PREPARATION AND CHARACTERIZATION OF RARE EARTH IONS-DOPED TiO_2 PHOTOCATALYST FILM BY RF-MAGNETRON SPUTTERING

Mr. Suthin Yuenyaw

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Ceramic Technology Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University การเตรียมและลักษณะสมบัติของฟิล์มโฟโตคะตะลิสต์ไทเทเนียมไดออกไซด์ ที่โดปแรร์เอิร์ทไอออนโดยอาร์เอฟแมกนีตรอนสปัตเตอริง

นาย สุทิน ยืนยาว

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีเซรามิก ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	PREPARATION AND CHARACTERIZATION OF RARE
	EARTH IONS-DOPED $\mathrm{TiO_2PHOTOCATALYST}$ FILM BY
	RF-MAGNETRON SPUTTERING
Ву	Mr. Suthin Yuenyaw
Field study	Ceramics Technology
Thesis Advisor	Assistant Professor Pornapa Sudjaridwarakun, D.Eng.
Thesis Co-Advisor	Professor Kazuya Saito, D.Sci.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

......Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

(Assistant Professor Sirithun Jiemsirilers, Ph.D.)

..... Thesis Advisor

(Assistant Professor Pornapa Sujaridworakun, D.Eng)

...... Thesis Co-Advisor

(Professor Kazuya Saito, D.Sci)

..... Examiner

(Assistant Professor Thanakorn Wasanapiarnpong, D.Eng)

..... External Examiner

(Siriporn Larpkiatthaworn, Ph.D.)

สุทิน ยืนยาว : การเตรียมและลักษณะสมบัติของฟิล์มโฟโตคะตะลิสต์ไทเทเนียมได ออกไซด์ที่โดปแรร์เอิร์ทไอออนโดยอาร์เอฟแมกนีตรอนสปัตเตอริง (PREPARATION AND CHARACTERIZATION OF RARE EARTH IONS-DOPED TiO₂ PHOTOCATALYST FILM BY RF-MAGNETRON SPUTTERING) อ. ที่ปรึกษา วิทยานิพนธ์หลัก: ผศ. ดร. พรนภา สุจริตวรกุล, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม: Prof. Kazuya Saito, D. Sci, 92 หน้า.

งานวิจัยนี้ได้ทำการศึกษาการเตรียมและผลของการโคปด้วย Yb₂O₃ และ Er₂O₃ ต่อ โครงสร้างจุลภาคพื้นผิว สมบัติทางแสง และสมบัติโฟโตคะตะลิสต์ภายใต้แสงยูวีและฟูลออเรส เซนต์ของฟิล์มบางที่เตรียมโดยวิธีอาร์เอฟแมกนีตรอนสปัตเตอริง การเตรียมฟิล์มถกกำหนด โดยให้ แหล่งกำเนิดไฟฟ้า ระยะระหว่างเป้ากับซับสเตรต และอุณหภูมิของซับสเตรตคงที่ที่ ี่ 150 วัตต์ 5.0 เซนติเมตร และ 500 องศาเซลเซียส ตามลำคับ และในงานวิจัยนี้กำหนคให้ฟิล์มมี ้ความหนาประมาณ 1.0 ใมโครเมตร จากผลการทคลองพบว่าฟิล์มไทเทเนียมไดออกไซด์ที่ เตรียมได้เป็นเฟสอะนาเทสเพียงเฟสเดียว ผลของความดันในการสปัตเตอริง และสปัตเตอริง แก๊ส เป็นตัวแปรที่มีความสำคัญ ที่ส่งผลต่อการเกิดโครงสร้างของฟิล์ม ซึ่งฟิล์มที่เตรียมที่ความ ้ดันสูง (3 พาสคัล) ในบรรยากาศของแก๊สอาร์กอนอย่างเดียว ฟิล์มที่ได้มีความพรุนตัวและความ ้งรุงระพื้นผิวสูงซึ่งส่งผลให้มีสมบัติโฟโตคะตะลิสต์ที่สูง ในขณะที่ฟิล์มที่เตรียมในบรรยากาศ ของแก๊สผสมระหว่างอาร์กอนกับออกซิเงน (Ar/O₂:8/2) มีความพรุนตัวและค่าความขรุขระ ้พื้นผิวต่ำจึงส่งผลให้ประสิทธิภาพโฟโตคะตะลิสต์ต่ำเมื่อเทียบกับฟิล์มที่เตรียมภายใต้ บรรยากาศแก๊สอาร์กอนอย่างเคียว ในกรณีของฟิล์มที่เตรียมด้วยการ โดปด้วย Yb₂O₂ และ Er₂O₂ พบว่าฟิล์มที่ถูกเตรียมภายใต้แก๊สผสมระหว่างอาร์กอนกับออกซิเจน เมื่อปริมาณความเข้มข้น ของ Yb₂O₃ และ Er₂O₃ ในเป้าเซรามิกเพิ่มขึ้นจาก 0.5 เป็น 1 เปอร์เซ็นต์โดยโมล ส่งผลทำให้ ฟิล์มมีค่าความขรุขระพื้นผิวเพิ่มขึ้นและค่าการส่งผ่านของแสงลคลง นอกจากนี้ค่าการดูคกลืน แสงยังเลื่อนไปยังความยาวกลื่นที่สูงขึ้นทำให้ค่าแถบช่องว่างพลังงานลคลง และสมบัติโฟโตคะ ตะลิสต์มีค่าเพิ่มขึ้นภายใต้การฉายแสงยูวีและฟุลออเรสเซนต์ ในขณะที่ฟิล์มที่เตรียมภายใต้แก๊ส อาร์กอนเพียงอย่างเดียวเมื่อมีการเพิ่มปริมาณการโคป ค่าการคคกลืนแสงและแถบช่องว่าง พลังงาน มีแนวโน้มเช่นเดียวกับฟิล์มที่เตรียมได้ภายใต้แก๊สผสม แต่ไม่ส่งผลต่อก่ากวามขรขระ ้พื้นผิวอย่างชัดเจน และยังให้สมบัติโฟโตคะตะลิสต์ที่ต่ำกว่าเมื่อเทียบกับฟิล์มที่เตรียมด้วยแก๊ส

ผสมระหว่างอาร์กอนกับออกซิเจน ภาควิชา วั <u>สดศาสตร์</u>	ลายมือชื่อนิสิต
สาขาวิชา <u>เทคโนโลยีเซรามิก</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา <u>2553</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

RF-MAGNETRON SPUTTERING

SUTHIN YUENYAW: PREARATION AND CHARACTERIZATION OF RARE EARTH IONS-DOPED TIO₂ PHOTOCATALYST FILM BY RF MAGNETRON SPUTTERING. THESIS ADVISOR: ASST. PROF. PRONAPA SUDJARIDWARAKUN, D. Eng, THESIS CO-ADVISOR: PROF. KAZUYA SAITO, D. Sci, 92 pp.

This research studied on the preparation and the effect of Yb₂O₃ and Er₂O₃ doped TiO₂ on the surface morphology, optical and photocatalyst properties under UV and fluorescent irradiation of thin films via RF-magnetron sputtering method. The preparation conditions were fixed for applied power, distance between target-substrate and substrate heating temperature at 150 W, 5.0 cm and 500 $^\circ \rm C$, respectively. All deposited films were controlled the thickness at about 1.0 µm by varying deposition time. As the results, all of prepared films showed only pure anatase phase. The sputtering pressure and sputtering gas had significantly affected on the microstructure of TiO, film. The films prepared under high pressure (3 Pa) and pure Ar gas displayed porous structure and high surface roughness, resulted in high photocatalytic activity. While the TiO, films prepared under gas mixture Ar/O, (8/2) showed porous structure with lower surface roughness resulted in lower photocatalytic activity than that of film prepared under pure Ar gas. In case of TiO₂ films doping with Yb_2O_3 and Er₂O₃, the increasing in surface roughness and the decreasing in transmittance of the films prepared under gas mixture of Ar/O₂ (8/2) when concentration of Yb₂O₃ and Er₂O₃ target increased from 0.5 to 1.0 mol% was observed. Moreover, the absorption thresholds slightly shifted to longer wavelength which was attributed to the decreases in band gap energy. And higher photocatalytic activity under UV and Fluorescent irradiation was obtained. The similar result of absorption and band gap energy of the films prepared under pure Ar was also observed. But the difference in surface roughness was not significantly affected as the concentration of dopant increased. In addition, the doped films prepared under gas mixture had better photocatalytic activity than that of films prepared under pure Ar gas.

Department : <u>Materials Science</u>	Student's Signature
Field of Study : <u>Ceramic Technology</u>	Advisor's Signature
Academic Year : 2010	Co-Advisor's Signature

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my thesis advisor, Asst. Prof. Dr. Pornapa sudjaridworakun and Prof. Dr. Kazuya Saito, my co-advisor for encouragement, in valuable support, including their kindness and guidance and to opportunity to pursue throughout my research freely. Their comments and suggestions not merely provide valuable knowledge but broaden perspective in practical applications as well.

Special gratitude goes to the chairman to the committee, Asst. Prof. Dr. Sirithun Jiemsirilers for providing invaluable advice and examining my final work. I would also like to thank other committee members, Dr.Siriporn Larbkiattaworn and Asst. Prof. Dr Thanakorn Wasanapiarnpong members of thesis committee for many valuable comments and their perceptive suggestions.

My sincerely thanks Dr. Edson H. Sekiya and Mr. Masaki Tada for the help with RF-magnetron sputtering process while living in Japan.

Thank you Prof. Masammichi Yoshimura, Mr.Matsuoka Yuki for FE-SEM, Mr. Seiya Suzuki for AFM characterization, Mr. Fukuzawa Jun for EPMA, Dr. Kojima Nobuaki for XPS and Miss Laksana Kreethawate for FE-SEM.

I would like to thanks Department of Materials Science, Faculty of Science, Chulalongkorn University and Frontier Materials Laboratory, Research Center for Advanced Photon Technology, Toyota Technological Institute, Japan for providing laboratory facilities and support.

Finally, I am eternally grateful to my beloved family for their forever support, love and encouragement throughout my life.

This research was supported by Center for Petroleum, Petrochemicals and Advance Materials, Chulalongkorn University, Japan Student Services Organization (JASSO) scholarship and Conference Grant for Master degree.

CONTENTS

Page

ration of TiO ₂ and Yb ₂ O ₃ /Er ₂ O ₃ -doped TiO ₂ thin film	28
acterizations of sputtered thin films	29
X-ray diffraction (XRD)	29
Dekktak 3 ST Surface Profiler	
Field Emission Scanning Electron Microscopy (FE-SEM)	32
Scanning Probe Microscopy (SPM)	33
Transmittance by UV-vis spectrophotometer (Lambda 950)	34
Optical band gap energy	35
Photocatalytic activity	36
Electron probe micro-analyyzer (EPMA)	
RESULTS AND DIDCUSSIONS	40
hin films	40
Deposition rate	40
Phase structure	42
Surface morphology and roughness	44
Transmittance	
Optical band gap	49
Photocatalytic activity	50
-doped TiO ₂ thin films	53
Phase structure	53
Surface morphology	54
Optical properties	60
Photocatalytic activity	64
-doped TiO ₂ thin films	67
Phase structure	67
Surface morphology	69
Optical properties	72
Photo catalytic activity	75
	ration of TiO ₂ and Yb ₂ O ₃ /Er ₂ O ₃ -doped TiO ₂ thin film

Page

5.1 Conclusions	79
5.2 Recommendations	80
REFERENCE	81
APPENDICES	86
APPENDIX A	87
APPENDIX B	88
APPENDIX C	89
APPENDIX D	90
VITA	92

LIST OF TABLES

Table 2.1 Comparision properties of anatase, brookite and rutile
Table 2.2 Band gap energy of semiconductors11
Table 2.3 Application of Titanium dioxide photocatalytic
Table 3.1 Sputtering conditions for deposition thin films
Table 4.1 Band gap energy value (E_{bg}) of TiO ₂ and Yb ₂ O ₃ -doped TiO ₂ films63
Table 4.2 Kinetic energy of the Yb_2O_3 -doped TiO_2 thin films under UV and fluorescent
irradiation
Table 4.3 Band gap energy values (E_{bg}) of TiO ₂ and Er_2O_3 -doped TiO ₂ films75
Table 4.4 Kinetic energy of the Er_2O_3 -doped Ti O_2 thin films under UV and fluorescent
irradiation78

LIST OF FIGURES

Page
Figure 2.1 Structure of titanium dioxide anatase (A) rutile (B) and bookite (C)4
Figure 2.2 Show relationship between energy diagram of TiO ₂ and redox potentials7
Figure 2.3 Process at titanium dioxide surface of semiconductor when it had activated
by UV light
Figure 2.4 Schematic of the photocatalytic process10
Figure 2.5 Band gap energy of semiconductors11
Figure 2.6 Schematic of DC sputtering15
Figure 2.7 Schematic of RF sputtering16
Figure 2.8 Show mechanism of sputtering process17
Figure 2.9 Schematic of L-332S-FS, Anelva Corp sputtering system
Figure 2.10 Top and side views of L-332S-FS, Anelva Corp sputtering chamber system.
19
Figure 3.1 Profile of 46.250 KÂ NIST Certified Calibration Standard
Figure 3.2 Veeco Dektak 3 ST model31
Figure 3.3 Shows the basic components of the scanning electron microscope. The
various components of the microscope can be categorized as (1) the electron
column, (2) the specimen chamber, (3) the vacuum pumping system and (4)
the electron control and imaging system
Figure 3.4 Basic idea of scanned probe techniques33
Figure 3.5 Flow chart of beam UV-vis spectrophotometer
Figure 3.6 Determination of energy of TiO ₂ films deposited on glass substrate by "Tauc's
plot"
Figure 3.7 Photocatalytic activity characterization and equipment
Figure 3.8 Schematic cut-away diagram of a typical microprobe
Figure 3.9 Flow chart of sputtering conditions and characterizations of thin films39
Figure 4.1 Graph shows relation between sputtering time and thickness of TiO_2 films
prepared by RF- magnetron sputtering under pure Ar (10/0) and mixed Ar/ $\mathrm{O_2}$
(8/2), at total sputtering pressure 3 Pa41

Page

Figure 4.2 XRD patterns of TiO_2 thin films prepared under (a) Ar/O ₂ ; 8/2 and (b) pure Ar
10/0, under 3 Pa and substrate heating temperature at 500 $^\circ \text{C}42$
Figure 4.3 XRD patterns of TiO_2 film prepared under pure Ar at different total sputtering
pressure, (a) 0.5 Pa, (b) 1 Pa and (c) 3 Pa43
Figure 4.4 FE-SEM images of TiO $_{\rm 2}$ thin films prepared under (a) pure Ar and (b) Ar/O $_{\rm 2}$
(8/2) at total sputtering pressure 3 Pa45
Figure 4.5 FE-SEM images of TiO $_{\rm 2}$ thin films prepared under pure Ar (10/0) at different
total sputtering pressure (a) 0.5 Pa (b) 1 Pa (c) 3 Pa45
Figure 4.6 SPM images of TiO_2 films deposited under different sputtering conditions. (a)
pure Ar, 3 Pa (b) pure Ar,1 Pa and (c) Ar/O ₂ , (8/2), 3 Pa47
Figure 4.7 Transmittance spectra of TiO ₂ thin films prepared under sputtering pressure
at 3 Pa and different sputtering gas. (a) Ar/O $_2$ (8/2) and (b) pure Ar (10/0) 48
Figure 4.8 Graphs of ($lpha E$) $^{^{1/2}}$ versus photon energy, E ($h u$), for TiO $_{_2}$ films prepared
under pure Ar (10/0) and Ar/O ₂ (8/2)49
Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV
Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O_2 (8/2)
Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O ₂ (8/2) at total sputtering pressure 3 Pa
Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O ₂ (8/2) at total sputtering pressure 3 Pa
Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O ₂ (8/2) at total sputtering pressure 3 Pa
Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O ₂ (8/2) at total sputtering pressure 3 Pa
 Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O₂ (8/2) at total sputtering pressure 3 Pa
 Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O₂ (8/2) at total sputtering pressure 3 Pa
 Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O₂ (8/2) at total sputtering pressure 3 Pa
 Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O₂ (8/2) at total sputtering pressure 3 Pa
 Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O₂ (8/2) at total sputtering pressure 3 Pa
 Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O₂ (8/2) at total sputtering pressure 3 Pa
 Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O₂ (8/2) at total sputtering pressure 3 Pa

