

## CHAPTER III

# EXPERIMENTS AND RESULTS

#### Synthesis.

- Materials. Α.
- Equipments. 1. Sartorius 1615 MR and

Analytical balance Sartorius 1104

Melting point apparatus

Shimadzu IR-400<sup>a</sup>

Point Apparatus

Buchi Capillary Melting

Infrared spectrophotometer

Nuclear Magnetic Resonance Spectrophotometer

Elemental Analyzer

Perkin Elmer 240 C<sup>a</sup>

Joel FX 90Q (90 MHz)<sup>a</sup>

Mass Spectrometer

Joel FX 3000 double focusing<sup>a</sup>

UV Spectrophotometer Hitachi U-3200

<sup>a</sup>The Scientific and Technological Research Equipment Center, Chulalongkorn University.

2. Chemicals.

| Lidocaine hydrochloride      | USP XXI    |
|------------------------------|------------|
| Adipic acid, AR              | Searle     |
| Maleic acid, AR              | BDH        |
| Malonic acid, AR             | BDH        |
| p-Toluenesulfonic acid,AR    | E. Merck   |
| Sodium hydroxide,AR          | E. Merck   |
| Sodium sulfate, anhydrous,AR | E. Merck   |
| Chloroform, AR               | E. Merck   |
| Methanol, AR                 | E. Merck   |
| Ethanol, AR                  | E. Merck   |
| Benzene, AR                  | E. Merck   |
| Ethyl acetate,AR             | E. Merck   |
| Glacial acetic acid, AR      | E. Merck   |
| Ethyl ether, anhydrous, AR   | J.T. Baker |
| Hexane, AR                   | J.T. Baker |

# B. Methods and Results.

Melting points of the compounds were determined on a Buchi Capillary Melting Point Apparatus and uncorrected. The proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectra were obtained with a Joel FX 90Q (90 MHz). Chemical shifts were reported in ppm related to the internal standard, tetramethylsilane. Infrared (IR) spectra were recorded as potassium bromide disc on a Shimadzu IR-400. Mass (Joel FX 3000 double focusing) and ultraviolet (Hitachi U-3200) spectra were determined

# 15

for all compounds. Analytical results from elemental analyzer (Perkin Elmer 240C) obtained for all compounds were within  $\pm$  0.4% of the theoretical value unless otherwise stated.

Approximate solubilities of the compounds were determined at room temperature (32°C) by dissolving 100.0 mg of the test compound in 0.05 ml of water, ethanol, chloroform and ether individually. The mixtures were placed in ultrasonic bath for half an hour and observed for clarity. If the true solution was not obtained, a further 0.05 ml of the solvent was gradually added, and sonicated. The procedure was repeated until the true solution was obtained. Descriptive terms according to USP XXII were used to express approximate solubilities of the compounds.

Results of the syntheses of test compounds were summarized in Table 2-6; recrystallization solvent, melting point and percent yield (Table 2), approximate solubility (Table 3) and elemental analyses (Table 4). Characteristic IR and <sup>1</sup>H NMR data were shown in Table 5 and Table 6, respectively.

#### 1. Lidocaine (I).

A solution of 5.000 g of lidocaine hydrochloride in 20 mL water was adjusted to pH 11 with 1N sodium hydroxide and then extracted with 25.0 mL of chloroform for three times. The collected chloroform layers were washed with 2 x 15 mL of water. The chloroform was dried over anhydrous sodium sulfate and evaporated on a steam bath to dryness. The white crystals of lidocaine were obtained (3.89 g; 96% yield), m.p. 68-69°C. IR(KBr)  $\gamma'$ : 3250(N-H), 3040 (aromatic C-H), 2950 - 2850(aliphatic C-H), 1665(C=O), 1595(aromatic C=C), 1495(N-C=O), 1200 (aliphatic C-N);  $\delta$ : 760,710(3-adjacent protons of aromatic) cm<sup>-1</sup> (Figure 1).  $\lambda_{max}$  (isotonic phosphate buffer pH 7.4) : 262.5( $\epsilon$  463) nm. <sup>1</sup>H NMR (CDCl<sub>3</sub>) : 1.14(t, J 7.18 Hz, 6H, -CH<sub>2</sub>CH<sub>3</sub>), 2.23(s, 6H, ph-CH<sub>3</sub>), 2.65(q, J 7.18 Hz, 4H, -CH<sub>2</sub>CH<sub>3</sub>), 3.22(s, 2H, CO-CH<sub>2</sub>-N), 7.08(s, 3H, aromatic protons), 7.25(CHCl<sub>3</sub>), 8.93(bs,1H,exchangeable with D<sub>2</sub>O, CO-NH) (Figure 2-3).

### 2. Lidocaine adipate (IV-A).

A solution of 0.937 g (4 mmole) of lidocaine in 25 mL of anhydrous ethyl ether was prepared. Then, a solution of 0.585 g (4 mmole) of adipic acid in 15 mL of acetone was added and the mixture was stirred for 10 minutes and cool at  $4^{\circ}$ C, the precipitated solid was removed by filtration, washed with anhydrous ethyl ether and then dried. The resulting solid was collected and recrystallized with ethyl acetate to give lidocaine adipate as white crystals (1.22 g; 80% yield), m.p. 119 - 120°C. IR (KBr)  $\gamma$ : 3450(O-H), 3200(N-H), 3050(aromatic C-H), 2950 - 2900(aliphatic C-H), 2650 - 2500(N-H), 1690(C=O of acid and amide), 1550(aromatic C=C), 1480 - 1460 (N-C=O), 1260 - 1220(C-O), 1200(aliphatic C-N)  $\delta$ : 780, 730(3-adjacent protons of aromatic) cm<sup>-1</sup> (Figure 4).

 $\lambda$  max (isotonic phosphate buffer pH 7.4) : 262.5(  $\in$ <sup>1</sup>H NMR (DMSO-d<sub>6</sub> + CDCl<sub>3</sub>) : 1.15(t, J 7.18 457) nm. Hz, 6H, -CH<sub>2</sub>CH<sub>3</sub>), 1.62(m, 4H, adipicβ-CH<sub>2</sub>), 2.20(10H, overlap of ph-CH<sub>3</sub> and adipic\_(-CH<sub>2</sub>), 2.65(q, 4H, -CH<sub>2</sub>CH<sub>3</sub>), 3.20(s, 2H, CO-CH<sub>2</sub>-N), 7.06(s, 3H, aromatic protons), 7.65(CHCl<sub>3</sub>), 8.99(bs, 1H, exchangeable with  $D_2O$ , CO-NH), 10.40(bs, 2H, exchangeable with  $D_2O$ , COOH) (Figure 5-6). MS : M/E 234(56.9%), 128(9.2), 120(19.3), 100(57.2), 87(69.4), 86(100), 72(51.2), 58(68.0), 56(25.4), 43(29.2), 42(27.7) (Figure 7). Elemental analysis for  $C_{20}H_{32}N_2O_5$ : Calculated C = 63.14; H = 8.48; N = 7.36C = 63.29; H = 8.73; N = 7.35Found

#### 3. Lidocaine maleate (IV-B).

A solution of 0.937 g (4 mmole) of lidocaine in 5 mL of anhydrous ethyl ether was prepared. Then, a solution of 0.464 g (4 mmole) of maleic acid in 25 mL of anhydrous ethyl ether was added and the mixture was stirred. White precipitates were formed immediately. After standing overnight at 4°C, the precipitated solid was removed by filtration, washed with anhydrous ethyl ether and then dried. The resulting solid was collected and recrystallized with ethyl acetate to give lidocaine maleate as white crystals (1.12 g; 80% yield), m.p. 93 - 94<sup>0</sup>C. IR V : 3450(O-H), 3200(N-H), 3050(aromatic C-H, (KBr) olefenic C-H), 2950 - 2900(aliphatic C-H), 2650(N-H), 1670(C=0 of acid and amide), 1570(aromatic C=C, olefinic C=C), 1470(N-C=O), 1360 - 1270(C-O), 1190 (aliphatic C-N)  $\delta$ :765(3-adjacent protons of aromatic), 700(C-H cis-olefins) cm<sup>-1</sup> (Figure 8).  $\lambda_{\rm max}$  (isotonic phosphate buffer, pH 7.4) : 270.2( $\in$  494) nm. <sup>1</sup>H NMR (CDCl<sub>3</sub>) : 1.33(t, J 7.18 Hz, 6H, -CH<sub>2</sub>CH<sub>3</sub>), 2.18(s, 6H, ph-CH<sub>3</sub>), 3.33(q, J 7.18 Hz, 4H -CH<sub>2</sub>CH<sub>3</sub>), 4.25(s, 2H, CO-CH<sub>2</sub>-N), 6.24(s, 2H, =CH-), 7.04(s, 3H, aromatic protons), 7.26(CHCl<sub>3</sub>), 9.89(s, 1H, exchangeable with  $D_2O$ , CO-NH), 13.10(bs, 1H, exchangeable with  $D_2O$ , COOH) (Figure 9-10). MS : M/E 234(39.7%), 120(19.5), 91(17.6), 87(62.5), 86(100.0), 72(49.6), 58(66.9), 56(21.9), 42(21.6) (Figure 11). Elemental analysis for  $C_{18}H_{26}N_2O_5$  : Calculated C = 61.70; H = 7.49;N = 7.99N = 7.97C = 61.21; H = 7.83;

# 4. Lidocaine malonate (IV-C).

Found

solution of 0.937 g (4 mmole) of A lidocaine in 10 mL of anhydrous ethyl ether was Then, a solution of 0.416 g (4 mmol) of prepared. malonic acid in 5 mL of anhydrous ethyl ether was added and the mixture was stirred. White precipitates were formed immediately. After standing overnight, the precipitated solid was removed by filtration, washed with anhydrous ethyl ether and then dried. The resulting solid was collected and recrystallized with ethyl acetate to give lidocaine malonate as white crystals (0.97 g; 72% yield), m.p. 136 - 137<sup>0</sup>C. IR 𝔥: 3450(O-H), 3200(N-H), 3050(aromatic C-H), (KBr) 2950 - 2900(aliphatic C-H),2650(N-H), 1695(C=O of acid, amide), 1540(aromatic C=C), 1470(N-C=O), 1360 - 1270 (C-O), 1160(C-N)  $\delta$ : 780, 710(3-adjacent protons ofaromatic) cm<sup>-1</sup> (Figure 12).  $\lambda_{\rm max}$  (isotonic phosphate buffer pH 7.4) : 262.5(€ 457) nm. <sup>1</sup>H NMR (CDCl<sub>3</sub>) : 1.26(t, J 6.84 Hz, 6H, -CH<sub>2</sub>CH<sub>3</sub>), 2.16(s, 6H, ph-CH<sub>3</sub>), 3.13(s, 2H, CH<sub>2</sub>COOH), 3.19(q, J 7.14 Hz, 4H, -CH<sub>2</sub>CH<sub>3</sub>), 4.14(s, 2H, CO-CH<sub>2</sub>-N), 7.03(s, 3H, aromatic protons), 7.28(CHCl<sub>3</sub>), 9.84(s, 1H, exchangeable with D<sub>2</sub>O,CO-NH), 11.87 (s, 2H, exchangeable with D<sub>2</sub>O, COOH) (Figure 13-14). MS : M/E 234(37.6%), 120(19.7), 105(6.4), 87(62.6), 86(100.0), 72(44.1), 58(66.2), 42(38.4) (Figure 15).

Elemental analysis for  $C_{17}H_{26}N_2O_5$ : Calculated C = 60.34; H = 7.74; N = 8.28 Found C = 60.00; H = 8.02; N = 7.93

## 5. Lidocaine tosylate (IV-D).

A solution of 0.937 g (4 mmole) of lidocaine in 5 mL of anhydrous ethyl ether was prepared. Then, a solution of 0.761 g (4 mmole) of p-toluenesulfonic acid (monohydrate) in 30 mL of anhydrous ethyl ether was added and the mixture was

stirred. White precipitates were formed immediately. After standing overnight, the precipitated solid was removed by filtration, washed with anhydrous ethyl ether and then dried. The resulting solid was collected and recrystallized with ethyl acetate to give lidocaine tosylate as white crystals, ( 1.10 g, yield), m.p. 149 - 151<sup>o</sup>C. IR (KBr)  $\nu$ : 3250 67% (N-H), 3050(aromatic C-H), 2950 - 2850(aliphatic C-H), 2850(N-H), 1690(C=O), 1600, 1545(aromatic C=C), 1470 (N-C=O), 1210, 1030, 1010(S=O), 1180(C-N), 680(S-O)  $\delta$ : 1470(NH), 820(2-adjacent protons of aromatic), 770(3-adjacent protons of aromatic)  $cm^{-1}$  (Figure 16).  $\lambda$  max (isotonic phosphate buffer, pH 7.4) : 261.4 (E 792) nm. <sup>1</sup>H NMR (CDCl<sub>3</sub>) : 1.28(t, J 7.18 Hz, 6H, -CH<sub>2</sub>CH<sub>3</sub>), 2.09(s, 6H, NH-ph-CH<sub>3</sub>), 2.30(s, 3H, SO<sub>3</sub>-ph-CH<sub>3</sub>), 3.34(m, 4H, -CH<sub>2</sub>CH<sub>3</sub>), 4.36(d, 2H, CO-CH<sub>2</sub>), 6.95(s, 3H, aromatic protons of lidocaine), 7.05(d, J 8.2 Hz, 2H, aromatic protons of tosylate), 7.26 (CHCl<sub>3</sub>), 7.64(d, J 8.2 Hz, 2H, aromatic protons of tosylate, meta to CH<sub>3</sub>), 9.47(bs, 1H, exchangeable with  $D_2O$ , NH), 9.83(bs, 1H, exchangeable with  $D_2O$ , CO-NH) (Figure 17-18). MS : M/E 234(39.6%), 172(24.3), 120(18.5), 107(12.4), 91(42.9), 87(62.7), 86(100.0), 77(18.3), 72(43.7), 58(66.1), 56(22.5), 42(21.6) (Figure 19).

Elemental analysis for  $C_{21}H_{30}N_2O_4S$ : Calculated C = 62.04; H = 7.44; N = 6.89 Found C = 62.18; H = 7.71; N = 6.89

Recrystallization solvent, melting point and percent yield of test compounds. ••• 2 Table

| Test<br>Compound <sup>a</sup> | Molecular<br>Formula                                                  | Μ.Μ.   | Recrystallization<br>Solvent | е       | n      |
|-------------------------------|-----------------------------------------------------------------------|--------|------------------------------|---------|--------|
|                               |                                                                       |        |                              |         | 90     |
| П                             | C <sub>14</sub> H <sub>22</sub> N <sub>2</sub> O                      | 234.34 | n-Hexane                     | 08-03   | D<br>D |
| I.HC1                         | c <sub>14</sub> H <sub>22</sub> N <sub>2</sub> 0.HC1.H <sub>2</sub> 0 | 288.81 | Acetone                      | 76-77   | 1      |
| IV-A                          | C20H32N205                                                            | 380.48 | EtOAc                        | 119-120 | 80     |
| IV-B                          | C <sub>18</sub> H <sub>26</sub> N <sub>2</sub> O <sub>5</sub>         | 350.41 | EtOAc                        | 93-94   | 80     |
| IV-C                          | c <sub>17</sub> H <sub>26</sub> N <sub>2</sub> O <sub>5</sub>         | 338.40 | EtOAc                        | 136-137 | 72     |
| IV-D                          | C21H30N204S                                                           | 406.54 | EtOAc                        | 149-150 | 67     |

lidocaine tosylate.  $a_{I}$  = lidocaine , I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate. П = lidocaine malonate, IV-D = lidocaine maleate, IV-C IV-B

<sup>b</sup>Uncorrected m.p. in <sup>o</sup>C.

Table 3 : Approximate solubility of test compounds.

|                                     |            |                  |                   |                          |              |                          |                | 7 |
|-------------------------------------|------------|------------------|-------------------|--------------------------|--------------|--------------------------|----------------|---|
|                                     | Ether      | very soluble     | insoluble         | very slightly<br>soluble | insoluble    | very slightly<br>soluble | insoluble      |   |
| solubility <sup>b</sup>             | Chloroform | very soluble     | slightly soluble  | slightly soluble         | soluble      | soluble                  | soluble        |   |
| Approximate Solubility <sup>b</sup> | Ethanol    | very soluble     | sparingly soluble | sparingly soluble        | very soluble | freely soluble           | freely soluble |   |
|                                     | Water      | slightly soluble | freely soluble    | freely soluble           | very soluble | very soluble             | freely soluble |   |
| Test                                |            | н                | I.HC1             | IV-A                     | IV-B         | IV-C                     | U-VI           |   |

<sup>a</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate, IV-D = lidocaine tosylate.

<sup>b</sup>USP descriptive terms : very soluble is less than 1 part of solvent required for 1 part of solute; freely soluble is from 1 to 10 parts of solvent; soluble is from 10 to 30; sparingly soluble is from 30 to 100; slightly soluble is from 100 to 1000; very slightly soluble is from 1000 to 10,000 and insoluble is more than 10,000.

| Test                  |        | ]     | Elementa | l Analy | sis    |       |
|-----------------------|--------|-------|----------|---------|--------|-------|
| Compound <sup>a</sup> | % Ca   | rbon  | % Hyd:   | rogen   | % Nit: | rogen |
|                       | Calcd. | Found | Calcd.   | Found   | Calcd. | Found |
| IV-A                  | 63.14  | 63.29 | 8.48     | 8.73    | 7.36   | 7.35  |
| IV-B                  | 61.70  | 62.21 | 7.49     | 7.83    | 7.99   | 7.97  |
| IV-C                  | 60.34  | 60.00 | 7.74     | 8.02    | 8.28   | 7.93  |
| IV-D                  | 62.04  | 62.18 | 7.44     | 7.71    | 6.89   | 6.89  |

Table 4 : Elemental analyses of test compounds.

aIV-A = lidocaine adipate, IV-B = lidocaine maleate IV-C = lidocaine malonate, IV-D = lidocaine tosylate.

