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งานวิจัยฉบับนี้ได้น าข้ันตอนวิธีการเรียนรู้ของเครื่อง 6 วิธี มาใช้ในการแบ่งชนิดหินจากข้อมูล

การหยั่งธรณีหลุมเจาะ 15 ประเภท จาก 4 หลุมเจาะ ในบริเวณท่ีราบแม่น้ าสเนก รัฐไอดาโฮ ประเทศ
สหรัฐอเมริกา ส าหรับการทดลองได้แบ่งออกเป็น 2 แบบ คือ การทดสอบแบบหลุมเด่ียวและการทดสอบ
แบบหลายหลุม การทดสอบแบบหลุมเด่ียวจะน าข้อมูลของแต่ละหลุมมาแบ่งเป็น ข้อมูลชุดอบรม (ร้อยละ 
70)  ข้อมูลชุดตรวจสอบ (ร้อยละ 10) และข้อมูลชุดทดสอบ (ร้อยละ 20) การทดสอบแบบหลายหลุมจะ
รวมข้อมูลจาก 3 หลุมแรกและร้อยละ 70 ของข้อมูลหลุมท่ี 4 เป็นข้อมูลชุดอบรม และข้อมูลส่วนท่ีเหลือ
จะเป็นข้อมูลชุดตรวจสอบและทดสอบต่อไปในร้อยละ  10 และ 20 จากการทดลองพบว่าแบบจ าลอง
เอ็กซ์ตรีมเกรเดียนต์บูสต้ิงให้ค่าความถูกต้องสูงท่ีสุดคิดเป็นร้อยละ 91 ในแบบหลุมเด่ียว และร้อยละ 87 
ในแบบหลายหลุม เนื่องจากแบบจ าลองนี้สามารถเลือกใช้ข้อมูลท่ีมีประโยชน์ในการจ าแนกชนิดหิน และ
จัดการกับข้อมูลท่ีขาดหายไปได้ด้วยการตัดสินใจแบบโครงสร้างต้นไม้ นอกจากนั้นงานวิจัยชิ้นนี้ยังแสดง
ให้เห็นว่าการทดสอบแบบหลายหลุมมีความซับซ้อนมากกว่าการทดสอบแบบหลุมเด่ียว เนื่องจากการรวม
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กว่าเอ็กซ์ตรีมเกรเดียนต์บูสต้ิงท้ัง 2 การทดลอง เนื่องจากแบบจ าลองชนิดนี้ไม่สามารถจัดการกับข้อมูลท่ี
ไม่สมดุลได้ดีเท่ากับเอ็กซ์ตรีมเกรเดียนต์บูสต้ิง ในภาพรวมทุกแบบจ าลองสามารถแยกแยะหินอัคนีด้วยค่า
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Ph.D. 

  
Six machine learning algorithms are used to classify subsurface rocks based on 

fifteen well logging features from four geothermal wells in the Snake River Plain, Idaho, 
USA. Two experimental designs, single- and multiple-well tests, are developed to 
determine the most optimal model and hyperparameters. The single-well test randomly 
assigns the data in each well into 70% for training set, 10% for validation set, and 20% 
for test set. The multiple-well test combines data from three wells and splits the data in 
the fourth well into 70% for training set, 10% for validation set, and 20% for test set. 
Results show that Extreme gradient boosting model (XGB) gives the highest accuracies in 
single- and multiple-well tests at 91% and 87%, respectively. This is because XGB can 
avoid unnecessary features and missing values based on decision tree classifier. In 
addition, multiple-well test is more complex and generally gives lower prediction 
accuracy than those of single-well test due to the variety of features from different 
wells. Artificial neural network (ANN), one of the deep learning algorithms, consistently 
gives lower accuracy than that of XGB  in both tests. This is because ANN cannot handle 
imbalanced dataset as well as XGB. Overall, igneous rocks can be accurately classified 
due to their abundance, which allows the models to effectively learn about their 
distinct characteristics. Sedimentary rocks are the minor classes and mostly contain 
overlapped well logging responses, which impose difficulty in lithological classification. 
The classification of sedimentary rocks can be further improved by increasing a number 
of data and incorporating other physical properties such as grain size. 
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Chapter 1 Introduction 

1.1 Introduction 

Subsurface information is essential data for understanding geological 

evolution. Lithological information is used to explore various natural resources such 

as groundwater, petroleum, and geothermal energy. Collecting rock samples by 

drilling is a direct method to obtain subsurface information but this process is 

expensive and time-consuming. Geophysical surveys such as resistivity, gravity, and 

well logging exploration are invented to acquire subsurface information. In particular, 

well logging exploration has been widely used to grain physical properties of 

subsurface rocks. Main advantages of well-logging include highly vertical resolution, 

good continuity, and convenient data acquisition (Xie et al., 2018). Compared to 

other geophysical methods such as resistivity, gravity, and magnetic surveys, well 

logging has a high vertical resolution (Soltani et al., 2016). The data is usually 

collected at every 30 - 50 cm. Well-logging data is also continuous and can be 

collected while drilling and/or after drilling. However, there are no logging tools 

which can directly determine physical properties of rock, for example, porosity, 

permeability, and lithology.  

Various types of logging tool are used to collect geophysical signals of the 

subsurface formation (Xie et al., 2018). For instance, the gamma ray log detects an 

amount of gamma ray emitted from radioactive elements in the rock formation to 

infer volume of them. Resistivity log measures the electrical resistance of rock 

formation in order to investigate types of pore fluid. Temperature log detects the 

temperature of the rock formation to calculate heat transfer. After a massive amount 

of subsurface information is gathered, it is interpreted to gain insights into the 

lithology and physical properties of the rock formation. However, the criteria of 

lithological classification are loosely defined and human error can significantly 
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contribute to the uncertainty of the interpretation. Previously there have been many 

mathematical methods such as deconvolution, noise filter, and signal stacking 

applied to well logging interpretation to reduce the error and enhance well logging 

signal (Dubois et al., 2007). Recently, machine learning algorithms have been 

introduced to solve problems in pervasive fields, for example, disease detection, 

climate modeling, and also well logging interpretation (Catalogna et al., 2012; Devak 

et al., 2015; López et al., 2017; Wang et al., 2013). Machine learning algorithms use 

statistical techniques to understand complex, noisy, or non-linear data without being 

explicitly programmed (Tsangaratos and Ilia, 2016). 

Machine learning algorithms are automated systems which can learn from the 

data and use that knowledge to quickly and accurately classify the unseen data. A 

number of studies show that machine learning algorithms can correctly classify a 

massive amount of data at a greater performance than human. For example, a study 

by Liu et al. (2017) uses Convolutional neural network (CNN) to distinguish cancer 

cells in medical slides. Convolutional neural network gives 92% of accuracy in cancer 

detection whereas human pathologist achieves only 73%. Moreover, the model 

spends seconds per checking one slide to diagnose cancer while human spends 

minutes. A another example is Wang et al. (2013). They use Artificial neural network 

(ANN) to classify well logging data from the Appalachian basin into the Marcellus 

shales which are defined by geochemistry analysis. By doing this, ANN gives 72% of 

average accuracy in well logging classification from the Appalachian basin. 

Consequently, machine learning is a powerful tool to improve data classification 

efficiently.  

There are many machine learning algorithms and they have been developed 

for various data types such as text, picture, and video (Wu and Zhao, 2018). Each 

model is applicable to different data types. Hence, six machine learning algorithms: 

Support vector machine (SVM), K-nearest neighbour (K-nn), Extreme gradient boosting 
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(XGB), Artificial neural network (ANN), Convolutional neural network (CNN), and Gated 

recurrent unit (GRU) are employed to classify well logging data in this study in order 

to determine suitable algorithms for well logging classification. These models show 

high accuracy in lithological classification tasks in previous studies, e.g. Dubois et al. 

(2007); Hall and Hall (2017); Xie et al. (2018).  

To compare the accuracy and efficiency of machine learning algorithms, well 

logging data of four geothermal wells, namely WO2, Mountain Home, Kimma, and 

Kimberly, from the Snake River Plain in Idaho, USA are used in this study. Each well 

contains approximately 4 - 12 logging types. The total number of logging tools or 

features is 15. The Snake River Plain is one of six high-grade geothermal areas in the 

US and it has high potential to become a geothermal energy source in the future 

(Tester et al., 2006). It is characterized by volcanic igneous rocks, in particular, basalt 

and rhyolite from extensional tectonic processes with being bound by normal fault 

(Bedrosian and Feucht, 2014).  

In this study, the well logging data from four geothermal wells are split into 

three subsets: training data, validation data, and test data. Training data is used to 

train the models and validation data is used to optimize the model. After that, the 

models are evaluated by test data. There are two experimental designs in this study. 

The first scenario is designed to train (70% of data) and test (30% of data) the 

models with well-logs data from the same well. The second scenario uses a large 

amount of data as a training set, which combines three wells and 70% of the fourth 

well, and uses the remaining 30% of the fourth well as a test set. A comparison of 

model performance is further evaluated to determine the best and worst algorithm 

for lithological classification using well logging data from the Snake River Plain in two 

scenarios: single- and multiple-well tests. Furthermore, machine learning algorithms 

being automated system could improve efficiency and reduce time in well logging 

interpretation.   
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1.2 Objectives 

• To classify lithology from well logging data by machine and deep learning 

algorithms  

• To compare the result of each machine and deep learning algorithms 

 

1.3 Scope of works 

The objectives of this study to employ machine learning algorithms to classify 

well logging data from Snake River Plain as lithology and to compare the 

performance of each model. A total of six machine learning algorithms, namely SVM, 

K-nn, XGB, ANN, CNN, and GRU are used in this study due to give high performance in 

previous works (e.g. Dubois et al. (2007); Hall and Hall (2017); Xie et al. (2018)). The 

ANN, CNN, and GRU models are considered deep learning algorithms due to deeper 

structure compared to the others. Every model is trained and tested on the same 

data set with the same features scaling and features selection. The models are 

expected to classify well logging data into lithology such as basalt, rhyolite, and tuff 

based on well reports. Moreover, every rock type is equally important for this study. 

This is because the objectives of this project are to classify rock types generally and 

improve the efficiency of well logging interpretation. The objective does not include 

the determination of reservoir rock or oil bed. The models are measured by 

classification accuracy and confusion matrix in this study. Precision, recall, and F1 

score is not used in this study.  

Our data comes from two sources: Frontier Observatory for Research in 

Geothermal Energy and project HOTSPOT. The former project is led by Idaho 

National Laboratory (Podgorney, 2016a) whereas the latter is led by Utah State 

University (Shervais, 2014a, b, c). Frontier Observatory for Research in Geothermal 

Energy publishes WO2 well data drilled in 1991. Mountain Home, Kimma, and 
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Kimberly well are published by project HOTSPOT and drilled from 2010 to 2012. As 

four well logging data are gathered in different periods and by the different 

organizations, collected features, and lithological classification are disparate. For 

instance, resistivity log is not gathered in WO2 well. Thus, missing values or 

uncollected features must be tackled with some techniques when four well data are 

combined in scenario two. Furthermore, sedimentary rocks are classified into 

sandstone, siltstone, and claystone in WO2 well whereas they are grouped as a 

sedimentary rock in the other wells. Hence, rocks are reclassified in scenario two. 

 

1.4 Expected results 

• Lithological classification using well logging data from the Snake River Plain by 

deep and machine learning algorithms in single and multiple-well tests 

• The optimal model for well logging classification using data from the Snake 

River Plain 

• Classification performance of the optimal model with accuracy more than 

70% 
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Chapter 2 Literature Reviews 

2.1 Well logging 

 Generally, there are two techniques to gain information about subsurface 

rocks. The former is collecting subsurface rocks directly by drilling and the latter is 

interpretation indirectly from geophysical data. As drilling is expensive and time-

consuming, the indirect method is more popular than the former. Well logging is a 

widely used geophysical method to gain information about subsurface lithology. This 

is because well logging can collect high-resolution data in millimeter to centimeter 

unit continuously (Liu, 2017). Consequently, well logging is used in this study in order 

to give information about the lithology of subsurface rocks. There are various types 

of logging tool which have been invented to collect different geophysical signal to 

infer lithologies such as gamma ray, resistivity, and neutron logs. In contrast, some 

logging tools do not measure the properties of rocks but it measures well properties, 

for example, caliper log (Fanchi, 2002). Hence, only logging tools referred to lithology 

and physical properties of rock are used in this study. Figure 1 shows an example of 

well logging data from the Anda Sag, the Songliao Basin (Huang et al., 2015). 
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Figure 1 An example of well logging data of volcanic rocks in the Anda Sag, the 

Songliao Basin (Huang et al., 2015). 
 