Figure 4.14 FE-SEM image from cross-section of Yb_2O_3 -doped TiO_2 films deposited
under difference sputtering gas. (a) (Ar/O $_2$) 10/0 and (b) (Ar/O $_2$) 8/2,
deposition time 4 hour56
Figure 4.15 Two-dimensional and three-dimensional SPM images of (a) Pure TiO_2 (b)
TiO ₂ -0.5mol% Yb ₂ O ₃ and (c) TiO ₂ -1mol% Yb ₂ O ₃ films prepared on glass
substrate under Ar/O $_{ m 2}$ at 8/2, heated at 500 $^{\circ}{ m C}$ and total sputtering pressure
3 Pa58
Figure 4.16 Two-dimensional and three-dimensional SPM images of (a) Pure TiO_2 (b)
TiO ₂ -0.5mol% Yb_2O_3 and (c) TiO ₂ -1mol% Yb_2O_3 films prepared on glass
substrate under pure Ar, heated at 500 $^\circ \rm C$ and total sputtering pressure 3 Pa.
Figure 4.17 Transmittance spectra of TiO_2 and Yb_2O_3 -doped TiO_2 thin films prepared
under different sputtering gas and doping amount of Yb ₂ O ₃ , at total sputtering
pressure 3 Pa61
Figure 4.18 Graphs of $(\alpha E)^{1/2}$ versus photon energy, E ($h\nu$) for Yb ₂ O ₂ -doped TiO ₂ thin
films
films
films
films
 films
 films
 films
 films. Figure 4.19 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃. Figure 4.20 Photocatalytic degradation of methylene blue solution as a function of fluorescent irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃. Figure 4.20 Photocatalytic degradation of methylene blue solution as a function of fluorescent irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃. Figure 4.21 XRD patterns of TiO₂ and 1mol%Er₂O₃ doped TiO₂ (ErT) films prepared
 Figure 4.19 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃
 Figure 4.19 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃
 Figure 4.19 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃
 Figure 4.19 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃
 Figure 4.19 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃
 Figure 4.19 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Yb₂O₃-doped TiO₂films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb₂O₃

Page

XIV

Figure 4.24 Two-dimensional and three-dimensional SPM images of (a) pure $\mathrm{TiO}_{\mathrm{2}}$,
(b) 0.5 mol% $\rm Er_2O_3$ -doped TiO_2 and (c) 1 mol% $\rm Er_2O_3$ -doped TiO_2 films
prepared on galss substrate under Ar/O $_{2}$ at 8/2, heated at 500 $^{\circ}\mathrm{C}$ and total
sputtering pressure 3 Pa70
Figure 4.25 Two-dimensional and three-dimensional SPM images of (a)TiO $_{\rm 2}$ (b)
0.5mol% Er_2O_3 -Ti O_2 (c) 1mol% Er_2O_3 -Ti O_2 films prepared on glass substrate
under pure Ar, heated at 500 $^\circ \mathrm{C}$ and total sputtering pressure 3 Pa71
Figure 4.26 Transmittance spectra of TiO_2 and Er_2O_3 -doped TiO_2 films prepared under
different sputtering gas and doping amount of Er_2O_3 doped TiO ₂ , at total
sputtering pressure 3 Pa73
Figure 4.27. Graphs of $(\alpha E)^{1/2}$ versus photon energy E, $(h\nu)$ for Er ₂ O ₃ -doped TiO ₂
films74
Figure 4.28 Photocatalytic degradation of methylene blue solution as a function of UV
irradiation time of Er_2O_3 -doped TiO ₂ films prepared under different sputtering
gas (Ar/O ₂) and concentrations of Er_2O_3
Figure 4.29 Photocatalytic degradation of methylene blue solution as a function of
right 4.23 Thousanalytic degradation of methylene blue solution as a function of
fluorsencent irradiation time of Er_2O_3 -doped TiO ₂ films prepared under

CHAPTER I

1.1 Background and Motivations

In recently there is an increased awareness for the exhaustion of natural energy sources and severe environmental pollution problems. Semiconductor photocatalysis using sunlight to break down harmful organic pollutants is one of the promising approaches to solve these pollution problems. Up to date, research of photocatalyst materials has been focused on TiO₂ due to its high refractive index, high transparency in the visible and near-infrared wavelength region, high dielectric constant, very good wear resistance, low cost, chemical satiability, non- toxicity and good durability in hostile environmental. Thus have been widely used for many applications such as optical thin films device, anti-bacteria, self-cleaning, water purify [1]. However, a major drawback of TiO₂ photocatalyst is its large band gap value (ca.3.0, 3.2 eV for rutile and anatase, respectively), making it can only be excited by the light in UV range (λ <390 nm) which is only 4-5 % in the sunlight has the required energy to activate the catalyst [2]. In comparison to the other crystalline phase of TiO₂, such as rutile and brookite, the most photoactive phase of TiO₂ is anatase.

Generally, a good photocatalyst must process a large catalytic surface in which the size of the primary catalyst particles is related to the surface area available for the adsorption and decomposition of the organic pollutants. The high surface to bulk ratio of the ultrafine particles should favor the transfer of photogenerated charge carriers, and enhance the photocatalytic activity. For this reason, most of the studies were focused on the preparation of nanosized powder of the transition metal ions or rare earth ions doped TiO_2 photocatalyst. However, there are some drawbacks of the practical use of powder during the photocatalytic process: separation powder TiO_2 from water is difficult, and the suspended powder TiO_2 tends to aggregate especially at the high concentrations. Therefore, the immobilize TiO_2 onto various supports in order to overcome these problems has been developed.

The thin films of titanium dioxide are prepared by several of deposition methods for examples, sol-gel, precipitation-dipping, chemical vapor deposition, evaporation, plasma sputtering depositions, ion beam-assisted process etc. It is known that the method of doping and preparing the film strongly determine the properties of the resulting catalyst films, thus many controversial results of doping transition metal into TiO₂ using different techniques were obtained in the literatures. Wet process as sol-gel has been widely performed at present, but their mechanical durability is less stable. Among those deposition techniques, RF-magnetron sputtering is suggested as the most promising technique because of it provides large area coating with good thickness uniformity, film quality, mechanical durability, and friendly environmental industrial process.

Many studies have been performed on the properties of TiO_2 films that are influenced by growth parameters such as substrate temperature, discharge voltage and oxygen partial pressure, etc [3-6]. It has been recently reported that impurity doping could improve the properties of composite thin films. For example, doping transition metal ions such as Fe³⁺, Ru³⁺, Os³⁺, Re⁵⁺, Cr³⁺, Ni²⁺ etc., in to the lattice of TiO₂ was reported to be the proficient way due to the fact that the overlap of the conduction band of Ti (d) of TiO₂ and the metal (d) orbital of the implanted metal ions can decrease the band gap of TiO₂ [7-8]. Some studies indicated that the photocatalytic activity of TiO₂ catalyst depends on adsorption behavior and the separation efficiency of electron-hole pairs. It was found that the photocatlytic activity of TiO₂ can be significantly enhanced by doping with lanthanide ions/oxides with 4f electron configurations for examples Ce³⁺, as lanthanide ions have ability to form complexes with various Lewis bases including organic acid, amines, aldehydes, alcohols, and thiols by the interaction of the functional groups with their f-orbital [9-10]. Moreover, the formation of two sub-energy levels

(defect level and Ce 4f level) in Ce^{3+} -TiO₂ might be a key reason to eliminate the recombination of electron-hole pairs and to enhance the photocatalytic activity was proposed.

However, some ions such as Er and Yb which had attracted more attention in TiO_2 based optical materials, but less report had studied on their photocatalytic activity for degradation of organic pollutants [11].

In this work we focus on the study of effect of sputtering condition on the physical and photocatalytic activity of TiO₂ and Yb₂O₃/Er₂O₃ doped TiO₂ film.

1.2 The objective of this research

To study effects of deposition parameters and Yb_2O_3/Er_2O_3 doping on physical properties and photocatalytic activity of TiO_2 thin films prepared by RF-magnetron sputtering.

1.3 Expected results

Obtain the high efficiency UV and visible light responsible Yb_2O_3/Er_2O_3 doped photocatalyst films.

1.4 Thesis organization

This work is divided into 5 chapters as follow:

CHAPTER I presents the background and motivations.

CHAPTER II presents literature reviews of previous works related to this research.

CHAPTER III presents experimental procedure.

CHAPTER IV presents result and discussions.

CHAPTER V presents overall conclusions of this research and recommendations for future work.

CHAPTER II

LITERATURE REVIEW

2.1 Titanium dioxide

This section discusses properties and applications of titanium dioxide. These materials were employed to coat on silica glass substrates to be treated for photocatalytic activity.

2.1.1 Physical and Chemical properties[1,12-13]

Titanium dioxide may take on any of the following three crystal structure: anatase, which tends to be more stable at low temperature; brookite, which is usually found only minerals; and rutile, which tends to be more stable at higher temperatures and thus is sometimes found in igneous rock.

Anatase generally shows a higher photocatalytic activity then the other types of titanium dioxide. Comparison of same physical properties of rutile, anatase and brookite are shown in table 2.1.

Figure 2.1 Structure of titanium dioxide anatase (A) rutile (B) and brookite (C)

Properties	Anatase	Rutile	Brookite
Crystal structure	Tetragonal system	Tetragonal system	Orthorhombic
			system
Optical	Uniaxial, negative	Uniaxial, negative	Biaxial, positive
Density, g/cm ³	3.9	4.23	4.0
Harness, Mohs scale	5 ^{1/2} -6	7-7 ^{1/2}	5 ^{1/2} -6
Dimension, nm			
а	0.3758	0.4584	0.9166
b	-	-	0.5436
С	0.9514	2.953	0.5135
Refractive index	2.52	2.52	-
Band gap energy	3.2	3.0	3.1
Permittivity	31	114	78
Melting point	Changes to	1858 [°] C	-
	rutile at high		
	temperature		

 Table 2.1 Comparision properties of anatase, brookite and rutile [1, 12,14]

The reason that anatase is more photocatalytic active than rutile may lie in the differences in their so called energy band structure. The band gap energy of a semiconductor is the minimum energy of light required to make the material electrically conductive or in other words, to get the electrons excited enough to get moving. The band gap energy of anatase is 3.2 eV, which corresponds to UV light with wavelength of 388 nanometers, while the band gap energy for the rutile type is 3.0 eV which corresponding to UV light that has a wavelength of 413 nanometers [12,15]. The level of the conduction band for anatase is 0.2 eV higher than that for rutile. In more technical terminology, the band gap energy for a semiconductor indicates the minimum energy of light necessary to produce electrons in the conduction band (CB) and give rise to

electrical conductivity and hole, which are actually the absence of electrons, in the valence band (VB). These holes can react with water to produce the highly reactive hydroxyl radical (OH⁻). Both holes and hydroxyl radicals can oxidize most organic materials.

The VB energies for both anatase and rutile are very low in the energy. Consequently, the VB holes (and the hydroxyl radicals) have great oxidizing power. The CB energy for rutile is close to the potential required to electrolytically reduce water to hydrogen gas, but that for anatase is higher in the energy, meaning that it has higher reducing power. Therefore, anatase can drive the very important reaction involving the electrolytic reduction of molecular oxygen (O₂) to superoxide (O₂⁻)

Although anatase and rutile are both tetragonal, they don't have the same crystal structures. Anatase exists in near-regular octahedral and rutile forms slend prismatic crystal. Rutile is the thermally stable form and is one of the two most important ores of titanium.

The three forms of titanium (IV) oxide have been prepared in laboratories but only rutile, the thermally stable form, has been obtained in the form of transparent large single crystal. The transformation from anatase to rutile is accompanied by the evolution of ca 12.6 kJ/mol (3.01 kcal/mol), but the rate of transformation is greatly affected by temperature and by the presence of other substance which may either catalyze or inhibit the reaction. The lowest temperature at which conversion of anatase to rutile take place at a measurable rate is around 700 °C, but this is not a transition temperature. The change is not reversible since ΔG for the change from anatase to rutile is away negative.

Brookite has been produced by heating amorphous titanium (IV) oxide, which is prepared from and alkyl titanate or sodium titanate, with sodium or potassium hydroxide in and autocave at 200 to 600 °C for several days. The important commercial forms of titanium (IV) oxide are anatase and rutile, and they can readily be distinguished by X-ray diffraction spectrometry.

Since both anatase and rutile are tetragonal, they are both anisotropic, and their physical properties, e.g. refractive index, very according to the direction relative to the crystal axes. In the most applications of these substances, the distinction between crystallographic directions is lost because of the random orientation of large number of small particles, and only average values of the properties are significant.

Figure 2.2 Show relationship between energy diagram of TiO₂ and redox potentials [12,16].

2.1.2 The photocatalytic process[12,17]

Photocatalyst process is discovered by Fujishima in 1972 year ago, which is using electrode together with light for reducing water for purpose hydrogen and oxygen molecular, that process of oxidations (Advanced Oxidation Technologies, AOTs).

Figure 2.3 Process at titanium dioxide surface of semiconductor when it had activated by UV light [18].

The photocatalyst process is the systems supported by photon energy, which was affected to reaction. The photon energy (E) can be calculated from Equation 2.1[12].

$$E = hv = \frac{hc}{\lambda}$$
 (Equation 2.1)

When:

E is photon energy, eV

h is Planck's Constant = 6.625 x 10⁻³⁴, Js

- ν is frequency , s⁻¹
- λ is wavelength , nm
- c is light velocity c=2.997X10⁸ m/s

Therefore, basic of photocatalyst process is electron moved from valance band (VB) to conduction band (CB) of semiconductor and holes in the valence band. These can be excited by ultraviolet light source (band gap energy = 3.0, 3.2 eV for rutile and

anatase, respectively). Then a reaction of photocatalytic of semiconductor is both electron hole pair (e^{-} - h^{+}) shown in Equation 2.2.

$$\text{TiO}_2 \text{ (semiconductor)} + h \mathbf{V} \longrightarrow \text{TiO}_2 (e_{cb} + h_{vb})^+ \text{(Equeation 2.2)}$$

Hole (h⁺) can be reacted with water (H₂O) and hydroxyl group (OH⁻) converting into hydroxyl radical (OH⁺) show in Equation 2.3-2.4.

$$h_{vb}^{+} + H_2 O \longrightarrow OH^{\bullet} + H^{+}$$
 (Equation 2.3)

$$h_{vb}^{+} + OH^{-} \longrightarrow OH^{-}$$
 (Equation 2.4)

Electron (e) can be reacted with oxygen (O_2) to create super oxide anion (O_2) it was changed to hydrogenperoxide when it reacts with water. Then hydrogen peroxide can be changed to super hydroxyl radical. (Equation 2.5-2.7)

$$e_{cb} + O_2 \longrightarrow O_2^{-1}$$
 (Equation 2.5)

$$O_2 + 2H_2O \longrightarrow 2H_2O_2$$
 (Equation 2.6)

$$H_2O_2 \longrightarrow 2OH^-$$
 (Equation 2.7)

But electron and hole can be recombined without the electron donor or the electron accepter is shown in Equation 2.8.

$$e_{cb}^{+} + h_{vb}^{+} \longrightarrow TiO_2 + heat$$
 (Equation 2.8)

Therefore, photocatalyst process was occurring on the surface of semiconductor. The titanium dioxide was absorbed photons in UV light, these energy greater than or equal to energy band gap ($hv \ge E_{bg}$) that the overall process as shown in fig 2.4.