Table 5 : Characteristic IR data of test compounds as potassium bromide pellets.

| -         |      |               |                        |               | Wave          | Number (cm ')                  | (, ,  |                                                       |                                   |
|-----------|------|---------------|------------------------|---------------|---------------|--------------------------------|-------|-------------------------------------------------------|-----------------------------------|
| Compounda | н-0л | H             | УС-Н                   | H-N X         | vc=0          | γ C=C,<br>8 N-H,<br>2 N-C=O,   | × C-0 | 2 C-N                                                 | \$aromatic<br>C-H                 |
| I         | - 1  | 3250          | 3040,<br>2950,<br>2800 |               | 1665          | 1595 <b>.</b><br>1495 <b>.</b> | 1     | 1200                                                  | 710                               |
| d roh.I   | 1    | 3400,<br>3200 | 3040,<br>2900          | 2650-         | 1670,<br>1650 | 1525.<br>1470                  | 1370- | 1200,                                                 | 780,<br>710                       |
| V-A       | 3450 | 3200          | 3050,<br>2900          | 2650,<br>2500 | 1690          | 1550,<br>1480-                 | 1260- | 1200                                                  | 730,                              |
| IV-B      | 3450 | 3200          | 3050,<br>2900          | 2650          | 1670          | 1570,                          | 1360- | 1190                                                  | 765,<br>700(8=C-H)                |
| IV-C      | 3450 | 3200          | 3050,<br>2900          | 2650          | 1695          | 1540,                          | 1360- | 1160                                                  | 780                               |
| D-VI      | •    | 3250          | 3050,<br>2950          | 2850          | 1690          | 1600,<br>1545,<br>1470         | 1     | 1210(V S=0),<br>1180,<br>1030(V S=0),<br>1010(V S=0), | 820,<br>770,<br>710,<br>680(YC-S) |

<sup>a</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate, IV-D = lidocaine tosylate.

<sup>b</sup>Thai Pharmacopoeia.

Table 6 : Characteristic <sup>1</sup>H NMR data of test compounds.

|           |                   |         |        | <b>Chemical</b> | Chemical Shift of Proton (ppm) | roton (        | (mad) |       |                    |
|-----------|-------------------|---------|--------|-----------------|--------------------------------|----------------|-------|-------|--------------------|
| Compounda | 2017600           | -CH2CH3 | ph-cH3 | N-CH3 CO-CH2-N  | co-cH2-N                       | ar-H           | +**   | CO-NH | соон               |
| I         | cDC13             | 1.14    | 2,23   | 2.65            | 3.22                           | 7.08           | 1     | 8.93  | I                  |
| I.HC1b    | cDC13             | 1.42    | 2.21   | 2.60            | 3.22                           | 7.02           | 1     | 10.24 | 1                  |
| IV-A      | DMSO-d6<br>+CDC13 | 1.15    | 2.20   | 2.65            | 3.20                           | 7.05           | 1     | 8,99  | 10.40              |
| IV-B      | cDC13             | 1.33    | 2.18   | 3.33            | 4.25                           | 7.04           | i     | 9.89  | 13.10 <sup>C</sup> |
| IV-C      | cDC13             | 1.26    | 2.16   | 3.19            | 4.14                           | 7.03           | ı.    | 9.84  | 11.87              |
| IV-D      | cDc1 <sub>3</sub> | 1.28    | 2.09   | 3.34            | 4.36                           | 6.95,<br>7.05, | 9.47  | 9,83  | 1                  |
|           |                   |         |        |                 |                                |                |       |       |                    |

 $^{a}I = 1$ idocaine, I.HC1 = 1 idocaine hydrochloride, IV-A = 1 idocaine adipate, IV-B = 1 idocaine maleate, IV-C = 1 idocaine malonate, IV-D = 1 idocaine tosylate.

<sup>b</sup>Powell, M.F. (1986).

Conly one proton from two carboxylic groups was found.

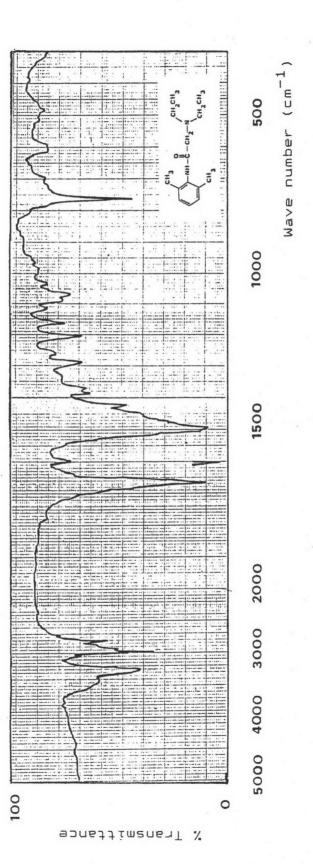
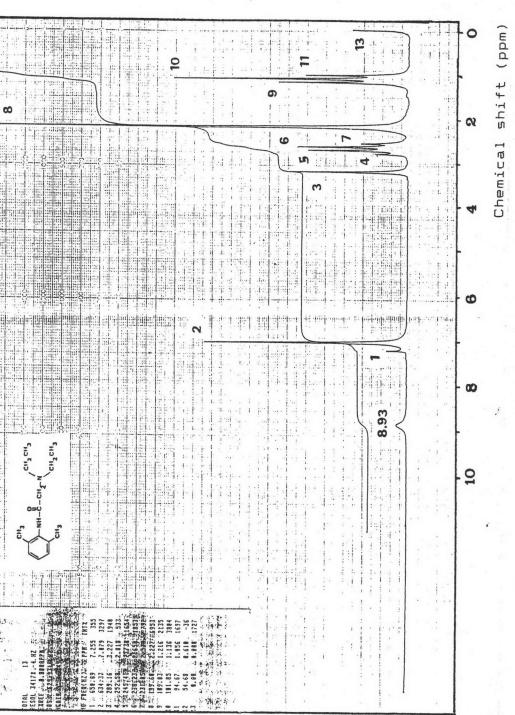
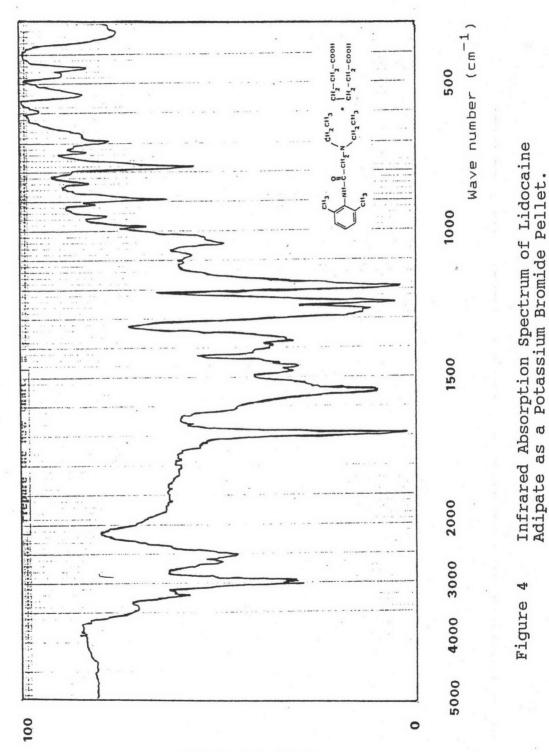
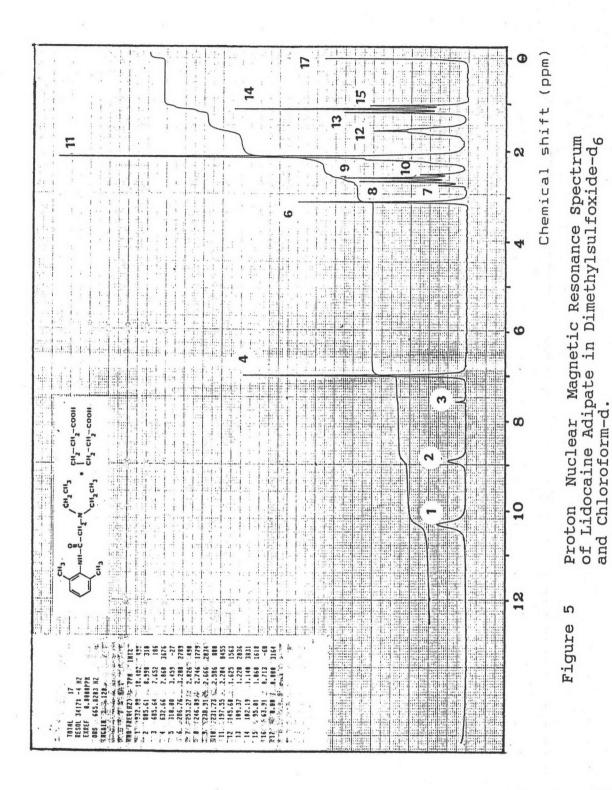



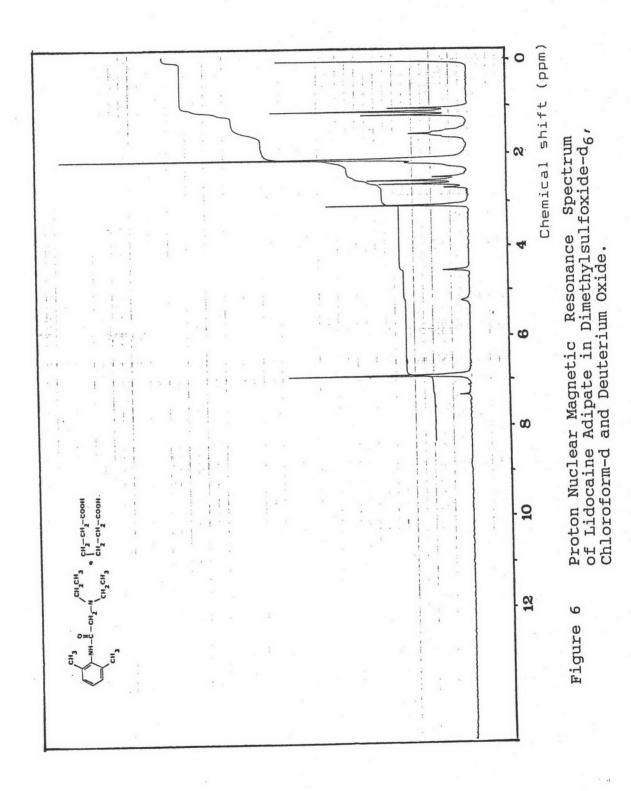

Figure 1 Infrared Absorption Spectrum of Lidocaine as a Potassium Bromide Pellet.

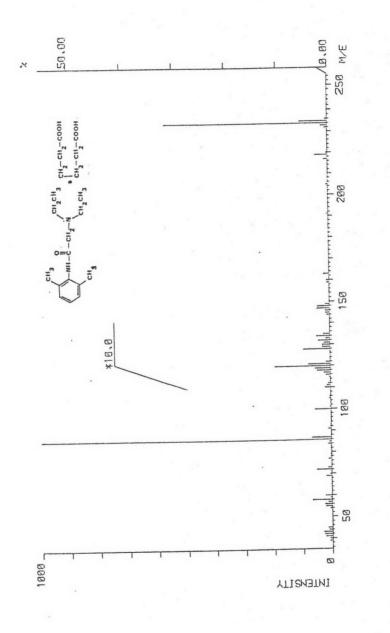



Figure 2




-


Figure 3 Proton Nuclear Magnetic Resonance Spectrum of Lidocaine in Chloroform-d and Deuterium Oxide.


Chemical shift (ppm) 0 2 1 11 d -----0 18.9 in hal 11 ;4, 1: ..... 1 ...... 1 -00 -------+ 10 CH2CH3 CH, CH E 



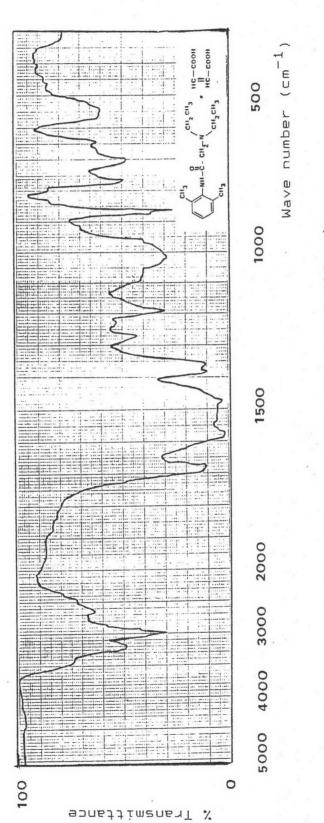
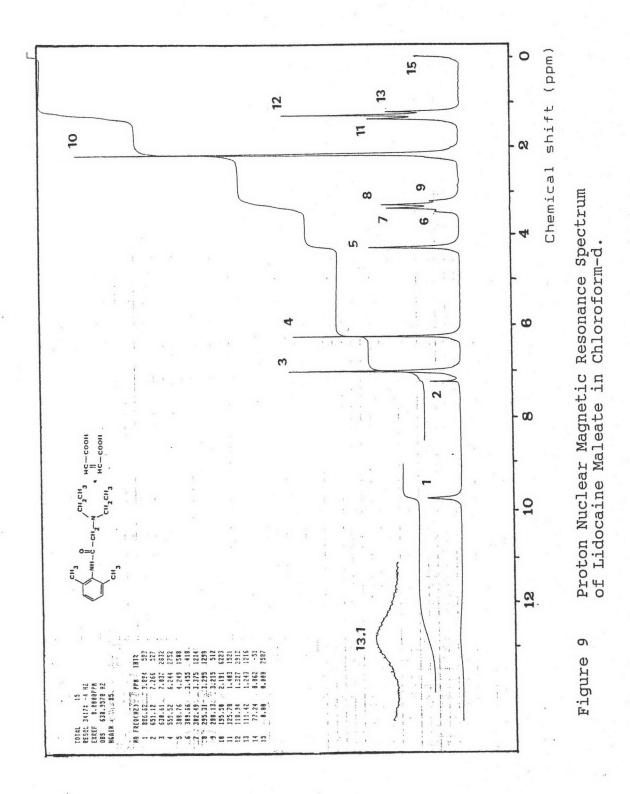
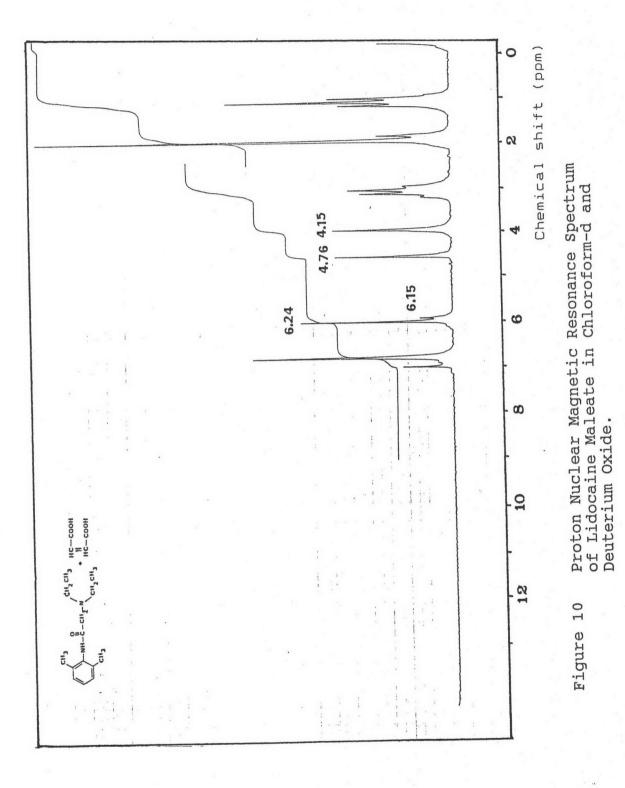
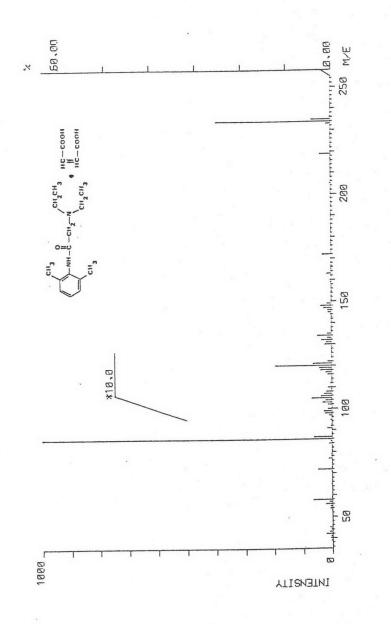
Sonstiment %