2.1.1 Resistivity log 

 Resistivity log applies the same principle of resistivity exploration. Resistivity is 

an inversion of conductivity so resistivity log measures the electrical resistance of 

subsurface rock. The resistivity of rock is mostly depended on the type of pore fluid. 

As water or brine contains a lot of ions, it has low resistivity. In contrast, the 

concentrations of ions in hydrocarbon is low. It has high resistivity (Fanchi, 2002). 

Moreover, there are three resistivity logs in this data set to give comprehensive 

results: deep measurement, shallow measurement, and mud measurement. The 

deep and shallow measurements represent resistivity of rock formation based on 

distance from logging tool while mud measurement represents resistivity of drilling 

mud. An example of a resistivity log is shown in Figure 1. 
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2.1.2 Gamma ray log  

 Gamma ray log is a passive logging tool which only receive a geophysical 

signal from subsurface rocks. Gamma ray log detects gamma ray emitted from 

radiometric elements in the rocks by Geiger-Mueller (G-M) counter or the Scintillation 

counter (Liu, 2017). The API is standard unit for gamma ray, where one API represents 

about 0.07 micrograms of radium equivalent per ton of formation (Tiab and 

Donaldson, 2012). In general, potassium, thorium, and uranium are major sources of 

the natural gamma ray in subsurface rock (Tiab and Donaldson, 2012). As clay 

minerals are composed of these three elements, shale emits more gamma ray than 

other rocks such as sandstone, limestone, and dolostone. Gamma ray is normally 

used to distinguish between shale and other rocks and used to calculate the fraction 

of shale in a rock formation. Moreover, gamma ray log can detect sources of a 

gamma ray from in rock formation by gamma ray spectrum in order to quantify the 

volume of potassium, thorium, and uranium in the rock formation (Liu, 2017). Figure 

2 provides the correlation between the gamma ray log and sedimentary section 

(Martinius et al., 2002). 
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Figure 2 An example of gamma ray log correlated with the sedimentary rock section 

in Loranca Basin, Spain (Martinius et al., 2002). 
 

2.1.3 Acoustic log 

 Acoustic log or sonic log is active logging tools which send energy and receive 

the geophysical signal from the subsurface rock. This logging tool sends a sound 

wave to the subsurface rock and records travel time of the sound wave passing 

through the rock (Fanchi, 2002). The sound wave is a function of density and elastic 

properties of the medium and different rocks have different density and elastic 

properties. Moreover, porosity and pore fluid affect density too. Consequently, the 

acoustic log is generally used to determine fluid content, porosity, and lithology (Liu, 

2017).  Figure 3 presents a comparison between gamma ray log and acoustic log (Vp 

and Vs) of the upper and lower Marcellus shale and Cherry Valley limestone (Roy, 

2013). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 10 

 
Figure 3 The well logging data, gamma ray log (solid green line), P-wave sonic log 

(solid red line), and S-wave sonic log (solid blue line) of the upper and lower 
Marcellus shale and Cherry Valley limestone (Roy, 2013). 

 

2.1.4 Density log 

 Density log or photoelectric log measures density of subsurface rock by 

Compton scattering. Gamma ray from density log is injected to subsurface rock and it 

loses some energy to an atom of the rock formation. After that density log measures 

the remained gamma ray from the rock formation. The intensity of gamma ray 

arriving in density log is a proportion of rock density (Tiab and Donaldson, 2012). 

Normally, density log is useful to determine porosity. Moreover, the type of fluid 

affects density too since density log can infer to pore fluid in the rock formation. An 

example of a density log is shown in Figure 4. 
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Figure 4 A correlation of well logging data, gamma ray log, density log, and neutron 

log, with lithology in the Rift System, Kansas (Berendsen et al., 1988).     
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2.1.5 Neutron log 

 Neutron log emits continuous fast neutron to subsurface rock. The fast 

neutron is slowed down while releasing secondary gamma ray by collision with a 

hydrogen atom from the subsurface rock. Hydrogen content of rock formation can be 

evaluated by counting slow neutron or secondary gamma ray (Liu, 2017). The 

assumption is that the major source of hydrogen in subsurface rock is liquid in pores. 

Thus, hydrogen content refers to porosity. Moreover, neutron log presents very low 

density when pores are filled with gas. This is because gas has a low number of 

atoms. Thus, neutron log can be used to detect the type of pore fluid (Tiab and 

Donaldson, 2012). However, rocks which have high hydrogen content such as coal 

and organic shale have high influence with neutron log. Consequently, the neutron 

log has to work with other logs to reduce the uncertainty of measurement. Figure 4 

presents well logging data of gamma ray, density, and neutron logs of the Rift 

System, Kansas (Berendsen et al., 1988).     

 

2.1.6 Direct measurement log 

 Some logging tools measure information about borehole environment such as 

driller's Logs, caliper Logs, sample Logs (Fanchi, 2002). In this study, temperature and 

pressure logs are used in well logging classification because our data comes from 

geothermal wells. Temperature log measures formation temperature in Celsius 

degree and pressure log measures formation pressure in Pascal (Fanchi, 2002).   
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2.2 Machine learning algorithms  

2.2.1 Previous works 

 Machine and deep learning algorithms are applied in various fields, for 

example, medical examination, morphology, and climate modeling. A study by 

Catalogna et al. (2012) applies ANN to monitor glucose in rats. Results suggest that 

ANN can predict glucose level accurately, followed by errors being below than 10%. 

In addition, a study by López et al. (2017) compares the efficiency between ANN and 

mathematic equation from previous works in point bars modeling in Spain. This work 

aims to predict a position of point bars from previous data such as the slope of the 

beach, the steepness, and satellite data. ANN exhibits higher accuracy score about 10 

- 20% than the proposed methods. This is because ANN has more generalization 

than the proposed methods. ANN can learn the unique characteristics of point bars 

in Spain from the previous data while the previous equations for calculating point 

bar position are generated from other areas. Consequently, the position of point bars 

from ANN is closer to the reality that the position of point bars from the proposed 

methods. Another study by Devak et al. (2015) uses SVM, K-nn and a hybrid model 

between SVM and K-nn to predict precipitation in India. This study shows that the 

hybrid model provides higher performance than the SVM and K-nn. 

In well logging, there are a number of studies applying machine learning to 

improve the accuracy of lithological classification. A study by Wang et al. (2013) uses 

ANN to classify Marcellus shale into organic siliceous shale, organic mixed shale, 

organic mudstone, gray siliceous shale, gray mixed shale, gray mudstone, and 

carbonate intervals. The shales are defined by core analysis. Results show that ANN 

gives average accuracy in well logging classification at about 73%. Although 73% is 

mediocre results, shale classification using well logging data surpasses the ability of 

human. This is because, in general, geologist classifies well logging data into 

sandstone, shale, or limestone. The shale facies in Wang et al. (2013) come from 
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geochemistry results.  Xie et al. (2018) applies four machine learning algorithms, 

Naïve Bayes, SVM, ANN, and XGB, to classify well logging data from Ordos basin in 

China. Results show that XGB provides the highest accuracy at about 83% while 

Naïve Bayes show lowest accuracy (<50%). As Naïve Bayes requires assumption that 

features are conditionally independent, it is unsuitable with well logging data which 

features are dependent.  

As different machine learning algorithms give different results, various models 

are employed in this study in order to determine the best algorithm for well logging 

data from Snake River Plain. XGB is selected because it performs well in a study by 

Xie et al. (2018). SVM and K-nn give comparable efficiency in Devak et al. (2015) and 

SVM gives acceptable accuracy score in Xie et al. (2018). Hence, they are employed 

in this study. ANN is one of deep learning algorithms. Even though ANN shows the 

low accuracy in Xie et al. (2018), it exhibits high accuracy in other tasks such as 

glucose monitoring (Catalogna et al., 2012), point bars prediction (López et al., 2017), 

and shale classification (Wang et al., 2013). Consequently, ANN is applied in this 

study. Moreover, CNN and GRU which are other deep learning algorithms are 

employed in this study to evaluate whether deep learning algorithms are suitable 

with well logging data.       

 

2.2.2 Support vector machine (SVM) 

 The idea of Support vector machine (SVM) classification is to define the 

decision boundary between each class from training dataset and to use this 

boundary to classify data in the test dataset. However, there are various decision 

boundaries for one data set. SVM choose the best decision boundary based on 

margin. It is the twice distance between decision boundary and the closest data 

point. The optimal decision boundary for SVM is the line having a maximum margin 

so the goal of SVM is to maximize margin (Xie et al., 2018). The C parameter is tuning 
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parameter for soft margin which accepts some error to generalize the model 

(Cristianini and Taylor, 2000). It indicates how much SVM cares about the error (Figure 

5). If C is large meaning that SVM cares so much about the error, SVM will try to 

reduce the number of misclassified data points. In this study, radial basis function 

kernel (RBF) is used to solve non-linear task for SVM (Xue et al., 2009). The concept 

of RBF is putting Gaussian onto every data point (Figure 6), while Y manage how 

decision surface spread. If Y is high, the decision surface will be dramatically curved. 

As SVM with soft margin and RBF kernel is used in this study, there are two 

parameters modified, namely C and Y.  

 

 
Figure 5 A case in point of SVM with soft margin. Right represents data set which has 

noisy data. Left shows separating hyperplane divided classes with having 
some misclassified data points. 
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Figure 6 The concept of SVM with RBF. Left is SVM with soft margin and black line is 

decision boundary between Class 1 and Class 2 . Right is SVM with RBF. Pink 
and green surface are decision boundary between Class 1 and Class 2. 
 

2.2.3 K nearest neighbour (K-nn) 

K nearest neighbour (K-nn) is a simple deep learning algorithm used for 

widely both classification and regression tasks (Glowacz and Glowacz, 2016). This 

model finds K nearest training data points around the test data point and then the 

class of the test data point is defined by the most popular class among K nearest 

data points (Rastegarzadeh and Nemati, 2018). K-nn is lazy learning which delays 

generalizing training data until the query arrived, as opposed to eager learning which 

generalizes training data before the query received (Steinbach and Tan, 2009). 

First, training data set which is labeled and testing data point which is 

unlabeled are given to K-nn (Figure 7). As a next step, the distance between each of 

training data points and test data point is calculated to find K nearest data points 

and in this case, K is equal to 3 that means K-nn will find 3 closest data points 

around testing data point. Then unlabeled data point is assigned class based on the 

most popular class. 
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Generally, there are three elements to modify this approach: the number of 

nearest neighbours (K), distance function, and the voting method (Steinbach and Tan, 

2009). However, the value of K affects the most to a performance of K-nn for a 

complex task. Too large or too small K value lead the model to the wrong 

classification as shown in Figure 8. In contrast, the optimal neighbourhood is led it to 

reduce the complexity of the model and increasing its accuracy (Shen et al., 2016).  

 

 
Figure 7 Classification of unlabeled data point by majority vote. The unlabeled is 

classified to Class 1 because Class 1 is the most popular class among the K 
nearest data points. 

 

 
Figure 8 K nearest neighbour with too small K (a), suitable K (b), and too large K (c). 
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2.2.4 Extreme gradient boosting (XGB) 

 Decision tree is a foundation of Extreme gradient boosting (XGB). It iteratively 

partitions input data from training dataset into subdivisions based on their features 

until every class of training dataset is clearly separated from each other (Friedl and 

Brodley, 1997). For example, training data comprise of sandstone (pink) and shale 

(green) and there are two features: volume of clay and grain size. First, in the root 

node, data are split into three groups by volume of clay and then for some group, 

which two classes are still mixed, decision tree uses the other feature to separate 

shale from sandstone. Finally, this condition (decision tree) is applied to classify 

unlabeled data point (black) as shown in Figure 9.        

 However, a single decision tree is not strong enough to handle sophisticated 

data, in particular, on the data having several features and classes. As a result, 

ensemble method which combines several decision trees together is proposed in 

order to ameliorate accuracy and reduce bias. This approach is divided into averaging 

method and boosting method (Xie et al., 2018). The concept of averaging method is 

independently to construct decision trees and average their voted results. A case in 

point is Random Forest introduced by Breiman (2001). By comparison, boosting 

method aims to construct decision trees sequentially to reduce bias of model. XGB is 

one of boosting ensemble method. 

