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Chapter 1: Introduction 

 

 
 
 
1.1 Overall scenario of communication systems and reliable transmission 

 Now a days Low-Density Parity-Check (LDPC) codes are one of the popular 

research topics. The milestones for LDPC research began in 1962, when R. Gallager 

introduced LDPC [1], in his PhD thesis. Since then, these codes were ignored for 

almost next 30 years due to complexity and less analytical tools available at that time. 

Later these codes were rediscovered by Mackay and Neal in 1996 [2]. Enormous 

potential research has been carried out on channel coding since Shannon’s theory of 

mathematical constraints for channel capacity in 1948 [3]. It is now a well-known fact 

that highly random LDPC code construction methods can reach very close to Shannon 

limit [4]. Various standards such as IEEE 802.11n, Wi-MAX, DVB-S2, and so forth 

have adopted LDPC codes as channel codes. Today, LDPC codes are considered as 

the most eligible channel codes for future generation high data rate communication 

and various practical applications. The development of most optimized and efficient, 

constructed LDPC codes have also been also studied widely in the current decade. 

LDPC codes can provide lower error probabilities than equivalent conventional forward 

error correcting codes. 

 In practice, the performance of LDPC codes depends on various system 

parameters. It is very important to carefully design LDPC parity-check matrices, 

having sufficient iterations, ultra-sparse and low cycle presence, therefore, fulfilling 

these constraints leads to significantly optimized performance as stated by Chung et 

al. in 2001 [5]. Result approached to 0.0045 dB from Shannon’s limit exists only for 

large block-length. Clearly, a large block-length results in a large parity-check matrix 

and hence a large generator matrix. Thus, LDPC codes are defined by a sparse parity 

matrix, in which most of the entries are zero and only few portions are nonzero values 

(the smaller the portion of nonzero entries, the less the encoding and decoding 

complexity). Generally, the complexity will increase by a factor of  2q , where q is 
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the order of Galois field GF (q). Large block length with GF (2) LDPC codes, 

although has good performance but increase scheduling time, hence if we increase the 

order of Galois field (i.e., increase q), the performance will significantly improve at 

an expense of the complexity factor  2q  of decoding. 

 

1.2 A typical digital communication systems 

 Modern society is developed generation by generation, based on gaining 

knowledge from past and creating new for present and future. The amount of 

knowledge grows extra-ordinary and many people interact with each other very often. 

This all happen by technology revolution in digital communication systems. Almost 

all information, which we received in our day-to-day life, is digitalized. People are 

using various multimedia devices to communicate among themselves at work, offices, 

schools etc. Examples of popular digital communication systems are mobile 

telephony, satellite broadcasting, optical fiber communication and wireless or wired 

connection to the internet. The foundation stone of modern era communication 

systems following on Shannon’s [6] work on information coding theory. Figure 1-1 

shows the simplified block diagram of a typical digital communication system. The 

input data at the source may be analogue or a digital followed be a source encoder, 

which converts source data in to the sequence of binary bits which is called as 

message sequence. Furthermore channel coder adds some redundant bits named as 

parity bits on message sequence for forward error correction (FEC). This encoded 

message is termed as a codeword, which feds input to the modulator for high 

frequency transmission to the channel. When the signal propagates through the 

channel it gets corrupted by the noise. At the receiver end, demodulator again 

converts signal in to the digital information in the form of binary sequence. Channel 

decoder applies decoding algorithm for extracting original bits. These bits are further 

decompressed by source decoder to user readable format. 
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Figure 1-1: A typical digital communication system block diagram 

 

1.3 Thesis motivation  

 The limitation associated with constructing a medium to large size block-

length codeword from the H matrix is the requirement of large data storage and 

computation complexity. Large block-length and irregular LDPC codes give better 

performance but also leads to more complex construction of H matrix. To overcome 

the problem of memory required in data storage, another structured class of LDPC 

codes known as the Quasi-cyclic LDPC (QC-LDPC) has studied widely [7], due to its 

less memory requirement and less complexity encoding procedures. It suits best for 

many practical applications and adopted in various IEEE standards. QC-LDPC with 

circulant permutation matrix (CPM) proposed by [7-10]. Furthermore to enlarge 

parity-check matrix significant contribution proposed method are combining 

techniques using the Chinese remainder theorem as in [11]. Large block-length size 

and irregular LDPC codes performs near to Shannon limit but also leads to increased 

complexity to construct good parity check matrix. There is still a grave gap to reduce 

complexity in encoding of LDPC codes. 

 

1.4 Need for the project  

 The challenge is to design practical, finite length codes which can achieve 

extremely low bit error rates at small SNR values. Such high performance is very 

useful in many practical applications for wireless communication. The goal of this 

research is to propose a novel scheme for H matrix with optimized lower bound with 

less time for computational complexity; the optimized lower bound may lead to less 

hardware requirement in terms of memory requirement hence more economical in 

practical applications. 



 

 

4 

1.5 Thesis Contribution 

 The main objective of this research to develop the H matrix for medium to 

large block-length structured QC-LDPC codes with high girth and good error 

correcting performance in order to assure less memory bits require for hardware 

implementation which leads to save costs and computation time of H matrix. 

 We propose a new construction algorithm of Quasi-cyclic low-density parity-

check (QC-LDPC) codes of medium to large block-length by combining QC-LDPC 

codes of small length as their component codes, via the Chinese remainder theorem 

(CRT). We construct such component codes by permuting column block sequentially 

with maximizing the local girth for each column block. After combining all 

component codes to the parity-check matrix, H, the girth obtained will be greater than 

or equals to the highest girth of component codes. Our method provides efficient and 

fast encoding, have very simple structure and more economical in terms of hardware 

architecture. 

 In addition, we also propose two explicit methods to construct structured QC-

LDPC codes based on a base matrix method and a subtraction method for column 

weight 3, which have comparable performance with existed work. 

List of journal and conference papers published by the author can be found in 

Appendix. 

 

1.6 Impact on Society and Scientific Community 

 LDPC channel codes are considered to be the best choice for FEC in 

communication systems. It has near Shannon capacity performance with low error 

floor, which make it best suited for many standards developed by an IEEE, ETSI 

DVB S2/T2 and Chinese organizations such as Advanced Broadcasting System-

Satellite (ABS-S). The project output will benefit to a wide range of existing and 

future communication services including personal home area network, WLAN in 

public areas and wireless services to business and government units Table 1-1 

illustrate standards using QC-LDPC codes as a FEC channel codes 
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Table 1-1: Standards using QC-LDPC codes as a FEC channel code 

Standard’s Name Application and potential uses 

IEEE 802.11n Wireless networking standards uses 

MIMO, leads to significant improvement 

of throughput of maximum data rate from 

54 Mbit/s to 600 Mbit/s. 

 

 

 

Standard’s Name Application and potential uses 

IEEE 802.16e  Mobile WiMAX or Wi-Bro in Korea, 

sometimes also branded 4 G and offers 

peak speed data rate of 128 Mbit/s. 

IEEE 802.11ac Upcoming brand name of Wi-Fi, provide 

high-throughput in 5 GHz band from at 

least 500 Mbit/s to 1 Gbits/s. 

IEEE 802.20 Mobile Broadband Wireless Access 

(MBWA) 

ETSI DVB-S2 Digital Video Broadcasting – Satellite 2
nd

 

Generation  introduced HDTV and H.264 

video Codecs  

ETSI DVB-T2 Digital Video Broadcasting – Terrestrial 

2
nd

 Generation carrying HD signal in to 

terrestrial channels. 

ABS-S China (Advanced Broadcasting System-

Satellite) China DTH competitive 

standard for DVB-S2 

 

1.7 Brief organization of the thesis 

The organization of thesis is as follows: 
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 In chapter 2, the background knowledge of channel coding and a review of 

binary LDPC codes are given. A brief history about channel coding and linear block 

codes is described followed by the major milestones achieved in this area. After, 

review of binary LDPC codes, there is brief description of important parameters used 

in designing LDPC codes. In addition, decoding algorithms of LDPC codes are 

described. Various definitions used in designing of LDPC codes and parameters 

required for optimization of LDPC codes also enlightened. Lastly, the chapter 

concludes by summary. 

 Chapter 3 discusses the various LDPC code construction techniques which 

include brief review of randomly constructions and structured constructions 

techniques. We also describe why structured LDPC codes are more useful and many 

milestone developments discussed. Lastly, we focus on QC-LDPC code construction 

technique, its implementation and various practical benchmarked applications. 

 Chapter 4 has detailed discussion, analysis on proposed method of QC-LDPC 

codes and its expansion using CRT. In addition we generalize our codes for achieving 

high girth value with optimized lower bound and good BER performance. At the end, 

we discuss about complexity parameter and storage uses analysis of proposed codes. 

In addition, Chapter 5 presents two explicit proposed methods for QC-LDPC codes, 

and describes simulation results and analysis of the proposed codes. 

 In Chapter 6, conclusion has been drawn for this dissertation and the possible 

future directions of research work are discussed to implement same work for non-

binary QC-LDPC codes. 
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Chapter 2: Background and definitions of LDPC codes 

 

 
 
 
 In this chapter, the author presents an overview of low-density parity-check 

(LDPC) codes. As the name depicts, these codes are in the category of block codes 

defined in the form of parity-check matrix with low density of number of 1’s. They 

were first proposed by Gallager in 1962 [1]. These codes have iterative decoding 

scheme which have increased complexity as block-length increases. They were 

reinvented in 1996 by Mackay and Neal [2] and, since then, many researchers have 

contributed remarkable literature for practical wireless communication standards. 

These codes beat all other existing FEC codes for half rate and large block-length in 

terms of BER performance and decoding complexity. It is the world’s best performing 

code and falling only 0.04 dB short of Shannon limit [5]. 

 

2.1 Milestones of coding theory 

 

2.1.1 Shannon’s Theorem 

  Year 1948 makes historic milestone for information theory, Claude E. 

Shannon published capacity approach paper for channel coding [3]. This theory 

applies limits to reliable transmission of data over unreliable channels and methods on 

how to target these limits. In addition, this mathematical relationship computes the 

amount of information, and establish bound for the maximum amount of information 

that can be transmitted over unreliable channels. Codes that can approach capacity are 

very good from a communication point of view, but Shannon’s theorems are non-

constructive and do not give an evidence on how to find such excellent codes. More 

importantly, even if an oracle gave us sequences of codes that achieve capacity for a 

certain rate, it is not clear how to encode and decode them efficiently. Design of codes 

with encoding and decoding algorithms which approach the capacity of the channel is 

the main topic of research since the race of high throughput wireless communication 
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begins. While the fundamental bounds have been known for many years, only 

significant recent works on turbo codes [12] and low-density parity-check (LDPC) 

codes [1] has resulted in practical codes that can approximately close to capacity. 

However, there are limitation on these codes as code length approaches infinity and 

valid for selected particular channels. So forth channel coding component still has 

wide room for research more specifically on finite length codes and decoding for 

various channels. Different scenario’s presents different aspects to channel coding. 

Communication channel consists of two types: 

 Binary Erasure Channel (BEC) 

 Binary Symmetric Channel (BSC) 

 In both types of channel, input information is binary i.e., ‘1’ or ‘0’; in the case 

of BEC output information consists of 0 and 1 along-with an additional element 

denoted as be called erasure. 

0 00 0

11

e

11

p

p p

p

1-p

1-p 1-p

1-p

 

Figure 2-1: Examples of channels: (a) The Binary Erasure Channel (BEC) with 

erasure probability e, and (b) The Binary Symmetric Channel (BSC) with error 

probability p 

Each bit is either transmitted correctly (with probability1 p ), or it is erased (with 

probability p). 

 In the case of the BSC, each bit is either transmitted correctly with probability

1 p , or it is flipped with probability p. This channel may seem simpler than the 

BEC at the first sight, but in fact it is much more complicated. The complication 

arises since it is not clear which bits are flipped. (In the case of the BEC it is clear 

which bits are erased.). The capacity of this channel is

2 21 log (1 )log (1 ).p p p p     
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 The challenge for channel coding is to provide high data rates with extremely 

low bit-error-rates at small SNR values, while still keeping the complexity low. Due 

to the complexity of the analysis, we will investigate performance on a simplify 

channel with binary erasure channel (BEC), where bits are either received correctly or 

are erased with probability e. 

 Conventionally, modern coding theories are divided into two categories 

namely algebraic coding theory and probabilistic coding theory. In the beginning, 

coding theory based on algebraic class mainly associated for linear block codes in a 

binary field. LDPC codes are also a sub class of linear block codes. These codes 

pursue advantage of having a strong algebraic structure which leads to allow studies 

of their mathematical properties having efficient encoding and decoding techniques. 

Till now, one of the major emphasis of codes based on algebraic theory, to achieve 

the maximum hamming distance i.e., the minimum number of positions where any 

two codewords can differ. This is because of motivation behind better error correction 

in presence of the unreliable channel since further apart codewords are less likely 

erroneous. Some of the renowned channel codes developed so far are Hamming codes 

[13], Golay codes [14], Reed-Muller [15, 16], Reed-Solomon codes [17], Bose-

Chaudhari-Hocquenghem (BCH) codes [18] and algebraic geometry codes [19]. 

 On the other hand, “Probabilistic coding theory” does not emphasis on the 

mathematical aspect of code and their minimum Hamming distance. This theory more 

concern with the searching of codes that have good performing codes and less 

encoding/decoding complexity. Usually, decoders for such codes use probabilistic 

information for decoding algorithms. Modern channel codes have superior 

performance and more close to Shannon capacity by using this branch of channel 

coding theory. Major adopted probabilistic codes are turbo codes [20] and LDPC 

codes [1]. It is important to mention turbo codes based on parallel working of two 

convolutional codes. Convolutional codes [21] developed by Elias having algebraic 

sympathetic. This structured based research work contributes one of the most 

influences in the modern information theory. Most of later work based on Elias 

studies ended with breakthrough algorithms such as Viterbi algorithm [22] and BCJR 

algorithm [23]. Another work proposed by Elias before his invention of convolutional 

codes was product codes [24], based on product of two linear block codes decoded, 
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sub-optimally, by decoding the two codes distinctly. Later, Forney [21] proposed 

concept of concatenated codes, where two smaller linear block codes, the outer and 

the inner codes are serially concatenating. Furthermore, concatenating has also been 

smeared to the convolutional codes. In addition, after invention of Turbo codes [20] in 

1993, researchers and telecommunication industry reawakened the interest in modern 

coding theory and hence leads to renaissance of LDPC codes in the late 90’s. 

 

2.2 Linear Block Codes 

 FEC has always been a hot topic of research in recent years. In fixed block-

length, linear block codes usually work for error correction. It has an extensive 

range of applications in wireless communication systems. In linear block codes, 

input bit streams are formed into message blocks of fixed size. A (n,k) block code 

defined as a binary code of length n with 2k  codewords and the entire block have k 

information bits. Hence, there are 2k  different messages, named as 2k  codewords. 

2k  codewords will form a block code of size (n,k). Block encoder adds n k  bits 

to the original message, which are named as  parity bits. Parity bits are elaborated 

in identifying and correcting errors caused by the channel noise or interference. k 

bits added to each message by the channel encoder are called redundant bits. The 

function of these redundant bits is providing error detection and correction capability 

for the channel code [25]. Code rate is defined as /R k n . 

