Crystallinity) ตามสมการด้านล่าง

ค่าความเป็นผลึก = <u>ผลรวมของพื้นที่ใต้กราฟที่ 20 ของซีโอไลต์เอที่สังเคราะห์ได้</u> x 100 ผลรวมของพื้นที่ใต้กราฟที่ 20 ของซีโอไลต์เอจากสภาวะดีที่สุด

โดยตำแหน่ง 20 ของซีโอไลต์เอที่ใช้คิดค่าความป็นผลึกได้จากการเลือกพีคที่มีความ สูงสุดห้าอันดับแรก ได้แก่ ที่ 7.2, 10.2, 24.0, 27.2, 29.9 ของซีโอไลต์เอที่สังเคราะห์จากสภาวะที่ ดีที่สุด คือ การสังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่อณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

ตารางที่ ง.1 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (3 Peaks, Max P/N = 2.0)
DATE: Thursday, Jul 29, 2010 01:07p
FILE: 2 h 80
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=118,
12/28/09 13:55
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
          d(Å)
                 BG Height
                               I% Area
                                             I೪
                                                  FWHM XS(nm)
 9.507
         9.2956 35
                         37 100.0 118
                                           28.5
                                                 0.054
                                                          >100
                 76
25.746
         3.4547
                         33
                            89.2
                                     414 100.0
                                                 0.213
                                                            43
36.349
         2.4695 38
                         26
                              70.3
                                     153
                                                          >100
                                           37.0
                                                 0.100
```

ค่าความเป็นผลึก = (0 + 0 +0 +0 + 0) x 100 = 0 %

ตารางที่ ง.2 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อณหภูมิ 90 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (3 Peaks, Max P/N = 2.0)
DATE: Thursday, Jul 29, 2010 01:07p
FILE: 2 h 90
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=118,
12/28/09 13:55
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
                                  Area
                    Height
2-Theta
           d(Å)
                 ВG
                               Iγ
                                            I%
                                                 FWHM
                                                       XS(nm)
       12.2028
                44
                                   222
 7.238
                    36 100.0
                                          94.9
                                                0.105
                                                         >100
10.198
       8.6664 37
                         33
                                   234 100.0 0.121
                              91.7
                                                         >100
24.000 3.7048 77
                         33
                              91.7 188
                                          80.3 0.097
                                                         >100
```

ค่าความเป็นผลึก = (222 + 234 +188) x 100 = 1.28 %

50261

ตารางที่ ง.3 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง

USER: Tatcha Sampim JADE: Peak Search Report (9 Peaks, Max P/N = 4.6) DATE: Thursday, Jul 29, 2010 01:06p FILE: 2 h 100 SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=180, 12/28/09 14:15 PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/0.5, Peak-Top=Summit NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54056Å (Cu/K-alpha1) d(Å) 2-Theta ΒG Height 18 Area I۶ FWHM XS(nm) 7.164 12.3297 113 100.0 1366 100.0 0.206 40 44 10.182 8.6804 35 83 73.5 782 57.2 0.160 63 12.495 7.0784 39 50 44.2 516 37.8 0.175 55 16.175 5.4753 45 27 23.9 157 11.5 0.099 >100 21.737 4.0852 63 53 46.9 536 39.2 0.172 57 24.039 3.6989 73 69 61.1 732 53.6 0.180 54 27.156 3.2810 84 66 58.4 799 58.5 0.206 45 29.980 2.9781 78 90.3 951 69.6 0.159 102 66 34.208 2.6190 49 60 53.1 601 44.0 0.170 60 ค่าความเป็นผลึก = (1366 + 782 + 732 + 799 + 951) x 100 = 9.21 %

ตารางที่ ง.4 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่

อุณหภูมิ 110 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (28 Peaks, Max P/N = 16.3)
DATE: Thursday, Jul 29, 2010 01:07p
FILE: 2 h 110
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=1126,
12/28/09 14:25
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
           d(Å)
                 ΒG
                    Height
                               I۶
                                    Area
                                             I%
                                                  FWHM
                                                       XS(nm)
                            100.0
                                         100.0
 7.203
        12.2629
                 33
                     1093
                                   12165
                                                 0.189
                                                           49
                                                           54
10.183 8.6792 26
                      728
                            66.6 7584
                                         62.3 0.177
                             42.5
                                                           65
12.499
         7.0760
                 17
                        464
                                    4306
                                           35.4
                                                0.158
16.140
        5.4869
                        339
                             31.0
                                    2845
                                           23.4
                                                 0.143
                                                           78
                 20
17.732
        4.9979
                 20
                        25
                              2.3
                                    211
                                           1.7
                                                 0.143
                                                           78
20.456
         4.3380
                 24
                        105
                             9.6
                                    835
                                           6.9
                                                 0.135
                                                           88
21.683
         4.0953
                        468
                             42.8
                                           38.4
                                                 0.170
                                                           59
                 32
                                    4671
 22.917
         3.8775
                 24
                        32
                             2.9
                                    332
                                           2.7
                                                 0.176
                                                           55
                        735
                             67.2 7145
                                           58.7
                                                           61
24.003
       3.7044
                 32
                                                 0.165
                                                 0.147
                                                            75
26.139
         3.4063
                 36
                        210
                             19.2
                                    1821
                                           15.0
                                    6340
                                                           70
                        706
                             64.6
                                                 0.153
27.141
         3.2828
                41
                                          52.1
29.962 2.9799 41 783 71.6 7873 64.7 0.171
                                                           59
         2.8984
                             10.8
                                          10.1
                                                0.178
                                                           56
30.825
                 37
                        118
                                    1234
32.562
         2.7475
                        159
                             14.5
                                    1529
                                          12.6 0.163
                                                           64
                 34
                        50
                                           3.2 0.132
                                                           97
33.379
         2.6822
                 37
                             4.6
                                     387
 34.217
         2.6184
                 37
                        523
                             47.8
                                    4976
                                          40.9 0.162
                                                           65
 35.759
         2.5089
                 30
                        66
                             6.0
                                     528
                                            4.3 0.136
                                                           90
         2.4594
                 27
                        55
                             5.0
                                     503
                                            4.1 0.155
                                                           70
36.504
         2.3667
                             4.0
37.987
                 26
                        44
                                     432
                                            3.6 0.167
                                                           62
                        34
                             3.1
                                                          >100
 40.197
         2.2416
                 27
                                    245
                                           2.0 0.123
 41.521
        2.1731
                 25
                        101
                             9.2
                                    1057
                                           8.7 0.178
                                                           57
 42.236
        2.1379
                 29
                        62
                             5.7
                                    624
                                           5.1
                                                0.171
                                                           61
                             4.0
 42.880
        2.1073
                 29
                        44
                                    342
                                           2.8 0.132
                                                           98
                             3.9
 43.538
         2.0770
                 29
                        43
                                    377
                                           3.1
                                                0.149
                                                           77
 44.196
         2.0476
                 31
                        126
                             11.5
                                    1269
                                           10.4
                                                0.171
                                                           61
         1.9187
                                   811
 47.338
                 25
                        70
                            6.4
                                           6.7
                                                0.197
                                                           51
 47.920
         1.8968 25
                        60
                              5.5
                                                           60
                                    615
                                            5.1 0.174
 49.115
         1.8534 21
                         26
                              2.4
                                     160
                                            1.3 0.105
                                                          >100
```

ค่าความเป็นผลึก = (12165 + 7584 + 7145 + 6340 + 7873) x 100 = 81.78 %

ตารางที่ ง.5 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่

อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (9 Peaks, Max P/N = 4.6)
DATE: Thursday, Jul 29, 2010 01:06p
FILE: 3 h 80
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=180,
12/28/09 14:15
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
           d(Å)
                 ВG
                     Height
                                I۶
                                   Area
                                             I%
                                                  FWHM
                                                        XS(nm)
 7.218 12.2375
                 48
                         69
                              90.8
                                    764
                                         100.0
                                                 0.188
                                                            49
10.180 8.6819 38
                         76 100.0 662
                                          86.6 0.148
                                                            73
12.477
         7.0885
                         45
                                           53.4
                 39
                              59.2
                                     408
                                                 0.154
                                                            68
21.682
         4.0954
                         39
                              51.3
                                     313
                                           41.0
                                                 0.136
                                                            87
                 66
23.999 3.7049 75
                         59
                             77.6 495
                                           64.8 0.143
                                                            79
26.097
         3.4117
                 82
                         40
                              52.6
                                     209
                                           27.4
                                                 0.089
                                                          >100
27.139
         3.2831 92
                         50
                              65.8
                                           50.4 0.131
                                     385
                                                            96
         2.9855 80
29.904
                         50
                              65.8
                                     650
                                           85.1
                                                 0.221
                                                            41
 34.183
         2.6209 51
                         39
                                     455
                                           59.6
                              51.3
                                                 0.198
                                                            48
```

```
ค่าความเป็นผลึก = (764 + 662 + 495 + 385 + 650) x 100 = 5.88 %
```

ตารางที่ ง.6 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง

USER: Tatcha Sampim JADE: Peak Search Report (26 Peaks, Max P/N = 18.0) DATE: Thursday, Jul 29, 2010 01:11p								
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=1348,								
01/08/10 01:52								
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,								
BG=3/0.5,	Peak-To	p=Su	mmit Om (.1) т.т			
NOIE: Int	ensity =	ິCOU	nts, 21((0) = 0.0(aeg), wa	aveleng	τη το Ο	ompute
a-spacing	g = 1.540	70C	(Cu/K-al)	pnal)				
2 Thota	$d(\Lambda)$	PC	Uciobt	те	Aroa	те	EWIN	VC (nm)
7 218	12 2377	25	1323	100 0	14242	100 0	0 183	AS (11111) 51
10 198	8 6672	19	876	66 2	8858	62 2	0 172	57
12,481	7.0859	14	503	38.0	4850	34.1	0.164	61
16,138	5.4876	18	348	26.3	3048	21.4	0.149	72
20.438	4.3418	18	120	9.1	993	7.0	0.141	81
21.697	4.0926	25	568	42.9	5267	37.0	0.158	66
22.877	3.8840	21	46	3.5	301	2.1	0.111	>100
24.001	3.7047	25	850	64.2	7949	55.8	0.159	65
26.139	3.4063	31	237	17.9	2002	14.1	0.144	79
27.138	3.2831	29	846	63.9	7226	50.7	0.145	77
29.959	2.9801	36	898	67.9	8565	60.1	0.162	64
30.840	2.8970	34	153	11.6	1315	9.2	0.146	77
32.559	2.7479	38	205	15.5	1470	10.3	0.122	>100
33.401	2.6805	35	60	4.5	427	3.0	0.121	>100
34.198	2.6198	34	595	45.0	5719	40.2	0.163	64
35.762	2.5087	28	70	5.3	587	4.1	0.143	82
36.521	2.4583	26	69	5.2	581	4.1	0.143	81
37.984	2.3669	25	53	4.0	451	3.2	0.145	80
40.176	2.2427	22	56	4.2	422	3.0	0.128	>100
41.521	2.1731	28	116	8.8	1029	7.2	0.151	75
42.181	2.1406	28	71	5.4	648	4.5	0.155	71
42.878	2.1074	24	55	4.2	520	3.7	0.161	67
43.497	2.0788	25	60	4.5	463	3.3	0.131	>100
44.160	2.0492	27	161	12.2	1379	9.7	0.146	81
47.317	1.9195	24	93	7.0	1012	7.1	0.185	55
47.921	1.8967	24	68	5.1	681	4.8	0.170	63

