Spark Steaming Framework for Large-Scale Multi-Stream Data
Analytics

Mr. Tanwa Sirisakdiwan

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2018
Copyright of Chulalongkorn University

FWIAINTAUNNIINY 1Y
CHuLALONGKORN UNIVERSITY

4 s s A o o a S a A '
L‘V\limﬂ’é}iﬂﬁﬂﬁﬂﬁﬁ’imN?ﬂﬁi“ﬂmiﬁlﬂiwﬁwaﬂﬁﬂiwﬂlumiﬁﬂg

UIBFUN ASANAITTN

a a e’dy I [& = Y] a] a
ondinusiiludiunilwesmsanmaurangeslsyaninnmansuniiudia
UNIFINFATABUNAADS NIATFIIAINTTUADUNUNDS
AUZAIAINTTUANAAT JWIAINTAIUMIING1ED

Unsenw 2561

'
aﬂlﬁﬂ‘ﬁﬂlﬂﬁﬁ;WTs‘Nﬂiﬂiuﬂilﬂmﬁﬂ

Thesis Title Spark Steaming Framework for Large-
Scale Multi-Stream Data Analytics

By Mr. Tanwa Sirisakdiwan
Field of Study Computer Science
Thesis Advisor Assistant Professor NATAWUT

NUPAIROJ, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn
University in Partial Fulfillment of the Requirement for the
Master of Science

__ Dean of the Faculty of
Engineering

(Professor SUPOT

TEACHAVORASINSKUN, Ph.D.)

THESIS COMMITTEE
__ Chairman
(Assistant Professor KRERK
PIROMSOPA, Ph.D.)
__ Thesis Advisor
(Assistant Professor NATAWUT
NUPAIROJ, Ph.D.)
__ Examiner
(Duangdao Wichadakul, Ph.D.)
__ External Examiner
(Kanchana Silawarawet, Ph.D.)

fun MdAnassa | wlsuneiamhiaaaiuladmiumsinnziiadaeiu
wnalng. (Spark Steaming Framework for Large-Scale
Multi-Stream Data Analytics) e.fiv5numidn : we. as.aigid vy

TwTse]

S 1 A v

Tsunsumsdszuanadoyauvuaaiulunaniiedoyan limiounu 145y

U

a 9 o

< ' a] A .
anuanluiuediauin Tasmnizludumesimave @i FInaaToya I NITUITO 3
° 9 A A ¥y o a A
Tunn lugluuuvesteyaaaiuie Naudindymuinunelagmwized1agaifym

- Ao F4
Tumsitlal¥uaznisigeinuwes Spark Structured Streaming vwidoiive
o 4 A U ~] A o
rue nyeumIauvesaihiamemsilssyianavesdoyan lumilounuuunvais
] a [o o <
aasu Tagiuanudelumsilalguazmstamsmstmuadumunzay Tagazilulaus
{0 @ { 1 (% 4
Fveldannsndsuldmsdszuranavesdoyan imiloununuuvateansulagldaig
Ao TlsunsuRerdsannsanaannuenlumsisulys msasrvden ananuiuilos
voulnauazuddgymanylufidse@nsamlumsihasvesaulumsiszuranavesdoya

d' 1 A [~
ﬂhlhlﬂhﬂuﬂullﬂﬂﬂaﬁlﬁﬁﬂ\l

a a 4 a 4 { aa
A1V INYIFATTATADUNIIADT ﬁ'l‘(’lﬁ@%@uﬁﬁ

Umsanun 2561 Awiioro o.Mf5AuIMAan

5970199021 : MAJOR COMPUTER SCIENCE

KEYWO Real-Time, Apache Spark, Multiple Stream, Data

RD: Stream Processing, Heterogeneous Data
Tanwa Sirisakdiwan : Spark Steaming Framework for
Large-Scale Multi-Stream Data Analytics. Advisor:
Asst. Prof. NATAWUT NUPAIRQOJ, Ph.D.

Real-time streaming applications with multiple
heterogeneous data streams have become increasingly popular
especially in 10T applications where huge amount of sensors
produce large amount of data in the form of data streams.
However, many issues still exist, especially in deploying and
maintaining these large amounts of data streams. Using Spark
Structured Streaming, this research introduces a Spark
Streaming framework for multiple heterogeneous data streams
which focuses on the ease of deployment and proper
scheduling. Our proposed framework is a library that allows
the deployment of multiple heterogeneous data stream
processing in a single Spark application. Our framework can
reduce deployment difficulties, coding redundancy, monitoring
difficulties, and solve the problem of inefficient job queueing
in multi-stream applications.

Field of Computer Science Student's Signature
Study:
Academic 2018 Advisor's Signature
Year:

ACKNOWLEDGEMENTS

First | would like to thank the most important person my
advisor Asst. Prof. Natawut Nupairoj for his expert advice and
insight into overseeing this research. Even though he is a very
busy person, he always contribute to me the times he has
available. His dedication to advising me during this research gave

me hope and wills to fight on during hard times.
Finally I would like to thank both of my parent for being
there for me during difficult times, providing my with much

needed emotional support.

Thank you all very much.

Tanwa Sirisakdiwan

TABLE OF CONTENTS

ABSTRACT (THAI oottt bbb Il
ABSTRACT (ENGLISH)ooiiiiiie e v
ACKNOWLEDGEMENTS. ... V
TABLE OF CONTENTS Vi
LIST OF TABLES ... IX
LIST OF FIGURESot X
1 INTRODUCGTION ...ttt 1
1.1 IMOTIVATIONS ..vtvtiiitetaseresiee s e sesie e st st ane e se ettt bt es e s bt tene s 1
1.2 OBUIECTIVES . .ettetiaeeeretesisesasissesaset sttt st et st s b bt s b et b ettt et e s snnnne 2
1.3 SCOPE OF WORKucuvtiietisisiatstetesasast et ese st ses s sese s sssssbese s s s bese et st sesesesssssasens 2
1.4 RESEARCH PROCEDUREcvtutiiteiitiiiteiienteesis et ss st 2
1.5 EXPECTED BENEFITS ...ocuiiiiiiiiiiaieniiiiiis et sa e sne ettt 2
1.6 CONTENT STRUCTURE ... ccitiiitiitieitiste sttt sntsaes s sre bbb sn s 2
1.7 PUBLISHED PAPERcctiiiiiitiiii ittt 3

2 TECHNICAL BACKGROUNDS AND RELATED WORKS...........cccooiiiee 4
2.1 TECHNICAL BACKGROUNDSccuviiiiiiiiiiieitieii ittt 4
2.1.1 10T Streaming Data...........ccceieeiiiiieiiesiece e 4

2.1.2 Heterogeneous Data...........coiuviiiiiieiiiie e 6

2.1.3 APACHE SPAIK......ccviiiiiiieie et 6

2.1.4 SPArk Streamingcoiveivieieiec et 7

2.1.5 Spark Structured Streamingcccceiiieiie i 7

2.2 RELATED WORKS ...ttt 9
2.2.1 Hybrid big data architecture for high-speed log anomaly detection.......... 9

2.2.2 Real-time High-Performance Anomaly Detection over Data Streams:
Grand Challengeooveiiiiiie s 11

vii

2.2.3 Adaptive Scheduling of Parallel Jobs in Spark Streaming....................... 12
2.2.4 The 8 Requirements of Real-time Stream Processingcccoovevveivenenn 14

3 SPARK STREAMING FRAMEWORK FOR LARGE-SCALE MULTI-
STREAM DATA ANALYTICS.....c e 15
3.1 MULTI-STREAM DEFINITION w..c.vvititiriiiisinieseesesisieenesesistese e sessssssenesnens 15
3.2 N-APPLICATION MULTI-STREAM PROCESSING.....ccctiiiteniiesisiereesesesiesenenenen, 16
3.2.1 Application SUBMISSIONcccvviiiiieie e 16
3.2.2 ReSOUICE OVEINEAMccviiiiiiciiiteieeee e 16
3.2.3 Monitoring DIffiCUlty.........cccoiiiiiiier e 16
3.2.4 Coding REAUNTANCYecuveiieeiieiieeie e 16
3.2.5J0D SChedulingooi e 16
3.3 DIFFICULTIES IN MULTI-STREAM IN SINGLE APPLICATIONccvvueveriieninienenenn. 17
3.3.1 Blocking Action in Multi-Stream in Single Application.............cccccocu...... 17
3.3.2 Redundant Data Reading in Spark Streamingcccoeevveveiieeieennenne 18
3.3.3 Redundant Data Reading in Spark Structured Streaming........................ 19

3.4 MULTI-STREAM APPLICATIONS IN SPARK STREAMING VS SPARK STRUCTURED
STREAMING ...ttt ittt ettt ettt e aitee e asbee e st e e ssb e aa b s ebb e e e nab e e e bb e e e bb e e snbb e e a e e e nnbeeennneas 20

3.5 SPARK STREAMING FRAMEWORK FOR REAL-TIME ANALYTICS OF MULTIPLE

HETEROGENEOUS DATA STREAMScoiiiiiiiiiiiicie e 22
3.5.1 Satisfy Streaming Function Requirements.c.ccccocceevveveeresiieseesnenn 22
3.5.2 AP1 @nd FUNCHIONSoviiiiiieic e 23
3.5.2.1 Initialize FUNCLION......ccooiiiiicisieeeeee s 24