Redundant or Parity Check bits Message bits

n-k bits k bits
 

Figure 2-2: Systematic format of a codeword 

 

 Linear block code are those having a sum of two codewords is also a 

codeword with modulo-2 addition (for binary codes), and called basis of the 

space because it leads to span all code vectors in space. These codes reduce 

complexity of encoding by using a generator matrix (G) to transfer input 
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message bit stream into codewords. G matrix having linearly independent row 

vectors of size n, 1 2, , kr r r , can be represented as- 

1

2

.

.

.

k

r

r

r

 
 
 
 

  
 
 
 
  

G

 

 At the encoder, codewords generates by multiplying the input vector with the 

generator matrix, c m G , where m is input message bit-streams and c denotes 

codeword. A simple encoding requires the encoder to store all combinations but linear 

block codes only store G, thus reducing the space complexity from 2k n  to size of G 

i.e. k n . A parity-check matrix H can be obtained from G matrix by using row-

column operation in systematic form of [ ; ] 0T

k G I H . These two matrices is 

related by 

0T GH  

 The decoder receives a sequence of bits incorporated with noise can be 

defined as y, valid codewords can be checked and passed to further decoding 

blocks after checking following condition 

0Ty H  

 

2.3 Reviews of binary LDPC codes 

 In this section, the relevant background on LDPC codes will be provided, 

including LDPC code structure and representation and decoding algorithms. 

 

2.3.1 Representation of LDPC Codes  

 LDPC codes can be represented in two basic forms. One of these is in the form 

matrix and another one illustrative way of presentation is graphical form and most 

commonly popular as Tanner graph. 
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2.3.2 Code construction 

  A low-density parity-check (LDPC) code, a class of linear block codes is 

defined by a parity-check matrix (H) that is sparse. A regular ( , )j k , H matrix is a 

    binary matrix having j ones in each column and exactly k ones in each row, 

where j k  and ( , )j k are small as compared to N for sparse matrices. The code rate 

will be 1 ( / )R M N   which can equivalent then to 1 ( / )R j k  , assuming the M 

rows are linearly independent. 

 An irregular LDPC matrix is also sparse, but in this case not all columns and 

rows have same number of one’s as constant value. The matrix defined in example 

given in equation (2.1) is parity check matrix of dimension M N for a (4, 8) code. 

1 1 0 1 1 1 0 1

1 0 1 1 0 1 1 1

1 1 1 0 1 1 1 0

0 1 1 1 1 0 1 1

 
 
 
 
 
 
 
 
 

H                                      (2.1) 

 LDPC codes are linear codes obtained from sparse bipartite graphs. Suppose 

that G is a graph with n left nodes (called message nodes) and r right nodes (called 

check nodes). The graph gives rise to a linear code of block length n and dimension at 

least n r  in the following way: The n coordinates of the codewords are associated 

with the n message nodes. The codewords are those vectors 1 2, , , nc c c  such that for 

all check nodes the sum of the neighboring positions among the message nodes is 

zero. Figure 2-3 gives an example H matrix represented as graphical form more 

commonly known as Tanner graph. However, not every binary linear code has a 

representation by a sparse bipartite graph, if it does, then the code is called a low-

density parity- check codes. 
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Figure 2-3: Bipartite tanner graph of H matrix 

 

 2.3.3 Tanner graphs 

As mentioned in Section 2.2, a Tanner graph is used to represent the relationship 

between the codeword bits and parity check bits of a linear block code. Tanner 

graphs have been generalized to become factor graphs [26]. Variable nodes j and 

check nodes i connected by edges if the entry in ( )i, jH  is 1. Effetely, H matrix is 

also known as bi-adjacency matrix of Tanner graph. 
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2.4 LDPC code parameters 

 

 2.4.1 Cycle 

 A cycle in a Tanner graph is a sequence of connected symbol nodes and 

parity-check nodes that begin and end at the same node and no other nodes can 

appear in the order more than once. 

 

 2.4.2 Length  

 The length of a cycle is the number of edges reachable in the given cycle. 

 

 2.4.3 Girth  

 The girth of a Tanner graph is defined as the length of shortest cycle present 

in the Tanner graph. 

 

 2.4.4 Degree  

The degree of a symbol node or check node in the Tanner graph is the 

number of edges linked to it. 

 

2.5 Decoding Algorithms: Belief Propagation 

 We would like to start by describing a more common class of decoding 

algorithms for binary LDPC codes. In order to define two categories of decoding, one 

is hard decision decoding for only educational purpose to get an overview of an idea 

of LDPC decoder. Another and most common useful category is soft decision 

decoding algorithms. These algorithms are called message passing (MP) or sum-

product iterative algorithms. The reason for iterative in nature is that at each stage of 

algorithms, messages are passed from the bit or variable nodes to the check nodes, 

and from check nodes to message nodes back and forth. The information from 

variable nodes to check nodes is computed based on the observed or received value of 

variable node and some of the check nodes associated with corresponding message 
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nodes. An important aspect is that the information sent from a variable node (v) to a 

check node (c) must not be taken account the information sent in previous rounds of 

iteration from c to v nodes, the same statement hold for information passed from 

check nodes to variable nodes. 

 Furthermore, one important subclass of message passing algorithms is the 

belief propagation algorithm. This work was proposed by Gallager’s work [1], and it 

is also useful in various wireless applications [27, 28]. It is observed that iterative 

decoding algorithms of sparse codes perform very close to the optimal maximum 

likelihood decoder. 

 

 2.5.1 Hard Decision Decoding 

 Hard decision decoding also known as bit-filliping algorithm deals with 

flipping bits into 1 or 0. In this type of decoding, variable nodes sends message to its 

connected check nodes having value 1 or 0 and then check nodes give response to the 

variable nodes according to the H matrix by checks of parity bits equations in either 1 

or 0. Let us consider BSC, where messages were passed in binary, in this case the 

lowest level of discretization is achieved. In this section, we would like to describe 

types of hard decision decoding based on the BSC, both given by Gallager work [1]. 

In both the cases, the message passed between the variable nodes and the check nodes 

consist of binary 0 and 1. In the Gallager algorithm, following are the steps of hard 

decision algorithm: 

 

 2.5.1.1 Steps of hard decision algorithm 

 Step 1 Check node update: 

Variable nodes (v) send their received value to all their neighboring check 

nodes (c), this sent information belief to be correct even in case error caused due to 

transmission channel. 

 Step 2 Variable node update:  

In the second step, every check node c calculates its response to connected 

variable nodes by modulo sum of information bits, incident from variable nodes 

(except form which the information belief to be sent) to check nodes c. The response 
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message contains the bit that check node c believes to be correct one for 

corresponding variable nodes v. Important point in this step might also be said as 

terminates. This case occurs if all check equations fulfilled. 

 Step 3 next phase: 

Variable nodes receive the messages from check nodes and use this additional 

information to decide the originally receive bit from the channel is correct or not. A 

simple way to do this is a majority voting that consist of original bit received and 

number of suggestions depends on each variable node connect on how many check 

nodes. Now the v nodes can send another message to corresponding check nodes c. 

 Step 4 Go to step 2: 

Iteration continues till decoding process not completed for certain number of 

fixed iterations, i.e. all parity-check equations and transmission’s errors are not 

rectified. 

 Although the algorithm is very simple, the major drawback is that all the 

valuable information such as noise etc., is disregarded by the decoder. Hard decision 

decoding is used only for study point of view to understand the decoding process 

however practical implementation has soft decision decoding algorithms. 

 

 2.5.2 Soft decision decoding 

 Soft decision of LDPC codes based on belief propagation, also known as sum 

product algorithm (SPA) results in better decoding performance and most preferable 

method for decoding. Demonstrated idea is same as the hard decision decoding before 

discussing lets introduce some notations: 

H = Sparse parity-check matrix 

ijh = Elements of H matrix 

[ ; ]TH P I  

[ ; ]G I P  

ci = Elements in error free transmitted codeword 

yi = Elements of erroneous received codeword 

( 1| )i r i iP P c y 
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ijq Message sent by variable node vi to check node cj. Every message 

contains (0)ijq  and (1)ijq , which stand for the amount of belief that yi is a “0” 

or a “1”. 

jir = Message sent by the check node cj to the variable node vi. Again there is 

(0)jir  and (1)jir  indicates the current belief of information “0” and “1” 

respectively. 

 The following rounds of the soft decision algorithm is based same as above 

discussed hard decision decoding algorithm. 

 

 2.5.2.1 Steps of soft decision algorithm 

 Step 1: check node update: 

 All variable nodes sent their ijq  messages to the corresponding check nodes. 

(1)ij iq p  and (0) 1ij iq p  . 

vicj

qij(b)

rji(b)

( ) a

yi

rji(b)

( ) b

cj
qij(b)vi

 

Figure 2-4: Illustrate the calculation of (b)rji in (a) and in (b) calculation of (b)ijq  

 

 Step 2: variable node update: 

The check nodes calculate their information rji
 from the following equation 

\

1 1
(0) (1 2 (1))

2 2
j

ji i j

i v i

r q 



                                   (2.2) 

and                                             (1) (1 (0))ji jir r                                                    (2.3) 

 So this step calculates the probability of even number of one’s sequence 

calculated by Gallager formula among the variable nodes except   . This probability 

denoted as (0)jir  that    belief to be zero. 
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 Step 3: Check node update: 

In this step, updated variable node sent their response to the check nodes. This 

will be done according to following equations 

\

(0) (1 ) ( (0))
i

ij ij i i j

j c j

q K p r 


                                          (2.4) 

\

(1) ( (1))
i

ij ij i i j

j c j

q K p r 


                                             (2.5) 

Where by constants 
ijK  are chosen in such a way to ensure that (0) (1) 1ij ijq q   and

\' ij jC  means all check nodes except cj as scenario illustrates in Figure 2-4. At this 

stage variable node also update their current estimation ˆ
iv  of their respective variable 

vi. This is calculating by probabilities for 0 and 1 and voting for bigger estimates. The 

used equations are as follows are quite similar to those used for calculating (b)ijq  but 

now the information of every check nodes is used. 

(0)= (1 ) (0)
i

i i i ji

j c

Q K p r


                                            (2.6) 

and                                                (1)= ( ) (1)
i

i i i ji

j c

Q K p r


                                         (2.7) 

1 f (1) (0),
ˆ

0 else

i i

i

i Q Q
v


 


                            (2.9) 

 If the current estimated codeword fulfills parity-check equations at this stage, 

the algorithm terminates else termination of algorithm would be ensured through a 

higher number of iterations. 

 Step 4: Go to step 2 for next round of iteration 

 The above discussed soft decision algorithm is a very simple variant and could 

be modified for better performance. Besides performance issues there is numerical 

stability crisis due to many multiplications of probabilities. The result will close to 

zero if the large block length code is used. 

 

2.6 Iterative Message Passing Algorithms 

 Iterative algorithms operate on Tanner graphs of LDPC codes. The algorithm 

computes the nodes of the graph and passes them along the edges to the adjacent 
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nodes. Messages are basically the probabilities or other values derived from 

probabilities. 

 In this thesis, our assumption is that a binary code word 1 2( , , , )nc c c  is 

transmitted using the binary phase-shift keying (BPSK) modulation. The channel 

incorporated with the additive white Gaussian Noise (AWGN), and the received 

symbols from the channel are 1 2( , , , )ny y y . It should be noted that throughout this 

thesis we used the notion for the average energy per information bit as (Eb) and one 

sided power spectral density (PSD) of the AWGN channel as N0 respectively. 

 In addition, it is more convenient to use log likelihood ratios (LLR) to 

represent the messages, because by using LLRs, division and multiplication in 

probability domain becomes subtraction and addition in log domain. We use 
jir to 

denote the LLR message sent by the check node j to the variable node i, and 
ijq  to 

denote the LLR message sent by the variable node i to the check node j. There are two 

well-known message passing decoders namely sum-product decoder and min-sum 

decoder. In addition, there is extensive research devoted on behavior of message 

passing decoders. It is worth mentioning powerful decoders such as extrinsic 

information transfer (EXIT) charts [29] and density evolution [30] were proposed to 

examine the asymptotic performance of LDPC codes on a memory less channel. It 

was established that performance depends on the degree distribution of the given 

Tanner graph. It should be noted that the performance of SPA optimal for cycle free 

Tanner graph in terms of bit error rate probability and frame or block error 

probability. One more suggested method to analyze the performance of LDPC codes 

on the basis of computation trees was proposed by Wiberg [31]. However, range of 

computation trees increases while increasing the degree of the check nodes. Although, 

it is widely accepted that the performance of message passing decoding algorithm 

Here we summarizing the SPA and log domain algorithm in next sub section. 

 

 2.6.1 Message passing algorithm (MPA) or SPA using log domain 

 The message passing algorithm imposts the calculation of likelihoods by using 

the knowledge of before an event (intrinsic) and after an event (extrinsic). Let us 

define a variable z, there are different types of probabilities to express z relation with 
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an event E. The a-priori probability of z is equal to a with respect to the event E is 

defined as  

( ) ( )priori

EP z = a P z = a .                                              (2.10) 

 This probability called as a-priori because it indicates to what was known 

about z before observing the outcome of an event E. On contrast a posteriori 

probability of variable z with respect to the event E is the conditional probability of z 

given that event already occurred, and is represented by  

( ) ( | )posteriori

EP z = a P z = a E                                      (2.11) 

 The above probability represents what is already known about the z after 

witnessing an event E. After applying Bayes theorem, the a posteriori probability can 

be written as 

1
( | ) ( | ) ( )

( )
P z a E P E z a P z a

P E
                                (2.12) 

From above equation the extrinsic probability can be deprived as 

( ) ( | )ext

EP z a dP E z a   ,                                     (2.13) 

 Where d is a normalization constant such that 1ext

EP  . Henceforth the 

relationship between ,ext

EP posteriori

EP and priori

EP can be written as 

( ) ( ) ( )posteriori priori ext

E E EP z a P z a P z a                        (2.14) 

 For the binary case, [0,1]z  , the probability of binary variable z can be 

expressed conveniently in term of real number called the log-likelihood ratio (LLR). 

If we assume ( 1)P z p  , then the LLR of z is expressed as 

( 1)
LLR( ) log log

( 0) 1

P z p
z

P z p


 

 
                           (2.15) 

If 0.5p  , LLR( )z  is positive and LLR( )z is negative if 0.5p  .

1
( | ) ( | ) ( )

( )
P z a E P E z a P z a

P E
     can be re-written in terms of LLR as  

LLR ( )=LLR ( )+LLR ( )posteriori priori ext

E E Ez z z                      (2.16) 

 The extrinsic information signifies the incremental gain in evidence of a 

posteriori information over a priori information. The SPA depends upon priori, 

extrinsic and posteriori probabilities. 
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The channel and nodes are used to obtain priori information and extrinsic information 

respectively. Equations/steps for calculation the probabilities in log domain are 

mentioned below. 

 

 2.6.1.1 Steps of algorithm  

 Step 1 Initialization:  

 Each variable node v initialized with the received information yi, from the 

channel. There-after each variable node v calculates the initial LLR, as follows: 

( 1 | )
( ) ln

( 0 | )

n n
n

n n

P z y
L z

P z y

 
  

 
 

 We assume that channel is an AWGN, 

2( ) 2 /n nL z y  , 

 Where 2 is the variance of the AWGN and ny  is the information received 

from the channel. ( )nL z  is the log domain probability for the transmitted bit nz is 1 or 

0, given the received bit ny . For each variable node, initial LLR ( )nL z and messages 

along the edges in the Tanner graph both are set to be zero. Figure 2-4 shows the 

schematic diagram of message passing in SPA, same applies to the LLR domain 

version of SPA. Incoming and outgoing messages exchanged between check and 

variable nodes. 

