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ABSTRACT 

 

5971015063:   Petrochemical Technology Program 

   Tittawat Fongchantuk: Optimization Algorithm Study: Mixed  

  Integer Linear Programming.  

   Thesis Advisor: Asst. Prof. Kitipat Siemanond 216 pp. 

Keywords:    Optimization solver/ Supply chain/ Simplex/ Branch-and-Bound/ 

MILP 

 

In the present, many petrochemical and petroleum products (engine fuel, 

solvent, plastic and synthetic rubber. etc.) are important. They are transported by 

ship, pipe line or train every day. So, minimizing transportation cost and time or 

maximizing profit is an important key of every company. In this optimization 

process, the optimal supply chain must be well developed in mathematical 

programming with the objective function of minimum cost or maximum profit and 

be solved by using optimization solvers. Objective functions and their constraints are 

solved by suitable types of optimization solvers: Linear programming (LP) and 

mixed integer linear programming (MILP). MILP is one of the most widely used 

optimization technique for designing supply chain, and developed by using linear 

programming and branch-and-bound technique. In this research, MILP algorithm is 

studied and developed on FORTRAN 4.0 to study MILP procedure, and then it is 

applied with case study of biofuel production supply chain. Finally, the results are 

validated with solver in Microsoft Excel. The result shows that the MILP algorithm 

can show many solutions with one optimum point for multiple optimum problems for 

benefit of alternative solutions, while only one solution is obtained from solver in 

Microsoft Excel. Moreover, the optimal SCNPV from the algorithm is close to one 

from Microsoft Excel. It shows that the MILP algorithm is high efficient for 

accuracy solution and benefit for alternative of suitable solutions in optimizing 

supply chain problems. 
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บทคัดย่อ 
 

 ฐิตวัฒน์ ฟองจันทึก : การศึกษาอัลกอริทมึของ Optimization: Mixed Integer linear 
Programming (Optimization Algorithm Study: Mixed Integer Linear Programming) อ. ที่
ปรึกษา : ผู้ช่วยศาสตราจารย ์กิติพัฒน์ สีมานนท์ 216 หน้า 
 
 ในปัจจุบันเคมภีัณฑ์และผลิตภัณฑ์จากปิโตรเลียมและปิโตรเคมีต่างๆ เช่น เชือ้เพลิง
เครื่องยนต ์ สารท าละลาย พลาสติก และยางสังเคราะห์ เป็นต้น มีความส าคัญอย่างมาก ซึ่งมีการ
ขนส่งอย่างต่อเนื่องเป็นประจ าทุกวันโดยทางเรือ ท่อขนส่ง และรถไฟ เป็นต้น ด้วยเหตุนี้การลด
ต้นทุนและเวลาในการขนส่งผลิตภัณฑ์ตา่งๆ ให้น้อยที่สุด และการเพิ่มก าไรให้มากที่สุดจึงเป็นปัจจัย
ส าคัญปัจจัยหนึง่ในอุตสาหกรรม ในกระบวนการการหาจุดที่ดีที่สุดนี้ (Optimization) ห่วงโซ่
อุปทาน (Supply chain) จะถูกพัฒนาขึ้นให้อยู่ในรปูของสมการทางคณิตศาสตร์ส าหรับการลด
ต้นทุนหรือเพิ่มก าไร จากนัน้จึงแกส้มการโดยใช้ Optimization solver ที่เหมาะสม เช่น Linear 
Programming (LP) และ Mixed Integer Linear Programing (MILP) เป็นต้น MILP เป็นหนึ่งใน 
solver ที่ถูกใช้อย่างแพร่หลายที่สุดสุดที่ใชส้ าหรับแก้ปัญหาห่วงโซ่อุปทานซึ่งประกอบด้วย 2 เทคนิค 
ได้แก่ LP และ Branch-and-Bound ในงานวิจัยนี้อัลกอริทึมของ MILP ถูกพัฒนาขึ้นบนโปรแกรม 
Fortran 4.0 เพื่อศึกษากระบวนการท างานของ MILP solver จากนั้นกรณีศึกษาของห่วงโซ่อุปทาน
ในการผลิตเช้ือเพลิงชีวภาพจะถูกใช้เพ่ือประเมินการท างานของโปรแกรม ในที่สุดผลจากการทดลอง
จะถูกน าไปประเมินร่วมกับ solver ของ Microsoft excel จากผลการทดลองพบว่า โปรแกรม
สามารถแสดงค าตอบที่มีค่า optimum เท่ากันได้หลายค าตอบส าหรับปัญหาที่เป็น multiple 
optimum ซึ่งเป็นประโยชน์อย่างมากส าหรับการเลือกใช้ค าตอบที่เหมาะสมในขณะที่ solver ของ 
Microsoft excel แสดงได้เพียงค าตอบเดียวเท่านั้น และนอกจากนี้ค่า SCNPV จากโปรแกรมยังมีค่า
ใกล้เคียงกับค่า SCNPV จาก solver ของ Microsoft excel อีกด้วย ซึ่งถือได้ว่า อัลกอริทึมสามารถ
ท างานได้อย่างมีประสิทธิภาพแม่นย า และมีประโยชน์ทางด้านให้หลายตัวเลือกที่เหมาะสมส าหรับ
ปัญหาห่วงโซ่อุปทาน 
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CHAPTER I 

INTRODUCTION 

 

Normally in production processes and supply chains, many procedures such 

as transportation, warehouse, production process or demand market, would be 

managed efficiently (Sharifizadeh, 2015). However due to complexity with their 

networks and many routings, targets of the systems such as profit, cost and 

production time are difficult to be managed. Examples for production processes and 

supply chains are LNG supply chain, biofuel transportation and supply chain and 

supply chain network in toothbrush industry. Moreover, production processes contain 

many network processes such as network of heat exchangers, oil blending and water 

or substance controlling. These supply chains and production processes would be 

developed in mathematical model that involve many variables and constraints. 

However due to complexity of the constraints and variables, the problems are 

difficult to be solved without computer programming 

Optimization solver is computer program to find optimum point of objective 

function with its constraints. Algorithm of the solver is designed to solve specific 

problems: Linear Programming (LP) to solve linear equation problems, Integer 

Programming (IP) to solve linear equation problems with integer solutions, Mixed 

Integer Linear Programming (MILP) to solve linear equation problems with mixed-

integer real solutions and Mixed Integer Non-linear Programming (MINLP) to solve 

non-linear equation problems with mixed-integer real solutions (Edgar, 1989). To 

select types of optimization solver, many factors would be considered, such as type 

of the problems, number of variables and constraints or license price. 

Before optimization solver is applied, mathematical models of the problems 

are formulated including with objective function and constraints. However, due to 

complexity and many numbers of variables and constraints, computational time and 

different solutions would be obtained from different solvers. Furthermore, many 

problems have often occurred in solving complex problems, such as a long 

computational time, program error and variable and constraint limitation. To study 

solver algorithm would help to understand solving algorithm. Therefore, the solver 

algorithm would be studied for understanding and reducing the problems. 
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However, only one optimum solution of the problem is obtained from 

commercial optimization solver. This makes users don’t have choice to choose 

suitable solution. Improving the mathematical model is only one way to obtain new 

suitable solution, which makes users too long and too complicated to obtain other 

solutions. So, obtaining multiple optimum solutions from multiple optimum 

problems with only one solving is much benefit for alternative solutions and to 

eliminate time improving mathematical model. In this research, the optimization 

solver is developed and studied to find the way of multiple optimum solutions also. 

Moreover, for the programming most of mathematical models used in 

industry and supply chain are developed on mixed integer linear programming 

(MILP) form and mixed integer non-linear equation (MINLP) form because they 

consist decision variables and continuous variables (integer variables is substituted 

by decision variables and the other is substituted by continuous variables) (Hillier, 

2010). So in this research, optimization solver algorithm is studied on mixed integer 

linear programming (MILP). The algorithm is developed with simplex method and 

branch-and-bound technique, which are used in commercial solvers such as OSL, 

CPLEX, LINDO and ZOOM. Consequently, MILP is the most interesting 

programming to study for the problems of supply chains, which consists of 2 

methods: simplex method and branch-and-bound. 

However, for programs which are used to develop optimization solvers, 

there are many languages such as C, C++, Java, Matlab and Fortran. In developing 

optimization solver, the programs used to develop must efficiently work on complex 

source code with many array variables and complex calculation, because 

optimization algorithm uses very complex calculation and many array variables 

which is difficult to check error or to develop and improve the algorithm. Moreover, 

the program must be used on every computer processor for that it can be used on 

both high and low efficient processor computers. Most of the programs such as 

Matlab have many functions to help work, but that makes them to be too much 

memory, which only highly efficient processor computers can be used. Moreover, 

many programs such as C and C++ can not be used for complex source codes and 

complex calculation. However, Fortran is a program that is developed for scientific 

work which can be efficiently used for complex source codes and complex 
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calculation and can be used on both high and low efficient processor computers. So, 

Fortran is the most interesting for developing thee optimization solvers. 

In this research, MILP is studied and developed on Fortran 4.0 to study the 

calculation procedures for supply chain problems to be benefit for understanding the 

optimization solver work and be advantage for using optimization solver efficiently 

for supply chain problems and improving optimization solver in the future. After 

developing MILP algorithm, biofuel production supply chain is used to evaluate the 

algorithm, and validated with solver of Microsoft Excel. 



 
 

CHAPTER II                            

THEORETICAL BACKGROUD 

 

MILP is used to solve linear problem with linear constraints to find mixed 

integer-continuous variables at optimum point. The best choice and the best value of 

the variables will be binary (0-1), where 0 is for unselected decision variables and 1 

is for selected decision variables (Edgar, 1989).  

To study MILP algorithm, 2 procedures: simplex method and branch-and-

bound technique, are focused. Simplex method is used to solve linear programming 

problem, and branch-and-bound technique is used to solve IP and MILP problem.  

 

2.1  Linear Programming (LP) 

 

Linear programming is used to find the optimal point of linear objective 

function with linear constraints. Generally, there are many methods used for LP such 

as graphical method and simplex method, dependent on the problems (Edgar, 1989).  

Problems that can be solved by simplex method must be in following form: 

  

1. Objective function must be in linear equation 

  Maximize/Minimize 𝑓(𝑥) =  ∑ 𝑐1𝑥𝑖
𝑟
𝑖=1  

 2. Constraints of problems must be in linear equation or non-equation 

  Subject to ∑ 𝑎𝑗𝑖𝑥𝑖 =  𝑏𝑗
𝑟
𝑖=1  j = 1, 2, . . . , m 

    ∑ 𝑎𝑗𝑖𝑥𝑖  ≥  𝑏𝑗
𝑟
𝑖=1  j = m + 1, . . . , p 

 3. All variables must be greater than or equal to 0 

  Subject to 𝑥𝑖  ≥ 0  i = 1, 2, . . . , r 

  (All r of the variables are nonnegative) 

 

There are 3 procedures in simplex method. 

 1. Express the standard form of LP in table 

 2. Select a starting basic feasible solution (BFS) 

 3. Generate a new BFS until optimal solution is found
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Examples for simplex method are shown in sections 2.1.1 and 2.1.2. 

 

2.1.1  Problems That Have (≤) Form In All Constraints 

Example Minimize z = - 3X1 – 2X2 + 5X3 

  Subject to X1 + 2X2 + X3 ≤ 430 

      3X1 + 2X3       ≤ 450 

       X1 + 4X2         ≤ 420 

  Give X1, X2, X3 ≥ 0 

 

Solution 

1. Set right hand side of objective function to be number 

2. Set right hand side of all constraints to be number and ≥ 0, then 

change ≤ to = with adding slack number (S) to left hand side of all constraints. 

 

   z + 3X1 + 2X2 – 5X3 = 0 

    X1 + 2X2 + X3 + S1  = 430 

    3X1 + 2X3 + S2        = 450 

    X1 + 4X2 + S3          = 420 

   Give X1, X2, X3, S1, S2, S3 ≥ 0 

 

3. Set a standard LP table 

 

Basic z X1            X2            X3 S1              S2                    S3 b Ratio 
z 1 3               2             -5 0                0               0 0  
S1 0 1               2              1 1                0               0 430  
S2 0 3               0              2 0                1               0 450  
S3 0 1               4              0 0                0               1 420  

 

4. In the first table, S1, S2 and S3 are basic feasible solutions (BFS), 

which are 430, 450 and 420, respectively. The z value in the first table is 0. However, 

it is not the best solution because there are positive values in the first row, which are 

3 and 2. In minimization, all values in the first row must be negative or 0 to obtain 

the optimum z (in maximization, all values in the first row must be positive or 0). 
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5. The column that has the most positive value in the first row is 

called pivot column. The variable of pivot column is an entering variable, and in this 

table entering variable is X1. The value in b column is divided by the value in pivot 

column for each row to find ratio. The row that has the least ratio is called pivot row. 

The variable of pivot row is a leaving variable, and in this table leaving variable is 

S2. The leaving variable (S2) is substituted by the entering variable (X1) in basic 

column. The variable which is intersection of the pivot column and pivot row is 

called pivot number, now it is 3. 

 

Basic z X1              X2              X3 S1               S2              S3 b Ratio 
z 1  3                2             -5 0                 0                0 0  
S1 0  1                2              1 1                 0                0 430 430/1 
X1 0  3                0              2 0                 1                0 450 450/3 
S3 0  1                4              0 0                 0                1  420 420/1 

 

6. All of values in pivot row will be divided by pivot number 

 

Basic z X1             X2           X3 S1               S2               S3 b Ratio 
z 1 3                2            -5 0                 0                0 0  
S1 0 1                2             1 1                 0                0 430 430/1 
X1 0 1                0           2/3 0                1/3                0 150 450/3 
S3 0 1                4             0 0                 0                1  420 420/1 

 

7. Make all of values in pivot column except pivot number to be 0 

with the equation of Gauss-Jordan below: 

 

New row = Old row – (Old Pivot Column × New Pivot row) (1) 

 

For example, in the first row, 3 - 3×1  = 0 

  2 - 3×0  = 2 

  -5 - 3×(2/3) = -7 

      0 - 3×0 = 0 

      0 - 3×(1/3) = -1 

      0 - 3×0 = 0 
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Basic z X1              X2              X3 S1               S2                  S3 b Ratio 
z 1 0               2              -7 0                -1                0 -450  
S1 0 0                2             1/3 1                -1/3             0 280  
X1 0 1                0             2/3 0                 1/3              0 150  
S3 0 0                4            -2/3 0                -1/3             1  270  

 

8. New BFS values are S1, X1 and S3 = 280, 150 and 270, respectively. 

However, there are positive values in the first row, so the same previous procedure is 

used to obtain new BFS. New entering variable is X2, new leaving variable is S3 and 

new pivot number is 4. 

 

Basic z X1           X2               X3 S1              S2               S3 b Ratio 
z 1 0             2                 -7 0                -1                 0 -450  
S1 0 0              2               1/3 1                -1/3                 0 280 280/2 
X1 0 1              0               2/3 0                 1/3              0 150  
S3 0 0              4              -2/3 0                -1/3              1  270 270/4 

 

The equation (1) is used to obtain new table shown below. 