 

 
Figure 9 The procedures of decision tree. First, training data are used to construct a 

decision tree and then it is applied to classify new data point from test data. 
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 Learning rate or shrinkage is the parameter which determines how much the 

model is adjusted or changed based on the loss function (Friedman, 2002). Too 

small learning rate lead model to overfitting and getting stuck in local minima. In 

contrast, too large learning rate encourages model to underfit. Min child weight is the 

minimum sum of instances weigh in leaf. This parameter uses to avoid overfitting 

too. If sum of instances weigh in leaf is lower than min child weight, the leaf will be 

splitted. In simple word, it inhibits model to over-reliance on one potential feature 

to prevent overfitting. Max depth defines the maximum number of splitting in each 

tree. This parameter refers to complexity of model. High max depth make model 

more complex and specific to particular one data set so it causes our model 

overfitting. However, too low max depth leads model to underfitting. 

Every parameter controls generalization of our model because XGB has ability 

to fit every data point in training data set to obtain 100% accuracy in training data 

set. However, this does not mean model will fit in every data point in testing set and 

it usually acquires low score of accuracy in testing data set. In contrast, model can 

find simple relationship like linear or curve line between data and label but it is not 

suitable relationship which explains our data set. The concept of overfitting and 

underfitting are shown in Figure 10. Therefore, changing parameter is required to 

increase predictive accuracy while generalize our model. More details about XGB 

including mathematical equation and tuning parameters can be found in Chen and 

Guestrin (2016). 
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Figure 10 The concept of overfitting and underfitting. On the left, model cause 

underfitting so decision boundary 
 

2.2.5 Artificial neural network (ANN) 

 A study by Mcculloch and Pitts (1943) first introduces the simplest neural 

network, which was inspired by the complex network of human brain. In that time, 

the efficiency of computer was not high. Moreover, other models which do not 

require high performance computer and storage like K-nn, SVM, and decision tree 

was announced so neural network was not popular at that time. Then at the end of 

20th century, computer have been develop until it can deal with tremendous data 

with complex models (Yadav et al., 2015). As a result, neural network begins more 

famous and it is renamed to Artificial neural network (ANN). 

 ANN is deep learning algorithm inspired by information processing of 

biological system comprised neurons and complex connection system between 

these neurons (Bishop, 2006). ANN consists of three layers: input layer, hidden layer, 

and output layer. As a analogy between ANN and neuron (Figure 11), input layer is 

similar to dendrite which receives data and then passes it to cell body. Hidden layer 

resembles the cell body which is responsible for determining a relationship between 

input data and generating the label of each data. Moreover, ANN can have more 

than one hidden layer to improve the performance of the model. This study uses 

three hidden layers for ANN and other neural network models. The last one is output 
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layer which is equivalent to axon, which aims to transmit the information from cell 

body to another neuron or muscle (López et al., 2017).  

 

 
Figure 11 A analogy between nerve system (top) and Artificial neural network 

(bottom). 
 

Sometime when neural network which has a lot of nodes works on small 

dataset, the results seem likely to be poor. As the number of nodes and data are 

unsuitable, neural network is inclined to too use some specific nodes. This would 

lead neural network to overfitting with training data. To prevent this overfitting, 

dropout is applied to neural network. It omits some nodes in each iteration of 

training step to prevent the model to over-reliance on some specific nodes 

(Srivastava et al., 2014). It is set in term of probability. For example, 0.5 means that 

half of nodes are dropped every iteration in training phase (Figure 12). By doing this, 

neural network will not over-reliance on specific nodes and increased generalization 

of model. 
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Figure 12 Dropout parameter. Dropout eliminates some of nodes while training step 

to prevent model to over-reliance on some nodes. 
 

2.2.6 Convolutional neural network (CNN) 

 Convolutional neural network (CNN) is subset of Artificial neural network 

(ANN) which adopts convolution layers. It was proposed by Cun et al. (1989) to apply 

in data containing many features. Then the various types of CNN have been created 

like VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and 

ResNet (He et al., 2016) with providing a high efficiency in image classification and 

detection tasks (Wu and Zhao, 2018). In ANN, there are 3 main layers consisted of 

input layer, hidden layer, and output layer for classification. In contrast, CNN adds 

convolution layer and pooling layer which aim to extract certain features to turn raw 

data into representation which noises and unnecessary features are removed (Figure 

13). After that, the representation is passed through to hidden and output layers 

respectively for classification step. By doing this, the number of features processed 

by network has been reduced and made network more efficient to implement.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23 

 
Figure 13 The structure of CNN. It consists of input layer, convolutional layer, pooling 

layer, and fully connected layer. 
 

 Convolutional layer is first layer of CNN which aims to extract only important 

features from input by convolutional operation. Convolutional operation refers to 

mathematical operation which combines two metrics by dot product and sums the 

result to produce new metric as shown in Figure 14 (Wu and Zhao, 2018). 

Convolution layer works as sliding each filter over the input and produces feature 

map. The network then correlates relationship between feature map and output. 

Filter is changed iteratively until the optimal filter which provide feature map having 

strongest relationship with output has been found. The proper filters will be learned 

by training procedure and are applied on test data for feature extraction. 

Pooling layer is to reduce space of output feature map by stepping a stride 

over the feature map as convolution layer. There are two general functions for 

pooling layer: average and max operation but this study uses max operation which 

computes the max value of each feature map stepped by a stride. After data are 

passed convolutional and pooling layer, it will be sent to fully connected layer or 

ANN. Then optimal decision boundary is calculated by ANN. 
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Figure 14 Convolutional operation.  
 

2.2.7 Gated recurrent unit (GRU) 

 Gated recurrent unit (GRU) is a one of Recurrent neural network (RNN) which 

is suitable for sequential data (Figure 15). In CNN, our network remembers data in 

space series to extract important feature before pass through fully connected layer. 

In comparison, RNN is constructed to memorize data in time-series. It uses few 

previous and next time step data with the current data point as an input data to 

predict output. By doing this, RNN have been perfectly suitable to problem involved 

sequential data in particular speed recognition (Liu et al., 2018). To train RNN, the 

backpropagation through time (BPTT) is applied but it lead to cause the gradient 

vanishing problem when the network remember a long time series data (Bengio et 

al., 1994). Therefore, GRU which have reset and update gate to prevent the gradient 

vanishing is proposed (Liu et al., 2018). The former gate is designed to manage how 

much stored information which should be remove. The latter aims to consider what 

should be memorize and how it is important (Tutubalina et al., 2018).  
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Figure 15 The conceptual model for GRU. 
 

2.3 Experimental design 

 Experiments can be divided into two major groups: single well and multiple 

wells test. The former means that well logging data from one well are split into 

training and test data. For example, Xie et al. (2018) applies four machine learning 

algorithms on well logging data from the Ordos basin in China. Xie et al. (2018) has 

two datasets from two fields: Daniudui (five wells) and Hangjinqi (seven wells) gas 

fields. Machine learning algorithms are used to classify each dataset separately. To 

illustrate, data from five wells in Daniudui gas field are randomly split into training 

data (80%) and test data (20%). Then models are trained and tested with data from 

Daniudui gas field. As the next step, these procedures are repeated with data in 

Hangjinqi gas field.  

In comparison, the latter means that many wells are combined as training 

dataset. Hall and Hall (2017) uses data from nine wells from Hugoton and Panoma 

fields, USA, in well logging classification task. One well is assigned as test dataset 

whereas eight wells are assigned as training dataset. After that, the models are 

trained on training data and tested on test data. In this study, the models are 

employed under two experiments: single well and multiple wells. 
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Chapter 3 Study Area 

3.1 Overview of data 

 Well logging data and well reports from four geothermal wells (WO2, 

Mountain Home, Kimma, and Kimberly) in the Snake River Plain are used in this 

study. The location of the four wells is shown in Figure 16. The depth in each well 

varies from 2000 m to 4000 m. Each well has over 8,000 data points. This four wells 

data comes from two projects. The former is the Frontier Observatory for Research in 

Geothermal Energy (FORGE) which is led by Idaho National Laboratory (Podgorney, 

2016b). The latter is project HOTSPOT which is led by John W. Shervais, Utah State 

University (Shervais, 2014a, b, c). 

 

 
Figure 16 Location of 4 study wells. Yellow spots represent the location of study 

well. WO2, Kimma, and Kimberly well stand on Eastern Snake River Plain 
while Mountain Home locate on Western Snake River Plain (Shervais et al., 
2013).  
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FORGE was established in 2015. They publish WO2 well data. FORGE aims to 

analyze geological data to enhance conceptual geological model in Snake River 

Plain. Consequently, they publish every data, for example, well logging data, core 

analysis, and hot water analysis. WO2 well was drilled in 1991 for about 5 km (Anders 

et al., 2014; Mazurek, 2004). In this well, there are four features: gamma ray, neutron, 

porosity, and density. Rocks in this well are classified into basalt, claystone, 

sandstone, siltstone, conglomerate, tuff, and vitrophyre.  

 The data from Mountain Home, Kimma, and Kimberly are collected in order 

to evaluate geothermal potential in three disparate geological sites (Shervais et al., 

2013). These three wells are drilled between September 2010 and January 2012 

while collecting for further researches (Shervais et al., 2013). Mountain Home is in a 

fault-bounded basin with thick sedimentary rock interbedded. Kimma is high sub-

aquifer with a mafic intrusion. Kimberly is valley-margin with up-flow hot fluid. 

However, the data from some part of the whole well is used in this study. The rocks 

are classified into basalt, sedimentary rock, and rhyolite for these three wells and 

there are twelve features: gamma ray, temperature, pressure, resistivity in mud 

measurement (Rmud), resistivity in deep measurement (Rd), resistivity in shallow 

measurement (Rs), p-wave (Vp), s-wave (Vs), and water wave speed (Vw).  

A total of fifteen types (features) of well logs and nine rock types (classes) are 

used to collect data. The types and measurement resolution of logging tools as well 

as lithological classification are shown in Table 1 and 2, respectively.  The resolution 

of each logging tool is between 0.1 to 0.5 m. The distribution of classes in each well 

is presented in Figure 17. The vast majority of data is igneous rocks such as basalt, 

rhyolite, and tuff whereas sedimentary rocks are the minority. Moreover, Figures 18 

to 21 provide the information about well logging data with lithology. An example of 

well logging data used in this study is shown in APPENDIX K.  
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Table 1 Available well-logs (features) in WO2, Mountain Home (MH), Kimma, Kimberly 
in the Snake River Plain. 

Type of well-log 
(Features) 

Well name Resolution range 
(cm) 

WO2 Mountain Home Kimma Kimberly 

Gamma ray ✓ ✓ ✓ ✓ 20 

Temperature  ✓ ✓ ✓ 1 - 5 

Pressure  ✓ ✓ ✓ 1 – 5 

Rmud  ✓  ✓ 80 

Rd  ✓ ✓ ✓ 80 

Rs  ✓ ✓ ✓ 80 

Thorium  ✓  ✓ 20 

Uranium  ✓  ✓ 20 

Potassium  ✓  ✓ 20 

Vp  ✓ ✓ ✓ 50 

Vs  ✓ ✓ ✓ 50 

Vw  ✓   50 

Density ✓    50 

Porosity ✓    50 

Neutron ✓    50 

Remarks: Rmud refers to Resistivity in mud measurement. Rd refers to Resistivity in 

deep measurement. Rs refers to Resistivity in shallow measurement. Vp refers to p-

wave. Vs refers to s-wave and Vw refers to water wave speed. 
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Table 2 Rock types (classes) in WO2, Mountain Home (MH), Kimma, Kimberly in the 
Snake River Plain. 

 
Rock type (Classes) 

Well name 

WO2 Mountain Home Kimma Kimberly 

Basalt (BS) ✓ ✓ ✓ ✓ 

Claystone (CS) ✓    

Conglomerate (CG) ✓    

Sandstone (SS) ✓    

Siltstone (ST) ✓    

Tuff (TF) ✓    

Vitrophyre (VP) ✓    

Sedimentary rock (SR)  ✓ ✓ ✓ 

Rhyolite (RH)    ✓ 
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Figure 17 Classes distribution of each well. BS: basalt, CS: claystone, CG: 

conglomerate, SS: sandstone, ST: siltstone, TF: tuff, VP: vitrophyre, SR: 
sedimentary rock, and RH: rhyolite. 
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Figure 18 Well logging data of WO2 with lithostratigraphic log. This well depth is 

about 5000 m with 0.5 m interval. GR: gamma ray, DENS: density, POR: 
porosity, and NEUT: neutron. 
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Figure 19 Well logging data of Mountain Home with lithostratigraphic log. GR: gamma 

ray, Temp: temperature, P: pressure, Rmud: resistivity in mud measurement, 
Rd: resistivity in deep measurement, Rs: resistivity in shallow measurement, 
Th: thorium, U: Uranium, K: Potassium, Vp: P-wave velocity, Vs: S-wave 
velocity, Vw: water wave velocity. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 33 

 
Figure 20 Well logging data of Kimma with lithostratigraphic log. There are about 800 

m in Kimma well depth with 0.1 m interval. GR: gamma ray, Temp: 
temperature, P: pressure, Rd: resistivity in deep measurement, Rs: resistivity in 
shallow measurement, Vp: P-wave velocity, Vs: S-wave velocity. 
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Figure 21 Well logging data of Kimberly with lithostratigraphic log. Kimberly well is 

drilled approximately 1,900 m with 0.1 m interval. GR: gamma ray, Temp: 
temperature, P: pressure, Rmud: resistivity in mud measurement, Rd: 
resistivity in deep measurement, Rs: resistivity in shallow measurement, Th: 
thorium, U: Uranium, K: Potassium, Vp: P-wave velocity, Vs: S-wave velocity, 
Vw: water wave velocity. 
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3.2 Snake River Plain 

In Early Mesozoic Era, the oceanic Farallon plate, subducted underneath the 

North American plate.  This subduction zone is called Farallon subduction zone and 

provides major tectonic features in west America as shown in Figure 22 (DeCourten, 

2009). After that, the subducted Farallon plate failed and the fragment of Farallon 

plate beneath North American plate was melted in the mantle. This causes 

widespread volcanisms along the western of North American plate. As the next step, 

the fragments of Farallon plate were renamed into Juan de Fuca and Cocos plates 

(Lonsdale, 2005). During Early Cretaceous, worldwide plate motion was changed. 