Step 2: Check node update  

 Calculate LLR for each check node, c and information sent from check nodes 

to the variable nodes based on the information coming from variable nodes. The 

check node LLR is given by 

abs( )
ln tanh( )

2

ij

c

all msgs

q




 
  

 
                                   (2.17) 

The messages going out from check nodes to variable nodes are given by 

, 2 atanh exp ln( ) ln(tanh( ))
2

ij

c v c

q


  
     

  

                 (2.18) 
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 c is given by exclusive-or (XOR) of all the messages coming from variable 

nodes and 
,c v  is given by the AND operation of sign of c and sign of the 

corresponding 
ijq  [32]. 

 Step 3 Variable node update  

 For each variable node, v, calculate LLR information which will pass along its 

edges to the corresponding check nodes. The LLR is given by 

,( )v c c v

all msgs

L z


   ,                                      (2.19) 

where ,c v  represents a message sent from check node to variable node. LLR is the 

sum of all incoming messages along with the initial value of the variable node. The 

messages moves to check nodes are given by 

,ij v c vq                                                 (2.20) 

 The departing message for each edge is given by the check node LLR minus 

the message obtain on that edge. 

 Step 4 Decision  

 Assign the LLR of variable nodes such that LLR 0v  if 0v  and LLR 1v   if

1v  . LLR provides the estimation of the codeword cn,. if LLR 0T H  , then stop 

the algorithm with output same as LLR. Otherwise go to step 2 for next round of 

iteration. In case algorithm does not stop with in certain number of iterations, it is 

consider to be decoder failure. 

 The assumption laying this algorithm and justifying the equations is that the 

messages are statistically independent over the decoding process. Assumed that yi’s 

are independent, former assumption holds true. For a given girth g, the independence 

assumption is only true up to the / 2g
th

 iterations, after which message starts to loop 

back. Numerical error is introduced in calculating a posteriori probability with the 

presence of cycle in the Tanner graph. An output of the decoder is hard decision for 

most likelihood transmitted codeword, so as long as error is introduced due to the 

presence of cycle, it can be ignored as final decision is based on the hard decision 

value of decoded output. It is assumed that if the good code is used the error’s value is 

small. However, simulations and results also show that belief propagation algorithm is 
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considered to be the most efficient decoding algorithm in terms of BER and used 

widely in practical applications. All the steps required in this algorithm needs only 

local probabilities, which can be computed by each nodes locally, this helps to reduce 

the computational effort in to the small pieces that can be calculated in parallel. 

 

2.7 Definitions used in designing of LDPC codes  

 LDPC code can be designed by determining the fundamental parameters of a 

code for example code rate and code size. These properties are often defined by 

considering the desired applications. Following are brief description of some of these 

parameters and their effect on performance and hardware implementation. 

 

 2.7.1 Code Size  

 The parity-check matrix of size M N  states the dimensions of the code size. 

Usually, code size or codeword is used to refer as N. Generally a code is represented 

by having its codeword size, row and column weights in the form of ( , , ).N j k M can 

be calculated from the other parameters ( , , ).N j k  It has been shown that large block-

length codewords are performed better than short length codewords [2, 5]. Therefore, 

to achieve good performance long codewords are chosen. Nevertheless, their 

hardware implementation requires more memory size and hence costly. 

 

 2.7.2 Code weight and Code rate  

 The rate of a codeword is denoted as R, is a number of information bits 

transmitted over the total number of codeword bits. It is expressed as1 ( / )j k . As 

more number of row and column weights more will be its computation at each node 

because of increased number of incoming and outgoing messages. Nonetheless, if 

more nodes contribute in computation of the probabilities of a bit, the corresponding 

node converges faster in its outcome. Fewer redundant bits are used for high code rate 

in a given codeword, i.e. more information can be transmitted per block for higher 

throughput. However, low redundancy means less number of parity-bits and hence 

less decoding performance or high BER [32]. On the other hand, low code rates have 

more redundant bits with fewer throughputs. In this case better decoding performance 
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can be achieved due to large number of redundant bits. However, very low code rates 

also have poor performance with a small number of connections in the Tanner graph.  

 LDPC codes having column-weight of two have their minimum distance 

(described in the next section) increase in the logarithmic scale with code size as 

compare to a linear increase for codes with high column weights [1]. Consequently, a 

column-weight two codes perform below as compared to the higher column-weight 

codewords. Therefore, column-weight higher than two is generally used. In addition, 

carefully constructed irregular codes have better error correction performance as 

compared to the regular LDPC codes [33, 34]. 

 

 2.7.3 Code configuration 

 The arrangements of the codes are determined by the connections between the 

rows and columns, i.e. check nodes and variable nodes. The connection pattern 

decides the complexity of the interconnection between check nodes and variable 

nodes i.e. in an encoder and decoder implementations there are two types of code 

constructions, random codes and structures codes. Random codes do not constitute 

any predefined connections between row-column of parity check matrix. On the other 

hand structure codes have predefined connections between row-column. 

 

 2.7.4 Number of Equations 

 The number of equations is defined as the number of times the received bits 

are estimated before a final hard decision is made by using the decoding algorithm. A 

large number of iterations may be required to converge the decoding algorithm, on the 

other hand, it may increase the delay time in decoding and power consumption. In 

simulation performance a large number of iterations may be used for more perfection. 

In general, for practical applications 10 to 40 equations are used [35]. 

 

2.8 Parameters of optimization of LDPC Codes 

 For improving the decoding performance of the LDPC codes, we need to 

optimize the several parameters. Mainly these parameters are girth, minimum 

distance. The improvement in performance also depends on the decoding technique 
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and on the H matrix. There are also performance measures to determine how good a 

code is in correcting errors with optimizing value. Below are some of the common 

techniques used for optimization found in the literature. 

 

 2.8.1 Minimum distance 

 The count of number of 1’s in the codeword is known as the Hamming weight 

of a codeword. The hamming distance is defined as the number of bits with which the 

codeword defer from each other and the minimum distance of a code is the smallest 

hamming distance between the two codewords. The higher the hamming distance, the 

better the performance of a code. The better code can be determined by using a 

concept of minimum distance. A large block-length and high girth LDPC codes are 

likely to have larger minimum hamming distance [2]. In the case of randomly 

constructed codes, there cannot be any algorithm so far known to calculate the 

minimum distance accurately. This problem was investigated in [36]. On the other 

hand, for the structured codes, some researchers calculated minimum distance by 

using software tool such as MAGMA [37]. 

 

 2.8.2 Girth  

 Girth will affect the decoding performance of a given code. Large girth 

improves the code performance whereas small ones especially of length four 

drastically degrades the decoding performance. Many researchers use the term “no-

cycle” in the Tanner graph which means to avoid the cycle of four. With small cycles, 

a node gets a probability estimate including its own contribution after a few iterations, 

in case this node has received the wrong information so it will calculate and 

propagates a wrong probability estimates to the connecting nodes. In case of large 

girth, the estimates are less dependent on the node’s connection for higher number of 

iterations, which is the assumption of the SPA algorithm. The most cited result for 

girth estimation and their performance comparison given by Sullivan [38]. It is shown 

that large girth codes perform better than shorter girth codes. In addition, distribution 

of local girth also contributes to the performance evaluation as in Mao [39], 

sometimes even more important than the overall girth estimates of the given code. A 
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code with a large average girth is likely to outperform a lower average girth of same 

girth code. In this thesis, we proposed new construction algorithms for obtaining large 

girth codes and discussed in Chapters 4 and 5. 

 

 2.8.3 Stopping sets 

 A stopping set S is a subset of V, the set of variable nodes, S V , such that all 

neighboring nodes of the variable nodes in S are connected to S at least twice. The 

size of S is defined as the cardinality of S. Prevention of small stopping sets has been 

proved to improve the BER performance and improving minimum distance as in [40]. 

 

 2.8.4 Density Evolution 

 Density evolution is a kind of belief propagation algorithm with messages as 

probability density function, despite of LLR messages. This algorithm determines the 

probability density function of the messages through the graph node assuming that 

cycle free condition is verified [41]. The bit error probability can be made arbitrarily 

small as the code length size tends to very high, if the noise level is smaller than some 

constant threshold. In this, by noticing the density of messages between nodes, the 

performance of the codes can be estimated. 

 

 2.6.5 Bit-Error Rate 

 Above mentioned parameters could be used as a measure for decoding the 

performance, they do not show how much error can be corrected for the given code. 

As well as having a higher girth or average girth does not guarantee the better 

performance. Therefore, LDPC codes are generally evaluated using bit-error rate 

(BER) performance over a given channel and the type of modulation. In this thesis, all 

QC-LDPC code performance was performed by considering AWGN channel with 

binary phase shift keying (DPSK) modulation.  

 Channels are termed by a mathematical model making it easy to design 

appropriate modulations and coding schemes. The AWGN channel is the simplest 

channel model, having a vector of transmitted bits, c, to noise vector. The amount of 

noise at any given time instant can be defined by a normal distribution variable, n, 
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such that the channel bits are .i i iy c n   Uncertainty of the Gaussian noise has a 

one-sided power spectral density oN , which depends on the variance 2 , can be 

expressed as 22oN  . 

 The BER measures how many number of errors in transmitted information bits 

and decoded bits found per iterations for a given signal-to-noise (SNR) ratio. The 

SNR ratio defined as the absolute power ratio of the signal (transmitted data) and the 

noise power spectral density. The higher the value of SNR, more signal power than 

the noise, on the other hand low SNR means to  noise level approximately close to the 

signal. BER of the channel is expressed as follows 

number of errors
BER

number of bits
  

 The number of errors effectively decreases with increasing SNR. SNR can be 

expressed as SNR 10log b

o

E

N
 , where bE  is the signal energy. The simulation is 

performed several times for achieving considerably low BER for a given SNR. The 

BER curve shows the probability that a bit, after decoding will be in error at a given 

SNR. For example BER value of 610  means, there is a 1 bit error in 1000000 bits. 

Another measure for calculating error rate is Word error rate (WER) or Frame error 

rate (FER). WER is the number of decoded words (length of the codeword) that 

contains error as the fraction of the total number of words decoded; sometimes FER is 

preferred over BER. 

 

 2.9 Summary 

Low-density parity-check (LDPC) code is an active area of research in the last 

decade and these codes have massive potential in the domain of wireless 

communication systems. The iterative decoding approach is already used in turbo 

codes, but the construction of the LDPC codes give even better results with less 

complex decoding algorithm. In numerous cases, LDPC codes allow a higher code 

rate and a lower error floor performance as well. Moreover, these codes make it 

possible to implement parallelizable decoders. The main difficulties are that the 
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encoders are somehow more complex and that the code length has to be rather long 

enough to yield better results. 
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Chapter 3: LDPC Code Constructions Techniques 

 

 
 
 
3.1 Construction of LDPC Codes 

 In this section, we discuss various aspects of LDPC code construction 

techniques. Most challenging research incorporated to find a wide range of codes in 

block-length and code rate that have optimized performance and suits to practical 

aspects of hardware deployment. LDPC code constructions require the set patterns or 

connections between the check nodes and variable nodes in order to get short cycle 

for corresponding Tanner graph. Before constructing codes, it is essential to fix some 

important parameters such as row and column weights, code length, code rate and 

girth. Ultimate objective of the code construction to obtain good decoding 

performance with economical hardware implementation and less computational 

complexity. However, by considering constraint of low cost hardware deployment 

may leads to degrade in error performance. There are many ways of code 

constructions for a given code length and rate. Nevertheless, developed techniques 

often have certain limitations in order to meet desired constraints. 

 LDPC code construction methods can be either random or structured 

connections between check nodes and variable nodes. Codes based on random 

construction methods may be easy to design in terms of flexibility but at the same 

time lacking with uniformity of row and column connections which increase the 

decoder interconnections complexity. On the other hand, codes based on the 

structured constructions methods have set patterns of check nodes and variable nodes 

connection but also have limit of given code rate, length and girth. There is still a lot 

of scope in order to optimize the structured code construction techniques for good 

error correcting performance and remarkable cost cut for hardware implementation. 

Generally discourse, design techniques to construct parity-check matrices of LDPC 

codes fall into two main groups: computer-based and algebraic methods. The 

algebraic approach often involves finite mathematics, [38, 42, 43], or combinatorial 
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techniques, [11, 44-48], which are promising for industrial applications thanks to the 

simple encoding structures. On the other hand, computer-based techniques, including 

Gallager codes [1], MacKay codes [2] and density evolution (DE), [30] and 

Progressive edge growth (PEG) algorithm [49], are still predominant as those random 

constructions are highly flexible in their code design and can offer near-capacity 

performance with very large block lengths. In this section, we will present some of 

the most important computer- based techniques. 

 In this chapter, we review some construction methods of regular and 

irregular LDPC codes related to our proposed methods. 

 

3.2 Randomly Constructions of LDPC Codes 

 

 3.2.1 Gallager Codes 

Gallager first proposed regular LDPC codes in his doctoral dissertation thesis 

in 1962, [1] with three parameters (N, wc , wr ) to denote the code length, the number 

of 1’s in each column, and the number of 1’s in each row, respectively. In his method, 

there are random connections between check and variable nodes of a LDPC code 

without any predefined arrangements. An H matrix for Gallager code is constructed 

by random column permutations, and has the following structure

1 2[ ]'
cwH H H H . The sub matrices formed by column permutations of H1 

having constraint as in [1] based on no 4 cycle existence. 

 

 3.2.2 MacKay Codes 

An alternate construction scheme for LDPC codes was devised by MacKay 

[2] while apparently not being conscious of Gallager codes. The method illustrates 

the benefits of designing codes with sparse H matrices, and interestingly for the 

very first time it demonstrate the capability of LDPC codes to perform near 

capacity limits [4] . Mackay developed few random constructed methods based on 

constraints to generate an H matrix of LDPC codes. Firstly, all zero H matrices 

generated with column weight ‘wc’ and then randomly bit flipping in the matrix. On 

the foundation of Tanner graph, MacKay codes enforces an important fundamental 

property on H matrix that there should not be any two rows or two columns have 
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more than one position in common that contains a 1 element, that is referred to as the 

row-column constraint [44] . During iterative decoding, if two variable nodes share 

in two corrupt parity-check equations instantaneously, it is not possible to detect the 

corrupted bits and further can correct them. The row-column constraint eliminates 

short cycles of length 4 in Tanner graph since the existence of such cycles 

significantly degrades the performance of iterative decoding algorithms. Furthermore 

Mackay work used to find good error performing LDPC codes with different code 

length and rates. Some of the code words even enlist in World Wide Web database as 

in [50]. 

 

 3.2.3 Progressive Edge Growth Algorithm 

 Progressive Edge Growth algorithm (PEG) was firstly presented by Hu et al. 

[49] that allows the construction of regular or irregular LDPC codes with high girth. It 

is the greediest algorithm to achieve high girth value locally at each edge placement. 