 

Basic z X1              X2              X3 S1               S2               S3 b Ratio 
z 1 0                0          -20/3 0              -5/6            -1/2      -585  
S1 0 0                0             2/3 1               -1/6           -1/2        145  
X1 0 1                0            2/3 0               1/3              0 150  
X2 0 0                1             -1/6 0              -1/12           1/4      67.5  

 

The new BFS values are S1, X1 and X2 = 145, 150 and 67.5, respectively. Now there 

are no positive values in the first row, so this solution is the best solution. The 

solution for this example are X1 = 150, X2 = 67.5, X3 = 0, S1 = 145, S2 = 0, S3 = 0 

and z = -585 

 

2.1.2  Problems That Have (=) Or (≥) In Their Constraints 

In this problem type, special variable will be added into left hand side 

of constraints, called artificial variable (R). +R will be added into constraints having 

(=), and –S+R will be added into constraints having (≥). Then in left hand side of 

objective function, R variable will be added into with M coefficient (+M for 

maximization, -M for minimization), M is 1 million. Moreover, R variable will not 
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be entering variable, if it was ever leaving variable for only one time. Finally, in the 

last standard table, all of R variables must be 0; if not, there is no solution for that 

problem. 

 

Example Maximize z = 3X1 + 5X2 

  Subject to X1                  ≤ 4 

    2X2                ≤ 12 

    3X1 + 2X2       = 18 

  Give X1, X2 ≥ 0 

 

Solution 

1. Set right hand side of objective function to be number 

2. Set right hand side of all constraints to be number and ≥ 0. Then if 

there is  ≥ in the constraints, ≥ must be changed to = and –S+R will be added into 

left hand side. If it is =, only +R is added into left hand side. 

 

   z - 3X1 - 5X2 +MR = 0 

    X1 + S1                  = 4 

    2X2 + S2                = 450 

    3X1 + 2X2 + R      = 18 

   Give X1, X2, S1, S2, R ≥ 0 

 

3. Eliminate R variable in objective function by substitute R = 18 -3X1 

-2X2. Then new objective function is z – (3M + 3)X1 – (2M +5)X2 = -18M. 

4. Set standard LP table 

 

Basic z       X1                X2             S1               S2              R b Ratio 
z 1   -3M-3            -2M-5             0                 0              0 -18M  
S1 0       1                  0             1                 0              0 4  
S2 0       0                  2             0                 1              0 12  
R 0       3                  2              0                 0              1  18  
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5. In the first table, S1, S2 and R are Basic feasible solutions (BFS). 

The value of z is 0. However, in the first row there are negative values, so they are 

not the best solution.  

6. In the standard table, X1 is Entering Variable, S1 is Leaving 

Variable and Pivot number is 1. 

 

Basic z       X1                 X2             S1                S2                  R b Ratio 
z 1   -3M-3            -2M-5             0                 0                 0 -18M  

X1 0       1                   0             1                 0                 0 4 4/1 
S2 0       0                   2             0                 1                  0 12  
R 0       3                   2              0                 0                 1  18 18/3 

 

7. Do the same with 6, 7 in 2.1.1 section. 

 

Basic z       X1                   X2               S1               S2             R b Ratio 
z 1        0               -2M-5             3M+3           0             0 -6M+12  

X1 0       1                      0               1                 0             0 4  
S2 0       0                      2               0                 1             0 12  
R 0       0                      2                -3                0             1  6  

  

8. They are not the best solution because there is negative value in the 

first row, so we must find new BFS. New entering variable is X2, new leaving 

variable is R and pivot number is 2.  

 

Basic z      X1               X2                 S1           S2            R b Ratio 
z 1      0             -2M-5              3M+3         0           0 -6M+12  

X1 0      1                 0                1              0            0 4  
S2 0      0                 2                0              1            0 12 12/2 
X2 0      0                 2                -3              0            1  6  6/2 

 

9. Do the same with 6, 7 in 2.2.1 section. 

 

Basic z         X1                X2               S1              S2              R b Ratio 
z 1         0                   0            -9/2             0           M+5/2 27  

X1 0         1                   0              1                0                0 4 4/1 
S1 0         0                   0              3                1               -1 6 6/3 
X2 0         0                   1              -3/2             0              1/2  3  
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10. In the first row, there is negative value, so we do the same with 

previous procedure. 

 

Basic z          X1               X2             S1                S2                R b Ratio 
z 1            0                 0            0                 3/2           M+1 36  

X1 0           1                 0             0                -1/3               1/3 2  
S1 0           0                 0             1                 1/3               -1/3 2  
X2 0           0                 1              0                  1/2                 0 6  

 

This is the best solution because there is no negative value in the first row. So X1 = 2, 

X2 = 6, S1 = 2, S2 = 0, R = 0 and z = 36. 

For the problem that have ≥ in constraints, –S + R will be add into the 

left hand side of that constraint, but only R variable is the first BFS. 

 

Example Minimize z = 4X1 + X2 

  Subject to 3X1 + X2     = 3 

    4X1 + 3X2    ≥ 6 

    X1 + 2X2      ≤ 3 

  Give X1, X2 ≥ 0 

 

Then we obtain z + (7M – 4)X1 + (4M-1)X2 – MS1 = 9M 

   3X1 + X2 +R1               = 3 

   4X1 + 3X2 –S1 + R2    = 6 

   X1 + 2X2 +S2               = 3 

Give X1, X2, S1, S2, R1, R2 ≥ 0 

 

Basic z      X1           X2                 S1            R1          R2          S2                     b Ratio 
z 1    7M-4      4M-1              -M             0            0           0            9M  

R1 0      3             1                0              1            0           0              3  
R2 0      4             3               -1             0            1            0               6  
S2 0      1             2                  0             0            0            1        3  

 

The steps to solve this problem are the same as the previous examples. 

All of the tables show below. 
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Basic z      X1           X2                 S1            R1          R2          S2                     b Ratio 
z 1      0      (5M+1)/3              -M       (4-7M)/3     0           0            4+2M  

X1 0      1            1/3                0             1/3          0           0              1 3 
R2 0      0            5/3               -1           -4/3          1           0               2 6/5 
S2 0      0            5/3                  0           -1/3          0           1        2 6/5 

 

Basic z      X1           X2                 S1            R1          R2          S2                     b Ratio 
z 1      0             0             1/5        8/5-M    -1/5-M      0            18/5  

X1 0      1             0              1/5           3/5        -1/5         0              3/5 3 
X2 0      0             1             -3/5         -4/5          3/5         0               6/5 - 
S2 0      0             0                  1             1           -1            1        0 0 

 

Basic z      X1           X2                 S1            R1          R2          S2                     b Ratio 
z 1      0             0               0          7/5-M      -M       -1/5            18/5  

X1 0      1             0                0             2/5          0        -1/5              3/5  
X2 0      0             1                0           -1/5          0          3/5              6/5  
S1 0      0             0                  1             1           -1            1        0  

 

The results from the solving are 3.6 for the minimum point. X1 and X2 

are 0.6 and 1.2, respectively. 

 

2.2  Branch-And-Bound 

 

Branch-and-bound is technique used to solve both of mixed-integer (MILP) 

and pure-integer (IP) problems. This technique is very advantage to decrease the 

procedures in searching for the optimal point. Generally, numbers of solution in IP 

and MILP problems are calculated with Cn (C is number of decisions and n is 

number of integer variables). But in this branch-and-bound technique, the feasible 

solution will be branched to current subproblems to find the best solution, which 

reduce solving procedures. This technique is separated to 2 types: binary integer 

programming (BIP), and mixed integer linear programming (MILP) (Hillier, 2010). 

 

2.2.1  Branch-And-Bound For Integer And Mixed-Integer Linear Solution 

Mixed integer linear programming (MILP) is used to solve linear 

problem with mixed-integer-real variables. The problem that has only integer 
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variables is called integer linear programming (IP). Normally, general form of MILP 

problem is 

 

Maximize/Minimize  𝑍 =  ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 , 

Subject to ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1  ≤  𝑏𝑖, for i = 1, 2, . . . , m, 

And  𝑥𝑗  ≥ 0, for j = 1, 2, . . . , n, 

  𝑥𝑗 is integer, for j = 1, 2, . . . , I; 𝐼 ≤ 𝑛. 

(If I = n, the problem is pure IP problem.) 

 

For MILP, the general integer-restricted variable could have very 

large numbers of possible integer values. Therefore, two ranges of the subproblems 

would be specified. Simplex method will be used for LP relaxation in current 

subproblem. Then, the integer-restricted variable will be taken upper bound and 

lower bound and branched to other nodes for integer solution. 

To descript how this is done, 𝑥𝑗 is identified as the current branching 

variable, and 𝑥𝑗
∗ is identified as its value from the current subproblem. Using square 

brackets to denote 

[𝑥𝑗
∗] = greatest integer ≤ 𝑥𝑗

∗, 

the range of the two new subproblems would be specified 

𝑥𝑗  ≤  [𝑥𝑗
∗] and 𝑥𝑗  ≥  [𝑥𝑗

∗] + 1, 

respectively. The inequalities will be added to constraint of the two new subproblem. 

Finally, 𝑥𝑗 would be fixed to one integer value. The example shows in Fig. 2.1 
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Figure 2.1  Bounding and branching example for the two new subproblem. 

 

From Fig. 2.1, if 𝑥𝑗
∗ =  3

1

2
, then 

𝑥𝑗  ≤  3 and 𝑥𝑗  ≥  4, 

are the additional constraints for the new subproblems. When solution from the 

subproblem is 11

4
, the additional constraints 𝑥1  ≤  1 and 𝑥1  ≥  2 would be added in 

the two new subproblem (𝑥1  ≤  3 is still additional constraint). When the 𝑥1  ≤  1 

subproblem is solve, the solution is 3

4
. The new subproblem would be created as 

𝑥1  ≤  0 and 𝑥1  ≥  1, so 𝑥1 = 0 and 1. The MILP branch-and-bound could be 

summarized as below: 

 

1. Branching: For branching to the new subproblem, let 𝑥𝑗 be integer-

restricted variable from the current subproblem and 𝑥𝑗
∗ is its value from LP 

relaxation. Identified the two new subproblems as 𝑥𝑗
∗  ≤  [𝑥𝑗

∗] and 𝑥𝑗
∗  ≥  [𝑥𝑗

∗] + 1 

respectively, when [𝑥𝑗
∗] = greatest integer ≤ 𝑥𝑗

∗. 

2. Bounding: For each new subproblem, used simplex method to 

solve, and obtain Z value for resulting optimal solution. 

3. Fathoming: For each new subproblem, discard the subproblems that 

are fathomed by any of following tests. 

Test 1: Its bound ≤ 𝑍∗, where 𝑍∗  is Z from the current incumbent. 
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Test 2: The subproblem has no feasible solution. 

Test 3: All of the integer-restricted variables are integer value. 

 

Example Maximize Z = 4X1 – 2X2 + 7X3 – X4 

  Subject to X1 + 5X3  ≤ 10 

    X1 + X2 - X3  ≤ 1 

    6X1 - 5X2  ≤ 0 

    -X1 + 2X3 – 2X4 ≤ 3 

  X1, X2, X3, X4 ≥ 0 

X1, X2, X3 are integer. 

 

Before using MILP technique, the continuous solutions are be 

obtained by LP optimization (simplex method). The branch-and-bound performance 

for the example shows in Fig. 2.2 and is descripted as follow: 

Node 1: The continuous solutions are obtained by LP with non-integer 

solutions. Node 2 is branched from Node 1 with X1 ≥ 2, and is solved by LP. 

Node 2: There are no feasible solutions in this node because of non-

balance of the constraints. Therefore, there is no branching from this node with the 

second fathoming.  

Node 3: This node is branched from Node 1 with X1 ≤ 1, and is 

solved by LP. X1 is 1, which is integer. However, X2 and X3 are not. So this solution 

is not the correct solution. Node 4 would be branched from this node with X2 ≥ 2 

because X2 is 1.2. 

Node 4: X2 is 2, which is integer, but the others are not. So it is not the 

correct solution. However, X1 become non-integer because of the constraint X1 ≤ 1, 

it is not fixed as integer value. Therefore, Node 5 would be branched with X1 ≥ 1. 

Node 5: With non-balance of constraints, this node has no the feasible 

solution. 

Node 6: This node is branched from Node 4 with X1 ≤ 0. In this node, 

all integer-restricted variables are integer: X1, X2, and X3 = 0, 2 and 2, respectively. 

The Z value is 9.5. The Node branch stops with the third fathoming. 
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Node 7: Equation (X2 ≤ 1) is added to the constraints of this node 

with branching from Node 3. The solutions are not the correct solutions because of 

non-integer values. Node 8 and Node 9 are branched with X1 ≥ 1 and X1 ≤ 0, 

respectively.  

Node 8 has no feasible solution. And all integer-restricted variables 

are integer in Node 9. The Z value is 13.5, and Node branching stops. 

From 9 nodes, the nodes that are the correct solution (all integer-

restricted variables are integer), are Node 6 and Node 9. Z from Node 9 is 13.5, 

while one from Node 6 is 9.5. So the best solution for this example is 13.5 with X1, 

X2, X3 and X4 are 0, 0, 2 and 0.5, shown in Node 9 in Fig. 2.2. 

 

 
 

Figure 2.2  Branch and bound technique for integer linear program. 
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2.2.2  Branch-And-Bound For Binary Solution (0 And 1) 

Binary integer programming (BIP) is used to solve linear problem 

with binary (0, 1) solution. Normally, BIP is used for decision problems. The solving 

procedure (branch-and-bound) is the same with MILP, but it is different with adding 

(≤) equation to the constraint to fix range of the binary variable value as 0 and 1. 

 

Example Maximize f = 86X1 + 4X2 + 40X3 

  Subject to 774X1 + 76X2 + 42X3 ≤ 875 

    67X1 + 27X2 + 53X3 ≤ 875 

  Give X1, X2, X3 = 0, 1 

 

The example is pure integer problem. The problem will be solved by 

branch-and-bound technique. Three new constraints are added to the constraints: 

    X1 ≤ 1 

    X2 ≤ 1 

    X3 ≤ 1. 

The BIP procedures show in Fig. 2.3 and are described as follows: 

Node 1: Obtain continuous solution by LP technique, and all variables 

are ≤ 1. X1 = 1, X2 = 0.776, X3 = 1. 

Node 2: At the first node, X2 is not integer, so Node 2 will be 

branched from the first node and X2 will be set to ≥ 1. Then, LP is used to solve. 

(For X2 ≤ 0 will be branched for solving later) 

Node 3: At Node 2, X1 is 0.978, not integer. So it branches to Node 4 

and sets X1 ≥ 1, and then does LP relaxation. 

Node 4: At Node 3, X3 is 0.595, not integer. Node 4 is generated for 

X3 ≥ 1. Because of non-balance in constraints, so Node 4 is not feasible solution and 

the node branching stops. 

Node 5: this is branched from Node 3 with X3 ≤ 0. All integer-

restricted variables are integer. The f value is 90.0. And the node branching stops 

because of this. 
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Node 6: this node is branched from Node 2 with X1 ≤ 0. All integer-

restricted variable are integer with f = 44.0. 

Note 7: This Node is branched from Node 1 with X2 ≤ 0. The 

objective function is 126 with integer solutions. 

From 7 Nodes, 3 Nodes: Note 4, 5 and 6, give feasible solutions. Node 

6 gives the greatest value of f, 126.0. So this node is the best solution. X1, X2 and X3 

= 1, 0 and 1 respectively, shown in Node 7 in Fig. 2.3. 

