CHAPTER IL

MEASURE THEORY

This chapter reviews known results on measure theory.,
The only new knowledge conceras quaternion measures, In this

chapter X will *denote a non empty set,

2.1 Definition An extended real valued set functlon/ﬂ. defined

on a set ? of subsets of X is finitely additive if, for every

finite, disjoint set {E’l,...,B‘n} of sets in ? whose uniom is

also. in ? » We have
n n
MOMEN = ,2.51—/"“31) .
2.2 Definition An extended real valued set Eunction//\

defined on a set ? of subsets of X is countably additive if,

for every disjoint seqguence (Bn"’ne‘ﬂ of sets in ? whose uniomn

"is also in ?’ we have
oo

Wi Ul il j.=1/‘(EL) .

2,3 Definition A positive measure is an extended rcal valued,

non negative, and countably additive set function/u, defined
on a ring R , and such that'/ﬂ(gi), = 0. If/A(E) = 0 for all

E € ?, then./u is ‘called trivigl..

2.4 Definition If i3 a positiveg measure on a ring x
MrLlilelon -/’A g s

a . set B xn x is said to have* finite rieasure if/u(E)< e

the measure of E is d-finite if there exists a sequence
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(E N of sets in X such that

n)ne

C o ¢ 2 od “-"-. o 00 °
B-nglx:n umx/u.(x:n)< . Bl 2.

If the measure of every set E in R 1s finite ( or §=-fanite ),
the measure of//4 is called finite ( or §-finite ) on R .

1t Xe R {28 al Rla an algeLra und/u(X) ig finite or

fF-finite, then//& is called totally finite or totally
d-finite respectively. The positaive mcusure//u is called
comglete’if the conditions

EeR, FCE, and M(E) = O

imply that FeR.

2.5 Vefinition An extended real valued set t‘unction/«

defined on a sct 3? of subsets of X is monotone if,whcnever

Ee® pé¥ . and sk, then M(E) € p(F).

2.6 Definition An extended re¢al valued set function//A

defined on a Sct\ﬁ? of subsets of. X a1s subtruactive if,

whenever Eé%, Fé% , E€F, FNEE€E ? ;s rand J,«.(E‘)I<°°. then
/A&(F\ ) f/M(F);/k(E).

2.7 Theorem If//a is a positive irieasure on a ring ﬂK' then

//4 is monotone and subtractive.

proofraiir € R, FeR | any £ErE, then Frue R
and M (F) = M(Z)+ M(FSE). The (.ct thut//A 18 monotone
follows now [rom tahe {act that it is positive; the fact that
it is subtruactive follows rtrom the fuact thut//A(B), if it

is Pinite, may be subtracted from bLoth sides of the last

written equation. #
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2.8 Theprem lf/c\ is a positive ;:easure on a ring :R M o
ge R s cand. 3f ‘El)iéN is a sequence of scts in R such that

o0
ES,’LL-—'.JlEi' then 5
2 2 :
: /"(L)$1=1/“‘(Ei)-

Proof 2]y Theorem 1.8, there exists a disjoint sequence
o4 s
§ " T | 2 riR ; d i &
(F ki R such that ME =V F, and F,C E  for all ieWN
lledce E '= i(:Jl(BﬂFi) which is a disjoint union of sets in 32.
cQ

© P
llence M (E) = g/«(smri)sgl/\wi)s S ME ). #

ilien

2.81Theoren 1[’/4. is @& positive ..casure on a rang ﬂ, Be& g{,

and (B is a disjoint sequence of scets in Q such that
1 i’jeN
I E.€ E, then
i1=1 1 0
< 3
T ME) EM(E).
n
Proof[2lFor each n, iLzleEié R, it follows that
n
n
i y 1 : .
I ME) = MGYE ) € M(E).
HHence
o0 ;

2 ME ) € MA(E). #

2.9 Theorem lf/uis a4 positive mcasure on a ring R , and if

/) e is an i1ncreasing sequence of sets in R for which
n’'neN 4
2 7

U A € 9{‘, then

n=El n "
1lim (A,) .—./A(nglAn).

n-—

> D i 3 R »
Proof[2jPut Bl ¥ Al and X.n = An\An—l for n22. Then

n
5L € R for all n€N gnd l}iﬂ sz @ if i # j, and oy iL:JlBi
o0

o4 n
for ull neN snd U A =\UB.. uence/w.(Au) = & /M(Bi).'
&« e

okl ke O B fags )
A = ALY -

n
fhus 1lim (An) = 1lim %/A(Bi)

p &
n-—» n— .o

M. #



28

2,10 Theorem H’/A 15 o pogsitive oecasure on a ring R , «nd
3t (An)neN is a decreuasinyg scguence of scts in R for which
Dac®

A and A ) <00 then
n:l ne y /A(‘l) ]

[
i) = Gl

s _ - : . C e
Proof([2lLet Cn Al\ An for all neMN ., Then (‘l"' C2_ ou’s

and C € R for all i€MN , also for all neN, m(C) =
/‘“(Al)-/“(An). Henci
/“(Al)--/u(ngl'\n) ’/A(AL‘ nml
- LD, (A A)
o0
‘/‘A (nglcn)

EAgm (c,)

n-—-»
= lim(/u(Al)-/A(An))
n-—-»o00
= (A )=-1in (A ).
e — RS ILS
Since/M(Al)<00. we have

le/«A(A) /“n=1n #

n—no

-~ . . . - . .
2.11 Jefinition An extended real valued set function /M

on a set Lz, of subscts of X is finitely subadditive if, for

every finite sct {El....,En} of sets in % whose union is |

also 1in % , wWe have
/‘4(111‘1=1/M(E)

N : »
2.12 Definition An extended rcal valued set functxon/‘*

on set ¥ of subsets of X is countably subadditive if, for

every sequence (Ej_)iefN of sets 1in % whose union is also

in (f' , We have

o0
o
* S *
A0 BTe o (B
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2.13 wefinition An outer meusure is an extended real valued,

non negative, monotone and countubly subadditive set function
» . : - L
/A , defined on a hereditary §-ring , and such that

/«A'm) " G

Observe that un outer meuasure is necessarily finitely

subadditive,

2.14 Thcorem lf/w is a positive measure on a ring R and
if, for every E in ‘H(R),
o0

oy °0
2 P - [ o 3

M(E) = mf{gl/a(sn)/ Enég{ ol i b E_nglzn},

then /%*is an extension of/u to an outer measure on 7‘(7{);

. . . . *
if/“- is g§-finite, then so .1.3'/“ .

; L4
The outer :neasure/‘4 is called the outer measure

induced by the positive meusure/u.