PEG algorithm works on variable node to variable node connections. The first edge 

connection at each variable node is made by considering that random selection of 

check node is done under the condition of minimum weight with the current draft 

setting. It is considered as most successful approaches for construction of finite length 

LDPC codes. In practice, a low cycle free Tanner graph provides optimum decoding 

and PEG try to maximize the girth cycle. The PEG algorithm can be summarized as 

follows. 

 An M by N parity-check H matrix (M rows and N columns) of an LDPC code 

can be represented by a Tanner graph [26], where M is the number of parity-check 

equations, N is the number of coded bits, and K N M   is the number of message 

bits.  The Tanner graph is a bipartite graph, which composes of the set ( , ),V E  where 

,c sV V V   cV 
0 1 1{ , ,..., }Mc c c   is the set of check nodes, 0 1 1{ , ,..., }s NV s s s   is the 

set of bit nodes, and E is the set of edges, ( , )i jc s E  corresponding to a nonzero 

element at the i-th row and the j-th column in the H matrix, where 0 1i M   , and 

0 1j N   . 
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 Additionally, let the degrees of check and bit nodes be define as 

0 1 1
{ , ,..., }

Mc c c cD d d d


  and 
0 1 1

{ , ,..., },
Ns s s sD d d d


  respectively, where 
j

k

sE  denote the 

edges on sj with 0 1
jsk d   . Figure 3-1 shows the Tanner graph for Ds = {2, 2, 2, 2, 

2, 2, 2, 2, 2} and Dc = {4, 4, 4, 4, 4}, where the bit  represents the check node ci, and 

the  represents the bit node sj. 

1f 2f 3f 4f0f

0s 1s 2s 3s 4s 5s 6s 7s 8s 9s
 

Figure 3-1: A Tanner graph for PEG based H matrix 
 

l

 depth 0

 depth 1

 depth 

js

 
Figure 3-2: A sub-graph spreading from bit node sj. 

 

 3.2.3.1 Parity-Check matrix constructions 

 This section briefly explains how the PEG algorithm works [49], whose 

process is to connect an edge between a check node and a bit node by using the 
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spreading of the sub-graph as depicted in Figure 3-2. For a given bit node sj, we 

define its neighbourhood within depth l, 
j

l

sN , as the set consisting of all check nodes 

reached by sub-graph spreading. Specifically, the first edge that wants to connect to a 

bit node sj can be chosen randomly from a check node with the lowest degree. For the 

next edge, we must first spread the sub-graph from sj and then select the check node 

from the lowest depth (at depth l) of this graph that has the lowest degree. However, if 

the sub-graph does not cover all check nodes, we must choose the check node with the 

lowest degree that is not within the sub-graph (
j

l

sN ). The PEG algorithm can be 

summarized as follows: 

1. Assign the degree of a bit node sj, e.g., 
0

2,sd   and the set of edges incident to this 

bit node as 0 1{ , }
j j j

s s sE E E . 

2. Add an edge to this bit node sj. First, if the edge that wants to be added to this bit 

node js  is 
0

jsE , we can choose the set of cV  with the lowest degree randomly. If 

the edge is not 
0

jsE , we must expand the sub-graph up to depth l . Then, the two 

event a) and b) can happened: 

 a) Given the set of cV  within depth l  denoted as 
j

l

sN , if the number of 
j

l

sN  is 

less than M, we must choose the set of cV  that is not in depth l , denoted as 
j

l

sN , 

which has the lowest degree randomly; and  

 b) If the cardinality of set 
j

l

sN  is equal to M, we will choose the check node 

with the lowest degree at depth l . Repeat this step until the k-th equal to 
jsd  

3. Go back to Step 2 for adding edges to the next bit node until 1j N  , where

0 1j N   . 

 Thus, the set of 
j

l

sN and 
j

l

sN  must satisfy 
j j

l l

s sN N  cV , where \
j j

l l

c s sV N N

and  \
j j

l l

c s sV N N . Finally, if we choose any check node at depth l, it can be shown 

that the number of girths from the bit node sj will be equal to 2( 2)l  .  

Below is a pseudo-code for the PEG algorithm. 
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For 0j   to 1n   

For 0k   to 1
jsd   

If 0k   

    
0

jsE Choose the check node with the degree randomly 

 Else 

   
j

k

sE Use the above Step 2(a) if the number of 

                         
j

l

sN  is less than M 

                    Use the Step 2(b) if the number of 
j

l

sN  is 

                         equal to M 

    End 

  End 

End 

 

3.3 Structured Constructions of LDPC Codes 

Structured construction methods can be used to get a desired or pre-defined 

pattern by putting constraints on row-column connections. The main goals are to have 

a connection pattern that is easier for hardware implementation and to achieve good 

performance. There are many structured methods already developed that includes 

those based on graphs, algebra, combinatorial designs and heuristic searching 

techniques. 

 

 3.3.1 Combinatorial Designs 

Structured LDPC codes can be generated by constructing parity check matrix 

using combinatorial mathematics. A combinatorial design is an arrangement of sets of 

v points into b subsets called blocks, according to some defined constraints. 

The two basic constraints used are: 

1- A pair of points appear together only in λ blocks for a defined value of λ. 

2- The number of points in each block is given by γ, number of blocks in which a 

point appears is given by ρ [45]. 



 

 

35 

 A balanced design can be constructed if the covalency λ, is the same for all 

pair of points, from the definition, the dimensions of the code is given by ( )v b . We 

can denote column weight (wc) and row weight (wr) as γ and ρ respectively. The 

design is consistent if all blocks have same number of points and it appears same 

number of times. The obtained codes will not have a four cycles as the design ensures 

this by using covalency of 1 in the first constraint. As per matrix formation, a four-

cycle is formed by having a pair of rows connected to the same columns or having a 

pair of columns connected to the same rows more than once. The first constraint i.e. 

1   breaks this condition as two points appears in the same block only once. This 

constraint is known as row-column (RC) constraint [9]. RC constraint is used in many 

methods in different forms to avoid girth of four. Figure 3-3 and Table 3-1 shows 

combinatorial design with row weight three and column weight two. Part (a) is a 

subset of division of points. The graph beside shows edges as blocks and points as 

vertices. The resulted matrix forms a LDPC code where columns and rows are 

connected in case they do not belong to the same block. Part (b) of the figure shows 

the resulting matrix from the graph. Adjacency matrix shows connection of  

 

2211

66 33

55 44

 
 

Points {1, 2, 3, 4, 5, 6} 

Blocks [1, 2], [1, 4], [1, 6] 

             [3, 2], [3, 4], [3, 6]  

            [5, 2] [5, 4], [5, 6] 

Figure 3-3: (a) Combinatorial design graph (b) Points and subset arrangements using 

design graph as in (a) 
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Table 3-1: Incidence matrix 

Points Connections to points based on design graph 

1 1 1 1 0 0 0 0 0 0 

2 1 0 0 1 0 0 1 0 0 

3 0 0 0 1 1 1 0 0 0 

4 0 1 0 0 1 0 0 1 0 

5 0 0 0 0 0 0 1 1 1 

6 0 0 1 0 0 1 0 0 1 

 

vertex in given graph. This method was used in [51] to construct column weight two 

codes having girth eight. The given size of code was 
22k k , where k is same as ρ. 

To obtain higher column weight combinatorial design, the same method with different 

polygons can be applied to construct different codes as explained in [9, 45]. It should 

be noted that codes obtained from above method having RC constraints for only girth 

four. So in these codes there is girth of six present which will limit the performance of 

the code. For the medium to large block length codes decoding performance can be 

enhanced by increasing the girth of the codes. Even though a wide range of code rates 

and length can be obtained by using combinatorial design by using RC constraint. 

 

 3.3.2 Finite Geometry Method 

Finite geometries are other approach which can be used for designing 

structured LDPC Codes. Using Euclidean and projective geometries over finite 

fields, four groups of LDPC codes are constructed. Their performance is stated to 

be good with iterative decoding. Moreover, they can have cyclic or “quasi-cyclic” 

form, therefore they can be encoded easily using simple feedback shift registers. 

The four classes of LDPC codes based on Euclidean and Projective geometry are: 

Type-I Euclidean geometry (EG) LDPC codes 

Type-II Euclidean geometry (EG) LDPC codes 

Type-I Projective geometry (PG) LDPC codes 

Type-II projective geometry (PG) LDPC codes 

Finite geometry is generally defined by n points and J lines with the following 

properties [52]: 
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1. Every line contains ρ points. 

2. Any two points are connected by only one line. 

3. Every point lies on γ lines. 

4. Two lines intersect at only one point or they are parallel. 

 Figure 3-4 represents a finite geometry with 4n  , 6J  , 3  , 2  . The 

resulted matrix derived from the geometry is also shown in the Table 3-1. Rows 

represent lines and columns represent points. The intersection of line and point is 

represented by ‘1’ in the matrix. The incidence matrix can be regarded as a low-

density parity-check matrix when n   and J   as the number of ‘1’ entries 

will be very small as compared to number of ‘0’ entries. The example matrix with n 

as the block length is called type-I geometry LDPC codes (Euclidean geometry or 

EG-LDPC codes). The transpose of this matrix will be the matrix with length J and is 

referred as type-II geometry LDPC code (projective geometry or PG-LDPC codes) γ 

and ρ are column and row weights in type-I codes and row and column weights in 

type-II codes respectively. 

Point

Line

 
Figure 3-4: Finite geometry with 3   and 2   

 

Table 3-2: Corresponding incidence matrix 

Points Connections using finite geometry 

1 1 1 0 0 

2 1 0 1 0 

3 1 0 0 1 

4 0 1 1 0 

5 0 0 1 0 
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 The codes are made regular as per properties 1) and 3) of finite geometry as 

lines have the same number of points and points are crossed by same number of lines. 

Obtained codes have a girth of at least six is ensured by property 2 of finite geometry. 

That means, four-cycles are avoided. However, it was found that these codes will 

always have a maximum girth of six [53] which is the demerit of this method in case 

of improving performance by larger girths. In addition, one more drawback of this 

type of construction is that the resultant H matrix will be square matrix of size 

N N , therefore, we have to consider ( )N K  rows to decode, which will have 

degraded performance of the code as well as the complexity of the decoding process 

due to relatively large row and column weights with less flexible structure of the 

codes. So these designs do not obtain wide range of code lengths and code rates, 

henceforth, not practically suited. In [52, 53] finite geometry of both the types were 

constructed and analyzed. Type-I codes have minimum distance of 1   and type-II 

codes have distance of at least 1  . In this type of codes the length of the code is 

calculated by its row weight. It is given as ( 1)msa p   with a given row weight of sap , 

where a, m and s are positive integers and p is a prime number. In addition, he row 

weight of PG-LDPC codes is ( 1)sa p   and code length of 
( 1)( 1)

1

m s

s

a p

p

 


as in [53]. 

 

 3.3.4 Algebraic Methods 

 Algebraic codes were proposed for the first time in 2001 [53]. These codes can 

be constructed using finite geometries such as Euclidian and projective geometries 

over finite fields. In general, these codes results in cyclic or QC LDPC codes. The 

main advantage of these codes is that it can be easily encoded using shift registers [9]. 

Much research concludes that algebraic cyclic and QC-LDPC codes can attain 

excellent overall performance in terms of error floor, computation time complexity 

and iterative decoding convergence (i.e. average number of iterations needed to 

converge decoding algorithm). Besides many merits mentioned above these codes do 

have some major disadvantage, that is the large hardware decoder employment 

complexity in terms of the number of message processing units, the number of wires 

connected to corresponding processing units and the amount of memory required for 
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messages storage. The large decoder hardware employment complexity is primarily 

caused due to comparatively high density of number of 1’s and due to the large of 

number of redundant rows in H matrix of an algebraic cyclic or QC-LDPC codes. 

This complexity is a critical issue for realizing practical implementation of the 

applications in the wireless communication system [54]. 

 To obtain these codes with a defined structure, parity-check matrix 

connections can be algebraically constrained. Constraints can even be used to get any 

required rate, girth or length. Fossorier [7] offers algebraic constraints to get quasi-

cyclic codes of desired girth. The code matrix is divided into sub-matrices of same 

sizes. The structure of the matrix is given by- 

11 12 1

21 22 2

1 2

k

k

j j jk

a a a

a a a

a a a

 
 
 


 
 
  

I I I

I I I
H

I I I

,                                      (3.1)

 
 Fossorier shows conditions under which cycles are present in a code. 

Thereafter, the algebraic conditions are used to find codes with girths from six to 

twelve. To obtain a girth of at least six, a crucial condition is that 
1 2 1Jjk j ka aI I  for

1 2j j and
1 1 1 2j k j ka aI I for 1 2k k . Any four-cycles in the matrix, breaks this 

condition. A four-cycle matrix contains “1” entries forming a rectangle or a square in 

a matrix. The author also shows the girth six codes have a length N of at least
2k  in 

case k is odd and ( 1)k k   in case k is even. In addition, Fossorier also proves that 

QC-LDPC codes can achieve up to maximum girth of twelve for any j and k rows and 

columns of sub-matrices in H matrix. To avoid cycles of given length in a matrix 

above mathematical constraints can be used. However, the conditions fails to 

determine the size of sub-matrices or values of shifts in sub-matrices that will work 

for a given N, j, and k. In order to reduce code search, structured construction method 

is suggested. The method puts more constraints on the girth conditions so that there is 

more space to search. The main advantage of methods as in [38, 55] is fewer 

restrictions are present for the size of sub-matrix group. There are various methods for 

constructing structured LDPC code in literature. These codes also apply the row-
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column constraint to avoid girth of four. Most of the codes are as good as other codes; 

however, they too have limitations in some or another way. 

 

3.4 Protograph based LDPC codes 

 The construction of LDPC codes based on protograph begins by having a 

relatively small bipartite graph from which a large graph can be obtained by copy-

and-permute method to obtain a single large graph [56]. This concept has been further 

studied to build H matrices with high girth [57, 58]. Furthermore, the protograpoh 

LDPC codes have many tactics to optimize the construction of LDPC codes [59]. 

Protograph based code was studied with the possibility of designing parameters of the 

code constructed on small base codes. In this process, protograph is copied several 

times and then the edges are copied and connected for the large single graph based on 

the same restrictions as on small protograph. After obtaining the single Tanner graph, 

we can obtain the H matrix. If a variable node V is connected to a check node C in the 

given protograph, then after copying protograph, variable node V can only be 

connected to one check node C of the replicas. Any parallel edges in the main 

protograph are eliminated in the construction, so as to obtain a single Tanner graph 

suitable for the constraints of parity-check matrix. 

 

3.5 Benefits of Structured code constructions 

 LDPC codes based on structured connections usually reduce hardware 

complexity and minimize cost of encoders and decoders [59, 60]. In structured codes, 

H matrix can be divided into sub-matrices which are mapped onto decoder side with 

the number of processing same as the number of row and column sub-matrices. The 

number of processing nodes and interconnections is reduced since there are few sub-

matrices compared to rows/columns of H matrix. The row-column constraints of 

structured codes usually have similar behavior. Hardware deployment of these codes 

can be simplified, that is a group of messages between variable nodes and check 

nodes can be directed using single row-column constraint. By using the connection 

rule the source and destination addresses can be calculated in case if messages are 

stored in memory blocks. 



 

 

41 

 An additional advantage of structured codes is that they could be considered 

by their performance superiority. The family of structured codes based on 

construction constraints can be usually obtained. In addition, important parameters 

such as girth, code rate and minimum hamming distance may be applied to all codes 

in the family.  