Pacific plate began moving to the north away from North American plate. As a result, 

the strike-slip fault, San Andreas fault, had been created along the west margin of 

North American plate (Engebretson et al., 1984). Moreover, the Juan de Fuca 

subduction was rollback in this period. This subduction rollback caused North 

American plate moving westward over the Yellowstone hotspot where the fragment 

of Farallon plate was melted below North American plate and extension along west 

North American plate. Finally, Snake River Plain had been formed by these tectonic 

processes (Bedrosian and Feucht, 2014; Humphreys, 1995).  
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Figure 22 Crustal thickness map of western United State showing tectonic features 

and physiographic province: Basin and Range (B&R), Blue Mountains (BM), 
Cascade Arc (CA), Coast Ranges (CR), Colorado Plateau (CP), Columbia Plateau 
(CoP), Great Plains (GP), Great Valley (GV), High Lava Plains (HLP), Klamath 
Mountains (KM), North Cascades (NC), Northern Rocky Mountains (NRM), 
Olympic Mountains (OM), Sierra Nevadas (SN), Snake River Plain (SRP), 
Southern Rocky Mountains (SRM), and Wyoming Basin(WB) (Bedrosian and 
Feucht, 2014). 
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Six high-grade geothermal systems have been located in the western part of 

the US: the Great Basin, the Snake River Plain and margins, the Oregon Cascade 

Range, the Southern Rocky Mountains, the Salton Sea, and the Clear Lake Volcanic 

Field (Tester et al., 2006). In particular, 75% of the Snake River Plain, which is about 

27,900-km2, has an average temperature more than 200 oC at depth 4 km (McLing et 

al., 2016). The Snake River Plain is located in southern part of Idaho, extending about 

6,400 km in an east-west direction. Furthermore, the Snake River Plain is a unique 

volcanic province which experienced bimodal volcanism during Quaternary. As a 

result, this area is covered by Quaternary basalt and rhyolite as shown in Figure 23 

(Ellis et al., 2010). There are a large number of hot-springs. One of the famous hot-

spring in this region includes the Yellowstone National Park, which attracts over 4 

million visitors annually. (Brand and White, 2007; McLing et al., 2016).  

 

 
Figure 23 A geological map of Idaho, the USA, Snake River Plain with well location. 

This area is covered by Quaternary basalt and rhyolite (Lewis et al., 2012). 
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The Snake River Plain is divided into two parts: Western Snake River Plain  

and Eastern Snake River Plain . The former is characterized by normal fault-bounded 

graben whereas the latter is related to the middle Miocene to recent volcanic 

activity with Yellowstone Hotspot, creating crustal downwarping, faulting, and caldera 

formation as shown in Figure 24 (Hughes et al., 1999; Neupane et al., 2014; Pierce 

and Morgan, 2009; Rodgers et al., 2002). 

 

 
Figure 24 The Snake River Plain in south Idaho, USA. Red dash line represents the 

boundary between the Eastern Snake River Plain  and the Western Snake 
River Plain.  Black dash line refers to the area of Quaternary volcanic activity 
(Neupane et al., 2014). 

 

3.2.1 Western Snake River Plain  

 Wood and Clemens (2002) proposes that the Western Snake River Plain is an 

intracontinental rift basin, which covers an area of 70 km wide and 300 km long. This 

basin is bounded by normal fault dipping toward the center of basin and filled with 

2-3 km Neogene sedimentary rock (Figure 25). In comparison, the eastern part of 
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Snake River Plain in which there is no fault bounded is not rift basin but it is formed 

by the complex processes between extension and magmatism (Parsons et al., 1998). 

Therefore, Western Snake River Plain is more simplified than Eastern Snake River 

Plain in terms of both tectonic and magmatic activities. Although the structure of 

Western Snake River Plain is similar to typical intracontinental rift basins like East 

African Rift Valley, Baikal Rift, and Rio Grande Rift with these including half grabens 

and full grabens, the magmatism in Western Snake River Plain is different. This area 

has been affected by hotspot beneath Snake River Plain (Wood and Clemens, 2002). 

 

 
Figure 25 The intracontinental rift basin Western Snake River Plain. Black lines are 

border normal fault dipping toward the center of Western Snake River Plain 
(Shervais and Vetter, 2009). 
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In the beginning, when Western Snake River Plain basin was extending, 

lacustrine environment was a major system in this basin and then it changed into 

fluvial system in Late Quaternary. Moreover, there were rhyolitic volcanic activities 

during pre-rift and basaltic volcanic activities in post-rift. Therefore, this area 

consisted of sedimentary rocks from lacustrine and fluvial environments such as 

sandstone, mudstone, and conglomerate and igneous rocks like rhyolite, basalt, and 

tuff. The cross-section in Western Snake River Plain is shown in Figure 26.  

 

  
Figure 26 Cross section of Western Snake River Plain. The dark pattern shows basalt 

in this area (Wood and Clemens, 2002). 
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Several geologists interest in Western Snake River Plain because of large 

groundwater resource and geothermal energy. Due to semiarid of southwest Idaho, 

groundwater resource is necessary in term of economy and society. A lot of data 

from failed petroleum wells help geologists improve accuracy of groundwater 

models (Whitehead, 1992). By doing this, aquifer distribution is more clearly 

understood and groundwater management is improved. However, geothermal 

resource in Western Snake River Plain is less interested than Eastern Snake River Plain 

because Eastern Snake River Plain has various magmatism than this area.    

 Before formed into Western Snake River Plain, this area was directly affected 

by rhyolitic magma and Steens basalt during 17-13 Ma. Then, rhyolitic magma 

erupted along fault margin while the basin was developing, 12-11 Ma Moreover, 

convincing evidence, 2 km thick of continuous rhyolite sequence, from deep well in 

the center of the western plain shows that Bruneau-Jarbidge rhyolite eruptive center 

coincides with formed Western Snake River Plain basin. After that normal faults 

rapidly developed, followed by extending over 2 km offset from 11 Ma to 9 Ma and 

then movement rates have been low (<0.01 mm/year). 

Depositional environment of this basin is fluvio-lacustrine interbedded with 

volcanic rock in some periodes. The sedimentary rocks of this basin are represented 

by Chalk Hills Formation determined by Perkins et al. (1998) comprising claystone, 

arkosic sandstone, tuff, and volcanic rock as shown in Figure 27. Due to erosional 

surface founded in Chalk Hills Formation, Wood and Clemens (2002) interpreted that 

there was regressive of lake water in some period between 6 and 4 Ma and then 

water level rebounded with the depositing of transgressive sequence over the 

erosional surface. Moreover, oolites found in this area indicates a rise of alkaline in 

lake water and then disappearing of oolite indicates declining of alkaline because of 

connecting to river and sea. Tassell et al. (2001) suggested that this lake connected 

to the Snake River, the Columbia-Salmon River, and the sea between 3.8 and 2 Ma. 
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Finally, the environment gradually changed to fluvial environment from southeast to 

northwest. As a result, the upper section of Chalk Hills Formation is deltaic 

sandstones and fluvial deposits.  

After filled with lake sediments, Western Snake River Plain had effect from 

basalt around 3.2 Ma. This basalt overlaying on sedimentary rocks expressed source 

from shield volcanoes and fissure eruption. In Late Quaternary, the southeastern 

boundary fault system was reactivated by the present tectonic stress. This caused 

fault movement and orientation.  
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Figure 27 Stratigraphic column of Chalk Hills Formation represented rock in the 

Western Snake River Plain (Wood and Clemens, 2002). 
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3.2.2 The Eastern Snake River Plain  

 Eastern Snake River Plain is relatively low land area compared with the 

adjacent areas like Basin and Range, Blue Mountains, and Northern Rocky Mountains 

as shown in Figure 28. Structure and geomorphology obviously show whether there 

are different tectonic processes with Eastern Snake River Plain and Basin and Range 

where are dominated by normal faults and high elevation. Basin and Range has had 

extremely deformation more than Eastern Snake River Plain. Moreover, when 

compared with the Western Snake River Plain, this area has rarely normal faults and 

basaltic rift zones because it has different extension processes and volcanic activities. 

The cross section of Eastern Snake River Plain is shown as Figure 29. The first stage of 

Eastern Snake River Plain began around 16 Ma with basin extension and then it has 

subsided through the Neogene.         

 

 
Figure 28 Eastern Snake River Plain bounded by Basin and Range and seismic 

parabola (green line) (Rodgers et al., 2002). 
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 Eastern Snake River Plain is adjacent to Basin and Range and bounded with 

Quaternary fault zone called seismic parabola (Figure 28) determined by Pierce and 

Morgan (1992). Moreover, founded structures in Eastern Snake River Plain indicate 

whether Eastern Snake River Plain and Basin and Range are formed by similar 

processes but Eastern Snake River Plain has been affected by a normal fault and dike 

injection. The dikes in Pliocene-Quaternary are mainly caused by extension in this 

area (Kuntz et al., 1992).   

 

 
Figure 29 The typical cross section of Eastern Snake River Plain. There are more 

volcanic eruptions in this area than Western Snake River Plain.  
 

 Rodgers et al. (2002) summarized data from Pierce and Morgan (1992) and 

McQuarrie and Rodgers (1998) and proposed model to explain how Eastern Snake 

River Plain form as shown in Figure 30.  

Stage 1 during 16 - 11 Ma, the proto-Eastern Snake River Plain was formed 

with slow extension and subsidence rate, followed by sedimentation rates being 

about 50-80 m/m.y. The proto-Eastern Snake River Plain basin was bounded by 

mountains or highlands and half graben was developing during this stage. On this 

stage, there was rarely volcanic activities so merely some basalts and tuffs were 

found. Furthermore, the proto-Eastern Snake River Plain basin was filled with thin 
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sequences of carbonate rocks and fine grained clastic rocks as an environment in this 

stage was interpreted to lacustrine and fluvio-lacustrine.  

Stage 2 during 11-4 Ma, in this stage, Eastern Snake River Plain rotated to the 

current position on the Yellowstone Plateau. Moreover, the extension rate in Eastern 

Snake River Plain was increased before it decreased in stage 3. This resulted high rate 

subsidence and thick sedimentary rocks deposited with sedimentary rates of 100-300 

m/m.y. Furthermore, the upper crust was extended by normal fault and the lower 

crust was extended and thinned by heat flow and dike injection. Due to thin crust, 

mafic magma could intrude into this area and this dikes and sills encouraged Eastern 

Snake River Plain to subside faster. After that, from 8.5 to 6.0 Ma, this area directly 

was affected by silicic magmatism. It caused widely highland topography on this area.      

Stage 3 during 4-0 Ma, the extension direction changed because of rotation in 

stage 3. In this stage, Eastern Snake River Plain has slightly subsided and Quaternary 

faults have developed. Moreover, there are various volcanic activity and hot spring 

around Yellowstone Plateau. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 47 

 
Figure 30 Evolution of Eastern Snake River Plain in stage 1 to 4 proposed by Rodgers 

et al. (2002).   
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Chapter 4 Methodology 

4.1 Overview of Workflow 

In this study, procedures are divided into main three steps: data preparation, 

models development, and models comparison. In Step 1, data are prepared for the 

models in data preparation or pre-processing. The data are cleaned and divided into 

training data, validation data, and test data (Figure 31). Details of data preparation are 

explained in section 4.2 

 

 
Figure 31 Data preparation step. The data are cleaned and split into training, 

validation, and test data. 
 