Proof(2l1f pe R , then ESBUPUPU ... and therefore

M (E) S M(E) L M(P) £ M(P)4+.. .= m(E). On the other hand if

P
ce R 3 Er.ie R , for all n€MN , and EC n(glgn' then, by Theorem
s ‘

* . ¢ :
& S riliLE : £) . Thi
2.8,/<A(13)~ n=1/“(nn)' 8o Lhat/u(E) s/u (E). This proves
that /««* is an extension of/u y 1,@., that if E € g{, then

/(A*(E) ==/§(E); it follows in part‘LCul‘ur that /\A.(Q) =.0,

If E€H(R), veH(R), ESF, and (B 1 ipis o
sequence of sets in R which covers B, ‘then (En)mﬁlso covers

»* * *
E,~and therefore/« (E) 5/(4 P}, SO/A is monotone.,

* <
To prove that/u is countubly subadditive, suppose
; 0

that E and Ei are sets in A}f(ﬁ) such that EéiglEi.
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o prove this, let £>0 Le jiven, and ‘choose, for each

i=1,2,..., a sequence (Elj)jeﬁv of sets in R such that
o0 .
* &
.S . - 5 . E. —_—
E, )\=)l£ and Vu(l ) < M E )+ i
Then, since the setis Eij form a countable set of sets in 92

which cover E,
P

o0
% 5 3 .
MUE) S 2 T M(E )<2: (B,)+ €.

1=1

The arbitrariness of € implies that
o0
* *
o
(B} 1=1/“ (5,3
Suppose, finally, that//« 18 6-finite and let E be
any set in W(R). Then by tue definition of “H(R), there
; o0
S / : : g C 2 BN
exists a sequence ‘Ei)LGAIOf sets in jl such that B__Lghtl
Since/,« is 0-finite, there exists, for each i = 1,2,,.., a
sequence (Bij)jeﬁJ of sets in R such that
L2l
C < 35> « .
Ei“jgiﬁij dnd//A(nlJ)gcﬂ

Consecquently
Lo 0

ES Y U 1B dnd/«« (B 5) = M(E )<, #

. . . * .
2,15 9Jdefinition Let//A be an outer measurec on a hereditary

& -~ . * R S
K—r;ng‘ﬂ(. A sqQtubl g j{ 18//A =.easurable i, for every

st AcCin 7§,

/u"(A) =/«*(Af\ E)yu”(,xmsc

*
2.16 Thecorem Lf//M is an outer measure on a hereditary
€ -rinyg 7€ and if H is the set of all./ﬂ*-medsurable sets,

then ‘5 Paiile

o

Proof 2]l L and ' are in \'f and .\GW, then
* * * Cc
(1) //4 () ?/u (Af‘)E)+/u (AMNET),

(2) /««'(AHE) =/m*(.,xnEnf-‘)vu"(;,nsf\pc),
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* C * C * B oS o
(3) M (ANET) = M (ANENF)+ M (ANENFT).
Substituting (2) und (3) into (L) Wweé obtain for all & 46
* »* % * . G * Cc
(4) M (A) =/«(An£nr~)+/u(Anbf\l- )+/« (ANENF) +
#*
M (ANENES).
If 1n eqguation (4) we repluace N by AN(EUF), the first three
terms of the right haund side remain unultered and the lust
term drops out; we get that
# T * . u PR * ;
(5)/A(Anuuﬂq)=/u@nnnkhyM(Anhnr h/ﬂ(AnBﬁbL
since INF® = (EUF)®, substituting (5) into (4) yields
. % »
(6) M (4) = M(AN(EUF))+ M (AN(EUF)C),
which proves that EUF&‘S .
If, similarly, we replace A in cquuation (4) by
AN(E~F)%= AN(EUF), we get thut
* »* 3 * ¢ »*
(7) M (AN(E~ )€ = m (ANENF)+ m (Anxscnxr)+/4 (ANENES).
since ENF®= E~ F, Subsivavweans (7) into (4) yields
" " A : #* ) L0
(8) () = M (R oteteAfl ~ F)©),
“which proves that Es FE (‘f. 3Incelilt is clear that E = @

satisfies (1), ifMollYows kel b 181 ring. #
. ~ * - > .
Obsvrve. thag 1 4 1s an outer measure on a hereditary
(-—rlng *H und if s set T in 76 is such that, for every A in 7{,

* * * C
M (A) Zm (ANE)+ s (ANET),

k »*
then L& J.S/A -mecasurable,

*
2.17 Theorem lf/u\ is an outer mcasure on a hereditary
R e b :
§=ring H and if \5 is the .set of all /"‘ -ieusurable sets,

then Y is a 6-ring. 1f ae ¥ and if (E ),y iS 8 disjoint
- o0
scqguence of sets in t{ with . \J En = E, then
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»* ”*
M(aNnE) = E‘_/«« (ANE ).

Proof(2likeplacing E and F in (5) of Theorem 2.16
by El and 132 respectavely, we sece that tor all A€
/« (A(\(BUEQ)) =/\ (\nr(\c )+/« (\nnms )+/A (Anx: nE )
—/u (ANE )+/u (Aﬂ[:‘)),

since }Elﬂ E,= §. It follows that by matiuematical induction

that

K

* n n »*
ManYED) = 2‘:=1/“ (ANE;)

for all n€N , If we write

P o= M E., 0= 1,2,..,,

then it follows from Theorem 2,16 that for all Aéw
» #* * ']
/u (A) =/: (AﬂFn)«r/« (.\npn)
* * c
) El/ (Annip/«, BA IR ) .

Sinceé this is true fFor evBe®in. we obtain for all A 6%

/A'(‘\) zgl/fmm:i“/«'(annc)

2/4'(‘\/513)‘74»\*“05“)
)l/‘*(A) )

since A4 = (aNE)U(ANE®) and/« is finitely subadditive,
It follows that “e"‘f ( so that, by the way, q is closed
under the formation of disjoint countable unions ), and also
that for all (€ ?%

(1) El/“*“m“i)*/**(“ﬂﬁc) =/u”(AnE)+/u'(Am-:°).
Replacing & by ANE in (1), we obtain the second ussertioﬁ

: * e S ; ;
of. the theorum. { Since S ach (A NET) may be infinite, it is

not permissible sinply to subtract it from both sides of
(L).) Since every couatable union of sets in a ring R may

be written as a disjoint countable union of sets in the ring,

“
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.

we see also that (ﬁ is a 6=ring. #

»* \
2.18 Corollary IE/A 1is an outer measure on a hereditary
iy Woaad ot 1§ : :
6§ -riny and 1t is the set of ull/A -measurable sets

and if (B ) N is a disjoint sequence of sets in o ,» then
n‘ne - jor ‘
* »*
/ (nk-f)lsn) i3 '121-::1//\ (En)°

Proof 1t follows from Theorem 2.17 by replacing
o0
b 3.8 4
A y P T #
g * . ;
2.19 rheorem 1[’/‘4 1s an outer measure on a hereditary
. - P - *

?f-xung '}C and if "3 is~the ' set—of ull/“ -measurable sets,
then every set of outer measure zero belongs to ‘3 and the

- o - *
set function/« , defined”  for E in "f by /«A(E) a/*'\ (E), -dis

a complete measure on kg .