 

 
 

Figure 2.3  Branch and bound technique for integer linear program. 

 

So, BIP can be concluded to 2 steps: 

 1. Add 𝑋𝑗 ≤ 1 into the constraints for integer-restricted variables. 

 2. Do the next procedures the same as MILP procedures. 



18 
 

Moreover, most of the decision problems consist of both decision 

variables (0, 1) and continuous variables (real value). For this case, the example is 

shown below. 

 

Example Maximize Z = 5X1 + 7X2 + 3X3 

  Subject to X1 ≤ 7 

    X2 ≤ 5 

    X3 ≤ 9 

    X1 – 100y1 ≤ 0 

X2 – 100y2 ≤ 0 

    X3 – 100y3 ≤ 0 

    y1 + y2 + y3 ≤ 2 

    3X1 + 4X2 + 2X3 - 100y4 ≤ 30 

    4X1 + 6X2 + 2X3 - 100y4 ≤ 4,000 

  Give X1, X2 and X3 ≥ 0 

   y1, y2, y3 and y4 are binary. 

 

The example is solved by using branch-and-bound technique. In the 

first step, the linear programming is used to solve for the continuous solution. The 

branch-and-bound technique is used to find the BIP solution. The procedure for 

solving shows in Fig. 2.4. 

In the first node, the continuous solution is obtained by linear 

programming. All of integer-restricted variables are not binary. So the second node is 

branched from the first node by adding y1 ≥ 1. 

In the second node, the LP relaxation is used to solve the problem. 

The y1 and y4 are 1, binary. But y2 and y3 are not binary, so the third node is branched 

by adding y2 ≥ 1 to the constraints. 

After the solution is obtained from the LP relaxation in the third node, 

all of integer-restricted variables are binary. The maximum point for this node is 70. 

For the forth node and the fifth node, the maximum points are 62. 

These maximum points are less than 70, so these nodes stop the branching. So the 
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best maximum point for the problem is 70 with 1, 1, 0 and 1 for y1, y2, y3 and y4, 

respectively, shown in subproblem 2 in Fig. 2.4. 

 

 
 

Figure 2.4  The example for BIP (mixed binary real). 
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LITERATURE REVIEW 

 

1.  An MILP model for optimization of a small-scale LNG supply chain along a 

coastline 

 

Jokinen et al. (2015) generally, natural gas is transported in liquid form, 

called liquefied natural gas (LNG). It is transported through small terminal networks 

that combine with sea and land by ship. However, the supply chain network building 

is complicated and has high cost. 

In this research, mathematical model of optimization for minimizing the 

cost is presented for LNG supply chain. For the case study, energy requirement of a 

country is designed under different cost structures for LNG and for land-based 

transportation. 

The IBM ILOG CPLEX Optimization Studio 12.5 optimization software 

was performed on a computer running a 64-bit Windows 7 operating system with a 

3.5 GHz Intel Core i7 processor and 16 GB of RAM. The test case problem included 

630 binary, 360 integer and 1924 continuous variables. 

 

2.  Deployment of a hydrogen supply chain by multi-objective/multi-period 

optimization at regional and national scales 

 

Almaraz et al. (2015) in this paper, a methodological framework for the 

design of a five-echelon hydrogen supply chain (HSC) (energy source, production, 

storage, transportation and fuelling station) are developed by considering the 

geographic level of implementation. Three objectives have to be optimised 

simultaneously, i.e., cost, global warming potential and safety risk are studied based 

on mixed integer linear programming. Roadmaps in the French is considered for data 

collection and demand scenarios. The results between different geographic scale 

cases is compared. 

The model is formulated within GAMS environment, and solved using 

CPLEX 12. 
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3.  Supply chain optimization of residual forestry biomass for bioenergy 

production: The case study of Portugal 

 

Paulo et al. (2015) normally, renewable energies is good alternative energy. 

However, for the renewable energies, problems in the present is sourcing problems. 

The bioenergy can be an attractive solution if effectively managed.  

In this paper, the supply chain design is presented by mathematical 

programming to study the design of the residual forestry biomass to bioelectricity 

production in the Portuguese context. The design and planning of the bioenergy 

supply chain is optimized by a mixed integer linear programming (MILP) model. 

The model consist of the optimal selection of biomass amounts and sources, the 

transportation modes selection, and links that must be established for biomass 

transportation and products delivers to markets. Results illustrate the positive 

contribution of the mathematical programming approach to achieve viable economic 

solutions.  

 

4.  Optimization-based approach for strategic design and operation of a 

biomass-to-hydrogen supply chain 

 

Woo et al. (2016) design and operation of a renewable hydrogen system are 

optimized from various types of biomass. Mixed integer linear programming model 

is developed to determine the optimal logistics decision-making to minimize the total 

annual cost for a comprehensive biomassto-hydrogen (B2H2) supply chain with 

import and inventory strategies. The optimal design of the supply chain and main 

cost-drivers, manage logistics operations against fluctuations of biomass availability 

and hydrogen demand, and making strategic decisions for planning the B2H2 system 

such as capital investment and energy import planning is identified in this paper. A 

case study of an upcoming B2H2 supply chain for the transportation sector at Jeju 

Island, Korea, is analyzed.  

The proposed MILP model is executed in General Algebraic Modeling 

System (GAMS) software for computational experiment. A B2H2 supply chain with 
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operational schedule is designed considering the available parameters in 2040, Jeju 

Island (see session 4.). The case is solved using CPLEX 12.4.0.1 Solver. 

5.  Supply chain network design and operation: Systematic decision making for 

centralized, distributed, and mobile biofuel production using mixed integer 

linear programming (MILP) under uncertainty 

 

Sharifzadeh et al. (2015) the biofuel is one good alternative energy with 

cheap process and can be conducted in centralized, decentralizes, or mobile 

configurations. Generally, wastes or lignocellulose is used in the process without 

human food, so it is not overlap with the human food supply chain. And several 

advantages is obtained for biofuel production from fast pyrolysis. However, biomass 

resources are dispersed and subject to seasonal and geographical uncertainties. So in 

this research, a mixed integer (piece-wise) linear program (MILP) was developed to 

determine the optimal supply chain design and operation, under uncertainty. 

Rigorous process modelling and detailed economic analysis were coupled with 

exhaustive search of potential production locations and biomass resources in order to 

enhance the fidelity of the solution.  

The optimisation problem was programmed as a mixed integer linear 

program (MILP), implemented in GAMS and was solved with CPLEX 12.1.0. 
 

6.  Cost optimization of biofuel production – The impact of scale, integration, 

transport and supply chain configurations (Jong, 2017) 
 

Jong et al. (2017) in this research, the optimization model is presented to 

analyze the impact of four cost reduction strategies for biofuel production: 

economies of scale, intermodal transport, integration with existing industries, and 

distributed supply chain configurations (i.e. supply chains with an intermediate pre-

treatment step to reduce biomass transport cost). The model assessed biofuel 

production levels ranging from 1 to 150 PJ a-1 in the context of the existing Swedish 

forest industry. Biofuel was produced from forestry biomass using hydrothermal 

liquefaction and hydroprocessing. Disabling the benefits of integration favors large-

scale centralized production, while intermodal transport networks positively affect 
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the benefits of economies of scale. As biofuel production costs still exceeds the price 

of fossil transport fuels in Sweden after implementation of all cost reduction 

strategies, policy support and stimulation of further technological learning remains 

essential to achieve cost parity with fossil fuels for this feedstock/technology 

combination in this spatiotemporal context. The model was written in GAMS using a 

CPLEX solver. 

 

7.  Optimal design and planning of biodiesel supply chain considering non-

edible feedstock 

 

Babazadeh et al. (2017) in the present, first-generation biodiesel production 

from vegetable edible oils and animal fats has triggered a sense of concern among 

policymakers and development practitioners about farm land allocation, food supply, 

and food market equilibrium. Utilization of second-generation biodiesel from 

nonedible feedstocks has been attracted many interests in recent years. To accelerate 

transition towards large-scale and economic viable biofuels, systematic design and 

optimization of entire biofuel supply chains is crucial. The proposed model is 

capable to determine the optimum numbers, locations, capacity of facilities, suitable 

transportation modes, appropriate technology at bio-refinery, material flow, and 

production planning in different periods. The proposed model is applied in a real 

case in Iran. They consider Jatropha seeds and waste cooking oil as non-edible 

feedstocks for second-generation biodiesel production in the studied case.  

Due to MILP structure of the proposed model, CPLEX solver of the GAMS 

optimization software is used for solving the model. The optimum solution was 

achieved after 1659 s. The presented model has 50166 equations, 701924 continuous, 

173 binary variables. 

 

8.  Design of regional and sustainable bio-based networks for electricity 

generation using a multi-objective MILP approach 

 

Perez-Fortes et al. (2012) this work is focused on a mathematical 

programming approach applied to bio-based supply chains that use locally available 
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biomass at or near the point of use in order to produce electricity or other bioproduct. 

The problem of designing and planning a regional biomass supply chain is 

formulated as a MO-MILP (multiobjective mixed integer linear program), which 

takes into account three main objectives: economic, environmental and social 

criteria. The model supports decision-making about location and capacity of 

technologies, connectivity between the supply entities, biomass storage periods, 

matter transportation and biomass utilisation. The advantages of this approach are 

highlighted by solving a case study of a specific district in Ghana. The aim is to 

determine the most suitable biomass and electricity network among the different 

communities. The technology considered to transform the biomass into electricity is 

gasification combined with a gas engine. 

The mathematical model has been written in GAMS and solved using 

CPLEX 11.0 on a PC Intel(R) Core(TM) i7-2620M CPU 2.70 GHz and 4.00 Gb of 

RAM. The optimisation model contains 27122 equations, 818215 continuous and 

1115 discrete variables. 
 

9.  Supply chain optimization of sugarcane first generation and eucalyptus 

second generation ethanol production in Brazil 

 

Jonker et al. (2016) the expansion of the ethanol industry in Brazil faces two 

important challenges: to reduce total ethanol production costs and to limit the 

greenhouse gas (GHG) emission intensity of the ethanol produced. The objective of 

this study is to economically optimize the scale and location of ethanol production 

plants given the expected expansion of biomass supply regions. A linear optimization 

model is utilized to determine the optimal location and scale of sugarcane and 

eucalyptus industrial processing plants given the projected spatial distribution of the 

expansion of biomass production in the state of Goiás between 2012 and 2030. Three 

expansion approaches evaluated the impact on ethanol production costs of expanding 

an existing industry in one time step (one-step), or multiple time steps (multi-step), 

or constructing a newly emerging ethanol industry in Goiás (greenfield).  
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10.  Optimal supply chain network design with process network and BOM 

under uncertainties: A case study in toothbrush industry  

 

Pham et al. (2017) design of supply chain network significantly affects 

supply chain performance for long period. Since each industry has a unique set of 

characteristics which evidently drive the design supply chain network, a number of 

various models have been formulated to meet the needs of such business contexts. 

Even though many models have been proposed for manufacturing industry context, 

most of them are based on the facility location model. It tends to lead the supply 

chain network design model to be complicated. Therefore, the purpose of this 

research is to propose an alternative approach to formulate manufacturing network 

design problem. Features, such as multi-echelon, multi-commodity, products 

structure, and manufacturing process, are taken into consideration as characteristics 

of the studied environment. Two models, deterministic and fuzzy models, have been 

explored in the study and both of them have demonstrated the validity of the 

proposed formulation method.  

The OPL models are solved by MIP solver in IBM ILOG 12.6 system. The 

computer which is used is AMD Quad-core Processor, 1.9 GHz, 4 GB of Ram. The 

case problem has 112 binary and 64,188 integer variables, and 1,492 constraints. 

 

11.  An engine oil closed-loop supply chain design considering collection risk 

 

Paydar et al. (2017) manufacturers are devising new methods to make 

production systems more efficient and effective. Designing an optimized supply 

chain can support the corresponding processes to integrate the resources. However, 

one of the most important obstacles is the resource limitation. Recycling the second-

hand products is one of the approaches to cope with this issue. Reverse logistics is a 

system of collecting products from end-users to the manufacturing centers for 

obtaining values from collected materials. In this research, the collection and 

distribution process of engine oil is considered. A MILP model for a closed-loop 

supply chain of used engine oil is proposed and a case study of an oil refinery 

company is proposed to explore the applicability of the model. Two objective 
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functions of maximizing profit and minimizing the risk of the collection are 

considered.  

There are 12,031 variables, 9698 constraints and 57,477 nonzeros 

(parameters) in the model. The mathematical model was solved using LINGO 15.0 

on a laptop computer equipped with Intel® CoreTM i5-4800M CPU @ 2.66 GHz 

and 4.00 GB RAM. 



 
 

CHAPTER III 

METHODOLOGY 

 

Materials And Equipment 

Equipment: 

Lenovo (Intel® Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz, 4.00 GB 

of RAM, Windows 10 Pro, 64-bit Operating system) 

 

Software: 

1. Fortran 4.0 

2. Microsoft Office 2013: Excel 

 

Experimental Procedures 

3.1  Develop LP Algorithm 

 

3.1.1  Simplex Algorithm 

For inequality (≤) constraint, all of the constraints have to be 

converted to equality by adding slack number (s). The right hand side of both 

objective function and constraints must be positive or zero value. The simplex would 

be applied as below procedures. 

1. Add the coefficient to standard table. 

2. Specify the first basic feasible solution. 

3. Choose the most negative value in the first row, and identify it as 

pivot column and entering variable. 

4. Divide the right hand side values by the values in the pivot column 

to select the least positive ratio, and identify it as pivot row and leaving variable. The 

value in intersection between pivot column and pivot row, is called pivot number. 

5. Use Gauss-Jordan equation to obtain the new solution. 

6. Check the first row to find the negative value, and follow it as step 

1-5. If there is on negative value in the first row, stop the algorithm and obtain the 

best solution. 
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If it is minimization, the objective function would be multiplied by -1. 

For equality and inequality (≥) constraints, slack number and artificial number are 

added to the constraints to become equality. Million time of artificial number would 

be added to the objective function. Finally, the 1-6 step as the previous would be 

followed. This method is called Big - M. The algorithm shows in Fig. 3.1. 

 

 
 

Figure 3.1  Flowchart of simplex algorithm for inequality (≤) constraints. 



29 
 

3.1.2  Simplex Algorithm Evaluation  

The simplex algorithm would be evaluated with small supply chain 

problem as show in Fig. 3.2. The profit of the problem is maximized.  

For the problem description, some products are produced in 3 plants, 

stocked in 2 warehouses and then sent to 3 markets. The operating plants and the 

warehouses have different capacities and the markets have different demands with 

difference of transportation distance. The mass balance of items would be managed 

to obtain the maximum profit. The developed simplex algorithm would be validated 

with Microsoft excel.  

The transportation cost = 90 $ per kmile per item, operating in 

warehouse cost = 300 $ per item, operating in plant cost = 500 $ per item and 

product price = 1,500 $ per item. 

 

 
 

Figure 3.2  The small supply chain problem. 
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3.2  Develop MILP Algorithm 

 

3.2.1  Branch-And-Bound Algorithm 

Branch-and-bound algorithm is divided to binary programing 

algorithm (BIP) and Mixed integer linear programming algorithm (MILP). The 

algorithms are explained respectively, and shown in Fig. 3.3. For MILP algorithm, 

the procedures are summarized and shown below. 

