CHAPTER 1

INTROLUCTION

In this thesis, we denoteﬂV:{L,2,3,...},O== the set of
all raticnual numbers, R = the set of all real numbers.

In this chapter I, we review all the known results
which are needed in this thesis,. The only new result is
Proposition 1.3 .

From now on whenever a result has been taken from a book
we shall write the bibliography number of the book before

writing the proof. Lf a proof was not taken from a reference,

then no bibliography number will be written before the proof ..

. The Algebra of Quaternions

Let 1,i,j,k denote the elements of the standard bLasis

4 ; ’ : 3
for R7. Let H:{al+1a2+)a3+ka4/ al,d2,83.,a4ék} « For any
x = a,+iay+jazvka,, y =‘bl+Lb2+]b3*kb4 in {4, we define

X+y = (alfblpi(a,,a,bz),+j(‘a3+bx3)+k(a4m4)'

Xey = (albL-agbz-asbs-a4b4)+i(alb2fa2bl+a3b4-a4p3)

+J(alb3¢a3b1+a4p2—a2b4}+k(alb4fa4pL+a2b39a3b2).

Thok BT 7 ek Puat, dekidnil, Jkeiaiiy anl Eladeoiv.

Let x = al+ia2+ja3+kaqe‘ﬁi. The conjugate of x, X,

— 'A"
is defined to be the quaternion al—(ia2+ja3+ka4). [x]=(x.%)"*
4.
=(n_ aﬁ)& is called the absolute value of the quaternion x.

—— - o -
Hence S+t = S+t, As = ds, ® = s and 5.t = T.8 for all '

s,té6 H., A€ER., see [6].



1.1 Proposition |H is a division riag.

Proof See &ﬂ.

1.2 Proposition |a.b|=[al{b] for all a,befH .

Proof see (o] . 4

1.3 Proposition If 4,999 +++,Q, are quatieraion aumbers,

then there i3 ua subset S of {L.Q.s....,n} such that

(legq >__L_. 7—"lq,|
4(2 )lcl

Proof For each fé'{1.2....,n}, let q'-a'+ibf4jcf+kd',

Lk &

where ay dyéed R . Let w=(Qﬂ+{qﬂ+lqsp...+|qn‘and let

1!
Al-{xl+ixq+)x

A ={x +1X, +)x

3\ 1
3+kx4/x 30,1_1,2,3,41,

+kx /X £0,x%0,1=2,3, 4},

ll
+kx4/x <0,x~ 70 1 =1, 41'

3

: A3=1x1+1x2+)x3

A4={x +ix2+jx$’+kx4/x3§0,xllo lﬂl 2 4}

+kxq/x450,xizo,l=1,2,3},

L
A5={xl+1x2+]x

Aﬁa{x1+ix

3

g*IXgakx /X €0,x,60,%30,x, 30},

A7={xl+1x2+)x3+kx4/x so,x 30,x £0, X, }

{x +iX,+ X kX /x <0 x zo X220, % 40}

2 g
Ags{xl+ix2+jx3+kx4/x 0. %, <J %339, X so},

LO {x +Lx2+jx3+kx4/xlz 250 xs\o X soj,

A11={xl+xx2+3x3+kx4/x ;O,xgzo,x <0,x 50},

A {x +ix , 3% +kx /% £0,%,¢0,x:40,x, O}

3
= i i £ < q ¢
A13 {xl+1x2+]x3+kx4/xl‘O,xg‘d,xszo,x4so},

¢ = { i j X < A <0, < 4
\14 {xl+1x2+3x3+kx4/xl o,x270,x5<0 X4 O}

A15={xl+ix2+jx5+kx4/x Q, X260 X4 0}



and
Ale {x +ixg+ixgekx, /x,€0,x,¢0, x50, x <0}

The quaternion numbers ave distributed into 16 sets. Then
there exists te{1,2,...,16} such that At has the property
that the sum of (qy for which g/€ A_ is at least w .