ค่าความเป็นผลึก = (14242 + 8858 + 7949 + 7226 + 8565) x 100 = 93.19 %

ตารางที่ ง.7 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง

USER: Tat	cha Samp	im							
JADE: Peak Search Report (27 Peaks, Max P/N = 17.1)									
DATE: Thursday, Jul 29, 2010 01:11p									
FILE: 3 h 100									
SCAN: 5.0	SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=1220,								
01/08/10	02:20								
PEAK: 21-	pts/Para	boli	c Filter	, Thres	hold=3.0), Cuto	ff=0.1%	,	
BG=3/0.5,	Peak-To	p=Su	ımmit						
NOTE: Int	ensity =	Cou	ints, 2T(0)=0.0(0	deg), Wa	aveleng	th to C	ompute	
d-Spacing	1.540	56Å	(Cu/K-al]	phal)					
2-Theta	d(Å)	BG	Height	18	Area	I%	FWHM	XS(nm)	
7.157	12.3409	28	1192	100.0	12936	100.0	0.184	51	
10.137	8.7189	20	842	70.6	8395	64.9	0.169	58	
12.434	7.1126	26	462	38.8	4110	31.8	0.151	70	
16.061	5.5138	20	364	30.5	2866	22.2	0.134	90	
20.396	4.3507	18	123	10.3	953	7.4	0.132	94	
21.637	4.1037	27	555	46.6	4921	38.0	0.151	71	
22.836	3.8910	23	30	2.5	216	1.7	0.122	>100	
23.957	3.7113	32	834	70.0	7402	57.2	0.151	71	
26.062	3.4162	27	235	19.7	2019	15.6	0.146	76	
27.063	3.2921	30	774	64.9	6778	52.4	0.149	74	
29.917	2.9842	34	878	73.7	8153	63.0	0.158	67	
30.781	2.9023	35	143	12.0	1170	9.0	0.139	85	
32.503	2.7525	30	185	15.5	1667	12.9	0.153	71	
33.317	2.6870	33	64	5.4	468	3.6	0.124	>100	
34.122	2.6254	34	540	45.3	5205	40.2	0.164	64	
35.704	2.5127	25	79	6.6	630	4.9	0.136	91	
36.4//	2.4612	24	/0	5.9	282	4.5	0.142	82	
37.963	2.3682	25	4 /	3.9	389	3.0	0.141	84	
40.101	2.2467	20	33	2.8	266	Z.1 7 0	0.137	90	
41.494	2.1/45	24 25		9.3	1020	/.9 5 1	0.130	10	
42.123	2.1434 2.1102	20	70	0.0	500	2.0	0.144 0 171	0Z 61	
42.017	2.1103	20	50	4.Z 1.2	101	2.9	0.165	01	
43.479	2.0797	25	146	4.3	494	3.0 10 7	0.161	63	
44,119	2.0310	21	03 T40	12.2 7 8	967	10.7 7 5	0.101	59	
47 856	1 8992	∠⊥ 21	53 53	7.0 5.7	703 703	7.J 5.7	0.176	59	
49.674	1.8338	21	49	4.1	397	3.1	0.138	92	
l	<u></u> ම								

ค่าความเป็นผลึก = (12936 + 8395 + 7402 + 6778 + 8153) x 100 = 86.87 %

ตารางที่ ง.8 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 110 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง

USER: Tat	cha Samp	im						
JADE: Peak Search Report (28 Peaks, Max P/N = 17.4)								
DATE: Thursday, Jul 29, 2010 01:11p								
FILE: 3 h	n 110							
SCAN: 5.0)/50.0/0.	02/0	.24(sec)	, Cu(40]	kV,30mA)), I(ma	x)=1258	,
01/08/10	02:30							
PEAK: 21-	-pts/Para	boli	c Filter,	, Thres	hold=3.0), Cuto	ff=0.1%	,
BG=3/0.5,	Peak-To	p=Su	ımmit					
NOTE: Int	ensity =	Cou	ints, 2T() = 0.0 (deg), Wa	aveleng	th to C	ompute
d-Spacing	g = 1.540	56Å	(Cu/K-alp	phal)				
2-Theta	d(Å)	BG	Height	I%	Area	I%	FWHM	XS(nm)
7.219	12.2353	27	1231	100.0	13770	100.0	0.190	49
10.183	8.6793	18	803	65.2	8779	63.8	0.186	50
12.499	7.0762	20	453	36.8	4402	32.0	0.165	60
13.907	6.3624	16	29	2.4	245	1.8	0.144	77
16.141	5.4867	18	342	27.8	2811	20.4	0.140	82
17.643	5.0227	15	22	1.8	197	1.4	0.152	70
20.459	4.3374	19	101	8.2	906	6.6	0.152	70
21.716	4.0890	25	560	45.5	5196	37.7	0.158	66
22.882	3.8833	20	34	2.8	293	2.1	0.147	75
24.019	3.7019	31	845	68.6	8037	58.4	0.162	63
26.156	3.4041	28	228	18.5	2050	14.9	0.153	70
27.157	3.2809	38	763	62.0	6527	47.4	0.145	77
29.977	2.9784	36	929	75.5	8291	60.2	0.152	72
30.877	2.8935	35	125	10.2	1213	8.8	0.165	62
32.579	2.7462	31	170	13.8	1629	11.8	0.163	64
33.436	2.6778	33	57	4.6	367	2.7	0.109	>100
34.200	2.6196	38	529	43.0	5343	38.8	0.172	59
35.779	2.5076	26	72	5.8	636	4.6	0.150	74
36.538	2.4572	25	59	4.8	598	4.3	0.172	59
38.021	2.3647	23	56	4.5	464	3.4	0.141	84
40.160	2.2435	24	49	4.0	299	2.2	0.104	>100
41.521	2.1731	25	108	8.8	1030	7.5	0.162	66
42.183	2.1405	31	80	6.5	541	3.9	0.115	>100
42.881	2.1073	33	56	4.5	456	3.3	0.138	89
43.538	2.0770	32	54	4.4	277	2.0	0.087	>100
44.179	2.0483	27	159	12.9	1448	10.5	0.155	72
47.336	1.9188	25	99	8.0	896	6.5	0.154	74
47.954	1.8955	23	64	5.2	563	4.1	0.150	78

ค่าความเป็นผลึก = (13770 + 8779 + 8037 + 6527 + 8291) x 100 = 90.33 %

ตารางที่ ง.9 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่

อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

USER: Tat JADE: Pea DATE: Thu FILE: 4 h	cha Samp 1k Search 1rsday, J 1 80	im Rep ul 2	oort (28 1 29, 2010	Peaks, 01:11p	Max P/N	= 17.8)	
SCAN: 5.0 01/08/10	0/50.0/0. 01:29	02/0	.24(sec)	, Cu(40	kV , 30mA), I(ma	x)=1329	,
PEAK: 21-	-pts/Para	boli	.c Filter	, Thres	hold=3.	0, Cuto	ff=0.1%	
BG=3/0.5,	Peak-To	p=Su	ımmit	,		,		,
NOTE: Int	ensity =	Cou	ints, 2T(0)=0.0(deg), Wa	aveleng	th to C	ompute
d-Spacing	f = 1.540	56Å	(Cu/K-al	phal)				_
2-Theta	d(Å)	BG	Height	I%	Area	I%	FWHM	XS(nm)
7.117	12.3061	30	1219	100.0	13376	100.0	0.187	50
10.159	8.6999	21	827	67.8	8873	66.3	0.182	52
12.442	7.1085	25	473	38.8	4307	32.2	0.155	67
16.101	5.5001	21	304	24.9	2904	21.7	0.162	62
17.675	5.0137	17	19	1.6	169	1.3	0.151	70
20.384	4.3533	20	110	9.0	968	7.2	0.150	72
21.382	4.1522	23	76	6.2	1133	8.5	0.253	34
21.677	4.0964	30	503	41.3	4990	37.3	0.169	59
22.874	3.8847	29	32	2.6	200	1.5	0.106	>100
23.963	3.7105	30	792	65.0	7741	57.9	0.166	61
26.101	3.4113	27	215	17.6	1928	14.4	0.152	70
27.118	3.2855	34	723	59.3	6713	50.2	0.158	66
29.939	2.9821	40	854	70.1	7953	59.5	0.158	67
30.804	2.9002	34	144	11.8	1219	9.1	0.144	79
32.523	2.7508	31	178	14.6	1672	12.5	0.160	66
33.360	2.6837	32	57	4.7	469	3.5	0.140	84
34.179	2.6212	34	523	42.9	5441	40.7	0.177	57
35.738	2.5104	28	72	5.9	667	5.0	0.157	68
36.464	2.4620	26	68	5.6	628	4.7	0.157	69
37.982	2.3670	24	54	4.4	458	3.4	0.144	80
40.103	2.2466	23	41	3.4	450	3.4	0.187	53
41.483	2.1750	27	104	8.5	1005	7.5	0.164	65
42.162	2.1415	27	66	5.4	604	4.5	0.156	71
42.858	2.1084	26	51	4.2	417	3.1	0.139	88
43.512	2.0782	27	43	3.5	447	3.3	0.177	58
44.124	2.0507	27	137	11.2	1383	10.3	0.172	61
47.279	1.9210	26	91	7.5	917	6.9	0.171	62
47.895	1.8977	27	55	4.5	502	3.8	0.155	73
49.695	1.8331	23	38	3.1	363	2.7	0.162	68