3.5.2.2 RegiSter FUNCLION........c.cciveiiiiie e 24

3.5.2.3 EXECULE FUNCHION ...t 24

3.5.2.4 Gt FUNCLION ..ottt 24

3.5.3 Framework EXamplecoovoiiiiice e 25
3.5.4 Advantages of Single Application for Multi-Stream.............cccccovevveenne, 27

3.6 FRAMEWORK EXPERIMENTAL RESULTScciitiiiiiiiiieie e 28
4 SCHEDULING FOR MULTI-STREAM......coiiiiiiiiiiee e 29

4.1 JOB SCHEDULING IN SPARK ...oetttttutieeeeetteesstinssssesseessssnsssessseessssnnssssssseesssnnnns 29

viii

4.2 MICRO-BATCH BEHAVIOR OF SPARK STREAMING AND STRUCTURED STREAMING

30
4.3 SCHEDULING MODES IN SPARKcutuiriiiirieriniisietesesesesestesesessssssssesessssssssesesssens 31
4.3.1 FIFO SChedulingccoviieiieiece st 31
4.3.1.1 Job Queuing issues iN FIFO........ccccoceiieiieieiie e 33
4.3.2 FAIR SCheduling.........ccvoiiiieie e 34
4.3.2.1 FAIR Scheduling limitation.............cccccevveviiiieve e 35
4.4 ALTERNATIVES FOR SOLVING JOB QUEUING IN MULTI-STREAM........cocvvrrenenne. 36
. Increase COMPULING POWETccueivveeiiieiieeiesieesie e ste e sre e e nre s 36
o RESOUrce Partitioning............cvieieiimiineni e 36
o Dynamic Resource AHOCAtIONc.ccceoveiieiiiie e 36
o FAIR SChedUIINGvoiiiiiiiii e 36
4.5 SOLVING JOB QUEUING AND RESOURCE SCHEDULING IN MULTI-STREAM......... 37
4.6 ADVANTAGES OF USING FAIR SCHEDULER IN MULTI-STREAMccccccvvvurieninne. 37
4.7 EXPERIMENTSovttittnittetesestasstasesaseabsesesasesessssssesesessssasesesessssssesesessssssasesenensnns 38
4.7.1 Experimental ENVIFONMENT.........c.oooveiiiie e 38
4.7.2 EXPEriMeENnt Data.........ccoveviiieiie e st 38
4.7.3 TESHING SCENANIOveviiiiiiiiie ettt sre s 39
4.7.4 Test Case®). WIANNISUHAWNLIANENAEL. ... 39
4.7.5 Result Collection Method ..o 40
4.7.6 Performance RESUILS. ..o 40
4.7.7 RESUIL DISCUSSION ...ttt 42
CONCLUSION ...ttt enne e 45
APPENDIX .. 46
6.1 FRAMEWORK CODEc.uiiiiiiiiiiiiiiiiiienie st 46
REFERENGCESottt 48

LIST OF TABLES

Page
Table 1 - Framework FUNCtion DeSCriPtioNcccooeieriririeieieesiese e 23
Table 2 - Comparison of the Difference between Our Framework and N-Application
MEBLNOD ...t ettt neennes 27
Table 3 - Test Environment and Configurationccocceveviienenieniienesie e 38

TADIE 4 = TSt CaSES ettt e e et et et et et e e e e et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 39

LIST OF FIGURES

Page
Figure 1 — Example of use cases and opportunities for big 10T data analytics
ANCRITECTUTE. ...ttt nns 4
Figure 2 - Data from Combined Cycle Power GENneratorcccoeeererenineseeieennens 5
Figure 3 — Spark FrameWOrKcccooiiiiiiiiieiece e 6
Figure 4 - High level overview of Spark Streaming API. Taken from [9] 7
Figure 5 - Components of Structured Streaming. Taken from [10].........ccccoovvivivrnnnne 8
Figure 6 - State Management of Structured Streaming during execution, Taken from
0) R gty /7N IF N RSOOSR 8
Figure 7 - SARIMA-based Anomaly Detection SYStem..........ccccvvererenenininieieeens 9
Figure 8 - Hybrid Big Data ArChiteCtUIeccviieiiiiiiiriieee e 10
Figure 9 - Bi-Modal SARIMA-Based Anomaly Detection Systemcccccecvevenee. 10
Figure 10- Architecture of Multi-Threaded/Multi-Processed Anomaly Detection
B3V (=] | | 1 =S PRTARRRR 11
Figure 11 - Architecture of Anomaly Detection SyStem.cccoceviieniiininnicinennn, 11
Figure 12 - Micro-batch DepPendenCYccceviieiiiieniiiiieieee e 12
Figure 13 - Overview of Adaptive Scheduler ... 13
Figure 14 - Adaptive scheduler WOrkFflow ..o 13
Figure 15 - The 8 Requirements of Real-Time Stream Processingc.ccccvevevenne. 14
Figure 16 — SINGIE STrEAM........ooviiiiiiire s 15
FIgure 17- MUITI-SErEAM ... e 15
Figure 18 - Blocking action of multi-stream in single applicationcc.ccecevenee. 17
Figure 19 — Expected Workflow of Multi-Stream Behaviorcccccooviiiinnenn. 18
Figure 20 — Actual Workflow of Spark Streaming with Multi-Stream 18
Figure 21 - Spark Streaming context and batch interval setting...........c.ccocoovvvivinnn, 20
Figure 22 — Grouped Window Operation on DSIreamscccooevereienenenenieeieenes 20

Figure 23 — Trigger Setting in Structured Streaming showing micro-batch interval
K= L0 o TP STPOTP TP PRPPO 21

Xi

Figure 24 — Example of Streaming FUNCLIONcccccoeiieiiiie e 22
Figure 25 — Example of Framework: Single FUNCLION............ccccoveviiieieeic e 25
Figure 26 — Example of Framework: Multiple FUNCLIONSccocvvieiieii e 26
Figure 27 — Spark Web Ul showing how multi-stream can now be run in a single

0] 0] 7> U1 o] o OSSOSO 28
Figure 28 — Spark Cluster COMPONENL.........ccviieiieiiiiere e 29
Figure 29 — Job Scheduling in Spark (Single Application, Single Job).................... 30
Figure 30 — FIFO Job Scheduling (Single Application, Multi-Stream)...................... 31
Figure 31 — FIFO Job Scheduling (Multi-Application, Single Stream)...................... 32
Figure 32 - Job Queuing / Head-of-Line Blocking..........cccccoovevieiiieiicii e 33
Figure 33 — Blocking Effect in Multi-Stream from Spark Web Ulc.......... 33
Figure 34 — FAIR SChedUliNgcocvoiiiiiieiics et 34
Figure 35 - Behavior of 8 Concurrent Streams with FAIR...........cccooevveiiiic e 35
Figure 36 - arecord in KDD1999 ...ttt 38
Figure 37 — Processing Time (FAIR vs FIFO) (Worst-Case).........ccccevvveveiiesrenenne 40
Figure 38 — Processing Time FAIR vs FIFO (best-Case)........ccccoevvvievveieiiic s 41
Figure 39 - Processing Time vs Number of Concurrent Streams.............cccccevevvennenne. 42
Figure 40 - Scheduling difference of FAIR vs FIFO in Spark Web Ul...................... 43

Figure

41 - Diagram of Job scheduling of FIFO vS FAIRc.cocoieiiiie e 44

1 Introduction

1.1 Motivations

Internet-of-Thing (10T) has been widely used in many industries.
Such as energy, manufacturing, and many others which involve the use of
complex machinery. These sensors provide us with high volume of data
and often at a very high velocity. Data generated from these devices are
typically varied and heterogeneous. For example, power generators are
being constantly monitored to prevent failures in many power plants.
These generators usually have over 2000 sensors. Many of these sensors
generate heterogeneous data which requires their own independent stream
processing. Deploying real-time application such as anomaly detection in
this case is very difficult as the processing need to be in real-time and the
number of stream processing needed to be deployed is large. There are
many definitions of heterogeneous data as mentioned in [1]. In this
research, we shall define heterogeneous data as data that is generated
from different sources with variety of sampling periods and independent
machine learning models, such as anomaly detection, for each data
stream.

Currently, there are many issues related to real-time analytics of
multiple heterogeneous data, especially when deadlines are different. In
Apache Spark [2], the conventional way to perform a streaming job is to
run one Spark application per data stream. This can be a problem when
we are dealing with multiple streams from different sources as the
number of applications that needed to be launched grows. In addition,
when there are multiple applications running simultaneously, the default
resource scheduling between applications in Spark is FIFO (First-in-First-
Out) policy. This, while give more priority to jobs which arrive first,
causes problems when multiple streaming jobs are concurrently running.
For example, a large size job may be the first in the queue and consume
all available resources blocking smaller jobs with more immediate
deadline. This caused the smaller job to be delayed and missed its
deadline. At this moment, there is no proposed solution to these practical
problems, especially for multiple heterogeneous data stream in Spark.

To solve these problems, this research introduces a framework for
Spark which can launch multiple streaming jobs in a scalable manner,
reduce coding redundancy involved, ease monitoring difficulty, and
provide a proper solution to resource scheduling. This will provide a

more suitable solution to use cases such as real-time anomaly detection of
large number of sensors

1.2 Objectives

To develop a framework for spark streaming which allow efficient
coding and deployment of multiple streaming process and provide proper
scheduling methods for these jobs.

1.3 Scope of Work

e To develop an efficient and scalable coding framework to allow
efficient coding and deployment of large amount of machine
learning model on heterogenous data and handles configurating the
appropriate job scheduling policy.

1.4 Research Procedure

Studies of knowledge involved and related works.