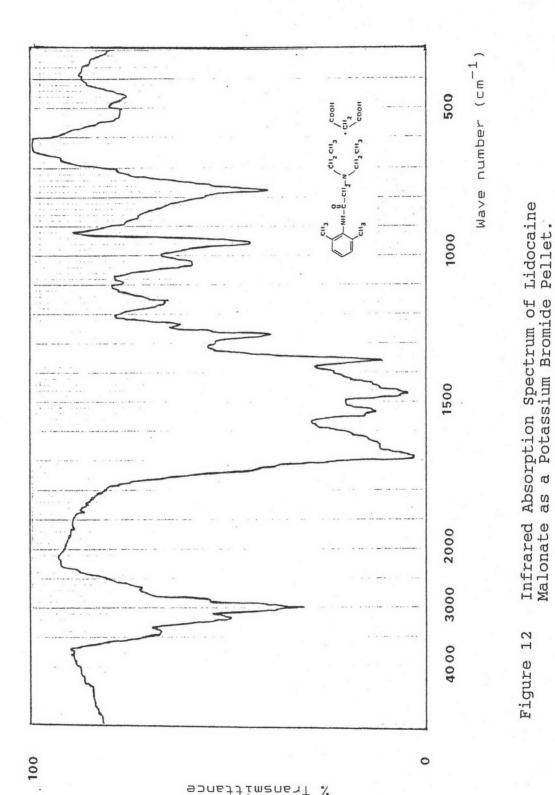






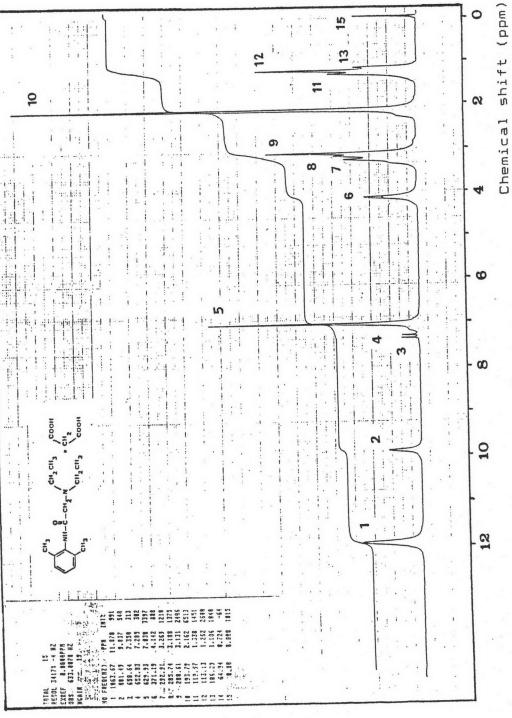


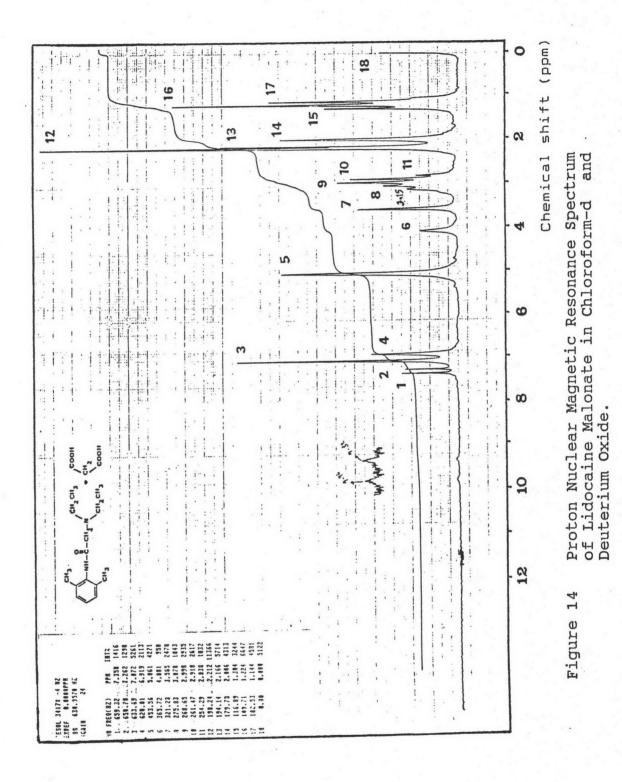





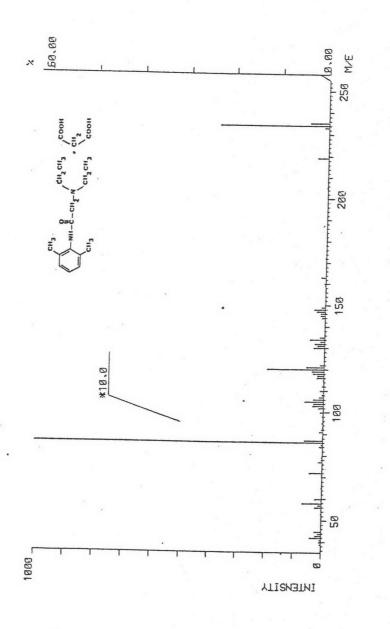


Figure 8 Infrared Absorption Spectrum of Lidocaine Maleate as a Potassium Bromide Pellet.








Y Transmittance



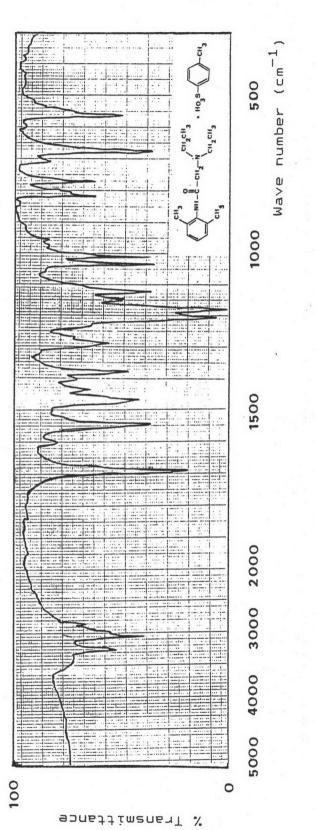
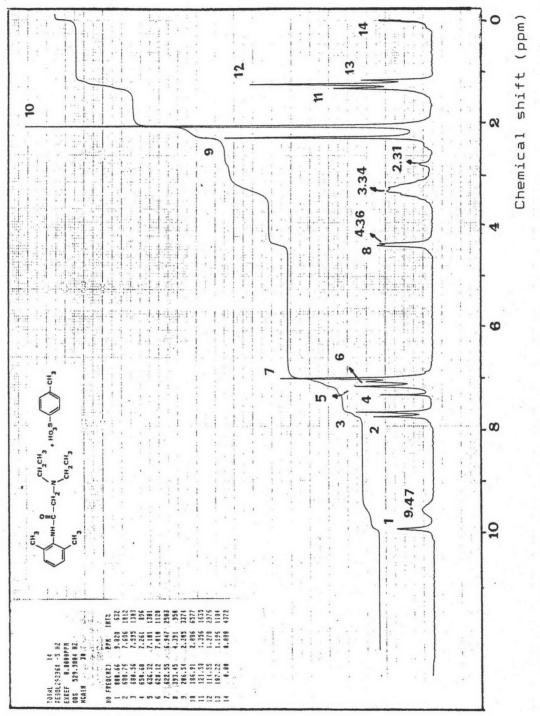
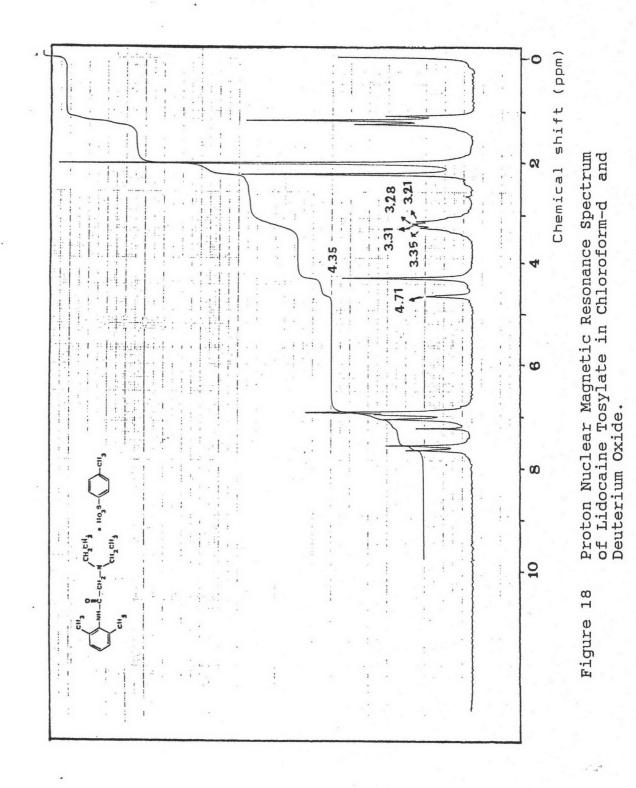


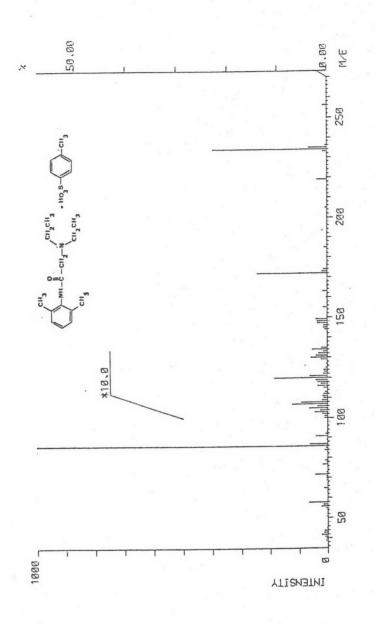




k





Figure 16 Infrared Absorption Spectrum of Lidocaine Tosylate as a Potassium Bromide Pellet.



Proton Nuclear Magnetic Resonance Spectrum of Lidocaine Tosylate in Chloroform-d.

Figure 17







#### In Vitro Skin Permeation Study.

- Materials. Α.
- 1. Equipments. UV Spectrophotometer Analytical balance pH Meter Magnetic stirrer Ultrasonic bath Permeation cell

Hitachi U-3200 Sartorius 2842 Radiometer PHM 61 Nuova II stirrer Bransonic 321

Chemicals. 2.

Test compounds<sup>a</sup>

Lidocaine Lidocaine hydrochloride Lidocaine adipate Lidocaine maleate Lidocaine malonate Lidocaine tosylate

May & Baker Monobasic sodium phosphate, AR Mallinckrodt Dibasic sodium phosphate, AR Sodium chloride, AR E. Merck Formaldehyde, AR May & Baker Dow chemicals Propylene glycol

Animals. 3.

New born pigs Local farm in Nakornprathom

<sup>a</sup>The compounds were prepared as described in synthesis section A.

B. Methods and Results.

1. Solutions.

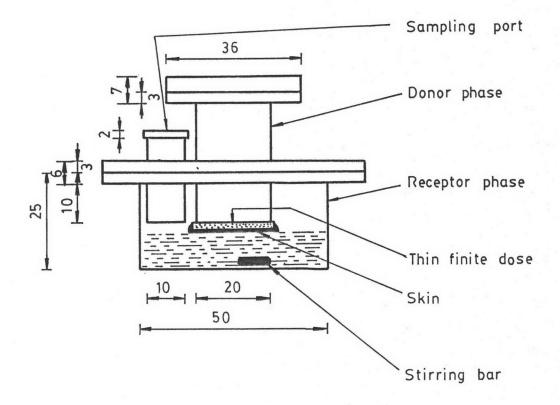
a) Monobasic sodium phosphate stock solution.  $NaH_2PO_4$  (8.00 g) was dissolved in distilled water and diluted to 1000 mL volume.

b) Dibasic sodium phosphate stock solution. Na<sub>2</sub>HPO<sub>4</sub> (9.47 g) was dissolved in distilled water and diluted to 1000 mL volume.

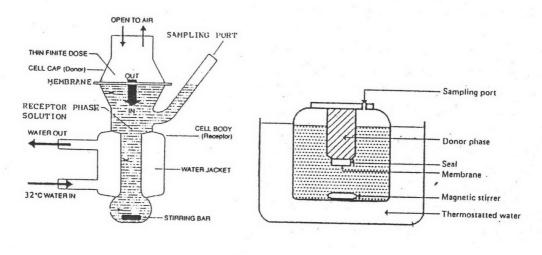
c) Isotonic phosphate buffer pH 7.4 (NF XIV). Sodium chloride (4.40 g) and 2.70 mL of 37% formaldehyde solution (as a preservative) were added to the mixture of 200 mL of monobasic sodium phosphate stock solution and 800 mL of dibasic sodium phosphate stock solution. The prepared solution was mixed well, adjusted to pH 7.4  $\pm$  0.1 with 10N sodium hydroxide or 18N phosphoric acid and degassed prior to use by ultrasonication.

d) Standard solutions. Standard solutions (1 mg/mL) of test compounds; lidocaine (I), lidocaine hydrochloride (I.HCl), lidocaine adipate (IV-A), lidocaine maleate (IV-B), lidocaine malonate (IV-C) and lidocaine tosylate (IV-D) were prepared by the following procedures. Stock solution of I was prepared by dissolving 50.0 mg, accurately weighed, in 1.0 mL of propylene glycol in a 25-mL beaker. The solution was transferred to a 50-mL volumetric flask with the aid of isotonic phosphate buffer pH 7.4 and diluted to volume with the same buffer. Stock solutions of other test compounds; I.HCl, IV-A, IV-B, IV-C, and IV-D, were prepared by dissolving 50.0 mg, accurately weighed, of the test compounds in isotonic phosphate buffer pH 7.4 in an individual 50-mL volumetric flask and diluting to volume with the same buffer.

The following volumes 1.0, 2.0, 5.0, 10.0 and 20.0 mL of stock solutions were individually pipetted into 50-mL volumetric flask and diluted to volume with isotonic phosphate buffer pH 7.4 so that each flask contained a concentration of 0.020, 0.040, 0.100, 0.200 and 0.400 mg/mL, respectively. In addition 0.004 mg/mL solution of test compounds were prepared by diluting 1.0 mL of stock solutions with isotonic phosphate buffer pH 7.4 to 250.0 mL volume.


e) Test solutions. Solutions of test compounds were prepared to give a concentration of 1% w/v in propylene glycol by dissolving 100.0 mg, accurately weighed, of test compounds in propylene glycol in an individual 10-mL volumetric flask and diluting to volume with propylene glycol.

#### 2. Permeation cell.


Skin permeation study was carried out using a permeation cell (Figure 20) modified from Franz diffusion apparatus and the apparatus in Hadgraft's study (Figure 21). The permeation cell consisted of two compartments, the donor cell in the upper and the receptor cell in the lower. The donor cell was mounted with the membrane on which the test solution was applied. The capacity of the receptor cell was 25 ml and the cross-sectional area of the donor cell which was effective permeation area was 3.8  $cm^2$ .

## 3. Skin preparation.

All permeation experiments were performed with full-thickness pig skin which were excised from side of male pigs. The age of the pigs was 1 day and the weight was about 1 kilogram. The subcutaneous fat and epidermal hair was removed by blunt section. The skin was free of obvious holes or defects. The skin obtained was rinsed with isotonic phosphate buffer pH 7.4, blotted dry, wrapped in plastic, overwrapped with aluminium foil, and store frozen before use. The frozen skin were immersed in isotonic phosphate buffer pH 7.4 and used in the permeation experiment within an hour.









(Ь)

Figure 21

Franz (a) and Hadgraft (b) Diffusion Cell.

## 4. Analytical method.

First derivative UV spectrophotometry is a technique selected for the determination of the content of test compounds in receptor cell to minimize matrix interferences. Equation 1 shows the expression of first derivative value  $(D_1)$ .

$$D_1 = \frac{dA}{d\lambda} - \dots - \dots - \dots (1)$$

where  $D_1$  = first derivative of absorbance A = absorbance  $\lambda$  = wavelength

Serial dilutions of concentration 0.004, 0.020, 0.040, 0.100, 0.200 and 0.400 mg/mL of prepared standard dilutions were recorded in 1-cm quartz cells over the range of 260 - 285 nm using spectrophotometer The spectra were with derivative capability. obtained at a band pass of 2 nm and a scanning speed of 60 nm/min. The recorder response was set at fast The first and derivative sensitivity was 8. derivative mode was adjusted zero by placing cuvettes filled with isotonic phosphate buffer pH 7.4 in both reference and sample compartments. After adjustment, sample compartment was replaced with standard or sample solutions and measured. At first, the absorbance spectrum in ultraviolet region was obtained, then the first derivative mode was selected and distinct spectrum from first derivative mode was obtained.

The wavelengths of maximum  $D_1$  of each test compound were determined. The maximum D1 values of standard solutions of all test compounds being examined were found to be at the same wavelength of about 272.9 nm.  $D_1$  spectra of serial standard solutions of test compounds were shown in Figure 22 - 27. The D<sub>1</sub> values of the standard solutions versus concentrations were listed in Table 7. Calibration curves between D<sub>1</sub> values and concentrations of standard solutions were plotted Each plot indicated that the (Figure 28). relationship between D<sub>1</sub> value and concentration was linear ( $R^2 = 0.9999$  to 1.0000) and conformed to Beer-Lambert's Law. The regression parameters relating  $D_1$ value and concentration were shown in Table 8.

## 5. Measurement of permeabilities.

Test compounds : I, I.HCl, IV-A, IV-B, IV-C and IV-D.