 However, the performance of structured codes is degraded compared to 

random codes in the case of comparatively large block-length. Row-column 

constraints may limit the cycle length, code rate and minimum hamming distance of 

codeword. If there is performance degradation, it is pretended because of the 

regularity in the connections between variable nodes and check nodes. Another 

drawback is that they sometimes exist only for selected parameters such as code rate, 

column weight and girth combination, which may be unfit for some application. The 

constraints used plays the important role as the ‘structure’ and structured code 

performance depends on it. Nevertheless, structured codes offers best performance 

and hardware employment tradeoffs as compared to the random LDPC codes. The 

main contribution of our research is based on constructing structured codes over a 

wide range of code length, rate and girth. 

 

3.6 Constructing QC-LDPC Codes 

Although LDPC codes with large block-length usually provide a good 

performance but at the cost of huge memory requirement and computation complexity 

of the H matrix. To overcome this problem, Quasi-cyclic LDPC (QC-LDPC) codes 

were proposed by Fossorier [7], which is based on algebraic and geometric theories 

and combinatorial designs and mostly accepted form of structured LDPC codes. 

However, the flexibility of code rate and code length is restricted by the matrix 

construction theories [4, 9, 46, 61]. Nevertheless, good QC-LDPC codes are well 

suited for certain practical applications such as data storage systems, DVB-T2/S2, 

IEEE 802.16e, IEEE 802.11n, and 10Gb Ethernet, because they can be easily encoded 

using shift-registers, thus requiring less memory and less computational complexity 

[61, 62]. These features motivate us to take an intensive interest in the construction of 

large block-length QC-LDPC codes with high girth for future applications in data 
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storage and communication systems. Note that the term “girth” implies the shortest 

cycle in a Tanner graph or in the H matrix. 

In addition, remarkable efforts have been carried out to find various QC-

LDPC constructions with explicit algebraic and combinatorial designs. For example, 

Fan [63] introduced an array code with no 4-cycle length that can be viewed as one of 

the properties of QC-LDPC codes. Another approaches to design large girth 

structured QC-LDPC codes based on CPM by deleting certain block-rows and block-

columns of the H matrix were proposed in [58, 62, 64-66]. Recently, QC-LDPC codes 

up to the girth 8 were proposed by Sudarsan et al. [67], which based on complete 

protograph. Moreover, Eleftheriou et al. [64] presented a modified array code (MAC) 

by applying a cyclic shift to a Fan’s array code so as to reduce the number of 1’s in a 

lower triangular H matrix, and its performance is superior to the Fan’s array code. 

Additionally, Shu Lin et al. [10] had significant contribution for algebraic QC-LDPC 

codes, which have shown good performance with low error-floor and reduced-

complexity. 

 

3.7 Algebraic constructions of QC-LDPC Codes based on Circulant matrices 

 

 3.7.1 Quasi-Cyclic LDPC Codes  

The H matrix of a ( , )j k  QC-LDPC code with column weight   and row 

weight  , is called regular if the H matrix has uniform column weight and row weight 

[7]. It is based on L L  CPMs, defined as a mother matrix, ( )M H , of size mL nL , 

which can be uniquely constructed by shifting the order of an identity matrix, I, based 

on its corresponding CPM, as given by 

 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a

a a a

 
 
 


 
 
  

I I I

I I I
M(H)

I I I

,                                       (3.2) 

 where  0,1 , 1,ija L    and 
ijaI  is defined as the I matrix of size L L  for 

1 j m   and 1 j n  , which is obtained by cyclically right shifting the rows of the 
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I matrix by 
ija  times. The zero matrix of size L L  is represented when

ija   . The 

H matrix consists of m block-rows indexed from 0 to 1m  , and n block-columns 

indexed from 0 to 1n  . It is noted in ([7], Theorem 2.5) that the girth of an ultra-

sparse QC-LDPC code, where 3j   cannot be greater than 12.  

In addition, the matrix ( )E H  is called the exponent or shifting matrix and it 

can be obtained by replacing each element 
ijaI  in ( )M H  by ija  as follows: 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
 

E(H) .                                        (3.3) 

 By combining the exponent matrix ( )E H  and the CPM 
ijaI , it will give the 

H matrix. For example, the ( )M H  matrix in (3.2) can be constructed using an 

exponent coupling procedure according to 

ij
aM(H) E(H) I ,                                          (3.4) 

where  is a coupling operator. 

A cycle of length 2l  in the Tanner graph of ( )E H  is called a 2l -block cycle, 

which can be represented by an exponent chain in the ( )M H matrix according to 

1 1 1 2 2 2 1 1 1

( , , )
i j i j i j i j i j i jl l l

a a a a a a   I I I I I I                              (3.5)  

or in the ( )E H  matrix according to  

1 1 1 2 2 2 1 1 1
( ,..., )

l l li j i j i j i j i j i ja a a a a a     .                           (3.6)  

Due to the presence of short length cycle in the H matrix, the performance of 

LDPC codes will degrade. It is very important to understand the structure of the H 

matrix. The theorem mentioned below was first proposed by Fossorier in [7], which 

stated that in QC-LDPC codes, the necessary and sufficient condition for the 

existence of length 2l -block cycle is given by 

1

2

, ,

1

( ) 0mod
k k k k

l

m n m n

k

a a L




  ,                                    (3.7) 

where 1, 1 k k k ki i j j   , and 1l li i  . 
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 Example 3.1: Let c be a length 16 codeword described by I size of 4 4 and 

M(H) as follows- 

11 12 13 14

21 22 23 24

a a a a

a a a a

 
  
  

I I I I
M(H)

I I I I
                                    (3.7) 

Let 0 0 0 0

0 1 2 3

 
  
 

I I I I
H

I I I I
 which can be represented in binary form as 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0

 
 
 
 
 
 

  
 
 
 
 
 
 

H       (3.8) 

For this code 2j  , 4k   and 4L  . 

 

 3.7.2 QC-LDPC Implementation 

Hardware implementation of QC-LDPC codes are mostly done to achieve high 

throughput required by most applications. Encoding complexity is quadratic with 

respect to the code length. There are numerous method discussed for reducing the 

encoding complexity by prior processing to the H matrix. The complexity of the 

encoder also depends on the structure of the QC-LDPC codes. As stated earlier, large 

codes require more hardware in terms of memory size for processing node 

requirement. One of the proved techniques for reducing the encoding complexity is by 

using Chinese Remainder Theorem discussed [11]. On the other hand, the 

requirement of QC-LDPC decoder depends upon the structure of the code and 

implementation architecture. Semi-parallel decoder architecture based of structure 

QC-LDPC codes are often implemented. QC-LDPC codes offer a good trade-off 

between hardware complexity, cost and the throughput. For a particular application, it 

is desirable to consider several issues such as type of decoding algorithm, encoding 
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complexity, and decoding delay, numeric precision on the estimated probabilities, 

power consumption, and programmability delay. 

 

 3.7.3 QC-LDPC applications in modern communication systems and 

recent advancements 

 QC-LDPC codes are a class of LDPC codes in which there is cyclic 

connection between rows or columns of a sub matrix. QC-LDPC codes structure 

depends on the arrangement of sub matrices and the value’s by which they are shifted, 

random shifting of a sub matrices may result in poor performance of the QC-LDPC 

codes. Practically, good QC-LDPC codes are well suited for certain practical 

applications, such as data storage systems, DVB-T2/S2, IEEE 802.16e, IEEE 

802.11n, etc., because they can easily be encoded using shift-registers, thus requiring 

less memory and less computational complexity [8]. 

 The most appealing LDPC codes are QC-LDPC for practical systems as the 

structure of quasi-cyclic matrix allows for linear time encoding using only shift 

registers and also rendering efficient routing for decoding implementation [62, 66, 

67]. Furthermore, it enables the storage of the coding matrix with requirements of few 

memory units. Active research on QC-LDPC codes has been carried out on the 

efficient H matrix construction with large girth, meaning the length of the shortest 

cycle in tanner graph representation [55]. 

 

3.8 Summary of various existing QC-LDPC encoding schemes 

 
Table 3-3: Various existing encoding schemes 

Encoding scheme Classification 

category 

Name of Encoding scheme 

Category -1 

Approximate Lower 

Triangulation Schemes 

 Richardson Encoding Scheme 

 Adaptive Message Length 

Encoding Scheme 

 Arbitrary Bit-Generation and 

Correction 
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 Encoding with a systematic 

approximate lower triangular form 

 Encoding for GLDPC codes 

 Two stage encoding with 

Triangular Factorization  

Category -2 

Families of 

Algebraic 

Construction of 

QC-LDPC 

codes 

 Algebraic Construction of QC-

LDPC codes: Bresnan Code 

 Algebraic Construction of QC-

LDPC codes by Dispersion 

 Algebraic Construction of QC-

LDPC codes: Rakibul Code 

Category -3 

 

 

Other Existing Encoding 

Schemes 

 

 Encoding of QCLDPC Codes 

Related to Cyclic MDS Codes 

 Efficient Encoding of IEEE 

802.11n LDPC Codes 

 Encoding of Array LDPC Codes by 

FAN 

 Magic square method to construct 

QC-LDPC codes 

 

 Here we summarize the work from different research group around the globe. 

In the Table 3-3 only the work in recent research has been mentioned and indeed each 

group has many contributions in the domain of encoding QC-LDPC codes. 
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Chapter 4: Proposed construction method of QC-LDPC Code 

 

 
 
 

As we discussed in the previous chapter, some structured LDPC codes have 

limitations in their interconnection patterns, girth and implementation complexity. In 

this category of codes they vary in their performances and pattern of connections for 

variable nodes and check nodes. However the connection pattern between rows or 

columns in these codes which resulted from chosen sub-matrices of searched codes 

may not be same for all rows or columns. The more the size of sub-matrices, the more 

will be its storage and handling cost and hence it increases the complexity of the 

decoder.  

QC-LDPC codes are known to be efficiently encoded with shift registers [34, 

68] and their decoder design which require simple address generation algorithm and 

less memory requirement. In QC-LDPC codes, rows and column connections are 

constructed by shifting identity sub-matrices. Therefore, if we know the location of 

one row or a column in the decoder, one can find out the location of the remaining 

rows and columns in the same sub-matrix. It will provide a simple and easy 

construction of H matrix Furthermore, QC-LDPC codes can perform close to the 

channel limit as shown in [69]. 

QC-LDPC codes have been constructed by using several methods. The 

structural properties of the codes majorly depend on the shift values of sub-matrices 

and their arrangements. If we use random shift values of identity sub-matrices then it 

will result in reduced girth and so poor performance. Various construction methods as 

we discussed in chapter three have constraints on no-four cycle. Code constructions 

using these methods have at least girth of six and wide range of code rate and lengths. 

All construction methods have certain limitations so developed codes are restricted in 

all or one of the properties such as code rate, code length and girth. In addition, a 

recursive approach develop as in [70, 71] would be applied for wide range of girths, 

code rates and lengths. Using this method, firstly a base QC-LDPC code is 

constructed from one of already developed methods such as geometric or algebraic 
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construction techniques. Further, base matrix expanded using replacement of ‘1’ 

entries with randomly shifted sub-matrix of size p p  and ‘0’ entries by zero sub-

matrix of size p p  with the constraints of at least same girth and minimum 

hamming distance as of base matrix. 

 In this chapter, we develop a new search algorithm which is useful for 

construction of large block-length LDPC codes. We search for exponent matrices with 

high girth, keeping in mind to reduce its circular permutation matrix (CPM) size. It 

will lead to less memory requirement and less implementation cost. For reducing the 

encoding implementation complexity, we use Chinese Remainder Theorem (CRT) for 

combining proposed component matrices. Another major advantage of the proposed 

algorithm is that it can be applied to higher column weight and different sub-matrix 

arrangements. Our method having reduced encoder complexity and its hardware cost. 

This algorithm could be used to construct codes optimized for better decoding 

performance as well. It also offers the flexibility as compared to the random codes. 

The Technical details associated with this is the development of the new codes with 

following criteria’s and their technical details are given are as follows.  

1. Component H matrix generation. 

2. Finding Lower bound on CPM size for optimized higher girth. 

3. Combining component matrices to obtain desired medium to large size block-

length H matrix using Chinese Remainder Theorem (CRT). 

 

4.1 Chinese Remainder Theorem 

 Let I be a positive integer,  1 2, , , sL L L be s moduli, and  1 2, , , sr r r be s  

remainders of I, i.e., 

b br I L ,                                                        (4.1) 

where 0 b br L   for 1 b s . If all the moduli bL ’s are co-prime to one another and 

1
0

s

bb
I L


  , then I can be uniquely reconstructed from its s remainders via a 

simple CRT theorem [72] according to: 

1


s

b b b

b

I r a L L ,                                                 (4.2) 

where 
1


s

bb
L L , /b bL L L , and 1b b bA L L . 
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4.2 Generalized Combination of QC-LDPC codes via CRT 

 Let bC  be a QC-LDPC codeword, where 1,2,..,b s , whose Hb  is an m n  

array of b bL L  CPMs and/or zero matrices. Let 
( )( )b

b ijaE(H )  be the exponent 

matrix and 
1


s

b

b

L L . A QC-LDPC code C  with the mL nL  parity-check matrix, 

H, can be constructed by using the generalized combining method, which obtains the 

exponent matrix ( )ijaE(H)  according to (4.2). In the case, where
( )  b
ija  in E(H)  

for all 1,2,..,b s , we find ija  according to 

1


s

b
ij ij b b

b

a a A L L ,                                             (4.3) 

Proposition 4.1 [72], For 1,2,..,b s , let bg  denote the girth of bC  and g denote the 

girth of C , then 

1 2max{ , ,..., }sg g g g .                                       (4.4) 

 In the next section, we propose a novel method to construct a large block-

length H matrix having a high girth with less complex encoding by combining the 

component QC-LDPC codes and the CRT algorithm. 

 

4.3 Proposed search algorithm for QC-LDPC codes using CRT 

In this section, we propose construction methods using which a wide range of 

girths, code rates and code lengths could be produced with less CPM size. 

Furthermore this works leads to construction more general form of H matrix, which 

consists of medium to large block-length size. The proposed QC-LDPC codes based 

structure of H matrix can be useful in real application in upcoming and modified 

version of various standards, using LPDC codes as a FEC channel code. 

 

 4.3.1 Flowchart of designing H matrix. 

Designing steps involve in construction of desired H matrix, can be 

summarized in a form of flow chart as shown in Figure 4-1: 
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Figure 4-1: Flow Chart for proposed algorithm 

 

 4.3.2 Proposed Method 

This section introduces a novel method for constructing the H matrix for 

medium to large block-length, which has high girth and less complex in terms of 

computation. 

Assume that 1L  and 2L  are the prime numbers and they indicate the CPM size 

of two component matrices 1H  and 2H , which have the girth 1g  and 2g , respectively. 
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The procedure explained here is for constructing the H matrix of size jL kL  such 

that 1 2L L L   by using CRT as in (4.2) without losing its local girth. Later in this 

work, it can be extended to combine 2, ,..., s1H H H  component matrices having the 

CPM size of 1 2, , , sL L L  to obtain the H matrix such that 1 2 , , sL L L L . Below are 

the steps of the proposed method. 