Analysis of research problems.

Experiment with options to find solution for research problem.
Development of proposed solution.

Experiment and evaluation.

Conclude research result.

Write research papers and thesis.

NoakowdE

1.5 Expected Benefits

A Coding framework which allow efficient coding and deployment
of large-scale multiple stream processing. As well as provide an
appropriate job scheduling policy.

1.6 Content Structure

This thesis consists of 6 Chapters. The 6 chapters are the following:
1. Introduction
2. Technical background and related works
3. Spark Streaming Framework for Large-Scale Multi-Stream Data
Analytics
4. Job Scheduling for Multi-Stream
5. Conclusion

1.7 Published Paper

e Spark Steaming Framework for Large-Scale Heterogeneous Data
Analytics. Published at 2019 2nd International Conference on
Communication Engineering and Technology (ICCET). Held on

12-15 April 2019 in Nagoya Institute of Technology, Nagoya,
Japan.

2 Technical Backgrounds and Related Works

2.1 Technical Backgrounds

2.1.1 10T Streaming Data

0T (Internet of things) is the term commonly used for a network of
interconnected devices, such as sensors as well as, devices, social media,
health care applications, temperature sensors, various other software
applications and digital devices. Data generated from loT comes from
various sensors. This creates heterogeneity, noise, variety, and rapid
growth in size [3]. There are many applications for big 10T data, such as
E-commerce, Smart cities, healthcare, and retail & logistic as shown in
Figure 1.

. <5
|
g -‘\] Ly
Q) E)
T D
ol ke
[< = ~ ™
= & / | N
T - A
L', L ."J. \."

/

Figure 1 — Example of use cases and opportunities for big IoT data analytics
architecture.

IoT data is usually generated in the form of streaming data from
sensors of various type and from vast number of sources. There are
several characteristics of 10T streaming data. First, streaming data have
sampling periods, the time difference between two consecutive samples,
I.e. new data is generated periodically creating a constant stream of data.
Second, they are generated from many data sources, usually come in
massive in numbers, making each stream heterogeneous. In addition,

depending on the usage, some data may have deadlines. Deadline is the
time that the data processing is expected to be completed. In general, this
Is usually the sampling period of the sensor. The time of each deadlines
varies and is usually context dependent, therefore each sensor can have
different deadline. Figure 2 shows data taken from a sensor in a
combined cycle power generator. A typical generator of this type usually
contains over thousands of sensors of various type.

GT1_AXIAL_DISPLACEMENT

03 - —— Original
0.0 - 1 1 1 1 1 1 1 1 1
2017-05-01 2017-05-02 2017-05-03 2017-05-04 2017-05-05 2017-05-06 2017-05-07 2017-05-08 2017-05-09
0.053 - —— Trend
052
051
0.050
049
2017-05-02 2017-05-03 2017-05-04 2017-05-05 2017-05-06 2017-05-07 2017-05-08
J] JL T
02-
0.0 -
201 [Z: 01 [Z: 02 E: 03 [Z: 04 [Z: 05 2017- D: 06 2017-05-07 2017-05-08 2017-05-09

—— Residuals

2017-05-02 2017-05-03 2017-05-04 2017-05-05 2017-05-06 2017-05-07 2017-05-08

Figure 2 - Data from Combined Cycle Power Generator

2.1.2 Heterogeneous Data

There are many definitions of heterogeneous data as mentioned in [1].
These definitions are:

e Syntactic heterogeneity — when two data sources are not

expressed in the same language.

e Conceptual heterogeneity — difference in modelling the same

domain of interest. Also known as semantic heterogeneity.

e Terminological heterogeneity — variation in name when referring

to the same object from difference sources.

e Semiotic heterogeneity — different interpretation of entities by

people. Also known as pragmatic heterogeneity.

As these definitions does not really fit with our experiment, for this
research, we shall define heterogeneous data as data that is generated
from different sources, having variety of sampling periods, and
independent machine learning models, such as anomaly detection, for
each data stream.

2.1.3 Apache Spark

Spark is a unified analytic engine for processing large-scale data,
with built-in modules for streaming, SQL, machine learning, and graph
processing as presented in Figure 3. Spark’s core is RDD (resilient
distributed dataset). An RDD [4] is a distributed memory abstraction of
data partitioned across set of machines that can be rebuilt if a partition is
lost. We will explain Spark Streaming in further detail in Section 3.

MLlib
(machine

[gallple)

Apache Spark

Figure 3 — Spark Framework

2.1.4 Spark Streaming

Spark’s stream processing API, called Spark streaming, treats
streaming data as a continuous series of unbounded micro-batches where
available data is processed at every interval. This is called Dstreams or
discretized stream [5]. Figure 4 shows the illustration of the high-level
overview of spark streaming.

Spark Streaming
- streaming
divide data i
|:Lr » stream into computatlon_s
— y expressed using
live input batches DStreams
data stream T
I:I of input gel:r:grg €
data as ransf
J— RDDs ransfor-
— mations
Spark < A
<::’] | Task Scheauler L Spark batch jobs
to execute RDD
batches of [Memow Manager] transfarmations
results

Figure 4 - High level overview of Spark Streaming API. Taken from [9]

2.1.5 Spark Structured Streaming

Spark Structured Streaming [6] is Spark’s next API for stream
processing. It aims to make stream processing easier and more accessible
by allowing developer to create streaming application without having to
reasons with streaming related configurations. Structured streaming offers
much more processing methods than its predecessor Spark’s Streaming.
Most Spark’s Data-frame Operations can be directly applied to Structured
Streaming. As shown in Figure 5,Spark Structured Streaming operates on
Spark’s new Data Frame API and treats streaming data as unbounded
tables of data instead, where every trigger (intervals) spark read all new
data available from the data source. Figure 6 explains how Spark keeps
track of old/new data by using its state management,

Our framework is based on Spark Structured Streaming, from this
point on we will refer to Spark Structured Streaming as Spark Streaming
as it is the new streaming APl promoted by Spark and the old Spark
Streaming is no longer in development.

DataFrame or SQL Query

data.where($“state” === “cA™)
.groupBy (window($“time"”, “30s"))
.avg(“latency™)

Input Streams
. .l. é Structured Streaming
INIIN | 8 _ Microbatch Output Sink
g o Execution
= N
Spark Tables E M %_ . - i
o e Contiuous
- = Processing
- /

B =

State Store

Figure 5 - Components of Structured Streaming. Taken from [10]

~
Operator DAG
Input Streams - Output Sink
5 & 2
ENIN E. 8 8% 3
- —- = 2 = S0 - -
1NN § & 33 ¢
Q n o =
o < =
N \ J
0
Epoch ?,900@\"5 Async State
Offsets 00“\ Checkpoints
Log State Store

Figure 6 - State Management of Structured Streaming during execution, Taken from
[10]

2.2 Related Works

2.2.1 Hybrid big data architecture for high-speed log anomaly
detection

Real-time anomaly detection on streaming data has been
previously achieved by [7] where network log data is analyzed in real-
time wusing SARIMA anomaly detection. SARIMA (Seasonal
Autoregressive Integrated Moving Average) is a statistical model
commonly used for anomaly detection in time-series data with
seasonality components. The reason SARIMA model could not be apply
directly to streaming data is because SARIMA requires historical data to
be preprocessed to create its model making it inapplicable.

Prepracessing Structure Apply S

-Data — | Dalahases | s—— : — Dracas

. Data Data SARIMA Modal Data
o

Historical Data

Figure 7 - SARIMA-based Anomaly Detection System

This research proposed a hybrid data processing architecture based
on lambda architecture as presented in Figure 8, which allow SARIMA
to be applied on to streaming data in real-time. Their approach to
applying SARIMA in real-time is to use a bi-model approach instead,
shown in Figure 9. This bi-model solution uses their proposed
architecture to train SARIMA model with historical data in batch
processing. The model is then applied onto streaming data in real-time.

10

| Server 1 | | Server 2 |

: | Flume Agent | | Flume Agent |

~~

b

[Fiume Collector |

Flumne Agent

/

\]

L Log Collector

[FumorDFs |

| Fluma Salacmrl

Predicted Result

Batch Pmceksing

Figure 8 - Hybrid Big Data Architecture

| Detected Result

PI‘EpI’DCESSmg I Structure
Data Data

Forecast
Data

Detecting
Anomaly

Figure 9 - Bi-Modal SARIMA-Based Anomaly Detection System

11

2.2.2 Real-time High-Performance Anomaly Detection over Data
Streams: Grand Challenge

Real-time anomaly detection on N-number of data streams was
proposed in [8]. It handles multiple data streams by dividing incoming
data into data windows based on their time intervals. After each interval,
all window from each stream is then processed in parallel using multi-
threading as shown in Figure 10. However, this framework has limitation
as it assumes identical period for all stream.

In Figure 11 the input component receives data from message
broker in RDF format which is then parsed for the data window manager
to build data window. The anomaly detector component receives the list
of windows data and processes them in parallel. The processing includes
clustering the data inside the window and calculating the Markov chain
transition matrix and transition threshold which is then compared with
data for detection result. The result of the anomaly detection component
Is forwarded to the output component for reporting.

Anomaly Detector
- Output to
Input Stream from) J(Anomaly Detector | Message Bus
Message Bus Multi . Window f o R Collector & | .

Threaded | M) |Generator 4 | ¥ ouput | mmm)

Parser Dispatcher Anomaly Detector - Generator
.
.
.