A circular sheet of pig skin of approximately 4 cm<sup>2</sup> in area was placed, dermal side down, between the donor and receptor phase of the permeation cell. The receptor phase was 25 mL isotonic phosphate buffer pH 7.4, maintained at room temperature (about 32  $\pm$  2<sup>O</sup>C) and stirred with stirring rate maintained at 600 rpm. The skin was kept in contact with the receptor phase for 48 hours prior to the application of the donor phase. The receptor phase was changed every 12 hours during 48-hour preapplication leach period. After this period, a 1.0 ml aliquot of the test solution, equivalent to about 10 mg of test compound, was applied to the donor side of the skin. The receptor phase was stirred at stirring rate maintained at 600 rpm. Samples (5.0 mL) were taken from the receptor phase every 12 hours during 48 hours period after application. The volume taken was replaced by fresh isotonic phosphate buffer The samples were stored in a refrigerator pH 7.4. until assay by first derivative UV spectrophotometry as described in in vitro skin permeation study section B4. Four determinations of skin permeation tests were performed and two pigs were used for each test compounds.

Control tests were carried out by application of the donor vehicle, 1.0 mL propylene glycol, instead of the test solutions.  $D_1$  values of control tests were used for correction of  $D_1$  values from samples in order to eliminate matrix interferences from pig skin. Absorbance spectrum and  $D_1$  spectrum of control test were displayed in Figure 29 - 30.  $D_1$  values of matrix interferences in

receptor phase of control experiment were listed in Table 9. Percent recovery of test compounds from  $D_1$ and corrected  $D_1$  were determined and shown in Table 10.

The  $D_1$  values measured from samples at 272.9 nm were listed in Table 11. The corrected  $D_1$ value were determined by subtraction of  $D_1$  value of the control test from  $D_1$  value of samples. Concentrations ( $C_T$ ) in  $\mu$ /mL of the samples taken at various time intervals were calculated by substituting corrected  $D_1$  values in the regression equations indicated in Table 8. The corrected  $D_1$  values and calculated concentrations ( $C_T$ ) were shown in Table 12. The cumulative amount ( $Q_T$ ) which was the total amount of test compound permeated through pig skin at the time observed was calculated by using equation 2.

$$Q_{\rm T}$$
 = (C<sub>T</sub> x 25) + (Q<sub>T-12</sub> x 0.2) ----- (2)

where  $Q_T =$  cumulative amount of test compound (Ug) permeated at time T.

> $C_{T}$  = concentration of test compound (Ag/mL) in sample taken at time T.

T = time of permeation (hr).

25 = volume of solution in receptor
 phase (mL).

0.2 = volume of sample taken (5.0 mL) divided by volume of solution in receptor phase (25 mL). Furthermore, determination of flux  $(J_T)$  of each test compound permeated through pig skin was accomplished. The expression shown in equation 3 was used to calculate  $J_T$ .

$$J_{\rm T} = \frac{Q_{\rm T}}{A{\rm T}} \qquad ----- \qquad (3)$$

where  $J_T = total$  amount of test compound permeated per unit of skin area at time T ( $\mu$ g/cm<sup>2</sup>. hr).

$$Q_{\rm T}$$
 = cumulative amount of test compound  
(Ag) permeated at time T.

A = skin area exposed to the donor phase  $(3.8 \text{ cm}^2)$ 

T = time of permeation (hr).

For permeability comparison, Q and J values were converted from  $\mu$ g to  $\mu$ mole. The obtained Q and J values of the test compounds were listed in Table 13. The Q and J values were plotted as a function of time as displayed in Figure 31 - 38. The comparison of Q and J values between the test compounds at observed time interval were evaluated by analysis of variance, Duncan multiple range test at the significant level of  $\ll < 0.05$ . The results were outlined in Table 14 - 17. First derivative of absorbance (D1) of standard solution of test compounds at 272.9 nm.<sup>a</sup> • • ~ Table

| Concentration <sup>b</sup> | Ι       |      | I.HC1   | IC1  | IV      | IV-A | IV-B         | 8    | IΛ      | IV-C | IV      | IV-D |
|----------------------------|---------|------|---------|------|---------|------|--------------|------|---------|------|---------|------|
| (mg/mL)                    | D1      | %CV  | D1      | %CV  | D1      | %CV  | D1           | %CV  | D1      | %CV  | D1      | %CV  |
|                            |         |      |         |      |         |      |              |      |         |      |         |      |
| 0.004                      | -0.0064 | 1.80 | -0.0069 | 1.67 | -0.0054 | 1.72 | -0.0058      | 1.00 | -0.0058 | 1.00 | -0.0056 | 2.06 |
| 0.020                      | -0.0258 | 0.59 | -0.0238 | 1.94 | -0.0164 | 1.96 | -0.0217 1.22 | 1.22 | -0.0184 | 1.37 | -0.0246 | 0.62 |
| 0.040                      | -0.0515 | 0.62 | -0.0449 | 1.02 | -0.0332 | 0.46 | -0.0418      | 0.36 | -0.0360 | 0.16 | -0.0453 | 0.22 |
| 0.100                      | -0.1284 | 0.44 | -0.1052 | 0.38 | -0.0777 | 0.32 | -0.0970      | 0.30 | -0.0886 | 0.45 | -0.1122 | 0.58 |
| 0.200                      | -0.2580 | 0.63 | -0.2097 | 0.87 | -0.1557 | 0.06 | -0.1969      | 0.36 | -0.1790 | 0.23 | -0.2262 | 1.27 |
| 0.400                      | -0.5083 | 0.38 | -0.4070 | 0.77 | -0.3122 | 0.20 | -0.3911      | 0.36 | -0.3500 | 0.16 | -0.4498 | 0.77 |
|                            |         |      |         |      |         |      |              | •    |         |      |         |      |

are averages of three determinations; test compounds are I (lidocaine), I.HCl (lidocaine and IV-D <sup>a</sup>D<sub>1</sub> values are averages of three determinations; test compound and a verages of three determinations; test compound and a values are averages of the malonate) hydrochloride), IV-C (lidocaine malonate)

<sup>b</sup>The solvent is isotonic phosphate buffer pH 7.4.

## Table 8 : Regression parameters of first derivative mode.<sup>a</sup>

| Test                  | Regression | n Parameter <sup>C</sup> | R <sup>2</sup> |
|-----------------------|------------|--------------------------|----------------|
| Compound <sup>b</sup> | m(Slope)   | z(Intercept)             | K              |
| I                     | -1.27062   | -0.00126                 | 0.9999         |
| I.HCl                 | -1.01104   | -0.00416                 | 0.9999         |
| IV-A                  | -0.77561   | -0.00133                 | 0.9999         |
| IV-B                  | -0.97280   | -0.00185                 | 0.9999         |
| IV-C                  | -0.87323   | -0.00178                 | 0.9999         |
| IV-D                  | -1.12199   | -0.00109                 | 1.0000         |
|                       |            |                          |                |

<sup>a</sup>Three determinations of six concentration levels; 0.004, 0.202, 0.040, 0.100, 0.200 and 0.400 mg/mL.

bI = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate, IV-D = lidocaine tosylate.

CY = mX + z, Y and X represent D<sub>1</sub> value and concentration (mg/mL), respectively.

| Table 9 : D <sub>1</sub> value of matrix interfere | ences. <sup>c</sup> | L |
|----------------------------------------------------|---------------------|---|
|----------------------------------------------------|---------------------|---|

| Time |         | D <sub>1</sub> (272 | 2.9 nm) |         | Decomo de |
|------|---------|---------------------|---------|---------|-----------|
| (hr) | Pig A   | Pig A               | Pig B   | Pig B   | Average   |
| 12   | -0.0025 | -0.0019             | -0.0017 | -0.0014 | -0.0019   |
| 24   | -0.0024 | -0.0022             | -0.0025 | -0.0016 | -0.0022   |
| 36   | -0.0028 | -0.0031             | -0.0034 | -0.0032 | -0.0032   |
| 48   | -0.0034 | -0.0035             | -0.0033 | -0.0034 | -0.0034   |

<sup>a</sup>D<sub>1</sub> value of receptor phase from control experiments described in **in vitro** skin permeation study section B5.

Table 10 : Percent recovery of test compounds.

| Test<br>Compound <sup>a</sup> | D1 <sup>b</sup> | %Recovery <sup>C</sup> | %Recovery <sup>c</sup> Corrected D <sub>1</sub> <sup>d</sup> | %Recovery <sup>e</sup> |
|-------------------------------|-----------------|------------------------|--------------------------------------------------------------|------------------------|
|                               |                 |                        |                                                              |                        |
| н                             | -0.1315         | 102.50                 | -0.1296                                                      | 101.01                 |
| V−A                           | -0.0822         | 104.27                 | -0.0803                                                      | 101.82                 |
| IV-B                          | -0.1005         | 101.41                 | -0.0986                                                      | 99.46                  |
| IV-C                          | -0.0911         | 102.29                 | -0.0892                                                      | 100.11                 |
|                               |                 |                        |                                                              |                        |

<sup>a</sup>I = lidocaine, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate. bAverage 'D<sub>1</sub> value (n = 2) of 0.100 mg/mL test compound in matrix from control experiment at 12 hours after application of propylene glycol.

C% Recovery = mg/mL Found x 100; mg/mL Found was calculated mg/mL Added from regression equations indicated in Table 8 using  $\mathsf{D}_1$  and  $\mathsf{mg/mL}$  Added was 0.1  $\mathsf{mg/mL}$ .

 $d_{corrected} D_1 = D_1 - D_{matrix}$ ;  $D_{matrix}$  at 12 hours after

application of propylene glycol was 0.0019.

<sup>e</sup>Corrected D<sub>1</sub> was used to calculate mg/mL Found.

## Table 11 : D<sub>1</sub> value of receptor phase after application of test compounds.

| Weat                          | Шime           |                                                                | D <sub>1</sub>                | (272.9 nm                     | 1)                            |
|-------------------------------|----------------|----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Test<br>Compound <sup>a</sup> | Time<br>(hr)   | Pig A                                                          | Pig A                         | Pig B                         | Pig B                         |
| I                             | 12             | -0.0080                                                        | -0.0091                       | -0.0075                       | -0.0133                       |
|                               | 24<br>36<br>48 | $ \begin{array}{c} -0.0100 \\ -0.0272 \\ -0.0301 \end{array} $ | -0.0195<br>-0.0236<br>-0.0298 | -0.0142<br>-0.0224<br>-0.0286 | -0.0160<br>-0.0172<br>-0.0236 |
| I.HCl                         | 12             | -0.0065                                                        | -0.0062                       | -0.0074                       | -0.0061                       |
|                               | 24             | -0.0114                                                        | -0.0115                       | -0.0106                       | -0.0109                       |
|                               | 36             | -0.0126                                                        | -0.0126                       | -0.0122                       | -0.0119                       |
|                               | 48             | -0.0155                                                        | -0.0158                       | -0.0154                       | -0.0152                       |
| IV-A                          | 12             | -0.0055                                                        | -0.0108                       | -0.0054                       | -0.0048                       |
|                               | 24             | -0.0113                                                        | -0.0128                       | -0.0112                       | -0.0108                       |
|                               | 36             | -0.0121                                                        | -0.0137                       | -0.0123                       | -0.0133                       |
|                               | 48             | -0.0146                                                        | -0.0146                       | -0.0146                       | -0.0146                       |
| IV-B                          | 12             | -0.0063                                                        | -0.0084                       | -0.0061                       | -0.0045                       |
|                               | 24             | -0.0102                                                        | -0.0101                       | -0.0100                       | -0.0080                       |
|                               | 36             | -0.0111                                                        | -0.0119                       | -0.0142                       | -0.0100                       |
|                               | 48             | -0.0122                                                        | -0.0124                       | -0.0149                       | -0.0116                       |
| IV-C                          | 12             | -0.0092                                                        | -0.0075                       | -0.0063                       | -0.0073                       |
|                               | 24             | -0.0103                                                        | -0.0096                       | -0.0082                       | -0.0092                       |
|                               | 36             | -0.0113                                                        | -0.0117                       | -0.0100                       | -0.0121                       |
|                               | 48             | -0.0136                                                        | -0.0139                       | -0.0141                       | -0.0129                       |
| IV-D                          | 12             | -0.0070                                                        | -0.0067                       | -0.0056                       | -0.0082                       |
|                               | 24             | -0.0114                                                        | -0.0117                       | -0.0103                       | -0.0091                       |
|                               | 36             | -0.0132                                                        | -0.0128                       | -0.0134                       | -0.0143                       |
|                               | 48             | -0.0153                                                        | -0.0159                       | -0.0151                       | -0.0163                       |

aI = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, V-C = lidocaine malonate, IV-D = lidocaine tosylate. : Corrected  $D_1$  value and  $C_T$  at various time intervals after application. Table 12