Note that the ;;xeasure/u is called the measure induced

*
by the ‘outer measure/u 7

*
Proof[211f et and/‘« ¢E) =00, then, for every A in

%, we have
»* "o * * e * .C
M (A) =M (E)+ m(4) M (,\nh)*/“ (ANET),
s0 that indeed Eé(‘f « By Corollary 2.18/:« is countably
addative on“g, nence/a is a positaive measure on k{ o 1E
g - S
EeY ek, and M (E) = M (E) = 0,
% P s
Lhun/A {F) =0, 80 that re , which proves thut/«is

complete, #

Next, from Theorem 2.20 to Theorem 2,25, we ussume

B )
Lhat/u 18 a positive iieasure on a rj.ng;ﬂ, /\A.Ls the
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induced outer mcasure on'\%(ﬂ), und/M 13 the posaitive measure

* 7D %
induced by/V\ on the @g-ring ‘{ o f: all/(/\-nzlcusuruble sets,
4 & i " 1 4 . *
2.20 Theorem [very set 1a kj (R) J.S/’\ ~meusurable,

Proofr2lif E€ER , aeH(R), and €20, then, by the
3w e % * E o " ” il ‘ -
definition of/u 8 t‘l’\oere exists a scvquence ‘En)ne/NOE sets
fhs a : c B s
in R such that A ’nylnn and
» : }i i
/A (A)+&;n-;-l/“(bn).

By the addition uf/w on R we have

M(E)) = M(EN s)y«(enmsc

. 80

/u'(a):,w LU ME, (\[:)+/4(x: 18%))

‘n=1/““:nn E)+ l/M(l: NE°)
;/«A"(Ans)yf(,ms Y
since
o0

ANE € Y (E N E)

and

s
c ¢
aihe g 2 3 !
ANE"S J (E NET)
31nce this is true for everyg , it follows that E is

* - .
/"\ ~measuranle. 1ln other words, we have proved that 5{9({ H

e

it follows from the fact \20 is a g-rin; that ‘f (R) \j

2,21 Theorem 1If Ee “;}6(9{), then

/A'(L’) int‘{/J(F)/ ES F€ ‘f}
inf{ JA(F)/ E€ e g (R)}.

it

Eyuivalent to the statcment of Iheorem 2.21 is the assertion

that the outer measure induced by/:(- on 'f(ﬁ) and the outer
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- = ; »
measure induced by/A on Y bLoth coincide w.LLh/A .

Proofl2l3ince, for F in R . M(F) = M(F) ( by the
definition of/z and Theorem 2,14 ), 1t folows that
"(E) s C R '
R > C ;€ g
/4/\ (E) *“fin=1/“(5n)/ E-nglﬁn, E € , N 1,2,...}
R O @ (R
i g < > = e e ol e
2 lnf{n::L/“(En)/ E"nulnn' Bne (&) 0nl,2, }
since every S€equence (E )neN of sets in "f(?.) for which

n
o
e = F
E_n\___JLBn F
may be repluced by a disjoint seyuence with the sawme property,
without increasing the sum of the measures of the terms of
the sequence, and since, by the defanition of//: ,/jI(F) =
, " @
_M'(F) for F in Y . it follows that
» -
M (E) 3 inf { A(F)/ ESF € $(R)}
> inf{ A(F)/ ESFE g3

2 M(E) . #

B2 Defanition: ik f Eé"‘ﬂ(f}() and '€ “f(ﬁ), we shall say

that F is measurable cover of E 1f ESF and 1f, for every

set G in Y (R) for~which GEF~E, we have A(G) = O.

2.23 Theorem - WiNiguisielNgnin W(ﬁ) is of finite outer measure,
: : on) *. T
then there exists a set F in Y (R ) such thut/lA (E) = AA(F)

and such that F 1s a measurable cover of E.

Proof(2J1t follows from Theorem 2.21 that, for every

noa 1,2, ..,, ‘there exists a set F . ia y (R) such thuat

n
- *
Egl-n and/A(Fn)</"‘(E)+_1_ .
-0 n
1f we write F = ) F , ~then
n=1 n

E€Fe Y(R) a.nd/«,«*(s)s/:(x:)s/&(pn)</d'(é)+§ :

1 ATRTARD L
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3ince n is arbitrary, it follows that /«*(E) =/:(F).

If Ge Y(R) and GEF~E, then EC F~G and therefore
AE) = M(E) g (FNG) = MA(ENG) = A (F)= A(G)<

SAF); .y

the fact that | 1s a measurable cover follows from the

finiteness of/a(l“).. #

2,24 Theorem 1f EGW(ﬂ) and F is a measurable cover of
» - , % 3 \
E; tlxen/“ (E) s/&(F); if both Fl and l-2 are measurable covers

.of B, ,:nen/’I(FlA Fy) = O.

Proofl2l1Since the relation EC Flﬂ F,C F, implies that

1
Fl\ (Flﬂ F2)_C_ Fl\ E, it follows from the fact that Fl is a
measurable cover of E that
/M(F1\ (Flﬂ F2)) = 0.
3imilarly
/\«(FQ\ (Flﬂ FQ)) = O_.
Hence
/(Fl\ F2) =/‘4-(F2\ Fl) = 0,
S0
/(FLA FQ)' s/M((Fl‘ FQ)U(FQ\ FJ.”
’/‘A‘(Fl\ Fg)wl:é\ Fl)
= 0,
also :
/“'(Fl‘ F2)+/“(FlﬂF2) =/u\(F2~ Fl)y«»(FLO Fy),

that is
AAF ) = MA(E,).
1f/w'(1;) = o, then the relauon//*“(ﬁ) ./l'(F)
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*
is trivial; if/v\ (E)< 20, then 1t follows from lheorem 2,23
that there exists a measurable cover Fo of E with
A (F *(E
MI(F) = M (E).
By the preceding paragraph, we have that every two measurable

covers have the same measure, hence
- #
F) = m (E).

2.25 Theorem If/& on R is d-finite, then so are the

measures/a on \j(ﬂ) and/:\ on ‘:f .
Proo(fglAccording to Theorem 2.14, if/vu is 6-finite,
7 o
then so 18/4 . llence for every L in p there exists a

sequence (E ) of sets in _W(gl) such that

:.eN
lll /4( )(w,.i =l,2,-oo .
By Theorem 2,23, there exasts, lor ecach i = 1,2,,.,,a set F

in Y (R) bu(h cnd:/u (E;) =/u(l ) and E;G F,. Then
E"i=1 i’/“ (E;) =/A(Fl)<oq, Lim L. @leere B

: s .‘ % A 5
2.26 Theorem (Caratheodory) If/u is a 6-finite positave
measure on 4 rang; R , then there 1s a unique positive measure

/A on the §-=riny (3(92) such “Eleaty For E an ?/A(B) -/U\(B),

the :«xeuoure/&n 15 f=finite,

Che measure M is called the extension of/V‘
except when it is likely to lead to confusion, we shall

writc/«A(E) instead of'/:/.\(E) even for sets E in ‘j(ﬂ).