Anomaly Detector

Figure 10- Architecture of Multi-Threaded/Multi-Processed Anomaly Detection

System
e mmeeemmammemmeesmeeeeeae—eaea——— ["memmmmssmssssmessssssssss gesesssssssssssssess
'
Input Component H E Anomaly Detector H ! Output Component

1

! Lttt ottt H ' H !
: RN i Task Queue ; Anomaly Queue |
H
1

'
.)
1 1
H ! H
Markov H—P> 1 RDF ——
k-means : H ' H
—1> chain H : Format ' Oupurto
H : Messaging

» Broker
: Sysrem
Generating RDF 1 (RabbithQ)

message Text and
Functional Computation Incremental Message ID 1

Figure 11 - Architecture of Anomaly Detection System.

12

2.2.3 Adaptive Scheduling of Parallel Jobs in Spark Streaming

An adaptive scheduler for Spark streaming was introduced by [9].
This adaptive scheduler dynamically adjusts resource scheduling for each
stream. They have achieved this through extending Spark Streaming and
uses “spark.concurrentJob”, a config which control the amount of
parallelism, to allow more than one micro-batch of each stream to be
processed at a time.

This configuration is however not recommended by Spark and is
not documented into Spark’s official APl. The problem of using this
configuration is that it will cause some micro-batch to be processed
incorrectly in the case that a batch-to-batch dependency exists. A batch-
to-batch dependency is when the result of a micro-batch is not only
determined by the data contained but also prior micro-batch e.g. window
operation as shown in Figure 12.

window length t

Figure 12 - Micro-batch Dependency

This research implemented a solution which classifies jobs by their
job dependency then assigning them into appropriate job pools; as shown
in Figure 13. Jobs without micro-bath dependency is put into the same
pool to utilize the concurrent job setting and jobs with dependency is
separated into another pool as they are not compatible with the setting.
Classification is done by checking the job’s directed acyclic graph
(DAG). The Adaptive Optimizer takes performance statistic from Spark
Engine and adaptively adjust the pool resource weight and the amount of
parallelism through reinforcement learning after each micro-batch of
execution. The workflow of Adaptive scheduler is shown in Figure 14.

13

DAG :
Classify | __ dependent
jobs]Ub pool —_—
Welghted falr sha.nng ' Spark
' .| Engine
III —| Resource @m—pendent BN
‘| Allocator \._job pool _/
Input Stream I kL FIFO
Adaptive Optimizer |«

Figure 13 - Overview of Adaptive Scheduler

Streaming Dstream Spark
Context Graph depDetector A-scheduler ~ JobHandler Enpgine
—-'I | :

. Streammg_l Generate |

| -

| —JobSet ™} _Detect | 2

i i idependency 'ClaSSI!! IObS i i E

- i i Di : iSuhmitjobsi =
3 ! > | Adaptive - &
o | @, . tuning le— T
G I I - | Complete | @
! ! ! 1 Measured 1@

| | | “performance | 2

a | | | | -

y :jObCompletEf: | ! i

Figure 14 - Adaptive scheduler Workflow

14

2.2.4 The 8 Requirements of Real-time Stream Processing

In research [10], the 8 requirements of real-time stream processing is
purposed. We want to emphasize on the 8th requirement which states that
“a stream processing must be able to keep up a highly-optimized,
minimal-overhead execution engine to deliver real-time response
for high-volume applications”. As the tools being used in this research,
Spark Structured Streaming, can satisfy most requirements by default.

Keep the Data Moving

Query using SQL on Streams (StreamSQL)

Handle Stream Imperfections (Delayed, Missing and Out-of-Order Data)
Generate Predictable Outcomes

Integrate Stored and Streaming Data

Guarantee Data Safety and Availability

Partition and Scale Applications Automatically

e A Al o e

Process and Respond Instantaneously

Figure 15 - The 8 Requirements of Real-Time Stream Processing

3 Spark Streaming Framework for Large-Scale Multi-
Stream Data Analytics.

In this chapter, we provide more information on what Multi-Stream
is, as well as, the problems it introduces, previously solutions to the
problems, and finally we introduce our solution. Spark Streaming
Framework for Large-Scale Multi-Stream Data Analytics. This
framework aims to provide a more suitable solution to use cases such as
real-time anomaly detection of large number of sensors.

3.1 Multi-Stream Definition

We defined a single-streams as a streaming process where all data
passes through a single processing function before it is then send to the
data sink. Figure 16 shows diagram of our definition of a single stream.

Data SARIMA' Anomgly
Siraan anom.aly Detection
detection Qutput

Figure 16 — Single Stream
Multi-stream is a streaming process where incoming data is divided
into multiple streams and processed through its unigue processing
function before it is then sent to the data sink. Figure 17 shows diagram

of our definition of a multi-stream.
Sensor 1 —pl SARIMA anomaly detection

Anomaly Detection Output l

Sensor2 —)I SARIMA anomaly detection Anomaly Detection Qutput l

Data
. Sensor 3 —)I SARIMA anomaly detection I—pl Anomaly Detection Output]

Sensor N —>[SARIMA anomaly detection

Anomaly Detection Output]

Figure 17- Multi-Stream

16

3.2 N-Application Multi-Stream Processing

Previously, the only way to operate multi-stream is to use N-
application approach, where N is the number of streams. In N-application
method, an application developed and deployed for each data stream.
Each application is responsible for its own data stream. There are many
issues related to managing large amount of these applications.

3.2.1 Application Submission

In Spark, it is impossible to submit multiple applications at once.
Applications must be submitted one at a time via spark-submit. This can
be very hard to manage when the number of applications grow
sufficiently large. The only way to ease up this process is by preparing a
cron script, a time-based job scheduler in Unix-like computer operating
systems, to submit each application. This can cause many problems when
running large amount of Spark applications.

3.2.2 Resource Overhead

A Spark application requires its own Spark executor. A Spark
executor consumes, additional resource. By default, a Spark Driver
program consume a minimum of 300mb of memory. Using an application
per data stream in large scale multi streaming system can be very costly.

3.2.3 Monitoring Difficulty

Monitoring difficulty also increases as most spark monitoring tool,
such as Spark web user-interface, only provide monitoring of individual
application; leaving cluster-wide monitoring-tools like Ganglia [11] as
the only few options.

3.2.4 Coding Redundancy

Deploying large amount of applications also causes a lot of
redundant coding of configuring and instantiating Spark sessions.

3.2.5 Job Scheduling

The default job scheduling is not suitable for handling multiple
heterogeneous streams.

17

3.3 Difficulties in Multi-Stream in Single Application

Our final approach is to launch multiple stream simultaneously on a
different thread. By running each stream on a different thread, the stream
process continues to be a blocking action but does not block any
execution as it is isolated within its own thread allowing the program to
continue. We will go into more detail of our implementation later in this
chapter. First, we will explain the difficulty of deploying multi-stream in
single application.

3.3.1 Blocking Action in Multi-Stream in Single Application

Previously, when we try to fit multiple streaming process into a
single application, some processes will not launch. In Spark, a stream
processing is a blocking action. This meant that applications will wait
until the streaming process finishes before moving on to the next line of
code. Therefore, in a normal manner of coding the first streaming process
that starts will block the rest of the code in the program from running,
hence other stream process cannot start as shown in Figure 18.

DataStream A;
Preprocess(A);

Prediction(A);
Cannot Vv K\\\\

——

start. Y Stream A

Blocked| DataStream Nth; starts

by A __Preprocess(Nth)
Prediction(Nth)

Figure 18 - Blocking action of multi-stream in single application

18

3.3.2 Redundant Data Reading in Spark Streaming

In Spark Streaming, when multiple stream processing shares the
same data, it is commonly understood that data from the input stream is
read once and distributed amongst each stream process as shown Figure
19.

Process 1

Qutput——>

Process 2

Output——>

Input Stream . Filter By Key

Process 3

OQutput——>

Process N

Figure 19 — Expected Workflow of Multi-Stream Behavior

However, after testing and tracing the execution DAG, we have
found that multiple readings occurred at the input stage. Figure 20
illustrated what happened during execution. Input is read once per
output/streaming process even though they share the same data.

Input Stream Filter By Key Process 1

Input Stream . Filter By Key Process 2
Input Stream . Filter By Key Process 3

Input Stream Filter By Key Process N

Output—--—»

Qutput——>»

Output———>

Output——>»

Figure 20 — Actual Workflow of Spark Streaming with Multi-Stream

From this finding, we tried to solve the issue by having spark cache
the input data immediately after it is read to avoid repeated reading. This
does not solve the problem. Instead causes Spark to cache the same data
multiple time.

19

3.3.3 Redundant Data Reading in Spark Structured Streaming

In Structured Streaming, we applied the same approach onto Spark
Structured Streaming to test whether the problem persists but yielded the
same results. This is because Spark Structured Streaming treats an output
operation as one query, where a query consists of inputs, processing
action, and an output. There is currently no way to mitigate this as it is a
part of Spark’s design.

20

3.4 Multi-Stream Applications In Spark Streaming vs Spark
Structured Streaming

For Spark Streaming (D-Stream), even though we can use threading
to allow multiple stream processing, only one shared micro-batch interval
Is possible as it is controlled by the spark context; as presented in Figure
21. In multi-stream with heterogeneous data, this is not practical as data
does not always have the same period.