In Step 2, training data are used to train and build machine learning 

algorithms. The models are trained to know the characteristic of each rock by training 

data. After that validation data are used to evaluate preliminary results and some 

parameters of the models are changed. The models are optimized by validation data 

iteratively until the optimal parameters are found. This process is called 

hyperparameter tuning and the details of hyperparameter tuning are presented in 

section 4.3.2.  As the next step, the optimal models are evaluated by test data to 

give an accuracy score of each algorithm. Figure 32 shows the diagram of the models 

development step. Details of models development are explained in section 4.3. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 49 

 
Figure 32 Models development step. The models are trained by training data and 

optimized by validation data. After that, they are evaluated by test data. 
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As six algorithms are employed in this study, Step 3, models development, is 

iteratively done with six machine learning algorithms. Due to optimization, the 

models are leaded to overfit with validation data. This reduces the generalization of 

our algorithms for other data. Hence, the same data are prepared into training, 

validation, and test data with five different data sampling. Then each model is 

trained, optimized, and tested five times with different data sampling five times and 

the accuracy score of each algorithm is an average accuracy from five tests. By doing 

this, the variance from test data is reduced. This is called Monte Carlo cross-

validation (Xu and Liang, 2001). Finally, the performance of each algorithm is 

compared in step 3, the models comparison, as shown in Figure 33. Details of 

models comparison are shown in section 4.4. 

 

 
Figure 33 Models comparison step. The performance of six models which are 

optimized by validation data is compared in this step. 
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4.2 Data preparation 

 Well logging data are correlated with lithology from well reports. After every 

data point is labeled, the process of cleaning data begins. Data points which have 

less than three features and also negative data points are removed. A problem with 

this dataset is missing information from the original dataset. This can be due to the 

error for well log readings or the lack of particular well logging surveys in some wells. 

There are various techniques to tackle this problem. Generally, statistical approaches 

such as replacing missing value with the mode or median are used for data which 

have small missing values. For data which have a lot of missing values, missing 

imputation method is proposed to fill the missing values. For example, Tsai et al. 

(2018) proposed Class Center based Missing Value Imputation for missing values 

imputation. Class Center based Missing Value Imputation calculates missing values 

from surrounding data point as shown in Figure 34. Another example is Lopes and 

Jorge (2017) that missing values are filled by machine learning algorithms. A study by 

Lopes and Jorge (2017) shows that ANN gives the best performance in replacing 

missing values, followed by providing lower than 5% of error. However, Lopes and 

Jorge (2017) requires about 600,000 data points for machine learning algorithms. As 

this study does not have much data to do that, since the missing data points are 

replaced with -999.25 instead. As Shervais (2014a) uses -999.25 for absent value, this 

study uses that number too. This study aims that the model will recognize -999.25 is 

a missing value. After pre-processing is finished, the data are prepared for each 

experiment in the next process. 
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Figure 34 The conceptual model of Class Center based Missing Value Imputation. It 

calculates missing values for surrounding data points similar to K-nn (Tsai et 
al., 2018). 

 

The data are divided into training, validation, and test subsets depending on 

each experiment by stratified sampling. Stratified sampling is a data sampling method 

which data are divided into subset while preserving class distribution (Figure 35). The 

training dataset is used to train the models. The validation dataset is applied to 

determine the optimal tuning parameters. The test dataset is employed in order to 

grain the classification accuracy and confusion matrix. The training, validation, and 

test data are split differently five times in each experiment to reduce variance of 

data. 

 

 
Figure 35 A diagram shows stratified sampling where the data are split while class 

distribution remains constant. 
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4.3 Models development 

 Generally, machine learning algorithms are trained, optimized, and tested 

with training, validation, and test data, respectively. However, there are many 

possible ways to divide the training, validation, and test data. For example, training, 

validation, and test data are randomly selected from the same well (Xie et al., 2018). 

One well is determined as test data and other wells are determined as training and 

validation data (Hall and Hall, 2017). In this study, how to divide the data into 

training, validation, and test data are called as experiments or experimental design. 

As different experimental design might give disparate results in machine learning 

algorithms, this study does both experiments: single-well and multiple-well test. 

 

4.3.1 Experimental design 

Machine learning algorithms are employed under two experiments to 

simulate real-world application for this study: single-well and multiple-well test. In 

the single-well test, well logging data from each well are randomly split into training 

(70%), validation (10%), and test (20%) subsets, and then used to train and test with 

all six models as shown in Figure 36. For this experiment, well logging data and 

classes of each well are kept independent from those of other wells. 
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Figure 36 The single-well test. The training (70%), validation (10%), and test (20%) 

data are randomly split from the data in each well.  
 

 The combined well test uses a large amount of data as a training subset, 

combining data from three wells and 70% of the data from the remaining well 

(Figure 37). Then the remaining data are separated into validation (10%) and test 

(20%) subsets. As this scenario is to combine well logging data from four wells, the 

data have to be classified with the same classification in every well. In this scenario, 

lithology is reclassified into five classes: basalt, sedimentary rock, tuff, vitrophyre, and 

rhyolite. This is because sedimentary rocks in WO2 are classified as claystone, 

sandstone, siltstone while the other wells grouped as sedimentary rock. Features are 

prepared into 15 features while missing values are filled with -999.25. As some 

features were not collected in every well, their values are -999.25 in some wells. For 

example, the values of temperature logs are -999.25 in every data point in WO2 well. 
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Figure 37 The multiple-well test. Three wells and 70% of the fourth well are assigned 

as training data while the rest of the fourth well is assigned as validation 
(10%) and test (20%) data. 

 

4.3.2 Hyperparameter tuning  

 Hyperparameter or tuning parameter is essential to improving the 

performance of machine learning algorithms. A robust parameter selection process 

(tuning) is a process which ranks the accuracy of each model with different 

parameters to obtain the optimal parameters for each algorithm. Tuning parameter 

ranges for this study are exhibited in Table 3. The optimal parameter ranges are 

determined with the help of the validation dataset. 
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Table 3 A range of hyperparameter tuned for each algorithm. 

Model Tuning Parameter Search range 

SVM Penalty parameter of the error term (C) 0.1 - 1000 

Kernel coefficient for ‘RBF’ (Y) 0.00001 - 0.01 

K-nn Number of K 1-10 

XGB Learning rate 0.01 - 0.3 

The minimum number of samples required at a leaf 

node (min child weight) 0.1 - 100 

Maximum depth of the individual tree (max depth) 3 - 10 

ANN Learning rate 0.00001 - 0.01 

Dropout 0.05 - 0.25 

Number of node 8 - 64 

CNN Learning rate 0.00001 - 0.01 

Dropout 0.05 - 0.25 

Filter 8 - 64 

GRU Learning rate 0.00001 - 0.01 

Dropout 0.05 - 0.25 

Unit 8 - 64 
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4.4 Models comparison 

 The performance of six models evaluated by test data is compared in this 

step. As every rock types (or classes) is important equally, the accuracy score is used 

to evaluate the performance of each model in this study. To prevent overfitting, the 

data are divided into training, validation, and test five times with different data 

sampling and the models are trained and tested five times in each experiment. 

Hence, the accuracy score in each experiment of this study is an average accuracy 

with standard deviation from five tests. Moreover, confusion matrices which 

represent the ability of models to classify each rock types or classes are generated in 

this study. Confusion matrices can show which classes are classified correctly and 

which classes not. 
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Chapter 5 Results 

5.1 Model Performance 

 This study makes an attempt to design experiments in real-world 

environment so experiments are divided into two experiments. The optimal 

parameters are obtained by ranking models with different parameters in validation 

dataset and then they are applied to the models for testing on the test dataset.  

Each experiment is iterated five times to reduce variance of data. The accuracies of 

each model are given by mean of accuracy from five times test and the average 

accuracies of each model in each of experiments are shown in Table 4. Preliminary 

results show that XGB is the best model for lithological classification by using well-

logging data whereas neural network models, ANN, CNN, and GRU, are the worst 

performing model. Figure 38 shows the comparison results between well report and 

the results from each model. 
 

 
Figure 38 The comparison results between well report and the models. XGB gives 

the highest accuracy score at 90%. SVM and K-nn provide comparable results 
at 89% while ANN, CNN, and GRU exhibit the lowest accuracy. 
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Table 4 Classification accuracies of each algorithm for single- and multiple-well tests.  

Model 
Accuracy 

Single-well test Multiple-well test 

SVM 91% ± 8 84% ± 21 

KNN 88% ± 11 86% ± 15 

XGB 91% ± 9 87% ± 13 

ANN 88% ± 13 78% ± 21 

CNN 84% ± 14 77% ± 21 

GRU 86% ± 14 78% ± 19 

 

5.1.1 Single-well test 

Well-log data of each well are randomly split into training (70%), validation 

(10%) and test (20%) subsets and used to train and test with all six models. Results 

suggest that XGB and SVM give the comparable accuracy of rock classification (91%) 

as shown in Figure 39. K-nn show prediction accuracy at 88% ± 11 while ANN, CNN, 

and GRU, display comparable accuracy at 88% ± 13, 84% ± 14, and 86% ± 14, 

respectively. Table 5 presents the representative accuracy of each rock in the single-

well test. The representative accuracy is averaged from all wells and selected from 

one out of five folds in Monte Carlo cross-validation. In general, igneous rocks such 

as basalt, tuff, and rhyolite have high accuracy (more than 80%) in every model. 

However, some models often misclassify particular rock types such as sedimentary 

rocks and vitrophyre, resulting in 0% average accuracy.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 60 

 
Figure 39 Average accuracy scores over six machine learning algorithms in single-well 

test. Red spots represent min and max accuracies of each algorithm before 
average. Error bars represent standard deviation. 

 

Table 5 The representative accuracy of each rock type from the single-well test. The 
representative accuracy is averaged from all wells and selected from one out of five 
folds in Monte Carlo cross-validation. 

Rock types SVM (%) KNN (%) XGB (%) ANN (%) CNN (%) GRU (%) 

Basalt 94 93 93 73 73 72 
Claystone 75 50 54 0 0 0 

Conglomerate 0 25 0 0 0 0 

Sandstone 0 39 61 0 0 0 
Siltstone 0 56 41 0 0 0 

Vitrophyre 0 28 16 0 0 0 

Tuff 100 97 99 100 100 100 
Sedimentary rock 20 20 52 5 5 12 

Rhyolite 87 53 75 88 95 96 

Remark: 0% means the model misclassify this rock completely and 100% means the 
model classify this rock perfectly. 
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5.1.2 Multiple-well test 

Multiple-well test uses the largest amount of data as a training set, which 

combines data from three wells and 70% of data from the remaining well.  To 

produce comprehensive results, the test set is also permuted between wells until 

every well has become test set. However, sedimentary rocks are grouped as 

sedimentary rock class in this experiment. There are five classes: basalt, sedimentary 

rock, tuff, vitrophyre, and rhyolite with 15 features in this scenario. Results are similar 

to the single-well test as shown in Figure 40. XGB remains the best algorithm for 

lithological classification, followed by 87% ± 13 of accuracy. The next-best 

performance models are K-nn and SVM, showing 86% ± 15 and 84% ± 21, 

respectively. CNN gives the lowest accuracy among the neural network models at 

77% ± 21 whereas ANN and GRU give a commensurate performance at 78% ± 21 and 

78% ± 19, respectively. Table 6 shows the representative accuracy of each rock in 

multiple-well test. The accuracy of rhyolite classified by SVM, K-nn, and XGB is 

reduced from single-well test whereas the accuracy of tuff exhibited by deep 

learning algorithms is declined from single-well test.  
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Figure 40 Average Accuracy scores over six machine learning algorithms in multiple-

well test. Red spots represent min and max accuracies of each algorithm 
before average. Error bars represent standard deviation. 

 

Table 6 The representative accuracy of each rock type from the multiple-well test. 
The representative accuracy is averaged from all wells and selected from one out of 
five folds in Monte Carlo cross-validation. 

Rock types SVM (%) KNN (%) XGB (%) ANN (%) CNN (%) GRU (%) 

Basalt 100 100 100 85 75 98 
Sedimentary rock 31 47 41 0 0 13 

Tuff 82 86 99 0 0 0 

Vitrophyre 0 19 0 0 0 0 
Rhyolite 58 59 63 91 98 89 

Remark: 0% means the model misclassify this rock completely and 100% means the 
model classify this rock perfectly. 
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5.2 The effect of tuning parameter  

Machine learning algorithm is an automated system that automatically builds 

a model from the data without requiring time consuming and human involvement. 