1. Branching: For branching to the new subproblem, let 𝑥𝑗 be integer-

restricted variable from the current subproblem and 𝑥𝑗
∗ is its value from LP 

relaxation. Identified the two new subproblems as 𝑥𝑗
∗  ≤  [𝑥𝑗

∗] and 𝑥𝑗
∗  ≥  [𝑥𝑗

∗] + 1 

respectively, when [𝑥𝑗
∗] = greatest integer ≤ 𝑥𝑗

∗. 

2. Bounding: For each new subproblem, used simplex method to 

solve, and obtain Z value for resulting optimal solution. 

3. Fathoming: For each new subproblem, discard the subproblems that 

are fathomed by any of following tests. 

Test 1: Its bound ≤ 𝑍∗, where 𝑍∗  is Z from the current incumbent. 

Test 2: The subproblem has no feasible solution. 

Test 3: All of the integer-restricted variables are integer value. 

 

For BIP algorithm, the procedure could be concluded to 5 steps below. 

 1. Add 𝑋𝑗 ≤ 1 into the constraints for integer-restricted variables. 

 2. Do the next procedures the same as MILP procedures. 
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Figure 3.3  Algorithm for BIP and MILP. 
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3.2.2  Branch-And-Bound Algorithm Evaluation 

The branch-and-bound algorithm evaluation is divided into 2 parts: 

BIP evaluation, and MILP evaluation. 

The problem used in BIP evaluation is the same one that used in 

simplex evaluation (Fig. 3.2). The value of items is used as continuous variable, and 

a number of the chosen ways is considered decision variables. The cost and the profit 

are not used as constants, but they are found after optimizing.  

For the problem used in MILP evaluation, the project description is 

used. A microelectronics manufacturing facility is considering six projects to 

improve operations as well as profitability. However, not all of these projects can be 

implemented due to expenditure limitations as well as engineering manpower 

constraints. Table 3.1 gives projected cost, manpower, and profitability data for each 

project. 
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Table 3.1  The project problem data (Edgar, 1989) 

 

Project Description 
First year  

expenditure 

Second year 

expenditure 
Engineering hours 

Net  

present value 

1 
Modify existing production line with 

new etchers 
$300,000 0 4000 $100,000 

2 Build new production line $100,000 $300,000 7000 $150,000 

3 Automate new production line 0 $200,000 2000 $35,000 

4 Install plating line $50,000 $100,000 6000 $75,000 

5 Build waste recovery plant $50,000 $300,000 3000 $125,000 

6 Subcontract waste disposal $100,000 $200,000 600 $60,000 

 

The resource limitations are: 

   First year expenditure: $450,000 

   Second year expenditure: $400,000 

   Engineering hours:  10,000 

 A new or modernized production line must be provided (Project 1 or 2). Automation is feasible only for the new line. 

Either project 5 or project 6 can be selected, but not both. The total net present value subject would be maximized by using the 

developed algorithm and Microsoft excel. 



34 
 

3.3  Biofuel Production Supply Chain Case Study 

 

Biofuel is a fuel from agriculture or lignocellulosic feedstock. Normally, 

two steps are used to produce biofuel from lignocellulosic feedstock that are fast 

pyrolysis reaction and chemical treatment (hydrothermal upgrading and 

hydrodeoxygenation) (Sharifzaden, 2015).  

In this case, two strategies are considered for biofuel production: (1) 

Centralized processing strategy where fast pyrolysis plant is used to produce 

pyrolysis oil and sends to upgrading center, benefiting from economic of scale and 

low transportation cost because of operating plant location near resource, and (2) 

Remote processing strategy where pyrolysis oil produced by the mobile pyrolyzer is 

sent to upgrading center for biofuel production, benefiting from cheap price of 

supplier. 

The case study would be simulated to produce biofuel to two customers, 

Liverpool and London, by using the 2 different types of resources: Supplier type 1 is 

commercial resource, and supplier type 2 is forest resource. The fast pyrolysis plant 

and upgrading plant would be separated to install near resources and customers. The 

2 locations would be simulated for upgrading centers near customers. And mobile 

pyrolyzer would be used for forest resources. The biofuel production supply chain 

graphic shows in Fig. 3.4. 

 

 
 

Figure 3.4  The graphic model for biofuel production supply chain case study. 



35 
 

From Fig. 3.4, resource from Hereford is identified as suppler type 1, Bristol 

is supplier type 2, fast pyrolysis plant is located in Birmingham and finally Liverpool 

and London are used to locate upgrading plants and customers.  

The case study is divided to three parts for evaluation, MILP evaluation, 

BIP evaluation and Full MILP (integer and binary) evaluation, which are validated 

with Microsoft excel. The simulation model shows in Fig. 3.5. 

 

 
 

Figure 3.5  Biofuel production case study. 



 
 

CHAPTER IV 

RESULTS AND DISCUSSIONS 

 

4.1  Simplex Algorithm Evaluation 

 

The simplex algorithm is developed in Fortran 4.0, evaluated with the small 

supply chain problem comparing with Microsoft excel. 

From Fig. 3.2, the products produced by three plants would be transferred to 

two warehouses and then transferred to three markets. The upper limit for plant 1, 2 

and 3 is 300, 300 and 200 respectively. The capacity for warehouse 1 and 2 is 100 

and 800. The lower limit for demand 1, 2 and 3 is 100, 200 and 200 respectively. For 

the problem, the maximum profit would be found.  

The mass flow from the plant to the warehouses is specified as 𝑥𝑖,𝑗 and from 

the warehouses to the markets is specified as 𝑦𝑗,𝑘, when i is number of the plants, j is 

number of the warehouses, k is number of the markets. Therefore, the mass flow 

variables are identified as show in Fig. 4.1. 

 

 
 

Figure 4.1  Mass flow variables of the supply chain. 

 

The distance between the nodes shows in Fig. 3.2. To maximize profit of the 

problem, mathematical model would be simulated.  
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The objective function is specified as difference between summation of 

income and summation of cost, as show below. 

 

  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒      𝑝𝑟𝑜𝑓𝑖𝑡 = ∑ 𝑖𝑛𝑐𝑜𝑚𝑒 − ∑ 𝑐𝑜𝑠𝑡 

 

So, the objective function would be specified below. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒      𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑡𝑜𝑡𝑎𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

        −𝑡𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 

 

The constraints would be divided to mass balance, transportation cost, 

operating in warehouse cost, operating in plant cost and total income. The mass 

balance constraints are taken around every node and around the system (overall mass 

balance). Equation (1) is production limit for each plant, limiting with amounts of 

suppliers. 

 

∑ 𝑥𝑖,𝑗𝑗 ≤ 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑖        ∀𝑖                   (1) 

 

The value substitution for equation (1) shows as equations (1A) – (1C). 

 

𝑥1,1 + 𝑥1,2 ≤ 300                 (1A) 

 

𝑥2,1 + 𝑥2,2 ≤ 300                 (1B) 

 

𝑥3,1 + 𝑥3,2 ≤ 200                 (1C) 

 

Equation (2) is minimum demand for each market. 

 

∑ 𝑦𝑗,𝑘𝑗 ≥ 𝐷𝑒𝑚𝑎𝑛𝑑𝑘        ∀𝑘                   (2) 
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The value substitution for equation (2) shows as equations (2A) – (2C). 

 

𝑦1,1 + 𝑦2,1 ≥ 100                      (2A) 

 

𝑦1,2 + 𝑦2,2 ≥ 200                 (2B) 

 

𝑦1,3 + 𝑦2,3 ≥ 200                 (2C) 

 

The capacity of the warehouse is limited by equation (3). 

   

∑ 𝑥𝑖,𝑗𝑖 ≤ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗        ∀𝑗                   (3) 

 

The value substitution for equation (3) shows as equations (3A) – (3B). 

 

𝑥1,1 + 𝑥2,1 + 𝑥3,1 ≤ 100                (3A) 
 

𝑥1,2 + 𝑥2,2 + 𝑥3,2 ≤ 800                 (3B) 

 

And equation (4) is overall mass balance. 

 

∑ 𝑥𝑖,𝑗𝑖 = ∑ 𝑦𝑗,𝑘𝑘         ∀𝑗                   (4) 

 

The value substitution for equation (4) shows as equations (4A) – (4B). 

 

𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 𝑦1,1 + 𝑦1,2 + 𝑦1,3              (4A) 

 

𝑥1,2 + 𝑥2,2 + 𝑥3,2 = 𝑦2,1 + 𝑦2,2 + 𝑦2,3              (4B) 

 

The constraints for transportation cost (TC), the operating in warehouse cost (OWC), 

the operating in plant cost (OPC) and total income (TI) are developed as equations 

(5) – (8), respectively. 
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𝑇𝐶 = ∑ ∑ (𝑥𝑖,𝑗 × 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)𝑗𝑖 + ∑ ∑ (𝑦𝑗,𝑘 ×𝑘𝑗

           𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)                           (5) 

 

The value substitution for equation (5) shows as equations (5A). 

 

𝑇𝐶 = (90𝑥1,1 + 90𝑥1,2 + 180𝑥2,1 + 180𝑥2,2 + 270𝑥3,1 + 270𝑥3,2)  

+(90𝑦1,1 + 180𝑦1,2 + 270𝑦1,3 + 360𝑦2,1 + 270𝑦2,2 + 180𝑦2,3)               (5A) 

 

𝑂𝑊𝐶 = ∑ ∑ (𝑥𝑖,𝑗 × 𝑂𝑝𝑒𝑟𝑡𝑖𝑛𝑔 𝑖𝑛 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑐𝑜𝑠𝑡)𝑗𝑖                     (6) 

 

The value substitution for equation (6) shows as equations (6A). 

 

𝑂𝑊𝐶 = (300𝑥1,1 + 300𝑥2,1 + 300𝑥3,1) + (300𝑥1,2 + 300𝑥2,2 + 300𝑥3,2)       (6A) 

 

𝑂𝑃𝐶 = ∑ ∑ (𝑥𝑖,𝑗 × 𝑂𝑝𝑒𝑟𝑡𝑖𝑛𝑔 𝑖𝑛 𝑝𝑙𝑎𝑛𝑡 𝑐𝑜𝑠𝑡)𝑗𝑖                             (7) 

 

The value substitution for equation (7) shows as equations (7A). 

 

𝑂𝑃𝐶 = (500𝑥1,1 + 500𝑥2,1 + 500𝑥3,1) + (500𝑥1,2 + 500𝑥2,2 + 500𝑥3,2)         (7A) 

 

𝑇𝐼 = ∑ ∑ (𝑦𝑗,𝑘 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑝𝑟𝑖𝑐𝑒)𝑘𝑗                    (8) 

 

The value substitution for equation (8) shows as equations (8A). 

 

𝑇𝐼 = (1,500𝑦1,1 + 1,500𝑦1,2 + 1,500𝑦1,3) + (1,500𝑦2,1 + 1,500𝑦2,2  

         +1,500𝑦2,3)                  (8A) 
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4.1.1  Results From The Developed Simplex Algorithm 

The maximum profit is 272,000$ and a number of transportation is 7. 

The results show in Table 4.1 and Fig. 4.2. 

 

Table 4.1  Results for small supply chain problem from developed simplex algorithm 

 

Variable Value Variable Value 

𝑥11 0 items 𝑦11 100 items 

𝑥12 300 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 0 items 

𝑥31 100 items 𝑦22 200 items 

𝑥32 100 items 𝑦23 500 items 

TC 288,000$ OPC 400,000$ 

OWC 240,000$ TI 1,200,000$ 

 

 
 

Figure 4.2  Result for supply chain problem from developed simplex algorithm. 

 

From Table 4.1 and Fig. 4.2, 𝑥11 and 𝑥21 are zero because of low 

capacity of warehouse 1. Moreover, 𝑥11 is zero because of low transportation cost of 

𝑥12 (limit of plant 1 = 300 items). The values of 𝑦12 and 𝑦13 are zero because of limit 
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of warehouse 1, but 𝑦21 is zero because of high transportation cost (4 kmile, the 

longest distance). 

From validating with excel solver (shows in appendix), the objective 

values (the profit) are the same (272,000 $), but the mass flow values are not. It 

indicates that this problem is multi-solution problem. There are many solutions from 

the problem with only one of objective function (272,000 $). 

 

4.1.2  The Developed Simplex Algorithm Evaluation 

From the result of the both solvers, the maximum profit is 272,000$, 

this result is normal for the linear solver because normally the linear problem has one 

solution of the objective function. However from the mass flow value, the results are 

different. It shows that this problem is degenerate problem, a non-unique solution. 

However, only one solution is obtained from excel solver. Other solutions can be 

obtained from the developed algorithm. 

From the section 2.1 (linear programming), the value in the first row 

of the non-basic variable in the final table is not zero, when the problem is not 

degenerate problem. If it is zero, it shows that the problem is degenerate problem. 

That non-basic variable would be used as entering variable, and Gauss-Jordan is used 

to obtain new solution. This procedure shows in Fig. 4.3. In this small supply chain, 

there are 3 non-basic variable as zero: 𝑥11, 𝑥21 and 𝑦12, so it indicates that this 

problem is degenerate problem. 𝑥11 is used as entering variable to continue Gauss-

Jordan calculation. The new solution shows in Table 4.2 and Fig. 4.4. 
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Figure 4.3  Procedure to obtain new solution from non-basic variable. 

 

From Table 4.2 and Fig. 4.4, the profit is 272,000$ and a number of 

transportation is 7. 𝑥21 and 𝑥31 are zero because of high transportation cost (and very 

long distance) and low capacity of warehouse 1. The values of 𝑦12 and 𝑦13 are zero 

because of limit of warehouse 1, but 𝑦21 is zero because of high transportation cost 

(4 kmile, the longest distance). 

 

Table 4.2  Results for small supply chain problem from non-basic variable 

 

Variable Value Variable Value 

𝑥11 100 items 𝑦11 100 items 

𝑥12 200 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 0 items 

𝑥31 0 items 𝑦22 200 items 

𝑥32 200 items 𝑦23 500 items 

TC 288,000$ OPC 400,000$ 

OWC 240,000$ TI 1,200,000$ 
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Figure 4.4  Results for small supply chain problem from non-basic variable. 

 

From Table 4.1 and Table 4.2, 𝑥11 is 0 and 100 respectively, so it is 

probably that 𝑥11 is value from 0 to 100. Other solutions could be obtained by adding 

new constraint that is in range 0 and 100. So 𝑥11 is added as 50 in new constraint. 

The new solution shows in Table 4.3 and Fig. 4.5. The profit is 272,000$ and a 

number of transportation is 8. 

 

Table 4.3  Results for small supply chain problem with 𝑥11 = 50 

 

Variable Value Variable Value 

𝑥11 50 items 𝑦11 100 items 

𝑥12 250 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 0 items 

𝑥31 50 items 𝑦22 200 items 

𝑥32 150 items 𝑦23 500 items 

TC 288,000$ OPC 400,000$ 

OWC 240,000$ TI 1,200,000$ 
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Figure 4.5  Results for small supply chain problem with 𝑥11 = 50. 