Step 1 To construct a component  1 ,j kH  matrix, where j and k are the 

number of block-rows and block-columns, respectively. The starting condition for the 

 1 ,j kH  matrix is given in Table 4-1, where the indexed number 0 is an 1 1L L  

identity matrix I, and 1 represents one right shifted order of I, and so on. The indexed 

number Z is an intended shifted order of 1 1L L CPM that we need to find out. It 

should be noted that the size of 
1H matrix is 1 1jL kL . 

Step 2 For each column-block (starting from the leftmost column to the right), 

replace each Z from the 1
st
 to the j

th
 row using a number between 0 to 1 1L  . To do so, 

we find all possible data patterns of each column-block, where the maximum number 

of data patterns denoted as fcP  is given by  

1

1

j

fc

p
P



 
  
 

,                                                    (4.5) 

where p is the size of the chosen CPM’s. For example, if 1 3L  , there will be 

3 1

2
3

3 9
1

fcP



 
   
 

 different data patterns available for the 1
st
 column. Then, we 

replace all remaining block-rows with index value Z in Table 4-1. To calculate Z, we 

replace each data pattern in the 1
st
 column and compute the local girth assuming that 

the remaining Z’s in the other columns by the 1 1L L  zero matrix.  Note that if we 

cannot find the local girth (i.e., no cycle), we will assume that the girth is infinite. 
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Table 4-1: A proposed generalized component matrix 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

1H  1 2  k – 1 k 

1 0 1  k – 2 k – 1 

2 Z Z  Z Z 

      

j – 1 Z Z Z Z Z 

j Z Z Z Z Z 

 

Step 3 The data pattern that yields the largest local girth with minimum value 

indexing in data patterns will be selected for the 1
st
 column.  Then, we proceed the 

same procedure as explained in Step 2 in a column by column manner until all block-

columns are filled with the chosen number of data patterns. Table 4-2 shows an 

example of the component matrix 1H  after obtaining all Z’s for 1 29L   and 1 8.g   

This process ensures the minimum size of CPM’s in QC-LDPC codes, which will be 

useful for constructing a good H matrix with high girth value and low memory 

requirement for hardware implementation. Table 4-3 illustrates the minimum lower 

bound of the CPM size for various block lengths of the component matrix based on 

extensive simulation search for regular (3, )k  LDPC codes. The obtained CPM size 

will be the optimized lower bound for constructing the QC-LDPC parity-check matrix 

with high girth and variable code rates. 

 

Table 4-2: A designed 1H  index matrix 

lo
ck

-ro
w

 in
d
ex

 

Block-column index 

1H  1 2 3 4 5 6 7 

1 0 1 2 3 4 5 6 

2 0 3 8 0 0 10 24 

3 0 0 13 1 8 0 15 
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Table 4-3: Estimation of minimum CPM size L with corresponding girth 

k (Block-length) 6g   8g   10g   12g   

5 7 17 83 223 

7 7 29 239 709 

9 11 47 499 1399 

11 11 61 743 3271 

 

Step 4 The other component matrix 2H  can be obtained by choosing a suitable 

size of a prime number 2L  based on Table 4-4, such that it maintains the optimum 

lower bound for the desired girth 2g . For example, we choose a lower bound of the 

CPM size from Table 4-3, i.e., 2 7L  for 6g  . The construction procedure for 2H  is 

similar to that for
1H . Table 4-4 shows an example of the component matrix 2H  after 

obtaining all Z’s for 2 7L  and 6g  . 

Step 5 Finally, we construct the exponent matrix E(H)  by combining all the 

component matrices via CRT and replacing each entry ija  of E(H)  with 
ijaI  so as to 

obtain the H matrix of size mL nL with girth g, which still satisfies the condition in 

(4.4), i.e., 1 2max{ , }g g g  as shown in Table 4-5. 

It should be pointed out that with carefully selecting the CPM size and block 

length, we can construct any large block-length H matrix up to the girth of 12 for QC-

LDPC codes. 

 

Table 4-4: A designed 2H index matrix 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

2H  1 2 3 4 5 6 7 

1 0 1 2 3 4 5 6 

2 0 4 1 1 5 2 1 

3 0 2 4 2 2 1 3 
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Table 4-5: A combined exponent matrix, E(H)  via CRT 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

E(H)  1 2 3 4 5 6 7 

1 0 1 2 3 4 5 6 

2 0 32 8 29 145 184 169 

3 0 58 158 30 37 29 73 

 
4.4 Simulation and Results 

The bit-error rate (BER) performance of the proposed method and some well 

known existing methods compared by considering an M N  size H matrix, where M 

is the number of parity bits, N is the length of the codeword with code rate R and R is 

equal to 1 /M N . To evaluate the performance, we simulate the system based on an 

additive white Gaussian noise (AWGN) channel, where a binary input sequence 

{ 1}ka    of length N M  bits is encoded by an LDPC encoder and is mapped to an 

N-bit coded sequence { 1}kb   . Therefore, the received sequence is given by

k k ky b n  , where nk is AWGN with zero mean and variance of 2 . At the receiver 

end, the received sequence ky  is decoded by LDPC decoder based on a message 

passing algorithm in log domain with 10 numbers of iterations. The signal-to-noise 

ratio (SNR) is defined as  2

10SNR 10log 1/ 2 R  in decibel (dB). Each BER point 

is computed based on a minimum number of 10000 data packets. 

 

 4.4.1 Girth 8 codes 

Example-4.1: In this example, we study the proposed method based on the 

component QC-LDPC codes combined with CRT to construct a large block-length H 

matrix. The attained matrix has a constant degree of 3 for each symbol node. By using 

our proposed algorithm, we construct a code 1C  for girth 1 8g   whose exponent 

matrix 1H  is of size 3 7  as shown in Table 4-2. To expand 1H , we first select 2s  . 

Then, we carefully select choose 1 29L   and 2 7L   in such a way to maintain lower 

bound on CPM, for 1 8g  , 2 6g  . We found 1 29L  and 2 7L  respectively 
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according to Table 4-3. Hence after combining, CPM size of the E(H) matrix will be 

of size 1 2 203L L L   . Similarly, we construct the 3 7  exponent matrix 2H  using 

our proposed algorithm for 1 6g  as shown in Table 4-4. Then, we obtain E(H)  by 

combining 1H  and 2H  via CRT as shown in Table 4-5. Finally, we replace each 

indices ija  of E(H)  with
ijaI . The obtained H matrix gives a QC-LDPC code with 

girth 8g  . 

Figure 4-2 illustrates the BER simulated performance of the proposed QC-

LDPC-CRT (1421,609) code, which is compared with some well-known existing 

LDPC codes, where FAN array-CRT is the code from shortened array codes based on 

CRT as in [73], and QC-LDPC-PEG are PEG based QC-LDPC codes as described in 

[8]. Noticeably, the proposed algorithm performs improved than the other algorithms 

when the 0/bE N  ratio is high. 

 

 
Figure 4-2: BER performance comparison 

 

We also compare the BER performance of different methods as a function of 

the number of iterations at 0/ 3bE N   dB as in Figure 4-2. It is apparent that the 

proposed algorithm converges faster than other algorithms. Furthermore, we also 

examine the local girth of each algorithm as shown in Figure 4-3. Clearly, the 

proposed algorithm offers the girth in the range of 8, if compared to other algorithms.  
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However, the girth is not better than QC-LDPC-PEG codes, as QC-LDPC PEG based 

codes are most greedy and can achieve girth up to 12. Our proposed CRT based QC-

LDPC code can have higher girth by carefully selections of CPMs and block-length 

size as in Table 4-3. 

 
Figure 4-3: BER performance as a function of the number of iterations for different H 

matrices at SNR = 3 dB 

 

 
Figure 4-4: Girth comparison of proposed-CRT code 

 

Example-4.2: In this example, we study the proposed method based on the 

component matrices combined with CRT to construct a large block-length H matrix 

for different code rate. The obtained matrix has a uniform degree of 3 for each symbol 

node. By using our proposed algorithm, we first construct a code 1C  for girth 1 8g   

whose exponent matrix 1H  is of size 3 5  as shown in Table 4-6. To expand 1H , we 
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first select 2s  . Then, we carefully choose 1 17L   and 2 7L   in such a way to 

maintain lower bound on CPM, for 1 8g  , 1 6g   we found 1 17L  and 2 7L 

respectively according to Table 4-3. Hence after combining, CPM size of E(H)

matrix will be 1 2 119L L L   . Similarly, we construct the 3 5  exponent matrix 2H  

using our proposed algorithm for 1 6g   as shown in Table 4-7. Then, we obtain 

E(H)  by combining 1H  and 2H  via CRT as shown in Table 4-8. Finally, we replace 

each entities ija  of E(H)  with
ijaI . The obtained H matrix gives a QC-LDPC code 

with girth 8g  . 

 

Table 4-6: A designed 1H  index matrix 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

1H  1 2 3 4 5 

1 0 1 2 3 4 

2 4 6 10 10 0 

3 0 3 0 9 0 

 

Table 4-7: A designed 2H  index matrix 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

2H  1 2 3 4 5 

1 0 1 2 3 4 

2 1 0 0 3 0 

3 0 2 1 0 0 
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Table 4-8: A combined exponent matrix E(H)  via CRT 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

E(H)  1 2 3 4 5 

1 0 1 2 3 4 

2 106 91 112 10 0 

3 0 37 85 77 0 

 

 
Figure 4-5: BER performance comparison 

 

 

Figure 4-6: BER performance as a function of the number of iterations for different H 

matrices at SNR = 3 dB. 

 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

-5

10
-4

10
-3

10
-2

10
-1

Singnal to Noise per bit Eb/N0 (dB)

B
E

R

 

 

FAN Array-CRT (655, 399) code

QC-LDPC-PEG (595, 357) code

Proposed QC-LDPC-CRT (595, 357) code

1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Number of iterations

B
E

R

 

 

FAN Array-CRT (655, 399) code

QC-LDPC-PEG (595, 357) code

Proposed QC-LDPC-CRT (595, 357) code



 

 

59 

 
Figure 4-7: Girth comparison of proposed-CRT code 

 

Example-4.3: In this example, we study the proposed method based on the 

component matrices combined with CRT to construct a large block-length H matrix.  

The obtained matrix has a uniform degree of 3 for each symbol node. By using our 

proposed algorithm, we construct a code 1C  for girth 1 8g   whose exponent matrix 

1H  is of size 3 9  as shown in Table 4-9. To expand 1H , first select 2s  . Then, we 

carefully choose 1 47L   and 2 7L   in such a way to maintain lower bound on CPM, 

for 1 8g  , 1 6g   we found 1 47L  and 2 7L 
 
respectively according to Table 4-3. 

Hence after combining, CPM size of E(H) matrix will be 1 2 517L L L   . Similarly, 

we construct the 3 9  exponent matrix 2H  using our proposed algorithm for 1 6g as 

shown in Table 4-10. Then, we obtain E(H)  by combining 1H  and 2H  via CRT as 

shown in Table 4-11. Finally, we replace each entities ija  of E(H)  with
ijaI . The 

obtained H matrix gives a QC-LDPC code with girth 8g  . 
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Table 4-9: A designed 1H  index matrix 

 

 

Table 4-10: A designed 2H  index matrix 

 

Table 4-11: A combined exponent matrix, E(H)  via CRT 

 

B
lo
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-ro

w
 in

d
ex

 

Block-column index 

1H  1 2 3 4 5 6 7 8 9 

1 0 1 2 3 4 5 6 7 8 

2 8 10 0 16 1 19 0 23 0 

3 0 3 12 6 15 1 21 0 0 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

2H  1 2 3 4 5 6 7 8 9 

1 0 1 2 3 4 5 6 7 8 

2 1 0 0 3 6 2 0 2 0 

3 0 2 1 0 0 0 4 9 0 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

E(H)  1 2 3 4 5 6 7 8 9 

1 0 1 2 3 4 5 6 7 8 

2 243 198 0 157 424 442 0 211 0 

3 0 332 12 429 297 330 440 141 0 
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Figure 4-8: BER performance comparison 

 

 
Figure 4-9: BER performance as a function of the number of iterations for different H 

matrices at SNR = 3 dB 

 

 
Figure 4-10: Girth comparison of proposed-CRT code 
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 4.4.2 Girth 10 codes 

Example-4.4: In this example, we study the proposed method based on the 

component matrices combined with CRT to construct a large block-length H matrix.  

The obtained matrix has a uniform degree of 3 for each symbol node.  By using our 

proposed algorithm, we construct a code 1C  for girth 1 10g   whose exponent matrix 

1H  is of size 3 5  as shown in Table 4-12. To expand 1H , we first select 2s  . Then, 

we carefully choose 1 83L   and 2 7L   in such a way to maintain lower bound on 

CPM, for 1 10g  , 1 6g   we found 1 83L  and 2 7L  respectively according to Table 

4-3. Hence after combining, CPM size of E(H) matrix will be 1 2 581L L L   . 

Similarly, we construct the 3 5  exponent matrix 2H  using our proposed algorithm 

for 1 6g  as shown in Table 4-13. Then, we obtain E(H)  by combining 1H  and 2H  

via CRT as shown in Table 4-14. Finally, we replace each entities ija  of E(H)  with

ijaI . The obtained H matrix gives a QC-LDPC code with girth 10g  . 

 

Table 4-12: A designed 1H  index matrix 
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Block-column index 

1H  1 2 3 4 5 

1 0 1 2 3 4 

2 14 11 39 66 0 

3 3 19 8 34 0 
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Table 4-13: A designed 2H  index matrix 

 

Table 4-14: A combined exponent matrix, E(H)  via CRT 

 

 
Figure 4-11: BER performance comparison 
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Block-column index 

2H  1 2 3 4 5 

1 0 1 2 3 4 

2 1 0 0 3 0 

3 0 2 1 0 0 

B
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Block-column index 

E(H)  1 2 3 4 5 

1 0 1 2 3 4 

2 512 343 371 66 0 

3 252 268 8 532 0 



 

 

64 

 
Figure 4-12: BER performance as a function of the number of iterations for different 

H matrices at SNR = 2.8 dB 

 

 
Figure 4-13: Girth comparison of proposed-CRT codes 
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matrix will be 1 2 1673L L L   . Similarly, we construct the 3 7  exponent matrix 

2H  using our proposed algorithm for 1 6g  as shown in Table 4-16. Then, we obtain 

E(H)  by combining 1H  and 2H  via CRT as shown in Table 4-17. Finally, we replace 

each entities ija  of E(H)  with
ijaI . The obtained H matrix gives a QC-LDPC code 

with girth 10g  . 

 

Table 4-15: A designed 1H  index matrix 
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Block-column index 

1H  1 2 3 4 5 6 7 

1 0 1 2 3 4 5 6 

2 0 3 7 55 78 74 181 

3 0 0 10 34 133 47 97 

 

Table 4-16: A designed 2H index matrix 

B
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w
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d
ex

 
Block-column index 

2H  1 2 3 4 5 6 7 

1 0 1 2 3 4 5 6 

2 0 4 1 1 5 2 1 

3 0 2 4 2 2 1 3 

 

Table 4-17: A combined exponent matrix, E(H)  via CRT 
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Block-column index 

E(H)  1 2 3 4 5 6 7 

1 0 1 2 3 4 5 6 

2 0 242 1212 533 1034 1269 659 

3 0 478 249 751 611 764 1053 
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Figure 4-14: BER performance comparison 

 

 
Figure 4-15: BER performance as a function of the number of iterations for different 

H matrices at SNR=2.8 dB 

 

 
Figure 4-16: Girth comparison of proposed-CRT code 
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 4.4.3 Girth 12 codes 

Example-4.6: In this example, we study the proposed method based on the 

component matrices combined with CRT to construct a large block-length H matrix.  