Proof[2)The existence of/A ( even withnout the
restrictaion of §-fainiteness ) is proved by Theorem 2.19

and Theorem 2,20, IE/A is ¢-finite on R , then, by
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fheorem 2,25 /:\ 1s 6-finite on 3’(52)-

[o prove uniqueness, supposc that /Kl and M, are
two positive mcasures on Y (9‘2) such that /AL(E) =/¢A2(h)
whenever EGSQ. Let A be any fixed set an R such that
/“1(}\)(00, 150/42(A)< 0 . -'Since p(R 1s a ring, ﬂﬂ‘\ is a ring.
By Theorem 1.16, we have ‘j(ﬂ)/’\A = ‘j’(;‘l/‘m).. Put

M ={ee $(Rynas M () = my(0)].
It (A )neN is an increasing seqguence of sets in ‘j’ (?)HA,.

n.
o0
then, by Theorem 2.9 l.uu/v\l(An) =/41(nk=)l.t\n) and

n—se
L]

i ) 4 eN
lim /) (A ) /AQ(nKS)LAn). But M (A ) = M,(A)) for all né€N,
n-=ss 00 L oo
50 we huve/“l(nglAn) =/2(nL=-)1'An)' that is nEs)lAne‘/n°
1f. (A )nem is a decreusing(svequence of sets in Lf(g{)f\‘ﬁ,

- o
then, Ly Theorem 2.10 we get thut nOlAnG./VL . Hence M s a
monotone cluss, Since ¥ contain fRf\A, it follows from
Theorem 1.22 that M convains ‘f( gZﬂA), 6 S - AR M contains

Y(R)NA and so M= Y (R)NDA. Now 1ct E€ Y(R). By
3 n %
fheorem 1.12, we have E f-'..-“.hk__J_LEi with E.€ R . Vithout loss of
generality, we assune 1‘:"1’31 18 a disjoant union. b.l.nce/“
is 6-finite on R , there exists, for cach 1 = 1.2,..,0,a
sequence (E. ). of -seLs in R such that

1j'3je N
oQ
. C - e > < 4 .
Ei__ ]\=JlE.L] und/u(El))<oo

o0
Assume without loss of generality thut jglnij is a disjoint

of
uunion, then for each i = 1.2,...,n, E, = jgl(ﬁlﬂ Eij) is a
disjoint union und/v\(ﬁi.f\ Eij)(ﬂ;, Leu 1-1;{ =.°him Eij’ S0
: ¢ 3 ‘ o0 N & iy #] C » = .u .u ‘. 5 i 1S
iijé R dnd//\(}‘ij)< Fhen E & 1\=-'-)1L1 1:1]=1P1) which is
n o :
4 disjoint union, so E = igljgl(bm}‘ij) is a disjoint union,
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jince/«l zamd/‘*2 are positive weasures on ‘3'(2), we have
1 e .‘

it . : n o
i Pl 12':'1;2:1/"1””["13" and A (E) = 2;151/“2"3“Fij7'
since for all )\ € R%(A)(ao /AL(E') =/«2(El) for all
E € ‘5’(9{)/\ A, hence/«L(E/\Fi.j) '=/2(Eﬂpij)' Therefore

A ) e R R

2,27 rheorem 1(’/4 is & positive measure on a 6-raing tf .
then the set Y or all sets of the form EAN, where L€ Y
and N is a subset of set of mecusure zero in ‘3 , i3 a 6-ring,

and the set function/& defined by/:\(EAN) =/A(E) is a

complete positive me€asure on ‘j .

proofr21lf €Y, ngac Y, and A (4) = O, then the
'relutions

EUN = (E~xA)Afan( EUN)]
and

EAN = (Ex a)u[an(EaN)]

shows that thewsset Q may also be described as

the set of all sets of the form EUN, where Eé\j’ and N is
a subset of a set of nmeasure zcero in q «-300 “clearly, ‘?
is closed under the formation of coumtable unions, Claim that

Y 1s closed under tne formation of symmetric differences,

let El,EQG"X and NL'NQ are- subsets of Aé‘} with/A(A) =05

Then EIUNJ. and 132UN2 belong to e Subclaim that

(EUN JA(EUN,) = (E~(AUE,))U(E;> (AVE ))U[AN((EUN )A
(E,UN,))] »

let xe& (EUN ) A (EQUN,) = [(EUN )~ (EUN,)JU[(BLUN, )~ (EUN )]
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If xe€ (EUN )~(EUN,), tnen x¢ EUN  und xé E,UN,, if x€ 4,

S0 xG[A n((EluNl)A(E‘.ZUNQ))I" if x¢a, so xé N,» hencegixe E,

which 1implies that x € (El\(AL\JE:,)),‘ therefore
[(EJUN ) ~(B,UN, )| € (B~ (AUE,)) UAN((E U, )A(E,UN,) )]
< (El\(AuEe))U(Ez\(AUBL))U[AN(ELUNL)A

samilarly, we have

[(E,UN ) =(BUN,) € (B~ (AUEB,))U(Eys (AUE))U[AN((EUN )A
(E,UN, )]

s80 -

BELUNL)A(E2UN2ng (El\(AUE2))U(E2>(AUEL))U[A(\((ElUNi)A
(E,UN,))] -

Next, let x € (E~(AUEy))U(E, (AUE ))UAN((EUN )4
(E2UN2))J - Lf x€(E~(AUE,)), so x¢ E, and x¢N2,. hence
X ¢ ((ELUNL)\(EQUN'Z))' 31milarly, if x € (sz(AUE,‘!)),. then
X € ((82UN2)\(E1UN1)). Therefore

(B~ (AUE)) )U(EyS (AUE ))U[AN((E UN )A(E,UN,))] € [(EUN )4
(E,UN,)] .
30 we have subclaim. It follows that we have the claim.

e —

3y Remark 1.7.6, we huve "f is a ring. Dut ‘f is closed under
the formation of countable unions, that is, ‘f is a 6-ring.
L

ELANL e 1324N2

where Eié ‘f and Ni 1s a subsct of a set of measure zero in
\f y Lom: L 3, then we €luim that
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Let x¢ ElAB2 = (El\ EQ)U(EQ\El). It Xx"€ El\bg, then x & Bl and

x ¢ E2; if xe Nl’ then by 1':’161\‘l ‘= E,_,AN2 we pet x¢ N2, so‘

J . s 1 INE Y - 3 =
x € Nl\ I\2§ NlANQ, if x¢ Nl’ then by ElA N.L = EQAN2 we get
s C N . . - 2 1
X € Ng, ao’ X e N2\ Nl’ I\lANQ, hence El E2 c NJ‘AN‘2 o  Saimilarly.,

b 3 3 & u > L . ) -
LQ\ Elg N14N2, s0 E1A52° NLAN,‘2 samilaurly, we hgve
NLAN2Q E.LAEz' Therefore ELAIZ2 = NLAN‘J‘ ‘>1nce/¢((NlAN2) =0,
/«4(ELAE2) = 0. 1t follows that/«(El) =/A(I;2), and hence

thut/:i as defined by the relations

AEAN) = m(E)

is well-defined, ulso M(EUN) = A ((E~ A)A[ANEUN)] =

‘/“(E\ A) ,/“(E(\A)Vu(ss,x) =/«(E) whencver Eé% and

NQAG%’ with/u(A) s O therefore

/;(EAH) =/Z(EUN) = A(E).
Using the union ( insteud of the symmetric difference )
representation of sets in ‘} =yt 1S, casy to verify thgt/:_;\
is a positive measure. Finally we shall show thut/z\ is
_complf:te. To prove fllichasy—tket EG‘S, NQAG‘J’ wj.th‘/v«(A) = 0

such cnuc/:(nuN) = 0. rnen/&(npm) = m(E) = 0. 3Since Y

contains all subscts of sets of measure zero in % , we have

every subset of EUN bLelongs to 9 o« Ihis shows thut/:\ is

complete, #

Kemurks: ‘1t is eusy to scee that the measure/: on Cﬂ; having
the property thut/:(N) = Q. for all NQAG"({where/»\(A) = 0
is unique,

Let/V\ be a positive measure on a §-ring ‘j ‘
Let \'j ={E UN/ E 6\5 and N€ A&'\éJ wherc/A(A') = O}.

ihen Theorem 2.27 shows that 3! complete positaive measure/'/\
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on ‘f L‘Xtcndlng/‘)\./:is called the conpletion of/« .