t b is
We can distribute At into 4 sets, that is,
Atl={x1+1x2+3x3+kx4/lxﬂﬂxd,lx\nx3LIxﬂﬂxAQ,
At2 {x +1x2+]x3+kx4/1x2ﬂxﬂ,deNXj.lxdﬂx4ﬁ
A s -{x1+1x2+)x3+kx4/lxjﬂxﬂ,|xjuxd,|xjnx4u,
and :
.{x +1x2+)x3+kx4/lx$nx|,|x4ﬂxj,1x4ﬂxj}
Then at least one of these sets, w.l.0.g8.,say Atlhas the

property that the sum ofqu for which qy € Atl is at least

ot A SURTDS fas| ..
W__ . For q1-a1+1b1+3cl+kdreA 1» We have[aﬂ;usl_gxnce

©4(16)

[ql'( =\/2’+b “+C '+d \/48 ‘ =2\/—_' -2‘5{ Let Su{f&'{l,?, coe nn}/

q,gAtl}. It follows that

‘1esql |1e311es|ai( %’_e:s.‘ql ﬁ‘;e)" Mo =L 2:"11'.‘
: 4(2 ) 4‘2 )

Remark: In general, T E yl,yz....,ynelRp,peAl then there is

s swbser S of {13,400} W Ty o A gy )
(m/ﬁ)"pll

where |[Ixll = u(xl,x2,...,xp)” = 2:Ix2)§ VxeRP .

Linear algebra over i

1.4 Definition A left vector space V over H is a set of

elements in which the operation of addition and scalar
multiplication on the left defined., If x and y are in V
and £, peMH. Then

1. V is an abelian group under addition,



2, A (xX+y) = AX+Xy
JooxX (px) = (xpp)x
4. 1.x = X

5. (X+pfh)x=dx+px

A right vector space V over f+4 is defined dually.

A vectoxﬂspuce V over #H is a lelt vector and right vector

space over HH such that L(xp)=(tx)p for all xeV and for

all 0‘.{56 Ho

n ‘. ¢
Exumple: Let jo ={(x1,x2.....xn)/xielH,,J.-.-l.z.....n} and
define (xl,...,Xn)+(yl,...,yn)=(xl+yl....,xn+yn),

ol(xl,...,xn)n(o?x ,...,a(xn) and.(xl,...,xn)ol=(xld....,xnot),

1

8
<€t . Then 4 is a vector spuce over .

1.5 Definition Let V be a left vector space over ¥+ and
A€ V. Then A is said to be left linear suvspace of V if and

only if o(x+py€ A for all x,y€ A and for all &, p€H.

A right lineur subspuce is Jefincd dually., 1f V

is a vector space over 4 . Then A is suid to be linear
subspuce of V if and only if A is a left and right linear

subspace,

Example: Hn is a vector space over #{. lChen A-{('x.O,....O)

e+ /x e H} is linear subspace of HH".

L.6 Jefinition Let V,W bLe left vectorspaces over f{ and

f:V— W a map. Then f is said to be u left linear map if

and only if f(«x+py)=al(x)+pf(y) for ull x,y€V and for

dllO’,PeHo



If V,"W are right vector spaces over 44, Then right

linear is defined dually.

I1f V,W are vector spaces over tHH , f:v—>W is a
map, then f is said to be a lincur map if and only if £ is

both left and right lineur.

Example: Define f:bﬁ%eMﬁQ by
f(xvy)a(x*ytx"’Y) »

Then f is a linear mape.

Arithematic in [~ 0]

We estublish the folllowing laws of operation for ae R
. )
oo and-oo &
otg@=00, oO+0 =00, °°°(""°)" o0
_wta_—.—&’ —m(—&):—w : lo0) = |—0°l=0°,
D ad=B.00 = PO, =cd,u=ds(=w0)==00, il >0,
Ned=A.00 ="‘&, -'00._H=d.('—00)= o0 - lf 'd(o,

,Q,ws(—oo).(-&)a 0, oo.(—@)=(-03)o°°="°°.

O.(tew0)=(+0).0=0 , _a =0 .
+00

llere a designates un arbitrary finite real number.

[he expressions ' :

R= o0 , -R—(—e0) , Q4 (=) , =0+,

nlw
813

&
(0)
are not defined at all,

Set Theory

Let X be any nonempty set,

1.7 Definition A ring ( or Boolean ring ) of sets is a

nonempty set R of subsets of X such that if

Ee R und FE R ,



6

then

BUF€ R and . E~p€R:.7

Remarks: 1.7.1 The eupty set belon,s to every ring R . Far

if BeR, then §f = E~xECR .
1.7.2 The ditference E~F is called proper if
E\F=(EUF)\F,

it follows that a non eupty set of subsets of X closed under

the formation of unions und proper Jilferences is a ring.