The obtained matrix has a uniform degree of 3 for each symbol node.  By using our 

proposed algorithm, we construct a code 1C  for girth 1 12g   whose exponent matrix 

1H  is of size 3 5  as shown in Table 4-18. To expand 1H , we first select 2s .  Then, 

we carefully choose 1 223L   and 2 7L   in such a way to maintain lower bound on 

CPM, for 1 12g  , 1 6g   we found 1 223L  and 2 7L  respectively according to Table 

4-3. Hence after combining, CPM size of E(H) matrix will be 1 2 1561L L L   . 

Similarly, we construct the 3 5  exponent matrix 2H  using our proposed algorithm 

for 1 6g  as shown in Table 4-19. Then, we obtain E(H)  by combining 1H  and 2H  

via CRT as shown in Table 4-20. Finally, we replace each entities ija  of E(H)  with
ijaI

. The obtained H matrix gives a QC-LDPC code with girth 12g  . 

 

Table 4-18 A designed 1H  index matrix 
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Block-column index 

1H  1 2 3 4 5 

1 0 1 2 3 4 

2 0 3 17 55 78 

3 0 0 10 34 133 
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Table 4-19: A designed 2H  index matrix 

 

Table 4-20: A combined exponent matrix, E(H)  via CRT 

 

 
Figure 4-17: BER performance comparison 
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Block-column index 

2H  1 2 3 4 5 

1 0 1 2 3 4 

2 1 0 0 3 0 

3 0 2 1 0 0 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

E(H)  1 2 3 4 5 

1 0 1 2 3 4 

2 1338 672 112 724 301 

3 0 1115 85 1372 133 
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Figure 4-18: BER performance as a function of the number of iterations for different 

H matrices at SNR = 2.8 dB 

 

 
Figure 4-19: Girth comparison of proposed-CRT code 

 

4.5 Properties of the proposed codes 

The component QC-LDPC codes which are constructed by using the proposed 

method when combined with CRT to construct large block-length H matrix have good 

attributes such as large girth, less complexity, good storage, flexible code rates and 

flexible code lengths. Details of some properties mentioned are discussed in the 

following section. Furthermore the proposed-CRT LDPC codes have lower 

computational complexity and are much more practical as compared to those of PEG 

algorithm based LDPC codes. 
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 4.5.1 Girth 

It is one of the well-known parameters determining the performance of 

decoding. In iterative belief propagation decoding, the algorithm converges to the 

most optimal solution, if the H matrix is free of lower length cycles.  Cycles of 4 and 

6 leads to undesirable decoded data. When short cycles exist in H matrix, the 

algorithm breaks down very soon.  Therefore, the H matrix with large girth is 

particularly taken in to interest. Our algorithm validates as in (4.4), the constructed H 

matrix having girth 1 2max{ , }g g g  as shown in Figure 4-4. 

 

 4.5.2 Complexity 

Let us analyze the computational complexity of proposed-CRT algorithms and 

the storage uses of the proposed-CRT method. 

 

 4.5.2.1 Computational Complexity 

Computational complexity of the proposed-CRT algorithm principally 

depends on algorithms exploration time to obtain exponent matrix indices. 

Exploration time depends on row weight and column weight of desired exponent 

matrix. In the H matrix, the row and column weights are small numbers irrespective 

of code length. Basically, we can consider the computational complexity of our 

proposed codes into two categories, namely the first one for obtaining the exponent 

matrix and the other for combining exponent matrices by using CRT algorithm to 

obtain the H matrix for large block-length QC-LDPC codes. However, both 

categories depend on the length of the codeword, but the complexity of the combining 

procedure does not grow much with the size of H matrix. For the first category, the 

complexity of acquiring the exponent matrix relies on the value of CPM size.  

Specifically, the complexity of the search algorithm increases as the value of the CPM 

size increases [53, 61, 64, 67]. Then, we compare the complexity of different methods 

based on the CPM size as shown in Table 4-21. It is apparent that the proposed 

method requires a smaller CPM size (with a better BER performance) than the other 

methods as shown in Section 4.4. In addition, once we obtained the exponent codes, 

the importance of the second category comes into a play. For the second category, 
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from the CRT formulas as described in Section 4.2 and 4.3, we can see that each CRT 

computation needs only ( 1)s   additions, 2( 1)s   multiplications and 1 modulo 

operation. Some of the values like , bL L and bA can be computed prior to the 

processing algorithm and 1 2, , , sL L L  should be selected optimally as per Table 4-3. 

Hence, the complexity of each CRT computation can be negligible if compared to the 

complexity of designing the parity-check component codes. 

 

Table 4-21: CPM size comparison 

Block-column size (k) Proposed Method 

1 6g   1 8g   
 

Array codes 

1 6g   1 8g   
 

QC-PEG codes 

1 6g   1 8g   
 

5 

7 

9 

11 
 

7 17 

7 29 

11 47 

11 61 
 

7 19 

7 31 

11 59 

11 83 
 

7 17 

7 29 

11 47 

11 61 
 

 

 On the other hand, the computational complexity of QC-PEG based codes 

mainly depends upon the computation load of finding a tree and the elements in sets 

of
j

l

sN  or 
j

l

sN  , which also depend on the column weight and row weight as well as on 

depth l. Usually, a practical regular H matrix has a small column weight and a small row 

weight, irrespective of the code length, and thus the complexity lies on depth l, which grows 

logarithmically [9, 49]. Furthermore, the computation complexity on the worst case of the 

PEG based QC-LDPC codes are scaled as ( )nmΟ . For a fair comparison, we choose the 

same CPM size as used in our proposed code. It should be noted that as in Section 4.4, for 

the same CPM size, our proposed code has a better BER performance than the QC-PEG 

LPDC code as in Section 4.4. 

 

 4.5.3 Storage Usage 

In a general class of an H matrix, row and column indices of ‘1’ entries can be 

pre-defined and stored in the shift registers for practical applications. Therefore, our 

proposed-CRT codes method have the significant advantage of storing a smaller 
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values matrix of less CPM size, as shown 1H  and 2H in our examples, discussed in 

Section 4.4, which has a minimum number of CPM size with ensuring large girth. 

This may reduce the storage space of the decoder for the proposed-CRT LDPC codes. 

Moreover, the scope of this method can be expanded in hardware implementation as 

well [74]. 
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Chapter 5: Proposed Explicit QC-LDPC codes 

 

 
 
 

In this chapter, we introduces two explicit methods for the construction of QC-

LDPC codes. The first proposed novel method presents a simple, less computational 

complexity method for constructing exponent matrix  3, K  of girth 8, 10 and 12 of 

QC-LDPC based on generation of base matrix. The simulations are shown in 

comparison with some existing appreciable work.  

 The second proposed method by the autor deals with a simple, less 

computational complexity method for constructing exponent matrix  3, K  having 

girth at least 8 of QC-LDPC codes based on subtraction method. The construction of 

code deals with the generation of exponent matrix by three formulas. This method is 

flexible for any block-column length K. The codes with girth 8 are constructed with 

circulant permutation matrix (CPM) size  2, 2, 2,, , . 1r r kP  max  a aa      . The 

details regarding each newly proposed methods is described in the subsequent 

sections and for illustration purpose each method is also explained with the help of 

examples. 

 

5.1 A base matrix method to construct column weight 3 Quasi-Cyclic LDPC 

codes with high girth  

 This section deals with the construction of exponent or shifting matrix of QC-

LDPC codes by base matrix method. Through this method we are able to reduce time 

complexity for generating H matrix by a good amount. The construction of code deals 

with generation of base matrix by a simple algorithm and element wise element 

method for girth 8, while only element wise element method for girth 10 and 12. 

These methods are flexible for block-column length K. 
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 5.1.1 Necessary conditions: 

 There are three easy rules for the generation of base matrix as follow: 

1. The first row and the first column of an exponent matrix both are fixed to be a 

zero vector. 

2. It is mandatory that the 2
nd

 row will always be in the ascending order. 

3. Repetitions of indices are not allowed, i.e. at different indices we will have 

different values. 

 

 5.1.2 Base matrix generation for girth 8  

 Let B be a base matrix of girth 8 then its CPM size P will be 

 21 22, 2  max , ,..., 2kP a  a a      for any 1)  (0k  k  K   . For the generation of 

 3, K matrix of girth 8, where K  is the block-column length. We will follow a simple 

algorithm as follows: 

 The 2
nd

 row of the matrix is constructed according to this algorithm: 

 Step 1: For  3, K exponent matrix, s will lie between1 3s  . 

 Step 2: We assume that t  will be the set of odd number’s and for the 

construction in our example as in section 5.1.5 for constructing ( )E H having size

 3,9 , the required limit of t is up to 9 but for the further increase of block-columns of 

( )E H , we can move to any size of t i.e. {1,3,5,7,..., }t x , where x can be any number 

9x  . 

 Therefore t  lies between 1 t x   and the algorithm goes as follows, keep 

noted whenever there is a repetition of index due to any value of s we will increase s, 

keeping the value of t as it is. 

 Let a be an empty vector, which will store the indices of the 2
nd

 row, after the 

working of algorithm i.e. indices after 0 value. 

 

 5.1.3 Algorithm for generating  3, K  exponent matrix of girth 8 

     a=[ ], 

       for 1: 2 :t x  do 
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             for 1: 3s   do 

                  ( )((2 ) ) 1s

2ndrow t ×  E(H)  

                       [a a 2 ]ndrowE(H)  

// To append all elements in “a” and to have 2
nd

 row of base matrix as “a” // 

                       If 2( ~ )ndrow aE(H)   

                       break; 

                   end 

             end 

       end 

 

 By using our algorithm, we will first construct  3,5  base matrix and it will be 

used as a base matrix for  3,6  exponent matrix and similarly for  3,7  exponent 

matrix  3,6  will act as a base matrix and so on. By our algorithm we have 

constructed 2
nd

 row of  3,5  base matrix, after that we will find our 3
rd

 row by 

element wise element method as explained. Now the thing is from which index we 

have to start, the answer is very simple for  3, K exponent matrix, we will start 

substituting number from 1 to CPM size. By our algorithm the indices in 2
nd

 row for

 3, K , it’s {maximum value (2
nd

 row) +2} will be the size of CPM for girth 8 as 

explained in necessary condition. 

 By element wise element method, we mean that we will first put an index at 

2
nd

 position of 3
rd

 row leading to obtain a sub matrix of 3 2  and will check it’s girth 

to be 8 and then we will move on to 3
rd

 index of 3
rd

 row for 3 3  sub matrix, by same 

process we will check its girth and then follow same procedure till 3 5  base matrix. 

 After generating 3 5  base matrix, our further work will be very time 

convenient and less complex. By time efficient we really mean our method to work in 

seconds because the last index of second row for generating consecutive matrix can 

be obtained by our algorithm. Further work is to just find the last element of 3
rd

 row 

by element wise element method. Hence it is a very time efficient algorithm, as it can 

be seen in Section 5.1.5 in example 5.1. 
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 5.1.4 Base matrix generation for girth 10 and 12 

 For the generation of base matrix of girth 10 and 12 we will follow element 

wise element method with same rules, as in necessary conditions 5.1.1. Let us assume 

that CPM size is to be 30P K  . As the first row and the first column is fixed to be a 

zero vector so we will first generate the 2
nd

 row by element wise element method i.e. 

2
nd

 element of 2
nd

 row which leads to a 2 2 sub matrix. After that we will check its 

girth and will then move to 3
rd

 element i.e. to 2 3 sub matrix so on up to 2 5 sub 

matrix, by doing this we will find the 2
nd

 row for the base matrix of size  3,5

exponent matrix. 

 After finding 2
nd

 row we will apply the above mentioned procedure for the 

generation of 3
rd

 row i.e. firstly construct 3 2  sub matrix and then will check its 

girth, after that 3 3  sub matrix till 3 5  base matrix. By going through this method 

we will fix our second row and make all the changes in the third row so as to get the 

base matrix. 

 Suppose at any point (after getting 2
nd

 or 3
rd

 index of 3
rd

 row) we are not 

getting any index in 3
rd

 row by such procedure for desired girth then we will delete 

that pair of preceding indices and will start the same method from beginning of 3
rd

 

row from the original set of indices. 

 Since in the beginning we have assumed our P size to be 30P K  , so to get 

optimized CPM size, we will now decrease its value until we get the desire girth of 

base matrix. It can be seen in example 2 of section 5.1.5. 

 Based on our algorithm, all we have to work is on generation of base matrix 

for girth 8, 10 and 12. For constructing base matrix we have to follow the necessary 

conditions, algorithm and element wise element method for girth 8, while for girth 10 

and 12 we just have to follow element wise element method with the necessary 

conditions. Thus we will reduce the computational complexity of the program. 

 

 5.1.5 Simulation and Results  

 This section deals with the examples of the above mentioned procedure and 

also deals with the bit error rate (BER) performance of our algorithm with some well-

known existing methods. For computing the BER performance we have considered a 
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m n  size H  matrix, where n is the length of a codeword, and m is the number of 

parity bits. The code rate R will be (1 / )m n . The BER plot based on AWGN channel 

model, in which a binary input sequence  0,1ka   of length n m bits is encoded and 

is mapped to n bit coded sequence  1kb   . After mapping, the received sequence is 

ky which is given by k k ky b n  , where kn stands for AWGN with variance 2  and 

zero mean. A LDPC decoder is used at the receiver end to decode received sequence 

ky  with 50 iterations by using message passing algorithm. 

 A minimum of 10000 data packets are used to compute each BER point. 

Signal to noise ratio (SNR) is defined in decibel as dB. The Mathematical formula for 

SNR is defined as- 

10 2

1
SNR 10log

2R

 
  

 
                                             (5.1) 

 Example 5.1: By using our algorithm, the exponent matrix E(H)  for the case 

of 9K   having girth 8 is defined by 

0 0 0 0 0 0 0 0 0

0 1 3 7 11 23 39 55 71

0 2 6 5 9 13 15 17 19

 
 


 
  

E(H)

 

 

Table 5-1: Base matrix of size (3,5)  for girth 8 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

B 1 2 3 4 5 

1 0 0 0 0 0 

2 0 1 3 7 11 

3 0 2 6 5 9 

 

 The base matrix is generated by finding the numbers of 2
nd

 row by our 

algorithm as in Table 5-1. Since the maximum index of 2
nd

 row is 71, so the size of 

CPM  71  2  73P    for girth 8. The  3,9  sub matrix will act as a base matrix 

for  3,10  matrix, we just need to calculate 10
th

 index of 2
nd

 row by our algorithm 

and regarding the 10
th

 index of 3
rd

 row, and it can be achieved by substituting 
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numbers from 1 to CPM size P. By taking a loop from 1 to size P and then 

substituting it we can easily get the desired index which is 87 (i.e. last element of 2
nd

 

row) and 20 (i.e. last element of 3
rd

 row). Thus after getting our base matrix, we just 

have to find one element that too the last element (i.e. K
th

 index of 3
rd

 row) of  3, K

matrix. Thus all preceding matrix act as a base matrix for the consecutive exponent 

matrix. Hence by doing this, we are reducing computational complexity of 

constructing H matrix. The comparison of CPM’s size of our method with Zhang [75] 

as shown in Table 5-2, where construction I refer to method II of Zhang [75] and 

construction II refers to our proposed method. 