Figure 2.4 Schematic of the photocatalytic process [8]

The photocatalysis process is dependent on the two ability of the catalyst to adsorb both pollutants on the surfaces and absorb light with an appropriate wavelength. Various type of semiconductor (Table 2.2), such as TiO_2 , ZnO, CdS, WO₃, ZnS, SrTiO₃, CdSe, BaTiO₃ and Fe₂O₃, has been used as the catalysts in photocatalysis process. From the available semiconductor, ZnO is generally unstable with respect to inconsistent dissolution yielding Zn(OH)₂ on the ZnO particle surface, and WO₃, although useful in the visible range, is less photocatalytically active than TiO₂. It has been indicated that TiO₂ is the most useful material due to its interesting qualities of high stability, high photocatalytic activity, non-toxicity and inexpensive.

Form Table 2.2 and fig 2.5 show band gap energy of semiconductor, which were excited in difference wavelength. At wavelength less than 390 nm, it has enough to create a strong oxidant hydroxide mineral for TiO_2 .

Semiconductor	Band gap energy (eV)	Wavelength (nm)
TiO ₂ (anatase)	3.2	390
TiO ₂ (rutile)	3.0	413
WO ₃	2.8	443
SrTiO ₃	3.4	365
Fe ₂ O ₃	2.2	565
ZnO	3.2	390
ZnS	3.7	336
CdSe	1.7	730
CdS	2.5	497
BaTiO ₃	3.3	375

Table 2.2 Band gap energy of semiconductors [19]

Figure 2.5 Band gap energy of semiconductors [12, 20]

2.2 Applications of titanium dioxide

Titanium dioxide is one of the most basic materials in our daily life. Titanium dioxide has been widely used in a variety of paints, plastics, paper, inks, fiber, cosmetics, sunscreens and foodstuffs because titanium dioxide has been known as a material with a high refractive index, high transparency in the visible and near-infrared wavelength region, high dielectric constant, very good wear resistance, low cost, chemical satiability and non-toxicity. Naturally, the type of titanium dioxide that is used as a pigment is different from that used as a photocatalyst. The photocatalytic technology is becoming more and more attractive to industries today because environmental pollution has been recognized as a serious problem that needs to be addressed immediately. Various applications in which research and development activities involving titanium dioxide have been investigated see in the table 2.3.

Properties	Applications		
Self-cleaning	1. Exterior tiles, kitchen and bathroom components, interior		
oon oleaning	furnishings, plastic surfaces, aluminum siding, building stone and		
	curtains, paper window blinds.		
	2. Translucent paper for indoor lamp covers, coatings on fluorescent		
	lamps and highway tunnel lamp cover glass.		
	3. Tunnel wall, soundproofed wall, traffic signs and reflectors.		
	4. Tent material, cloth for hospital garments and uniforms and spray		
	coatings for cars.		
Air cleaning	1. Room air cleaner, photocatalyst-equipped air conditioners and		
	interior air cleaner for factories.		
	2. Concrete for highways, roadways and footpaths, tunnel walls,		
	soundproof walls and building walls.		
Water	1. River water, ground water, lakes and water-storage tanks.		
purification	2.Fish feeding tanks, drainage water and industrial wastewater		
Antitumor	Cancer therapy, Endoscopic-like instruments.		
activity			
	1. Tiles to cover the floor and walls of operating rooms, silicone rubber		
Self-sterilizing	for medical catheters and hospital garments and uniforms.		
	2. Public rest rooms, bathrooms and rat breeding rooms.		

 Table 2.3 Application of Titanium dioxide photocatalytic [1,12,14]

2.3 Magnetron sputtering system

Thin films are the subject of matter for many applications and have got significant importance in physical sciences and engineering. A number of methods and techniques are used to deposit thin films. Sputtering is one important technique used for thin films deposition. Sputter deposition is a physical vapor deposition process for depositing thin films, sputtering means ejecting material from a target and depositing it on a substrate such as a Quartz glass and silicon wafer.

Sputtering is extensively used in the semiconductor industry to deposit thin films of various materials in integrated circuits processing. Thin anti-reflection coatings on glass, which are useful for optical applications are also deposited by sputtering. Because of the low substrate temperatures were used, sputtering is an ideal method to deposit contact metals for thin film transistors. This technique is also used to fabricate thin film sensors, photovoltaic thin films (solar cells), metal cantilevers and interconnects etc.

Anelva Corp L-332S-FS sputtering system, shown in fig 2.9 is equipped with three 3-inch diameter planar magnetron cathode to facilitate multi layer with target shutter and pre-sputtering shutter and with a rotatable substrate holder shown in fig 2.10. The substrate can be heated up to 800 °C (maximum of Anelva Corp L-332S-FS sputtering system can be used) to improve the film adhesion to the substrate. Magnetron sputtering can be done either in DC or RF modes.

2.3.1 Direct current (DC) sputtering mode

The dc sputtering is a basic sputtering technique using a DC power supply. This technique is only applicable to deposit conductive materials. The schematic of this system is shown in fig 2.6.

Figure 2.6 Schematic of DC sputtering [21]

Advantages of DC sputtering.

- 1. DC sputtering is done with conducting materials.
- 2. If target is non-conducting material, the positive charge will built up on target material and stops sputtering

2.3.2 Radio frequency (RF) sputtering mode

RF sputtering technique can be used to deposit both conductive and nonconductive films. The schematic of RF sputtering is given in fig 2.7.

Figure 2.7 Schematic of RF sputtering [21]

Advantages of RF sputtering.

- 1. Both conducting and non-conducting materials can be sputtered.
- 2. Higher sputter rate at lower pressure.

The deposition of thin films by sputtering involves the acceleration of positive ions in many cases form gaseous (inert gas) plasma to bombard a target material that is negatively biased. Sputtering starts when a negative charge is applied to the target material causing a plasma or glow discharge. Positive charged gas ions generated in the plasma region are attracted to the negatively biased target plate at a very high speed. The commonly radio frequency (RF) electromagnetic radiations are used. This collision creates a momentum transfer and ejects atomic size particles from the target. These particles are deposited as a thin film into the surface of the substrates [22].

Figure 2.8 Show mechanism of sputtering process [23]

Figure 2.9 Schematic of L-332S-FS, Anelva Corp sputtering system

Figure 2.10 Top and side views of L-332S-FS, Anelva Corp sputtering chamber system

Advantages of magnetron sputtering

1. The magnets are used to increase the percentage of electrons that take part in ionization events, increase probability of electrons striking Argon, increase electron path length, so the ionization efficiency is increased significantly.

2. Other reasons to use magnets:

2.1 Lower voltage needed to strike plasma.

2.2 Controls uniformity.

2.3 Reduce wafer heating from electron bombardment.

3. Increased deposition rate

2.4 Parameter in the sputtering system

2.4.1 Target Materials

Ceramic is a generally multi-component solid that is chemically bonding by ionic or covalent bonding such that there is no free electron. Therefore, the electrical conductivity and thermal conductivity are low and the material is brittle.

The purity of the sputtering target material should be as high as is needed to achieve the desired purity in the deposited material, but not any higher, since the price of the target generally goes up rapidly with purity. In many cases, the supplier does not specify some impurities such as oxygen in the form of oxides, hydrogen such as are found in chromium, etc. The target purity and allowable impurities should be specified in the initial purchase of the target material. As a minimum, there should be a purity certification from the supplier.

2.4.2 Substrate Temperature

Substrate temperature is an important for controlling phase structure and morphology of the film. The crystallinity and dense of films can be improved by increasing the substrate temperature. Moreover, the temperature of substrate substantially affects the atom mobility and the rate of chemical reaction on the substrate.

2.4.3 Total sputtering pressure

The properties of sputter-deposited films can be very dependent on the gas pressure. At low pressure, there is less gas molecule collision taking place. Moreover, gas molecules can directly get though the surface of film on substrate. On the other hand, at high pressure, there are collision can slow down the gas movement and also reduce the energy of the gas molecules, which affect the deposition rate and properties of the films.

2.4.4 Gas flow rate

In reactive sputter deposition the gas flow is an important processing variable and in the non-reactive deposition, gas flow is important in clean contaminants from the processing chamber. Generally, Argon (Ar) gas is usually option of sputtering because of Ar gas can be injected at high flow rate in order to generate plasma.

2.4.5 RF power

The ion bombardment energy and the discharge current strongly depend on rf power. As a result, the sputter rate strongly depends on the rf power. The sputtering yield is proportional to the ion bombardment energy. Therefore, the sputter rate increases with increasing rf power.

2.4.6 Reactive sputtering

When a reactive gas is intentionally included to the sputtering system then the sputtering process is call reactive sputtering. Argon is used as reactive gas in the present work. Reactive gas in the sputter atmosphere enables one to alter or control the properties of the deposit. Depending on the pressure of the reactive gas, a reaction may occur during the deposition of the films either at the cathode or at the surface. In most cases, the composition of the film may be altered by simply varying the quantity of reactive gas or the proportion of reactive to inert gases in the discharge.

2.5 Rare earth type of lanthanide [10]

Rare earth ions also referred to as lanthanides group; show an important role in modern technology as the active component of many optical materials. In the lanthanides it is the 4f electrons that account for the magnetism. As in the iron-group 3d electrons, a significant number of them can have unpaired spins, with a resultant atomic magnetic moment. In neutral rare earth atoms the number of 4f electrons ranges from 0
(La) to 14 (Yb and Lu), and the number of unpaired spins can be as large as 7. Specific applications may use the rare earths' atomic-like $4f^{N}$ to $4f^{N-1}$ optical transitions when long lifetimes, sharp absorption lines, and excellent coherence properties are required, while others may employ the $4f^{N}$ to $4f^{N-1}5d$ transitions when large oscillator strengths, broad absorption bands, and shorter lifetimes are desirable. The lanthanides always form trivalent ions by discarding their two 6s electrons and one 4f electron. The remaining 4f electrons are shielded from intracrystalline electric fields by a dense cloud of 5s and 5p electrons, so that, unlike the iron-group elements, their orbital moments are not quenched. Thus both spin and orbital components are significant in rare earth magnetism, and the behavior of these elements in compounds more closely resembles that of free ions than is the case with iron.

2.6 Literature review of TiO₂ and rare-earth doped TiO₂

S. Takabayashi *et al* [24] (2002) studied effects of total and oxygen partial pressure on structure of photocatalytic TiO_2 films deposited by reactive rf magnetron sputtering on glass substrates under with and without additional external heating. The results showed that the crystalline anatase, anatase/rutile or rutile films can be successfully deposited on unheated substrate and their formation is dependent on the total pressure and the oxygen partial pressure. A schematic phase diagram was constructed. The surface morphology is strongly influenced by the total pressure, the anatase TiO_2 films with a more open surface, a higher surface roughness and a larger surface area are formed at higher total pressures. The anatase films with such surface morphology deposited in the reactive sputtering mode exhibit the best photocatalytic activity.

M. Yamagishi *et al* [25] (2003) studied TiO_2 films deposited by RF reactive magnetron sputtering on non-alkali glass at 200 °C under total pressure of 0.3, 1.0 and 3 Pa with Argon and Oxygen ratio. The TiO₂ films with high photocatalytic activities and

photoinduced hydrophilicity were successfully deposited by reactive rf magnetron sputtering at p_{tot} as high as 3.0 Pa. The film was confirmed to be anatase polycrystalline with characteristic substructures. The photocatalytic activity showed the clear tendency to decrease with the decrease in *p*tot during the deposition. Such dependence of the photocatalytic activity on p_{tot} was correlated with the transport processes of the high-energy particles of Ar^0 or O⁻ between the target and the substrate. TiO₂ films deposited at the lower p_{tot} of 0.3 or 1.0 Pa, showed poor photocatalytic activities because of the defect level generation caused by the bombardment of the high-energy particles on the growing film surface.

P. Zemen *et al* [26] (2003) studied of nano scaled photocatalytic TiO_2 thin films prepared by reactive RF magnetron sputtering using PVD method deposited on glass substrate. They were found that the photocatalytic activity increases with increasing films thickness only if the films are prepared at higher sputtering pressure. Moreover, 65 nm thicknesses of TiO_2 films were deposited on rotating substrate and the relationship between the deposition parameters, such as the substrate temperature and the total pressure, the structure and the photocatalytic activity was studied. These thin films showed a very good photocatalytic activity when an appropriate substrate temperature (>100 °C) and/or total pressure (>1Pa) are selected.

K. Takamura *et al* [27] (2004) studied effect of oxygen flow ratio on the oxidation of Ti target and the formation process of TiO_2 films by RF reactive sputtering. The TiO_2 films were found to be formed at oxygen flow ratios above 7%. At the critical O_2 flow ratio, the amount of supplied Ti atoms was found to agree with that of O_2 molecules. Above the critical O_2 flow ratios, the amount of sopplied O_2 molecules exceeded the getting effect of the sputtering Ti atoms and oxygen density in the plasma began to increase.

In recently, metals and rare earth ions doped TiO_2 have been widely studied in order to improve the photocatalytic activity of TiO_2 films.

S.C. Kim *et al* [28] (2005) studied on the photocatalytic activity of Pd-doped TiO_2 films prepared by RF magnetron co-sputtering method. They were found that the crystallite sizes of Pd/TiO₂ thin films were slightly larger than those of the TiO_2 thin films. The secondary particle sizes of Pd/TiO₂ thin films at 600 °C were about 20 – 60 nm, and the secondary particles were more uniform and less agglomerated. The deposited films calcined at 300 – 600 °C had high transparency in the visible range. The transmittances of the films calcined at 900 °C were significantly reduced in the wavelength range of 300 – 800 nm due to the absorption and the scattering of light resulting from agglomerates of the primary particles. The Pd/TiO₂ thin films showed better photocatalytic activity than the TiO₂ thin films.

F Meng *et al* [29] (2009) studied on photocatalytic activity of Ag nanoparticles modified TiO₂ films by RF magnetron sputtering. It was found that silver content influences microstructure of TiO₂ thin films, and silver in the films is metallic Ag (Ag⁰). Photocatalytic activity of the films increases with increasing silver content up to 5 vol.% Ag, and then decreases to values significantly still bigger than that of pure TiO₂ thin films. Silver nanoparticles significantly enhance the photocatalytic activity of TiO₂ films. The better separation between electrons and holes on silver modified TiO₂ thin films surface allowed more efficiency for the oxidation and reduction reactions. The enhanced photocatalytic activity was mainly attributed to the decrease of energy gap of the films and the increase of oxygen anion radicals O₂⁻ and reactive center of surface Ti³⁺ on silver modified TiO₂ thin films surface.

A.D. Paola *et al* [30] (2010) studied on pure and Sm-loaded brookite nanoparticles and thin films were prepared using TiCl_4 as precursor of TiO_2 . At the results of Sm loading, significant improvement of the photocatalytic of brookite and beneficial effect was attributed to an increased separation efficiency of the photogenerated electron-hole pares. The content of Sm was an important factor affecting the photocatalytic activity. The optimum amount of Sm was 1% for the powders

and 0.1% for the films. There is a relationship between PL spectra and photocatalytic, namely, the lower the PL intensity the higher the photocatalytic activity.

V. Stengl *et al* [31] (2009) studied on rare earth doped TiO_2 nanopaticles prepared by a one-step, a one-pot, no post-synthesis calcinations and no sol-gel synthesis. As a results, the rare earth (La, Ce, Pr, Nd, Sm, Eu, Dy, Gd) for doped titanium were used, the best photocatalytic properties in visible light have samples doped with Nd³⁺ ions (k=0.0272 min⁻¹ for UV and 0.0143 min⁻¹ for visible light)

W. Chen *et al* [32] (2006) studied on the photocatalytic activity enhancing for TiO_2 photocatalyst by doping with La by sol-gel method. The results show that the crystallinity of anatase is improved by La doping. Moreover, La not only suppresses phase transition from anatase to rutile but also exhibits an absorption in the $\lambda \ge 400$ nm rage. The photocatalytic activity of La-doped TiO₂ photocatalysts excesses that of pure TiO₂ photocatalyst prepared by the same method when the molar ratio of La to Ti is kept at 0.3 %.