| Image         D1         CT         D1         D1 <th< th=""><th></th><th></th><th>Fd.</th><th>ig A</th><th>Pi</th><th>A B</th><th>۵.</th><th>Pig B</th><th>á</th><th>8 6</th><th>AV</th><th>Average</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |            | Fd.              | ig A             | Pi              | A B            | ۵.      | Pig B          | á       | 8 6            | AV      | Average        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|------------------|------------------|-----------------|----------------|---------|----------------|---------|----------------|---------|----------------|
| 12         -0.0061         3.803         -0.0072         4.674         -0.0056         3.415         -0.0033         6.406         -0.0071           24         -0.00240         17.885         -0.0244         15.063         -0.0120         8.452         -0.0136         14.190         -0.0136         10.0246           36         -0.0245         0.0244         19.785         -0.0245         19.785         -0.0245         14.190         -0.0347           12         -0.0032         4.984         -0.0043         5.083         -0.0034         5.182         -0.0037         1.4906         -0.0047           36         -0.0034         5.182         -0.0039         5.182         -0.0038         5.182         -0.0037         1.4906         -0.0037           36         -0.0124         5.182         -0.0039         9.160         -0.0037         1.537         -0.0037         1.556         -0.0037           12         -0.0039         9.185         -0.0126         11.552         -0.0033         5.182         -0.0033         5.234         -0.0033           26         -0.0039         9.780         -0.0120         11.552         -0.0012         11.552         -0.0033         5.237         -0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test<br>Compound <sup>a</sup> | (hr)       | q <sup>1</sup> 0 | c <sub>T</sub> c | 10              | с <sub>T</sub> | 1a      | с <sub>т</sub> | D1      | с <sub>т</sub> | P1      | с <sub>т</sub> |
| 24         -0.0038         5.934         -0.0173         12.623         -0.0120         8.452         -0.0138         14.119         -0.0136         10.1196         -0.0136         10.0136         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0136         11.119         -0.0131         11.119         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         -0.0131         11.110         11.110         11.110         11.110         11.1100         11.1100         11.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | • •        | -0 0061          | 3.809            |                 | 4.674          | -0.0056 |                | -0.0094 | 6.406          | -0.0071 | 4.576          |
| 36         -0.0264         15.063         -0.0149         10.734         -0.0192         14.119         -0.0146         14.119           12         -0.0035         5.083         -0.0252         18.841         -0.0202         14.906         -0.0246         14.119         -0.0146         14.119         -0.0246         14.119         -0.0246         14.119         -0.0246         14.119         -0.0246         14.190         -0.0144         15.083         -0.0042         4.193         -0.0042         14.490         -0.0039         5.083         -0.0033         5.083         -0.0034         4.193         -0.0041         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.0121         17.556         -0.01221         17.556         -0.0121<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                             | 10         | -0.0088          | 5.934            | -0.0173         | 12.623         | -0.0120 |                | -0.0138 | 9.869          | -0.0130 | 9.220          |
| 48         -0.0267         20.024         19.785         -0.0255         18.941         -0.0202         14.906         -0.0246         14.906         -0.0246         14.906         -0.0245         14.906         -0.0247         14.906         -0.0245         14.906         -0.0245         14.906         -0.0245         14.906         -0.0245         14.906         -0.0245         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.906         -0.0247         14.145         -0.00121         7.754         -0.0112         7.755         -0.0112         17.556         -0.0123         2.775         -0.0113         13.377         -0.0113         13.377         -0.0113         13.377         -0.0114         11.307         -0.0114         11.307         -0.0114         11.307         -0.0114         11.307         -0.0114         11.307         -0.0114         11.307         -0.0114         11.307         -0.01014         11.307         -0.0114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | t u<br>v r | -0.0240          | 17.896           | -0.0204         | 15.063         | -0.0149 |                | -0.0192 | 14.119         | -0.0196 | 14.453         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | 4          | -0.0267          | 20.021           | -0.0264         | 19.785         | -0.0252 | 18.841         | -0.0202 | 14.906         | -0.0246 | 18.388         |
| 24       -0.0092       4.984       -0.0093       5.182       -0.0093       5.182       -0.0033       5.182       -0.0033       5.182       -0.0031       4.761       -0.0031       4.761       -0.0031       4.769       -0.0031         24       -0.0121       7.853       -0.0124       8.150       -0.0120       7.754       -0.0118       7.556       -0.0031         24       -0.0031       10.018       -0.0105       11.952       -0.0031       9.760       -0.0033       2.024       -0.0031       11.301         24       -0.0031       10.018       -0.0105       11.952       -0.00117       13.370       -0.0115       13.112       -0.0034         26       -0.00112       12.725       -0.0117       12.725       -0.0117       13.370       -0.0115       13.112       -0.0034         26       -0.0039       9.389       -0.0112       12.725       -0.0117       13.370       -0.0115       13.112       -0.0034         26       -0.0039       7.241       -0.00117       13.370       -0.0115       13.112       -0.0034         26       -0.0039       7.241       -0.00119       9.405       -0.0035       6.527       -0.0034 <t< td=""><td></td><td></td><td></td><td>304 0</td><td>-0 0043</td><td>0 138</td><td>-0.0055</td><td>1.325</td><td>-0.0042</td><td>0.039</td><td>-0.0047</td><td>0.484</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |            |                  | 304 0            | -0 0043         | 0 138          | -0.0055 | 1.325          | -0.0042 | 0.039          | -0.0047 | 0.484          |
| 56 $-0.0034$ $5.182$ $-0.0034$ $5.182$ $-0.0034$ $5.182$ $-0.0034$ $5.182$ $-0.0031$ $1.952$ $-0.0031$ $1.754$ $-0.0018$ $7.556$ $-0.0121$ $12$ $-0.0036$ $2.926$ $-0.0124$ $8.150$ $-0.0035$ $2.797$ $-0.0039$ $2.024$ $-0.0037$ $24$ $-0.0036$ $9.889$ $-0.0031$ $10.018$ $7.556$ $-0.0037$ $11.952$ $-0.0037$ $26$ $-0.0012$ $12.725$ $-0.0016$ $11.952$ $-0.0017$ $11.337$ $-0.0017$ $36$ $-0.0112$ $12.725$ $-0.0017$ $12.725$ $-0.0017$ $11.337$ $-0.0014$ $12$ $-0.0036$ $6.221$ $-0.0078$ $6.219$ $-0.0016$ $9.405$ $-0.0074$ $24$ $-0.0079$ $6.219$ $-0.0078$ $6.219$ $-0.0078$ $6.116$ $-0.0074$ $26$ $-0.0073$ $6.221$ $-0.0078$ $6.219$ $-0.0078$ $6.116$ $-0.0074$ $26$ $-0.0073$ $6.221$ $-0.0074$ $6.116$ $-0.0076$ $-0.0074$ $26$ $-0.0073$ $6.221$ $-0.0074$ $6.219$ $-0.0076$ $-0.0074$ $27$ $-0.0073$ $6.221$ $-0.0074$ $6.219$ $-0.0076$ $-0.0076$ $28$ $-0.0073$ $6.221$ $-0.0074$ $4.145$ $-0.0076$ $28$ $-0.0073$ $6.221$ $-0.0074$ $4.145$ $-0.0076$ $28$ $-0.0073$ $6.221$ $-0.0076$ $4.337$ $-0.0076$ $4.145$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I .HCI                        |            | -0.0040          | 4 984            | 8600 0-         | 5.083          | -0.0084 | 4.193          | -0.0087 | 4.490          | -0.0089 | 4.688          |
| 12       -0.0121       7.853       -0.0124       8.150       -0.0120       7.754       -0.0118       7.556       -0.0121         12       -0.0035       2.926       -0.0105       11.952       -0.0035       2.797       -0.0023       2.024       -0.0037         24       -0.0031       10.018       -0.0105       11.952       -0.0031       10.018       -0.0037       2.024       -0.0037         36       -0.0112       12.725       -0.0117       13.370       -0.0115       13.112       -0.0037         12       -0.0012       12.725       -0.0117       13.370       -0.0115       13.112       -0.0017         36       -0.0013       12.725       -0.0117       13.370       -0.0115       13.112       -0.0114         12       -0.0079       6.219       -0.0017       13.370       -0.0115       13.112       -0.0014         24       -0.0088       7.041       -0.0110       9.405       -0.0076       6.577       -0.0094         25       -0.0073       6.219       -0.0115       9.405       -0.0076       6.577       -0.0076         26       -0.0083       7.144       -0.0074       5.0168       4.145       -0.0077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 4 0        | 70000            | 1001             |                 | 5.182          | -0.0090 | 4.787          | -0.0087 | 4.490          | -0.0091 | 4.910          |
| $ \begin{bmatrix} 2 & -0.0036 & 2.926 & -0.0039 & 9.760 & -0.0035 & 2.797 & -0.0029 & 2.024 & -0.0047 \\ -0.0091 & 10.018 & -0.0106 & 11.952 & -0.0091 & 10.018 & 9.373 & -0.0097 \\ -0.0112 & 12.725 & -0.0112 & 12.725 & -0.0117 & 13.370 & -0.0115 & 13.112 & -0.0114 \\ 12 & -0.0014 & 2.621 & -0.0065 & 4.780 & -0.0042 & 2.415 & -0.0026 & 0.770 & -0.0044 \\ -0.0079 & 6.221 & -0.0087 & 7.041 & -0.0115 & 9.416 & -0.0028 & 4.060 \\ -0.0079 & 6.221 & -0.0087 & 7.041 & -0.0115 & 9.416 & -0.0028 & 4.060 \\ -0.0079 & 6.221 & -0.0087 & 7.041 & -0.0115 & 9.416 & -0.0026 & 0.770 & -0.0044 \\ -0.0079 & 6.221 & -0.0087 & 7.041 & -0.0115 & 9.405 & 0.770 & -0.0044 \\ -0.0079 & 6.221 & -0.0087 & 7.041 & -0.0115 & 9.919 & -0.0058 & 4.060 & -0.0074 \\ -0.0088 & 7.144 & -0.0087 & 7.349 & -0.0115 & 9.919 & -0.0058 & 6.527 & -0.0087 \\ -0.0081 & 7.237 & -0.0085 & 4.374 & -0.0115 & 9.919 & -0.0068 & 5.088 & -00071 \\ -0.0081 & 7.237 & -0.0085 & 4.374 & -0.0074 & 3.000 & -0.0068 & 8.153 & -0.0087 \\ -0.0081 & 7.237 & -0.0085 & 9.985 & -0.00076 & 8.826 & -0.0087 & 8.153 & -0.0087 \\ -0.0081 & 7.237 & -0.0085 & 9.985 & -0.00074 & 5.977 & -0.0087 \\ -0.00092 & 3.574 & -0.0086 & 3.306 & -0.00074 & 5.977 & -0.0087 & 8.153 & -0.0087 \\ -0.00012 & 3.574 & -0.0085 & 7.584 & -0.0003 & 8.153 & -0.0063 & 5.178 & -0.0087 \\ -0.0012 & 3.574 & -0.0085 & 7.584 & -0.00107 & 10.214 & 0.0063 & 5.178 & -0.0028 \\ -0.0012 & 9.642 & -0.0085 & 7.584 & -0.0102 & 8.119 & -0.0129 & 10.525 & -0.0122 \\ -0.0012 & 9.645 & -0.0125 & 10.169 & 0.0117 & 9.456 & -0.0129 & 10.525 & -0.0122 \\ -0.0012 & 9.645 & -0.0125 & 10.169 & -0.0122 & 10.125 & -0.0122 & 10.123 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0117 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0122 & -0.0117 & -0.0123 & -0.0122 & -0.0122 & -0.0112 & -0.0122 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0122 & -0.0112 & -0.0112 & -0.0112 & -0.$ |                               | 400        | -0.0121          | 7.853            |                 | 8.150          | -0.0120 | 7.754          | -0.0118 | 7.556          |         | 7.828          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |            | •                |                  |                 |                | 1000    |                | 0000    | PCU C          | -0 0047 | 4.377          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IV-A                          | 12         | -0.0036          |                  | -0.0089         | 9.760          | -0.0035 | 181.2          | -0.0086 | 0.273          | -0.0093 | 10.308         |
| 36 $-0.0030$ 9.889 $-0.0112$ $12.725$ $-0.0117$ $13.370$ $-0.0115$ $13.112$ $-0.0114$ $1$ 12 $-0.0014$ $2.521$ $-0.0079$ $6.219$ $-0.0017$ $6.219$ $-0.0076$ $0.770$ $-0.0044$ $2.621$ $-0.0079$ $6.219$ $-0.0078$ $6.116$ $-0.0026$ $0.770$ $-0.0074$ 26 $-0.0038$ $7.144$ $-0.0079$ $6.219$ $-0.0078$ $6.116$ $-0.0026$ $0.770$ $-0.0074$ 36 $-0.0073$ $6.219$ $-0.0115$ $9.405$ $-0.0088$ $7.048$ $-0.0074$ 12 $-0.0073$ $6.2219$ $-0.0115$ $9.319$ $-0.0088$ $5.088$ $-0.0094$ 12 $-0.0073$ $6.221$ $-0.0074$ $6.207$ $-0.0088$ $5.088$ $-0.0094$ 12 $-0.0073$ $6.321$ $-0.0074$ $6.435$ $-0.0070$ $8.4145$ $-0.0037$ 24 $-0.0038$ $7.237$ $-0.0070$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 24         | -0.0091          |                  | -0.0106         | 208.11         | 10000   | 010            | 1010    | 11 307         | -0.0097 | 10.759         |
| 48       -0.0014       2.621       -0.0055       4.780       -0.0042       2.415       -0.0026       0.770       -0.0044         24       -0.0080       6.321       -0.0079       6.219       -0.0078       6.116       -0.0075       4.050       -0.0074         35       -0.0079       6.219       -0.0079       6.219       -0.0076       5.088       -0.0074         36       -0.0080       6.219       -0.00115       9.405       -0.0083       5.088       -0.0094         36       -0.0073       6.219       -0.00115       9.919       -0.0082       5.527       -0.0094         12       -0.0073       6.231       -0.00166       4.374       -0.0115       9.919       -0.0084       5.977       -0.0094         12       -0.0081       7.237       -0.0074       6.435       -0.0074       3.000       -0.0070       5.977       -0.0091         24       -0.0081       7.237       -0.0075       9.435       -0.0070       8.153       -0.0071         254       -0.0081       8.726       -0.0070       8.7832       -0.0070       8.840       -0.0071         264       -0.0070       9.597       -0.0070       8.745 <td< td=""><td></td><td>36</td><td>-0.0090</td><td></td><td>-0.010-<br/>0110</td><td>12 725</td><td>-0.0117</td><td>13.370</td><td>-0.0115</td><td>13.112</td><td>-0.0114</td><td>12.983</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | 36         | -0.0090          |                  | -0.010-<br>0110 | 12 725         | -0.0117 | 13.370         | -0.0115 | 13.112         | -0.0114 | 12.983         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |            | 2110.0-          |                  |                 |                |         |                |         |                |         |                |
| 24       -0.0038       6.219       -0.0078       6.116       -0.0058       4.060       -0.0074         35       -0.0079       6.219       -0.0110       9.405       -0.0068       5.088       -0.0044         36       -0.0073       6.219       -0.0110       9.405       -0.0082       5.527       -0.0094         12       -0.0073       6.231       -0.0056       4.374       -0.0115       9.919       -0.0082       5.527       -0.0094         12       -0.0081       7.237       -0.0074       6.435       -0.0074       8.726       -0.0070       8.153       -0.0071         24       -0.0031       7.237       -0.0075       9.985       -0.0074       8.726       -0.0070       8.153       -0.0081         36       -0.0031       7.237       -0.0085       7.695       -0.0074       8.726       -0.0070       8.153       -0.0081         12       -0.0031       7.237       -0.0048       3.306       -0.0034       8.726       -0.0070       8.463       -0.0081         12       -0.0051       3.574       -0.0048       3.306       -0.0033       2.2326       -0.0070       5.977       -0.0070       5.977       -0.0081       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0                          |            | -0.0044          | 2.621            | -0.0065         | 4.780          | -0.0042 |                | -0.0026 | 0.770          | -0.0044 | 2.647          |
| 35       -0.0079       6.219       -0.0087       7.041       -0.0110       9.405       -0.0068       5.088       -0.0084         48       -0.0088       7.144       -0.0090       7.349       -0.0115       9.919       -0.0082       6.527       -0.0094         12       -0.0081       7.237       -0.0056       4.374       -0.0074       3.000       -0.0073       6.577       -0.0094         24       -0.0081       7.237       -0.0076       4.374       -0.0074       3.000       -0.0070       5.977       -0.0071         24       -0.0081       7.237       -0.0075       5.977       -0.0070       5.977       -0.0071         36       -0.0102       9.642       -0.0076       4.832       -0.0070       5.977       -0.0081         36       -0.0102       9.642       -0.0070       8.726       -0.0070       5.977       -0.0071         24       -0.0070       8.726       -0.0070       8.840       -0.0102         24       -0.0065       3.306       -0.0033       2.5326       -0.0063       4.643       -0.0054         24       -0.0005       7.495       -0.00037       2.326       -0.00663       4.643       -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q-AT                          |            | -0.0080          | 6.321            | -0.0079         | 6.219          | -0.0078 |                | -0.0058 | 4.060          | -0.0074 | 5.679          |
| 48       -0.0038       7.144       -0.0056       4.374       -0.0015       9.919       -0.0082       6.527       -0.0034         12       -0.0073       6.321       -0.0056       4.374       -0.0074       3.000       -0.0054       4.145       -0.0071         24       -0.0031       7.237       -0.0074       5.977       -0.0076       5.977       -0.0071         25       -0.0031       7.237       -0.0074       5.977       -0.0070       5.977       -0.0071         25       -0.0031       7.237       -0.0074       5.976       -0.0070       8.125       -0.0071         25       -0.00102       9.642       -0.00105       9.985       -0.00034       8.726       -0.0070       8.153       -0.0081         26       -0.00102       3.574       -0.00105       9.3306       -0.00031       2.326       -0.00653       4.643       -0.0102         24       -0.00102       3.574       -0.0035       7.495       -0.00031       2.326       -0.00063       5.178       -0.0056         25       -0.00103       7.258       -0.0012       8.119       -0.0102       8.119       -0.0012         26       -0.00103       7.584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |            | 0000             | 6 219            | -0.0087         | 7.041          | -0.0110 |                | -0.0068 | 5.088          | -0.0086 | 6.938          |
| 12         -0.0073         6.321         -0.0056         4.374         -0.0074         3.000         -0.0054         4.145         -0.0057           24         -0.0081         7.237         -0.0074         6.435         -0.0050         4.832         -0.0070         5.977         -0.0071           36         -0.0081         7.237         -0.0085         7.695         -0.0094         8.726         -0.0070         5.977         -0.0071           36         -0.0081         7.237         -0.0085         7.695         -0.0094         8.726         -0.0070         5.977         -0.0071           36         -0.00102         9.642         -0.0105         9.985         -0.0107         10.214         -0.0089         8.153         -0.0102           12         -0.0051         3.574         -0.0048         3.306         -0.0037         2.326         -0.0063         4.643         -0.0102           12         -0.0051         3.574         -0.0035         7.495         -0.0031         2.326         -0.00063         4.643         -0.0056           24         -0.0092         7.584         -0.00031         5.178         -0.00063         5.178         -0.00084           36         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            | -0.0088          | 7.144            | -0.0090         | 7.349          | -0.0115 |                |         | 6.527          | -0.0094 | 7.735          |
| 12       -0.0013       7.237       -0.0074       6.435       -0.0060       4.832       -0.0070       5.977       -0.0071         24       -0.0081       7.237       -0.0074       6.435       -0.0064       8.726       -0.0070       5.977       -0.0081         36       -0.0102       9.642       -0.0105       9.985       -0.0107       10.214       -0.0083       8.153       -0.0102         12       -0.0102       9.642       -0.0105       9.985       -0.0107       10.214       -0.0083       8.840       -0.0102         12       -0.0051       3.574       -0.0048       3.306       -0.0037       2.326       -0.0063       4.643       -0.0102         24       -0.0092       7.495       -0.0037       2.326       -0.0063       5.178       -0.0084         25       -0.00103       7.584       -0.0037       2.326       -0.00111       8.921       -0.0084         26       -0.00103       7.584       -0.0012       8.119       -0.0112       8.119       -0.0123         25       -0.01103       9.634       -0.0125       10.169       -0.0117       9.455       -0.0123       10.525       -0.0123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |            | 0100 0           |                  | 0.0056          | A 27A          | -0.0074 | 3.000          | -0.0054 |                |         | 4.460          |
| 24       -0.0081       7.237       -0.0085       7.695       -0.0094       8.726       -0.0089       8.153       -0.0087         36       -0.0102       9.642       -0.0105       9.985       -0.0107       10.214       -0.0095       8.840       -0.0102         12       -0.00102       9.642       -0.0048       3.306       -0.0037       2.326       -0.0063       4.643       -0.0102         12       -0.0092       7.228       -0.0095       7.495       -0.0081       6.247       -0.0063       4.643       -0.0084         24       -0.0010       7.924       -0.0095       7.495       -0.0081       6.247       -0.0069       5.178       -0.0084         25       -0.0110       7.941       -0.0095       7.584       -0.0112       8.119       -0.0111       8.921       -0.0102         36       -0.0119       9.634       -0.0125       10.169       -0.0117       9.456       -0.0129       10.525       -0.0123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IV-C                          |            | -0.00/3          |                  | 200.0-          | 10.1           | 0000    |                | -0.0070 |                |         | 6.120          |
| 36         -0.0031         7.23         -0.0105         9.985         -0.0107         10.214         -0.0035         8.840         -0.0102           48         -0.0102         9.642         -0.0105         9.985         -0.0107         10.214         -0.0035         8.840         -0.0102           12         -0.0051         3.574         -0.0048         3.306         -0.0037         2.326         -0.0063         4.643         -0.0054           24         -0.0092         7.228         -0.0095         7.495         -0.0081         6.247         -0.0069         5.178         -0.0084           25         -0.0100         7.941         -0.0095         7.584         -0.0102         8.119         -0.0111         8.921         -0.0102           36         -0.0119         9.634         -0.0125         10.169         -0.0117         9.455         -0.0129         10.525         -0.0123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 24         | -0.0081          |                  | 4/00.00         | 004.0          | 4000-   |                | -0.0089 |                |         | 7.953          |
| 48       -0.0005       3.574       -0.0048       3.306       -0.0037       2.326       -0.0063       4.643       -0.0050         12       -0.0092       7.228       -0.0095       7.495       -0.0081       6.247       -0.0069       5.178       -0.0084         24       -0.00100       7.928       -0.0095       7.495       -0.00112       8.119       -0.0111       8.921       -0.0102         36       -0.0110       7.944       -0.0122       8.119       -0.0111       8.921       -0.0102         48       -0.0119       9.634       -0.0125       10.169       -0.0117       9.456       -0.0129       10.525       -0.0123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 36         | -0.0081          | - 0              | 2010.0-         | 280.0          | -0.0107 | -              | -0.0095 |                |         | 9.670          |
| 12         -0.0051         3.574         -0.0048         3.306         -0.0037         2.326         -0.0063         4.643         -0.0050           24         -0.0092         7.228         -0.0095         7.495         -0.0081         6.247         -0.0069         5.178         -0.0084           36         -0.0100         7.941         -0.0096         7.584         -0.0102         8.119         -0.0111         8.921         -0.0102           48         -0.0119         9.634         -0.0125         10.169         -0.0117         9.456         -0.0129         10.525         -0.0123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                             | 4          | -0.0102          |                  | •               |                |         |                |         |                |         |                |
| 24         -0.0092         7.228         -0.0095         7.495         -0.0081         6.247         -0.0069         5.178         -0.0084           36         -0.0100         7.941         -0.0096         7.584         -0.0102         8.119         -0.0111         8.921         -0.0102           36         -0.0119         9.634         -0.0125         10.169         -0.0117         9.456         -0.0123         10.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |            | -0 0051          |                  |                 |                | -       |                |         |                |         |                |
| -0.0100 7.941 -0.0096 7.584 -0.0102 8.119 -0.0111 8.921 -0.0102<br>-0.0119 9.634 -0.0125 10.169 -0.0117 9.456 -0.0129 10.525 -0.0123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n-AT                          | 10         | 0000-            |                  |                 |                |         |                |         |                |         |                |
| -0.0119 9.634 -0.0125 10.169 -0.0117 9.456 -0.0129 10.525 -0.0123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | tu         | 0100             |                  |                 |                |         |                |         |                |         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | 48         | -0.0119          |                  |                 | -              |         |                | ?       | . 52           | -0.0123 |                |