 

From the section 2.1, the first step of simplex calculation is choosing 

the most negative value in the first row. However for the degenerate problem, the 

first row has many values that are the most negative value. The different value that is 

chosen gives different solutions. In this small supply chain problem, there are 3 the 

most negative variables: TC, OWC and OPC, which are -999,999. For Table 4.1, TC 

is chosen, so the other would be used to obtain new solution. In this case, OPC is 

chosen to be the entering variable and the solution is in Table 4.4 and Fig. 4.6. The 

profit is 272,000$ and a number of transportation is 7. 

 

Table 4.4  Results from the different entering variable 

 

Variable Value Variable Value 

𝑥11 0 items 𝑦11 100 items 

𝑥12 300 items 𝑦12 0 items 

𝑥21 100 items 𝑦13 0 items 

𝑥22 200 items 𝑦21 0 items 

𝑥31 0 items 𝑦22 200 items 

𝑥32 200 items 𝑦23 500 items 

TC 288,000$ OPC 400,000$ 

OWC 240,000$ TI 1,200,000$ 
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Figure 4.6  Results from the different entering variable. 

 

Difference between Table 4.1 and Table 4.4 is value of 𝑥21, 𝑥22, 𝑥31 

and 𝑥32, from 0 to 100, 300 to 200,100 to 0 and 100 to 200, respectively. 

Normally, some of the variables could be chosen to obtain the 

solution, but it would give different solution. For Microsoft excel or commercial 

solver, the calculation code would developed by using random function. Therefore, 

some of the variables would be chosen randomly. But for large problem, choosing 

the different variable on the first row in standard LP table would give little different 

objective function solution. So the code for choosing the most negative values is very 

important. For this developed algorithm, the code is not random function, but it is 

fixed to one solution benefiting from the short computation time. 

The procedure of the code for choosing the most negative value in the 

first row shows in Fig. 4.7 as flowchart. The most negative value is checked as first. 

If the most negative values are more than 1, the program would remember the 

number of the values and the variables in case of emergency. When Gauss-Jordan 

calculation has finished, the feasible solution would be checked. If the solution is not 

feasible, the other of the most negative value would be used instead of the first one 

until the feasible solution is obtained. 
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Figure 4.7  Flowchart for choosing the most negative value. 

 

Moreover, Fig. 4.8 shows the algorithm for checking the most 

negative value. From Fig. 4.8, x (i, j) is specified as x value in i row and j column, i 

is specified as number of row, j is specified as number of column. The i element is 1, 

because of the first row of the standard LP table. NLV symbol is a number of the 

most negative value. During checking, if the program find that the most negative 

value is more than one value, NLV would be increase to a number of the most 

negative value and the program would remember the value and the variables for 

using in case of non-feasible solution.  

However in this problem, the most negative value in the first standard 

table is 1,000,001, one value of the TI variable. So for the first standard table, NLV 

would be 1, and then is sent to calculate Gauss-Jordan correctly. There is no 

remembering the most negative value and the variable in this standard table. This is 
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performance of the algorithm for checking the most negative value in the first 

standard table. 

 

 
 

Figure 4.8  The code for checking the most negative value. 

 

But in the second standard table, the most negative value is fixed to 

choose the first value of all the most negative value in the first row benefiting from 

short computation time. The procedure shows in Fig. 4.9. 

 

 
 

Figure 4.9  The code for fixing the first one of the most negative values. 
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From Fig. 4.9, the symbol (GT) indicates that if there are many the 

most negative values, the first value would be chosen for Gauss-Jordan calculation. 

In this case, The TC variable would be chosen because it is the first value of the most 

negative value in the second standard table, that are TC, OWC and OPC. The result 

of this case shows in Table 4.1. 

Moreover, the result that shows in Table 4.4 is obtained by using the 

algorithm shown in Fig. 4.10. The symbol (GT) is changed to be (GE) to use the last 

one instead of the first one. The last value of the most negative vale is chosen in the 

second standard table, so the different solution is obtained. 

 

 
 

Figure 4.10  The code for fixing the last one of the most negative values. 

 

In this small supply chain problem, the objective function solution 

would be the same as all of the case of the most negative value. The efficiency of the 

code would be show in section 4.3. 

Moreover in Table 4.1 and Table 4.4, 𝑥21 is 0 and 100, respectively. 

So other solutions can be obtained by adding 𝑥21 as new constraint between 0 and 

100. In this case, 𝑥21 is added as 50. The solution shows in Table 4.5 and Fig. 4.11. 

The profit is 272,000$ and a number of transportation is 8. 
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Table 4.5  Results of small supply chain with 𝑥21= 50 

 

Variable Value Variable Value 

𝑥11 0 items 𝑦11 100 items 

𝑥12 300 items 𝑦12 0 items 

𝑥21 50 items 𝑦13 0 items 

𝑥22 250 items 𝑦21 0 items 

𝑥31 50 items 𝑦22 200 items 

𝑥32 150 items 𝑦23 500 items 

TC 288,000$ OPC 400,000$ 

OWC 240,000$ TI 1,200,000$ 

 

 
 

Figure 4.11  Results for small supply chain problem with 𝑥21 = 50. 

 

Finally, the same solutions from 2 solvers could be obtained by fixing 

some variables. For this case, 𝑥1,1 is added in now constraint as 100. The results 

show in Table 4.6 and Fig. 4.12. 
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Table 4.6  Results validated with the algorithm by fixing 𝑥1,1 = 100 

 

Variable Value Variable Value 

𝑥11 100 items 𝑦11 100 items 

𝑥12 200 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 0 items 

𝑥31 0 items 𝑦22 200 items 

𝑥32 200 items 𝑦23 500 items 

TC 288,000$ OPC 400,000$ 

OWC 240,000$ TI 1,200,000$ 

 

 
 

Figure 4.12  Results validated with the algorithm by fixing 𝑥1,1 = 100. 

 

These show only continuous solutions of the small supply chain. The 

MILP form shows in section 4.2.1. 
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4.2  Branch-And-Bound Algorithm Evaluation 

 

For branch-and-bound algorithm, the BIP algorithm and the MILP 

algorithm are developed in the same code (branch-and-bound algorithm code). Each 

of the both codes would be used dependent on setting variable type. If the variable is 

set as binary, BIP code would execute, but if the variable is set as integer, MILP code 

would execute, as follow by Fig. 3.3. 

 

4.2.1  BIP Algorithm Evaluation 

In section 4.1, only continuous solutions are shown. In this section, 

the transportation number is added as Integer part of the small supply chain. 

However, the cost would be calculated after optimization of transportation number. 

The objective function and constraints show below. 

The objective function is specified as a number of transportation, as 

show below. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑ 𝑍𝑥𝑖,𝑗

𝑗𝑖

+ ∑ ∑ 𝑍𝑦𝑗,𝑘

𝑘𝑗

 

 

𝑍𝑥 is transportation from plant to warehouse, and 𝑍𝑦 is transportation 

from warehouse to market. The both are binary. 

The constraints would be divided to mass balance and transportation 

part. The mass balance constraints are taken around every node and around the 

system (overall mass balance). Equation (1) is production limit for each plant, 

limiting with amounts of suppliers. 

 

∑ 𝑥𝑖,𝑗𝑗 ≤ 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑖        ∀𝑖                   (1) 

 

The value substitution for equation (1) shows as equations (1A) – (1C). 

 

𝑥1,1 + 𝑥1,2 ≤ 300                 (1A) 
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𝑥2,1 + 𝑥2,2 ≤ 300                 (1B) 

 

𝑥3,1 + 𝑥3,2 ≤ 200                 (1C) 

 

Equation (2) is minimum demand for each market. 

 

∑ 𝑦𝑗,𝑘𝑗 ≥ 𝐷𝑒𝑚𝑎𝑛𝑑𝑘        ∀𝑘                   (2) 

 

The value substitution for equation (2) shows as equations (2A) – (2C). 

 

𝑦1,1 + 𝑦2,1 ≥ 100                      (2A) 

 

𝑦1,2 + 𝑦2,2 ≥ 200                 (2B) 

 

𝑦1,3 + 𝑦2,3 ≥ 200                 (2C) 

 

The capacity of the warehouse is limited by equation (3). 

   

∑ 𝑥𝑖,𝑗𝑖 ≤ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑗        ∀𝑗                   (3) 

 

The value substitution for equation (3) shows as equations (3A) – (3B). 

 

𝑥1,1 + 𝑥2,1 + 𝑥3,1 ≤ 100                (3A) 
 

𝑥1,2 + 𝑥2,2 + 𝑥3,2 ≤ 800                 (3B) 

 

And equation (4) is overall mass balance. 

 

∑ 𝑥𝑖,𝑗𝑖 = ∑ 𝑦𝑗,𝑘𝑘         ∀𝑗                   (4) 

 

 



53 
 

The value substitution for equation (4) shows as equations (4A) – (4B). 

 

𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 𝑦1,1 + 𝑦1,2 + 𝑦1,3              (4A) 

 

𝑥1,2 + 𝑥2,2 + 𝑥3,2 = 𝑦2,1 + 𝑦2,2 + 𝑦2,3              (4B) 

 

The transportation from plant to warehouse is equation (5). 

 

𝑥𝑖,𝑗 ≤ 𝑀𝑍𝑥𝑖,𝑗                ∀𝑖, 𝑗        (5) 

 

The value substitution for equation (5) shows as equations (5A) – (5F). 

 

𝑥1,1 ≤ 1,000𝑍𝑥1,1                 (5A) 

 

𝑥1,2 ≤ 1,000𝑍𝑥1,2                 (5B) 

 

𝑥2,1 ≤ 1,000𝑍𝑥2,1                 (5C) 

 

𝑥2,2 ≤ 1,000𝑍𝑥2,2                 (5D) 

 

𝑥3,1 ≤ 1,000𝑍𝑥3,1                 (5E) 

 

𝑥3,2 ≤ 1,000𝑍𝑥3,2                 (5F) 

 

The transportation from warehouse to market is equation (6). 

 

𝑦𝑗,𝑘 ≤ 𝑀𝑍𝑦𝑗,𝑘               ∀𝑗, 𝑘        (6) 

 

The value substitution for equation (6) shows as equations (6A) – (6F). 

 

𝑦1,1 ≤ 1,000𝑍𝑦1,1                 (6A) 
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𝑦1,2 ≤ 1,000𝑍𝑦1,2                 (6B) 

 

𝑦1,3 ≤ 1,000𝑍𝑦1,3                 (6C) 

 

𝑦2,1 ≤ 1,000𝑍𝑦2,1                 (6D) 

 

𝑦2,2 ≤ 1,000𝑍𝑦2,2                 (6E) 

 

𝑦2,3 ≤ 1,000𝑍𝑦2,3                 (6F) 

 

4.2.1.1  Results Of Small Supply Chain With BIP 

From the small supply chain with BIP, a number of 

transportation is 5 and the profit is 195,000$. The results show in Table 4.7 and Fig. 

4.13. 

 

Table 4.7  Results of small supply chain with BIP 

 

Variable Value Variable Value 

𝑥11 0 items 𝑦11 0 items 

𝑥12 300 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 100 items 

𝑥31 0 items 𝑦22 200 items 

𝑥32 0 items 𝑦23 300 items 

𝑍𝑥11 0 𝑍𝑦11 0 

𝑍𝑥12 1 𝑍𝑦12 0 

𝑍𝑥13 0 𝑍𝑦13 0 

𝑍𝑥14 1 𝑍𝑦14 1 

𝑍𝑥15 0 𝑍𝑦15 1 

𝑍𝑥16 0 𝑍𝑦16 1 
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Figure 4.13  Results of small supply chain with BIP. 

 

From Table 4.7, a number of transportation is fewer than that 

from Table 4.1 because in this section the minimum of a transportation number is 

focused. Moreover, the profit in this section is the less also. The transportation lines 

that are chosen, are 𝑍𝑥12, 𝑍𝑥14, 𝑍𝑦14, 𝑍𝑦15 and 𝑍𝑦16 with 300, 300, 100, 200 and 

300, respectively. However in validating with excel solver, the solutions are not 

similar (with the same transportation number). Therefore, it indicates that this 

problem is degenerate problem. 

4.2.1.2  Other Solutions Of Small Supply Chain With BIP 

With being degenerate problem, the non-basic variable that is 

zero in the first row in the final LP table, is used as entering variable to obtain new 

solution. The solution shows in Table 4.8 and Fig. 4.14. A number of transportation 

is 5 and the profit is 186,000$. 
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Table 4.8  Results of small supply chain with BIP and non-basic variable 

 

Variable Value Variable Value 

𝑥11 0 items 𝑦11 0 items 

𝑥12 300 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 100 items 

𝑥31 0 items 𝑦22 300 items 

𝑥32 0 items 𝑦23 200 items 

𝑍𝑥11 0 𝑍𝑦11 0 

𝑍𝑥12 1 𝑍𝑦12 0 

𝑍𝑥13 0 𝑍𝑦13 0 

𝑍𝑥14 1 𝑍𝑦14 1 

𝑍𝑥15 0 𝑍𝑦15 1 

𝑍𝑥16 0 𝑍𝑦16 1 

 

 
 

Figure 4.14  Results of small supply chain with BIP and non-basic variable. 

 

Moreover from Table 4.7 and Table 4.8, 𝑦22 is 200 and 300 

respectively. It is possible that 𝑦22 is in range 200 and 300. So 𝑦22 is added in new 
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constraint as 250 to obtain other solution of this problem. The solution shows in 

Table 4.9 and Fig. 4.15. A number of transportation is 5 and the profit is 190,500$. 

 

Table 4.9  Results of small supply chain with BIP and 𝑦22 = 250 

 

Variable Value Variable Value 

𝑥11 0 items 𝑦11 0 items 

𝑥12 300 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 100 items 

𝑥31 0 items 𝑦22 250 items 

𝑥32 0 items 𝑦23 250 items 

𝑍𝑥11 0 𝑍𝑦11 0 

𝑍𝑥12 1 𝑍𝑦12 0 

𝑍𝑥13 0 𝑍𝑦13 0 

𝑍𝑥14 1 𝑍𝑦14 1 

𝑍𝑥15 0 𝑍𝑦15 1 

𝑍𝑥16 0 𝑍𝑦16 1 

 

 
 

Figure 4.15  Results of small supply chain with BIP and 𝑦22 = 250. 
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Finally, the same solutions from 2 solvers could be obtained 

by fixing some variables. For this case, 𝑦22is added in now constraint as 250. The 

results show in Table 4.10 and Fig. 4.16. 

 

Table 4.10  Results of small supply chain with BIP and 𝑥12 = 200 

 

Variable Value Variable Value 

𝑥11 0 items 𝑦11 0 items 

𝑥12 200 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 100 items 

𝑥31 0 items 𝑦22 200 items 

𝑥32 0 items 𝑦23 200 items 

𝑍𝑥11 0 𝑍𝑦11 0 

𝑍𝑥12 1 𝑍𝑦12 0 

𝑍𝑥13 0 𝑍𝑦13 0 

𝑍𝑥14 1 𝑍𝑦14 1 

𝑍𝑥15 0 𝑍𝑦15 1 

𝑍𝑥16 0 𝑍𝑦16 1 

 

 
 

Figure 4.16  Results of small supply chain with BIP and 𝑥12 = 200. 
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4.2.2  MILP Algorithm Evaluation 

To evaluate the algorithm, the project problem is section 3.2.2 would 

be found the maximum the total net present value. The result would be compared 

with Microsoft excel. 