Thus, numerous studies had paid their attention on doping TiO_2 with various rare earth ions. Some ions such as Er^{3+} and Yb^{3+} which had attracted more attention in TiO_2 -based optical materials, but less report had studied on their photocatalytic activity for degradation of organic pollutants via RF magnetron sputtering technique.

H.Q. Jiang *et al* [33] (2006) studied of the nanoparticles of Yb³⁺-doped (0.125 wt %) and pure TiO₂ were prepared by an acid catalyzed sol-gel method. The results showed that the photocatalytic activity of Yb³⁺/TiO₂ composite nanoparticles is much higher than that of pure TiO₂. A low amount of Yb³⁺ in TiO₂ can inhibit the anatase-rutile phase transformation of TiO₂, prevent grain growth, increasing the specific surface area, and favor the high temperature stabilization of the pores. According to the surface voltage spectroscopy data, Yb³⁺-doping prevents recombination of photoinduced electrons and holes and improves the light absorption capacity of the particle surface.

M. Pal *et al* [34] (2008) studied on topic of synthesis and photocatalytic activity of Yb doped TiO_2 nanoparticles under visible light which were prepared by hydrolysis method. Average size of the nanoparticles was found to decrease with the increase of Yb doping concentration. The photocatalytic activity of Yb doped TiO_2 was evaluated by measuring the degration rates of methylene blue (MB) under UV and Visible lights. Doping with ytterbium ion enhanced significantly the photocatalytic activity of TiO_2 nanoparticles for MB oxidation under visible light.

C.H. Liang *et al* [10] (2008) studied on rare earth ions doped TiO_2 (RE³⁺-doped TiO_2) catalyst prepared by the sol-gel method. They were found that the absorption equilibrium constant and the saturated adsorption amount of RE³⁺-TiO₂ would increase with the increase of dosage. The photocatalytic activity of RE³⁺-TiO₂ for Orange I degradation under both UV and visible light irradiations were higher than that of TiO₂. The optimal dosage was 1.5% for Orange I degradation under UV light and 1.0% under visible light. They were suggested that the higher photocatalytic activity effect of the transitions (4f electrons of RE³⁺).

Y. Yang *et al* [35] (2010) studied on TiO_2 nanofibrous films with variable amounts of erbium were prepared by electrospinning technique. The results demonstrated that the doping of erbium inhibited the phase transformation and the crystallite growth of TiO_2 . The doped samples were more efficient for degradation of methylene blue than TiO_2 , and an optimal dosage of erbium at 0.5 mol% activated at 773 K achieved the highest degradation rate. The higher photoactivity might be attributable to the transition of 4f electrons of erbium, particle size, phase composition and the increase of the separating rate of photogenerated charges by erbium doping.

CHAPTER III

EXPERIMENTAL PROCEDURE

3.1 Preparation of TiO₂ and Yb₂O₃/Er₂O₃-doped TiO₂ thin film

Radio-frequency magnetron sputtering system (L-332S-FS, Anelva Corp) was used to produce thin films in this work. TiO₂, TiO₂-Yb₂O₃ (0.5-1mol%) or TiO₂-Er₂O₃(0.5-1mol%) (Toshima Manufacturing Co, Ltd.) ceramic disc with a 76.2 mm in diameter and 5 mm thickness was used as a sputtering target. The vacuum chamber was evacuated to a pressure lower than 10^{-4} Pa before the film deposition in order to avoid the contaminations. All samples were sputtered in a mixture of high purified Argon and Oxygen gas at ratio of 8/2 and 10/0 on a pre-cleaned silica glass substrate (ED-H; Tosoh Quartz Inc.). Deposited films were produced at a constant substrate-to-target distance at 50 cm, and the substrate was heated at temperature 500°C during deposition without further annealing after sputtering. In order to study the effect of deposition condition, applied powers were fixed at 150W. The sputtering conditions for deposition thin films were shown in table 3.1. After that, the crystalline structure of the deposited films was characterized by X-ray diffraction (XRD with Mo radiation: λ = 0.7093 nm). A typical thickness of films was controlled at approximately 1.0-1.2 µm measured by Dektak3 ST. The optical properties of produced films were investigated by UV-Vis spectrophotometer (Lambda 950). FE-SEM (Hitachi S-4700) was used to study the morphology of deposited films. Surface morphology and roughness was investigated by SPM. Photocatalytic activity of sputtered films, 20x20x2 mm in size, was evaluated through the degradation of methylene blue solution with initial concentration of 5×10^{-3} mM under UV (Toshiba FL10BLB-A) and white light (Fluorescent lamp FSL T8 10W) irradiation.

Deposition Parameters	conditions
Target-to-substrate distance (cm)	5
Base pressure (Pa)	<10 ⁻⁴
Applied power (W)	150
Ar/O ₂ ratios (sccm)	8/2, 10/0
Total sputtering pressures (Pa)	0.5, 1, 3
Substrate heating temperatures (°C)	500
Times (min)	60-240
Film thickness (µm)	~ 1.0

 Table 3.1 Sputtering conditions for deposition thin films.

3.2 Characterizations of sputtered thin films

3.2.1 X-ray diffraction (XRD)

Phase structure of deposited films were characterized by XRD using Mo-K_{α} (λ = 0.7093 nm) source with 40 kV, 25 mA. Scanning rate is 0.2 degree/min from 2θ at 5 to 50 degree. The obtained peaks were matched with JCPDS (Joint Committee on Powder Diffraction Standard file) No. 211272. The cryatallinity size was estimated via Debye-Scherrer equation:

Debye-Scherrer equation:
$$D_c = \frac{K\lambda}{\beta\cos\theta}$$
 (Equation 3.1)

- When D_c is average grain size (nm).
 - *k* is Debye-Scherrer constant (usually taken as 0.89).
 - λ is wavelength of the X-ray radiation (MoK α = 0.7093 nm).
 - eta is line width at half-maximum height of the broadened peak (full width at half-maximum (FWHM))
 - heta is the half diffraction angle of the centroid of the peak(degree)

3.2.2 Dekktak 3 ST Surface Profiler [36]

The Dektak3ST is a surface profiling system capable of measuring surface textures and variations in the submicro-inch range to a sample thickness of 131 microns. By way of a diamond-tipped stylus, samples are analyzed under it on a moving stage according to parameters set by the user (scan length and time). As the stylus traverses the pre-determined length of the sample surface, surface variations are recorded. The data recorded can then be analyzed (up to 30 functions per scan) depending on user interests. These parameter capabilities include: roughness, waviness, step height and geometry (area, radius, slope, etc.). The graphic screen display exhibits data plot and live video imaging.

Figure 3.1 Profile of 46.250 KÅ NIST Certified Calibration Standard

Figure 3.2 Veeco Dektak 3 ST model

3.2.3 Field Emission Scanning Electron Microscopy (FE-SEM)[37]

Structure, surface morphology and thickness of thin films were observed by Field Emission Scanning Electron Microscopy (Hitachi S-4700). With this microscope tiny structure as small as 1 nanometer can be visualized in small objects.

Like the name FE-SEM already indicates, this microscope does not work with light (photons) but with electrons. Electrons are generated in a 'source' (Emission) and accelerated under influence of a strong electrical voltage gradient (Field). With electromagnetic coils an electron beam is formed that scans the object (Scan) and secondary electrons are produced by interaction with the atoms at the surface of the sample. These electrons contain valuable information that is employed to reconstruct a very detailed image of the topography of the surface of the specimen.

3.2.4 Scanning Probe Microscopy (SPM) [38]

Surface roughness of Rare earth-doped TiO_2 films were observed by Scanning Probe Microscopy (SPM). These techniques are based upon scanning a probe just above a surface whilst monitoring some interaction between the probe and the surface.

Scanning Probe Microscopy has enabled researchers to image surfaces at the nanometer scale. Rather than using a beam of light or electrons, SPM uses a fine probe that is scanned over a surface (or the surface is scanned under the probe). By using such a probe, researchers are no longer restrained by the wavelength of light or electrons. The resolution obtainable with this technique can resolve atoms, and true 3-D maps of surfaces are possible. Scanning Probe Microscopy is a general term, used to describe a growing number of techniques that use a sharp probe to scan over a surface and measure some property of that surface. Some examples are STM (scanning tunneling microscopy), AFM (atomic force microscopy), and NSOM (Near-Field Scanning Optical Microscopy).

Figure 3.4 Basic idea of scanned probe techniques

The number of techniques is constantly growing, as the tip can be modified in many ways to investigate surface properties. In addition, the uses of a tunneling current, simple force feedback or light through an aperture in the probe enable different ways to interact with the surface.

3.2.5 Transmittance by UV-vis spectrophotometer (Lambda 950) [39]

Transparency of thin films was observed by UV-Vis spectrophotometer (Lambda 950) from 200 to 800 nm.

Figure 3.5 Flow chart of beam UV-vis spectrophotometer

The UV-Visible spectrophotometer uses two light sources, a deuterium (D2) lamp for ultraviolet light and a tungsten (W) lamp for visible light. After bouncing off a mirror (mirror 1), the light beam passes through a slit and hits a diffraction grating. The grating can be rotated allowing for a specific wavelength to be selected. At any specific orientation of the grating, only monochromatic (single wavelength) successfully passes

through a slit. A filter is used to remove unwanted higher orders of diffraction. The light beam hits a second mirror before it gets split by a half mirror (half of the light is reflected, the other half passes through). One of the beams is allowed to pass through a reference cuvette (which contains the solvent only), the other passes through the sample cuvette. The intensities of the light beams are then measured at the end.

3.2.6 Optical band gap energy [40-44]

The absorption coefficient (α), which can be derived from Equation 3.2.

$$T = \frac{(1-R)^2 \exp(-\alpha d)}{1-R^2 \exp(-2\alpha d)}$$
 (Equation 3.2)

Where T is optical transmittance, R is reflectance, and d is film thickness. However, at the short wavelength close to the optical band gap, the scattering losses are dominated by the fundamental absorption, and the absorption coefficient is given by Equation 3.3.

$$\alpha = -\frac{\ln T}{d}$$
 (Equeation 3.3)

Over the optical absorption edge, the indirect-allowed transitions dominate and above the threshold of fundamental adsorption, the following expression can be written:

$$\left(\alpha h \nu\right)^{\frac{1}{2}} = \alpha_0 \left(h \nu - E_g\right)$$
 (Equation 3.4)

Where h_{ν} is photon energy, E_g is energy gap, and α_0 is a constant which does not depend on photon energy. From the linear part of $(\alpha h_{\nu})^{\frac{1}{2}} = f(h_{\nu})$ dependence, the extrapolated energy gap, E_g , can be obtained, for $\alpha = 0$. The energy gap is determined by plotting $(\alpha h_{\nu})^{\frac{1}{2}}$ versus equivalent energy at the wavelength λ , as shown in fig 3.6. This is called "Tauc plot"

Form the "Tauc plot", the tangential at high α region of hv and $(\alpha E)^{1/2}$ cure is extrapolated to intercept the hv axis. This intercept value is defined as the optical band gap energy.

Figure 3.6 Determination of energy of TiO₂ films deposited on glass substrate by "Tauc's plot" [41]

3.2.7 Photocatalytic activity

Photocatalytic activity of sputtered films, $20x20x2 \text{ mm}^3$ in size, was evaluated through the degradation of methylene blue $(C_{16}H_{18}N_3S.Cl.3H_2O)$ solution with initial concentration of methylene blue of $5x10^{-3}$ mM under UV (Toshiba FL10BLB-A) Fluorescent lamp (FSL T8 10W). At first, films were vibrated in the dark for 1 hour to measure the absorbance of methylene blue onto the TiO₂ thin films before irradiation. After that, these films were irradiated under a black lamp and Fluorescent lamp at intensity of 2 and 5 mW/cm², respectively. To evaluate the photocatalytic activity. The absorptions of methylene blue were measured by UV-Vis spectrophotometer (Lambda 950) at wavelength 644 nm. Photocatalytic activity was presented by kinetic energy (k). The kinetic energy of TiO_2 and RE-doped TiO_2 films prepared under difference deposition conditions was calculated using the following equation 3.5:

$$\ln\left(\frac{C_0}{C_t}\right) = kt \qquad (Equation 3.5)$$

Where

 C_0 = initial concentration of methylene blue

 C_t = concentration measured at the irradiation time

- t = time (minute)
- k= kinetic energy

Figure 3.7 Photocatalytic activity characterization and equipment

3.2.8 Electron probe micro-analyyzer (EPMA) [45]

An electron probe micro-analyzer is a micro beam instrument used primarily for the in situ non-destructive chemical analysis of minute solid samples. EPMA is also informally called an electron microprobe, or just probe. It is fundamentally the same as an SEM, with the added capability of chemical analysis. The primary importance of an EPMA is the ability to acquire precise, quantitative elemental analyses at very small "spot" sizes (as little as 1-2 microns), primarily by wavelength-dispersive spectroscopy (WDS). The spatial scale of analysis, combined with the ability to create detailed images of the sample, makes it possible to analyze geological materials in situ and to resolve complex chemical variation within single phases (in geology, mostly glasses and minerals). The electron optics of an SEM or EPMA allow much higher resolution images to be obtained than can be seen using visible-light optics, so features that are irresolvable under a light microscope can be readily imaged to study detailed microtextures or provide the fine-scale context of an individual spot analysis.

Figure 3.8 Schematic cut-away diagram of a typical microprobe.

Figure 3.9 Flow chart of sputtering conditions and characterizations of thin films.

(* sccm : standard cubic centimeters per minute)

CHAPTER IV

RESULTS AND DIDCUSSIONS

In this research, preparation of pure TiO_2 , Yb_2O_3 -doped TiO_2 and Er_2O_3 -doped TiO_2 thin films on glass substrate by RF-magnetron sputtering technique were studied. The effect of sputtering parameters on the phase structure, surface morphology and roughness, optical properties of deposited films were investigated. Moreover, the photocatalytic activity of prepared films was examined under UV and fluorescent lamp. The results were divided into 3 parts as follows:

4.1 TiO₂ thin films

4.1.1 Deposition rate

The deposition rate of TiO_2 thin films on glass substrate prepared by RFmagnetron sputtering technique was shown in fig 4.1.

Form fig 4.1, the average deposition rate of TiO_2 films prepared under pure Ar and mixture of Ar and O_2 (8/2) gas are 8.33 nm/min and 4.16 nm/min, respectively. The deposition rate of films prepared under pure Ar gas was about two times higher than that of films deposited under gas mixture.

In the sputtering process, there are several kinds of the high energy gas particles, such as high energy neutrals (Ar°) recoiled from the target or high energy negative ions (O⁻) accelerate by the cathode toward the growing films surface. The bombardments by such high films particle should have heavy influence on the films structure and properties [46]. The main reason of different deposition rate is that it is different in Ar/O_2 flow ratio, when low O_2 there are more Ar ions to bombard the pure TiO₂ target, so the deposition rate is higher while high O_2 lower the deposition rate due to it impeded Ar ions bombardment at TiO₂ target, so the deposition rate is lower [49].

Figure 4.1 Graph of relation between sputtering time and thickness of TiO_2 films prepared by RF-magnetron sputtering under pure Ar (10/0) and mixed Ar/O₂ (8/2), at total sputtering pressure 3 Pa.

Since, the thickness of film has a significant influence on the characteristics of deposited film. Thus the thickness of all films sputtered under pure Ar (10/0) and Ar/O_2 (8/2) was controlled at about 1.0 µm for further characterizations by adjusting deposition time. According to the deposition rate, the deposition time for film prepared under pure Ar and Ar/O_2 (8/2) are 2 h and 4 h, respectively.