L.7.3 The symmetric difference of two sets E and

F is denoted Ly EAF, since
EAF = (E~F)VU(FsE)
and
ENF = (EUF)~ (EAF),

it follows.that a rin; is closed under the formation of

"symmetric differences and intersections, llence if R is a
rang. and
B, & AV UDER N

then

n n
SE R e ek
LU

=21 %

1.7.4 1f a non empty set of subsets of X is closed
under the formation of intersections, proper dJdifferences
and disjoint unions, then it is a ring , since

EUF =[EN (ENF)JU[F ~(COF)]U (2NF).



1.7.5 1f a non eupty set of subsets of X 1s closed
under the formation of intersections uand symmetric differences,
,hen it is a ring, since

EVF (A F) A(ENF)

1

and

1

EsP &« BA(BNF).

1.7.6 1f a non eupty set of subsets of X is closed
under the formation of unions and symmetric differences,
then it is a ring, since

E~F = FA(EUF).

1.8 Theorem 1f (Ei)ie!N is a segueuce in a ring 5{ , then

there exists a disjoint sepguence (Fi)iém in gl such that

o0 o0
ME = MP 4nd FCE , ieN.

Proof Let F1=E » Fi=E, ~ (F.LU FQU. °"Upi-1) for all

1
i»2. Then Fi’e R ang F,C E, for all i&€N and F;N F=p if

= = 3
o0 o0 ;
i#j. Claim that 19151'.: iL—-)lFi‘ [o prove this, clearly

o0 0
- ‘ X Bl i 21 3 %
1L=)1Fi~ U B, . Nexr, let xe E; for some ieN . Assume that

jJ is smallest such that x€&E rhen x¢ F, for all k<j

j.
( ].f_xeFk for some k¢j, then xé& Ek (§ane Fkg_ Ek)' a
contradigsiion ). Hence erj\ (F1U°"UF)’-1)=F)'° So we have
the claim, #

. . n
Example of a ring Consider R .

. 4 8 gt 5

A rectangle in R is a set of the form le...xln
where ‘lj is an open or closed or hall open interval in R .
( the intervals may be infinite ). A paving of Rn is a

finite collection of pairwise disjoint rectan_les whose union



is Rn. Let D be a vounded subset of Rn and let

P i 3 n >
P= {Ai}1=1,...,nbe a paving of R . Let

= c
I,(D) {a,€ »/ A, e}
( ity possible that IP(D)-¢ )s Let
P b 3
0, ()= {Aie P/ 8,0 D,é¢}.
Fhe volume of a rectangle is tne product the length of tue
component intervals ( the volume may be i1nfinite ). Let
_M(D)
denote the volume of the rectangle 4 ; Now for euch bounded
subset ) of Rn we define
e ¥
M =suo{ZDh AN/ A € 1,(m],
and define
/4*(.))=;;f {308,y A e 0},
1f//4_(D)1/q+(U), then D is said to have Jordan content'and
/ﬁ{_(o)j/i*(u) is called the Jordan content of J. lhe set

of all sets having Jordan conteut is a ring of sets. See (:10] .

1.9 Jefinition An algebra ( or Booleun algebra ) of sets

is a non empty set R of subsets of X such that
(a) if B€R and ¥6 R, then EUFER, and
(b) if 2€R, then Ee R .
Since
E~F=ENF®=(ESYF)E,
it foliows that every algebra is a ring. Hence an algebra

may bLe characterized as u ring containing X,

1.10 rheorem IFf (f is any set of subsets of X, then there

eXlistls a unique ring Ro such that ?\02 : 4 and such that



if R is any other ring confaini‘ng ? , then :Rong .

& -
\

Proof Standard. #

1.11 Definition The ring Ro in Theorem 1.10,the smallest

ring containaing ‘f , i8 called the ring generated oy (? s

it will be -denoted by R (%).

1.12 Theorem 1f ?‘ is any set of subsets of X, then every

set in R(?) may be covered by a finite union of sets in (Z’.
Proof Clear. #

" 1.13 Theorem If ? is a countable set of subsets of X, then

3{((2) is countable.