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

sc = SparkContext("local[2]", "NetworkWordCount™)

s=sc = StreamingContext(sc, 1)

Figure 21 - Spark Streaming context and batch interval setting
Source: https://spark.apache.org/

A workaround for this problem is to group each stream process into
a windowed computation instead which can help mimic multiple batch
intervals, Figure 22. This provides very limited options for micro-batch
interval since only intervals that is a multiple of the micro-batch interval
defined in spark-context is allowed.

time 1 time 2 time 3 time 4 time 5
original
DStream
window-based
operation

windowed
DStream . . .

window window window

at time 1 at time 3 at time 5

Figure 22 — Grouped Window Operation on Dstreams
Source: https://spark.apache.org/

21

This problem is, however, not an issue in Spark Structured
Streaming as micro-batch interval is no longer defined inside spark-
context but within the output of the streaming query, as illustrated in
Figure 23. This allow each streaming query to define its own micro-
batch interval even when sharing spark-context. We implemented our
framework using Spark Structured Streaming.

df .writeStream 5
.format ("console”)
.trigger{processingTime="'2 =seconds") %
start()

Figure 23 — Trigger Setting in Structured Streaming showing micro-batch interval
setting
Source: https://spark.apache.org/

22

3.5 Spark Streaming Framework for Real-Time Analytics of
Multiple Heterogeneous Data Streams

We proposed a Spark Streaming framework for multiple
heterogeneous data streams. This framework integrates multiple data
streams into one single Spark application using python’s threading
package to allow simultaneous launching of multiple stream. This
framework is an API operates on top of existing Spark Streaming.

Our framework is designed to address the problem that is generated
from the need to deploy a large amount of smaller sized stream
processing within an environment with limited resources such that
streams are forced to compete or queue for resource. Stream processing
that requires multiple stream processing such as real-time anomaly
detection of large amount of sensor data is a great example.

3.5.1 Satisfy Streaming Function Requirements.

The requirement which streaming function need to be satisfied to
work with our framework; Example shown in Figure 24. Function to be
register will need to contain the following:

1. Data Source — clear and defined streaming input source in which
further transformation/action will be applied to. The data source
maybe defined either inside the function itself, or anywhere within
the application where the transformation/action can access the
data-frame that read the streaming data.

2. Processing command (transformation/action) — a transformation or
action to transform the input stream.

3. Output — an output with defined sink, output mode, and start call.

// Define a DataFrame to read streaming data
data = spark.readStream.format("json").load("/in")
// Transform 1t to compute a result
counts = data.groupBy($"country").count()
// Write to a streaming data sink
counts.writeStream. format("parquet")

.outputMode ("complete").start("/counts")

Figure 24 — Example of Streaming Function
Source: https://spark.apache.org/

23

3.5.2 API and Functions

To combine each streaming process, our framework provides three
functions; Initialize, Register, and Execute. The Initialize function setups
Spark with the required configurations. These include importing
framework dependency, initializing spark sessions, and configuring
scheduling mode. The Register function takes in a python function object
and append it to a function list which will be called and executed by the
Execute function. The Execute function launches all functions registered
with the Register function in parallel by calling these functions using
python’s Threading package. Table 1 summarize the functions of our
framework. In addition, we provide a get function to allow the user to
access the streaming query object for further management.

Initialize Create sparkcontext plus set config.
Function takes in String appname, and User's
sparkConfig object. (Program will use default
sparkconf if not provided (done by submitting -
1)).
Function will return sparkcontext object for
further referencing

Register Stores user function.
It takes in function object, the streaming query
object used in the function and string name
used for identification (key).
It then check if the function object is already
registered in the function list. Return True on
success

Execute Startall streaming query in parallel.
This function handle parallel execution of each
stream function.
Returns the number of thread currently alive

Get Getter method. For user to get Query object for
further referencing. Takes in argument of String
‘name’. Returns query with matching ‘name’.

Table 1 - Framework Function Description

24

To use this framework, user must call Initialize, registers required
function with the Register function, then start all stream processing with
Execute. Please refer to the appendix for the complete code and example.

3.5.2.1 Initialize Function

The Initialize function will setup Spark with the configuration
required for our framework. Inside the function, we import framework
dependency, initialize spark sessions, and configure it to use FAIR
scheduling mode. The user can provide their own spark config by passing
the spark config object to the function. In addition, this function also
fetches important information such as the amount of worker available.

3.5.2.2 Register Function

The Register function takes in a python function object, a query
object, and a String name for identification. The registered function will
be called and executed by the Execute function.

3.5.2.3 Execute Function

The Execute function launches all stream processing functions
registered with the Register function in parallel. It will start all streaming
query in the function list by calling these functions using python’s
Threading so that stream processes may run concurrently without
blocking one another.

3.5.2.4 Get Function

The get() function can be used by the user to access the query
object of a streaming queries. This can be done by providing the get()
function with a name string as an argument. The function will return the
query object with matching name.

25

3.5.3 Framework Example

To use this framework, user must call Initialize to prepare the
framework, register required function with the Register function, then
start all stream processing with Execute; Figure 25 and 26 illustrate
examples of how to use our framework.

#call initialize for setup
spark = initialize()

#defined input source

inputdf = spark \
.readStream \
.option("sep", ",")\
.option("maxFilesPerTrigger","1")\
.schema (userSchema)\
.csv("datal")

#streaming query
query = df.groupBy(' c4l').count()

#String name to provide as identification
name = "groupReduce 1"

#Streaming Function
def groupReduce(query):
query.writeStream.format("console")\
.outputMode ("update")\
.trigger(processingTime='30 seconds')\
.start()

#Register function
register (groupReduce, query, name)

#Call Execute to Start
Execute()

#get query object
groupReduce 1 = get("groupReduce 1")

Figure 25— Example of Framework: Single Function

26

#call initialize for setup
spark = initialize()

#defined input source

inputdf = spark \
.readStream \
.option("sep", ",")\
.option("maxFilesPerTrigger","1")\
.schema (userSchema)\
.csv("datal")

#streaming gquery
query = df.groupBy('_c4l').count()

#String name to provide as identification
name = "groupReduce_ 1"
name2 = "groupReduce_ 2"

#Streaming Function
def groupReduce(query):
query.writeStream.format("console")\
.outputMode ("update”)\
.trigger (processingTime="'30 seconds')\
.start()

#Streaming Function
def groupReduce_2(query):
query.writeStream.format("console")\
.outputMode ("update")\
.trigger (processingTime="'30 seconds')\
.start()

#Register function
register (groupReduce, query, name)
register (groupReduce_ 2, query, name2)

#Call Execute to Start
Execute()

Figure 26 — Example of Framework: Multiple Functions

27

3.5.4 Advantages of Single Application for Multi-Stream

By integrating multiple streams processing into one Spark
application, we can solve many issues. First, we reduce the complexity of
running a Spark application, since we only need to submit only one
application instead of N-application. Using more applications to achieve
the same amount of works will consume more resources. Second, we
simplify application monitoring process as we can now use Spark
monitoring tools such as Spark web user interface. Spark’s built-in
monitoring tools, Spark Web Ul, only provide monitoring of single
application. In case of N-application, multiple monitoring windows will
be required. Third, we reduced lots of redundant codes such as initializing
spark context and configuration, which is needed to be written only once.
The only necessary code is one responsible for processing each data
stream. Finally, integrating all stream processing processes into one
application allows us to utilize Spark’s FAIR scheduling mode to solve
the problem of job queuing (will be discussed later in the next chapter).
Table 2 compares the difference between our framework and traditional
N-application method.

N-times Only Once

Only cluster-wide Any Spark monitoring tools
monitoring tools

Redundant Minimal Redundancy

FIFO FAIR

Table 2 - Comparison of the Difference between Our Framework and N-Application
Method

Despite all advantages our single application method offer, there are
also some limitations. First, our framework starts/stops all streaming
queries together and provides very little accessibility in term of individual
query management. Lastly, this framework is developed for a single
owner operation and does not support multiple owner operations.

28

3.6 Framework Experimental Results

By applying our framework which make use of threading to
concurrent launch spark streaming, we have enabled multi-stream
processing from a single application in Spark. Figure 27 shows the result
of our framework. From these results, we can clearly see that multiple job
Is able to start at the same time (as seen in the “submitted” column).

Description Submitted

id = 40a2ed0a-a851-4e21-9b1b-b568cb877950 2018/12/02 01:51:45
runld = e1dd0e59-1a2d-44bf-b0b7-17d5ea8eedcl

pbatch =0

start at NativeMethodAccessorimpl.java:0

id = 1a108d2d-2fa7-4cbc-9af3-6e3465d110c8 2018/12/02 01:51:45
runld = 2d9b3169-d8e5-4f3b-9c2c-bbb51575b69e

batch =0

start at NativeMethodAccessorlmpl.java:0

id = 4aa5d4b8-614f-44df-b11b-6cff84f16c7c 2018/12/02 01:51:45
runld = ¢3507428-3756-45df-8e2b-bf773c56¢chf6

batch =0

start at NativeMethodAccessorimpl.java:0

id = 56aadf3b-c571-41ce-91a9-4a5b1d2165b9 2018/12/02 01:51:45
runld = ¢c113bb86-7e66-435d-adal-b2cdbbce8ead

batch =0

start at NativeMethodAccessorimpl.java:0

Figure 27 — Spark Web Ul showing how multi-stream can now be run in a single
application

Even though we have solved the problem of deploying multi-stream
in a single application. We have found that the default job scheduler
Spark provide is not designed for multi-stream and scheduled job
inefficiently causing multiple problems. We will address this in the next
chapter.

29

4 Scheduling for Multi-Stream

In this chapter, we will provide explanation of how job scheduling is
done in Spark, our findings of how Spark job scheduling handle multi-
stream and introduce how to optimize Spark job scheduling to achieve
higher performance for multi-stream.