4.1.2 Phase structure

This section show effects of sputtering gas and total sputtering pressure on phase structure of TiO_2 thin films characterized by X-ray diffraction (XRD).

4.1.2.1 Effect of sputtering gas on phase structure of TiO_2 films

Figure 4.2 XRD patterns of TiO₂ thin films prepared under (a) Ar/O_2 ; 8/2 and (b) pure Ar 10/0, under 3 Pa and substrate heating temperature at 500 °C.

From XRD results (fig 4.2), the peaks were found at 2θ ; 11.5°, 17.1°, 21.6° and 24.5° corresponding to the 101, 004, 200 and 211 diffraction planes of anatase phase (JCPDS No. 211272) respectively. The ratio of gas mixture Ar/O₂ significantly affected on the deposition rate of films. Moreover, the film deposited under pure Ar (b) has higher crystallinity, which can be seen clearly the high intensity of diffraction peaks at 2θ 21.6° and 24.5° comparing to the films prepared under gas mixture (a).

4.1.2.2 Effect of sputtering pressure on phase structure of TiO_2 films

Figure 4.3 XRD patterns of TiO_2 film prepared under pure Ar at different total sputtering pressure, (a) 0.5 Pa, (b) 1 Pa and (c) 3 Pa.

The XRD patterns of TiO₂ films sputtered under different total sputtering pressure were shown in fig 4.3. In order to study effect of total sputtering pressure on TiO₂ films, heating temperature and applied power were fixed at 500 °C and 150 w, respectively. It was demonstrated that all of the deposited films consisted of the peaks at 2θ ; 11.5°, 17.1°, 21.6° and 24.5° corresponding to the 101, 004, 200 and 211 planes of anatase structure (JCPDS No. 211272), respectively. Peak intensity decreased with increasing sputtering pressure from 0.5 Pa to 3 Pa. However, the half width value remained nearly unchanged at different total sputtering pressure. Since no new peaks were observed, it can be concluded that the decrease in peak intensity does not indicate any deterioration in crystallinity, but rather that it is associated with the porous surface condition and, as a

result, the effective film thickness was seemingly smaller than it was when the surface was in a gap-free state [50].

4.1.3 Surface morphology and roughness

The effect of sputtering gas and total sputtering pressure on the surface morphology and roughness of deposited films were examined by Field Emission Scanning Electron Microscopy and Scanning Probe Microscopy (SPM).

4.1.3.1 Field Emission Scanning Electron Microscopy (FE-SEM)

The surface morphology is an important factor affecting on the photocatalytic activity of TiO_2 films, thus they were investigated by FE-SEM. The FE-SEM images in fig 4.4, 4.5 show effect of Ar/O_2 ratio and total sputtering pressure on the morphology of TiO_2 films. The different in morphology between TiO_2 films prepared under with and without O_2 flow was clearly demonstrated via FE-SEM (fig 4.4). It was found that the TiO_2 film prepared under pure Ar consisted of porous and pyramid grain structure with the grain size approximately 100 nm while the films prepared under Ar/O_2 gas mixtures displayed a porous structure with small subgrains approximately 10 nm in size which grouped together to form large grain of 120 nm.

Fig 4.5 shows the effect of total sputtering pressure on the morphology of films observed by FE-SEM. It was noticed that the films sputtered under low pressure (0.5-1 Pa) composed of dense packed grains, whereas, the film prepared at higher pressure (3 Pa) displayed porous and pyramid grain structure in which voids between grain boundary were created.

The creation of films structure could be explained in terms of total sputtering pressure. At the low pressure, there are fewer gas molecule collisions taking place. Therefore, high energy gas molecule can directly get through the surface of films. As a result, films grow to be dense. While at high pressure, due to higher number of gas molecules contained in the chamber, there is more probability for gas molecule collision

with each other. This collision can slow down the gas movement and also reduce the energy of the high energy gas molecules then the films grow to be porous [21].

Figure 4.4 FE-SEM images of TiO_2 thin films prepared under (a) pure Ar (10/0) and (b) Ar/O₂ (8/2) at total sputtering pressure 3 Pa.

Figure 4.5 FE-SEM images of TiO_2 thin films prepared under pure Ar (10/0) at different total sputtering pressure (a) 0.5 Pa (b) 1 Pa (c) 3 Pa.

4.1.3.2 Scanning Probe Microscopy (SPM)

From fig 4.6, SPM images show the two-dimentions and three-dimentions of pure TiO₂ films prepared on glass substrate under different sputtering gas and total sputtering pressure. The surface roughness of TiO₂ films displayed in root mean square roughness (R_{rms}) were 6.37 and 12.58 nm of films deposition at 1 and 3 Pa under without O_2 gas, respectively. It suggested that the surface roughness of TiO_2 films was much increased when the film was sputtered under higher pressure (3 Pa) because the surface roughness developed during the films growth was controlled by the energy of deposited particles. When the energy of depositing particles decreased due to low pressure, the surface mobility decrease and the coalescence of crystals is limited. The depositing particles growing surface receive more deposited materials than valleys resulting in the formation of a more surface roughness. The difference in surface roughness between the film prepared under with and without O₂ gas flow was clearly observed through SPM (fig 4.6 (a, c)). The surface roughness of TiO₂ films prepared under with and without O₂ at 3 Pa were 5.63 and 12.58 nm, respectively. This indicated that the total sputtering pressure had a significant influence on creation of surface roughness of film sputtered under pure Ar (10/0). On the other hand, the surface roughness of films deposited under gas mixture (Ar/O_2) was not affected by total sputtering pressure.

Figure 4.6 SPM images of TiO_2 films deposited under different sputtering conditions. (a) pure Ar, 3 Pa (b) pure Ar, 1 Pa and (c) Ar/O₂, (8/2), 3 Pa.

4.1.4 Transmittance

This section presents transmittance of TiO_2 thin films sputtered under difference conditions, which can be seen in fig 4.7.

Figure 4.7 Transmittance spectra of TiO_2 thin films prepared under sputtering pressure at 3 Pa and different sputtering gas. (a) Ar/O₂ (8/2) and (b) pure Ar (10/0).

The transmittance spectra of TiO₂ thin films deposited under pure Ar and mixture of Ar/O₂ (8/2) were shown in fig 4.7. It was seen that all films show the usual light interference pattern in visible region (400-800 nm). The TiO₂ film deposited under Ar/O₂ gas mixtures has high transparency more than that of film prepared under pure Ar gas. The averages transmittance of TiO₂ films in the visible region (show in fig 4.7) is about 80 %. Also, the TiO₂ films prepared at pure Ar gas displayed markedly decrease in transmittance of TiO₂ prepared under pure Ar (10/0) is resulted from its large grain size and higher surface roughness. Corresponding to the XRD FE-SEM and SPM image results which were demonstrated above.

4.1.5 Optical band gap

Optical transmission spectra of pure TiO₂ measured at room temperature with an excitation wavelength of 200-800 nm by a UV-Vis spectrophotometer are shown in fig 4.7. Determination of the absorption edge or energy band gap has been described in chapter 3. The tangential line at high α region of the $h\nu$ vs $(\alpha E)^{1/2}$ curve is extrapolated to intercept the $h\nu$ axis as shown in fig 4.8. This intercept value is defined as the energy band gap, it was found that the energy band gap of films prepared under with and without O₂ gas are 3.20 ± 0.01 eV and 3.17 ± 0.01 eV, respectively.

Figure 4.8 Graphs of $(\alpha E)^{1/2}$ versus photon energy, E ($h\nu$), for TiO₂ films prepared under pure Ar (10/0) and Ar/O₂ (8/2).

4.1.6 Photocatalytic activity

Photocatalytic activity was presented by kinetic energy; *k*. Determination of the kinetic energy (k) has been described in chapter 3. The kinetic energy of TiO_2 thin films prepared at different sputtering gas under UV irradiation was shown in fig 4.9-4.10.

Figure 4.9 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of films prepared under (a) pure Ar (10/0) and (b) Ar/O_2 (8/2) at total sputtering pressure 3 Pa.

Figure 4.10 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of TiO₂ films prepared under pure Ar at total sputtering pressure (a) 3 Pa and (b) 1 Pa.

In this work, the TiO_2 thin film coated on glass substrate was repeatedly used for five times in degradation 0.05 mM of methylene blue under UV irradiation. The *k* value, which obtained by linear fitted from fig 4.9 are 6.5×10^{-3} , 3.6×10^{-3} min⁻¹ for films without and with O_2 flow gas under UV irradiation, respectively. The *k* values of TiO_2 under UV irradiation, which obtained by linear fitted for films prepared at different total sputtering pressure were shown in fig 4.10. It was found that the TiO_2 films prepared under pure Ar gas showed higher photocatalytic activity than that of films prepared under flowing O_2 gas. It can be explained in this study that, due to the films prepared under without O_2 showed high crystallinity and high surface roughness compared with films prepared under gas mixture. In general, the surface area and crystallinity play an important role in photocatalytic activity. A higher surface area enhances the photocatalytic efficiency due to their being more active sites (e^{-} and h^{+}) for the reaction.

In addition, the effect of total sputtering pressure on the photocatalytic activity was shown in fig 4.10. The dramatic increase in photocatalytic activity of TiO_2 film when sputtering pressure increased from 1 to 3 Pa was demonstrated. As described in the previous section that films growth under high sputtering pressure has porous structure and rougher surface. The photocatalytic values of films prepared under 1 and 3 Pa are 2.99 $\times 10^{-3}$, 5.59 $\times 10^{-3}$ min ⁻¹, respectively.

4.2 Yb_2O_3 -doped TiO_2 thin films

4.2.1 Phase structure

This section shows effect of sputtering gas and amount of Yb_2O_3 doping on phase structure characterized by X-ray diffraction (XRD).

4.2.1.1 Effects of sputtering gas and $Yb_2O_3\,concentrations$ on $Yb_2O_3\mbox{-doped Ti}O_2$ films

Figure 4.11 XRD patterns of TiO_2 and $1mol\%Yb_2O_3$ doped TiO_2 (YbT) films prepared under different sputtering gas. (a) TiO_2 8/2; 3 Pa (b) YbT 8/2; 3 Pa (c) TiO_2 10/0; 3 Pa (d) YbT 10/0; 3 Pa.

From XRD results, the peaks were found at 2θ ; 11.5°, 17.1°, 21.6° and 24.5° corresponding to the 101, 004, 200 and 211 diffraction planes of anatase phase (JCPDS No. 211272) under all deposition conditions. The effect of doping concentrations of

 Yb_2O_3 on Yb_2O_3 -doped TiO_2 film was shown as in fig 4.12. It was indicated that all films consisted of reflection planes according to anatase phase. But the difference in their crystallinity was shown, in that the film deposited by 1mol% Yb_2O_3 -doping displayed higher crystallinity with preferred orientation growth.

Figure 4.12 XRD patterns of TiO_2 and Yb_2O_3 -doped TiO_2 films prepared under Ar/O_2 at 8/2. (a) pure TiO_2 (b) TiO_2 -0.5 mol% Yb_2O_3 and (c) TiO_2 -1 mol% Yb_2O_3

4.2.2 Surface morphology

4.2.2.1 Field Emission Scanning Electron Microscopy (FE-SEM)

From FE-SEM images in fig 4.13 shows the morphologies of Yb_2O_3 -doped TiO_2 thin films prepared under difference Yb_2O_3 concentrations and sputtering gas. It was found that the films prepared under gas mixture displayed porous structure with smaller subgrain approximately 10 nm in size, grouped together to form large grain of 120 nm.

The similar microstructure of $1 \text{mol}\% \text{Yb}_2\text{O}_3$ -doped TiO_2 prepared under the same condition was observed. While, the Yb_2O_3 -doped TiO_2 films prepared under pure Ar gas composed of dense packed grain with no gap between them and grain size about 120-150 nm. At the same time, the grain size of Yb_2O_3 -doped TiO_2 increased as the amount of doping increased.

Figure 4.13 FE-SEM images of the films deposited under different Yb_2O_3 concentrations and sputtering gas. (a) 0.5mol% Yb_2O_3 : 8/2, (b) 1mol% Yb_2O_3 : 8/2, (c) 0.5mol% Yb_2O_3 : 10/0 (d) 1mol% Yb_2O_3 : 10/0

Form the results, effects of total sputtering pressure was observed. At high total sputtering pressure, the density of gas particles molecules in the chamber is increased, influence the probability of collisions and accelerate the particles. Consequently, the particle energy is decreased. The surface mobility decreases and the coalescence of crystal are limited, when the energy of depositing particle decreases. This results in the formation of rough microstructure with high surface [47].

Figure 4.14 FE-SEM images from cross-section of Yb_2O_3 -doped TiO₂ films deposited under different sputtering gas. (a) Ar/O₂; 10/0 and (b) Ar/O₂; 8/2, deposition time 4 hours.

From fig 4.14, FE-SEM images show the cross-section of Yb_2O_3 -doped TiO₂ thin films formed at total sputtering pressure of 3 Pa under pure Ar (10/0) and Ar/O₂ (8/2) gas. The crystalline grains exhibit a columnar structure, which can be explained by shadowing model, that is, particles with various incident angles can deposit only on the top each dome because of the shadowing effect [48]. FE-SEM confirmed that the films have porous structure, due to gap were not only formed on the surface, but also in the bulk of the films.

4.2.2.2 Scanning Probe Microscopy (SPM)

Form fig 4.15 presents SPM images of Yb_2O_3 -doped TiO₂ thin films prepared on glass substrate under different Yb_2O_3 concentrations at Ar/O_2 of 8/2. It was found that the surface roughness (present by root mean square roughness, R_{rms}) of the films were

5.63, 15.53 and 10.25 nm for pure TiO₂, 0.5 and 1 mol% Yb₂O₃-doped TiO₂, respectively. It was indicated that the surface roughness of films increased when doping with Yb₂O₃, but increasing in doping amount of Yb₂O₃ from 0.5 to 1 mol% slightly decreased the surface roughness. In case of Yb₂O₃ doped TiO₂ films prepared under pure Ar, the slightly decrease in surface roughness when doped with Yb₂O₃ was observed as shown in fig 4.16. The surface roughness values of films doped with 0.5 and 1 mol% of Yb₂O₃ and pure TiO₂ under pure Ar gas are 10.25, 10.97 and 12.58 nm, respectively.

Generally, in the sputtering process, the microstructure and the surface morphology develop during the film growth is controlled mainly by the energy of depositing particles which is affected by pressure. There are several kinds of the high energy gas particles, such as high energy neutrals (Ar^o) recoiled from the target, high energy of sputtering atom or high energy negative ions (O⁻) accelerate by the cathode toward the growing films surface [47]. When the energy of depositing particles decreases, the surface mobility decreases and the coalescence of crystals is limited. The depositing particles are incorporated in the growing film at their impinging sites, high points on the growing surface receive more deposited material than valleys resulting in the formation of surface roughness.

Figure 4.15 Two-dimensional and three-dimensional SPM images of (a) Pure TiO_2 (b) TiO_2 -0.5mol% Yb_2O_3 and (c) TiO_2 -1mol% Yb_2O_3 films prepared on glass substrate under Ar/O_2 at 8/2, heated at 500 °C and total sputtering pressure 3 Pa.

Figure 4.16 Two-dimensional and three-dimensional SPM images of (a) Pure TiO_2 (b) TiO_2 -0.5mol% Yb_2O_3 and (c) TiO_2 -1mol% Yb_2O_3 films prepared on glass substrate under pure Ar, heated at 500 °C and total sputtering pressure 3 Pa.