2.28 Theorem 11’/« is a § -finite positive measure on a ring
*

R y and if/A is the outer neusurce induced by/A , then the

completion of the extension 01’/4 to ‘3 (gz) is identical

» #*
thh/o\ on the set of ull/“ -measurable sets,

ProofczlLet us denote the sct of all/« -measurable

sets by \-8 and the domain of tae COmplOL.L()n/A ot/« by ‘j,
that is ‘j is the set of all sets of the form EA N, where
E€ 'ﬂ (5{) and N is a subset of a set of measure zero in

G A n I
\g (9{). innce/"\ on is a complete measure and from the

proof of Theorem 2.27 it follows _that 9 is contalned .Ln‘j
and that/a and/« coincide on ‘{ « All -that we have left

to prove is that Lj (o is contained 1in g . Claam that if

E * and AM(E ) A B0E s 69 L ny The 2.23 th
o€ ‘5 an /‘4( o) » thea E ey corem 2, there

exists a set F in § (R) such tnat M (E ) = w"(F) and

/« o /A
such that F is a measurable cover of-Eo. It follows from the
egl : * : W Ay
finiteness of /t\ (Eo)' and the fact that/\ is a positive
it * i

measure on lj 4 that/u (BB & O. By Theorem 2,23 again,
there exists a set G in \j(ﬂ) such that G 1s a measurable
cover of F~ Eo and

_AM(6) .—./A”(F\ E ) = O.

lhe relation

E, = (F~ G)U(ENG)

exhibits Bo as a union of a set an ‘3 ({R) and a set which

15 a subset of a set of measure zero  in \3 (92).. This shows
] : y*

that hoe \J , and thus we nave the claim. Now let E€ .

Si.nce//\ is u g-finite positive measure on a ring 32, by

%
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; . N :
Fheorem 2,25, we have /% on ‘d is 6-finite. [hen there
4 »
exists a scquc:ue (E. );,G/N of sets an ‘{ such that
o0 i = 2 e e o
UBiand/M(Ei)< I | 142

00
Without loss of generality we assume U Ei is a disjoint

i=1
o0
union. Then E = iL_)l(EﬂEi) is a disjoint union and
“ 2
/« (EﬂEi)<v°, i =1,2,,. . Hence Ef\Eié ‘{ , therefore
& P <7 B
igL(E('\Bi)e‘i A - e E€Y . This proves that \{ is contained

in "f y and thus completes the proof of theorem, #

2.29 Theorem lf/A is a 6€-finite positive measure on a raing
R » then, for every set E of finite measure in ‘J (92) and
for every pasitive number £ y there exists a set Eo in &

such that/M(EAEo) <

Prooftzmy the delln.u:.l.on of/"‘
2 ; e > R g ‘ .
M *(E) int{ Z L AME )/ ':—1‘;)1’:1' BER L G100
*
We have/& on the set of all/u ~measurable sets is a
complete measure, and "j’ (fR) is a subsct of the set of all
fo !
/‘* =mcasurable sets, and by Theorem 2.26 we have that there
18 a unique positive 'measux‘e/: on ‘f (‘R) such that, for E
id 2.,V/:(B) = MI(E), we shall write m instead of A& ,
»* z
Since ne‘J(ﬂ), we have/« (E) =/A(E). Then there exists
4 sequence (E ) eN of sets in 92 such that
0

:C > { y -<oo b ) .

r__ﬁglsi zn%/A\(l= E. )//M E)+3 (//u(n)< )
Since

o0
= (O]

11m/A( U ) /A(i=1.5i)

there exists a .positive integer n such that if

n

B a1 By
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then
oD

PARARPZICAE

Clearly E ¢ R . .since

ol

oD o0
3
SMESE ) Ml BSE ) =M VB Jom(B))s 3

and

o0 o0 e
M (EgE) s/««(iglﬁi\rs) =/~(i\3151)7“(ﬁ>s R

then ‘
SABA R mm (RRE, Fe MBS Bl E

Ve have seen that if//A 18 a positive measure on a
» * . >
6 -ring 9’, then the~ses functlon//u ( defined for every E
in the hereditary d-ring ’j'e((f) by

ME) = inffm (F)/ BECFC )

is an outer measure, Now we shall define the inner measure,

2.30 Definition We define the inner measure//A” induced by

,/“ ; for every E in ¥ (Y ) we write
Mu(E) = sup {m(F)/ E2Fe9 ).

icn//a* i non negative, monotone, and such thut//A*(¢L =0.

Now from Theorem 2,31 to Theorem 2.39 we assume thut
. . . . v : *

./M i3 a finite positive measure on a §-ring % ,//A and
/AA* are the outer measure and. tiie inner measure induced by
/A» , respectavely, and//A on % 15 the completion of//&.

s (; ; : 5 _
Re recull that//* on coincides NlChJ/“ on the 36t

*
of all//« -measurable sets ( by Theorem 2.28 ).

2.31 Theorem If ﬁe‘j{(‘ﬁ), then

A ulB) = supl K(F)/ BE2FC 43,
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Proof2lsince Y< Y , it is clear from the definition

0[’/‘\* that e

MulB) e sup{ A(F)/ E2F €S},

Yy the proof of Tlheorem 2,27 implies that, for every F in
\‘f , there is a G in Lﬁ, wath GEF and/-«(F) =/A(G). I'hen
we have that

{/<(F)/ E2Fe ?}gj/«(c)/ 2ce¥},

the proof of the theorem is complete, #

2.32 befinjition IFf Eé“}{(‘f) and Fetj , Wwe shall say that

F 1s a measurable Kkernel of E if FCE and 1f, for every set

G in ('J for whaich GEE~NF, we l_luve/“(G) = 0,
2.33 Theorem Every set E an '}f(“f) has a measurable kernel,

A
’roof[RIBy Theorem 2,23, let E be a measurable cover
A
of E, let N Le a measusgnleeove); of ESE, und wraite

A
I = Es N, We have

and o3 Gods An 'f such that G ENF, then
A ~
GEE~N(E~N) = ENNENN(ESNE).
A

since N is a measurable cover of E ~ E—,/‘.A(G) = 0, Hence

IF 1s a measuranle kernel of E. #

2.34 Theorem 1f Eé“‘J{(bO) and F 1s a measurable kernel of
5, then M (F) =/".(E); if both 1Y, and F, are measurable

kernels of E, thcn/&(l’lAFQ) = 0.
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Proof[2)since 'S &, it is clear that /u(l?)f/%'(E).
lf/«(F)t/u“(E), by the defixuuoxfoi‘/"‘*(ﬁ), there exists
a set Fooin ‘5 such that l«og E aml/b\(l-o)yA(F). Since

F, = (FNF)U(F>F),

then

/«A(Fé) = MAPNFLepr(F SF)
s/«(p')*/«(posp).