From Table 3.1, the data of the problem show in this table. The 

mathematical model would be simulated for using in the solver. For the problem, the 

objective function is specified as summation of every net present value. 𝑥𝑖 is 

identified to be decision of project i, 1 or 0. If the project i is chosen, 𝑥𝑖 is 1, or not, 

𝑥𝑖 is 0. The mathematical model would be simulated as below. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒          𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 = ∑(𝑛𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒) × 𝑥𝑖

𝑖

 

 

The objective function is substituted by adding the value below. 

 

𝑀𝑎𝑥 𝑇𝑁𝑃𝑉 = 100,000𝑥1 + 150,000𝑥2 + 35,000𝑥3 + 75,000𝑥4 + 125,000𝑥5  

             + 60,000𝑥6  

 

The constraints are developed involving with each year expenditure 

and engineering hours and resource limitations. The equations (1) – (3) refer to the 

first year expenditure, second year expenditure and engineering hours, respectively. 

 

∑ 𝐹𝑖𝑟𝑠𝑡 𝑦𝑒𝑎𝑟 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 × 𝑥𝑖𝑖 ≤ 𝑇𝑜𝑡𝑎𝑙 𝑓𝑖𝑟𝑠𝑡 𝑦𝑒𝑎𝑟 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒  (1) 

 

The value substitution for equation (1) shows as equations (1A). 

 

300,000𝑥1 + 100,000𝑥2 + 50,000𝑥4 + 50,000𝑥5 +  100,000𝑥6 ≤ 450,000    (1A) 

 

∑ 𝑆𝑒𝑐𝑜𝑛𝑑 𝑦𝑒𝑎𝑟 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 × 𝑥𝑖𝑖 ≤ 𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑐𝑜𝑛𝑑 𝑦𝑒𝑎𝑟 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒  (2) 

 

The value substitution for equation (2) shows as equations (2A). 
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300,000𝑥2 + 200,000𝑥3 + 100,000𝑥4 + 300,000𝑥5 +  200,000𝑥6 ≤ 400,000(2A) 

 

∑ (𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠) × 𝑥𝑖𝑖 ≤ 𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠   (3) 

 

The value substitution for equation (3) shows as equations (3A). 

 

4,000𝑥1 + 7,000𝑥2 + 2,000𝑥3 + 6,000𝑥4 + 3,000𝑥5 +  600𝑥6 ≤ 10,000         (3A) 

 

The equation (4) shows that one of the project 1 and 2 is selected.  

 

𝑥1 + 𝑥2 ≤ 1                                     (4) 

 

The project 3 would be not used, if the project 2 is not used, it refers to the equation 

(5). The project 5 and 6 could be used only one of its (the equation (6)). 

 

𝑥2 − 𝑥3 ≥ 0                     (5) 

 

𝑥5 + 𝑥6 ≤ 1                     (6) 

 

The problem would be solve by using Microsoft excel and the developed branch-

and-bound algorithm. The result of both solvers would be discussed and compared. 

4.2.2.1  Result From MILP Algorithm Evaluation 

The maximum net present value is optimized to 225,000$. 

And the results show in Table 4.11. 

 

Table 4.11 Result of the project problem from MILP algorithm 

Variable Value Variable Value 

𝑥1 1 𝑥4 0 

𝑥2 0 𝑥5 1 

𝑥3 0 𝑥6 0 



61 
 

From Table 4.11, the project 1 and 5 are selected. The result 

shows that the final solution is the same as Microsoft excel. This result indicates that 

the problem is possible to be general-solution problem (not multi-solution problem).  

4.2.2.2  MILP Algorithm Evaluation  

For MILP algorithm, fathoming step is used for 3 cases: 

Case 1: Its bound ≤ 𝑍∗, where 𝑍∗  is Z from the current incumbent, 

Case 2: The subproblem has no feasible solution, 

Case 3: All of the integer-restricted variables are integer value. 

This step of branch-and-bound technique helps to decrease a number of subproblem 

to reduce executing time in finding the optimal point. This fathoming step is 

developed on the algorithm following the flowchart in Fig. 4.17.  

From flowchart in Fig. 4.17, after the solution is obtained 

from MILP and LP, the solution would be checked the artificial variable values 

because in the feasible solutions the artificial variable values are zero in the solution. 

If it is zero, it transfers to the next step, if not; it indicates that it is not the feasible 

solution. In case of feasibility, the solution would be substituted to the objective 

function. If the optimal value from the executing and one from substituting are the 

same, the optimal solution is correct. For the correct optimal solution, it would 

transfer to the next step. But in case of non-feasible solution, the subproblem stops. 

When the solution is feasible solution, it would be checked the integer value. If all 

integer-restricted variables are integer, the subproblem stops, but not; it transfers to 

the next step. The optimal solution would be compared with the current incumbent. If 

it is greater than the current incumbent, the node branching would continue, if not; 

the subproblem stops.  
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Figure 4.17  Flowchart for fathoming step in branch-and-bound algorithm. 

 

With these branch-and-bound and fathoming steps, this 

project problem shows only 4 subproblems. The 4 supproblems show in Fig. 4.18. 

 



63 
 

 
 

Figure 4.18  Branch-and-bound step of the developed branch-and-bound algorithm. 

 

From Fig. 4.18, the supproblems 2 and 3 stop branching 

because all variables are integer, and subproblem 4 stops because Its bound ≤ 𝑍∗(Z 

from current incumbent), when 𝑍∗ = 225,000 (subproblem 3). In this case, 4 

subproblems are obtained from Microsoft excel the same, as show in Fig 4.19.  

 

 
 

Figure 4.19  Subproblem from Microsoft excel in branch-and-bound evaluation. 
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From this comparison, it shows that the fathoming technique 

makes the algorithm to be good efficiency in finding an optimum point for MILP 

case with the same optimum value. 

 

4.3  Biofuel Production Supply Chain Case Study 

 

The biofuel production supply chain in the United Kingdom case study, 

descripted in section 3.3, is used to evaluate the developed algorithm comparing with 

Microsoft excel. 

The algorithm evaluation for biofuel production supply chain case study is 

divided to 3 parts; 

Part 1: Integer restricted variables are evaluated in integer case 

Part 2: Binary restricted variables are evaluated in binary case 

Part 3: Both integer and binary restricted variables are evaluated together.  

The total annual gross profit (TNGP) would be considered as objective 

function. But the total supply chain net present value (SCNPV) would be considered 

as the target for this case study. So the total annual gross profit that is obtained from 

the solvers would be used to calculate the total supply chain net present value with 

10 years in operating time. 

The model of the biofuel production supply chain shows in Fig. 3.5 in 

section 3.3. That model is specified the mass flow variables shown in Fig. 4.20.  

 

 
 

Figure 4.20  The mass flow variables biofuel production supply chain. 
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All of equations for objective function and constraints are descripted below. 

Total annual gross profit (TAGP) is considered as the objective function of the 

problem showing in equation (1).  

 

𝑇𝐴𝐺𝑃 =  ∑ 𝑣𝑝𝑓𝑝,𝑢,𝑚𝑝
𝑓𝑝,𝑢,𝑚𝑝 − ∑ 𝑇𝑃𝐶𝑓𝑝,𝑢,𝑚𝑝

𝑓𝑝,𝑢,𝑚𝑝 − 𝑑𝑓 × ∑ 𝐷𝑃𝑓𝑝,𝑢,𝑚𝑝
𝑓𝑝,𝑢,𝑚𝑝    (1) 

 

The value substitution for the objective function shows in equation (1A). 

 

𝑇𝐴𝐺𝑃 = (𝑣𝑝𝑓𝑝 + 𝑣𝑝𝑢1 + 𝑣𝑝𝑢2 + 𝑣𝑝𝑚𝑝) − (𝑇𝑃𝐶𝑓𝑝 + 𝑇𝑃𝐶𝑢1 + 𝑇𝑃𝐶𝑢2 + 𝑇𝑃𝐶𝑚𝑝)  

−0.1 × (𝐷𝑃𝑓𝑝 + 𝐷𝑃𝑢1 + 𝐷𝑃𝑢2 + 𝐷𝑃𝑚𝑝)             (1A) 

 

TAGP is the total annual gross profit. The product price, the total production cost 

and the depreciation are identified as vp, TPC and DP, respectively. The fast 

pyrolysis plant, the upgrading plant 1 and 2, and the mobile pyrolyzer are identified 

as fp, u1, u2 and mp, respectively.  

The constraints would be divided to mass balance, fast pyrolysis and 

upgrading plant costs, operating costs, transportation costs and mobile pyrolysis 

costs. The equations (2) – (4) are taken as mass balance for fast pyrolysis plant, 

upgrading plants and mobile pyrolyzer, respectively. Each equation is multiplied by 

conversions (cf) that shows in Table 4.12. 

 

∑ 𝐹𝑃𝑈𝑓𝑝,𝑢 =𝑢 𝐹𝑆𝑃𝑠,𝑓𝑝 × 𝑐𝑓𝑏,𝑜                                           (2) 

 

∑ 𝐹𝑈𝐶𝑢,𝑐 =𝑐 (𝐹𝑃𝑈𝑓𝑝,𝑢 + 𝐹𝑀𝑃𝑈𝑚𝑝,𝑢) × 𝑐𝑓𝑜,𝑔𝑑       ∀𝑢                  (3) 

 

∑ 𝐹𝑀𝑃𝑈𝑚𝑝,𝑢 =𝑢 𝐹𝑆𝑀𝑃𝑠,𝑚𝑝 × 𝑐𝑓𝑏,𝑜                                (4) 
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Table 4.12  Conversion factor of the reactions 

 

Description Conversion factor (cf) Units 

Pyrolysis oil on dry biomass for  

fast pyrolysis plant  

0.768 𝐾𝑔 𝐾𝑔−1 

Gasoline and diesel on pyrolysis oil 0.528 𝑑𝑚3 𝐾𝑔−1 

Pyrolysis oil on dry biomass for 

mobile pyrolyzer 

0.583 𝐾𝑔 𝐾𝑔−1 

 

The value substitution for mass balance in the fast pyrolysis plant shows as equations 

(2A). 

 

𝐹𝑃𝑈1,1 + 𝐹𝑃𝑈1,2 = 0.768 × 𝐹𝑆𝑃1,1                                                  (2A) 

 

The value substitution for mass balance in the upgrading plants 1 and 2 shows as 

equations (3A) – (3B), respectively. 

 

𝐹𝑈𝐶1,1 + 𝐹𝑈𝐶1,2 = 0.528 × (𝐹𝑃𝑈1,1 + 𝐹𝑀𝑃𝑈1,1)                          (3A) 

 

𝐹𝑈𝐶2,1 + 𝐹𝑈𝐶2,2 = 0.528 × (𝐹𝑃𝑈1,2 + 𝐹𝑀𝑃𝑈1,2)                          (3B) 

 

The value substitution for mass balance in the mobile pyrolyzer shows as equations 

(4A). 

 

𝐹𝑀𝑃𝑈1,1 + 𝐹𝑀𝑃𝑈1,2 = 0.583 × 𝐹𝑆𝑀𝑃1,1                                        (4A) 

 

The equation (5) is mass balance for demands (both customers). The biofuel 

demands are 80.46 𝑑𝑎𝑚3 𝑦−1 in Liverpool and 180.54 𝑑𝑎𝑚3 𝑦−1 in London.  

 

∑ 𝐹𝑈𝐶𝑢,𝑐 = 𝐷𝑐𝑢        ∀𝑐                   (5) 
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The value substitution for demand of the both customers shows as equations (5A) – 

(5B).  

 

𝐹𝑈𝐶1,1 + 𝐹𝑈𝐶2,1 = 80.46                           (5A) 

 

𝐹𝑈𝐶1,2 + 𝐹𝑈𝐶2,2 = 180.54                           (5B) 

 

The equations (6) – (7) are limitations of supplier type 1 and 2. The suppliers are 

1,500 𝑀𝑔 𝑑−1 in supplier 1 (Hereford) and 900 𝑀𝑔 𝑑−1 in supplier 2 (Bristol). 

 

𝐹𝑆𝑃𝑠,𝑓𝑝 ≤ 𝐴𝑉𝑠
𝑠𝑡1                                 (6) 

  

𝐹𝑆𝑀𝑃𝑠,𝑚𝑝 ≤ 𝐴𝑉𝑠
𝑠𝑡2                                  (7) 

 

The value substitution for limitation for the both suppliers shows as equations (6A) – 

(7A). 

 

𝐹𝑆𝑃1,1 ≤ 1,500                                         (6A) 

  

𝐹𝑆𝑀𝑃1,1 ≤ 900                                           (7A) 

 

For the fast pyrolysis and upgrading plant cost constraints, the plants are divided to 

small scale and large scale. Each scale is taken as linear equation by using piece-wise 

linearization of equipment cost. 

The equations (8) – (9) are considered as linear equation of equipment cost 

for fast pyrolysis plants and upgrading plants, respectively. The first term refers to 

small scale, 200 – 850 𝑀𝑔 𝑑−1 of dry biomass, and the second term refers to large 

scale, 850 – 2,000 𝑀𝑔 𝑑−1 of dry biomass. The slope and intersection values show in 

equations (8A) – (9B). 
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𝐸𝐶𝑓𝑝 ≥ ∑ 𝐹𝑃𝑈1𝑓𝑝,𝑢 ×𝑢 𝑆𝐿𝑃1𝑓𝑝 + 𝐼𝑁𝑃1𝑓𝑝 × 𝑦1𝑓𝑝 + ∑ 𝐹𝑃𝑈2𝑓𝑝,𝑢𝑢 × 𝑆𝐿𝑃2𝑓𝑝 +

                𝐼𝑁𝑃2𝑓𝑝 × 𝑦2𝑓𝑝                        (8) 

 

For fast pyrolysis plant: 

y = 0.0189x + 2.4721 200 ≤ x ≤ 850            (8A) 

y = 0.0137x + 5.8201 850 ≤ x ≤ 2,000            (8B) 

 

The value substitution for equipment cost for the fast pyrolysis plant shows as 

equation (8C). 

 

𝐸𝐶𝑓𝑝 ≥ 0.0189(𝐹𝑃𝑈11,1 + 𝐹𝑃𝑈11,2) + 2.4721 × 𝑦1𝑓𝑝  

+ 0.0137(𝐹𝑃𝑈21,1 + 𝐹𝑃𝑈21,2) + 5.8201 × 𝑦2𝑓𝑝                           (8C) 

 

𝐸𝐶𝑢 ≥ ∑ 𝐹𝑈𝐶1𝑢,𝑐 × 𝑆𝐿𝑈1𝑢 + 𝐼𝑁𝑈1𝑢 × 𝑦1𝑢 + ∑ 𝐹𝑈𝐶2𝑢,𝑐 × 𝑆𝐿𝑈2𝑢 +𝑐𝑐

𝐼𝑁𝑈2𝑢 ×               𝑦2𝑢          ∀𝑢       

  (9) 

 

For upgrading plant: 

y = 0.0639x + 18.029 200 ≤ x ≤ 850            (9A) 

y = 0.0468x + 23.938 850 ≤ x ≤ 2,000            (9B) 

 

The value substitution for equipment cost for the upgrading plants 1 and 2 shows as 

equation (9C) – (9D). 