However, there is no perfect model which can represent any datasets in the world. 

The models should be adjusted by changing some parameters (tuning parameters) to 

specify the models with one dataset. Consequently, tuning parameters or 

hyperparameters are essential to improve the efficiency of machine learning 

algorithms. The models are trained and tested five times to discourage the effect of 

random seed and to encouraged generalization of our algorithms. The optimal and 

search range of hyperparameters are exhibited in Table 5. The results show that the 

models are robust with the close range of hyperparameters in single- and multiple-

well tests. The optimal hyperparameters are given by ranking each model on 

validation dataset since they do not always provide the highest accuracy on test 

data. 
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Table 7 The optimal range of hyperparameter tuned for each algorithm in single- and 
multiple-well tests. 

Model Tuning parameters Search range Optimal range 

SVM Penalty parameter of the error term (C) 0.1 - 1000 0.1 - 100 

Kernel coefficient for ‘RBF’ (Y) 0.00001 - 0.01 0.00001 - 0.0001 

K-nn Number of K 1-10 6 - 10 

XGB Learning rate 0.01 - 0.3 0.01 - 0.1 

The minimum number of samples 

required at a leaf node (min child 

weight) 0.1 - 100 60 - 100 

Maximum depth of the individual tree 

(max depth) 3 - 10 3 - 6 

ANN Learning rate 0.00001 - 0.01 0.00001 - 0.001 

Dropout 0.05 - 0.25 > 0.25 

Number of node 8 - 64 16 - 64 

CNN Learning rate 0.00001 - 0.01 0.00001 - 0.001 

Dropout 0.05 - 0.25 > 0.25 

Filter 8 - 64 16 - 64 

GRU Learning rate 0.00001 - 0.01 0.00001 - 0.001 

Dropout 0.05 - 0.25 > 0.25 

Unit 8 - 64 16 - 64 
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Regarding approaches, there are two tuning parameters for SVM: C and Y. C 

controls the number of misclassified data in SVM with soft margin. Results show that 

C should be a small number between 0.1 and 100 (Figure 53 in Appendix A). This is 

because the generalization of SVM should be increased while misclassified data are 

restrained. Likewise, Y reflecting the radius of the decision boundary should be a 

small number too. Even though increased Y in single-well test rise accuracy of 

validation dataset, it reduces the accuracy of test dataset. Thus, this study suggests 

that gamma should be 0.00001 to 0.0001. 

For KNN, K is tuned. It depends on coherence and incoherence between 

training and test data. If training data are clean and consistent with test data, K 

parameter should be a small number (2 - 4). In comparison, if the training data 

consist of a lot of noises and are not consistent with the test data, K should be a big 

number (8 - 10). There are plenty of rock types which have overlapping feature 

rangres such as basalt and rhyolite or sandstone and conglomerate in this dataset. 

This leads K-nn to misclassify the actual rock types to their counterparts. Moreover, 

replacing missing value with -999.25 might extend the distance between the test 

data point and suitable data points. Consequently, the optimal K should be a big 

number for this dataset as shown in Figure 54 (Appendix A). Results from this study 

suggest that K should be an even number from 6 to 10 in single- and multiple-well 

tests. 

Learning rate, min child weight, and max depth are tuned for XGB. Learning 

rate reflects how much model changes when new data are being added. If the 

learning rate is too small, the model will be trapped in local minima. In contrast, too 

much learning rate encourages model to pass the optimal. This study suggests that 

the optimal range of learning rate is 0.01 to 0.1. Min child weight refers to the 

number of instances in each node and max depth controls the maximum depth of 

the decision tree. The optimal range of min child weight is 60 to 100. However, the 
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effect of min child weight to model for validation and test dataset in multiple-well 

test is slightly different, followed by varying 2% of accuracy as shown in Figure 41. 

The efficiency of XGB is reliance on learning rate and min child weight more than 

max depth. The optimal range of max depth should be 3 to 6. 

 

 
Figure 41 The line graphs show the effect of tuning parameter to accuracy in XGB in 

two experiments. Red line represents the accuracy of test data and validation 
data for green line. 

 

 ANN, CNN, and GRU apply the same strategy to classify data and the tuning 

parameters are almost the same. Hence, ANN, CNN, and GRU are grouped as neural 

network models. Neural network models exhibit lower prediction accuracy than 

other models because they require balanced data to train models. There are three 

tuning parameters in neural network models: learning rate, dropout, and a number of 

nodes (filters for CNN and units for GRU). The effect of tuning parameters to the 
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models is shown in Figure 55 to 57 (Appendix B to D). Similar to XGB, learning rate 

determines modification of model based on updated data. Generally, the value of 

the learning rate depends on a number of data. If it is large, the learning rate should 

be large too. In contrast, the learning rate should be a small number if it is small. In 

this study, a number of data are small so the learning rate should be a small number 

in the range of 0.00001 to 0.001. Dropout is a regularization parameter to prevent 

overfitting by randomly eliminating nodes in each iteration. Thus, the value of 

dropout would consist with a number of nodes. This study suggests that the value of 

dropout should not be more than 0.25. The third parameter is a number of nodes 

for ANN, filters for CNN, and units for GRU. This parameter is varied by dropout and 

an amount of data. If the number of data is less than 50,000 data points, 16 to 64 is 

a suitable range in this study. As CNN and GRU memorize above and beyond data for 

classification, the number of data in memory has the effect to their performance. 

This study did not tune that parameter and used 15 data points above and beyond 

in this study. 

 

5.3 Confusion matrix 

5.3.1 Single-well test 

Overall, the models predict basalt, tuff, and rhyolite accurately. Other classes 

such as vitrophyre and sedimentary rocks tend to be misclassified possibly due to 

the lack of data points and distinctive features. For example, in WO2 well in single-

well test, every model predicts basalt class accurately, with over 95% of accuracy 

but more than 35% of conglomerate class is predicted to basalt (Figure 42). The 

confusion matrices of Mountain Home and Kimma in single-well test are presented in 

Appendix E and F. 
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Figure 42 Normalized confusion matrix of six models in prediction of WO2 well in the 

single-well test. BS: basalt, CS: claystone, CG: conglomerate, SS: siltstone, ST: 
sandstone, TF: tuff, VP: vitrophyre.  
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The single-well test, training and test data are randomly selected from the 

same well. There are four wells: WO2, Mountain Home, Kimma, and Kimberly. In 

WO2 well, there are seven classes: basalt, claystone, conglomerate, sandstone, 

siltstone, tuff, and vitrophyre. SVM shows the high performance for classifying basalt, 

tuff and claystone whereas other classes such as vitrophyre, siltstone, and 

conglomerate are misclassified to those classes. Likewise, significantly more basalt 

and tuff classes than others are correctly classified by K-nn. There is moderate 

prediction accuracy in claystone and siltstone about 50%. Conglomerate, sandstone, 

and vitrophyre have low prediction accuracy. For XGB, there is almost the same 

pattern with K-nn but conglomerate, siltstone, and vitrophyre have lower prediction 

accuracy. However, XGB gives higher accuracy score in other classes than K-nn. 

Neural network models exhibit the lowest accuracy score for this task because there 

are two classes classified properly, basalt and tuff.  

In Mountain Home and Kimma wells, classes are separated into two classes: 

basalt and sedimentary rock. The overwhelming majority of classes (more than 90%) 

in this wells are basalt since the models have made an attempt to give high 

prediction accuracy for basalt. SVM do not have capacity to distinguish the difference 

between these two classes with sedimentary rock being misclassified to basalt. In 

comparison, K-nn gives slightly accurate prediction about sedimentary rock while 

basalt has high precision. There is significant prediction accuracy in both basalt and 

sedimentary rock prediction for XGB. This would lead XGB to the best algorithm for 

well logging classification. Similarly to SVM, neural network models cannot recognize 

the difference between basalt and sedimentary rock easily, followed by giving low 

accuracy in prediction of sedimentary rock. However, GRU experiences the highest 

classification score in sedimentary rock classification among neural network models 

whereas it gives the lowest score in prediction of basalt.  
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In Kimberly well, there are three classes namely, basalt, sedimentary rock, 

and rhyolite. Figure 43 shows confusion matrix of each models in Kimberly well. The 

vast majority of classes (about 83%) are rhyolite. SVM is the best algorithm for this 

task because basalt and rhyolite have the highest accuracy of prediction by SVM. 

However, sedimentary rock still has low precision. There is high efficiency in 

prediction of basalt while rhyolite classification score is low in K-nn. Rhyolite is often 

misclassified to sedimentary rock by K-nn and sedimentary rock has low accuracy. 

XGB also provides high prediction accuracy in basalt and rhyolite but it gives low 

precision for sedimentary rock too. To compare, sedimentary rock is tended to be 

misclassified to basalt by K-nn and XGB whereas it is misclassified to rhyolite by SVM. 

The data mostly are misclassified to rhyolite being majority classes by ANN and CNN. 

This encourages rhyolite to have high prediction accuracy by ANN and CNN while the 

others have low accuracy. In comparison, GRU shows the high accuracy of prediction 

in basalt and rhyolite but it gives low accuracy in sedimentary rock. 

 

5.3.2 Multiple-well test 

The multiple-well test, results are almost the same as single-well test but 

sedimentary rock has better accuracy than previous experiments in SVM, K-nn, and 

XGB. This is due to the fact that this dataset has more instance of sedimentary rock. 

As characteristic of sedimentary rock is varied by its composition, to have more 

sample has encouraged the model to recognize the difference between sedimentary 

rock and other better than previous experiments. However, neural network models 

still have inefficiency in prediction sedimentary rock. The confusion matrices of every 

model in multiple-well test are shown in Appendix G to J.  
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Figure 43 Normalized confusion matrix of six models in prediction of Kimberly well in 

the single-well test. BS: basalt, SR: sedimentary rock, RH: rhyolite. 
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Chapter 6 Discussion 

6.1 Model performance 

In this study, two experiments, namely single-well test and multiple-well test, 
are designed to give comprehensive results for well logging classification by deep 
and machine learning algorithms. In the single-well test, XGB and SVM perform best 
with 91% of accuracy whereas CNN exhibits worst performance at 84% (Table 4). 
Similarly, XGB outperforms other models with highest accuracy (87%) in the multiple-
well test and CNN remains as the worst-performing model with lowest accuracy 
(77%). A number of previous studies e.g. Dubois et al. (2007); Konaté et al. (2015); Xie 
et al. (2018) apply machine learning algorithms to classify well logging data similarly 
to single- and multiple-well tests in this study. The previous studies use F1 score 
which measures accuracy while considering error but this study measures the models 
with accuracy. This is because every class is important equally in this study. Hence, 
accuracy is adequate to evaluate the performance of models. Moreover, confusion 
matrix which represents error and accuracy of each class is applied in this study to 
show the performance of the models. In this chapter, the results of this study are 
compared with previous studies. Even though the results cannot compare directly 
between accuracy and F1 score, this comparison can present the similarities, 
differences, and trends of each model between this study and other studies. 

 

6.1.1 Single-well test 

 A comparison of results between this study and other studies in the single-
well test is shown in Figure 44. The average accuracy of each model in this study is 
higher than 80% but the accurate performance (F1 score) in the other studies is 
about 60% to 80%. This is due to a difference in the number of data and a variety of 
classes in each study. For example, the prediction performance based on F1 score of 
ANN and K-nn models of sedimentary rocks in Panoma gas field, Southwest Kansas 
are 68% and 67%, respectively (Dubois et al., 2007). However, ANN and K-nn used in 
this study gives as much as 88% of classification accuracy. This is because the 
number of data in this study, which is about 8,000 - 20,000 data points, is 2-6 times 
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larger than those in Dubois et al. (2007). Moreover, well logging data in Dubois et al. 
(2007) are divided into eight classes, which comprise of carbonate and clastic 
sedimentary rocks that have similar physical and chemical properties. For example, 
mudstone, wackestone, and packstone are limestone classified by fabric of sediment 
and fossil in the rocks. Hence, composition and well logging responses of these rocks 
are slightly different. 

Another study by Konaté et al. (2015) applies SVM, K-nn, and ANN to classify 
well logging data from the Dabie-Sulu terrane in China. ANN gives the highest 
performance in this study at 87%. As the number of data in Konaté et al. (2015) is 
more than 38,000 data points, deep learning algorithm such as ANN, which requires 
tremendous data in training step, performs well in his study. Furthermore, the rocks 
in the Dabie-Sulu terrane are metamorphic and igneous rocks. Well logging responses 
of these rocks are more unique and can be easily separable compared to those of 
sedimentary rocks in Dubois et al. (2007).  