To solve the problems of Head-of-Line blocking in multi-stream
caused by Spark’s default job scheduler FIFO. Our proposed framework
utilizes Spark’s FAIR Scheduling scheme to resolve the scheduling
problem.

4.1 Job Scheduling in Spark

A Spark cluster component, as presented in Figure 28, involved in
Spark’s data processing includes:
e The driver program is the main program (application) and is
coordinated by the SparkContext.
e The cluster manager handles job scheduling, there are many cluster
managers but for this research we use Spark Standalone.
e The worker node which handles computation and stores data.

Worker Node

Executor | Cache

>
Driver Program Spark Standalone Task
‘/ P /

SparkContext

g
H

Task

Cluster Manager

\ 4

Worker Node

o \
\ Executor | Cache

Task Task

!
#s

Figure 28 — Spark Cluster Component
Source: http://spark.apache.org/

30

Worker Node

q Executor | Cache
Driver Program Spark Standalone/
et
SparkContext » Cluster Manager
- \ Worker Node

\a Executor | Cache

Task

Figure 29 — Job Scheduling in Spark (Single Application, Single Job)

We illustrate how a single data processing job flows through each
component in Figure 29. The driver program communicates with the
cluster manager to request for worker. After the request is granted, Spark
then connects to the executors on the allocated worker nodes.
SparkContext then send task to each worker node to run. The worker
node then returns the computation results to the driver program.

4.2 Micro-batch Behavior of Spark Streaming and Structured
Streaming

In Spark Streaming, there is no long running process aside from a
listener which is used to detect new data every micro-batch interval. Once
new data is detected, Spark then submit a job to process the new data.
Meaning that there is no long running job, but a small job every small
interval instead.

Here are 3 main micro-batch behaviors:

1. If the previous micro-batch completes within the interval, then the
engine will wait until the interval is over before kicking off the
next micro-batch.

2. If the previous micro-batch takes longer than the interval to
complete (i.e. if an interval boundary is missed), then the next
micro-batch will start as soon as the previous one completes (i.e., it
will not wait for the next interval boundary).

3. If no new data is available, then no micro-batch will be kicked off.

31

4.3 Scheduling Modes in Spark

Spark employs two job scheduling schemes. FIFO and FAIR. FIFO
Is the default job scheduling.

4.3.1 FIFO Scheduling

By default, Spark schedules jobs from each application in FIFO
(First-in-First-Out) mode. In FIFO, when there are not enough resources,
job will start to queue up one after the other waiting for resources. This
can happen from two scenarios, when several jobs are submitted from the
same application concurrently (single application, multi-stream, Figure
30) and when several applications are submitting jobs concurrently
(multi-application, single-stream, Figure 31) Both cases are not suitable
for real-time applications as it can cause head-of-line blocking problems
or HoL, of which jobs with immediate deadline are queued behind a
larger job with more relaxed deadline.

Submits job 1

and 2 +
concurrently

Worker Node

Executor Cache

Driver Program Spark Standalone

v

SparkContext
. .

Cluster Manager

Job 2 Job 1

The first job take all worker while the 2m wait

Figure 30 — FIFO Job Scheduling (Single Application, Multi-Stream)

32

Both application
submit concurrently

“iooi

Job 1

Driver Program

Job 1

Spark Standalone

SparkContext

Driver Program

SparkContext

Cluster Manager

Y

Job 1

Worker Node

Executor

Cache

Task

Task

The first job take all worker while the 2" wait

Figure 31 — FIFO Job Scheduling (Multi-Application, Single Stream)

33

4.3.1.1 Job Queuing issues in FIFO

In FIFO when several applications are running and there are not

enough resources, job will start to queue up one after the other waiting for

resources, as shown in Figure

32. This is very bad for real-time

applications as it can cause serious delay, especially when a job with
iImmediate deadline is queued behind a larger job with more relaxed
deadline. Figure 33 shows blocking effect that can be identified in Spark
Web Ul when running multi-stream in FIFO. It shows multi-streams
processing with identical micro-batch size, but different processing time
caused by job queuing.

Input
Source

/ Stream 1 7/Stream2 /L7/ StreamB/

Next
Micro
Batch

Figure 32 - Job Queuing / Head-of-Line Blocking

id = 4d5281

id = 5236feec-f35¢

id = 34e€2663-9c33-41d8-85(

id= 8fd2108d-faa0-4e91-bc80—0a1acj

id = ae971aea-44df-404{-870b-3b986645bc15ru

‘ id = 39ea13f2-872e-4758-b3c4-a6115bde20e2runld = 62i

! id = 735152ch-8535-41f5-b165-746424d15256runld = f0b6b644-bdagd

‘ id = 1b32a456-d945-4cda-be4f-d28edealdf3berunld = f0f59344-0640-4ff7-ae6

‘ id = 277ec21c-cc06-4cch-a002-7d2f76265e1arunld = 051e96cc-coe8-427f-9969-f0d6f0S

‘ id = 17065701-55ca-4d86-b38d-e3e7e44b722drunld = 1eeb61fd-b96a-4953-beaa-237bd334416

Figure 33— Blocking Effect in Multi-Stream from Spark Web Ul

34

4.3.2 FAIR Scheduling

In FAIR scheduling, Spark assigns resources to all jobs at the same
time. This make all jobs in the queue start processing right away
including job at the end of the queue. Figure 34 shows how both
concurrent jobs get a worker node each and can start processing
immediately as oppose to Figure 30 — FIFO Job Scheduling (Single
Application, Multi-Stream) or Figure 31 — FIFO Job Scheduling (Multi-
Application, Single Stream).

This, however, does not eliminate job queue, as when the number
of workers is not enough for sharing across jobs, some job will be
queued. As our finding suggest in the next section. Thus, multiple jobs
can be processed concurrently, eliminating the waiting time in the job
queue. However, FAIR is only available when running as a single
application as Spark does not support a FAIR scheduler for scheduling
multiple applications. Therefore, it was necessary for our framework to
operate in a single application.

Submits job 1 |[eickel —
orker Node
i
concurrently | Eecutor (RO
Driver Program W Task
e P 4/

Cluster Manager

Task

g
EE

A 4

SparkContext

Worker Node

A N \
\ Executor | Cache
=

Each job gets a “FAIR” share of resource

Figure 34 — FAIR Scheduling

g
il

35

4.3.2.1 FAIR Scheduling limitation

After experimenting with different numbers of concurrent stream.
We have found that even though we are using FAIR scheduling mode,
Spark will only run concurrently processes at most N number of streams,
where N equals the number of core available, Figure 35 presents the case
of launching 8 concurrent streams and 4 streams finished first. This imply
that Spark will only process as many jobs concurrently as the number of
cores available to the system. For example, if there are 8 jobs submitted
concurrently but only 4 cores are available, Spark will process 4 jobs at a
time.

id = c6d831da-3de8-4b5b-891c-20df1e9acfd8runld = bb1afefc-a77c-4d8b-b2bf-afbb41a3

id = 8251a1f1-da7f-4483-9f2b-18c32fc72cbcrunid = c7f3e0d1-880a-44fa-9d08-3662f4892¢

id = 648615a2-e8d9-4c8d-a73¢c-b7771e44c860runld = 071cb3cd-9afd-4411-b3b5-82e589ac

id = 456a41de-27b3-4556-a882-31304d7c46f7runld = 5b610efc-e53a-4f30-bf1d-b175bf1ee

id = 56aadf3b-c571-41ce-91a9-4a5b1d2165b9runl

id = 4aa5d4b8-614f-44df-b11b-6cff84f16c7crunld =

id = 1a108d2d-2fa7-4cbc-9af3-6e3465d110c8runid

id = 40a2ed0a-a851-4e21-8b1b-b568ch877950runle

Figure 35 - Behavior of 8 Concurrent Streams with FAIR

36

4.4 Alternatives for Solving Job Queuing in Multi-Stream

There are several methods to avoid job queueing in multi-stream
environment. The following are possible solutions

e Increase computing power

Increasing number of workers can reduce job queuing. This is
because if the first job does not take up all available resources then the
next job may start right away with any resources that are left even if
Spark job scheduling is in FIFO mode. Since this requires investment in
computing power, it may not be the preferred option.

e Resource Partitioning

We can limit the maximum amount of resources a Spark application
can use. By limiting the number of workers an application can use,
allowing resources to be spared for other applications. Unfortunately,
applications will hold onto all resources allocated to them for the entire
duration instead of when needed.

e Dynamic Resource Allocation

Dynamic resource allocation allows resource that is no longer use by
its application to be freed and returned to the cluster after the application
Is idle. The application may request more resources later when required.
This method is not fully supported on spark streaming. In stream
processing, applications are long continuous processes where small jobs
are submitted every small interval. This makes the idle time of each
application very small causing the application to never return resources to
the cluster. Therefore, dynamic resource allocation does not work for
Spark Streaming.

Similarly, 3" party cluster management like Mesos will also not
work. When Spark application are communicating with Mesos on
resource usages, it will always ask for resources it requires and will hold
on to it. The only exception is the unlikely case where the data source is
interrupted, and the data arrival interval is extended. Spark may free up
resources until new data arrives, not in regular case where spark
streaming idle time is usually only a few seconds.

e FAIR scheduling
FAIR scheduling allows jobs to start processing immediately by
sharing resources. It can effectively eliminate job queuing. This is the
more ideal solution to multi-stream queuing problem.