4.2.3 Optical properties

This section show effects of Yb_2O_3 doping on transmittance of TiO_2 film observed via UV-vis spectrophotometer and optical band gap energy determined from Tauc's plot method

4.2.3.1 Transmittance

The effect of Yb₂O₃ doping on the optical transmittance of deposited films was shown in fig 4.17. It was seen that the TiO₂ film has high transparency in the visible range of 400-800 nm. The average transmittance of films in the visible region is about 80 %. The transmittance of films slightly decreased with Yb₂O₃ doping. This could be attributed to light scattering loss effect resulting from the increased crystallite size and surface roughness of the films. Besides, the Yb₂O₃-doped TiO₂ films showed rather lower transmittance at 350-400 nm when it was compared with pure TiO₂ film. It is observed that the absorption edges of Yb₂O₃-doped TiO₂ thin films are red-shift. This shift is ascribed to the variation of the optical band gap energy of TiO₂ and Yb₂O₃-doped TiO₂.

Moreover, the Ar/O_2 ratio and Yb_2O_3 doping had played an important role on the transparency together with the shift of absorption edge of films. It was found that the absorption edge of films prepared under mixture gas (Ar/O_2 :8/2) shifts to longer wavelength with markedly dropped in transmittance.

Figure 4.17 Transmittance spectra of TiO_2 and Yb_2O_3 -doped TiO_2 thin films prepared under different sputtering gas and doping amount of Yb_2O_3 at total sputtering pressure 3 Pa.

4.2.3.2 Optical band gap energy

Optical transmission spectra of Yb_2O_3 -doped TiO_2 measured at room temperature with an excitation wavelength of 200-800 nm by a UV-Vis spectrophotometer is shown in fig 4.17. Determination of the absorption edge or energy band gap has been described in chapter 3. The tangential line at high α region of the $h\nu vs (\alpha E)^{1/2}$ curve is extrapolated to intercept the $h\nu$ axis as shown in fig 4.18. This intercept value is defined as the energy band gap.

Figure 4.18 Graphs of $(\alpha E)^{1/2}$ versus photon energy, E ($h\nu$), for Yb₂O₃-doped TiO₂ films.

The energy band gap values of Yb_2O_3 -doped TiO_2 thin films prepared under different Yb_2O_3 concentrations, with and without O_2 gas flow were shown in Table 4.1. The optical band gap of TiO_2 obtained in this work is about 3.19 ± 0.01 which is corresponded with general of the optical band gap of TiO_2 anatase (3.2 eV). However, the optical band gap energy of films decreased as concentration of Yb_2O_3 doping increased. Moreover, the optical band gap energy of Yb_2O_3 -doped TiO_2 film was decreased when sputtered under O_2 gas flow.

Target	Yb ₂ O ₃ Concentrations	Ar/O ₂ ratio	Pressure	E _{bg}
	(mol%)			
TiO	_	10/0	3	3.20 ± 0.01
1102	-	8/2	3	3.18 ± 0.01
	0.5	10/0	3	3.17 ± 0.02
TiO ₂ -Yb ₂ O ₃	0.0	8/2	3	3.15 ± 0.02
	1	10/0	3	3.15 ± 0.01
		8/2	3	3.13 ± 0.02

Table 4.1 Band gap energy values (E $_{\rm bg}$) of TiO $_{\rm 2}$ and Yb $_{\rm 2}\rm O_{\rm 3}\text{-}doped$ TiO $_{\rm 2}$ films

4.2.4 Photocatalytic activity

Photocatalytic activity was presented by kinetic energy; *k*. Determination of the kinetic energy (k) has been described in chapter 3. The kinetic energy of Yb_2O_3 -doped TiO_2 thin films under UV and fluorescent irradiation was shown in fig 4.19-4.20, respectively.

Figure 4.19 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Yb_2O_3 -doped TiO_2 films prepared under different sputtering gas (Ar/O₂ and concentrations of Yb_2O_3 . (\blacksquare) 0.5mol%Yb₂O₃-8/2, (\bullet) 1mol%Yb₂O₃-8/2, (\bullet) 0.5mol%Yb₂O₃-10/0 and (∇) 1mol%Yb₂O₃-10/0.

Figure 4.20 Photocatalytic degradation of methylene blue solution as a function of fluorescent irradiation time of Yb_2O_3 -doped TiO_2 films prepared under different sputtering gas (Ar/O₂) and concentrations of Yb_2O_3 . (\blacksquare) 0.5mol%Yb₂O₃-8/2, (\blacklozenge) 1mol%Yb₂O₃-8/2, (\blacklozenge) 0.5mol%Yb₂O₃-10/0 and (\bigtriangledown) 1mol%Yb₂O₃-10/0.

As a result, the Yb_2O_3 -doped TiO_2 films prepared with O_2 flow showed higher photocatalytic efficiency than that of film prepared under pure Ar under both UV and fluorescent irradiation. Moreover, the photocatalytic activity increased as the concentration of Yb_2O_3 increased from 0.5 to 1 mol%.

This can be suggested that the surface roughness and crystallinity had played a significant parameter influencing the photocatalytic activity. The films with high crystallinity and high surface roughness resulted in high photocatalytic activity. Because of a low degree of crystallinity would imply a great amount imperfections and defects in TiO₂ structure which could act as a recombination center for electron-hole pairs and led to lower efficiency of photocatatytic activity. While the film with higher open structure

and surface roughness would promote more number of active center for the catalytic activity.

Table 4.2 Kinetic energy of the Yb_2O_3 -doped TiO_2 thin films under UV and fluorescent irradiation.

Target	Concentrations (mol%)	Ar/O ₂ ratio	Pressure	<i>k</i> under UV irradiation	<i>k</i> under Fluorescent irradiation
TiO ₂ -Yb ₂ O ₃	0.5	10/0	3	18.2 X 10 ⁻⁴	6.38 X 10 ⁻⁴
		8/2	3	21.5 X 10 ⁻⁴	8.81 X 10 ⁻⁴
	1	10/0	3	19.6 X 10 ⁻⁴	6.01 X 10 ⁻⁴
		8/2	3	30.5 X 10 ⁻⁴	9.68 X 10 ⁻⁴

4.3 Er_2O_3 -doped TiO₂ thin films

This section shows effects of sputtering gas and amount of Er_2O_3 doping on phase structure, morphology, surface roughness, transmittance and photocatalytic activity of Er_2O_3 -doped TiO₂ film.

4.3.1 Phase structure

4.1.3.3 Effects of sputtering gas, total sputtering pressure and target concentration on $\rm Er_2O_3\text{-}doped\ TiO_2\ films$

Figure 4.21 XRD patterns of TiO_2 and $1mol\%Er_2O_3$ -doped TiO_2 (ErT) films prepared under different sputtering gas and Er_2O_3 doping. (a) TiO_2 8/2; 3 Pa (b) ErT 8/2;3 Pa (c) TiO_2 10/0;3 Pa (d) ErT 10/0; 3 Pa.

XRD patterns of Er_2O_3 -doped TiO₂ thin films prepared on glass substrate under various sputtering gas and pressure, were shown in fig 4.21. It was confirmed that all of the deposited films composed of only reflection planes of anatase structure (JCPDS No. 211272) which was also observed the same results in case of using TiO₂ and TiO₂-Yb₂O₃ target. But, an apparent change in preferred orientation grown occurred when the film was sputtered at high pressure (3 Pa). For effect of Er_2O_3 concentrations, it was demonstrated that when concentration of Er_2O_3 doping in TiO₂ target increased, the crystallinity slightly decreased (fig 4.22).

Figure 4.22 XRD patterns of TiO_2 and Er_2O_3 -doped TiO_2 films prepared under Ar/O₂ at 8/2; (a) TiO_2 (b) TiO_2 -0.5 mol% Er_2O_3 (c) TiO_2 -1 mol% Er_2O_3 .

4.3.2 Surface morphology

4.3.2.1 Filed Emission Scanning Electron Microscopy (FE-SEM).

FE-SEM images in fig 4.23 show the morphologies of Er_2O_3 -doped TiO₂ thin films deposited under different Er_2O_3 concentrations and sputtering gas. It was found that the films prepared under gas mixture displayed porous structure with smaller subgrain approximately 10 nm in size, grouped together to form one large grain of 120-150 nm. The similar microstructure of 1mol% Er_2O_3 -doped TiO₂ prepared under the same condition was observed. At the same time, the Er_2O_3 -doped TiO₂ films prepared under pure Ar gas consisted of dense packed polycystalline grain with no gap between them and their grain size is about 120-150 nm, which is similar to that of films prepared from Yb₂O₃ -doped TiO₂ target under the same condition. Moreover, the grain size of Er_2O_3 -doped TiO₂ films slightly increased with the amount of doping Er_2O_3 increased.

Figure 4.23 FE-SEM image of the films deposited under different sputtering gas and Er_2O_3 concentration, (a) 0.5mol% Er_2O_3 : 8/2, (b) 1mol% Er_2O_3 : 8/2, (c) 0.5mol% Er_2O_3 : 10/0 (d) 1mol% Er_2O_3 : 10/0.

4.3.2.2 Scanning Probe Microscope (SPM)

Figure 4.24 Two-dimensional and three-dimensional SPM images of (a) pure TiO_2 , (b) 0.5 mol% Er_2O_3 -doped TiO_2 and (c) 1 mol% Er_2O_3 -doped TiO_2 films prepared on glass substrate under Ar/O_2 at 8/2, heated at 500 °C and total sputtering pressure3 Pa.

Figure 4.25 Two-dimensional and three-dimensional SPM images of (a)TiO₂ (b) 0.5mol% Er_2O_3 -TiO₂ (c) 1mol% Er_2O_3 -TiO₂ films prepared on glass substrate under pure Ar, heated at 500 °C and total sputtering pressure 3 Pa.

Fig 4.24 shows SPM images of Er_2O_3 -doped TiO₂ thin films prepared on glass substrate under different Er_2O_3 concentrations at Ar/O_2 of 8/2. It was found that the surface roughness (R_{rms}) of films are 5.63, 10.05 and 10.67 nm for pure TiO₂, 0.5 and 1 mol% Er_2O_3 -doped TiO₂ target, respectively. It was noticed that the surface roughness of films drastically increased when doping with Er_2O_3 . But it cannot show the difference between doping with 0.5 and 1 mol% Er_2O_3 . While, the films prepared under pure Ar gas as shown in fig 4.25 have surface roughness (R_{rms}) approximately 12.58, 10.50 and 11.25 nm for pure TiO₂, 0.5 and 1 mol% Er_2O_3 -doped TiO₂ target, respectively. From the results, it was found that the surface roughness of TiO₂ films had not significantly affect by Er_2O_3 doping when sputtered under pure Ar gas. It can be assumed that surface roughness values are almost no different between doped and undoped films.

4.3.3 Optical properties

This part shows effects of Er_2O_3 -doping on optical properties of TiO_2 films, which consisted of Transmittance and optical band gab energy characterized by UV-vis spectroscopy and "Tauc's plot" method.

The transmittance spectra of Er_2O_3 -doped TiO_2 thin films deposited under various Er_2O_3 concentrations and sputtering gas were shown in fig 4.26. It was seen that all spectra show the normal light interference pattern in visible region. In addition, the interference pattern depends on the films thickness. The Er_2O_3 -doped TiO_2 films deposited under all of different target concentrations and sputtering gas have high transparency as the average transmittance of films in visible region shown in fig 4.26 is about 70-80 %. While the films prepared by doping with Er_2O_3 displayed clearly drop in the transmittance of film with slightly red shifted into the longer wavelength. A decrease in optical transmittance is resulted from the increase an adsorption in the visible region.

It was suggested that, the sputtering gas and Er_2O_3 doping had played an important role on the transparency together with the shift of absorption edge of films.

4.3.3.2 Optical band gap energy

Optical transmission spectra of Er_2O_3 -doped TiO_2 films measured at room temperature with an excitation wavelength of 200-800 nm by a UV-vis spectrophotometer were shown in fig.4-26. Determination of the absorption edge or energy band gap has been described in chapter 3. The tangential line at high α region of the $h\nu$ vs $(\alpha E)^{1/2}$ curve is extrapolated to intercept the $h\nu$ axis as shown in fig.4-27. This intercept value is defined as the energy band gap.

Figure 4.27 Graphs of $(\alpha E)^{1/2}$ versus photon energy, E ($h\nu$) of Er₂O₃-doped TiO₂ films.

The energy band gap values of Er_2O_3 –doped TiO_2 thin films prepared under difference Er_2O_3 concentration and Ar/O_2 gas were shown in Table 4.3. The energy band gap of TiO_2 in this work is about 3.19 ± 0.01 eV corresponding to the general TiO_2 anatase (3.2 eV). It was obtained that the energy band gap value of films prepared under mixture of Ar/O_2 gas are lower than that of films prepared under pure Ar gas.

Moreover, the energy band gap values of Er_2O_3 -doped TiO_2 films decreased as the concentrations of Er_2O_3 increased.

Target	Concentrations	Ar/O ₂ ratio	Pressure	E _{bg} (eV)
	(mol%)		(Pa)	
TiO		10/0	3	3.20 ± 0.01
1102	-	8/2	3	3.19 ± 0.01
TiO ₂ -Er ₂ O ₃	0.5	10/0	3	3.18 ± 0.02
	0.5	8/2	3	3.17 ± 0.01
	1	10/0	3	3.17 ± 0.02
		8/2	3	3.15 ± 0.02

Table 4.3 Band gab energy values (E_{bq}) of TiO₂ and Er_2O_3 -doped TiO₂ films

4.3.4 Photocatalytic activity

This section shows effects of sputtering Ar/O_2 gas and amount Er_2O_3 doping on photocatalytic activcity of TiO_2 film displayed by kinetic energy, *k*. Determination of the kinetic energy (k) has been described in chapter 3.

Figure 4.28 Photocatalytic degradation of methylene blue solution as a function of UV irradiation time of Er_2O_3 -doped TiO_2 films prepared under different sputtering gas (Ar/O₂) and concentrations of Er_2O_3 . (\blacksquare) 0.5mol% Er_2O_3 -10/0, (\bullet) 1mol% Er_2O_3 -10/0, (\bullet) 1mol% Er_2O_3 -10/0, (\bullet) 0.5mol% Er_2O_3 -8/2 and (\checkmark) 1mol% Er_2O_3 -8/2.

Figure 4.29 Photocatalytic degradation of methylene blue solution as a function of fluorescent irradiation time of Er_2O_3 -doped TiO_2 films prepared under different sputtering gas (Ar/O₂) and concentrations of Er_2O_3 . (\blacksquare) 0.5mol%Yb₂O₃-10/0, (\bullet) 1mol%Yb₂O₃-10/0, (\checkmark) 0.5mol%Yb₂O₃-8/2 and (\checkmark) 1mol%Yb₂O₃-8/2.

The results of photocatalytic activity under UV and fluorescent irradiation of films prepared from different targets and sputtering gas show that the efficiency of Er_2O_3 - doped TiO₂ films prepared under gas mixture (Ar/O₂:8/2) was higher than that of film prepared under pure Ar gas as shown in fig. 4.28 and 4.29. The efficiency of films prepared under Ar/O₂ (8/2) was strongly affected by concentration of Er_2O_3 , in that higher amount of Er_2O_3 doping resulting in higher photocatalytic activity. While, the doping amount of Er_2O_3 had less effect on photocatalytic efficiency of films prepared under pure Ar gas.

Target	Concentrations (mol%)	Ar/O ₂ ratio	Pressure	k under UV irradiation	k under Fluorescent irradiation
TiO ₂ -Er ₂ O ₃	0.5	10/0	3	6.89 X 10 ⁻⁴	5.32 X 10 ⁻⁴
		8/2	3	10.67 X 10 ⁻⁴	7.69 X 10 ⁻⁴
	1	10/0	3	9.96 X 10 ⁻⁴	5.59 X 10 ⁻⁴
		8/2	3	23.1 X 10 ⁻⁴	8.23 X 10 ⁻⁴

Table 4.4 Kinetic energy of the Er_2O_3 -doped TiO_2 thin films under UV and fluorescent irradiation.