»*
Proof[nFor any set € of subsets of X, we write &

for the set of all finite unions of Jdifferences of sets of
@ o1t .18 cleur that if (f is'COuntaule, then so is (f',
and if
get,
then ‘
gce”.
. To- prove the theorem We assume, as we'iiay withbut any loss
of generality, that
ge ¥,
and we write
% = 4 ‘tn.‘?:_l, el 38
Then ?g__‘?:- (fl and (‘fngﬁk("?) and %n is countable for
all ne N, so :

¢c 0% cri%
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and the set
: 20

A;&C%ﬂ

is countable. We snall complete the proof by showing that

W) is a ring. Since
nal (tn &

“-%c%c< ‘?QQ...,

it follows tnat if A and B are any two sSets an Aglqkn,,then
there exists an n€ N such that bLoth A and 13 beloang to %n'
We have
~B €
AND (?rul’
and, since
€ C
0% ¢ v
it follows also that
AUB=(A~P)U(B~PVEF -
Je have proved therefore that both 4 ~B and AUD belong to

0 o
A:&‘?n’ il ; éﬁlcfn 1s a ring. #

L.14 Vefinition A §f-ring is a non ¢cmpty set (5 of subsets
of X such ‘that

(a) if EG(QO and Fe‘f, then E\Fetf, and

00

{h) it Eie‘f , 1€MN | then ik___)lliiég.
Equivalently a f-ring is a ring closéd under the formation
of countable unaons, 1If ‘f is a f-ring and if

g, ieN ¥ ‘

Bie o A , and E=iL;’lEi,'
then

;g =

. E.zexit;)l(sxsi)

i=1 1

shows that
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Since the trutih and proof of Theorem 1.10 remain
unaltered if we replace "ring" by "6-ring" throughout, we
may define the 6-ring '-g(%) gencrated by any set (2 of

subsets of X as the smallest 6-ring containing %.

1.15 Theorem If Lf 1s any set of subsets of X and Eo is any
set in “f ,.&f(%), then there exists a countuable subset D of

% such that Eoé Y(D).

Proofmilet & ={R/ D is a countable subset of 1

SKoik Mt Y \5 (D) is u €-ring containing € und contained
in Y . Since .Dg‘t Y (D)cY(%) for all PEY, so

L ‘f(JD)C‘f For €, {Eje #, so {E}eY({Eh ¢ Mog@),
hence @c U gr (D). Next, we shall show that U ‘;f (ao) is '
a §-ring. ro prove this, let E, AengTg(;b A\ then Beg(m)
and Fe‘j(i%) for some .’,Dl. 502 belong to ?. so P UN, e %
and B.Fe*f(éo Uo() ), hence E~ x:e‘j(aaux, ), that is,

ENF €& Ugf(ga) Let E, € i) 3(93) for all :.eN Then for

ReF
eaci .LeN ) I‘ € ({(60 ) for sone N . 67 Since Uéo € ?

06

and x.e‘{(U.i))for all ne N, UL‘ €9 (Y, Ry, that is

n=1"n

% iad contalned in Y = ‘f(“?). llence U ‘j (Dy=Y. #

U L &€ UT({(@). Therefore U ‘f(,‘b) is ao’—rxng containing

IPor any set % of subsets of X and every fixed subset
‘A of X, we shall denote Dby

% Na

the set of all sets of the form ENA with Eé[?.

L
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1.16 Theorem 1f (% is any set of subsets of X and A is any

subset of X, then

Y (%)na=4(%na).

proofrailet % = {BU(DN A)/BeY (%na), veY (%)},
Claim that € is s g-r¥ing. To prove this. let B e Y (%na)
and )€ Y(%) for all i€ N , rhen igl[niu(ui~ A)] =

o0 “ o0 A

(&, 8;) ULEJL‘D? A)} (U3 U n)~a)ed, since
xgl"ie Y (¢na) and (1Q1°i)€ 9(%). Note that for all
né‘j’(‘t"nA), BE A. [nluwl\ A)]\[BQU(D2\ A)]a[Bl- (BQU(D2\A))}
U[(D,~ &)~ (B,U (D,~ a1 - B~ (BQU(%\ A)) =
(B~ By) DB~ (Dy~ ) = (B~ By) N, (since B,CA) =
B~ B,eY(ENA), so B/~ (ByU(D,~ A)) € &,
(D,~ A)~ (BoU (Dy~ A)) = (D~ A) B, N (D~ 4) %=
[y~ )~ B] N0y~ A)S= (D~ A)YO{(D,~ A)C (since B,C A) =
(D,Na)N D,V a) = 2,00, Na%- (D,~ by)~ae ¥ (since