ค่าความเป็นผลึก = (13376 + 8873 + 7741 + 6713 + 7953) x 100 = 88.65 %

ตารางที่ ง.10 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

USER: Tat JADE: Pea	cha Samp k Search	im Rep	ort. (28	Peaks.	Max P/N	= 18.1)	
DATE: Thursday, Jul 29, 2010 01:07p								
FILE: 4 h	1 90		-,	· · · 1				
SCAN: 5.0	/50.0/0.	02/0	.24(sec)	, Cu(40	kV,30mA), I(ma	x)=1366	,
12/28/09	15:08		, , , , , , , , , , , , , , , , , , ,	,	,		,	,
PEAK: 21-	-pts/Para	boli	.c Filter	, Thres	hold=3.	0, Cuto	ff=0.1%	,
BG=3/0.5,	Peak-To	p=Su	ımmit					
NOTE: Int	ensity =	Cou	ints, 2T(0) = 0.0 (deg), W	aveleng	th to C	ompute
d-Spacing	f = 1.540	56Å	(Cu/K-al	phal)	5	5		-
2-Theta	d(Å)	BG	Height	I%	Area	I%	FWHM	XS(nm)
7.236	12.2073	19	1347	100.0	16698	100.0	0.211	42
10.217	8.6507	17	903	67.5	9312	55.8	0.175	55
12.517	7.0660	15	538	49.9	4917	29.4	0.155	67
16.159	5.4806	12	345	25.6	3299	19.8	0.163	62
17.708	5.0046	14	25	1.9	241	1.4	0.164	61
20.458	4.3375	16	128	9.5	1039	6.2	0.138	84
21.401	4.1484	17	83	46.3	1605	9.6	0.329	25
21.719	4.0885	18	623	3.0	5809	34.8	0.159	65
22.917	3.8774	19	41	2.9	402	2.4	0.167	60
24.039	3.6989	22	916	68.0	8116	48.6	0.151	72
26.160	3.4036	28	269	20.0	2018	12.1	0.128	>100
27.161	3.2804	28	831	61.7	7459	44.7	0.153	70
29.997	2.9764	36	954	70.8	8676	52.0	0.155	69
30.896	2.8918	34	136	10.1	1311	7.9	0.164	63
32.582	2.7460	29	208	15.4	1985	11.9	0.162	64
33.434	2.6779	31	66	4.9	588	3.5	0.151	72
34.221	2.6181	30	601	44.6	5719	34.2	0.162	65
35.765	2.5085	28	79	5.9	556	3.3	0.120	>100
36.541	2.4570	27	66	4.9	552	3.3	0.142	82
38.055	2.3627	24	52	3.9	498	3.0	0.163	65
40.145	2.2415	24	39	2.9	390	2.3	0.170	61
41.561	2.1711	26	119	8.8	1253	7.5	0.179	57
42.224	2.1385	30	71	5.3	674	4.0	0.161	67
42.886	2.10/0	26	57	4.2	510	3.1	0.152	/4
43.543	2.0/61	24	59	4.4	639	3.8	0.184	55
44.198	2.04/5	24	141	10.5	15/4	9.4	0.190	53
44.881	Z.UI/9	23	22	1.6	1017	0.9	U.116	>100
4/.323	1.9193	25	102	/.6	TOT/	6.1 / F	0.1/0	63 7 -
4/.939	1.0500 1.0500	∠ 3 0 1		5.8 1 0	153	4.5	0.100	×100
49.153	1.8520	Ζ⊥	24	1.8	119	0./	0.084	>100

ค่าความเป็นผลึก = (16698 + 9312 + 8816 + 7459 + 8676) x 100 = 100 %

ตารางที่ ง.11 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

USER: Ta	tcha Samp	im						
JADE: Pe	ak Search	Rep	port (28	Peaks,	Max P/N	= 17.8)	
DATE: The	ursday, J	ul 2	29, 2010	01:10p				
FILE: 4	h 100							
SCAN: 5.	0/50.0/0.	02/0).24(sec)	, Cu(40	kV,30mA), I(ma	x)=1316	,
12/28/09	15:29							
PEAK: 21	-pts/Para	boli	.c Filter	, Thres	hold=3.	0, Cuto	ff=0.1%	,
BG=3/0.5	, Peak-To	p=Su	ımmit					
NOTE: In	tensity =	Cou	ints, 2T(0)=0.0(deg), Wa	aveleng	th to C	Compute
d-Spacin	g = 1.540	56Å	(Cu/K-al	phal)				
0 = 1	1 (4)	ъc		T 0	-	T 0		
2-Ineta	d(A)	BG	Height	18	Area	5 L %	FWHM	XS(nm)
6.601	13.3799	38	57	4.4	1256	9.0	0.375	22
10 217	12.2338	10	1283	100.0	13913	100.0	0.184	51
10.217	0.0307	10	631	27 (6907 4005	04.U	0.1/6	54
12.501	/.U/JI	10 10	483	37.6	4695 545	33.1	0.105	6U 2 0
16 150	0.330J E 4010	15	25	2.0	240 2107	2.9	0.201	30 74
17 600	5.4010	16	207	20.0	3104 127	1 0	0.14/	/4 \100
17.090	1 2261	17	126	1./	1002	1.U 7 0	0.104	>100 74
20.404	4.3304 1.103	20	120	9.0	1306	7.9 Q 1	0.14/	20
21.402	4.1405	20	563	13 Q	5406	20 Q	0.200	50
21.702	4.0910 3.0777	21	203	43.9	2400	1 0	0.100	5100
22.917	3 6991	24 25	842	65 6	8162	58 7	0.115	>100 62
24.316	3 6574	25	36	2.8	811	5 8	0.105	22
24.510 26 142	3 4060	28	232	18 1	2134	15 3	0.505	67
27 160	3 2806	2.8	777	60 6	7029	50 5	0 154	69
29.073	3,0689	29	29	2.3	211	1.5	0.124	>100
29.996	2.9765	35	913	71.2	8379	60.2	0.156	68
30.881	2.8932	35	133	10.4	1328	9.5	0.170	60
32.563	2.7475	30	177	13.8	1780	12.8	0.171	59
33.404	2.6802	33	74	5.8	498	3.3	0.114	>100
34.221	2.6181	34	552	43.0	5410	38.9	0.167	62
35.781	2.5074	30	75	5.8	488	3.5	0.111	>100
36.540	2.4571	24	87	6.8	589	4.2	0.115	>100
38.056	2.3626	25	46	3.6	419	3.0	0.155	71
40.215	2.2406	26	44	3.4	335	2.4	0.129	>100
41.559	2.1712	27	112	8.7	931	6.7	0.141	85
42.203	2.1395	33	74	5.8	521	3.7	0.120	>100
42.917	2.1056	31	66	5.1	479	3.4	0.123	>100
43.579	2.0751	26	56	4.4	559	4.0	0.170	62
44.216	2.0467	24	147	11.5	1490	10.7	0.172	61
47.339	1.9187	22	98	7.6	1103	7.9	0.191	53
47.943	1.8959	25	73	5.7	583	4.2	0.137	92
49.669	1.8340	25	32	2.5	332	2.4	0.176	60

ค่าความเป็นผลึก = (13913 + 8907 + 8162 + 7029 + 8379) x 100 = 92.29 %

ตารางที่ ง.12 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 110 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง

USER: Tatcha Sampim JADE: Peak Search Report (26 Peaks, Max P/N = 18.6) DATE: Thursday, Jul 29, 2010 01:10p FILE: 4 h 110 SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=1425, 12/28/09 15:39 PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/0.5, Peak-Top=Summit NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54056Å (Cu/K-alpha1) 2-Theta d(Å) ΒG Height I۶ Area I% FWHM XS(nm) 7.199 12.2689 21 1404 100.0 16237 100.0 0.197 47 56 10.164 8.6954 19 886 63.1 8999 55.4 0.173 522 31.0 0.164 12.479 7.0871 15 37.2 5033 61 1.4 13.950 6.3432 13 0.9 0.126 >100 19 141 24.7 3324 16.137 5.4882 13 347 20.5 0.163 62 17.638 5.0241 25 1.8 293 1.8 0.199 46 14 4.3412 7.6 6.8 107 0.175 56 20.441 16 1100 5.8 21.382 4.1523 19 81 1990 12.3 0.418 19 21.682 4.0954 20 577 41.1 5589 34.4 0.165 61 >100 22.879 3.8839 23 39 2.8 269 1.7 0.117 3.7046 22 884 63.0 8380 51.6 0.161 24.002 64 26.139 3.4063 26 269 19.2 2121 13.1 0.134 91 27.140 3.2830 786 55.8 7519 46.3 0.163 27 63 87 0.5 3.0738 1.9 0.057 >100 29.025 30 26 68 67.7 8717 53.7 0.156 29.960 2.9800 34 951 30.857 2.8954 35 169 12.0 1361 8.4 0.137 88 32.577 2.7463 30 200 14.2 1722 10.6 0.146 77 2.6809 31 73 5.2 3.6 0.136 90 33.396 582 34.200 2.6197 30 578 41.2 5738 35.3 0.169 61 5.8 4.5 0.153 35.778 2.5076 25 81 731 71 36.555 2.4561 72 5.1 868 5.3 0.205 46 24 38.017 2.3649 23 52 3.7 516 3.2 0.169 61 2.8 533 40.159 2.2436 25 39 3.3 0.232 40 41.537 2.1723 114 8.1 6.2 0.151 75 28 1011 42.215 2.1389 29 68 4.8 650 4.0 0.162 66 42.863 2.1081 31 60 4.3 249 1.5 0.071 >100 51 82 43.539 2.0769 27 3.6 431 2.7 0.144 65 44.197 2.0475 28 147 10.5 1426 8.8 0.165 47.319 1.9195 21 118 8.4 1272 7.8 0.183 56 56 47.923 1.8967 20 4.0 718 4.4 0.218 44 49.139 1.8582 20 39 2.8 323 2.0 0.141 88 49.735 1.8317 19 48 3.4 583 3.6 0.206 48