SJ.nce‘/u 18 ['J.nix,e,/«(Fo)-/k(F)f/u(l-‘o\ F). Ye have
FrFEESF and M(FNF)y A(E )= M(F) >0,
which contradicts the fact that F 1s a measurable kernel of E.

Hence/«(l’);/u*(ﬁ),. and t:hus/(F) =/‘\“(E).

Since the relation Flg FlUFQQ E amplies that

it follows f(rom tihe fact that F, is a

(FUF,)~F S EY F ., A

measurable kernel of E that
/«((l-lul«2)\ F,) = 0.
But (FL\JFg)\ Fl & F2\ Fl" so/«(l~2\ Fl) = 0, 3imilarly we have

/“(FL‘FQ)

0.

L}

lherefore

0. #

/«(l-ldl'2)
2.35 Theorem If (En)new is a dasjoint sequence of sets in

hj{(\f),. then 2 -

’

Proof[2)iFfor each néN , let Fn be a measurable kernel

20 Py g
gf Boovthen A FP-€ U8 and M .FP . is o disioant daion.
n n=L n n=1 n n=1 n

.iincc/ is a positave measure and by Theorem 2.34, it follows
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that
0 ) )
El/*(sn) = EL/“(Fn) =/A‘n ¥ )”/A(n J. n #

2,36 Theorem 1f Aé‘ye(\g) and if (E )nGN is a disjoint

sequunce of sets an g witn U II = E; “then
: 0

oM 4 (ANE) = :Z___—-l/u*(Af\En).

Mfzjlf F is a mcasurable kernel of ANE, then
/u,(AMnE) = M (F). S:)ncc FCANE = n\;’l(AﬁEn),.
F= J(FNANE ) C Y (FNE ), hence m(F) = M(F) <

od

e o0 o
/A(ngl(pnnn)) P E/A(Fﬂlin) (since (FAE ) o disjoint)
od

2 3 » » a 3 : > > D
< n=£/u*(Af\En) (by Theorem 2.31 and A(\Eng }(\En).

©0
I‘hus/«*(A(\IZ)g r%—::'l/“*(AnEn)' By Theorem 2.35, the proof

of the theorem is complete, #

2.37 Theorem 1f Eé\g , then

ME) BT = e,

“and, conversely, if Eé'ﬁf(%) and

M (E) = M (E) <=,

then E e‘f .

Lcmfmf Eéq , then both Theor;:m 2.21 and rTheorem 2.31
we have/)\*(ﬁ) -_-»/J(li) =/A*(E); To. prove the converse, let
N be a measurable kernel of E, so AE t{ und/\A(A) a/V‘*(E)<JJ.
'Siucc/\)\‘(B)<oo ,» Ly Theorem 2,23, then there exists a set
3 in ‘3 such thut/M*(E) =./A(B) and ESB. Thus ACECB, we

huve

(B~ A) =m (B)=pr (4) = A (E)= M, (E) = O.
¥ T A 2
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since E = AU(E>NA)) and E~ACD~ A N.Lth/rt(ll\A) = 10 by

the proof of [lheorem 2.27, we have red . #

2.38 Theorem If E and F are xilsjuxnt sets in ’2{(“5), then

MW (BUF) S M, (2)+ 4 (F) < p (EUF).

: ‘_,hwtﬂl‘y fheorem 2,23, there exists a set A in ?
such that/ﬂ*(F) =/A(A) and A is a measurable cover of F,.
By Theorem 2.33, let 13 be a measurable Kernel of EUF, so
ey and_M(B) = M (EUF). Since FS A and BS BAP, BS AT R,
it follows that ‘

/&*(EUF) =/-4(B)\</A(B\A)I+/A(A) (srnce BC (B~ A)ULA)

s/\,(s)»,/«*(p).

Dually, let A be a measurable kernel of E , so Ae({ and

/"‘*(A) =/*4(E); ‘let B be a measurable cover.of EVUF, 136\5
»*

und/& (EUVF) --7»\(13). Since ACL and EUFECB, FSB~A ,

it follows. that

* 5 .
(EUFR) = SRy —= (A)+/M(IL\A) (since AC B)
./u /u / .
Z/'-t*(E)+/o\ (F). #
2.39 Fheorem 1t Eé\{, then, [or every subset N of X,
* e o ¥
M w(A0B) s M (ATNE) = M(E).
Proof[2lapplyinyg Theorem 2,38 to ANE and Ac(\E, we
obtain

MelE) 5'/‘«*(Af\E)+/"\TALhE) s/«t'(s)‘
since Ee“f , we have, by Theorem 2.37,/‘/\‘()3) =/*A*(E)=/:(E).#
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2,40 vefinition Let YN be a €-algebra of subsets of X and
eM ;
B y (Ln)nem

EinEj =  whenever i # j, and it nL=)LEn e B

in M is called & partition of E if

2.41 Definition A quaternion measure on a §-algebra M is

a quaternion function on 7n such that

Q
SME) = T M(E)

for every partition (Ln)neN ol B

( Ee T )

2.42 definition Ve define a sct function ')/A' on a §-algebra
m vy

' s | m

MAl(E) = supfZ= Ja(E )T (Ee My,

the supremum beiny taken over all partitions (En)néN of E,

The set function )/‘4\ is called the total variation of a

gquaternion measure/A or the total variation quaternion.

measure., Note that )MI(E);)/A(EH for all Ee¢ M,

If/—\ is a positive measure on a f-algebra m y. thea
v =/VA\ .
lf//\ is a quaternion mcasure on a g-algebra Y)Y] and
A ks positive measure on JY such that A (E)>},«(E)l for

wil BeM, then A LE) 2 JMI(E) for all ceM. ro prove this,

be a partition of E. Then A(E) = z: A(E )2

leL E
( )neN
Qe 3 g i @ . e : : 3
/l/A(E )l . Since (En)né/}J is ‘ag arbitrary partition of
H, then

]
A(B)Zsup{gl),v\( )l/ (E : neN 1S a partition of K}

=yAI(E).
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2.43 Theorem LeL/A be a quaterni)n measure on ua f-algebra

m . Then

.(a) m(P) = O.

(b) If A An are pairwise disjoint members of m,

ieny
n n
:nen/«(iglai) - E/A(Ai).
(c) For A, BeM, Ac B-»/q(n\A)’ = M (B)= M (a) .
(d) If A ,A2,...em such that ACA,C ..., then

/u(A )——?/‘4(‘L lA ) as n—>e0, »
(e) lf Al,:\2,...ém such that A 2A,2..., then

/‘(A )—')/\(l | A;) as N—>00 o

u | m t) = = = ==
lroof of (a) Let A€ and tdk(. A :, A, A3 Ay=eco

- ¢. Then .UA = A, s0_M(A) "‘/"“:. U A = E/(Ai) "
/4(A)/'@)+/4(¢)+... / llence/u((b) = 0.