Dy Dgé(j( (i’)).. Therefore {l)lu (Dl\ A)]\ (BQU(DQ\ A)]Gg,
hence %’ is a4 6-ring. I1f Eé%. then the relation
P‘ E = (ENA)VU(E~A),
together with
ENa € Bna c¥(%nay,
shows that Ee(f, and therefore that
KoY.

It follows that

Y(¥rc¥,
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and therefore that
$(grnactna.
18 Be- Y T oAb e e 9% [BU(E)\A)]{‘)A -
(BNA)U((VNA)NA) = BNA = B. Now we huave
taa = 9i%na),
s0
YiErnac8ctna:
From the fact that Y (% )N A is a €-ring and
®nacy(%)na,
we get that
Y (%na)s Y (%)na.
Therefore '

Y(%rna =Y (%na

#

1.17 Definition A f-algebru is a non empty set mof subsets

of X such that
(a) 4if Eém, then Ecém, and
N Urem
(b) if Eiém s , Then iLngBie “
Equivalently a 6-algebru is an algebra closed under the

formation of countable unions.

Remark: If TN is a 6-algebra in X, then
(a) g,xeM, .
: 1 . & N 1 em'
(b) if \l,..,.Anem, then iglni

0
(c) if f\L,A,z,...ém, then ;Ql‘\iem(since

L o0

N c.C o S ;
fhbim At %), wo de aia,,iea e M, then
n

.LQ}.ALem T8 e

(d}; 1fA\13€Yn, then A\isern.



L4

1.18 Theorem If a? 1s any sc¢t of subsets of X, then there

exists a smallest g-algevra Yno in X such that %’Q Yno'

This mo is called the f-algebra generated 91‘?.

Proof Stardard.# v 5

1.19 Definition Let Y be a topological space(see definition
'1.24). By Theorem 1.18, ] a smallest §-algebra ® in ¥ I
every open set in Y belonys to @ « The members of @ are

called the Borel sets in Y.

Remarks:(a) Every open set is a Borel set.
(b) Every closed set is a Borel set.
(c) A countable union of closed sets is a Borel se;.
(d) A countable intersection of open sets is a Bérel

set,

1.20 Definition A non enpty setxﬂ@ of subsets of X is said

.to be monotone class if

(a) BE,€ M for all i€N and B,C B,€ B,C ..o ™
od
ppe s,

(b) Biem for ull i€MN and G 2E,2E;2... =
o
inBié./VL .

3ince the set of all subsets 6? X is a monotone class,
and the intersection of any collec€ion of monotone class
i3 a monotoane class, we may define tiie monotone clussu%(ﬁ?)
generated by aany set Q? of subsetg of X as the smallest

monotone class containing %? .
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1.21 Theorem A f-ring and §-algebra are monotone classes;

a Jionotone ring 1is a 6-rinyg.

Proof(2lThe first ussertion is obvious. To prove the
second ulga'sert.ion we must show that a monotone ring is closed

i ;
under the formation Af countavle unions. If M is a monotone

ring and if
EiGM e O e e

then, since M is a ring,

n
;(-_'-JlEieM’ n=dy 2974/ A
n
Since ('ULBi)ncN is an increasing sequence of sets whose

0
union is i.L-)LBi ;- thesf aoy/ that M is a mwonotone class implies

that

o
UE. eM /¥

i=1 1

Remark: Also, a monotone algebra is a §-algebra.

1.22 Theorem If R is a ring, tnea MA(R) = ‘j (R). Hence

if a4 monotone class contuins a raiag R soothen it contains‘{(?{).

ProofrSince a 6-ring is a monotone class aund since
\j(R)Q\?{ , it follows that
g (R)2 M(R).
[he proof will bLe complete bLYy sliowing t;hat./ﬂ(ﬂ) is a
tf—-ring; it will then follow, since M(R)2 R, that

M(R)2Y (R).