 

𝐸𝐶𝑢1 ≥ 0.0639(𝐹𝑈𝐶11,1 + 𝐹𝑈𝐶11,2) + 18.029 × 𝑦1𝑢1     

+0.0468(𝐹𝑈𝐶21,1 + 𝐹𝑈𝐶21,2) + 23.938 × 𝑦2𝑢1              (9C) 

 

𝐸𝐶𝑢2 ≥ 0.0639(𝐹𝑈𝐶11,1 + 𝐹𝑈𝐶11,2) + 18.029 × 𝑦1𝑢2     

+0.0468(𝐹𝑈𝐶21,1 + 𝐹𝑈𝐶21,2) + 23.938 × 𝑦2𝑢2              (9D) 
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The equations (10) – (11) show that the plants are divided to small scale and large 

scale. And one of two scales would be chosen for each plant with equation (12). 

 

𝐹𝑃𝑈𝑓𝑝,𝑢 = 𝐹𝑃𝑈1𝑓𝑝,𝑢 + 𝐹𝑃𝑈2𝑓𝑝,𝑢         ∀𝑢               (10) 

 

𝐹𝑈𝐶𝑢,𝑐 = 𝐹𝑈𝐶1𝑢,𝑐 + 𝐹𝑈𝐶2𝑢,𝑐         ∀𝑢, 𝑐               (11) 

 

𝑦1𝑓𝑝,𝑢 + 𝑦2𝑓𝑝,𝑢 = 1       ∀𝑢                                    (12) 

 

The value substitution for scale separation from fast pyrolysis plant to the both 

upgrading plants shows as equations (10A) – (10B). 

 

𝐹𝑃𝑈1,1 = 𝐹𝑃𝑈11,1 + 𝐹𝑃𝑈21,1                  (10A) 

 

𝐹𝑃𝑈1,2 = 𝐹𝑃𝑈11,2 + 𝐹𝑃𝑈21,2                  (10B) 

 

The value substitution for scale separation from the both upgrading plants to the 

customers 1 and 2 shows as equations (11A) – (11D). 

 

𝐹𝑈𝐶1,1 = 𝐹𝑈𝐶11,1 + 𝐹𝑈𝐶21,1             (11A) 

 

𝐹𝑈𝐶1,2 = 𝐹𝑈𝐶11,2 + 𝐹𝑈𝐶21,2             (11B) 

 

𝐹𝑈𝐶2,1 = 𝐹𝑈𝐶12,1 + 𝐹𝑈𝐶22,1             (11C) 

 

𝐹𝑈𝐶2,2 = 𝐹𝑈𝐶12,2 + 𝐹𝑈𝐶22,2             (11D) 

 

The value substitution for choosing one of the two scales for the fast pyrolysis plant 

and the both upgrading plants are expressed as equations (12A) – (12C). 

 

𝑦1𝑓𝑝 + 𝑦2𝑓𝑝 = 1                                                  (12A) 
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𝑦1𝑢1 + 𝑦2𝑢1 = 1                                                  (12B) 

 

𝑦1𝑢2 + 𝑦2𝑢2 = 1                                                  (12C) 

 

The equations (13) – (20) are considered as upper limit and lower limit for each plant 

scale. Equations (13) – (14) are upper limit of mass flow rate for small scale of fast 

pyrolysis plant and upgrading plants, respectively. 

 

∑ 𝐹𝑃𝑈1𝑓𝑝,𝑢𝑢 ≤ 𝑆𝐶𝐿𝑃 × 𝑦1𝑓𝑝                                           (13) 

 

∑ 𝐹𝑈𝐶1𝑢,𝑐𝑐    ≤ 𝑆𝐶𝐿𝑈 × 𝑦1𝑢             ∀𝑢                                (14) 

 

The value substitution for the upper limits for small scale of the fast pyrolysis plant 

and the both upgrading plants shows as equations (13A) – (14B). 

 

𝐹𝑃𝑈11,1 + 𝐹𝑃𝑈11,2 ≤ 850 × 𝑦1𝑓𝑝                              (13A) 

 

𝐹𝑈𝐶11,1 + 𝐹𝑈𝐶11,2 ≤ 850 × 𝑦1𝑢1                              (14A) 

 

𝐹𝑈𝐶12,1 + 𝐹𝑈𝐶12,2 ≤ 850 × 𝑦1𝑢2                              (14B) 

 

Equations (15) – (16) are lower limit for large scale of fast pyrolysis plant and 

upgrading plants. 

 

∑ 𝐹𝑃𝑈2𝑓𝑝,𝑢𝑢 ≥ 𝑆𝐶𝐿𝑃 × 𝑦2𝑓𝑝                                            (15) 

 

∑ 𝐹𝑈𝐶2𝑢,𝑐𝑐    ≥ 𝑆𝐶𝐿𝑈 × 𝑦2𝑢              ∀𝑢                         (16) 

 

The value substitution for the lower limits for large scale of the fast pyrolysis plant 

and the both upgrading plants shows as equations (15A) – (16B). 
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𝐹𝑃𝑈21,1 + 𝐹𝑃𝑈21,2 ≥ 850 × 𝑦2𝑓𝑝                              (15A) 

 

𝐹𝑈𝐶21,1 + 𝐹𝑈𝐶21,2 ≥ 850 × 𝑦2𝑢1                                 (16A) 

 

𝐹𝑈𝐶22,1 + 𝐹𝑈𝐶22,2 ≥ 850 × 𝑦2𝑢2                                 (16B) 

 

Equations (17) – (18) are lower limit for small scale of fast pyrolysis plant and 

upgrading plants. 

 

∑ 𝐹𝑃𝑈1𝑓𝑝,𝑢𝑢 ≥ 𝑚𝑆𝐶𝐿𝑃 × 𝑦1𝑓𝑝                                        (17) 

 

∑ 𝐹𝑈𝐶1𝑢,𝑐𝑐    ≥ 𝑚𝑆𝐶𝐿𝑈 × 𝑦1𝑢            ∀𝑢                         (18) 

 

The value substitution for the lower limits for small scale of the fast pyrolysis plant 

and the both upgrading plants shows as equations (17A) – (18B). 

 

𝐹𝑃𝑈11,1 + 𝐹𝑃𝑈11,2 ≥ 200 × 𝑦1𝑓𝑝                          (17A) 

 

𝐹𝑈𝐶11,1 + 𝐹𝑈𝐶11,2 ≥ 200 × 𝑦1𝑢1                       (18A) 

 

𝐹𝑈𝐶12,1 + 𝐹𝑈𝐶12,2 ≥ 200 × 𝑦1𝑢2                       (18B) 

 

Finally, equations (19) – (20) are upper limit for small scale of fast pyrolysis plant 

and upgrading plants. 

 

∑ 𝐹𝑃𝑈2𝑓𝑝,𝑢𝑢 ≤ 𝑚𝑎𝑥𝑆𝐶𝐿𝑃 × 𝑦2𝑓𝑝                                           (19) 

 

∑ 𝐹𝑈𝐶2𝑢,𝑐𝑐    ≤ 𝑚𝑎𝑥𝑆𝐶𝐿𝑈 × 𝑦2𝑢        ∀𝑢                         (20) 

 

The value substitution for the upper limits for large scale of the fast pyrolysis plant 

and the both upgrading plants shows as equations (19A) – (20B). 
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𝐹𝑃𝑈21,1 + 𝐹𝑃𝑈21,2 ≤ 2,000 × 𝑦2𝑓𝑝                                        (19A) 

 

𝐹𝑈𝐶21,1 + 𝐹𝑈𝐶21,2 ≤ 2,000 × 𝑦2𝑢1                                (20A) 

 

𝐹𝑈𝐶22,1 + 𝐹𝑈𝐶22,2 ≤ 2,000 × 𝑦2𝑢2                      (20B) 

 

The depreciation (DP) is functions of the equipment cost, expressed as equation (21).  

  

𝐷𝑃𝑓𝑝,𝑢,𝑚𝑝 = 𝑑𝑓𝑓𝑝,𝑢,𝑚𝑝 × 𝐸𝐶𝑓𝑝,𝑢,𝑚𝑝          ∀𝑢                                (21) 

 

The value substitution for the depreciation costs for the fast pyrolysis plant, the both 

upgrading plants and the mobile pyrolyzer are expressed as equations (21A) – (21D). 

 

𝐷𝑃𝑓𝑝 = 0.1 × 𝐸𝐶𝑓𝑝                                          (21A) 

 

𝐷𝑃𝑢1 = 0.1 × 𝐸𝐶𝑢1                                          (21B) 

 

𝐷𝑃𝑢2 = 0.1 × 𝐸𝐶𝑢2                                          (21C) 

 

𝐷𝑃𝑚𝑝 = 0.1 × 𝐸𝐶𝑚𝑝                                          (21D) 

 

For operating cost constraints, the values of products (vp) are dependent on 

the product selling price (sp), expressed as equations (22) – (24). For the selling 

prices from fast pyrolysis plant, mobile pyrolyzer and upgrading plants, biochar 

selling price is 40.8 $ 𝑀𝑔−1, and biofuel selling price is 1,541 $ 𝑚−3. 

 

𝑣𝑝𝑓𝑝 = 𝑠𝑝𝑓𝑝 ∗ ∑ 𝐹𝑃𝑈𝑓𝑝,𝑢𝑢                            (22) 

 

𝑣𝑝𝑚𝑝 = 𝑠𝑝𝑚𝑝 ∗ ∑ 𝐹𝑀𝑃𝑈𝑚𝑝,𝑢𝑢                 (23) 

 

𝑣𝑝𝑢 = 𝑠𝑝𝑢 ∗ ∑ 𝐹𝑈𝐶𝑢,𝑐𝑐         ∀𝑢                          (24) 
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The value substitution for the product prices for the products from the fast pyrolysis 

plant, the both upgrading plants and the mobile pyrolyzer are expressed as equations 

(22A) – (24B). 

 

𝑣𝑝𝑓𝑝 = 40.8 × (𝐹𝑃𝑈1,1 + 𝐹𝑃𝑈1,2)             (22A) 

 

𝑣𝑝𝑚𝑝 = 40.8 × (𝐹𝑀𝑃𝑈1,1 + 𝐹𝑀𝑃𝑈1,2)            (23A) 

 

𝑣𝑝𝑢1 = 1,541 × (𝐹𝑈𝐶1,1 + 𝐹𝑈𝐶1,2)                       (24A) 

 

𝑣𝑝𝑢2 = 1,541 × (𝐹𝑈𝐶2,1 + 𝐹𝑈𝐶2,2)                       (24B) 

 

The costs of raw materials (CRM), equations (25) – (27), depend on the raw material 

cost (RMC) and biomass cost (bC). The feedstock cost of mobile pyrolyzer is 

25$ 𝑀𝑔−1. And the costs of feedstock for the fast pyrolysis plants and upgrading 

plants show in Table 4.13. 

 

𝐶𝑅𝑀𝑓𝑝 = (𝑅𝑀𝐶𝑓𝑝 + 𝑏𝐶) × ∑ 𝐹𝑃𝑈𝑓𝑝,𝑢𝑢                 (25) 

 

𝐶𝑅𝑀𝑢 = 𝑅𝑀𝐶𝑢 × ∑ 𝐹𝑈𝐶𝑢,𝑐𝑐         ∀𝑢               (26) 

 

𝐶𝑅𝑀𝑚𝑝 = 𝑅𝑀𝐶𝑚𝑝 × ∑ 𝐹𝑀𝑃𝑈𝑚𝑝,𝑢𝑢                  (27) 

 

Table 4.13  The costs of feedstock 

 

Material Cost 

Hardwood biomass 83.33 $ 𝑀𝑔−1 of dry biomass 

Catalysts 38.62 $ 𝑚−3    of product 

Natural gas 85.19 $ 𝑚−3    of product 

Waste disposal 18.00 $ 𝑀𝑔−1  of dry biomass 
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The value substitution for the raw material costs for the products from the fast 

pyrolysis plant, the both upgrading plants and the mobile pyrolyzer are expressed as 

equations (25A) – (27B). 

 

𝐶𝑅𝑀𝑓𝑝 = 101.33 × (𝐹𝑃𝑈1,1 + 𝐹𝑃𝑈1,2)             (25A) 

 

𝐶𝑅𝑀𝑢1 = 123.81 × (𝐹𝑈𝐶1,1 + 𝐹𝑈𝐶1,2)            (26A) 

 

𝐶𝑅𝑀𝑢2 = 123.81 × (𝐹𝑈𝐶2,1 + 𝐹𝑈𝐶2,2)            (27A) 

 

𝐶𝑅𝑀𝑚𝑝 = 25 × (𝐹𝑀𝑃𝑈1,1 + 𝐹𝑀𝑃𝑈1,2)             (27B) 

 

The operating labour (OL) is function of the number of workers at each 

plant, expressed as equations (28) – (30). The operating labour is calculated on 3 

shifts per day. 4 workers and 12 workers per shift are necessary for the fast pyrolysis 

plant and upgrading plant, respectively. These numbers of works are used for plant 

throughput of 2 𝐺𝑔 𝑑−1. The average salary for the workers is 57.678 $ ℎ−1.  

 

𝑂𝐿𝑓𝑝 = 𝑜𝑙𝑓𝑓𝑝 × ∑ 𝐹𝑃𝑈𝑓𝑝,𝑢𝑢                  (28) 

 

𝑂𝐿𝑢 = 𝑜𝑙𝑓𝑢 × ∑ 𝐹𝑈𝐶𝑢,𝑐𝑐          ∀𝑢                (29) 

 

𝑂𝐿𝑚𝑝 = 𝑜𝑙𝑓𝑚𝑝 × ∑ 𝐹𝑀𝑃𝑈𝑚𝑝,𝑢𝑢                 (30) 

 

The value substitution for the operating labor costs for the products from the fast 

pyrolysis plant, the both upgrading plants and the mobile pyrolyzer are expressed as 

equations (28A) – (30B). 

 

𝑂𝐿𝑓𝑝 = 0.00119 × (𝐹𝑃𝑈1,1 + 𝐹𝑃𝑈1,2)            (28A) 

 

𝑂𝐿𝑢1 = 0.0068 × (𝐹𝑈𝐶1,1 + 𝐹𝑈𝐶1,2)            (29A) 
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𝑂𝐿𝑢2 = 0.0068 × (𝐹𝑈𝐶2,1 + 𝐹𝑈𝐶2,2)            (30A) 

 

𝑂𝐿𝑚𝑝 = 0.018 × (𝐹𝑀𝑃𝑈1,1 + 𝐹𝑀𝑃𝑈1,2)                      (30B) 

 

The costs of utilities (UT) are equations (31) – (33). The utility factor for the 

fast pyrolysis plant and upgrading plant are 1.2 𝑀$ 𝑦−1 and 5.5 𝑀$ 𝑦−1. For mobile 

pyrolyzer, the amount of propane to purchase is 263.83 𝑚3 𝑦−1 for temperature 

controlling in mobile pyrolyzer and the propane price is 602 $ 𝑚−3. 