In addition, SVM, ANN, and XGB models are employed to classify well logging 
data from Ordos Basin in China by Xie et al. (2018). Similarly to this study, XGB 
provides the highest accurate performance at 81%. As Xie et al. (2018) has only 
about 1,200 data points, ANN provides lowest F1 score at 53%. The results from Xie 
et al. (2018) suggest that coal and carbonate rocks can be easily classified from 
clastic sedimentary rocks due to their composition. Clastic sedimentary rocks are 
mainly composed of quartz, feldspar, and clay mineral but coal and carbonate rocks 
are mainly composed of organic matter and calcite, respectively. As a result, well 
logging responses of coal and carbonate rocks are clearly different from clastic 
sedimentary rocks. Conversely, the classification of pebbly sandstone, coarse 
sandstone, medium sandstone, and fine sandstone are much harder. This is because 
sedimentary rocks are classified by grain size but well logging do not measure grain 
size directly. Not only did grain size affect well logging data, but composition also 
influenced well logging data. The classification of sedimentary rocks is thus more 
challenging than igneous and metamorphic rocks. The overall trend is about 60 - 
70% of accuracy. 
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Figure 44 Comparison of accurate performance between this study and other studies 

in single-well test. Red color represents this study. Black refers to a study by 
Xie et al. (2018). Green and blue show results from Dubois et al. (2007) and 
Konaté et al. (2015), respectively. 
 

6.1.2 Multiple-well test 

A study by Hall and Hall (2017) uses SVM, ANN, and XGB models to classify 
sedimentary rocks in Panoma gas field in multiple-well test setting. The comparison 
of results between this study and Hall and Hall (2017) present in Figure 45. XGB gives 
the highest accurate performance at 63% in Hall and Hall (2017) and 87% of 
accuracy in this study. It is worth noting that Hall and Hall (2017) uses the same 
dataset as Dubois et al. (2007) but the models are employed under different data 
sampling. Hall and Hall (2017) combines data from eight wells as training data while 
using the last well as test data. In comparison, Dubois et al. (2007) select randomly 
70% of whole data from every well as training data and 30% as test data. ANN in Hall 
and Hall (2017) provides about 56% of accurate performance while ANN in Dubois et 
al. (2007) gives 68% of accurate performance. Despite using the same model and 
dataset, results from this study and previous studies suggest that the prediction 
results can be significantly different due to the experimental design. 
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Figure 45 Comparison of accurate performance in multiple-well test between this 

study and Hall and Hall (2017). 
 

In addition, accuracy results from every model in the multiple-well test are 
lower than those of the single-well test in this study. Figure 46 presents the 
comparison of accuracy between the single- and multiple-well tests. The multiple-
well test is more sophisticated than single-well test because the data from different 
have more variety and complexity than data from the same well. For example, 
sedimentary rock in Mountain Home consists of sandstone, claystone, and breccias 
but sedimentary rock in Kimberly is mudstone, sandstone, and ash.  

 

 
Figure 46 Comparison average accuracy of each model in this study between single-

well test and multiple-well test. 
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Combining data from other wells can introduce noises. Forexample, basalt 
and rhyolite are the different volcanic igneous rock, but their logging responses are 
often the same or in overlapping ranges. When basalt from other wells is combined 
as training data in multiple-well test, basalt basically confuses the algorithms and 
leads to the misclassification of rhyolite into basalt and vice versa. As a result, the 
accuracy of basalt in multiple-well test is increased whereas the accuracy of rhyolite 
is decreased (Figure 47). Moreover, the data in this study were collected by different 
organizations. The features or logging tools in each well vary significantly. For 
example, neutron log is gathered in WO2 well. The models thus have to deal with 
missing features when four wells are combined in multiple-well test. As a result, 
missing features turn sometimes into noise in the multiple-well test. 
 

 
Figure 47 Comparison accuracy of each rock type in Kimberly well between single 

well and multiple-well test in this study. The accuracy is provided by XGB. 
 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 77 

By merging data from different wells, two issues have emerged from the data: 

different sets of classes and features. Regarding the study area, lithological 

classification and the collected feature in each well are varied by the objectives of 

the study (Table 1 and 2). The models cannot predict the classes which are not 

included in training data and they cannot be trained with the dataset which has 

different sets of features. Therefore, the data should be turned into the same format 

in term of classes and features. The former is solved by class grouping, reduces the 

variety and specification of rock types. For instance, seven classes (BS, CS, CG, SS, ST, 

TF, and VP) in WO2 well are grouped into five classes (basalt, sedimentary rock, tuff, 

and vitrophyre) in multiple-well test. The latter is tackled by replacing missing value 

with -999.25. This value is default for absent value in Shervais (2014a, 2014b, 2014c). 

This has an adverse effect on the efficiency of most algorithms except XGB. For 

example, SVM and deep learning algorithms generate decision boundaries from 

training data since replacing missing value with -999.25 shifts the decision boundaries 

from the optimal. Likewise, it increases the distance between the test data points 

and the optimal training data points in K-nn. However, replacing missing value with -

999.25 do not affect XGB because it can select the used features on its own. Figure 

48 presents the importance of each feature which is used by XGB. The information 

shows that some features which is 0% of feature scores are not used for the 

classification. There are other techniques to fill the missing values. For example, 

Lopes and Jorge (2017) applies machine learning algorithms to predict the missing 

values from the remaining well logging data but they used 600,000 data points for 

regression. 
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Figure 48 The used features by XGB in the single-well test. Feature score represents 

the importance of each feature in classification.  
 

6.2 The effects of tuning parameters and amount of data 

In this study, the models are optimized on validation data and tested on test 

data since the tuning parameters are tuned on validation data. However, the 

optimized tuning parameters on validation data are not always consistent with test 

data. Figure 49 shows the effect of tuning parameter on the accuracy of XGB in 

single-well test. Feature engineering is the other issues to improve the performance 

of the classifiers. For example, Bestagini et al. (2017) adopts feature augmentation. As 

a result, the accuracy of the classifier improves 55% to 61%.  

In addition, this study attempts to normalize the data by min-max 

normalization. The normalized data give worse classification results than the original 

data. This is because the order of magnitude of each feature or logging tool 

significantly affects the model performance. Min-max normalization reduces the 

difference of feature value in each class. This allows the feature value to be more 

closely distributed and affects the classification boundary. The performance of K-nn 
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thus becomes lower because it likely uses the wrong neighboring data points to 

classify the data. Similarly, the accuracy of SVM and deep learning algorithms 

decreases because the feature values in each class is too close to generate optimal 

decision boundaries. However, the performance of XGB remains high because the 

ensemble decision tree uses the feature values sequentially. In contrast to other 

models, XGB does not use every feature at the same time. 

The most important parameter affecting the performance of each model in 

this dataset is a number of data. As a number of igneous rocks are significantly more 

than sedimentary rocks as called class imbalance, the models give the accuracy of 

igneous rocks higher than sedimentary rocks. Moreover, the effect of imbalance 

classes causes the classifiers to recall the major classes more so than the minor 

classes. As result, the minor classes are misclassified into the major classes. This 

effect influences the classifiers using the decision surfaces for classification such as 

SVM and deep learning algorithms than the other. This is because decision surfaces 

which are generated from small data points are not fully comprehensive the 

distribution of classes. 

 

 
Figure 49 The effect of tuning parameter to the accuracy of XGB in single-well test. 

Red lines represent test subset and green lines represent validation subset. 
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Each of classifiers has different benefits and drawbacks and they are suitable 

with various dataset. K-nn is suitable for the data which are no explicit knowledge 

and there is no time spent in the training phase for K-nn. K-nn is over-reliant on 

training data because it does not assign any assumption into the data (Glowacz and 

Glowacz, 2016). There is no feature weigh function and noise filter for K-nn. Hence, 

feature selection and cleaning data greatly influence the performance of K-nn than 

other algorithms. As K-nn employs feature similarity to classify data, classes which 

have nearby feature such as basalt and rhyolite or claystone and other sedimentary 

rocks could confound it. For further study, feature weighting should be applied for K-

nn. K-nn considers every feature equally but, in real task, some features are not 

relevant to the classification. Consequently, eliminating irrelevant and noisy features 

could improve the classification accuracy of K-nn. For example, a study by Panday et 

al. (2018) demonstrates that K-nn with feature weighting algorithm gives better 

accuracy score than original K-nn, especially a dataset having many features. 

SVM is a generalized algorithm because it considers merely support vectors 

(Smirnoff et al., 2008). By doing this, SVM can avoid noise and ambiguous data as 

well as soft margin encourages the model to more generalize. For example, there are 

two subgroups of rhyolite in Kimberly well, upper rhyolite and lower rhyolite, which 

have slightly different composition. XGB and K-nn think whether they are different 

classes and misclassify upper rhyolite to basalt but SVM predicts them as rhyolite. 

However, SVM often misclassifies the minor classes, which have a small number of 

data. SVM classify data by drawing decision boundaries (Meyer et al., 2003) since the 

decision boundaries generated from small data are harder to be the accurate 

decision boundaries than the decision boundaries generated from big data. Moreover, 

SVM with soft margin allows some data points to be misclassified. This reduces a 

number of data in the minor classes considered to draw decision boundaries of the 
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minor classes. As a result, the large number of minor classes are predicted to the 

major classes by SVM.       

In this study, three deep learning algorithms are applied on this dataset: ANN, 

CNN, and GRU. ANN gives the highest prediction accuracy among three deep learning 

algorithms whereas CNN exhibits the lowest. Due to class imbalance in training data, 

deep learning algorithms do not have the capacity to classify the minor classes 

properly. Figure 50 shows a comparison of accuracy between ANN and XGB with the 

size representing a number of data. ANN gives 0% of accuracy in classes which have 

a number of data lower than 500 data points. In comparison, basalt and tuff being 

the vast majority of data have high prediction accuracy and deep learning algorithms 

tend to predict other classes to the majority (Figure 42). Neural network models 

attempt to maintain the prediction accuracy as high as they can while saving the 

computational cost. They thus recall the major classes dramatically to make high 

accuracy when data are significantly imbalanced. As CNN gives worse efficiency than 

ANN, this indicates that feature extraction is not necessary for well logging data. Each 

logging tool is designed to detect characteristic of subsurface rock since feature 

weight is adequate for well log interpretation. Furthermore, GRU and ANN show 

similar results because there is less relationship in time series. SRP is volcanic field 

which igneous rock could inject to anywhere based on weak zone and tectonic 

processes so there is less gradually change which GRU can show the high potential.  

Deep learning algorithms are easier to overfit with the major classes than the 

other algorithms. This is because nodes are adjusted to be fit with data in each 

iteration. The major classes can be passed into the node than the minor classes. As a 

result, every node is adjusted for major classes. To prevent overfitting, dropout, 

which randomly omits some nodes in each iteration of training step, is applied in this 

study (Srivastava et al., 2014). Although deep learning algorithms perform better, they 

still misclassify the minor classes. For CNN and GRU, another parameter which affects 
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efficiency of model is a number of memorized data but it is not tuned in this study. 

For further study, down-sampling should be tried to reduce class imbalance. This 

might improve the performance of deep learning algorithms. Moreover, hybrid 

models for well logging classification should be used. The hybrid model is the new 

machine learning algorithm which combines the advantages of more than one 

models since its performance might be better than the ordinary model. For example, 

Zhu et al. (2016) and Zhu et al. (2018) apply the hybrid model between ANN and 

random forest to predict permeability and total organic carbon using well logging 

data, respectively. Results show that the hybrid model gives a lower error than both 

ANN and random forest. 

 

 
Figure 50 A comparison of accuracy between ANN and XGB with a number of data 

represented by size of spot. ANN cannot classify minor classes correctly while 
XGB can.  
 

 Results from Hall and Hall (2017); Xie et al. (2018); and this study present that 

XGB or Gradient tree boosting exhibits the highest the classification accuracy for 

lithological classification using well logging data. This is because XGB can select the 

used features in its own without human influence. Figure 51 shows the importance 
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of each feature for this dataset in multiple-well test. Gamma ray, temperature, and 

neutron logs are important features to classify the rocks in Snake River Plain in which 

is dominated by volcanic rocks. As humans do not have the capacity to know which 

features are appropriate for each algorithm, it is better if algorithms choose the used 

features by itself. As a result, XGB can recognize that -999.25 is missing value for this 

dataset and it does not use this value in classification. Moreover, XGB classifies the 

data by decision trees which generate if-clause rules from characteristics of training 

data to classify test data. This is close to how humans classify the data since XGB is 

appropriate with well logging data which is invented for the human to classify rock 

types. 

 

6.3 Feature importance and ranges 

Feature importance refers to the frequency of features used to classify data. 