Proof of (b) I‘ake A= A g=eeem #. Then

n o0 = iE n
fh8i = A o (;ULA;) SANS ) - i /AtAy) =2 M A ),
: suxce/k(Ai) = O fagr-all i> n,

Proof of‘(c) Since B = (3~ A)U'A and by (b),./M(B)

=/‘~(B\A)4/A(A). Since ),(A(A)'(oo, /A(B\ A) VA(B)—/A(A),

Proof of (d) and (e) It is similar to the proof of

Theorém 2,9 and Theorem 2.10 respectavely., #

2,44 Theorem The total variation }MI of a quaternion

measure/u on a 6-algebra M is 4 positive measure on m..‘

) < B 7
Proof Let Eém and (Ei)j.ew/N be an arbitrary

s i i 3 P . 3 : : Py = <
purtition of E. We must show that fos l/v\l(lii) yﬂl(B).. For
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! : o0
each 1eN , let t.€ R be such that t1<)’“'(Ei)' and foiti

converges, Then for each i there is a partition (A
ges, ‘ I (”))é”u
of Ei such that
o
t;< g JMulag i

Since (A..}. i8 a purtition-of E, it:follows  that

1j'1 Jé/N

00

.'Lz;_—ltj.‘ i=1 3= 1)/"‘(A )'5)/4‘(5).

Hence we see that
)
vti<)m(a.). &5t € MIE)  so

3 ey sup{ €/ ti< jul () )}</«|(n)
Claim that 7: /wa(x: T~ bupizt % </A|(B )J. since

1=12F

\v;ti</ul(ni) Zc < 2'_' 1 JU(E;), sup{Z t;/ t, < JmMI(B, )] <
F:l J/«I(B.). Let £ >0 be given, Since sup{t./ t,<}ul(Ei).}=

)’“HE ), for each i there is t. <)Ml(E ) such that

o4
/I(E )---<r... Hence Z)‘AI(I‘ )-.2:: . J.Zalt Hence
2

/At(E ) - 2<Zt ébuP{Zt == </w(r~: )J. Since £> 0

is arbatrary, E_},M((Bi)s sup{Z tx/  AS </VA|(E )} S0 we

have the claim, From (1), we have

o0
(2) E-lymrsi)syus)..
Let (A ) be an arbitrary partaition of B, Then

je N
tor aay Fixed §, (4 l’\E )J.éN is ‘a . partition of Aj and for

any fixed i, (A (\E )Je/N is a partition of Ei' Hence
od 7
— A)l = 2: Z_ E.
= i M (A0E) |
od



This holds for any partition (Aj)jeN of E, we then have
o0

(3) /A(s)sg—'l/w(ﬁi-).
From (2) and (3), '
o0
JMIE) = Z5 JaI(E;) .
Since/«(m = 0, /Ml(so) =0 . #
"2.45 Theorem lf/u is a quaternion measure on a F-algebra

m in a set X, then

)Ml(X)<-0.

Proof Step I Suppose there is LE€ Yl such that

.yAI(B) =6, Claim that there exist A,B€TM such that
E = AUB, AND = 9, JAA(AH)]. and Jml(B) = .. By the
definition of)/‘«l, for allt<w there is a partition (Bi)iéﬂ

of E such that

ull/«,«(r:‘ | Rea. -

Let t'=m 4(25)(1«»),0(3)( ). Subclaim thuat there existg a
' n
“finite partition (E. )] ST e Ru thut ?Elyr\(Ej)l >
4(2 )(1+}/A(E)I i Te pro've this, there exist a partition
3 Z 2 i
(Fj) ¢y ©f E such that i,uu Metets 1 (F5)jem 48

a finite partition, we are done, buPPObC that (F. )JG—N is

an infinite partition of E. Then there exists ne N such
-

_that Z: E.)l< 1, since 2— F.)| converges. Then
o 2 e Zpaepl comersen. mhen
j=1},«(Fj)l> t. Let B, = F ,.00,E__ = Fn_l,en-jgnFj. Then

i b
(Ej)j=1,...,n is a partition of E and '=1'/°‘“"”

n-1
oo l}/r\(l‘ )I yA(E )I>t. So we have subeclaim. By Theorem 1.3

there exists an S gfl,Q,...,n} such that
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\

I;ZG:S/‘@:", ? 5 o= VM(E >l>1+y4(s)l

4
Let A = ].%JSE)... Then ‘(\g E and |/u(A)I= )éS/A(E )|>1+J,u(c)|
> 1. Let B =E~A. Then BEM, ANB = 9 und/]M(B)l:
Ly pma] 3 Jaqarl - Ju(erl>av Jm(e)l - fu(E)] = 1.
Since /Ml(s) = )Ml»(AH)M(B), we have
')MI(A) =d0 or }M\(B) = 00 ,

so we have the claim.

Step II Assume y.\l()() =00, Let B = X. DBy Step 1, there
is A ,B, €M such that ANB =9, B = AUBl, )/M(A )l>1 and
)Ml(nl) =0, Suppose n3O0 and B is chosen so that

l/Al(lsn) = 00 . l}y step 1 there is An*l.B‘Hlém such that

ha g A, OB =P, yA(Aml)lu and Jul(B_ ) =<

B3y induction, we obtuin disjoint sets AL'A‘)"" with
o0

yA(A')bl for all n€MN+s Let:Ce \UJ A . Then CeM and
n st n=1n

UB

Bn n+1

/«(C) = ngl/v\(‘\n). But this series cunnot converge, since
//A(An) does not tend to O as n—>«», This contradiction

shows that the theorem must hold, #

2.46 Definition Let/A and A e quaternion measures on a

6 -algebra M. .)et.me/uw\ and}«/uol) by
/+A)(c) = M(E)+ A (E)
(p ) (E) = ZM(E); [(mel)(E) = (m(E))«]
for all E €M, <€ H. rhen/«+/\ and o (M#) are quaternion

mecasures onm « Thus the collection of all quaternion

measures on m forms a quaternion lett(right) vector space.

Let us now spcecialize and coansider a.real measure

on’a o’-algebrum. vefine )M| as before, and define
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M BURL ), T = Bl
Then both /\* and M~ ure positive measures on M and they
are bounded.by [neorem 2,45, ilso
A A B 5 i e B

The :nea'sures/uu’ and/A- are called the positive and negative

variations of/ux y respectively.

In this chapter, from now, an arbitrary measure means

a positive or a quaternion measure.,

2.47 Definition Let/u be a positive measure an a 6 -algebra

m srand ) be an arbitrary measure on M. Then A is said to

be absolutely continuous with respect to/M- , and write

A <</M

"if for all Be'm,/u(s); 0=A(E) = O.

2.48 vefinition Let A Ve an arbitrary measure on a

6-él¢;ebram. If there is A€Wl such that /\(E) = /\(A/\E)

‘for all ‘_Gm y We say that /\ is concentrated on A,

2.49 Proposition /\ is concentrated at A iff

VeEem (Ena =9 = A(E) = 0),

Proof (=3) Let E€Many ENA = 9. 'Tt;en (B} v
A(ENA) = A(p) = o.
(=) Let E€. Then E = (ENA)U(EN A)
which is a disjoint union, so A(E) = A(ENA)+ A(ENA).
Sluce (ExAVOE & P, A(E~a) = 0. Hence A(E) = A(ENa).