CHAPTER V

CONCLUSION AND RECOMMEDATION

5.1 Conclusions

1. TiO_2 and Yb_2O_3/Er_2O_3 -doped TiO_2 films showing photocatalytic activity under UV and fluorescent irradiation of methylene blue solution have been successfully fabricated by means of RF-magnetron sputtering method

2. The total sputtering pressure had played an important role on the surface morphology of TiO_2 deposited films. At high pressure (3 Pa), the film displayed porous structure with higher surface roughness resulted in higher photocatalytic activity. The sputtering gas, with and without O_2 flow, had shown an effect on the surface morphology and optical property of deposited films, which in turn had an influence on their photocatalytic activity. The film prepared under pure Ar had finer grain structure with higher surface roughness, resulting in higher photocatalytic activity than that of film prepared under gas mixture of Ar/O_2 (8/2).

3. The crystallinity and surface roughness of Yb_2O_3/Er_2O_3 - doped TiO_2 films are significantly affected by sputtered gas. The doped TiO_2 films prepared under mixture of Ar/O_2 (8/2) gas had fine grain structure with high surface roughness, resulting in high photocatalytic activity.

4. The absorption thresholds for the Yb₂O₃/Er₂O₃ doped films slightly shifted to longer wavelength compared with the TiO₂ films which was attributed to the decrease in its energy band gap. The increasing in the amount of Yb₂O₃/Er₂O₃ dopant from 0.5 to 1 mol% resulted in the increasing in photocatalytic activity under UV and fluorescent light irradiation.

5. From this study, doping TiO_2 with Yb_2O_3 or Er_2O_3 did not show an improvement in photocatalytic activity of TiO_2 films. The optimal conditions for doping film should be carried out.

5.2 Recommendations

The recommendations for further study should be carried on finding optimal doping concentration and surface modification of TiO_2 to enhance its photocatalysis efficiency by reducing recombination of photo generated electrons and holes and to improve its photocatalytic activity under UV and Fluorescent irradiation.

REFERENCES

- [1] Fujishima, A., Rao, T. N., and Tryk, D. A. Titanium dioxide photocatalysis. <u>Journal of</u> <u>Photochemistry and Photobiology C: Photochemistry Reviews</u> 1 (2000): 1-21.
- [2] Anpo, M., and Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. <u>Journal of Catalysis</u> 216 (2003): 505-516.
- [3] Zhao, G., Kozuka, H., and Yoko, T. Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO₂ film electrodes prepared by sol-gel method. <u>Solar Energy Materials and Solar Cells</u> 46 (1997): 219-231.
- [4] Martin, N., Rousselot, C., Rondot, D., Palmino, F., and Mercier, R. Microstructure modification of amorphous titanium oxide thin films during annealing treatment. <u>Thin Solid Films</u> 300 (1997): 113-121.
- [5] Lapostolle, F., Billard, A., Stebut, J. v. Structurermechanical properties relationship of titanium-oxygen coatings reactively sputter-depositedq. <u>Surface and Coatings</u> <u>Technology</u> 135 (2000): 1-7.
- [6] Martin, N., Rousselot, C., Savall, C., and Palmino, F. Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering. <u>Thin Solid Films</u> 287 (1996): 154-163.
- [7] Murakami, N., Chiyoya, T., Tsubota, T., and Ohno, T. Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transitionmetal ion controlled by irradiation wavelength. <u>Applied Catalysis A: General</u> 348 (2008): 148-152.
- [8] Carneiro, J. O., et al. Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO₂ films prepared by dc reactive magnetron sputtering. <u>Vacuum</u> 78 (2005): 37-46.
- [9] Bellardita, M., Addamo, M., Di Paola, A., and Palmisano, L. Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. <u>Chemical Physics</u> 339 (2007): 94-103.

- [10] Liang, C. H., Li, F. B., Liu, C. S., Lu, H. L., and Wang, X. G. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO₂ for the degradation of Orange I. <u>Dyes and Pigments</u> 76 (2008): 477-484.
- [11] Liang, C. H., et al. The effect of erbium on the adsorption and photodegradation of orange I in aqueous Er3+-TiO₂ suspension. <u>Journal of Hazardous Materials</u> 138 (2006): 471-478.
- [12] Fujishima, A., Hashimoto, K., and Wanatabe, T. <u>TiO₂ Photocatalyst Fundamentals and</u> <u>Application</u>. Tokyo, Japan: BKC Inc., 1999.
- [13] Pholporthon .S, <u>Life cycle assessment of synthesizing titanium dioxide</u> <u>nanoparticles</u>. The Degree of Master of Engineering Program, Department of Chemical Engineering Faculty of Engineering Chulalongkorn University, 2006.
- [14] Wold, A. Photocatalytic Properties of Ti0₂. <u>Chem. Mater</u> 5 (1993): 280-283.
- [15] Chutiphunphinyo .U, <u>Synthesis of nanosized anatase particles from commercial rutile</u> <u>powder</u>. The Degree of Master of Science Program, Department of Materials Science Faculty of Science Chulalongkorn University, 2007.
- [16] Miao, I., Tanemura, S., Kondo, Y., and Iwata, M. Microstructure and bactericidal ability of photocatalytic TiO₂ thin films prepared by rf helicon magnetron sputtering. <u>Applied Surface Science</u> 238 (2004): 125-131.
- [17] Fujishima, A, and Zhang, X., Titanium dioxide photocatalysis: present situation and future approaches. <u>C.R. Chimie</u>, 9 (2006): 750-760
- [18] Seethawong, T. <u>Titanium dioxide[Online]</u>. 2008. Available from: <u>http://www.vcharkarn.com/varticle/27809</u> [2010, September 15].
- [19] Dangsranoi .P, <u>Photocatalytic oxidation of organic compounds in wastewater</u>. The Degree of Master of Science, Program Department of Chemical Technology Faculty of Science Chulalongkorn University, 2005.
- [20] Mori, K., Photo-Functionalized Materials Using Nanoparticles: Photocatalysis. <u>J. Soc.</u> <u>Powder Technology</u>, 41 (2004): 750-756.
- [21] Kosasang, O. Proton conductivity in Y-doped Barium Ziconate for intermediate temperature direct ethanol fuel cell. Master's Thesis, Department of Materials Science Faculty of Science, Thailand, Chulalongkorn University, 2009.

- [22] Vossen, J. L., and Kern, W. <u>Thin Films Process II</u>. United Kingdom: ACDEMIC PRESS, INC., 1991.
- [23] Spencer, R. <u>Sputter deposition of thin film[Online]</u>. 2002. Available from: <u>http://www.alacritas-consulting.com</u> [2010, October 3]
- [24] Zeman, R., and Takabayashi, S. Effect of total and oxygen partial pressures on structure of photocatalytic TiO₂ films sputtered on unheated substrate. <u>Surface &</u> <u>Coatings Technology</u> 153 (2002): 93-99.
- [25] Yamagishi, M., Kuriki, S., Song, P. K., and Shigesato, Y. Thin film TiO₂ photocatalyst deposited by reactive magnetron sputtering. <u>Thin Solid Films</u> 442 (2003): 227-231
- [26] Zeman, P., and Takabayashi, S. Nano-scaled photocatalytic TiO₂ thin films prepared by magnetron sputtering. <u>Thin Solid Films</u> 433 (2003): 57-62.
- [27] Takamura, K., Abe, Y., and Sasaki, K. Influence of oxygen flow ratio on the oxidation of Ti target and the formation process of TiO₂ films by reactive sputtering. <u>Vacuum</u> 74 (2004): 397-401.
- [28] Kim, S. C., Heo, M. C., and Hahn, S. H. Photocatalytic Activity of Pd-Doped TiO₂ Thin Films by Using a RF Magnetron Co-Sputtering Method. <u>Journal of the</u> <u>Korean Physical Society</u> 47 (2005): 700-704.
- [29] Meng, F., and Sun, Z. A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO₂ thin films deposited by RF magnetron sputtering. <u>Applied Surface Science</u> 255 (2009): 6715-6720.
- [30] Paola, A. D., et al. Preparation of Sm-loaded brookite TiO₂ photocatalysts. <u>Catalysis</u> <u>Today</u> (2011).
- [31] Stengl, V., Bakardjieva, S., and Murafa, N. Preparation and photocatalytic activity of rare earth doped TiO₂ nanoparticles. <u>Materials Chemistry and Physics</u> 114 (2009): 217-226.
- [32] Chen, W., Hua, D., ying, T. J., and mei, Z. J. Photocatalytic activity enhancing for TiO₂ photocatalyst by doping with La. <u>Transactions of Nonferrous Metals Society</u> <u>of China</u> 16 (2006): s728-s731.

- [33] Jiang, H. Q., Wang, P., Guo, X. L., and Xian, H. Z. Preparation and characterization of low-amount Yb³⁺-doped TiO₂ photocatalyst. <u>Russian Chemical Bulletin</u> 55 (2006): 1743-1747.
- [34] Pal, M., Pal, U., Gonzalez, R. S., Mora, E. S., and Santiago, P. Synthesis and Photocatalytic Activity of Yb Doped TiO₂ Nanoparticles under Visible Light. <u>Journal of Nano Research</u> 5 (2009): 193-200.
- [35] Yang, Y., et al. Electrospun Er:TiO₂ nanofibrous films as effcient photocatalysts under solar simulated light. <u>Materials Letters</u> 64 (2010).
- [36] Manos, D. Lab Equipment and Apparatus Surface Characterization Lab II (L121[Online]. 2005. Available from: <u>http://www.ilab.org/ARC/WM/121/NewDektak.html</u> [2010, December 10]
- [37] PAWLEY, J. The Development of Field-Emission Scanning Electron Microscopy for Imaging Biological Surfaces. <u>Scanning</u> 19 (1997): 324-336.
- [38] Kalinin, S. V., Gruverman, A., Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy, in USA, <u>Spri-nger</u>, 2010.
- [39] Dios, A. C. d. Introduction to the U-2001 UV/Visible Spectrophotometer[Online]. 1996-2008. Available from: <u>http://bouman.chem.georgetown.edu/S00/handout/</u> <u>spectrometer.html</u> [2011, January 20]
- [40] Mardare, D., Tasca, M., Delibas, M., and Rusu, G. I. On the structural properties and optical transmittance of TiO₂ r.f. sputtered thin films. <u>Applied Surface</u> <u>Science</u> 156 (2000): 200-206.
- [41] Meng, F., Song, X., and Sun, Z. Photocatalytic activity of TiO₂ thin films deposited by RF magnetron sputtering. <u>Vacuum</u> 83 (2009): 1147-1151.
- [42] Wang, T. M., Zheng, S. K., Hao, W. C., and Wang, C. Studies on photocatalytic activity and transmittance spectra of TiO₂ thin films prepared by r.f. magnetron sputtering method. <u>Surface & Coatings Technology</u> 155 (2002): 141-145.
- [43] Wang, S. F., Hsu, Y. F., and Lee, Y. S. Microstructural evolution and optical properties of doped TiO₂ films prepared by RF magnetron sputtering. <u>Ceramics</u> <u>International</u> 32 (2006): 121-125.

- [44] Hossain, M. F., Biswas, S., Takahashi, T., Kubota, Y., and Fujishima, A. Influence of direct current power on the photocatalytic activity of facing target sputtered TiO₂ thin films. <u>Thin Solid Films</u> 517 (2008): 1091-1095.
- [45] Goodge, J. <u>Electron probe micro-analyzer (EPMA)[Online]</u>. 2007. Available from: <u>http://serc.carleton.edu/research_education/geochemsheets/techniques/EPMA.h</u> <u>tml</u> [2011, January 20]
- [46] Lee, D. Y., Lee, J. R., Kim, D. G., Lee, G. H., and Song, P. K. Study of Ga-Doped ZnO films deposited on PET substrates by DC magnetron sputtering. <u>Journal of</u> <u>Ceramic Processing Research</u> 9 (2008): 638-642.
- [47] KON, M., SONG, P. K., MITSUI, A., and SHIGESATO, Y. Crystallinity of Gallium-Doped Zinc Oxide Films Deposited by DC Magnetron Sputtering Using Ar, Ne or Kr Gas. <u>The Japan Society of Applied Physics</u> 41 (2002): 6174-6179.
- [48] FUKAMI, T., NARUOKA, T., MOMOSE, T., and BAMBA, N. Effects of Sputtering Atmosphere Oxygen Pressure on Photocatalytic Phenomena in Anatase Films. <u>The Japan Society of Applied Physics</u> 41 (2002): L794-L796.
- [49] Lin, Z., Lv, L., and Qiu, J. Effect of Ar/O₂ gas flow ratio on photocatalytic activity of <u>TiO₂ films prepared by DC magnetron sputtering</u>. (2007): 272-273.
- [50] NOGUCHI, D., KAWAMATA, Y., and NAGATOMO, T. Effects of Sputtered High-Energy Particles on the Structure and Photocatalytic Performance of TiO₂ Films Prepared by a DC Reactive Sputtering Method. <u>Japanese Journal of Applied</u> <u>Physics</u> 43 (2004): 4351-4355.

APPENDICES

Electron Probe Micro-Analysis (EPMA)

Figure A:1 The Electron Probe Micro-Analysis (EPMA) of sputtred films. (a) TiO_2 -0.5 mol% Yb_2O_3 (b) TiO_2 -1 mol% Yb_2O_3 (c) TiO_2 -0.5 mol% Er_2O_3 (d) TiO_2 -1 mol% Er_2O_3 target.

JCPDS

B:1 JCPDS of Anatase phase (JCPDS No. 211272)