Figure 52 shows the average feature importance scores from XGB. High feature 

importance score indicates that this feature is frequently used by XGB. Feature 

ranges indicates the values of the feature used to determine each class by XGB. 

Table 6 shows various ranges used by each well logging tool (feature) to classify 

rocks with XGB model in single-well test. Regarding Figure 17, basalt and tuff are two 

classes classified by XGB accurately, with having accuracy more than 95%. 

Conglomerate and vitrophyre have the lowest (<20%) classification accuracy. The 

accuracy of sandstone, siltstone, and claystone given by XGB are in a range of 40% 

to 60%. For igneous rocks, our results are compared with two works, namely 

Berendsen et al. (1988) and Huang et al. (2015). The former studies the well logging 

data in the Midcontinent Rift System, Kansas, the USA and the latter studies well 

logging data in the Anda Sag, the Songliao Basin. 
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Table 8 Range of well logging values in each rock from WO2 well in single-well test 
by XGB compared to the other works. 

Rock types Gamma ray 

(API) 

Density 

(g/cm3) 

Neutron (API) Porosity 

(%) 

Study 

Basalt 10.59 - 15.15 2.62 - 

2.88 

464.27-604.58 7.40 - 

24.51 

This study 

10 - 40 > 2.9 - 10 - 20 Berendsen et 

al. (1988) 

37.5 - 50 ≈ 2.75 - - Huang et al. 

(2015) 

Tuff >119.17 <2.24 >837.25 ≈ 0 This study 

≈ 150 2.4 - 2.6 - - Huang et al. 

(2015) 

Vitrophyre >119.17 2.24 - 

2.62 

604.58-837.25 >24.51 This study 

Conglomerate 15.15-119.17 2.62 - 

2.88 

>464.27 7.40 - 

24.51 

This study 

70 - 80 - - - Whittemore 

et al. (1997) 

Sandstone 15.15-119.17 2.24 - 

2.62 

<464.27 >24.51 This study 

75 - 80 - - - Whittemore 

et al. (1997) 

25 - 50 1.67 - 

2.10 

- - Lin et al. 

(2018) 
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Table 9 Range of well logging values in each rock from WO2 well in single-well test 
by XGB compared to the other works (continued). 

Rock types Gamma ray 

(API) 

Density 

(g/cm3) 

Neutron (API) Porosity 

(%) 

Study 

Sandstone 15.15-119.17 2.24 - 

2.62 

<464.27 >24.51 This study 

75 - 80 - - - Whittemore 

et al. (1997) 

25 - 50 1.67 - 

2.10 

- - Lin et al. 

(2018) 

Siltstone 15.15-119.17 2.24 - 

2.62 

604.58-837.25 >24.51 This study 

80 -130 - - - Whittemore 

et al. (1997) 

100 - 150 2.56 - 

2.78 

- - Lin et al. 

(2018) 

Claystone 15.15-119.17 2.24 - 

2.62 

<464.27 >24.51 This study 

100 -150 - - - Whittemore 

et al. (1997) 

125 - 150 2.12 - 

2.54 

- - Lin et al. 

(2018) 

 

This study compares the range of gamma ray used by XGB and by human 

because generally, human uses gamma ray to calculate the composition of rocks in 

order to determine rock types. Moreover, the gamma ray is the most frequently used 

by XGB to classify well logging data as shown in Figure 52. XGB uses gamma ray in 

ranges of 10.59 to 15.15 API to determine basalt in this study. Berendsen et al. (1988) 

uses gamma ray in ranges of 10 to 40 API to determine basalt while Huang et al. 
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(2015) uses 37.5 to 50 API. XGB uses gamma ray in the same range of Berendsen et 

al. (1988) but uses in the different range of Huang et al. (2015). Basalt in Huang et al. 

(2015) from the Anda Sag is disturbed by magma differentiation so the composition 

of basalt in Huang et al. (2015) is more felsic. Biotite which has potassium being the 

source of gamma is increased in basalt’s Huang et al. (2015) by magma 

differentiation. In contrast, there is no magma differentiation in our area. 

Consequently, the range of gamma ray in Huang et al. (2015) is higher than this study. 

The gamma ray of tuff used by XGB in this study is more than 119 API 

whereas Huang et al. (2015) uses 150 API to classify tuff. Figure 51 shows well logging 

marks of volcanic rocks and types of interface in volcanic rocks determined by Huang 

et al. (2015). Tuff in Huang et al. (2015) is determined as a volcanic bed and there is 

only one event producing tuff in the Anda Sag. In comparison, there are many 

volcanic eruptions producing tuff in the Snake River Plain since the composition of 

tuff in this study is more variety than Huang et al. (2015). 
 

 
Figure 51 Well logging marks of volcanic rocks in the Anda Sag, the Songliao Basin 

(Huang et al., 2015). 
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As XGB give low accuracy in classification conglomerate, well logging values 

used to determine conglomerate by XGB are not reliable. The other sedimentary 

rock such as claystone, siltstone, and sandstone have moderate accuracy score, 

followed by being in ranges of 50% to 60%. In sedimentary rocks, the well logging 

values from Dakota aquifer (Whittemore et al., 1997) and gas hydrate reservoir in the 

Muli area of Qinghai, China (Lin et al., 2018) are used to compare with feature ranges 

from XGB. The maximum and minimum ranges of gamma ray of claystone, siltstone, 

and sandstone are the same as 15.15 to 119.17 API. As sedimentary rocks are 

ambiguous for XGB, the values of each well logging tools (features) are in the same 

or close ranges as shown in Table 6. However, the gamma ray of sedimentary rocks 

used by XGB is close to the other studies. Even though XGB cannot clearly 

distinguish sedimentary rocks, the used features are similarly to human classification. 

  

    
Figure 52 Average feature importance scores of each feature or type of well logs in 

XGB algorithm from multiple-well test.  
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Chapter 7 Conclusions 

7.1 Conclusions 

  Six machine learning algorithms are employed to classify lithology of well 

logging data acquired from four geothermal wells in the Snake River Plain, Idaho, US. 

The experiments are divided into two experimental conditions, single- and multiple-

well tests, in order to evaluate the models in different use cases. The model 

parameters are optimized by hyperparameter tuning method on validation dataset. 

To prevent the effect of overfitting, data are randomly divided five times into 

training, validation, and test set respectively. The models are further trained and 

tested five times with different dataset to obtain average accuracy for both 

experimental conditions.  

Results suggest that Extreme gradient boosting (XGB), which is a decision tree-

based model, shows the highest accuracy (91% and 87%) in lithological classification 

in both single- and multiple-well tests. This is due to the fact that XGB has feature 

selection in its algorithm and operates similarly to human decision. By doing this, 

well logging data which design for human to interpret lithology of subsurface rock 

has been efficiently classified lithology by XGB. In addition, XGB is the only algorithm 

in this study that can handle missing data during training by classifying the missing 

data to into the left or right node, which can minimize the loss function.  However, 

the other classifiers excepted K-nn use feature weight function to deal with this 

problem instead.  

Other algorithms such as Support vector machine (SVM) and K-nearest 

neighbour (K-nn) show satisfactory results even their accuracy are lower than XGB. 

The performance of deep learning algorithms such as Artificial neural network (ANN), 

Convolutional neural network (CNN), and Gated recurrent unit (GRU) models are 

inferior to XGB as they tend to require balanced data. This study suggests that deep 
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learning algorithms are not the most suitable algorithm for lithology classification 

from well-logging data.   

Furthermore, the classes of this dataset are significantly imbalanced. The vast 

majority of data are basalt and rhyolite whereas sedimentary rock is the minority. 

Machine learning algorithms thus have high potential to classify basalt and rhyolite 

precisely but sedimentary rock has low prediction accuracy in this study. This is 

because sedimentary rocks have closely similar well logging response with having a 

small amount of data. Moreover, sedimentary rocks are also classified by grain size 

and composition but there are no well logging tools detecting grain size directly. 

Consequently, to specify sedimentary rock is another challenge of lithological 

classification using machine learning algorithm. 

In addition, machine learning algorithms spend a second to classify well 

logging data in test step for about thousands of data points in both single- and 

multiple-well test. For training step, the models except K-nn spend about half of 

hour in single-well test (5,000 – 15,000 data points) and an hour in multiple-well test 

(about 40,000 data pints). Even though machine learning algorithms cannot give a 

perfect result in well logging classification, they can help human reduce time-

consuming in well logging classification.     

 

7.2 Recommendations 

For further study, hybrid models should be developed and feature 

engineering should be applied to improve the accuracy and efficiency of well logging 

classification. Moreover, standard practice of well logging data collection should be 

followed for lithological classification by machine learning algorithms. For example, 

gamma ray, neutron, and temperature logs are necessary data for this dataset. 

Conversely, this study suggests that pressure and water wave velocity data are 

unnecessary logging tools in rock classification. These key insights can be used to 
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improve the well logging data collection planning and procedure as well as reduce 

the budget and time for well logging surveys in the future. 

In addition, the same terminology of rock classification within the dataset should 

be applied. This is to reduce classification ambiguity and misclassification.  

Sedimentary rocks in this study are significantly misclassified due to the two factors. 

Firstly, the feature values of all sedimentary rocks are very similar, almost 

inseparable, causing incorrect decision boundaries. Secondly, the well logging data is 

provided with different terminologies to describe the same rock type. This issue can 

be improved by using the same terminology for entire dataset.  

This study can also serve as a pilot study for well logging data in Thailand. Well 

logging data in Thailand mainly comprises of sedimentary rocks such as sandstone, 

shale, and siltstone. Results from this study show that machine learning algorithms 

give low accuracy in classifying sedimentary rock. However, increasing the number of 

data can improve the performance of machine learning algorithms. Consequently, 

the large number of data with balanced class should be input into machine learning 

algorithms to learn the characteristics of each rock type in Thailand. Machine learning 

algorithms can reduce time-consuming and improve classification efficiency in well 

logging interpretation. This help improve natural resource exploration and 

production. 
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APPENDIX A 

The effect of tuning parameters 

 
Figure 53 The effect of tuning parameters in SVM.  
 

 

 
Figure 54 The effect of tuning parameter in K-nn. 
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APPENDIX B 

The effect of tuning parameters (continued) 

 
Figure 55 The effect of tuning parameters in ANN. 
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APPENDIX C 

The effect of tuning parameters (continued) 

 
Figure 56 The effect of tuning parameters in CNN. 
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APPENDIX D 

The effect of tuning parameters (continued) 

 
Figure 57 The effect of tuning parameters in GRU. 
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APPENDIX E 

Confusion matrix of each model in a single-well test with Mountain Home well. 

 
Figure 58 Normalized confusion matrix of six models in prediction of Mountain Home 

well in the single-well test. BS: basalt, SR: sedimentary rocks. 
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APPENDIX F 

Confusion matrix of each model in a single-well test with Kimma well. 

 
Figure 59 Normalized confusion matrix of six models in prediction of Kimma well in 

the single-well test. BS: basalt, SR: sedimentary rocks. 
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APPENDIX G 

Confusion matrix of each model in a multiple-well test with WO2. 

 
Figure 60 Normalized confusion matrix of six models in prediction of WO2 well in the 

multiple-well test. BS: basalt, SR: sedimentary rocks, VP: vitrophyre, TF: tuff, 
RH: rhyolite.  
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APPENDIX H 

Confusion matrix of each model in a multiple-well test with Mountain Home. 

 
Figure 61 Normalized confusion matrix of six models in prediction of Mountain Home 

well in the multiple-well test. BS: basalt, SR: sedimentary rocks, VP: 
vitrophyre, TF: tuff, RH: rhyolite.  
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APPENDIX I 

Confusion matrix of each model in a multiple-well test with Kimma. 

 
Figure 62 Normalized confusion matrix of six models in prediction of Kimma well in 

the multiple-well test. BS: basalt, SR: sedimentary rocks, VP: vitrophyre, TF: 
tuff, RH: rhyolite.  
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APPENDIX J 

Confusion matrix of each model in a multiple-well test with Kimberly. 

 
Figure 63 Normalized confusion matrix of six models in prediction of Kimberly well in 

the multiple-well test. BS: basalt, SR: sedimentary rocks, VP: vitrophyre, TF: 
tuff, RH: rhyolite.  
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APPENDIX K 

Raw data of well logging data from the Snake River Plain used in this study are 

published on Github: https://github.com/Worapop/Well-logging-data-from-Snake-

River-Plain 

 

Figure 64 An example of well logging data in excel file from Mountain Home 

https://github.com/Worapop/Well-logging-data-from-Snake-River-Plain
https://github.com/Worapop/Well-logging-data-from-Snake-River-Plain
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