For ' any set F& X, let i
M (F) = {ESX/ E\F,FsE,EUFeM(fR)}.

\le observe that, becuause of the symmetric roles of E and F

0611206 - ;
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in the definition of “K(F), the relations
E e "K(F) and ¥ € “KI(E)
are equivalent., If (En)neN is an increasing sequence of sets
o0

in Y(F), then anEn\F = ngl(snxlp) € M(R), since

(B> F)neN is an increasing scquence of sets in M (R);
oQ

Py :

J ' 3 = n ‘ 2 o ) i S

ES (n\_Jlx:n) n=l(F\En)eM(?{), sidee (FxB Y .o g o a
o0

decreasing sequence of sets in ./%(3{); (nglﬁn)UF =

od
(e BT 2 ;i ; > e increasing
n=l(I:nUI) E M(R), since (BnUb)neN is an increasing
= !
sequence of sets in MRy, hence nL_JLEne"K(F). Also, if

(E is a decreasing sequence of sets in ‘“j((f-‘) then

n

)nem

o0

n___ltne Y (F). Therefore if %< (F) is not empty then it is

a monotone class.,

If LE€R and 7€ ’:R. then, by the definition of a ring,
~Ee7<(F). Since this-1s true for every E in ﬂ(, it follows
that RECY(F) for all Fg R and therefore

M (R ) e I(F)
fox; all FER. llence if TE€eM{R) and re®R, then E € "K(F),
and therefore FG"}((E).. Since this is true for every FGR,
it follows that RE < (E) for all EC M (R) and so

M (R) € R(E)
for all E€EM(R ). Claim that M (R) is a ring . To. prove
’Llus, let E, Fe M(R ). Then EG“}{’(F). hence E~F and EUP
belong toAM (R ). 30 we havé cluim. By Theorem 1.21, we

huve that M(R ) is a -ring. #
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1.23 vefinition A non eupty set ti’ of subsets of X .is

hereditary i1f whenever EG%and“FCE then Fé(?.

Since flne set of all subsets of X is a hereditary
set, and the intersection of any collection of hereditary
sets 18 a hereditary set, and a hereditary set is a ¢@-ring
if and only 1f 1t 1s closed under the tormation of countable

unions, we may Jefine the hereditary ¢’~ring “H (%) generated

by any set ‘f’" of subsets of X as the smallest hereditary
6€-ring containiny (g’ . The hereditury 6§-ring generated by CZ
is, in fact, the set of all scts whaich can be covered bLy

countably many sets in (f’ o

io
o0
i) ={n ex/ 1(919181,516‘?} %

Sy

fopologicul Prerequisites

1.24 Definition A\ topology 7 on a set X 18 a collection
of subsets of X such. that
(a) § and X velong to 7 3
(b, any union of elements of 7belon,;s to g.
(c) any finite intersection of elements of g'belongs

a
to

L # .
.

A topolopical spuce is u set X together with_ a

P
topolagy ¢ on X. A topolo,ical space is dJdenoted by (X,y)..

Fhe elements of g are cualled tiue open sets of X.

The extended real line [-,#] 15 a topologicul space
Ly defining (a,b), [(~«,a), (a.co_] (a.bé R) and any union of

segments of these types' to be open sets.
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1.25 vefinition Let (X,d) be a metric spuace, lhe open ball
with center p and radius r»0 is the set

B(p;r) ={xe X/ d(x,p)<r} .

1.26 Jefanaition Let (X,d) be a metraic space. The topology
9; on X induced by d is the topology on X generated by the
set of open bLulls,i.e.,the smallest topology contaaning the

open balls,

S 3 <+ . i
1,27 definition " Let x.y\2/& IR .  Then x = (xl.xg.xs,xq),

Y = (Y,0¥9:93.¥,)s 2 = (2,,25.25,2,), x;.¥,.2,€ R for

i=1,2,3,4. We define

A 00y) =yl =Y =y 2 (kg myy) 2e (gm0 P ey )2

dl(xoY) o m“‘x{lxl‘yli )lx2"y2l olxs-y$| le_‘-y_“} »
1.28 Theorem du and dl as defined in 1.27 are metrics on
4 4 -
R and ( m ’ 7d ) ‘( ‘R ’ Jd )0
u 1