37

4.5 Solving Job Queuing and Resource Scheduling in Multi-

Stream

When running multi-streams, we run into scheduling problem as
described in chapter 3. To solve the job queuing and resource scheduling
problem of Multi-Stream, we configure Spark to use a FAIR scheduling
mode. In FAIR scheduling, Spark assigns resource to jobs in a round-
robin fashion. This allows multi-stream to equally share the cluster’s
resources. Thus, multiple jobs can be processed concurrently, eliminating
the waiting time in the job queue. The performance result for using FAIR
will be presented in Section 4.7.

4.6 Advantages of Using FAIR scheduler in Multi-Stream

e When a stream finishes processing early, its resources will be
relocated to other streams that are currently processing
immediately. In a multi-application method resource will not be
relocated. This provides better resource utilization.

e No job queueing as all streaming job can start immediately.

e Head-of-Line blocking is not an issue as many streams can start
processing at once.

38

4.7 Experiments

In this Section, we evaluate the performance of our framework while
using FAIR scheduling.

4.7.1 Experimental Environment

We used a MacBook pro (2016) for this experiment. Our
configurations and specification are shown in Table 3.

oS MacOS High Sierra version 10.13.6
CPU 2.9 GHz Intel Core 15
Memory 8 GB 2133 MHz LPDDR3
Spark 2.3.1 (Standalone mode)

Table 3 - Test Environment and Configuration

4.7.2 Experiment Data

We use KDD1999 [12] competition data, a widely used dataset for
anomaly detection of network intrusion in all experiment. The entire
dataset is 753.1MB in size and contains 4.3 million records. Figure 36
shows an example of a record in KDD1999.

During the experiment, we will be using only one percent of the
dataset (6.4MB of data) per micro-batch, as it is closer to the size of a
streaming data. A special case where we will use the full dataset (753.1
mb) is when we are replicating a Head of Line blocking issue where we
will have the first in-queue have a larger than average size (753.1mb vs
6.4mb).

* % SYN errors

Label
Figure 36 - a record in KDD1999
Source: Anomaly Detection with Apache Spark, Cloudera, Inc

39

4.7.3 Testing Scenario

During each micro-batch, data is queried from a local file source
using Spark file-stream. then a group-by operation is done, followed by a
count aggregation which then output the results to a console sink.

For this experiment, we test with 4 concurrent streams. This is
because we have found that even though we have FAIR scheduling mode,
Spark will only start up and concurrently process at most N number of
streams; Where N is equal to the number of worker available, we feel that
we should test in the scenarios where resource is a constraint as it is much
harder to evaluate the performance of each scheduler mode if we have
excess computing power.

Data is then recorded for both FAIR and FIFO to compare its
performance.

4.7.4 Test Cases

We perform our experiment by replicating 2 cases of scheduling.
Worst-case and Best-Case, Table 4. Worst-case is when a large job
(753.1mb) is in front of the job queue and is causing a HoL blocking for
small job (6.4mb). Best-case is when there is no significantly large job in
the queue to cause HoL blocking.

Table 4 - Test Cases

Worst-Case Best-Case

e 3x Regular Stream of normal
size (6.4mb)

e 1x Large Stream/Job
(753.1mb) (always queued
first)

e 4x Regular Stream of normal
size (6.4mb)

e No blocking by large head of
queue.

40

4.7.5 Result Collection Method

All data is collected by recording from Spark Web Ul. The
processing time recorded is taken from the “Duration” column. This
“Duration” column is the time of job submission to the time it finished
processing. For each test cases we record the processing time of the
regular stream that took the longest to process for that run.

We also observed Spark Web Ul’s job timeline to verified if
resource is being scheduled as it should according to our test cases.

4.7.6 Performance Results

To compare the results, we perform an approximate visual test [13].
The comparison of the processing time between FIFO and FAIR in the
worst-case scenario is shown in Figure 37. From these results, we can
clearly see that FAIR out-performed FIFO with a significant difference.

From these results we can calculate the speed up of Processing Time
(FIFO) / Processing Time (FAIR) = 16.14/14.59 = 1.106 or 10.6% speed

up.

Processing Time (FAIR vs FIFO)

16.1372549

16 J-

15.5
® FAIR

FIFO
15

Processing Time (seconds)

14.58823529

14

Figure 37 — Processing Time (FAIR vs FIFO) (Worst-Case)

41

Next, we compare the processing time of FAIR vs FIFO in the
best-case scenario where each data stream is of identical size. In this
scenario there is no blocking caused by a large job. Only regular queuing
for resource. The result shows that the average processing time of the two
have no significant difference; as shown in Figure 38. With the average
time of FAIR being 53 seconds and FIFO being 52 seconds.

Processing Time (FAIR vs FIFO) (Best Case)

545
54
535
53

@ FAR
52.5 52.56 @

FIFO
52 52.06

515

Processing Time (seconds)

51

50.5

Figure 38 — Processing Time FAIR vs FIFO (best-case)

42

4.7.7 Result Discussion

From our experimental results, we have made several findings. First,
FAIR will outperform FIFO in scenario where job queueing is presence
and maintain equivalent performance otherwise. Second, there is an
increase in execution time for each individual stream in FAIR. This is
caused by resource sharing between each stream, resulting in the increase
in individual processing time. In four multi-streams processing, the
resources available is shared amongst four streams. Processing time
versus the number of multi-streams is shown in Figure 39.

Comparison of Processing Time of Different No. of
Multi-Streamin FAIR

11

10 +

® ® 1 Streams
2 Streams
6 3 Streams

4 Streams

Processing Time (seconds)

Figure 39 - Processing Time vs Number of Concurrent Streams

43

While the increase in individual stream execution time make FAIR
scheduling seems worst, our test results shows that FIFO scheduling with
job queuing have worst performance than FAIR scheduling as shown in
Figure 37. Figure 40 shows the comparison of FAIR and FIFO job
scheduling timeline in Spark Web Ul. From the Spark Web Ul, we can
clearly see that streams 2-4, performed much better in FAIR where job
queuing is not an issue whereas in FIFO stream 4 have missed the real-
time deadline of 15s. In a real-time environment where deadline is
important the solution with the better worst-case scenario is preferred.
Please note that the start of block indicates that the job is submitted not
when it starts processing.

FAIR
i m-mmrmmmmmmm-mmr@ULm ~1 8=
2 | i = DeDS0eka DETO-SR26-0B78 ToaleaBl 1 307nrbd = eSelenid. | ~155
3 id = efBibeon-cTo0- 4407-B0E3-eaMBBIN nnkd = (24ba0a0-b2 | [55
4 | i = a0304A26-a512-de41-D6L3-b0GLET 203derunid = f2cT8600-75q — | 55
40 45 0 55 0
1 | id= belcBass-aA7-24300-0800-Dedian TRIBS N = dSh5a852. — | 35
2 | i = e g-ER 0405020 e 4basEbeIbal O

3 = 19602 R T T e TA DU = 3001 2 el ~ 145

8 i = JcBet)- Se-4a0d- T T- 1 Bl Siinekd = Imm-ﬂr—m | s
{late)

2% 30 35 40
FIFD
Figure 40 - Scheduling difference of FAIR vs FIFO in Spark Web Ul

44

This behavior can be explained in further detail with Figure 41, a
graphical representation of how job is scheduled including when they
start processing. Dotted red vertical line represent micro-batch interval.
We will assume that our large stream takes twice as long as small stream
to process. Arrows represents job that is submit and is in queue but have
not started processing. Red dotted arrow represents job that are submitted
later than its interval.

Stream 4

Stream 3

Stream 2

Stream 1

Stream 4

Stream 3

Stream 2

Stream 1

Figure 41 - Diagram of Job scheduling of FIFO vs FAIR

FIFO l

Micro-Batch 1

—
3| Micro-Batch |

Y

Micro-Batch 2

Micro-Batch 1

o Micro-Batch 1

» (late finish)

—
{ Micro-Batch 2
——

== == o= P Micro-Batch 2

-

FAIR

I

Timeline

l

Micro-Batch 1

[

[

Micro-Batch 1

Micro-Batch 2

[

[

Micro-Batch 1

Micro-Batch 2

Micro-Batch 1

Micro-Batch 2

|

|

|

|

|

1
>

Timeline

There are a few important behaviors of micro-batch. First, even
though a micro-batch finishes processing, the next micro-batch will not
start until its interval arrived. Second, if a micro-batch have not finished
processing then the next micro-batch will not start until it is finished. This
IS very important as it means that if a delay happens it will cause delay
buildup which can get out of control unless given time to recover.

45

5 Conclusion

In this research, we have introduced a framework for Spark
Structured Streaming based on Pyspark, our framework provided solution
to problems related to multiple heterogeneous data streams processing.
These problems include deployment of application, monitoring difficulty,
coding redundancy, and Job scheduling between data streams.

We have solved the problem of deploying large amount of streaming
application by providing a framework which integrate multiple stream
processing into one Spark application. With this framework, we reduced
the amount of Spark-Submit required, minimize the coding redundancy in
Spark application, reduce the monitoring difficulty caused by running a
large amount of Spark application, and finally solves the scheduling
problem of job queueing by using Spark’s FAIR scheduling mode to
assign each stream an equal share of resources.

Difficulties found during this research are as followed. As we
implemented our framework using python programming language and
coded on top of pyspark, our access to Spark’s core function is very
limited. We cannot extend or reimplement some functionality and most
importantly Spark’s pyspark API does not provide access to Spark
listener, a class use to access spark’s monitoring statistic.