ค่าความเป็นผลึก = (16237 + 8999 + 8380 + 7519 + 8717) x 100 = 99.18 %

ตารางที่ ง.13 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่

อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง

USER: Tat	cha Samp	im										
JADE: Peak Search Report (27 Peaks, Max P/N = 17.5)												
DATE: Thu	ırsday, J	ul 2	9, 2010 0)1 : 12p								
FILE: 6 h	n 80											
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=1283,												
01/08/10 02:40												
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,												
BG=3/0.5, Peak-Top=Summit												
NOIE: Ind	r = 1 = 10	COU ECÅ	(Cu/V a)	(0) = 0.0(0)	ueg), wa	avereng		ompule				
u-spacing	g = 1.540	JOA	(Cu/K-alp	JIIal)								
2-Theta	d(Å)	BG	Height	ТS	Area	ТЯ	FWHM	XS(nm)				
7.179	12.3028	29	1254	100.0	14044	100.0	0.190	49				
10.160	8.6989	22	811	64.7	8427	60.0	0.177	54				
12.442	7.1083	22	418	33.3	4327	30.8	0.176	55				
16.117	5.4949	20	327	26.1	2878	20.5	0.150	72				
17.658	5.0187	17	20	1.6	170	1.2	0.145	77				
20.420	4.3455	21	105	8.4	894	6.4	0.145	77				
21.662	4.0991	27	502	40.0	4991	35.5	0.169	59				
22.827	3.8925	26	41	3.3	240	1.7	0.100	>100				
23.981	3.7078	30	760	60.6	7490	53.3	0.168	60				
26.102	3.4110	30	220	17.5	2053	14.6	0.159	66				
27.119	3.2854	35	710	56.6	6970	49.6	0.167	61				
29.939	2.9821	44	784	62.5	7957	56.7	0.173	58				
30.822	2.8986	43	128	10.2	1098	7.8	0.146	77				
32.541	2.7493	35	161	12.8	1494	10.6	0.158	67				
33.378	2.6822	32	58	4.6	530	3.8	0.155	69				
34.178	2.6213	32	517	41.2	5415	38.6	0.1/8	56				
35.///	2.5077	27	68	5.4	632	4.5	0.158	68				
36.520	2.4384	26	59	4./	579	4.1	U.16/	6Z				
37.98Z 40 157	2.3071	20 24	29	4./	409	2.9 3 1	0.110	200 10				
40.137	2.2437	24	96	3.0 7 7	990	7 0	0.203 0 175	40 59				
42 165	2.1414	28	50	7.7 5.3	544	7.0 3.9	0.140	86				
42 838	2 1093	26	58	4 6	430	3 1	0.126	>100				
43.556	2.0762	29	38	3.0	367	2.6	0.164	65				
44.158	2.0493	27	117	9.3	1351	9.6	0.196	50				
47.281	1.9209	25	99	7.9	851	6.1	0.146	81				
47.903	1.8974	26	63	5.0	536	3.8	0.145	83				
49.718	1.8323	23	28	2.2	238	1.7	0.145	83				

ค่าความเป็นผลึก = (14044 + 8427 + 7490 + 6970 + 7957) x 100 = 89.31 %

ตารางที่ ง.14 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 90 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง

USER: Tat JADE: Pea DATE: Thu FILE: 6 P SCAN: 5.0 01/08/10 PEAK: 21- BG=3/0.5,	ccha Samp ak Search ursday, J 90 0/50.0/0. 02:49 -pts/Para Peak-To	im Rep ul 2 02/0 boli p=Su	c Filter,	Peaks, 1 01:12p Cu(40] Thres	Max P/N kV,30mA) hold=3.0	= 16.9 , I(ma), Cuto) x)=1199 ff=0.1%	,
d-Spacing	g = 1.540	56Å	(Cu/K-alp)=0.0(0 pha1)	ueg), wa	ivereng		ompule
2-Theta 7.201	d(Å) 12.2666	BG 30	Height 1169	1% 100.0	Area 13843	⊺% 100.0	FWHM 0.201	XS(nm) 45
10.181	8.6814	18	818	70.0	9364	67.6	0.195	47
12.481	7.0859	15	475	40.6	4807	34.7	0.172	57
16.121	5.4933	17	323	27.6	2950	21.3	0.155	67
20.440	4.3413	19	101	8.6	1025	7.4	0.173	57
21.698	4.0924	25	530	45.3	5216	37.7	0.167	60
22.859	3.8872	21	34	2.9	268	1.9	0.134	90
24.002	3.7046	27	860	73.6	8007	57.8	0.158	66
26.124	3.4082	30	246	21.0	2054	14.8	0.142	81
27.140	3.2829	33	764	65.4	7120	51.4	0.158	66
29.976	2.9784	40	882	75.4	8395	60.6	0.162	64
30.859	2.8952	35	146	12.5	1213	8.8	0.141	82
32.559	2.7478	32	185	15.8	1655	12.0	0.152	72
33.365	2.6832	35	58	5.0	424	3.1	0.124	>100
34.216	2.6184	34	553	47.3	5606	40.5	0.172	59
35.758	2.5090	29	70	6.0	596	4.3	0.145	79
36.503	2.4595	24	66	5.6	601	4.3	0.155	70
38.036	2.3638	22	48	4.1	532	3.8	0.188	52
40.125	2.2454	25	37	3.2	331	2.4	0.152	73
41.538	2.1723	29	116	9.9	997	7.2	0.146	79
42.217	2.1389	29	78	6.7	612	4.4	0.133	96
42.876	2.1075	30	58	5.0	301	2.2	0.088	>100
43.555	2.0762	27	43	3.7	435	3.1	0.172	61
44.161	2.0491	27	147	12.6	1432	10.3	0.166	64
47.303	1.9201	26	93	8.0	839	6.1	0.153	74
47.954	1.8955	24	65	5.6	589	4.3	0.154	74
	ë d							

ค่าความเป็นผลึก = (13843 + 9364 + 8007 + 7120 + 8395) x 100 = 92.97 %

ตารางที่ ง.15 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง

USER: Tatcha Sampim JADE: Peak Search Report (26 Peaks, Max P/N = 17.6) DATE: Thursday, Jul 29, 2010 01:12p FILE: 6 h 100 SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=1290, 01/08/10 02:59 PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/0.5, Peak-Top=Summit NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54056Å (Cu/K-alpha1) Height 2-Theta d(Å) ΒG I۶ Area I% FWHM XS(nm) 24 7.183 12.2965 1266 100.0 14169 100.0 0.190 49 873 69.0 8861 62.5 0.173 10.180 8.6825 19 56 7.0871 14 546 12.479 43.1 4933 34.8 0.154 68 16.137 5.4882 18 316 25.0 3013 21.3 0.162 62 20.406 4.3486 21 109 8.6 935 6.6 0.146 76 21.696 4.0928 29 564 44.5 5001 35.3 0.151 71 3.8859 182 22.866 35 2.8 1.3 0.088 >100 24 3.7022 27 939 74.2 7988 56.4 24.017 0.145 77 26.137 3.4065 29 245 19.4 2155 15.2 0.150 73 66.0 7250 27.139 3.2831 30 836 51.2 0.147 75 29.960 2.9800 36 916 72.4 8347 58.9 0.155 69 30.842 2.8968 36 137 10.8 1213 8.6 0.151 73 32.543 2.7491 29 196 15.5 1776 12.5 0.154 70 33.396 2.6809 33 63 5.0 454 3.2 0.123 >100 610 48.2 2.6209 30 40.3 0.159 34.183 5708 67 2.5089 26 6.0 76 4.7 0.149 35.760 668 75 5.6 4.1 0.139 579 36.555 2.4561 25 71 87 2.3649 24 59 4.7 497 3.5 0.143 82 38.017 2.9 40.140 2.2446 26 37 298 2.1 0.137 90 2.1731 28 106 8.4 7.0 0.159 41.522 993 68 42.202 2.1396 29 86 6.8 682 4.8 0.135 94 42.859 2.1083 30 49 3.9 335 2.4 0.116 >100 2.0771 27 3.5 433 43.535 44 3.1 0.167 63 2.0490 26 1.9195 27 159 12.6 10.9 0.165 65 44.163 1540 7.7 889 6.3 0.156 47.318 97 72 47.936 1.8962 26 68 5.4 567 4.0 0.142 86 ค่าความเป็นผลึก = (14169 + 8861 + 7988 + 7250 + 8347) x 100 = 92.74 %

ตารางที่ ง.16 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไฮโดรเทอร์มัลที่ อุณหภูมิ 110 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง

USER: Tatcha Sampim JADE: Peak Search Report (27 Peaks, Max P/N = 18.0) DATE: Thursday, Jul 29, 2010 01:14p FILE: 6 h 110 SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=1345, 01/08/10 03:34 PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/0.5, Peak-Top=Summit NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54056Å (Cu/K-alpha1) 2-Theta d(Å) ВG Height Iγ Area I% FWHM XS(nm) 7.261 12.1638 25 1320 100.0 14389 100.0 0.185 51 863 65.4 8688 60.4 0.171 57 10.259 8.6156 16 465 35.2 32.5 57 12.558 7.0431 12 4681 0.171 5.4671 18 314 23.8 2725 18.9 0.148 74 16.199 17.744 4.9944 15 28 2.1 194 1.3 0.118 >100 20.503 4.3281 17 116 8.8 980 6.8 0.144 78 21.776 4.0779 23 539 40.8 35.4 0.161 64 5097 22.942 3.8732 21 36 2.7 305 2.1 0.144 78 29 60.8 7381 24.080 3.6927 802 51.3 0.156 67 17.6 3.4006 0.149 73 26.184 28 232 2040 14.2 72 3.2757 31 57.0 6677 46.4 0.151 27.201 753 63 30.038 2.9725 35 857 64.9 8276 57.5 0.164 2.8898 136 8.7 0.157 67 30.919 34 10.3 1258 32.622 2.7427 13.9 1626 11.3 0.151 73 29 183 82 3.5 0.142 33.458 2.6760 30 61 4.6 508 37.3 0.172 34.243 2.6164 33 531 40.2 5373 59 5.5 35.820 2.5048 28 73 613 4.3 0.143 81 36.585 2.4542 28 52 3.9 453 3.1 0.148 76 50 3.8 38.081 2.3611 24 427 3.0 0.145 79 3.5 >100 40.224 2.2401 24 46 339 2.4 0.125 41.584 2.1700 26 96 7.3 950 6.6 0.168 62 42.279 2.1359 24 75 5.7 750 5.2 0.170 62 4.7 42.941 2.1045 25 62 505 3.5 0.138 89 43.599 2.0742 71 5.4 3.1 0.106 >100 28 443 44.258 2.0448 29 148 11.2 1322 9.2 0.152 75 47.380 1.9171 27 91 6.9 5.7 0.153 74 821 47.981 1.8945 26 65 4.9 82 556 3.9 0.145