<sup>a</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adit IV-C = lidocaine malonate, IV-D = lidocaine tosylate. <sup>b</sup>Corrected D<sub>1</sub> value. <sup>c</sup>Concentration of test compounds (Mg/mL) in sample taken at time T.

| Test                  | Time | .Q <sup>b</sup> (sem)        | J <sup>C</sup> (SEM)           | Q <sup>b</sup> (SEM)        | J <sup>C</sup> (SEM)                     |
|-----------------------|------|------------------------------|--------------------------------|-----------------------------|------------------------------------------|
| Compound <sup>a</sup> | (hr) | (µg)                         | (Дg/cm <sup>2</sup> .hr)       | (ДМ)×10                     | (ДМ/cm <sup>2</sup> .hr)×10 <sup>3</sup> |
| I                     | 12   | 114.4 (16.6)<br>253.4 (36.5) | 2.509 (0.364)<br>2.779 (0.400) | 4.88 (0.71)<br>10.81 (1.56) | 10.707 (1.553)<br>11.859 (1.707)         |
|                       | 36   | 412.0 (35.8)                 | 3.012 (0.262)                  | 17.58 (1.53)                | 12.853 (1.118)                           |
|                       | 48   | 542.1 (32.2)                 | 2.972 (0.177)                  | 23.13 (1.37)                | 12.682 (0.755)                           |
| 1.НС1                 | 12   | 12.1 (7.3)<br>119.6 (4.4)    | 0.266 (0.160)<br>1.312 (0.049) | 0.42 (0.25)<br>4.14 (0.15)  | 0.921 (0.554)<br>4.543 (0.170)           |
|                       | 36   | 146.7 (5.0)                  | 1.072 (0.037)                  | 5.08 (0.17)                 | 3.712 (0.128)                            |
|                       | 48   | 225.1 (4.0)                  | 1.234 (0.022)                  | 7.79 (0.14)                 | 4.273 (0.076)                            |
| IV-A                  | 12   | 109.4 (45.1)<br>279.6 (23.1) | 2.400 (0.990)<br>3.066 (0.253) | 2.88 (1.19)<br>7.35 (0.61)  | 6.308 (2.602)<br>8.085 (0.665)           |
|                       | 36   | 324.9 (15.2)                 | 2.375 (0.111)                  | 8.54 (0.40)                 | 6.242 (0.292)                            |
|                       | 48   | 389.6 (3.8)                  | 2.136 (0.021)                  | 10.24 (0.10)                | 5.614 (0.055)                            |
| IV-B                  | 12   | 66.2 (20.6)                  | 1.451 (0.451)                  | 1.89 (0.59)                 | 4.141 (1.287)                            |
|                       | 24   | 155.2 (16.9)                 | 1.702 (0.185)                  | 4.43 (0.48)                 | 4.857 (0.528)                            |
|                       | 36   | 204.5 (25.0)                 | 1.495 (0.183)                  | 5.84 (0.71)                 | 4.266 (0.522)                            |
|                       | 48   | 234.3 (23.5)                 | 1.284 (0.129)                  | 6.69 (0.67)                 | 3.664 (0.368)                            |
| IV-C                  | 12   | 111.5 (17.2)                 | 2.445 (0.378)                  | 3.30 (0.51)                 | 7.225 (1.117)                            |
|                       | 24   | 175.3 (15.9)                 | 1.922 (0.174)                  | 5.18 (0.47)                 | 5.680 (0.514)                            |
|                       | 36   | 233.9 (4.8)                  | 1.710 (0.035)                  | 6.91 (0.14)                 | 5.053 (0.103)                            |
| ×                     | 48   | 288.6 (7.7)                  | 1.582 (0.042)                  | 8.53 (0.23)                 | 4.675 (0.124)                            |
| IV-D                  | 12   | 86.6 (11.9)                  | 1.898 (0.261)                  | 2.13 (0.29)                 | 4.669 (0.642)                            |
|                       | 24   | 180.8 (12.3)                 | 1.982 (0.135)                  | 4.45 (0.30)                 | 4.875 (0.332)                            |
|                       | 36   | 239.7 (4.9)                  | 1.752 (0.036)                  | 5.90 (0.12)                 | 4.310 (0.089)                            |
|                       | 48   | 296.6 (6.7)                  | 1.626 (0.037)                  | 7.30 (0.16)                 | 4.000 (0.091)                            |

Table 13 : In vitro permeability of test compounds.

<sup>a</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate, IV-D = lidocaine tosylate.

<sup>b</sup>Cumulative amount of test compound permeated.

CFlux.

: Comparison of permeability results at 12 hours after application. 14 Table

| Test                  |            | Ø                                | Q(row)/Q(column)<br>(µM×10) | ( um      |           |                                   | IN)        | (JMx10 <sup>3</sup> /cm <sup>2</sup> .hr) |                     |           |
|-----------------------|------------|----------------------------------|-----------------------------|-----------|-----------|-----------------------------------|------------|-------------------------------------------|---------------------|-----------|
| Compound <sup>a</sup> | I          | I.HC1                            | IV-A                        | IV-B      | IV-C      | I                                 | I.HC1      | IV-A                                      | IV-B                | IV-C      |
| I.HC1                 | 0.42/4.88* |                                  |                             |           |           | 0.92/10.71*                       |            |                                           |                     |           |
| IV-A                  | 2.87/4.88  | 2.87/0.42*                       |                             |           |           | 6.31/10.71                        | 6.31/0.92* |                                           |                     |           |
| IV-B                  | 1.89/4.88* | 1.89/4.88* 1.89/0.42             | 1.89/2.87                   |           |           | 4.14/10.71* 4.14/0.92             | 4.14/0.92  | 4.14/6.31                                 |                     |           |
| IV-C                  | 3.29/4.88  | 3.29/0.42*                       | 3.29/2.87                   | 3.29/1.89 |           | 7.23/10.71                        | 7.23/0.92* | 7.23/6.31                                 | 7.32/4.14           |           |
| IV-D                  | 2.13/4.88* | 2.13/4.88 <sup>*</sup> 2.13/0.42 | 2.13/2.87                   | 2.13/1.89 | 2.13/3.29 | 4.67/10.71 <sup>*</sup> 4.67/0.92 | 4.67/0.92  |                                           | 4.67/6.31 4.67/4.14 | 4.67/7.23 |

<sup>a</sup>I = lidocaine. I.HCl = lidocaine hydrochloride. IV-A = lidocaine adipate. IV-B = lidocaine maleate. IV-C = lidocaine malonate. IV-D = lidocaine tosylate.

\*significantly different (  $\checkmark$  < 0.05), Analysis of variance, Duncan's multiple range test.

: Comparison of permeability results at 24 hours after application. Table 15

| Test  |                                  | Ø          | Q(row)/Q(column<br>(JUM×10) | ( um      |                     |                                   | 1)<br>1    | J(row)/J(column)<br>(µM×10 <sup>3</sup> /cm <sup>2</sup> .hr) | ( ur<br>( · |           |
|-------|----------------------------------|------------|-----------------------------|-----------|---------------------|-----------------------------------|------------|---------------------------------------------------------------|-------------|-----------|
|       | н                                | I.HC1      | IV-A                        | IV-B      | IV-C                | I                                 | I.HC1      | IV-A                                                          | IV-B        | IV-C      |
| I.HC1 | 4.14/10.81*                      |            |                             |           |                     | 4.54/11.86*                       |            |                                                               |             |           |
| IV-A  | 7.35/10.81* 7.35/4.14*           | 7.35/4.14* |                             |           |                     | 8.06/11.86*                       | 8.06/4.54* |                                                               |             |           |
| IV-B  | 4.43/10.81* 4.43/4.14 4.43/7.35* | 4.43/4.14  | 4.43/7.35*                  |           |                     | 4.86/11.86*                       | 4.86/4.54  | 4.86/8.06*                                                    |             |           |
| IV-C  | 5.18/10.81* 5.18/4.14 5.18/7.35  | 5.18/4.14  | 5.18/7.35                   | 5.18/4.43 |                     | 5.68/11.86*                       | 5.68/4.54  | 5.68/8.06                                                     | 5.68/4.86   |           |
| IV-D  | 4.45/10.81* 4.45/4.14 4.45/7.35* | 4.45/4.14  | 4.45/7.35*                  |           | 4.45/4.43 4.45/5.18 | 4.87/11/86 <sup>*</sup> 4.87/4.54 | 4.87/4.54  | 4.87/8.06* 4.87/4.86                                          | 4.87/4.86   | 4.87/5.68 |
|       |                                  |            |                             |           |                     |                                   |            |                                                               |             |           |

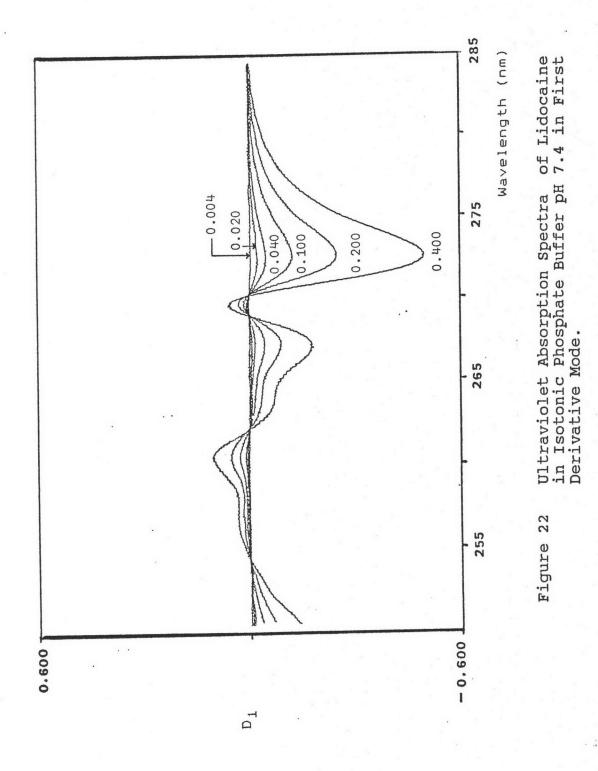
<sup>a</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate, IV-D = lidocaine tosylate.

\*Significantly different ( lpha < 0.05), Analysis of variance, Duncan's multiple range test.

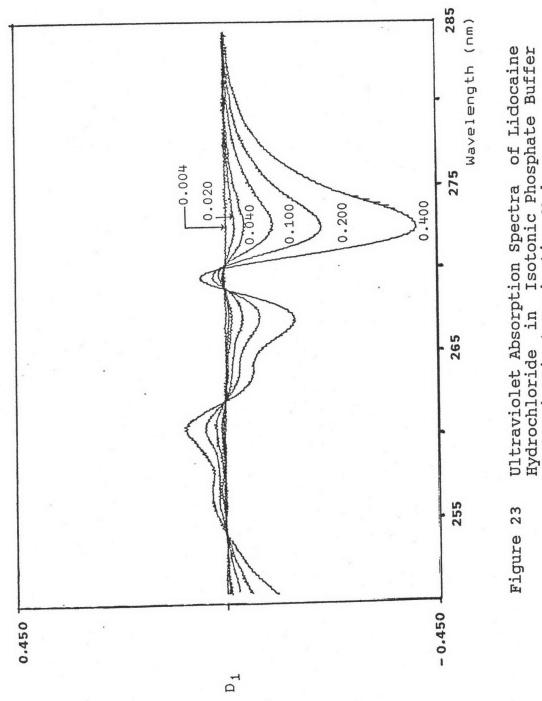
Comparison of permeability results at 36 hours after application. .. 16 Table

| Test  |                                                          |            | Q(row)/Q(column)<br>(µM×10) | ( umn     |           |                                                                                      |            | J(row)/J(column)<br>(//W×10 <sup>3</sup> /cm <sup>2</sup> .hr) | mn )<br>r ) |           |
|-------|----------------------------------------------------------|------------|-----------------------------|-----------|-----------|--------------------------------------------------------------------------------------|------------|----------------------------------------------------------------|-------------|-----------|
|       | I                                                        | I.HC1      | IV-A                        | IV-B      | IV-C      | н                                                                                    | I.HC1      | IV-A                                                           | IV-B        | IV-C      |
| I.HC1 | 5.08/17.58*                                              |            |                             |           |           | 3.71/11.33*                                                                          |            |                                                                |             |           |
| IV-A  | 8.54/17.58*                                              | 8.54/5.08* | 24                          |           |           | 6.24/11.33* 6.24/3.71*                                                               | 6.24/3.71* |                                                                |             |           |
| IV-B  | 5.83/17.58 <sup>*</sup> 5.83/5.08 5.83/8.54 <sup>*</sup> | 5.83/5.08  | 5.83/8.54*                  |           |           | 4.27/11.33* 4.27/3.71 4.27/6.24*                                                     | 4.27/3.71  | 4.27/6.24*                                                     |             |           |
| IV-C  | 6.91/17.58*                                              |            | 6.91/5.08 6.91/8.54         | 6.91/5.83 |           | 5.05/11.33*                                                                          | 5.05/3.71  | 5.05/11.33 <sup>*</sup> 5.05/3.71 5.05/6.24 5.05/4.27          | .05/4.27    |           |
| IV-D  | 5.90/17.58 <sup>*</sup> 5.90/5.08 5.90/8.54 <sup>*</sup> | 5.90/5.08  | 5.90/8.54*                  | 5.90/5.83 | 5.90/6.91 | 5.90/5.83 5.90/6.91 4.31/11.33* 4.31/3.71 4.31/6.24 <sup>*</sup> 4.31/4.27 4.31/5.05 | 4.31/3.71  | 4.31/6.24* 4                                                   | .31/4.27    | 4.31/5.05 |

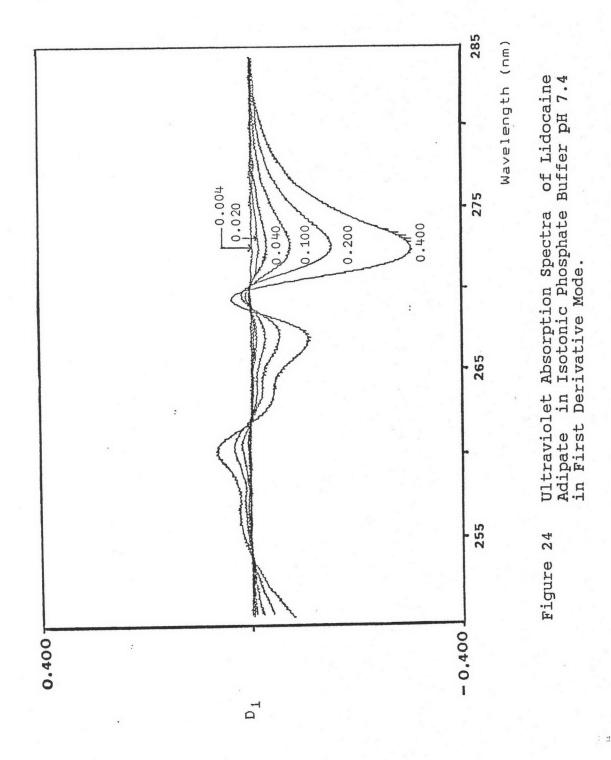
<sup>a</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate. IV-D = lidocaine tosylate.