	· · · · · · · · · · · · · · · · · · ·	- 4								
ntensity					dÅ	20	Int	h I	k I	
00	1				3.5200	11.5651	100	1	0 1	
					2.4310	16.7772	10 20	1	03	
75					2.3320	17.4949	10	1	1 2	
15					1.8920	21.6077	35	2	0 0	
					1.6999	24.0842	20	2	1 1	
50 -					1.4930	27.4830	4	2	1 3	
					1.4808	27.7139	14	2	04	
		1			1.3378	30.7457	6	2	2 0	
25 -		1			1.2795	32.1838	<2	1	0 7	
			r.		1.2509	32.9403	4	3	0 1	
0			سرال الس		1.1894	34.6961	<2	0	0 8	
0	10	20 30	40	50	1.1725	35.2124	6	2	03	
		2 Theta		20	1.1608	35.5792	4	3	1 2	
Formula TiO2					1.0600 1.0517	39.0935	2	2	17	
romula noz					1.0436	39.7334	4	3	2 1	
Name Titani	ium Oxide				1.0182	40.7681	2	1	0 9	
					0.9967	41.2420 41.6879	2	3	2 3	
Mineral Anata	ase, syn				0.9555	43.5752	4	3	1 6	
Also	20				0.9464	44.0160	<2	4	0 0 7	
Called	se				0.9192	45.3899	2	3	2 5	
					0.9138	45.6732	2	4	1 1	
Rad	,	Filter		d-sn	- 0.8890	47.0228	2	2	2 8	
Cut off	A. Int	rinci	1/1005 2	u-sp	0.8819	47.4245	<2	4	1 3	
Def Natl Dur	Stand (U.S.) Man	nor 25 7 92 (1060)	vicoi. 5.	,	0.8793	47.5733	2	4	04	
					0.8464	10 5117			2 0	
Ref. Nati. Bui.	. otunu: (0.0.) mon	logi. 25, 7, 82 (1909)			0.8464 0.8308	49.5442 50.5392	<2	3	2 7	
Rei, Nau. Bui,	orania. (o.o.) mon	1061. 23, 7, 82 (1909)			0.8464 0.8308 0.8268 0.8102	49.5442 50.5392 50.8010 51.9185	<2 4 2	3 4	2 7 1 5 0 9	
Camera Diameter	r	1061.23, 1, 82 (1909)			0.8464 0.8308 0.8268 0.8102 0.7974	49.5442 50.5392 50.8010 51.9185 52.8157	<2 4 2 4	3 4 3 4	2 7 1 5 0 9 2 4	
Camera Diameter Author's Parameter	r eters:	G 141/amd(141)	Arnee		0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.5442 50.5392 50.8010 51.9185 52.8157 53.1461	<2 4 2 4 2	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parame Sys. Tetragona a 3 7852	r eters: ll S.C	G. 141/amd(141)	Aspec	t C 25134	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.5442 50.5392 50.8010 51.9185 52.8157 53.1461	2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parame Sys. Tetragona a 3.7852	r eters: il S.C b B	G. 141/amd(141) c 9.5139	Aspec A 7. 4	t C 2.5134	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.5442 50.5392 50.8010 51.9185 52.8157 53.1461	<2 4 2 4 2 4 2	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parame Sys. Tetragona a 3.7852 α. Volume 136.31	r eters: ul S.C β	 G. 141/amd(141) c 9.5139 γ mp 	Aspec A Z 4	t C 2.5134	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.5442 50.5392 50.8010 51.9185 52.8157 53.1461	<2 4 2 4 2	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parame Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid.	r eters: u S.C β 1	G. 14 ₁ /amd(141) c 9.5139 γ mp	Aspec A Z 4	t C 2.5134	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.5442 50.5392 50.8010 51.9185 52.8157 53.1461	<2 4 2 4 2 4 2	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parame Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid.	r eters: il S.C β 1	G. 14 ₁ /amd(141) c 9.5139 γ mp	Aspec A Z 4	t C 2.5134	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.5442 50.5392 50.8010 51.9185 52.8157 53.1461	<pre>2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2</pre>	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parame Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893	r eters: il S.C β I Dm	G. 14 ₁ /amd(141) c 9.5139 γ SS/FOM: F30*	Aspec A Z 4 •75(.012,35)	t C 2.5134	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49,5442 50,5392 50,8010 51,9185 52,8157 53,1461	<pre>22 4 2 4 2 4 2 4 2 </pre>	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor:	r eters: al S.C β I Dm	G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error:	Aspec A Z 4 -75(.012,35)	t C 2.5134	0.8464 0.8308 0.8268 0.8102 0.7974 0.7978	49,5442 50,5392 50,8010 51,9185 52,8157 53,1461	<pre>~2 ~4 ~</pre>	3 4 3 4	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculated	r eters: ul S.C β I Dm d Parameters:	 G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: 	Aspec A Z 4 -75(.012,35) S.G. 141/	t C 2.5134	0.8464 0.8308 0.8206 0.8102 0.7974 0.7928	49,5442 50,5392 50,8010 51,9185 52,8157 53,1461	<pre>~2 4 2 4 2 4 2</pre>	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parami Sys. Tetragona a 3.7852 α Volume 136.31 Nef. Ibid. Dx 3.893 Ref. Ibid. Dx 3.893 Refactor: ICDD Calculated Cell Parameters: a 3.785	r eters: tl S.C β 1 Dm d Parameters:	G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: c 9.514	Aspec A Z 4 -75(.012,35) S.G. 141/	t C 2.5134 amd(141)	0.8464 0.8308 0.8208 0.8102 0.7974 0.7928	49.3442 50.3392 50.8010 51.9185 52.8157 53.1461	<pre>~2 4 2 4 2 4 2</pre>	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parami Sys. Tetragona a 3.7852 α. Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculated Cell Parameters: a 3.785 = .00	r eters: β S.C β 1 Dm d Parameters: β 3.785 ρ 90	G. 141/amd(141) c 9.5139 γ mp SS/FOM: F30° Error: c 9.514 ~ 90	Aspec A Z 4 *75(.012,35) S.G. 141/ A Z 4	t C 2.5134 amd(141) C 2.5136	0.8464 0.8308 0.8208 0.8102 0.7974 0.7928	49.3442 50.3392 50.8010 51.9185 52.8157 53.1461	2 4 2 4 2 4 2	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculates Cell Parameters: a 3.785 α 90	r eters: l S.C b β 1 Dm d Parameters: b 3.785 β 90	 G. 141/amd(141) c 9.5139 γ mp SS/FOM: F30° Error: c 9.514 γ 90 	Aspece A Z 4 -75(.012,35) S.G. 141/ A Z 4	t C 2.5134 amd(141) C 2.5136	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.3442 50.3392 50.8010 51.9185 52.8157 53.1461	2 4 2 4 2 4 2	3 4 3 4 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculated Cell Parameters: a 3.785 α 90 Volume 136.31	r eters: d S.C b β 1 Dm d Parameters: b 3.785 β 90 1 Mc	 G. 141/amd(141) c 9.5139 γ mp SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.3 	Aspece A Z 4 *75(.012,35) S.G. 141/ A Z 4	t C 2.5134 amd(141) C 2.5136	0.8464 0.8308 0.8206 0.8102 0.7974 0.7928	49.3442 50.5392 50.8010 51.9185 52.8157 53.1461	2 4 2 4 2 2	3 : 4 3 4 3 4 0 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculated Cell Parameters: a 3.785 α 90 Volume 136.31 Reduced Cell: a 2.286	r eters: u S.C b β 1 Dm d Parameters: ¹² b 3.785 β 90 1 Mc	 G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.5 	Aspec A Z 4 *75(.012,35) S.G. 141/ A Z 4	t C 2.5134 amd(141) C 2.5136	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.3442 50.5392 50.8010 51.9185 52.8157 53.1461	2 4 2 4 2 2	3 . 4 3 4 2 0	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 Refactor: ICDD Calculatet Cell Parameters: a 3.785 α 90 Volume 136.31 Reduced Cell: a 3.785	r eters: th S.C b β 1 Dm d Parameters: β β β 1 Dm d Parameters: β β 1 β β 1 β β 1 β β 1 β β β β β β β β	G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.5 c 5.458 - 00	Aspec A Z 4 -75(.012,35) S.G. 141/ A Z 4 Volume 6	t C 2.5134 amd(141) C 2.5136 8.16	0.8464 0.8308 0.8208 0.8102 0.7974 0.7928	49.3442 50.5392 50.8010 51.9185 52.8157 53.1461	22 4 2 4 2 4 2 4 2	3 · · · · · · · · · · · · · · · · · · ·	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Parami Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 Refactor: ICDD Calculates Cell Parameters; a 3.785 α 90 Volume 136.31 Reduced Cell: a 3.785 α 10.29	r eters: β β β 1 Dm d Parameters: b $3.785\beta 901 Mcb$ $3.785\beta 10.29$	G. 141/amd(141) c 9.5139 γ mp SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.5 c 5.458 γ 90	Aspec A Z 4 -75(.012,35) S.G. 141/ A Z 4 Volume 6	t C 2.5134 amd(141) C 2.5136 8.16	0.8464 0.8308 0.8208 0.8102 0.7974 0.7928	49.3442 50.5392 50.8010 51.9185 52.8157 53.1461	2 2 4 2 4 2 4 2 4 2	3 · · · · · · · · · · · · · · · · · · ·	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculates Cell Parameters; a 3.785 α 90 Volume 136.31 Reduced Cell; a 3.785 α 110.29 CAS Number	r eters: l S.C b β 1 Dm d Parameters: b 3.785 β 90 1 Mc b 3.785 β 110.29	G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.5 c 5.458 γ 90	Aspec A Z 4 *75(.012,35) S.G. 141/ A Z 4 Volume 6	t C 2.5134 amd(141) C 2.5136 3.16	0.8464 0.8308 0.8266 0.8102 0.7974 0.7928	49.342 50.5392 50.8010 51.9185 52.8157 53.1461	22 4 2 4 2 2	3 · · · · · · · · · · · · · · · · · · ·	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculated Cell Parameters: a 3.785 α 90 Volume 136.31 Reduced Cell: a 3.785 α 110.29 CAS Number Pearson	r eters: d S.C b β Dm d Parameters: ¹ b 3.785 β 90 1 Mc b 3.785 β 10.29 tíl2.00	G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.5 c 5.458 γ 90	Aspec A Z 4 *75(.012,35) S.G. 141/ A Z 4 Volume 6	t C 2.5134 amd(141) C 2.5136 8.16	0.8464 0.8308 0.8206 0.8102 0.7974 0.7928	49.3442 50.5392 50.8010 51.9185 52.8157 53.1461	22 4 2 4 2 2	3 · · · · · · · · · · · · · · · · · · ·	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculated Cell Parameters: a 3.785 α 90 Volume 136.31 Reduced Cell: a 3.785 α 110.29 CAS Number Pearson Mineral Classifici	r eters: β β β β β β β β	 G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.5 c 5.458 γ 90 	Aspec A Z 4 *75(.012,35) S.G. 141/ A Z 4 Volume 6	t C 2.5134 amd(141) C 2.5136 8.16	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.3442 50.5392 50.8010 51.9185 52.8157 53.1461	22 4 2 4 2 4 2	3 · · · · · · · · · · · · · · · · · · ·	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 Refactor: ICDD Calculated Cell Parameters: a 3.785 α 90 Volume 136.31 Reduced Cell: a 3.785 α 110.29 CAS Number Pearson Mineral Classificat	r eters: β β β β β β β β	G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: c 9.514 γ 90 plecular Weight 79.5 c 5.458 γ 90	Aspec A Z 4 -75(.012,35) S.G. 141/ A Z 4 Volume 62	t C 2.5134 amd(141) C 2.5136 3.16	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.3442 50.5392 50.8010 51.9185 52.8157 53.1461	22 4 2 4 2 4 2 2	3 · · · · · · · · · · · · · · · · · · ·	2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculatec Cell Parameters: a 3.785 α 90 Volume 136.31 Reduced Cell: a 3.785 α 110.29 CAS Number Pearson Mineral Classifical Additional Pattern (orthochombic), a (orthochombic), a	r eters: l S.C b β β β β β β β β	 G. 141/amd(141) c 9.5139 γ SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.5 c 5.458 γ 90 1-1166. Validated by d by Holzer, J., McCa frant-in-Aid (1990), A hase Transition: Analite (tetragonal) by hea 	Aspec A Z 4 -75(.012,35) S.G. 141/ A Z 4 Volume 6 Volume 6 calculated patter trthy, G., North grees well with ase and anothe ting above 700	t C 2.5134 amd(141) C 2.5136 3.16 rn. Color: Colorless. Dakota State Univ, experimental and r polymorph, brookite C. Sample Source or	0.8464 0.8308 0.8268 0.8102 0.7974 0.7928	49.3442 50.5392 50.8010 51.9185 52.8157 53.1461	22 4 2 4 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 7 1 5 0 9 2 4 0 12	
Camera Diameter Author's Param Sys. Tetragona a 3.7852 α Volume 136.31 Ref. Ibid. Dx 3.893 R-factor: ICDD Calculates Ccll Parameters; a 3.785 α 90 Volume 136.31 Reduced Cell; a 3.785 α 110.29 CAS Number Pearson Mineral Classificat Zeolite Classificat Additional Patterr General Commen Fargo, North Dak calculated patterr Gentral Commen Corthorhombic), a Locality: Sample	r eters: l S.C b β β l Dm d Parameters: b 3.785 β 90 l Mc b 3.785 β 10.29 til2.00 ation ns: See PDF 01-07 is: Pattern reviewed is: POJYmorphism/P	 G. 141/amd(141) c 9.5139 γ mp SS/FOM: F30° Error: c 9.514 γ 90 olecular Weight 79.5 c 5.458 γ 90 	Aspece A Z 4 -75(.012,35) S.G. 141/ A Z 4 Volume 6 Calculated patter trthy, G, North ase and anothe ting above 700 Amboy, New J	t C 2.5134 amd(141) C 2.5136 3.16 trn. Color: Colorless. Dakota State Univ, experimental and rpolymorph, brookite C. Sample Source or ersey, USA. Temperatu	0.8464 0.8308 0.8206 0.8102 0.7974 0.7928	49.342 50.5392 50.8010 51.9185 52.8157 53.1461	22 4 2 4 2 4 2 2	3 4 3 4 4 0	2 7 1 5 0 9 2 4 0 12	

APPENDIX C

Target	Ar/O ₂	Presure (Pa)	Films thickness (µm) (Average)	STDEV
	10/0	3	1.08	<u>+</u> 0.08
TiO	10/0	1	1.12	<u>+</u> 0.03
1102	0/0	3	0.94	<u>+</u> 0.04
	0/2	1	1.06	<u>+</u> 0.05
	10/0	3	1.04	<u>+</u> 0.09
TiO ₂ -0.5mol%	10/0	1	1.21	<u>+</u> 0.01
Yb ₂ O ₃	0/0	3	1.05	<u>+</u> 0.05
	0/2	1	1.26	<u>+</u> 0.05
	10/0	3	1.01	<u>+</u> 0.03
	10/0	1	1.24	<u>+</u> 0.05
110_2 $11101/6$ 10_20_3	8/2	3	1.07	<u>+</u> 0.04
		1	1.13	<u>+</u> 0.02
	10/0	3	1.03	<u>+</u> 0.10
TiO ₂ -0.5mol%	10/0	1	1.23	<u>+</u> 0.04
Er_2O_3	8/2	3	1.05	<u>+</u> 0.09
		1	1.10	<u>+</u> 0.03
	10/0	3	1.02	<u>+</u> 0.05
	10/0	1	1.25	<u>+</u> 0.04
$110_2 - 1110170 El_2 O_3$	0/0	3	1.07	<u>+</u> 0.07
	0/2	1	1.13	<u>+</u> 0.02

Table C:1 The films thickness of $\rm TiO_2$ and $\rm Yb_2O_3/\rm Er_2O_3\text{-}doped~\rm TiO_2$

Figure:D-1 Histogram of surface roughness of TiO_2 thin films (a) 8/2 (b) 10/0

Figure:D-2 Histogram of surface roughness of Yb₂O₃-doped TiO₂ thin films

Figure:D-3 Histogram of surface roughness of Er_2O_3 -doped TiO₂ thin films

VITA

Mr. Suthin Yuenyaw was born on March 19, 1985 in Khonkaen, Thailand. He has obtained the Bachelor Degree of Science in Physics from Khon Kaen University in 2007. He continued a further study in Master's degree in the field of Ceramic Technology at Chulalongkorn University and graduated in 2010.

Conference Presentations

<u>S. Yuenyaw</u>, K. Saito, E.H. Sekiya and P. Sudjaridworakun, "Effect of sputtering gas on properties of Yb_2O_3 -doped TiO_2 films prepared by RF magnetron sputtering" Pure and Applied Chemistry International Conference (PACCON 2011), Miracle Grand Hotel, Bangkok, Thailand, January 5 – 7, 2011. (Oral)

<u>S. Yuenyaw</u>, K. Saito, E.H. Sekiya and P. Sudjaridworakun, "Preparation and characterizations of Yb-doped TiO₂ photocatalyst films prepared by RF magnetron sputtering process", The 3rd International Congress on Ceramics Congress (ICC3), Osaka, Japan, November 14-18, 2010. (Oral)

<u>S. Yuenyaw</u>, K. Saito, E.H. Sekiya and P. Sudjaridworakun, "Influence of deposition parameter on the photocatalytic activity of TiO₂ films prepared by RF magnetron sputtering", The 2nd Thailand-Japan International Academic Conference (TJIA 2009), Kyoto, Japan, November 20, 2009. (Poster)

Publications

<u>S. Yuenyaw</u>, K. Saito, E.H. Sekiya and P. Sudjaridworakun, "Effect of sputtering gas on properties of Yb_2O_3 -doped TiO_2 films prepared by RF magnetron sputtering" Pure and Applied Chemistry International Conference (PACCON 2011), Miracle Grand Hotel, Bangkok, Thailand, January 5 – 7, 2011.(Proceeding)

<u>S. Yuenyaw</u>, K. Saito, E.H. Sekiya and P. Sudjaridworakun, "Influence of deposition parameter on the photocatalytic activity of TiO₂ films prepared by RF magnetron sputtering", The 2nd Thailand-Japan International Academic Conference (TJIA 2009), Kyoto, Japan, November 20, 2009. pp 103-104.(Proceeding)