ค่าความเป็นผลึก = (14389 + 8688 + 7381 + 6677 + 8276) x 100 = 90.35 %

ตารางที่ ง.17 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะ

เวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 1:1 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (29 Peaks, Max P/N = 16.7)
DATE: Thursday, Jul 29, 2010 01:16p
FILE: MW 1h 1h
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=1177,
12/09/09 16:24
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alphal)
2-Theta
           d(Å)
                 ΒG
                    Height
                               I۶
                                    Area
                                            I%
                                                 FWHM XS(nm)
 7.159 12.3380
                30
                       223
                             95.5
                                    2612
                                          45.9
                                                0.191
                                                           49
                                                           84
10.141 8.7155 25
                       171
                             70.1 1384 24.3 0.138
                             34.8
        7.1091 26
                                    798
12.441
                        85
                                          14.0 0.160
                                                           64
13.920
       6.3569 34
                       238
                             97.5
                                    4489
                                          78.8
                                                0.321
                                                           26
                                          9.8
                             32.0
16.083
       5.5064
                31
                        78
                                    559
                                                0.122
                                                         >100
21.660
         4.0995
                 43
                        97
                             39.8
                                    1325
                                          23.3
                                                0.232
                                                           38
23.980
       3.7078
                65
                       216 88.5 4648
                                         81.6 0.366
                                                           23
 24.222
         3.6714
                64
                       244 100.0
                                    5694
                                          100.0
                                                0.397
                                                           21
                                                0.143
                                                           79
26.099
         3.4114
                59
                        37
                             15.2
                                    312
                                          5.5
27.119
        3.2854
                60
                       125
                             51.2
                                    1116
                                          19.6
                                                0.152
                                                           71
                      165
                             67.6 1424 25.0 0.147
                                                           76
29.924 2.9835 50
31.671
       2.8228
                 58
                        30
                             12.3
                                  570 10.0
                                                0.323
                                                           26
32.545
       2.7490
                        49
                             20.1
                                    514
                                          9.0
                                                0.178
                                                           56
                58
34.198
         2.6198
                58
                       133
                             54.5
                                    3137
                                          55.1 0.401
                                                           21
                             33.2
34.539
         2.5947 54
                        81
                                    2624
                                          46.1 0.551
                                                           15
         2.1148 32
                                          37.7
                                                           22
42.721
                        92
                             37.7
                                    2148
                                                0.397
 44.196
         2.0476
                 25
                        35
                             14.3
                                     276
                                           4.8 0.134
                                                           96
         1.9196 22
                                           5.9 0.259
 47.316
                        22
                             9.0
                                     335
                                                           36
```

ค่าความเป็นผลึก = (2612 + 1384 + 4648 + 1116 + 1424) x 100 = 22.25 %

ตารางที่ ง.18 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะ

เวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 2:1 ชั่วโมง

USER: Tat JADE: Pea DATE: Thu FILE: MW	cha Samp k Search ursday, J 2h 1h	im Rep ul 2	ort (28 E 9, 2010 (Peaks,)1:16p	Max P/	N = 11.3	2)				
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=560,											
12/09/09 16:55 DEAK, 21 ptg/Demokalia Eilten, Thurshald 2.0, Outsff 0.10											
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,											
BG=3/U.5, $Peak-Top=SummitNOTE: Intensity = Counts 2T(0)=0 (deg) Wavelength to Compute$											
NOTE: Intensity = Counts, $2T(0)=0.0(deg)$, Wavelength to Compute d-Spacing = 1.54056Å (Cu/K-alpha1)											
α -spacing = 1.54056A (Cu/K-aipnal)											
2-Theta	d(Å)	BG	Height	IS	Area	I8	FWHM	XS(nm)			
7.237	12.2044	28	532	100.0	6092	91.0	0.195	47			
10.219	8.6490	27	388	72.9	3582	53.5	0.157	65			
12.519	7.0646	23	245	46.1	2335	34.9	0.162	62			
14.000	6.3206	39	146	27.4	1976	29.5	0.230	38			
16.176	5.4748	25	170	32.0	1566	23.4	0.157	66			
20.444	4.3405	32	55	10.3	347	5.2	0.107	>100			
21.720	4.0882	40	251	47.2	2546	38.1	0.172	57			
24.059	3.6959	49	447	84.0	6691	100.0	0.254	34			
24.301	3.6597	73	151	28.4	2585	38.6	0.291	29			
26.177	3.4015	50	121	22.7	954	14.3	0.134	91			
27.196	3.2763	47	393	73.9	3518	52.6	0.152	71			
30.019	2.9743	45	432	81.2	4385	65.5	0.173	58			
30.884	2.8929	57	63	11.8	417	6.2	0.113	>100			
32.616	2.7431	53	88	16.5	804	12.0	0.155	69			
33.443	2.6772	51	35	6.6	220	3.3	0.107	>100			
34.242	2.6165	47	265	49.8	3056	45.7	0.196	49			
34.780	2.5//3	43	56	10.5	1158	1/.3	0.352	24			
35.838	2.5036	36	40	1.5	322	4.8	0.137	89			
36.563	2.4556	32	31	5.8	313	4./	0.172	6U			
38.084	2.3609	30	26	4.9	195	2.9	0.127	>100			
40.265	2.2379	24	29	2.5 11 0	269 500	4.0	0.158	69			
41.602	2.1091	29 10	03 27	11.0	104	0./ 2.7	0.157	> 1 0 0			
42.2//	2.1359	40 47	50	/.U 11 1	104 700	Z./ 11 0	0.085	>100			
42.033	2.1094	44 21	31	11.1 5 Q	1/18	2 2	0.220	41 \100			
44 277	2 0440	27	51	12 2	140 623	2.2 9.3	0 163	66			
47.399	1,9164	25	33	±2.2	420	5.3 6.3	0.216	45			
48.056	1.8917	23	27	5.1	336	5.0	0.212	46			

ค่าความเป็นผลึก = (6092 + 3582 + 6691 + 3518 + 4385) x 100 = 48.28 %

ตารางที่ ง.19 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะ

เวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 2:2 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (22 Peaks, Max P/N = 8.5)
DATE: Thursday, Jul 29, 2010 01:15p
FILE: MW 2h 2h
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=350,
02/04/10 10:13
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
           d(Å)
                 BG Height
                                 Iγ
                                    Area
                                              I%
                                                   FWHM
                                                        XS(nm)
 7.220 12.2342
                 24
                         314
                             100.0 3595
                                            78.0
                                                  0.195
                                                             47
                             70.4 1918
10.201 8.6641 26
                        221
                                           41.6 0.148
                                                             73
         7.0662
                                            26.9
12.516
                 25
                         148
                               47.1
                                    1240
                                                 0.142
                                                             78
13.981
         6.3291
                  45
                         232
                               73.9
                                    3294
                                            71.4
                                                  0.241
                                                             36
                               30.9
                                            21.5
16.176
         5.4748
                 26
                          97
                                     993
                                                  0.174
                                                             56
20.462
         4.3367
                  31
                          32
                               10.2
                                      299
                                            6.5
                                                  0.159
                                                             65
 21.702
          4.0916
                         155
                               49.4
                                     1396
                                            30.3
                                                  0.153
                                                             69
                  48
                 60
                               92.4 4611 100.0
24.058
         3.6960
                         290
                                                  0.270
                                                             32
                               78.0
 24.303
          3.6594
                  92
                         245
                                     3957
                                            85.8
                                                  0.275
                                                             31
          3.4059
                          75
                               23.9
26.142
                  52
                                      630
                                            13.7
                                                  0.143
                                                             80
        3.2804 53
                               63.1 1920
                                                             62
27.161
                         198
                                            41.6 0.165
 28.182
          3.1639
                  46
                          27
                               8.6
                                      379
                                             8.2
                                                  0.239
                                                             37
30.000 2.9761
                         255
                               81.2 2388
                                            51.8 0.159
                  47
                                                             66
                          50
                               15.9
                                     369
                                            8.0 0.125
30.896
          2.8919
                  56
                                                           >100
                               19.7
                                      735
                                            15.9 0.202
32.616
          2.7431
                  55
                          62
                                                             47
                               55.4 1893
 34.274
          2.6141
                 83
                         174
                                            41.1
                                                  0.185
                                                             53
 35.801
         2.5061
                  38
                          42
                               13.4
                                      323
                                             7.0 0.131
                                                             99
         2.4518
                          25
                               8.0
                                     167
                                             3.6 0.114
36.621
                 32
                                                           >100
 41.578
         2.1702
                 29
                          34
                              10.8
                                      366
                                             7.9 0.183
                                                             55
 42.761
         2.1129 47
                          86
                               27.4 1233
                                            26.7
                                                  0.244
                                                             38
 44.218
         2.0466
                  25
                          42
                              13.4
                                             9.6
                                                  0.179
                                                             57
                                      442
 47.400
          1.9164 25
                          23
                               7.3
                                      197
                                             4.3
                                                  0.146
                                                             82
```

```
ค่าความเป็นผลึก = (3595 + 1918 + 4611 + 1920 + 2388) x 100 = 28.71 %
```