 

Table 5-2: CPM’s Size compare for girth 8 

K 5 6 7 8 9 10 11 12 

I 19 27 37 48 61 75 91 108 

II 13 25 41 57 73 89 105 121 
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Figure 5-1: BER performance comparison 
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Figure 5-2: BER performance as a function of the number of iterations for different H 
matrices at SNR = 4 dB 

 

 Example 5.2: By using the element wise element method the E(H) for the case 

of 7K  having girth 10 is obtained as 

0 0 0 0 0 0 0

0 1 3 7 12 34 73

0 18 20 24 65 55 103

 
 


 
  

E(H)

 

Table 5-3: E(H) for  3,6  of girth 10 

 

 Hence, it is clearly seen that all the entries of  3,7  E(H)  are almost same as 

for its base matrix  3,6  as in Table 5-3, we just need to find the 7
th

 index of 2
nd

 and 

3
rd

 row by our element wise element method. The original base matrix of  3,5  for 

girth 10 was achieved at CPM size 75P   where P, is as follow in Table 5-4. 

 

 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index  

B 1 2 3 4 5 6 

1 0 0 0 0 0 0 

2 0 1 3 7 12 34 

3 0 18 20 24 65 51 
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Table 5-4: Base matrix  3,5  of girth 10 

B
lo

ck
-ro

w
 in

d
ex

 

Block-column index 

B 1 2 3 4 5 

1 0 0 0 0 0 

2 0 1 3 7 12 

3 0 18 20 24 65 

 

Let us assume a case in the 3
rd

 row, like we are at the 4
th

 column index, we 

have found previous indices but we are not able to find any value at 4
th

 index, so in 

that case we will delete all the indices before 4
th

 index i.e. from 1 to P and will start 

the process from beginning for the 3
rd

 row. The 3 6  base matrix for the above 

example, which was achieved at CPM size 91P  . 

We also compares BER performance as illustrates in Figure 5-1 of the 

proposed code for different code rates of one third and half code rate respectively, 

which is compared with some well-known existing QC-LDPC codes such as 

shortened array codes as in [58] and QC-LDPC codes as described in [75]. Clearly, 

the proposed algorithm performs better than other algorithms when the SNR is high 

with reduced construction complexity. 

Furthermore, we also compare the BER performance of different schemes as a 

function of the number of iterations at SNR=4 dB as shown in Figure 5-2. It is 

apparent that the proposed algorithm converges faster than other compared algorithms 

at around 50 iterations. 

 

5.2 Subtraction method for girth 8 QC-LDPC codes 

 This section deals with the construction of exponent or shifting matrix of QC-

LDPC codes by subtraction based method. By using this method we are able to reduce 

time complexity for generating H matrix by a good amount. 

 

 5.2.1 Essential conditions: 

 There are three easy rules for the generation of proposed base matrix as follow: 
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1. The first row and the first column of an exponent matrix both are fixed to be a 

zero vector. 

2. It is mandatory that the 2
nd

 row will always be in the ascending order. 

3. Repetitions of indices are not allowed, i.e. at different indices we will have 

different values. 

 For simplicity, we demonstrate 3 K  exponent matrix of non-negative 

integers is expressed as  

1,1 1, 1

2,1 2. 1

0 0 0

0

0

K

K

a a

a a





 
 

  
  

E(H)                                      (5.2) 

 

 To obtain high girth, we should take care of indices in (2) in order to avoid 

presence of small cycle. Before exploring more towards proposed construction, we 

start with following lemma 

 Lemma 5.1: For any  1 1l l K    and  0 1k k l    

2, 2, 1, 1,l k l kaa a a  
.
 

  Proof: Since- 

2, 2, 1 1, 1 1, 1     ll l Ka a aa                                            (5.3)  

 and also                                           1, 1 1, 1 1, 1, 1   K l l la a a a                       (5.4)  

Therefore from (5.3) and (5.4) we have 2, 2, 1, 1,   l k l ka a a a  
. 

 

 5.2.2 Formula for constructing matrix of girth 8 

Since we have fixed our first row and first column to be a zero vector as in (2), 

so we have to work basically for only the 2
nd

 row and 3
rd

 row indices. To obtain the 

2
nd

 row of our exponent matrix, we replace 1,  la l , which means 1, 1  1a  , 1, 2  1a   

and so on. For attaining the 3
rd

 row, we have to apply the below three formulas so as 

to get the desired row

   

  

2,1

2,

2,0 1,1 1,1 1,2 1, 1 1,0

2, 2 1, 1 1,1 1,2 1, ,11 1 1

, ..., –

, ...,

,

, –

K

K K KK

 a  a  max  a a   a

 a  a  max  a a  

a a

aa a



  

  

  
               (5.5) 
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 The above two formulas will generate the first non-zero element and the last 

non-zero element of the 3
rd

 row. In between, the indices can be calculated by the 

formula as follows for t where (2 – 2)t K  - 

  2, 2, 1 1, 1,1 1,2 1, 1 1, a  a   a ,  a ......  –  at t t K ta max a                   (5.6) 

By using the subtraction method we are able to reduce the computational 

complexity by a very good amount, since we have already fixed our 1
st
 row and 1

st
 

column, so the other entries in 2
nd

 row are sequence wise indices from 1 onwards. In 

the 3
rd

 row the elements can be generated by simple mathematical formulas as in (5.5) 

and (5.6), which takes less than a second to execute, hence our computational 

complexity is reduced by a very good amount. 

 

 Theorem 5.1: Let ( )E H  be a base matrix. For ( )E H to be of girth 8 it’s CPM 

size  2, 2, 2,, , , 1r r kP  max  a aa       for any  0 1k k l   . 

 Proof: For simplicity we will write ( )E H to be B . We will use induction 

method to justify our proof and the absence of 4 and 6 cycles. To prove it, suppose 

  P    then 4 cycles cannot exist according to definition of ( )E H  (by using 

theorem 2.1 [7] mod equation will become a normal equation). Now to prove that 

cycle 6 is also absent we will assume that  1l B be the current setting of exponent 

matrix having 0
th

 and 1
st
 row and the first  1l   elements of the 2

nd
 row. The new 

setting is assumed to be  lB  which is obtained by adding a new entry 2,( )ka  of 2
nd

 

row to be  1l B . We will prove that no 6 cycle exist in  1l B . The proof is by 

induction method so we will assume that there exists a 6 cycle in  lB , so if this exist 

then there are only two patterns of cycle 6 as in [80]. Let us denotes u, v and w be the 

three columns  0 1,0 1, ,u P v u u v v w         respectively which form a 6-

cycle, as per in Theorem 1 [58] it is impossible to have 6-cycle if

 2, 2, 2,, , , 1r r kP  max  a aa      . 
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 5.2.3 Simulation and results 

 We choose same constraints as we described in Section 5.1.5 

 Example 5.3: By using the subtraction method proposed in Section 5.2.2, the 

exponent matrix B for block-column length of 9K   having girth 8 is expressed as- 

 

0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8

0 9 17 25 34 42 50 58 73

 
 
 
  

B

 

 
The 1

st
 row and 1

st
 column of B matrix filled as per our defined necessary 

conditions in Section 5.2.1. To obtain remaining indices of 2
nd

 row we follow Section 

III-B. After obtaining indices of 2
nd

 row we move for the indices of the 3
rd

 row, in 

order to get first non-zero element of the 3
rd

 row which is   9 0 1 8 0    and the 

last non-zero element of 3
rd

 row is   73 58 8 8 1    according to (5.5), in between 

indices can be obtained by third formula as in (5.6), for example 
2,3 25a   is basically 

 (17 3 8 5)3 2     according to B matrix and so on. Therefore we can obtain the 

rest of the indices of the 3
rd

 row. Since the maximum index of the 3
rd

 row is 73 so 

according to the Theorem 5.1, the size of CPM should be   73  1  74P     for girth 

8. In this way, we get our desired exponent matrix, hence H matrix, which is having 

reduced computational time complexity by a good amount. 

The Table 3 compares the CPM size of Construction I (refer to the method I of 

Zhang [75]) and Construction II based on our proposed algorithm. We can obtain 

better BER performance while losing lower bound as compared to construction I; 

still, there exists a trade-off between performance and complexity. 

 

Table 5-5: CPM size comparison of the proposed algorithm 

K  5 6 7 8 9 10 11 12 

I 19 27 37 48 61 75 91 108 

II 21 31 43 57 74 91 111 133 
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We also compares BER performance as illustrates in Figure 5-3 of the 

proposed code for different code rates of one third and half code rate respectively, 

which is compared with some well-known existing QC-LDPC codes such as 

shortened array codes as in [58] and QC-LDPC codes as described in [75]. 

 

 

Figure 5-3: BER performance comparisons 

 

 Clearly, the proposed algorithm performs better than other algorithms when 

the SNR is high with reduced construction complexity. 

Furthermore, we also compare the BER performance of different schemes as a 

function of the number of iterations at SNR=3 dB as shown in Figure 5-4. It is 

apparent that the proposed algorithm converges faster than other compared algorithms 

at around 50 iterations. Our simulation results can be useful to construct good QC-

LDPC codes in less computation time with comparable performance to other 

applicable existing work in the domain of QC-LDPC codes. 
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Figure 5-4: BER performance as a function of the number of iterations for different H 

matrices 
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Chapter 6: Conclusion and Future work 

 

 
 
 
6.1 Conclusion 

 The main subject of this thesis is to construct a novel QC-LDPC code. We 

investigated the problems associated with designing algebraic QC-LDPC codes. The 

proposed codes have definite benefits over traditional randomly constructed codes 

such as QC-PEG based LDPC codes, particularly when considering medium to large 

block-length codes. In addition, proposed codes design have guaranteed girth 

properties, design parameters flexibilities of design parameters, ease of 

implementation and reduced memory storage requirements as CPM size is less. In 

Chapter 2 and 3, the LDPC codes and various QC-LDPC codes with their design 

parameters properties were studied respectively. One of the most vital parameters that 

affect the performance of finite length codes is the girth, which is emphasized in the 

methods presented. One of the proposed method as in Chapter 4 applies concept of 

CRT for constructing medium to large QC-LDPC codes, which ensures less 

computational complexity. This design also offers guaranteed girth of at least 8, in all 

the cases. 

 Three main QC-LDPC code construction methods were proposed based on 

search criteria with CRT, base matrix generation method and subtraction based 

method. In the first method, we constructed the H matrix of QC-LDPC codes that 

aims for selecting the indices of the exponent matrix with a maximized local girth for 

column weight 3, by sequentially assigning proper sub-matrix for each column of 

E(H)  matrix. A class of structured regular QC-LDPC codes has been constructed by 

using a CRT algorithm. This method can also be generalized to any number of 

column weights. Simulation results show that the proposed code outperforms the 

well-known algorithms as in [8, 73] in certain cases. Any general case of large block-

length LDPC codes with good performance can be constructed using our proposed 

method. It fulfills almost all the parameters required for good LDPC codes and 
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suitable for practical applications in terms of cost efficiency. Nevertheless, the author 

found that the proposed algorithm might require higher computational search time 

than some existing algorithms. Consequently, one should trade-off between 

performance and complexity when designing the QC-LDPC codes. 

 In the second method, we presented a simple, less time consuming 

construction method for H matrix, having girth 8, 10 and 12. The proposed method is 

based on first obtaining the base matrix, which leads to generate consecutive block-

column sub matrices for desired E(H)  size. The author obtained a class of QC-LPDC 

codes as explained in Chapter 5. The performance of proposed QC-LDPC codes is 

simulated in terms of BER and number of iterations, which is comparable to the 

recent work as in [75]. We have also compared our obtained CPM size for block-

column length up to 12 with well-known existing work. The results are helpful in 

construction of binary regular QC-LDPC codes. 

 In the third method, we presented a simple, time efficient construction method 

for H matrix, the construction of QC-LDPC codes having girth 8. The choice of 

block-column length K is kept flexible and the method was able to reduce the 

computational complexity of the H matrix by a decent amount. The CPM size P can 

be obtained by adding one to maximum indices of the 2
nd

 row of E(H)  matrix. We 

obtained a class of CPM-QC-LPDC codes having girth 8 as explained in our example 

in Chapter 5. The results are helpful in the construction of binary QC-LDPC codes. 

 In conclusion, we suggest that the first proposed method can be useful for 

applications where high girth and large block-length codewords are required; it also 

suits for the hardware friendly applications as it leads to less CPM size requirement. 

However, the second proposed method can be useful for medium block-length 

codewords with girth up to 12, and lastly, the subtraction based method is good for 

applications that need medium to large block-length QC-LDPC codes with girth 8. 

 Structured QC-LDPC codes have known properties and performance as 

compared to the randomly constructed QC based algorithm for an example QC-PEG 

LDPC code. It represents a large family free from 4-cycle and regular or irregular 

LDPC codes with simple linear-time encoding. The investigation suggested that 

considering the coefficient of the exponent matrices by maintaining the QC property 
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is the best solution to construct H matrix. The proposed codes have column weight 3, 

which is widely adopted in current standards such as IEEE 802.11n and DVB S2/T2. 

This thesis has addressed extension of search based codes, which can be constructed 

algebraically and shows these codes can perform superior to already proven structured 

QC-LDPC codes along with certain random based codes such as QC-PEG LDPC 

codes. Although random constructions do have the advantage of more flexibilities and 

comparably good BER performance despite of deterministic structure. 

 

 6.2 Future directions (Non-Binary LDPC Codes) 

 Interestingly, there are many more features of the LDPC codes over GF(q) of 

continuous research. There are still various questions that need to be answered in 

terms of encoder complexity issues, decoder design and performance analysis point of 

view and problems are still left unsolved. In so far work, randomly chosen entities of 

H matrix are considered but it would be possible to further optimize the coefficient 

for better results in higher order of q. Furthermore, deployment of the encoder and 

decoder algorithms for LDPC codes over GF(q) are interesting domain that has only 

started to be explored in the recent years. 

 For small to moderate block length and higher code rate, a non-binary LDPC 

code normally provides better performance than a binary LDPC and may also be 

better suited to some communications channels [76, 77] However, recent interest in 

non-binary designs such as non-binary protograph-based LDPC codes [78] may 

provide useful structures for non-binary LDPC codes. In addition, non-binary LDPC 

codes can be combined with higher order of modulation with ease. Specifically, it can 

avoid bit to symbol conversion (and vice versa) leading to a potential candidate for 

various wireless communication with higher order modulation and multi-input and 

multi-output (MIMO) technique. 

 In a broader prospective, the field of LDPC codes is huge and well-studied 

but several areas especially non-binary LDPC codes still offer challenging problems. 

There would be some features that will be of great interest in specific when applied 

to our class of QC-LDPC codes. This class of codes will benefit from enhancements 

of both QC-LDPC codes and GF(q) codes. Their implementation on the optimization 

of the values of the entries of the exponent matrix will advance with its 
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performances. Furthermore, it will take gain of improvements on the domain of QC-

LDPC codes. Moreover this research targeted to future implement proposed codes for 

non-binary QC-LDPC codes. 
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