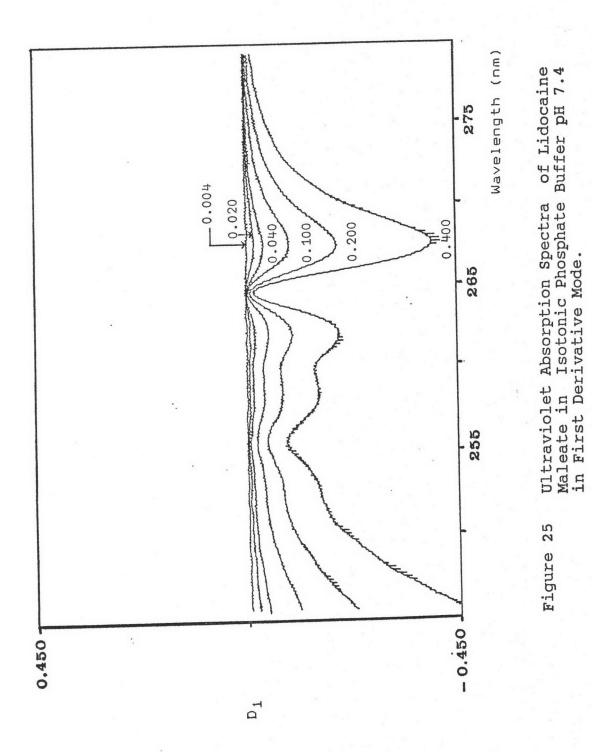

\*Significantly different ( < 0.05), Analysis of variance, Duncan's multiple range test.

: Comparison of permeability results at 48 hours after application. Table 17

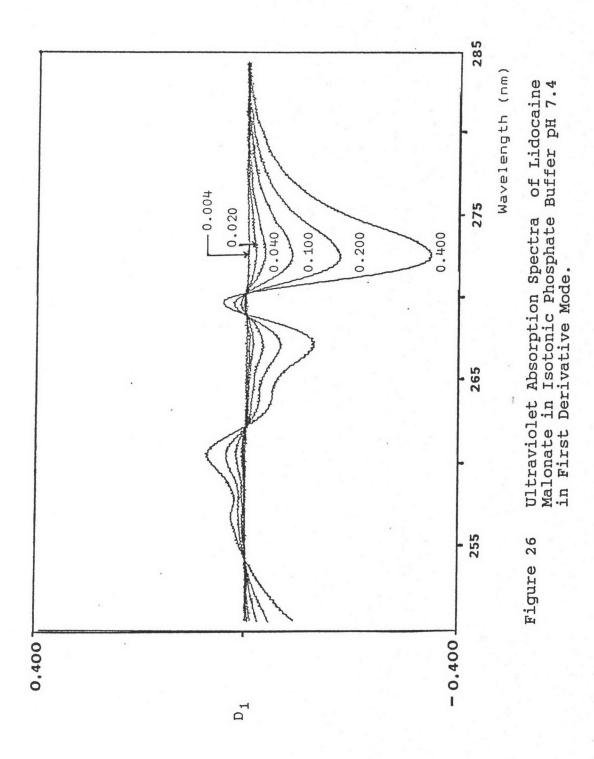

| compound <sup>a</sup> I                                        |             | (MW×10)     | •                   |           |                        | 7)         | (,,Mx10 <sup>3</sup> /cm <sup>2</sup> .hr) | r)        |           |
|----------------------------------------------------------------|-------------|-------------|---------------------|-----------|------------------------|------------|--------------------------------------------|-----------|-----------|
|                                                                | г.нс1       | IV-A        | IV-B                | IV-C      | н                      | I.HC1      | IV-A                                       | IV-B      | IV-C      |
| I.HC1 7.79/23.13*                                              |             |             |                     |           | 4.27/12.68*            |            |                                            |           |           |
| IV-A 10.24/23.13* 10.24/7.79*                                  | 10.24/7.79* |             |                     |           | 5.61/12.68* 5.61/4.27* | 5.61/4.27* |                                            |           |           |
| IV-B 6.68/23.13* 6.68/7.79 6.68/10.24*                         | 6.68/7.79   | 6.68/10.24* |                     | -         | 3.67/12.68*            |            | 3.67/4.27 3.67/5.61*                       |           |           |
| IV-C 8.53/23.13*                                               | 8.53/7.79   |             | 8.53/6.68           |           | 4.67/12.68*            | 4.67/4.27  | 4.67/4.27 4.67/5.61 4.67/3.67              | 4.67/3.67 |           |
| IV-D 7.30/23.13 <sup>*</sup> 7.30/7.79 7.30/10.24 <sup>*</sup> | 7.30/7.79   |             | 7.30/6.68 7.30/8.53 | 7.30/8.53 | 4.00/12.68*            |            | 4.00/4.27 4.00/5.61* 4.00/3.67 4.00/4.67   | 4.00/3.67 | 4.00/4.67 |

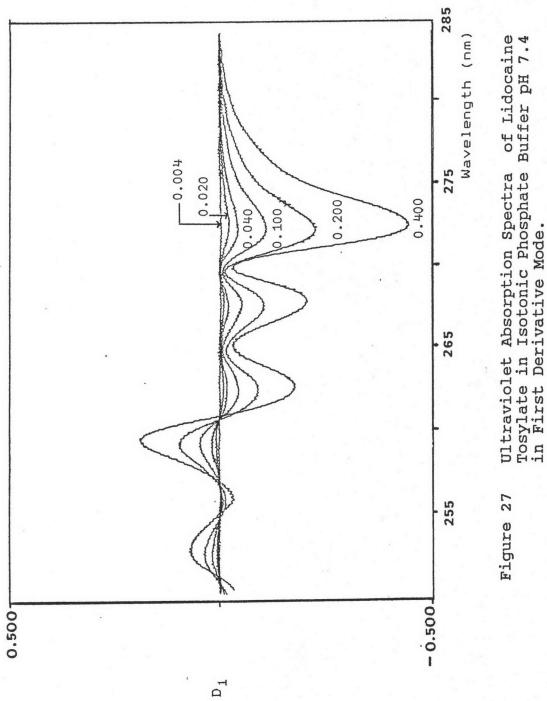
<sup>a</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate, IV-D = lidocaine tosylate.


\*Significantly different (  $\ll$  < 0.05), Analysis of variance, Duncan's multiple range test.




۰.





Ultraviolet Absorption Spectra of Lidocaine Hydrochloride in Isotonic Phosphate Buffer pH 7.4 in First Derivative Mode.





. . . .





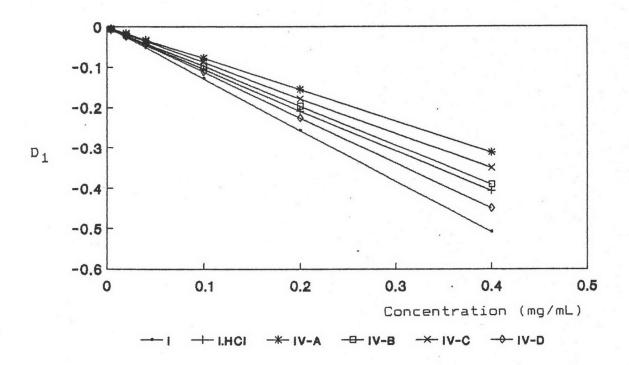



Figure 28 Calibration Curve of Test Compounds in First Derivative Mode.

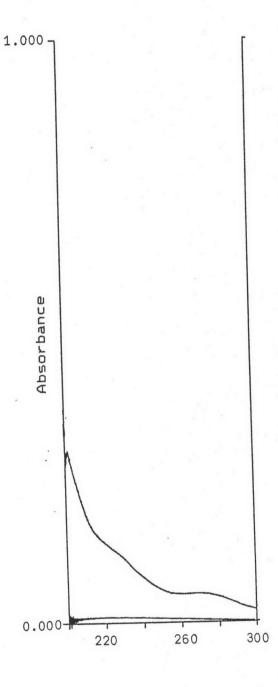
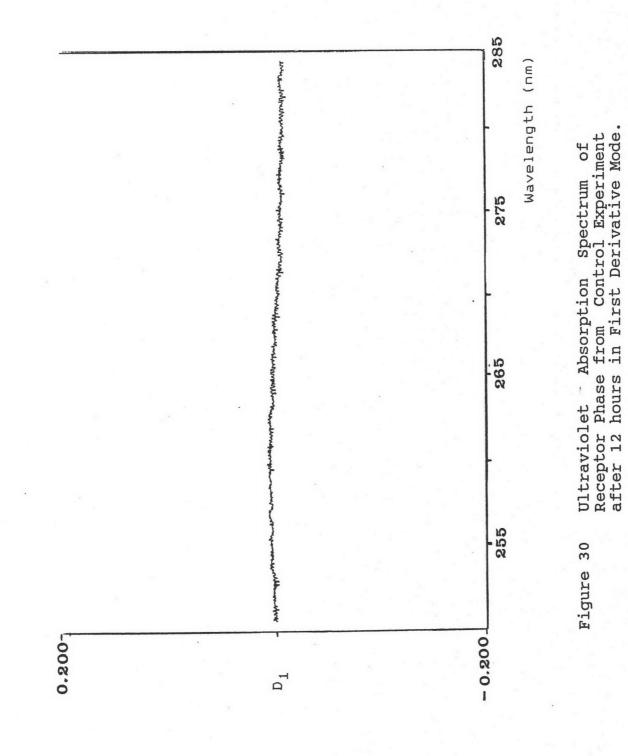






Figure 29

Ultraviolet Absorption Spectrum of Receptor Phase from Control Experiment after 12 hours.



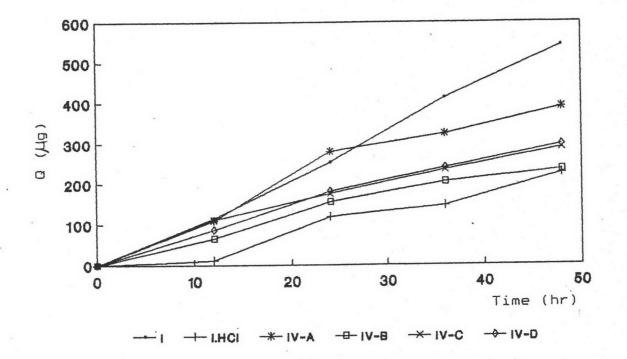
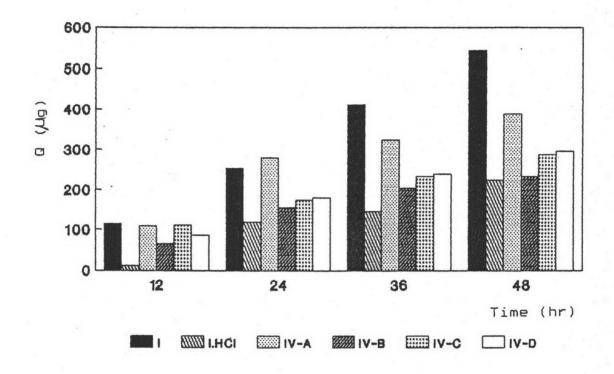
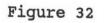
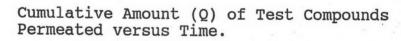






Figure 31 Cumulative Amount (Q) of Test Compounds Permeated versus Time.







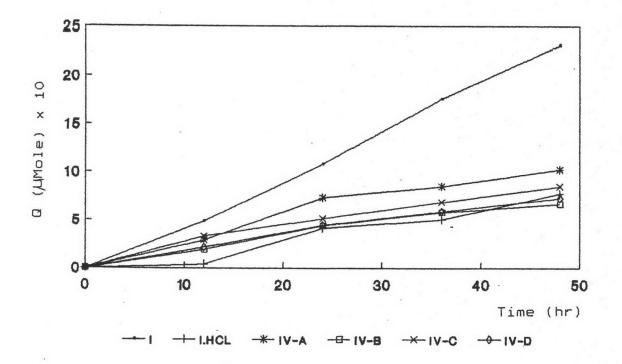



Figure 33 Cumulative Amount (Q) of Test Compounds Permeated versus Time.

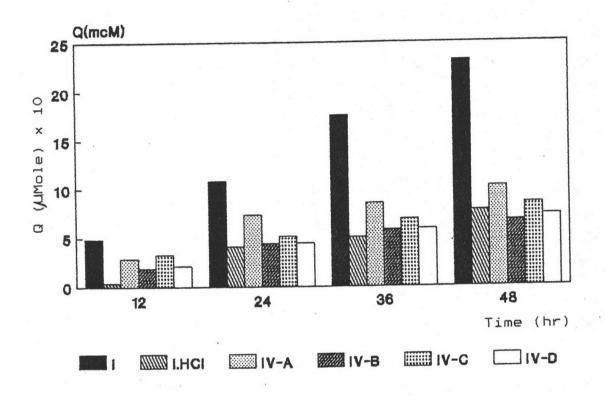



Figure 34 Cumulative Amount (Q) of Test Compounds Permeated versus Time.

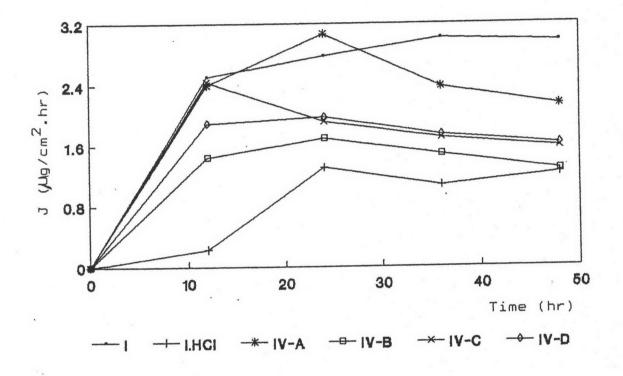



Figure 35 Flux (J) of Test Compounds versus Time.

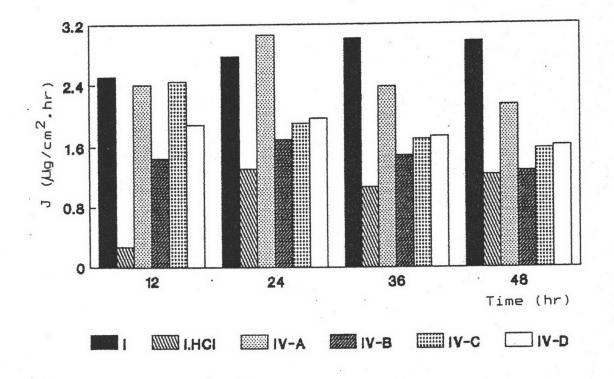



Figure 36 Flux (J) of Test Compounds versus Time.

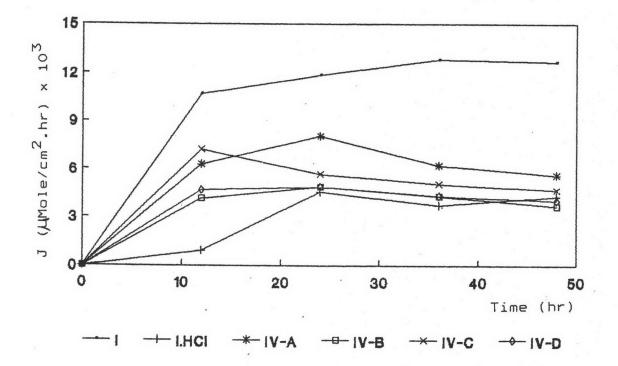



Figure 37

Flux (J) of Test Compounds versus Time.

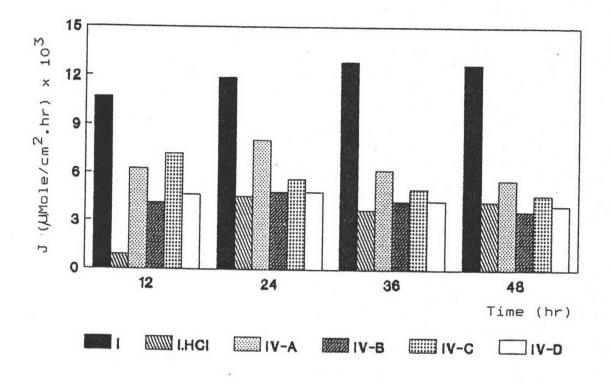



Figure 38 Flux (J) of Test Compounds versus Time.

Determination of Apparent Partition Coefficients.

- Α. Materials.
- Equipments. 1.

| UV Spectrop | photometer | Hitachi U-3200 |    |
|-------------|------------|----------------|----|
| Analytical  | balance    | Sartorius 2842 |    |
| pH Meter    |            | Radiometer PHM | 61 |
| Mechanical  | shaker     | Kotterman      |    |
| Ultrasonic  | bath       | Bransonic 321  |    |

Chemicals. 2.

Test compounds<sup>a</sup>.

Lidocaine

Lidocaine hydrochloride

Lidocaine adipate

Lidocaine maleate

Lidocaine malonate

Lidocaine tosylate Monobasic sodium phosphate, AR Dibasic sodium phosphate, AR E. Merck Sodium chloride, AR Octanol, AR E. Merck

May & Baker Mallinckrodt

<sup>a</sup>The compounds were prepared as described in synthesis section A.