ตารางที่ ง.20 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะ

เวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 2:3 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (14 Peaks, Max P/N = 8.3)
DATE: Thursday, Jul 29, 2010 01:15p
FILE: MW 2h 3h
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=429,
02/04/10 10:28
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
            d(Å)
                  ΒG
                      Height
                                  I%
                                      Area
                                                I%
                                                     FWHM
                                                           XS(nm)
 7.183 12.2969
                  26
                          98
                                29.2
                                       895
                                              15.4
                                                    0.155
                                                                67
                                              8.5
10.165
         8.6948
                  21
                           61
                                18.2
                                       495
                                                    0.138
                                                                83
          7.1067
                           33
                                 9.8
                                        291
 12.445
                  23
                                               5.0
                                                    0.150
                                                                71
 13.958
          6.3395
                          320
                                95.2
                                      4344
                                              75.0
                                                    0.231
                                                                38
                  51
 21.677
          4.0964
                   48
                           41
                                12.2
                                       491
                                               8.5
                                                    0.204
                                                                45
24.103
          3.6893
                  97
                          130
                                38.7
                                      2621
                                              45.2
                                                    0.343
                                                                24
 24.282
                               100.0
                                       5794
                                             100.0
                                                    0.293
                                                                29
          3.6624
                   93
                          336
 27.104
          3.2872
                  57
                                19.9
                                              9.1
                                                    0.134
                           67
                                       528
                                                                91
 28.102
          3.1727
                   52
                           28
                                 8.3
                                        310
                                               5.4
                                                    0.188
                                                                51
         2.9781
                                       602
 29.980
                  49
                           79
                                23.5
                                              10.4
                                                    0.130
                                                                99
                                18.5
 31.580
          2.8308
                   66
                           62
                                        805
                                              13.9
                                                    0.221
                                                                42
 32.637
          2.7414
                  58
                           47
                                14.0
                                       614
                                              10.6
                                                    0.222
                                                                41
 34.324
          2.6105
                  87
                           71
                                21.1
                                      1606
                                              27.7
                                                    0.385
                                                                22
 34.637
          2.5876
                  91
                           70
                                20.8
                                      1443
                                              24.9
                                                    0.350
                                                                24
 42.699
                                32.4
                                              32.7
          2.1158
                  45
                          109
                                      1894
                                                    0.295
                                                                30
```

ค่าความเป็นผลึก =	(895 + 495	+ 2621 + 528 + 602)	x 100	= 10.22
-------------------	------------	----------------------	-------	---------

50261

%

ตารางที่ ง.21 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะ

เวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 3:2 ชั่วโมง

USER: Tat JADE: Pea	cha Sampi ak Search	im Repoi	ct (24 Pe	eaks, M	ax P/N	= 6.4)		
ETIE: MW	3h 2h	JI 29	, 2010 0.	1.136				
SCAN. 5 ()/50 0/0 (12/0 '	$\mathcal{O}(\mathbf{sec})$	C11 (10k	V 30mA) T (m ə	v)-298	
02/04/10	10.39	5270.2	24(360),	Cultor	v, 50mA	/ , 1 (ma	x)=290,	
PEAK: 21-	-pts/Parak	olic	Filter.	Thresh	old=3.	0. Cuto	ff=0.1%	_
BG=3/0.5	Peak-Tor	oe£⊥o o=Sumr	nit	1111 0011	010 0.	o, ouco	0 . _0	/
NOTE: Int	ensity =	Count	s. 2T(0)	=0.0(d	ea). W	aveleng	th to C	ompute
d-Spacing	x = 1.5405	56Å ((Cu/K-alph	nal)	og/ /	avorog	011 00 0	ompaco
			, <u>-</u> -	,				
2-Theta	d(Å)	BG	Height	I%	Area	IЯ	FWHM	XS(nm)
6.087	14.5085	38	57	28.1	513	11.8	0.153	68
7.214	12.2437	37	183	90.1	1466	33.6	0.136	86
10.197	8.6676	27	113	55.7	992	22.8	0.149	72
12.480	7.0868	27	71	35.0	660	15.1	0.158	65
13.921	6.3561	45	198	97.5	3655	83.9	0.314	26
16.123	5.4928	31	58	28.6	380	8.7	0.111	>100
21.715	4.0892	44	100	49.3	816	18.7	0.139	84
24.058	3.6961	103	141	69.5	2584	59.3	0.312	27
24.301	3.6596	95	203	100.0	4357	100.0	0.365	23
26.179	3.4012	56	45	22.2	347	8.0	0.131	96
27.160	3.2805	58	104	51.2	790	18.1	0.129	>100
28.089	3.1741	54	29	14.3	198	4.5	0.116	>100
30.000	2.9761	51	126	62.1	1128	25.9	0.152	71
30.938	2.8880	65	35	17.2	260	6.0	0.126	>100
31.431	2.8438	74	36	17.7	350	8.0	0.165	62
31.643	2.8253	69	38	18.7	623	14.3	0.279	31
32.652	2.7402	61	33	16.3	303	/.0	0.156	69
34.260	2.6152	83	82	40.4	1200	27.5	0.249	36
34.597	2.5905	//	/1	35.0	1769 1060	40.6	0.424	20
34./1/	2.5818	23	68	33.5	1862	42.7	0.465	100
36.368	2.4553	3Z 24	20	12.3	98 100	2.2	0.06/	>100
37.34U 41 655	2.3939 2.1664	34 27	∠ / 2 F	⊥3.3 10.0	⊥ŏ∠ 201	4.Z	U.113 0 127	>100 01
41.000 10 000	2.1004 2.1110	∠ / 4 2	20 70	12.3 30 1	∠∪⊥ 1/17	4.0 32 F	0 300	20
42.002	$\angle \cdot \bot \bot \bot \cup$	42	10	JU.4	141/	52.5	0.309	29

ค่าความเป็นผลึก =	(1466 + 992	+ 2584 + 790 + 1128	3) x 100	= 13.84 %
-------------------	-------------	---------------------	----------	-----------

ตารางที่ ง.22 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีไมโครเวฟที่สภาวะ

เวลาในการละลายกากซิลิกา-อะลูมินาต่อการสังเคราะห์ 3:3 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (18 Peaks, Max P/N = 9.8)
DATE: Thursday, Jul 29, 2010 01:15p
FILE: MW 3h 3h
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=442,
02/04/10 11:03
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
           d(Å)
                  ΒG
                      Height
                                 I۶
                                     Area
                                              I%
                                                   FWHM XS(nm)
                              100.0
 7.181
        12.3007
                  29
                         413
                                     4250
                                            96.9
                                                  0.175
                                                             55
                              63.0 2171 49.5 0.142
 10.161 8.6981 29
                         260
                                                             79
         7.0994
                                            25.0
                                                            >100
 12.458
                  29
                         146
                                35.4
                                     1097
                                                  0.128
 13.941
        6.3472
                         199
                                48.2
                                            63.7
                                                  0.239
                  46
                                     2795
                                                              36
 16.085
        5.5057
                  24
                         108
                                26.2
                                     1110
                                            25.3
                                                  0.175
                                                              56
 20.434
         4.3426
                  32
                          37
                                9.0
                                      331
                                             7.5
                                                  0.152
                                                              70
 21.678
          4.0962
                                40.4
                   47
                          167
                                             29.6
                                                   0.132
                                                              93
                                      1300
                 58
 23.998 3.7051
                              69.0 4387 100.0
                                                             33
                         285
                                                  0.262
 24.317
          3.6572
                  107
                          174
                                42.1
                                      2562
                                            58.4
                                                  0.250
                                                              35
                                                              98
 26.085
          3.4133
                   53
                          78
                                18.9
                                      597
                                            13.6
                                                   0.130
                   50
                         209
                               50.6 1995
                                            45.5
                                                             63
 27.102
         3.2874
                                                  0.162
 29.957 2.9803
                 46
                         263
                              63.7 2489 56.7 0.161
                                                             65
                                                  0.099
                                                           >100
 30.857
         2.8954
                  63
                          35
                                8.5
                                      203
                                             4.6
 32.557
          2.7480
                  57
                                14.8
                                            11.3
                                                  0.139
                                                             86
                          61
                                      497
 34.178
          2.6213
                   85
                         177
                               42.9 1265
                                            28.8
                                                  0.121
                                                            >100
 42.780
          2.1120
                   44
                          68
                               16.5
                                      997
                                            22.7
                                                  0.249
                                                             37
 44.162
          2.0491
                   26
                           50
                               12.1
                                       307
                                             7.0
                                                  0.104
                                                            >100
                                       306
 47.340
         1.9186
                  21
                           24
                                5.8
                                             7.0 0.217
                                                              45
```

ค่าความเป็นผลึก = (4250 + 2171 + 4387 + 1995 + 2489) x 10 = 30.42 %
ตารางที่ ง.23 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่น ไมโครเวฟในขั้นตอนการสังเคราะห์ ที่เวลา 0.5 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (6 Peaks, Max P/N = 3.2)
DATE: Thursday, Jul 29, 2010 01:18p
FILE: overnight MW 0.5h
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=116,
06/21/10 12:37
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
           d(Å)
                 ΒG
                    Height
                                18
                                   Area
                                             I%
                                                  FWHM
                                                       XS(nm)
 7.234
        12.2091
                 36
                         63
                            100.0
                                    595
                                           85.9
                                                 0.161
                                                            63
10.224
        8.6449 34
                         48 76.2
                                     396
                                           57.1
                                                 0.140
                                                            81
21.739
         4.0848
                 55
                              69.8
                                           42.0
                                                          >100
                         44
                                     291
                                                 0.112
                                                            49
23.946
         3.7130 73
                         35
                              55.6
                                     394
                                           56.9
                                                 0.191
24.239 3.6688 69
                         38
                              60.3
                                     693 100.0 0.310
                                                            27
                                           81.8 0.254
                                                            35
30.057
         2.9706 78
                         38
                              60.3
                                     567
```

ค่าความเป็นผลึก = (595 + 396 + 394 + 693) x 100 = 3.88 %

ตารางที่ ง.24 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่น ไมโครเวฟในขั้นตอนการสังเคราะห์ ที่เวลา 1 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (27 Peaks, Max P/N = 12.3)
DATE: Thursday, Jul 29, 2010 01:18p
FILE: overnight MW 1h
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=659,
06/21/10 12:48
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
           d(Å)
                 ΒG
                     Height
                                I۶
                                   Area
                                             I%
                                                  FWHM
                                                       XS(nm)
7.202
        12.2645
                 26
                        633
                             100.0
                                    7183
                                         100.0
                                                 0.193
                                                            48
10.199 8.6661 19
                        416 65.7 4408 61.4 0.180
                                                            53
12.500
         7.0756
                 23
                        324
                              51.2 2685
                                           37.4 0.141
                                                            80
        6.3309
                 27
                              25.8
                                           26.8 0.201
13.977
                        163
                                   1924
                                                            46
16.142
         5.4864
                 27
                        205
                              32.4 1720
                                           23.9 0.143
                                                            78
17.689
         5.0098
                 22
                        37
                              5.8
                                    154
                                            2.1 0.071
                                                          >100
                                    519
         4.3407
                         63
                              10.0
                                            7.2
20.443
                 28
                                                 0.140
                                                            82
21.720
         4.0884
                 38
                        318
                              50.2
                                    2873
                                           40.0
                                                 0.154
                                                            69
22.941
         3.8734
                 35
                         28
                               4.4
                                     132
                                           1.8
                                                 0.080
                                                          >100
24.057
                 68
                        484
                              76.5 5941
                                           82.7 0.209
                                                            44
        3.6962
24.301
         3.6596
                 70
                        149
                              23.5 2504
                                           34.9
                                                 0.286
                                                            30
26.159
         3.4037
                 43
                        119
                              18.8
                                    1139
                                           15.9
                                                 0.163
                                                            63
         3.2804
                 43
                        388
                              61.3 3868
                                          53.8 0.169
27.161
                                                            59
       2.9760 43
                        504
                              79.6 4958
                                          69.0 0.167
                                                            61
30.001
                                           9.1 0.120
         2.8915
                         93
                              14.7
                                    654
30.899
                 50
                                                          >100
32.602
         2.7443
                 50
                         96
                              15.2
                                     875
                                           12.2
                                                0.155
                                                            69
33.509
         2.6721
                 48
                         35
                              5.5
                                     257
                                           3.6 0.125
                                                          >100
         2.6154
                        296
                              46.8 3240
                                          45.1 0.186
                                                            53
34.257
                 60
                              6.0
35.835
         2.5038
                 33
                         38
                                    451
                                           6.3 0.202
                                                            47
                         35
                              5.5
36.545
         2.4567
                 30
                                     334
                                            4.6 0.162
                                                            65
38.074
         2.3615
                 29
                         33
                              5.2
                                     183
                                            2.5 0.094
                                                          >100
41.563
         2.1710
                         65
                              10.3
                                     586
                                           8.2 0.153
                                                            73
                 26
42.296
         2.1351
                40
                         32
                              5.1
                                     283
                                           3.9
                                                 0.150
                                                            75
                         50
                              7.9
                                           10.4 0.254
42.842
         2.1091
                 41
                                     747
                                                            36
44.256
         2.0449
                 27
                         73
                              11.5
                                     657
                                            9.1
                                                 0.153
                                                            74
 47.415
         1.9158
                 2.4
                         48
                              7.6
                                     506
                                            7.0
                                                 0.179
                                                            58
                         31
                                                            91
 48.015
         1.8932
                 25
                               4.9
                                     252
                                            3.5
                                                 0.138
```