Thus A is concentrated at A, #
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2,50 vefinition 'Let /\l and A,) be arbitrary mceasures on a

6 -ulgebra Wl, and suppose that there exists A,.Bém such .

that ANDB = P, A, is concentrated on A and /\2 is concentrated

1

on B, Then we say that /\l and /\2 are mutually singular,

and write
Nl Ay,
2.51 Theorem 3uppo:5c/'4, /\, )‘1 and A,) are arbitrary neasures
on a G-algel)ra m, and/« is positive,
(a) if A is cocentrated on A, then 8o is “H, .
(b) Ir /\l‘L/\Q’ then ‘)‘ llll)‘zl .
(¢} It /\1_1/4 and /\2_1:/0\, then Al-o- /\2%'
(d) If {\1<‘</(—A and )t2<7¢.\, then A1+A2<.</Ao
(e) If A<7u, thenlA'<y« -
(r; 1t Al<yA and /\QJyA, then Al+h2.
(g) If A<</¢« and /\_‘_/\4, then A= 0.

Proof of (g9)-.lLet B € M such that ENA = P. Assume

(E

3 is an arbitrar ritition of E. Then E.NA = for
3)J€N ar ary pu : = 3 4
ell 4,.80 )\(Ej) = 0 for all j, hence 311 ]/\(Ej)|= 0. Thus
IAl(E) = 0. Hence |Al is concentrated at A.

Proof of (b) Ubvious.

Proof of (c) By ussumpt'lun, there exist Al"Bl"A2"

32 ¢ M such taat Al(\Bl = 9P, AQI\BQ =9, )‘1 is concentrated

on Al,/u is co’ncentruted on ‘Bl, /\2 is concentruted on A2

und/u is coacentrated on B,. Then /\l+ ))2 is concentrated

on ALUAQ' Claim that/"\ is conceutrgted on Blﬁng. To prove

this, let E€ ™M be such that Ef\(Blf\BQ) = P. Since
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(!3('\[11.)f\B,‘2 = W,./M(En!}l) =0, But/A is concentrated on
B then/A(E) =/4(EﬁBl) = O. . So we have the claim. Since

(ALUA2)/](B{\B2) = P, we have that Al+ /\2 J_/A,

Proof of (d) Let CeM be such chac/u(E) = 0,

Singe /\1<{ ‘and /\244 " /\l(E) =0 = AQ(E). Hence

( Al" A23(E) - ‘Al.(E)-f A2(E) = 0, Then A1+ A2 <7b\.

Proof of (e Let Bé‘m, be ‘such that E) = Q.
. Vs

Since A<</u ; /\(E) = 0., Assume (Ej) is an arbitrary

jeN
partition of E. Then )\(E_j) = 0 for all jeN , hence

o
jj=:1 l/\(Ej)‘l =' 0. Hence |Al (E) = 0. lence lA|<f/4°'

Proof of (f) Since AQ—L/(A, there exist A.Bém

such that ANB = P, /\2 and/,\ is conccntrated on A and B

respectively, Let EE M be such that ENB = @§. Then

4

/A(E) = 0. Since /\l<f/u\ A Al(E) = 0. lence /\l is

concentrated on B. Hence )‘l.l.hg.

Proof of (g) By (f), ALA. Then there ecxist A,B

ém such that ANB = P, /\ is cocentrated on A and A is
concentrated on B. Illence A(A) = 0= A(B).  Let EEM,

3ince A is concentrated on A, A(B) ‘= A(BﬂA). Since

A(A) =0, A(ENA) = 0. Hence A(E) = 0. #

2,52 Theorem Suppose/o\ is a positive measure on a f-algebra
M in a set X and /\ is a quaternion measure on M. Then
the following are equivalent:

(a) A‘f/“ »

(b) For all £>0 there is a &»0 such that for all
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se'm/u(em,s implies that |A(E)l<s .

Proof Assume (b) holds. Let Ee M ve such that
/‘«(E) = 0. Then/u\(E)< $ for ullJ»0. Hence l/\(E)lci for
all ¢>0, so |A(E)| = O, hence A (E) = O. This shows that (b)

implies (a).

Suppose (b) is false. Then there exists an ¢£> O such

that for each n€ N there exists E € N such that/A(E )<.L-
n n’",n

but I)\(En)-l 2¢. Put
, ©

A =.UE., A = nA
n i=n_X% n:ln

Then A2A;2A:2... and m(A )< 3 (B, )<Z
155,878 /A n /“' i=n 2 2n-—1

BO/M(A1)<_‘.;.'.6 m 1<, Thus O = ].J.m/A(A ) n/U\ (n 1 n)/A(A)..

N ey 50

Since IM(Al)<ao, lim |AlL(A ) = |Al(A). since IA(Bn)lzi.
n—»gd

(Al (B )22 for all neN , heace |Al(A JJ2IA(B )2 e for all
n€N. Then lim [AL(A ) 2 & , hence IAl(A) 3 €. Hence we do
n—ye
- not have l/\|<¢/u « By Theorem 2.51(e), we do not have A 4"/"'“
This proves that (a) implies (b). #
2.53 Theorem Let Tl be a §-algebra of X. 'l‘hen/A is a
quaternion measure on M if and only .\.f/,\ -/1+i/2+ j/443

+k//\4 for some real meuSures/l’ on '}'Yl faor all 1'5 4.

Proof Assume/u is a quaternion mmeasure on m .

Then there exist real functions /Mll on M for all l’s 4 such

that/A. s/‘l+i/'\2+j/‘3+%.. Cluim t:hut_/u\l,/uz,/as and/44
are real measures on M . Let €M una (E )neN be an’

-arbitrary partition of E. Then
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o9 0 N\ i e
P e zgi/g(nn)=g;i£/&l(sn)+i 2 (Epd 3 Mal B ) ek m (LB DD

Assumc//“(E) = al+ia2+j83+ka4 for some aiE‘R , 1< 4. lHence

m
s 5 - i Z > < > . >
al+1d2+]qs+ku4 ii:;n=l(/Ml(En)+%/u2(Ln)+1/u3(nn)*i/u4(5n))

m m m
= dim(aoy M (B sidn Q(En)*jg/(s(ﬁn“

Me—s oo

m
PP ALRY

3y Theorem 1.31, we have

m m
i JER 3 i im 2 : =
lam n==l/’«&L(Ln) a5, lim nzb/AQ(Ln) 8,4

-~

M—s oo me—soe
m m
i : S = C o) =
lim n=£/M3(En) 8 and lim EEE 4(bn) a, -
m— 0 11—% o0

‘Hence

/“‘(E).

ad
;E(/“l“?n)*i e N5 (B ek M (B D)
o0 L L Lo

L ) i () 925 g (B kB (5, -

But

AAEBY = pa  (BTad A Do L) ek (B) o

ltence
0

RS T )
/Ml(E) Fyos  40s o boo 3.
for all 1s 4. Since M(P) =0, My(P) = O for all e

30 we have the eluaiwm.

Conversely, it is clear that If//A =J/Ml+i//b+i/M3+

= . s > 2 > o)~ (2 S ’ P’ '$
5/A4 for some real mudsurcs//*l on M for all 1 4, then

/% is a quaternion measure on m. #
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