Proof Standard. #

Remark 1.28 For each (xl,xg,xs.x4)6=|24, r>0, we have

Bdl((xh%xz,xs,x4);r) = (xl-r,x1+r)x(x2-r,x2+r)x(x3-r,x3+r)x

P

Ty :

|I ‘ (x4

1L.29 Theorem {“dl((xl'XQ'XJ'x-l);%), xl,xz.xs.x4eO ,néN}U¢

is a countable bLase tor the usual topology on Rq.
Proof ~ standard. #

2 : ek :
1.30 Theorem ELvery open set V in (R 1is a countable union -

of closed bulls contuained in V.
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Proof Standard. #

: p ' ; 4
1.31 Theorem A sequence (an.bn,c 'dn)ne'(N in [R converges

n
to (a,b,c,d) if und only if the corresponding sequences of

real anumbers (dn)‘nelN 2 (bn)nelN . (cn)neN '(dn)ne!N converyges

to a,b,c,d, respectavely.
Proof Standard. #

1.32 Theorem If fn is continuous on a topological space X
o3 ;
to RY for euch neN and if ;L;lfn converges uniformly to f

on X then f is continuous on X,
Proof seef1]. #
1.33 Theorem If a/;7 0 for i and j = $,0.8, 000 thek
G it o i

& ) od (o4 o0
: 5 T ) s A

; Jal I=1” Sy je1 %ij

Proof See[3]. #

1.34 Definition. . Jet (an)nefN be a scquence 1in [—ao,at],

For each KEN, let

bk= Sup{ak.ak+1,ak+2,oco}¢
g £ = i d ; o e 0 ® '
Chea b 3b,3b % .. - Letp Lnf(bl,bz, } We call B the

limit superior of (an)'nefxfmd write

/} = lim sup 'dn.

n-2x%
fhen p = lim bn.
o

Remark: If lim sup 4 - (# , then there exists a subscquence
n—7’e .

(an.)iéﬂ ol (an)nG/N such that J..Lm a = ,3 : 539[9],
X 12 1
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né N

by interchanging sup. and inf., i.e.,

L

is defined analogously

The limait inferior of (an)

Ck = Lnf(uk,ak*l,...]’ ( Kk = 1,2,3,.00 )o

Then Cj€CygCs<ees o Let

A = sup{cl,c2....} .

Then o = 1lim Ch* o is call the limit inferior of (an’nem
n-—>«
and write

. o = lam inf a .
n-»«

Remark: Similarly, there exists a subsequence ‘uni)i€hl
of (a ) such that lim a_ = o ,
n‘ne N im=w Ry
‘Note 1.34.1 1lim inf a_= =lim sup(-a_),
n-—e g n—o= n

lim sup a = =1lim inf(-an).
n-=e n->»

) ; Wt
1.34.2 1f (dn)néN converges, then

lim sup a = lim inf a = lim a .
n-=« n-=>» n n-»e

1.34.3 1f (an)neﬁl is a sequence of monnegutive

real numbers such that lim an# O, then lim sup 5670.
n-o« n-—e

1.35 Definition Let X be a topological space.,
(a) A set K€ X is compact if e¢very open cover of K
has a fainite subcover.,

In particular, if X is itself compact, then X is

culled a compact space.
.
zb) X is locally compact if every point of X has a

neighborhood whose closure is compact.
Obviously, every compact space is‘locally compact,

(c) A set ESX 1s called f-compuct if E is a countable
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union.of compact sets,

(d) X is a Hausdorff space if p&€ X, g€ X and p#q,
then p hus a neighborhood U and  has a neighborhood V such

ghat UNV = ¢.

1.36 Theorem Let X be a locally cowmpact Hausdorff space,
U open and K compuct such that K¢ U<€ X. Then there exists

an open set V of X such that V is compact and

Keveveu.
Proof seef9]. #

1.37 Definition The support of a quaternmion function f on

a topological space X is the closure of the set

{xex/ e(x) ¢ o}.

Let
CC(X) ={f:x—"H/ f is continuOus and support f is
compuct}. Observe that if f,geCC(X) and O(SH\{O}, then
support(f+g) € (support f)U(supi)ort £),
support (Af) = support f,
and f+g, f are con'txnuous. Hence ‘CC(X) is a left(right)

vector space over f{H .