ค่าความเป็นผลึก = (7183 + 4408 + 5941 + 3868 + 4958) x 100 = 52.44 %

ตารางที่ ง.25 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่น ไมโครเวฟในขั้นตอนการสังเคราะห์ ที่เวลา 2 ชั่วโมง

USER: Tatcha Sampim								
JADE: Peak Search Report (20 Peaks, Max P/N = 8.2)								
DATE: Thursday, Jul 29, 2010 01:19p								
FILE: ov	FILE: overnight MW 2h							
SCAN: 5.	0/50.0/0.	02/0	.24(sec)	, Cu(40	kV,30m	A), I(m	ax)=421	,
06/21/10	12:58							
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,								^o ,
BG=3/0.5	, Peak-To	p=Su	ımmit					
NOTE: In	tensity =	Cou	ints, 2T(0)=0.0(deg),	Wavelen	gth to	Compute
d-Spacin	g = 1.540	56Å	(Cu/K-al	phal)				
2-Theta	d(Å)	BG	Height	I%	Area	IS	FWHM	XS(nm)
6.139	14.3859	30	24	7.4	118	2.0	0.084	>100
7.200	12.2676	21	216	66.7	2318	40.0	0.182	52
10.182	8.6807	21	149	46.0	1412	24.3	0.161	63
12.480	7.0865	22	95	29.3	895	15.4	0.160	63
13.962	6.3378	42	309	95.4	4212	72.6	0.232	38
16.140	5.4871	24	76	23.5	738	12.7	0.165	61
21.721	4.0881	46	102	31.5	840	14.5	0.140	82
24.061	3.6956	55	245	75.6	4590	79.1	0.318	26
24.319	3.6570	97	324	100.0	5801	100.0	0.304	28
26.175	3.4017	53	49	15.1	354	6.1	0.123	>100
27.177	3.2785	51	140	43.2	1239	21.4	0.150	72
28.158	3.1665	45	48	14.8	477	8.2	0.169	60
29.983	2.9778	42	182	56.2	1705	29.4	0.159	66
30.937	2.8881	56	46	14.2	378	6.5	0.140	84
31.696	2.8206	61	57	17.6	963	16.6	0.287	30
32.563	2.7475	58	59	18.2	442	7.6	0.127	>100
34.222	2.6180	58	146	45.1	2833	48.8	0.330	26
34.655	2.5863	62	97	29.9	2770	47.8	0.485	17
42.720	2.1149	48	124	38.3	1/9/	31.0	0.246	37
44.2/7	2.0440	22	23	/.1	279	4.8	0.206	47

ค่าความเป็นผลึก = (2318 + 1412 + 4590 + 1239 + 1705) x 100 = 22.41 %

ตารางที่ ง.26 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่น ไมโครเวฟในขั้นตอนการสังเคราะห์ ที่เวลา 3 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (13 Peaks, Max P/N = 8.2)
DATE: Thursday, Jul 29, 2010 01:19p
FILE: overnight MW 3h
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=418,
06/21/10 13:08
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
                BG Height
2-Theta
          d(Å)
                               I% Area
                                            I೪
                                                FWHM XS(nm)
 6.162
       14.3325
                 33
                     124
                              37.8 1072
                                          19.6 0.147
                                                           73
        8.7866 19
                         38
                                   256
10.059
                             11.6
                                           4.7 0.115
                                                         >100
                                           5.3 0.136
11.795
         7.4967
                 18
                         36
                             11.0
                                   288
                                                           86
14.000
        6.3207
                 45
                        305
                              93.0 4401
                                          80.4 0.245
                                                           35
        5.7117
                                                           73
15.501
                 29
                        38
                             11.6
                                    332
                                           6.1 0.149
21.537
        4.1226
                 39
                        25
                              7.6
                                    247
                                           4.5 0.168
                                                           59
                                           4.3 0.091
23.343
         3.8076
                 65
                        44
                             13.4
                                    236
                                                         >100
                             100.0 5477
24.341
         3.6537
                 90
                        328
                                         100.0
                                                0.284
                                                           30
                         56
                             17.1
                                           6.4 0.107
                                                         >100
26.721
         3.3334
                 59
                                     352
                 78
                         46
                             14.0
                                           7.6 0.154
                                                           70
31.604
         2.8287
                                    418
                         93
                                                           25
34.521
         2.5960
                 80
                              28.4 1841
                                          33.6 0.337
37.577
         2.3916
                 32
                        34
                             10.4
                                   493
                                          9.0 0.247
                                                           37
42.801
         2.1110 58
                        103
                              31.4 1490
                                          27.2
                                                0.246
                                                           38
```