## B. Methods and Results.

1. Solutions.

a) Monobasic sodium phosphate stock solution.  $NaH_2PO_4$  (8.00 g) was dissolved in distilled water and diluted to 1000 mL volume.

b) Dibasic sodium phosphate stock solution. Na<sub>2</sub>HPO<sub>4</sub> (9.47 g) was dissolved in distilled water and diluted to 1000 mL volume.

c) Isotonic phosphate buffer pH 7.4 (NF XIV). Sodium chloride (4.40 g) was added to the mixture of 200 mL of monobasic sodium phosphate stock solution and 800 mL of dibasic sodium phosphate stock solution. The prepared solution was mixed well, adjusted to pH 7.4  $\pm$  0.1 with 10N sodium hydroxide or 18N phosphoric acid.

The prepared buffer was saturated with octanol by 24 hour stirring at room temperature (32°C) and standing for phase separation in a separatory funnel before using of either phase. The lower phase was octanol-saturated isotonic phosphate buffer pH 7.4 and the upper phase was buffer-saturated octanol.

d) Standard solution. Standard solutions (1 mg/mL) of test compounds; lidocaine (I), lidocaine hydrochloride (I.HCl), lidocaine adipate (IV-A), lidocaine maleate (IV-B), lidocaine malonate (IV-C), and lidocaine tosylate (IV-D) were prepared by the following procedures. Stock solution of I was prepared by dissolving 50.0 mg, accurately weighed in 1.0 mL of propylene glycol in a 25-mL beaker. The solution was transferred to a 50-ml volumetric flask with the aid of octanol-saturated isotonic phosphate buffer pH 7.4 and diluted to volume with the same Stock solutions of other test compounds; buffer. I.HCl, IV-A, IV-B, IV-C and IV-D were prepared by dissolving 50.0 mg, accurately weighed, of the test compounds in octanol-saturated isotonic phosphate buffer pH 7.4 in an individual 50-mL volumetric flask and diluting to volume with the same buffer.

The following volumes 1.0, 2.0, 5.0, 10.0 and 20.0 mL of stock solutions were individually pipetted into 50-mL volumetric flask and diluted to volume with octanol-saturated isotonic phosphate buffer pH 7.4 so that each flask contained a concentration of 0.020, 0.040, 0.100, 0.200 and 0.400 mg/mL, respectively. In addition 0.004 mg/mL solution of test compounds were prepared by diluting 1.0 mL of stock solutions with octanol-saturated isotonic phosphate buffer pH 7.4 to 250.0 mL volume.

Solutions of test e) Test solutions. compounds were prepared at concentrations which resulted in suitable absorbances of the buffer phase before and after the distribution equilibrium. I (5.0 mg/mL) were prepared by dissolving 50.0 mg of I, accurately weighed, in buffer-saturated octanol in a 10-mL volumetric flask and diluting to volume with the same solvent. Test solution of other test compounds; I.HCl, IV-A, IV-B, IV-C and IV-D, were prepared by 30.0, 34.0, 30.0, 30.0 and 21.0 mg, dissolving accurately weighed, of test compounds, respectively, in octanol-saturated isotonic phosphate buffer pH 7.4 in an individual 50-mL volumetric flask and diluting to volume with the same solvent.

## 2. Analytical method.

UV spectrophotometer was employed. Serial dilutions of concentration 0.004, 0.020, 0.040, 0.100, 0.200 and 0.400 mg/mL of prepared standard dilutions were recorded in 1-cm quartz cells over the range of 200 - 300 nm. The spectrum was obtained at a band pass of 2 nm and a scanning speed of 60 nm/min. The recorder response was set at fast. Zero absorbance was adjusted by placing cuvettes filled with octanolsaturated isotonic phosphate buffer pH 7.4 in both reference and sample compartments. After adjustment, sample compartment was replaced with standard or sample solution and measured. UV spectra of test compounds were obtained.

The wavelengths of maximum absorbance of each test compound were determined. The maximum absorbances of standard solutions of all test compounds being examined were found to be at wavelengths of 262.5 nm for I, I.HCl, IV-A and IV-C, 270.2 nm for IV-B and 261.4 nm for IV-D. UV absorbance spectra of serial standard solutions of test compounds were shown in Figure 39 - 41. The standard solutions versus absorbances of the concentrations were recorded in Table 18. Calibration curves between absorbances and concentrations of standard solutions were plotted (Figure 42). Each plotted indicated the relationship between absorbance and concentration was linear  $(R^2 = 0.9995 \text{ to } 1.0000)$ and conformed to Beer-Lambert's Law. The regression parameters relating absorbance and concentration were shown in Table 19.

3. Procedure.

Test compounds : I, I.HCl, IV-A, IV-B, IV-C, and IV-D

The apparent partition coefficients (P) of the test compounds were determined in octanol-isotonic phosphate buffer pH 7.4 at room temperature (32<sup>O</sup>C). The suitable volumes of each phase were chosen so that

the absorbance of test compound in the aqueous phase before and after distribution, could (buffer), readily be measured using UV spectrophotometer. Octanol : buffer ratio were determined to eliminate saturation of test compound in either phase. The phase volume ratios used in the experiment were shown in The octanol-buffer mixtures in glass-Table 20. stoppered containers were shaken for 12 hours to reach a distribution equilibria. The mixtures were transferred to separatory funnels and stood to separate for at least two hours. The aqueous phase was separated and quantitated by spectrophotometry. The absorbances of test solutions before distribution were also recorded at the wavelengths of maximum absorbance of each test compound as described in apparent partition coefficient determination of section B2. Four determinations were performed for each test compound. Concentrations in mg/mL of the and after distribution before aqueous phase equilibrium were calculated by regression equations listed in Table 19. From the amount of test compound distributed in buffer phase, the apparent partition coefficient (P) of each test compound was determined from Equation 4. (Wells, 1988).

$$P = \frac{(C_{i} - C_{w})}{C_{w}} \times \frac{V_{w}}{V_{o}} ----- (4)$$

C<sub>w</sub> concentration of test compound in aqueous phase (buffer) after distribution (mg/mL)

$$C_i - C_w = C_o = \text{concentration of test}$$
  
compound in oil phase (octanol)  
after distribution (mg/mL)

Log P of each test compound was calculated and shown reproducible results. Data and results of the determination of P and log P of test compounds were summarized in Table 20. Table 18 : Absorbance of standard solution of test compounds.<sup>a</sup>

| U-D                                | %CV                          | 2.00   | 0.67   | 1.30   | 0.42   | 0.86   | 0.22   |  |
|------------------------------------|------------------------------|--------|--------|--------|--------|--------|--------|--|
|                                    | A<br>(261.4 nm)              | 0.0100 | 0.0481 | 0.0889 | 0.2088 | 0.3980 | 0.7797 |  |
| IV-C                               | %C<                          | 2.01   | 0.35   | 1.23   | 0.42   | 0.39   | 0.14   |  |
|                                    | A<br>(262.5 nm)              | 0.0125 | 0.0285 | 0.0577 | 0.1402 | 0.2741 | 0.5402 |  |
| IV-B                               | %CV                          | 1.74   | 0.34   | 0.40   | 0.33   | 0.55   | 0.04   |  |
|                                    | A<br>(270.2 nm)              | 0.0166 | 0.0344 | 0.0635 | 0.1513 | 0.2888 | 0.5635 |  |
| IV-A                               | %C<                          | 1.96   | 0.55   | 0.95   | 0.78   | 0.41   | 0.50   |  |
|                                    | A<br>(262.5 nm)              | 0.0106 | 0.0381 | 0.0629 | 0.1307 | 0.2508 | 0.4307 |  |
| I.HC1                              | %C/                          | 1.82   | 1.62   | 1.00   | 0.29   | 0.28   | 0.31   |  |
|                                    | A<br>(262.5 nm)              | 0.0095 | 0.0283 | 0.0552 | 0.1273 | 0.2532 | 0.5005 |  |
| I                                  | %CV                          | 1.10   | 1.31   | 0.24   | 0.43   | 0.41   | 0.19   |  |
|                                    | A <sup>C</sup><br>(262.5 nm) | 0.0182 | 0.0460 | 0.0864 | 0.2029 | 0.4025 | 0.7908 |  |
| Concentration <sup>b</sup> (mg/mL) |                              | 0.004  | 0.020  | 0.040  | 0.100  | 0.200  | 0.400  |  |

and IV-D (lidocaine  $^{a}_{A \lor erage}$  of three determinations, test compounds are I (lidocaine), I.HCl (lidocaine hydrochloride), (lidocaine maleate), IV-C (lidocaine malonate) IV-A (lidocaine adipate), IV-B tosylate).

 $^{\text{b}_{\text{The}}}$  solvent is octanol-saturated isotonic phosphate buffer pH 7.4.

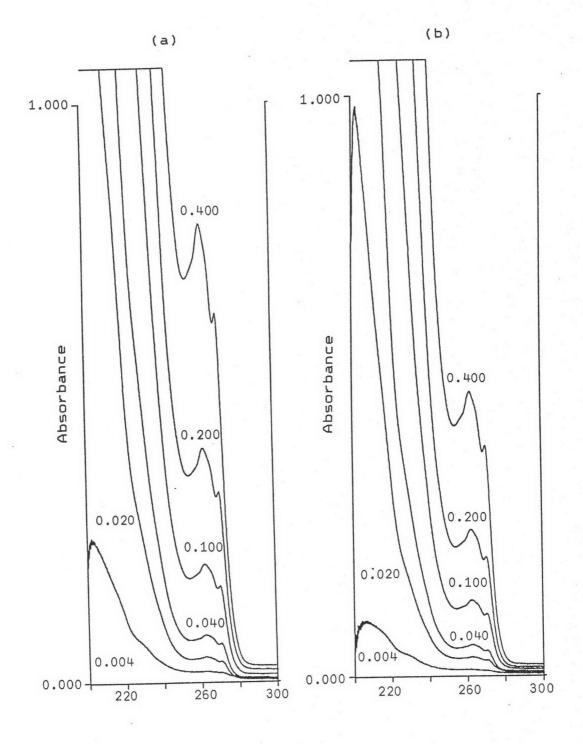
CAbsorbance.

Table 19 : Regression parameters of absorbance mode<sup>a</sup>.

| m h                           | Regression Parameter <sup>C</sup> |               |                |  |  |
|-------------------------------|-----------------------------------|---------------|----------------|--|--|
| Test<br>Compound <sup>b</sup> | m (Slope)                         | z (Intercept) | R <sup>2</sup> |  |  |
| I                             | 1.95765                           | 0.008531      | 1.0000         |  |  |
| I.HCl                         | 1.24065                           | 0.004357      | 1.0000         |  |  |
| IV-A                          | 1.175175                          | 0.012644      | 0.9995         |  |  |
| IV-B                          | 1.387536                          | 0.009681      | 0.9999         |  |  |
| IV-C                          | 1.340007                          | 0.004916      | 0.9999         |  |  |
| IV-D                          | 1.931864                          | 0.009587      | 0.9998         |  |  |
|                               | 1.001004                          |               |                |  |  |

<sup>a</sup>Three determinations of six concentration levels; 0.004, 0.020, 0.040, 0.100, 0.200 and 0.400 mg/mL.

- <sup>b</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate, IV-D = lidocaine tosylate.
- CY = mX + Z, Y and X represent absorbance and concentration (mg/mL) respectively.

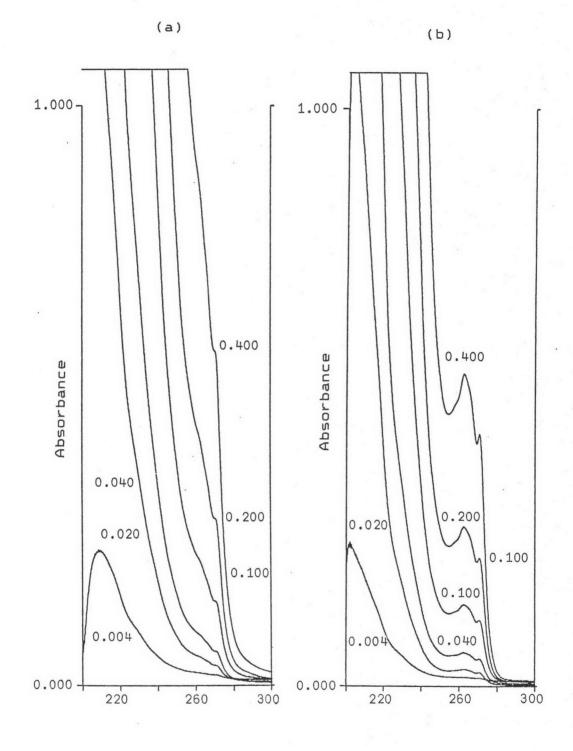

| Test<br>Compound <sup>a</sup> | o/w Ratio <sup>ł</sup> | P PC    | %CV  | log P | %CV  |
|-------------------------------|------------------------|---------|------|-------|------|
| I                             | 1:20                   | 1918.90 | 0.49 | 3.28  | 0.07 |
| I.HCl                         | 1 : 20                 | 64.85   | 2.03 | 1.81  | 0.59 |
| IV-A                          | 1:20                   | 62.63   | 0.55 | 1.80  | 0.15 |
| IV-B                          | 1:20                   | 25.96   | 0.62 | 1.41  | 0.20 |
| IV-C                          | 1:20                   | 58.85   | 1.04 | 1.77  | 0.24 |
| IV-D                          | 10:10                  | 1.28    | 0.60 | 0.11  | 2.45 |
|                               |                        |         |      |       |      |

## Table 20 : Apparent partition coefficient (P) of test compounds.

<sup>a</sup>I = lidocaine, I.HCl = lidocaine hydrochloride, IV-A = lidocaine adipate, IV-B = lidocaine maleate, IV-C = lidocaine malonate, IV-D = lidocaine tosylate.

<sup>b</sup>Volume ratio of octanol phase and isotonic phosphate buffer phase.

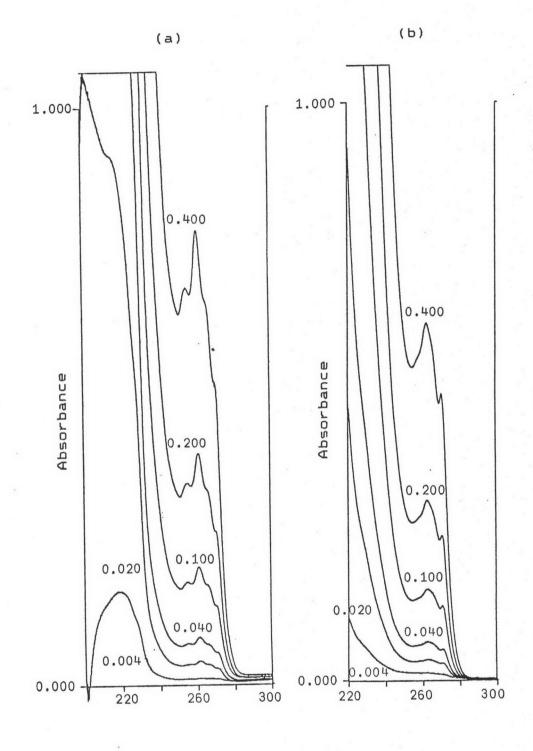
<sup>C</sup>Average of four determinations.




Wavelength (nm)

Figure 39

Ultraviolet Absorption Spectra of Lidocaine (a) and Lidocaine Adipate (b) in Octanol-saturated Isotonic Phosphate Buffer pH 7.4.


95



Wavelength (nm)

Figure 40 Ultraviolet Absorption Spectra of Lidocaine Maleate (a) and Lidocaine Malonate (b) in Octanol-saturated Isotonic Phosphate Buffer pH 7.4.

96



Wavelength (nm)

Figure 41 Ultraviolet Absorption Spectra of Lidocaine Tosylate (a) and Lidocaine Hydrochloride (b) in Octanol-saturated Isotonic Phosphate Buffer pH 7.4.

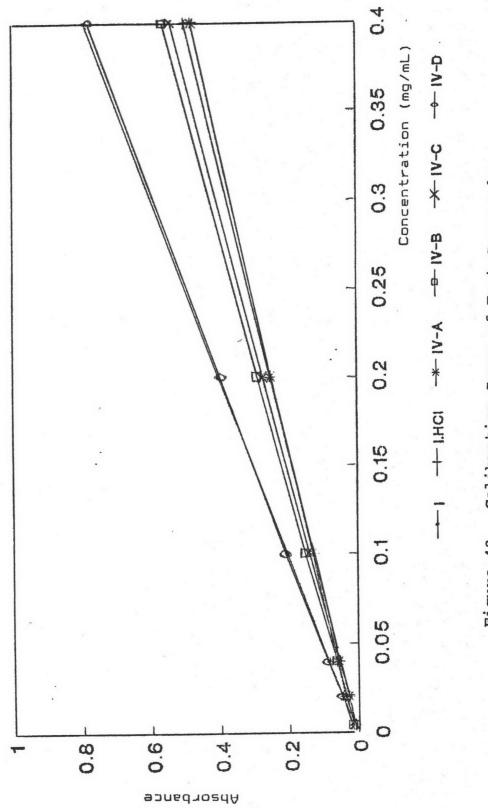



Figure 42 Calibration Curve of Test Compounds.

98