1.38 Defirition A left(right) linear functional A on CC(X)

over 1 is positive if f20 implies that Af30.

1.39 Notation The notation
(1) KL £
will mean that K 18 a compact subset of X, fé‘Cc(X). O<fs<1

and f(x) =1 for all xe& K. The notation
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(2) £< V

will mean that V is an open subset of X, féCc(X), O<fsg1
and supp;)rt f€ V. The notation

» K< E<V

will mean that (1) and (2) hold.

1.40 Urysohn's Lemma Suppose X is a locally compact
llausdorff space, V is open in X, KE& V and K is compact. Then

there exists an fe¢ CC(X), such that

K f<V .
Proof See(9]. #

1.41 Theorem Suppose Vl,...,\'ln are open subscts of a locally
compuct Hausdorff spuce X, K is compact, and
c
K_.VlU ...UVn.
Then there exist functioans hi»{ Vi (i = 1,2,+4.,n) such that
hl(x)§oon+hn(x) = l

for all x€ X.
Proof See([9]. #

1.42 Jefinition Let X be a locally compact Hausdorff space.
A function f:X—s# is said to vanish at infinity if for every

£>0 there exists a compact set K& X such that [f(x)|<E& for
all xe Kc. Let

CO(X) ={t‘:.\'—-’IH/ f is continuous and vanishes at int’in.\.ty}.
fhen Cc(x)gCO(X) and CO(X) is a left(right) vector space
over #4. If X is compact, then CC(X) = C (X) =

{ f:X—fH/f is contihuous}.



1.43 Theorem If X 1is a locally compact Hausdorff space,
then CC(X) is dense in CO(X)-, relative to the metric defined
by the supremum norm

€= sup [E(x)] .
x&X

Proof[9lLet d:co(X)xco(X)——oR be defined by
d(f,g) =|f-gll= sup|f(x)=-g(x)| .
xe X ;
1f féCO(X). then there exists a compuct set K such that

If(x)]< 1 for all xeK_c, so |f(x)|5mux{1.m'ux‘f(x')|} for all
xeX ;

x € X, hence sup |f(x)]<«. For E.5€C (X), 0sd(f,g)c»,
xe X :

~d(f,f) = 0, d(f,g) = d(g,f) and d(f.g) =0=>f = g.
If £,5,h € C (X), then

sup [E(x)=h(x)] ¢ sup (|E(x)=g(x)] + [6(x)-n(x)])
xe X xeX

& sup lé(x)—g(x)| + Sup |g(x)-h(x)| ‘
xéX xeX

llenée d is a metric on CO(X)'. Next, we have to show that
CC(X) is dense an \:O(X). To prove this, let fé& CO(X)

.and let £€> 0 be given., Then there is a compact set K such
that |f(x)|<'§ for all xe& K€, By Urysohn's Lemma, there is
geCC(X) such that Oggg1l an;l g=1 on K. Let h = fg. Then
heC_(X). Thus for all xe X (i’(x)—ll(lx')l = 1€ (x)] [L-g (x)] < [E (x)].
+1f x & K, then|l=-g(x)| = 0, so [f(x)-—h(x)l w Qe 1F xéKc, then

[e(x)=h(x)le|f(x)|<&. Thus [[f=h])]= sup \f(x)-—h(x)ls-‘-<£. #
‘ x&X s

1.44 Definition A real function ¢ defined on a segment (a,b),
where -w¢acbswo, 18 called convex if the inequality
(1) (1= A)x+ Ay) € (1= A) @ (x)+ Alp(y)

holds whenever a¢<x<b, a¢y<b, and 0$Asl. also, {1) dis



24

equivalent to the condition that

(2) @(e)- ¢(s)  P(u)- (%) -

t-s = u=t
whenever ag¢us<t<ugb.

[he imecan vulue theorem for differentiation, combined
with (2), shows i1mmediately tuat a real differentiable
function ¥ is convex in (a,b) if and only if acs<teb implies

’ ’ 4
W(s)cl(t),i.c., 1f and only if the deravative Y is a
mounotonically increasin, function. See[g].

For exanple, the exponential function is convex on

(""9“)‘

1.45 Theorem If & is convex on (a,b), then & is continuous

on (a,b).

Proof see (9], #
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