```
ค่าความเป็นผลึก = (0 + 0 + 0 + 0 + 0) x 100 = 0.00 %
```

ตารางที่ ง.27 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่น ไมโครเวฟในขั้นตอนการละลาย ที่เวลา 0.5 ชั่วโมง

USER: Tatcha Sampim								
JADE: Peak Search Report (24 Peaks, Max P/N = 12.4)								
DATE: Thursday, Jul 29, 2010 01:17p								
FILE: MW 0.5h HT 4h								
SCAN: 5.	0/50.0/0.	02/0	.24(sec),	. Cu(40	kV , 30m	A), I(m	ax)=675	,
06/07/10	14:45							
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,								
BG=3/0.5, Peak-Top=Summit								
NOTE: Int	tensity =	Cou	unts, 2T(())=0.0(deg),	Wavelen	gth to	Compute
d-Spacino	g = 1.540	56Å	(Cu/K-alp	phal)				
2-Theta	d(Å)	BG	Height	IS	Area	IS	FWHM	XS(nm)
6.192	14.2617	59	32	5.0	380	4.7	0.202	45
7.259	12.1683	31	644	100.0	8152	100.0	0.215	41
10.241	8.6302	38	406	63.0	4727	58.0	0.198	46
12.558	7.0430	30	268	41.6	2531	31.0	0.161	63
16.185	5.4720	27	187	29.0	1903	23.3	0.173	56
20.556	4.3171	36	52	8.1	366	4.5	0.120	>100
21.798	4.0739	38	285	44.3	2826	34.7	0.169	59
24.082	3.6924	48	432	67.1	4500	55.2	0.177	55
26.238	3.3937	52	115	17.9	1008	12.4	0.149	73
27.221	3.2733	61	337	52.3	3579	43.9	0.181	54
30.042	2.9721	64	448	69.6	4997	61.3	0.190	51
30.962	2.8859	49	94	14.6	1255	15.4	0.227	40
32.662	2.7394	46	82	12.7	806	9.9	0.167	61
33.519	2.6713	46	45	7.0	364	4.5	0.138	8.7
34.283	2.6135	45	263	40.8	3021	37.1	0.195	49
35.880	2.5008	31	47	7.3	360	4.4	0.130	>100
36.659	2.4494	31	41	6.4	329	4.0	0.136	90
38.108	2.3595	29	31	4.8	210	2.6	0.115	>100
41.676	2.1654	31	53	8.2	634	7.8	0.203	48
42.286	2.1355	30	44	6.8	349	4.3	0.135	94
42.974	2.1029	29	27	4.2	252	3.1	0.159	69
44.298	2.0431	31	55	8.5	643	1.9	0.199	49
4/.440	1.9148	28	41	6.4	503	6.2	0.209	47
48.095	T.8903	27	34	5.3	271	3.3	U.135	95

ตารางที่ ง.28 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่น ไมโครเวฟในขั้นตอนการละลาย ที่เวลา 1 ชั่วโมง

USER: Tatcha Sampim								
JADE: Peak Search Report (30 Peaks, Max P/N = 13.8)								
DATE: Thursday, Jul 29, 2010 01:17p								
FILE: MW 1h HT 4h								
SCAN: 5.0/	/50.0/0.	02/0.	.24(sec),	Cu(40	kV , 30m	A), I(m	ax)=817	,
06/07/10 1	L4:55							
PEAK: 21-p	ots/Para	bolid	c Filter,	Thres	hold=3	.0, Cut	off=0.1	010,
BG=3/0.5, Peak-Top=Summit								
NOTE: Inte	ensity =	Cour	nts, 2T(0) =0.0(deg),	Wavelen	gth to	Compute
d-Spacing	= 1.540	56Å	(Cu/K-alp	ohal)				
2-Theta	d(Å)	BG	Height	I%	Area	I%	FWHM	XS(nm)
6.102 1	L4.4731	52	56	7.1	524	5.7	0.159	64
7.161 1	L2.3340	28	789	100.0	9263	100.0	0.200	46
10.159	8.7002	22	657	83.3	6587	71.1	0.170	57
11.733	7.5362	28	29	3.7	210	2.3	0.123	>100
12.459	7.0985	18	414	52.5	3872	41.8	0.159	64
16.100	5.5006	21	250	31.7	2314	25.0	0.157	66
17.671	5.0148	18	24	3.0	174	1.9	0.123	>100
20.419	4.3458	24	77	9.8	829	8.9	0.183	52
21.664	4.0988	31	419	53.1	3793	40.9	0.154	69
23.999	3.7050	37	648	82.1	5631	60.8	0.148	74
26.105	3.4107	37	167	21.2	1403	15.1	0.143	80
26.713	3.3344	60	30	3.8	216	2.3	0.122	>100
27.122	3.2850	55	519	65.8	4496	48.5	0.147	75
29.960	2.9800	54	699	88.6	6103	65.9	0.148	75
30.861	2.8951	41	135	17.1	1356	14.6	0.171	59
32.561	2.7477	39	112	14.2	1032	11.1	0.157	68
33.368	2.6830	37	41	5.2	467	5.0	0.194	50
34.184	2.6209	37	392	49.7	3774	40.7	0.164	64
35.799	2.5062	27	58	7.4	433	4.7	0.127	>100
36.524	2.4581	24	49	6.2	423	4.6	0.147	77
37.361	2.4049	25	26	3.3	122	1.3	0.080	>100
38.042	2.3635	25	41	5.2	266	2.9	0.110	>100
40.180	2.2425	22	37	4.7	334	3.6	0.153	72
41.556	2.1714	28	77	9.8	732	7.9	0.162	66
42.204	2.1395	29	41	5.2	411	4.4	0.170	61
42.916	2.1056	26	30	3.8	312	3.4	0.177	58
43.538	2.0770	27	33	4.2	218	2.4	0.112	>100
44.182	2.0482	24	103	13.1	981	10.6	0.162	67
47.356	1.9181	22	72	9.1	685	7.4	0.162	68
47.998	1.8939	24	54	6.8	425	4.6	0.134	97

ค่าความเป็นผลึก = (9263 + 6587 + 5631 + 4496 + 6103) x 100 = 63.82 %

ตารางที่ ง.29 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่น ไมโครเวฟในขั้นตอนการละลาย ที่เวลา 2 ชั่วโมง

USER: Tatcha Sampim	
JADE: Peak Search Report (13 Peaks, Max P/N = 5.1)	
DATE: Thursday, Jul 29, 2010 01:17p	
FILE: MW 2h HT 4h	
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=20)4,
06/07/10 15:06	
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.	.1%,
BG=3/0.5, Peak-Top=Summit	
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to	o Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)	
Z-Theta d(A) BG Height 1% Area 1% FV	VHM XS(nm)
7.199 12.2690 37 1113 100.0 12124 100.0 0.1	185 51 170 EA
10.101 0.0011 21 $7/0$ 09.2 0043 00.4 0.1	160 50
12.400 7.0000 19 402 41.5 4000 57.9 0.1 16 130 5 4872 16 302 27 1 3320 27 5 0 1	187 50
17 662 5 0176 18 25 2 233 1 9 0 1	158 65
20.461 4.3369 20 122 11.0 1067 8.8 0.1	149 73
21.701 4.0919 24 485 43.6 5003 41.3 0.1	175 56
22.904 3.8797 31 41 3.7 256 2.1 0.1	106 >100
24.020 3.7018 31 744 66.8 7074 58.3 0.1	L62 64
26.142 3.4060 35 214 19.2 1837 15.2 0.1	146 76
26.778 3.3264 38 39 3.5 436 3.6 0.1	190 50
27.142 3.2827 37 634 57.0 6370 52.5 0.1	L71 59
29.997 2.9765 40 842 75.7 8007 66.0 0.1	L62 64
30.863 2.8949 39 142 12.8 1330 11.0 0.1	L59 66
32.598 2.7446 40 159 14.3 1354 11.2 0.1	L45 79
33.404 2.6802 39 48 4.3 395 3.3 0.1	L40 84
34.221 2.6181 35 443 39.8 4827 39.8 0.1	L85 53
35.797 2.5064 28 88 7.9 688 5.7 0.1	L33 95
36.542 2.4569 28 62 5.6 413 3.4 0.1	113 >100
38.023 2.3646 25 42 3.8 514 4.2 0.2	208 46
40.022 2.2404 23 36 3.2 414 3.4 0.1	196 50
41.542 2.1/21 33 82 7.4 664 5.5 0.1	L38 89 153 73
42.240 2.1577 56 51 4.6 460 5.8 0.1	104 \100
42.502 2.1005 50 42 5.6 250 2.1 0.1	189 \100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	263 2100
47.324 1.9193 22 90 8 1 1032 8 5 0 7	-00 50 195 51
47.957 1.8954 23 56 5.0 630 5.2 0.1	191 53
49.729 1.8319 27 32 2.9 298 2.5 0.1	158 71

ค่าความเป็นผลึก = (12124 + 8045 + 7074 + 6370 + 8007) x 100 = 82.80 %

ตารางที่ ง.30 การวิเคราะห์ค่าความเป็นผลึกของซีโอไลต์ที่สังเคราะห์ด้วยวิธีแบบผสม โดยใช้คลื่น ไมโครเวฟในขั้นตอนการละลาย ที่เวลา 3 ชั่วโมง

```
USER: Tatcha Sampim
JADE: Peak Search Report (25 Peaks, Max P/N = 15.2)
DATE: Thursday, Jul 29, 2010 01:18p
FILE: MW 3h HT 4h
SCAN: 5.0/50.0/0.02/0.24(sec), Cu(40kV,30mA), I(max)=974,
06/07/10 15:16
PEAK: 21-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%,
BG=3/0.5, Peak-Top=Summit
NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute
d-Spacing = 1.54056Å (Cu/K-alpha1)
2-Theta
            d(Å)
                  ΒG
                      Height
                                  Iγ
                                       Area
                                                Iθ
                                                      FWHM
                                                            XS(nm)
 7.219
         12.2356
                  28
                          946
                               100.0
                                      10672
                                             100.0
                                                     0.192
                                                                48
10.199 8.6657 33
                         707
                              74.7 7013
                                             65.7 0.169
                                                                58
12.499
          7.0762
                  15
                          468
                                49.5
                                       4675
                                              43.8
                                                    0.170
                                                                58
                          293
                                31.0
                                              25.1
                                                     0.156
16.157
          5.4813
                  19
                                       2681
                                                                67
20.459
          4.3373
                  21
                           92
                                9.7
                                        882
                                               8.3
                                                     0.163
                                                                62
21.719
          4.0885
                          424
                                44.8
                                               41.2
                                                     0.176
                                                                55
                  31
                                       4399
                                73.7
                                              63.1
                                                     0.164
                                                                62
24.039
          3.6990
                          697
                                       6737
                  31
 26.194
          3.3992
                  33
                          207
                                21.9
                                       1891
                                              17.7
                                                     0.155
                                                                68
                                62.5
                                                                62
27.162
          3.2804
                  43
                          591
                                       5741
                                              53.8
                                                     0.165
         2.9778
                  42
                         709
                                74.9
                                       7414
                                              69.5 0.178
                                                                56
29.983
30.879
          2.8934
                  36
                          133
                                14.1
                                       1266
                                              11.9
                                                    0.162
                                                                64
32.601
          2.7444
                  36
                          133
                                14.1
                                       1224
                                              11.5
                                                    0.156
                                                                68
          2.6776
                                               3.5
33.437
                  37
                           62
                                6.6
                                        378
                                                    0.104
                                                              >100
          2.6180
                  36
                          424
                                       4377
                                              41.0
                                                                57
34.223
                                44.8
                                                    0.175
                                                                57
35.819
          2.5049
                  26
                           56
                                5.9
                                        584
                                               5.5
                                                    0.177
 36.563
          2.4556
                  26
                           50
                                 5.3
                                        474
                                               4.4
                                                    0.161
                                                                66
38.053
          2.3628
                  26
                           36
                                 3.8
                                        265
                                               2.5
                                                    0.125
                                                              >100
          2.2413
                                4.3
                                                                91
 40.202
                  23
                           41
                                        329
                                               3.1
                                                    0.136
 41.600
          2.1692
                  27
                           82
                                8.7
                                        872
                                               8.2
                                                    0.181
                                                                56
 42.259
          2.1368
                  26
                           56
                                5.9
                                        661
                                               6.2
                                                    0.201
                                                                49
 42.951
          2.1040
                  27
                                4.9
                                               3.5
                                                    0.137
                                                                91
                           46
                                        371
 43.565
          2.0758
                           45
                                4.8
                                               2.4
                                                    0.097
                  29
                                        258
                                                              >100
 44.239
          2.0457
                  27
                          108
                                11.4
                                       1064
                                              10.0
                                                     0.167
                                                                63
 47.379
                                 7.0
          1.9172
                  26
                           66
                                        670
                                               6.3
                                                     0.173
                                                                61
 47.996
          1.8940
                  23
                           52
                                 5.5
                                        521
                                                                63
                                               4.9
                                                     0.170
```

ค่าความเป็นผลึก = (10672 + 7013 + 6737 + 5741 + 7414) x 100 = 74.76 %

ประวัติผู้เขียนวิทยานิพนธ์

นายธัชชา สามพิมพ์ เกิดเมื่อวันที่ 13 เดือนพฤศจิกายน พ.ศ.2528 ที่จังหวัด นครศรีธรรมราช สำเร็จการศึกษาระดับปริญญาวิทยาศาสตรบัณฑิต สาขาวิชาเคมี คณะ วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2550 และเข้าศึกษาต่อในหลักสูตร วิศวกรรมศาสตรมหาบัณฑิต ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาตร์ จุฬาลงกรณ์ มหาวิทยาลัย เมื่อปี พ.ศ. 2551

การเผยแพร่วิทยานิพนธ์

- [1] ธัชชา สามพิมพ์ เพ็ชรพร เชาวกิจเจริญ และดวงกมล นันทศรี. การสังเคราะห์ซีโอไลต์เอจาก กากซิลิกา- อะลูมินาที่ใช้แล้ว (Synthesis of Na-A Zeolite from Spent Silica – Alumina).
 เอกสารประกอบการ ประชุมวิชาการวิทยาศาสตร์ วิศวกรรมและการจัดการสิ่งแวดล้อม ครั้งที่
 2. 18-19 มีนาคม 2553 ณ อาคารสถาบัน 2 ชั้น 2 จุฬาลงกรณ์มหาวิทยาลัย.
- [2] Tatcha Sampim Petchporn Chawakitchareon and Duangamol Nuntasri. "Utilization of Alumina-Silica Waste as for Synthesis of Zeolite NaA". Proceedings of the 4th International Workshop and Conference on Earth Resource Technology "Georesources for green society: Development, Recovery and Recycling". 11-13 May 2010, Royal Paradise Hotal & Spa, Patong, Phuket, Thailand.