With limited accessibility provided by pyspark API, we cannot
change job scheduling pool during live operation, this stops us from being
able to create a framework that can dynamically assigned resource to
jobs. As we have found out later that it is possible with some method
overwrite with the Scala API.

For future research direction, re-implementing our framework in
Scala would provide more research opportunity by creating a dynamic job
prioritization, which can be done by reassigning job to job pools of
different weight to match their performance. In addition, we could also
implement a function to allow new stream process to be added on the fly

46

6 Appendix

6.1 Framework Code

written by Tanwa Sirisakdiwan
last updated 23/4/19

import dependancy
import threading

from pyspark import SparkConf

from pyspark.sgl import SparkSession

from pyspark.sgl.functions import explode

from pyspark.sqgl.functions import split

from pyspark.sgl.functions import trim

from pyspark.sqgl.functions import window

from pyspark.sgl.types import StructType

from pyspark.sgl.streaming import DataStreamReader

YTy Yy YYY; YTy Yy YYYY
BHABAABAAAFFAAFAAFAAAFFAHH#H VARIABLE #AFHAAFAARAAAFAAAFAA A A AR A A AFAHH

the number of available cores/worker, initially set to -1, value will change once application start
available_cores = -1

spark configuration, user can provide some spark config at initialization

conf = null

the list which will store the function object and streaming query object

that is registered by user from register() function in dictionary form

funcList = []

HHHT 7 7 HHH INITIALIZE FUNCTION #3 7 7 HHH T HHHD

create sparkcontext plus set config
function takes in app name, User's sparkConfig object
program will use default sparkconf if not provided (done by submitting -1)
function will return sparkcontext object for further referencing
def initialize(str, SparkConf):
check if sparkConf is provided
if SparkConf==-1:
set conf to spark default
conf = SparkConf()
else:
set conf to user's config
conf = SparkConf
set FAIR scheduling mode
conf = conf.set("spark.scheduler.mode", "FAIR")
start spark session
spark = SparkSession\
.builder\
.appName(str)\
.config(conf=conf)\
.getOrCreate()
get number of available core
available cores = spark.defaultParallelism
return spark

47

REGISTER FUNCTION

this function will store user function
takes in function object, the streaming query object used in the function
and string name used for identification
it then check if the function object is already registered in the funclist
def register(func, query, name):
check if number of registered function exceed the amount of core/worker available
if len(funcList)==available cores:
warn iIf the number of registered function exceed the amount of core/worker available
print("warning, no. of stream exceed available worker, some stream will be process in a queue")
check if function to add is a duplicate
if name in funcList:
print("this name already exist in the function list")
return False
for x in funcList.values():
func_stored = x["function"]
query_stored = x["query"]
if func_sored is func or query stored is query :
warn that function already exist/ is already registered
print("this function already exist in the function list")
return False
store func, query, and name as a dictionary into a list. user may access query to manage streaming gqueries
dict = {'function': func , 'query': query}
funcList[name] = dict
return true when sucessful
return True

HHAFEAFAFAFFAAFAFFAFAF##H## EXECUTE FUNCTION ###HFAHFH I IH AN AAAAA A AN
this function handle parallel execution of each stream function
returns the number of thread currently alive
def execute():
if len(funcList)==available cores:
warn if number of registered stream exceed available worker/core, stream will be process in queue
print("warning, no. of stream exceed available worker, some stream will be process in a queue")
for i in range(0,len(funcList)):
function = funcList[i]["function"]
query = funcList[i]["query"]
process = threading.Thread(target=function, args=query)
process.start()
process.join()
return threading.enumerate()

s ¢. Py Y . g i . ¢l e y.
HHHAAAAABA P AR AAAAA A FHHAH# GET FUNCTION #H#HH#HAHAAFFAAF A A TAF A A A

this function return the query object with matching key ‘name' to the user
takes in a string 'name' as argument
returns the query object
def get(name):

if name in funcList:

return funcList[name]["query"]
print("query not found")
return null

REFERENCES

[1] L. Wang, “Heterogeneous Data and Big Data Analytics,” Automatic Control and
Information Sciences, vol. 3, no. 1, pp. 8-15, Oct. 2017.

[2] “Apache Spark™ - Unified Analytics Engine for Big Data.” [Online]. Available:
https://spark.apache.org/. [Accessed: 13-Nov-2018].

[3] M. Marjani et al., “Big IoT Data Analytics: Architecture, Opportunities, and
Open Research Challenges,” IEEE Access, vol. 5, pp. 5247-5261, 2017.

[4] M. Zaharia et al., “Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing,” p. 14.

[5] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized
streams: fault-tolerant streaming computation at scale,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles - SOSP 13,
Farminton, Pennsylvania, 2013, pp. 423-438.

[6] M. Armbrust et al., “Structured Streaming: A Declarative API for Real-Time
Applications in Apache Spark,” in Proceedings of the 2018 International
Conference on Management of Data, New York, NY, USA, 2018, pp. 601-613.

[7] P. Tangsatjatham and N. Nupairoj, “Hybrid big data architecture for high-speed
log anomaly detection,” in 2016 13th International Joint Conference on
Computer Science and Software Engineering (JCSSE), 2016, pp. 1-6.

[8] D. Jankov, S. Sikdar, R. Mukherjee, K. Teymourian, and C. Jermaine, “Real-
time High Performance Anomaly Detection over Data Streams: Grand
Challenge,” 2017, pp. 292-297.

[9] D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milojicic, “Adaptive scheduling
of parallel jobs in spark streaming,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, 2017, pp. 1-9.

[10] M. Stonebraker, U. Cetintemel, and S. Zdonik, “The 8 Requirements of Real-
time Stream Processing,” SIGMOD Rec., vol. 34, no. 4, pp. 42-47, Dec. 2005.

[11] “Ganglia Monitoring System.” [Online]. Available: http://ganglia.info/.
[Accessed: 13-Nov-2018].

[12] “KDD Cup 1999 Data.” [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Accessed: 13-Nov-
2018].

[13] R. Jain, The Art of Computer Systems Performance Analysis: Techniques For
Experimental Design, Measurement, Simulation, and Modeling, NY: Wiley.
1991.

VITA

NAME Tanwa Sirisakdiwan
DATE OF BIRTH 8 December 1995
PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS Chulalongkorn University

ATTENDED

PUBLICATION 2019 2nd International Conference on
Communication Engineering and
Technology (ICCET 2019)

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivations
	1.2 Objectives
	1.3 Scope of Work
	1.4 Research Procedure
	1.5 Expected Benefits
	1.6 Content Structure
	1.7 Published Paper

	2 Technical Backgrounds and Related Works
	2.1 Technical Backgrounds
	2.1.1 IoT Streaming Data
	2.1.2 Heterogeneous Data
	2.1.3 Apache Spark
	2.1.4 Spark Streaming
	2.1.5 Spark Structured Streaming

	2.2 Related Works
	2.2.1 Hybrid big data architecture for high-speed log anomaly detection
	2.2.2 Real-time High-Performance Anomaly Detection over Data Streams: Grand Challenge
	2.2.3 Adaptive Scheduling of Parallel Jobs in Spark Streaming
	2.2.4 The 8 Requirements of Real-time Stream Processing

	3 Spark Streaming Framework for Large-Scale Multi-Stream Data Analytics.
	3.1 Multi-Stream Definition
	3.2 N-Application Multi-Stream Processing
	3.2.1 Application Submission
	3.2.2 Resource Overhead
	3.2.3 Monitoring Difficulty
	3.2.4 Coding Redundancy
	3.2.5 Job Scheduling

	3.3 Difficulties in Multi-Stream in Single Application
	3.3.1 Blocking Action in Multi-Stream in Single Application
	3.3.2 Redundant Data Reading in Spark Streaming
	3.3.3 Redundant Data Reading in Spark Structured Streaming

	3.4 Multi-Stream Applications In Spark Streaming vs Spark Structured Streaming
	3.5 Spark Streaming Framework for Real-Time Analytics of Multiple Heterogeneous Data Streams
	3.5.1 Satisfy Streaming Function Requirements.
	3.5.2 API and Functions
	3.5.2.1 Initialize Function
	3.5.2.2 Register Function
	3.5.2.3 Execute Function
	3.5.2.4 Get Function

	3.5.3 Framework Example
	3.5.4 Advantages of Single Application for Multi-Stream

	3.6 Framework Experimental Results

	4 Scheduling for Multi-Stream
	4.1 Job Scheduling in Spark
	4.2 Micro-batch Behavior of Spark Streaming and Structured Streaming
	4.3 Scheduling Modes in Spark
	4.3.1 FIFO Scheduling
	4.3.1.1 Job Queuing issues in FIFO

	4.3.2 FAIR Scheduling
	4.3.2.1 FAIR Scheduling limitation

	4.4 Alternatives for Solving Job Queuing in Multi-Stream
	 Increase computing power
	 Resource Partitioning
	 Dynamic Resource Allocation
	 FAIR scheduling

	4.5 Solving Job Queuing and Resource Scheduling in Multi-Stream
	4.6 Advantages of Using FAIR scheduler in Multi-Stream
	4.7 Experiments
	4.7.1 Experimental Environment
	4.7.2 Experiment Data
	4.7.3 Testing Scenario
	4.7.4 Test Cases
	4.7.5 Result Collection Method
	4.7.6 Performance Results
	4.7.7 Result Discussion

	5 Conclusion
	6 Appendix
	6.1 Framework Code

	REFERENCES
	VITA