 

𝑈𝑇𝑓𝑝 = 𝑢𝑡𝑓𝑓𝑝 × ∑ 𝐹𝑃𝑈𝑓𝑝,𝑢𝑢                  (31) 

 

𝑈𝑇𝑢 = 𝑢𝑡𝑓𝑢 × ∑ 𝐹𝑈𝐶𝑢,𝑐𝑐          ∀𝑢                                               (32) 

 

𝑈𝑇𝑚𝑝 = 𝑢𝑡𝑓𝑚𝑝 × ∑ 𝐹𝑀𝑃𝑈𝑚𝑝,𝑢𝑢                          (33) 

 

The value substitution for the utility costs for the products from the fast pyrolysis 

plant, the both upgrading plants and the mobile pyrolyzer are expressed as equations 

(31A) – (33B). 

 

𝑈𝑇𝑓𝑝 = 0.00142 × (𝐹𝑃𝑈1,1 + 𝐹𝑃𝑈1,2)            (31A) 

 

𝑈𝑇𝑢1 = 0.0123 ×(𝐹𝑈𝐶1,1 + 𝐹𝑈𝐶1,2)                                 (32A) 

 

𝑈𝑇𝑢2 = 0.0123 ×(𝐹𝑈𝐶2,1 + 𝐹𝑈𝐶2,2)                                (33A) 

 

𝑈𝑇𝑚𝑝 = 0.0032 × (𝐹𝑀𝑃𝑈1,1+𝐹𝑀𝑃𝑈1,2)                     (33B) 

 

The variable costs (VC) are the summation of the labour costs, the utility 

costs and the raw material costs, equation (34). The operating supervision is 95% of 

operating labour. 
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𝑉𝐶𝑓𝑝,𝑢,𝑚𝑝 = 𝑂𝐿𝑓𝑝,𝑢,𝑚𝑝 × 𝑠𝑚𝑟𝑓𝑝,𝑢,𝑚𝑝 + 𝑈𝑇𝑓𝑝,𝑢,𝑚𝑝 + 𝐶𝑅𝑀𝑓𝑝,𝑢,𝑚𝑝       ∀𝑢            (34)  

 

The value substitution for the variable costs for the products from the fast pyrolysis 

plant, the both upgrading plants and the mobile pyrolyzer are expressed as equations 

(34A) – (34D). 

 

𝑉𝐶𝑓𝑝 = 0.95 × 𝑂𝐿𝑓𝑝 + 𝑈𝑇𝑓𝑝 + 𝐶𝑅𝑀𝑓𝑝                       (34A) 

 

𝑉𝐶𝑢1 = 0.95 × 𝑂𝐿𝑢1 + 𝑈𝑇𝑢1 + 𝐶𝑅𝑀𝑢1                       (34B) 

 

𝑉𝐶𝑢2 = 0.95 × 𝑂𝐿𝑢2 + 𝑈𝑇𝑢2 + 𝐶𝑅𝑀𝑢2                       (34C) 

 

𝑉𝐶𝑚𝑝 = 0.95 × 𝑂𝐿𝑚𝑝 + 𝑈𝑇𝑚𝑝 + 𝐶𝑅𝑀𝑚𝑝                       (34D) 

 

Finally, the total production cost is expressed as equation (35). The trucks 

are rented at the price of 25,000 $ 𝑦−1. And the average salary for track divers is 

40,000 $ 𝑦−1. 

 

𝑇𝑃𝐶𝑓𝑝,𝑢,𝑚𝑝 = 𝑉𝐶𝑓𝑝,𝑢,𝑚𝑝 + 𝑇𝐶𝑓𝑝,𝑢,𝑚𝑝 + 𝑇𝑇𝑓𝑝,𝑢,𝑚𝑝 × (𝐿𝐷 + 𝑅𝑃)         ∀𝑢           (35)  

 

The value substitution for the total production costs for the products from the fast 

pyrolysis plant, the both upgrading plants and the mobile pyrolyzer are expressed as 

equations (35A) – (35D). 

 

𝑇𝑃𝐶𝑓𝑝 = 𝑉𝐶𝑓𝑝 + 𝑇𝐶𝑓𝑝 + 0.065 × 𝑇𝑇𝑓𝑝                      (35A)  

 

𝑇𝑃𝐶𝑢1 = 𝑉𝐶𝑢1 + 𝑇𝐶𝑢1 + 0.065 × 𝑇𝑇𝑢1                      (35B)  

 

𝑇𝑃𝐶𝑢2 = 𝑉𝐶𝑢2 + 𝑇𝐶𝑢2 + 0.065 × 𝑇𝑇𝑢2                      (35C)  

 

𝑇𝑃𝐶𝑚𝑝 = 𝑉𝐶𝑚𝑝 + 𝑇𝐶𝑚𝑝 + 0.065 × 𝑇𝑇𝑚𝑝                      (35D)  
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For transportation cost constraints, the transportation costs (TC) depend on 

distance and mass flow rate, equations (36) – (38). The fuel consumption parameters 

show in Table 4.14.  

 

𝑇𝐶𝑓𝑝 = ∑ (𝐷𝑆 × 𝐹𝑆𝑃𝑠,𝑓𝑝 × 𝑡𝑐𝑓𝑏)𝑠 + ∑ (𝐷𝑆 × 𝐹𝑃𝑈𝑓𝑝,𝑢𝑢 × 𝑡𝑐𝑓𝑜            (36) 

 

𝑇𝐶𝑢 = ∑ (𝐷𝑆 × 𝐹𝑈𝐶𝑢,𝑐 × 𝑡𝑐𝑓𝑔𝑑)𝑐           ∀𝑢                        (37) 

 

𝑇𝐶𝑚𝑝 = ∑ (𝐷𝑆 × 𝐹𝑀𝑃𝑈𝑚𝑝,𝑢 × 𝑡𝑐𝑓𝑜)𝑢                                    (38) 

 

The value substitution for the transportation costs for the products from the fast 

pyrolysis plant, the both upgrading plants and the mobile pyrolyzer are expressed as 

equations (36A) – (38B). 

 

𝑇𝐶𝑓𝑝 = 0.0035 × 𝐹𝑆𝑃1,1 + (0.0011 × 𝐹𝑃𝑈1,1 + 0.0014 × 𝐹𝑃𝑈1,2)        (36A) 

 

𝑇𝐶𝑢1 = 0.00032 × 𝐹𝑈𝐶1,1 + 0.0035 × 𝐹𝑈𝐶1,2                    (37A) 

 

𝑇𝐶𝑢2 = 0.0035 × 𝐹𝑈𝐶2,1 + 0.00032 × 𝐹𝑈𝐶2,2                    (38A) 

 

𝑇𝐶𝑚𝑝 = 0.002 × 𝐹𝑀𝑃𝑈1,1 + 0.0013 × 𝐹𝑀𝑃𝑈1,2                     (38B) 

 

The transportation truck numbers (TT) are integer numbers and function of distance, 

mass flow rate, the capacity of the trucks (CT), the average velocity of the trucks 

(VL), 45 𝑘𝑚 ℎ−1, a number of working hours per day of a truck driver (WH), 10 

hrs., and the working days per year (DY), 254 𝑑 𝑦−1, equations (39) – (41). 

 

𝑇𝑇𝑓𝑝 ≥ ∑ (𝐷𝑆 ×
𝐹𝑆𝑃𝑠,𝑓𝑝

𝐶𝑇𝑏∗𝑉𝐿∗𝑊𝐻∗𝐷𝑌
)𝑠 + ∑ (𝐷𝑆 ×

𝐹𝑃𝑈𝑓𝑝,𝑢

𝐶𝑇𝑜∗𝑉𝐿∗𝑊𝐻∗𝐷𝑌
)𝑢             (39) 

 

𝑇𝑇𝑚𝑝 ≥ ∑ (𝐷𝑆 ×
𝐹𝑀𝑃𝑈𝑚𝑝,𝑢

𝐶𝑇𝑜∗𝑉𝐿∗𝑊𝐻∗𝐷𝑌
)𝑢                           (40) 
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𝑇𝑇𝑢 ≥ ∑ (𝐷𝑆 ×
𝐹𝑈𝐶𝑢,𝑐

𝐶𝑇𝑔𝑑∗𝑉𝐿∗𝑊𝐻∗𝐷𝑌
)𝑐          ∀𝑢                       (41) 

 

The value substitution for the transportation trucks for the products from the fast 

pyrolysis plant, the both upgrading plants and the mobile pyrolyzer are expressed as 

equations (39A) – (41B). 

 

𝑇𝑇𝑓𝑝 ≥ 0.034𝐹𝑆𝑃1,1 + 0.011 × 𝐹𝑃𝑈1,1 + 0.014 × 𝐹𝑃𝑈1,2             (39A) 

 

𝑇𝑇𝑚𝑝 ≥ 0.02 × 𝐹𝑀𝑃𝑈1,1 + 0.013 × 𝐹𝑀𝑃𝑈1,2                     (40A) 

 

𝑇𝑇𝑢1 ≥ 0.0026 × 𝐹𝑈𝐶1,1 + 0.028 × 𝐹𝑈𝐶1,2                   (41A) 

 

𝑇𝑇𝑢2 ≥ 0.028 × 𝐹𝑈𝐶1,1 + 0.0026 × 𝐹𝑈𝐶1,2                   (41B) 

 

Table 4.14  The fuel consumption parameters for transportation cost and truck 

 

Material Density Unit 

Pyrolysis oil      1,170 𝑘𝑔 𝑚−3 

Chipped biomass      220 𝑘𝑔 𝑚−3 

Biofuel      660 𝑘𝑔 𝑚−3 

Type of truck Volume  

Freight truck      40 𝑚3 

Tank lorry      40 𝑚3 

Material Cost  

Pyrolysis oil      19.3 $ 𝑘𝑚−1 𝐺𝑔−1 

Chipped biomass      103.3 $ 𝑘𝑚−1 𝐺𝑔−1 

Biofuel      27.3 $ 𝑘𝑚−1 𝑑𝑎𝑚−1 
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For mobile pyrolysis cost constraint, equation (42) refers to the purchased equipment 

cost of mobile pyrolyzers (EC). The equation cost is fixed at 3.60 M$. 

 

𝐸𝐶𝑚𝑝 = 𝑀𝑃𝑃                                       (42) 

 

The value substitution for the equipment cost for the mobile pyrolyzer is expressed 

as equation (42A). 

 

𝐸𝐶𝑚𝑝 = 3.60                                       (42A) 

 

After the maximum TAGP is obtained from the optimization solvers, the 

maximum TAGP is used to find the total supply chain net present value (SCNPV). 

The total supply chain net present value is considered for 10 years in this case. The 

total annual gross profit (TAGP), the objective function, becomes the total annual net 

profit (TANP) by minus tax, 20%, equation (43).  

 

𝑇𝐴𝑁𝑃 = 𝑇𝐴𝐺𝑃 × (1 − 𝑡𝑎𝑥)                            (43) 

 

The value substitution for the total annual net profit (TANP) shows as equation 

(43A). 

 

𝑇𝐴𝑁𝑃 = 𝑇𝐴𝐺𝑃 × 0.8                                    (43A) 

 

And the total annual cash flow (TACF) is the summation of the total annual net profit 

and the depreciation, equation (44). 

 

𝑇𝐴𝐶𝐹 = 𝑇𝐴𝑁𝑃 + 𝑑𝑓 × ∑ 𝐷𝑃𝑓𝑝,𝑢,𝑚𝑝
𝑓𝑝,𝑢,𝑚𝑝                (44) 

 

The value substitution for the total annual cash flow (TACF) shows as equation 

(44A). 
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𝑇𝐴𝐶𝐹 = 𝑇𝐴𝑁𝑃 + 0.1 × (𝐷𝑃𝑓𝑝 + 𝐷𝑃𝑢1 + 𝐷𝑃𝑢2 + 𝐷𝑃𝑚𝑝)          (44A) 

 

Finally, the total supply chain net present value is the total annual cash flow 

multiplied by present worth factor, equation (45).  

 

𝑆𝐶𝑁𝑃𝑉 =  ∑ 𝑇𝐴𝐶𝐹 × 𝑝𝑤𝑓𝑡
10
𝑡                              (45) 

 

The value substitution for the total supply chain net present value (SCNPV) shows as 

equation (45A). 

 

𝑆𝐶𝑁𝑃𝑉 =  ∑ 𝑇𝐴𝐶𝐹 × (1 + 1.2)𝑡  10
𝑡                        (45A) 

 

The case study is solved by using Microsoft excel and the developed algorithm, 

respectively. 

 

4.3.1  MILP Evaluation (Only Integer) For Biofuel Production Supply 

Chain 

In this case, 4 integer-restricted variables are considered to be 

evaluated, which are transportation truck from supplier 1 to the upgrading plant 1 

(TTfp), transportation truck from mobile pyrolyzer to upgrading plant 2 (TTmp), 

transportation truck from upgrading plant 1 to the both customers (TTu1) and 

transportation truck from upgrading plant 2 to the both customers (TTu2). 

4.3.1.1  Results Of MILP Evaluation (Only Integer) For Biofuel 

Production Supply Chain 

From the developed algorithm evaluation, the total annual 

gross profit is maximized to 317.48 M$ 𝑦−1. From this total annual gross profit, the 

total supply chain net present value for 10 years of plant operating is 2,723.34 M$. 

The results of mass flows and transportation trucks show in Table 4.15.  
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Table 4.15  Biofuel production supply chain result from integer case 

 

Variable Value Variable Value 

𝐹𝑆𝑃11  1,080.44  𝑀𝑔 𝑑−1 𝐹𝑀𝑃𝑈12  495.27     𝑀𝑔 𝑑−1 

𝐹𝑆𝑀𝑃11  898.16     𝑀𝑔 𝑑−1 𝐹𝑈𝐶11  192.37     𝑚3 𝑑−1 

𝐹𝑃𝑈11  369.96     𝑀𝑔 𝑑−1 𝐹𝑈𝐶12  17.93       𝑚3 𝑑−1 

𝐹𝑃𝑈12  459.81     𝑀𝑔 𝑑−1 𝐹𝑈𝐶21  27.62       𝑚3 𝑑−1 

𝐹𝑀𝑃𝑈11  28.35       𝑀𝑔 𝑑−1 𝐹𝑈𝐶22  476.66     𝑚3 𝑑−1 

TTfp 47 TTu2 2 

TTu1 1 TTmp 7 

 

From Table 4.15, transportation trucks from supplier 1 to 

upgrading plant are used in many amounts, 47 trucks, because of many amounts of 

suppliers 1 (𝐹𝑆𝑃11) and pyrolysis oil from pyrolysis plant 1 and 2 

(𝐹𝑃𝑈11 𝑎𝑛𝑑 𝐹𝑃𝑈12). From the equations (39) – (41) in section 4.3, a number of 

transportation trucks depends on distance between locations and mass flow rate. 

From distance from supplier 1 to upgrading plants; 93.34 km from supplier 1 to the 

fast pyrolysis plant 1, 157.7 km from the fast pyrolysis plant 1 to upgrading plant 1, 

and 204.4 km from the fast pyrolysis plant 1 to upgrading plant 2, the distance 

summation is 455.44 km and the mass flow summation is 1,910.21 𝑀𝑔 𝑑−1. So 

many transportation trucks from supplier 1 to upgrading plants are used to transfer 

biomasses and pyrolysis oil. The transportation truck from upgrading plant 1 to the 

both customers is 1 truck because only 192.37 𝑚3 𝑑−1 from upgrading plant 1 to 

customer 1, and 17.93 𝑚3 𝑑−1 from upgrading plant 1 to customer. However, the 

total of distance from upgrading plant 1 to the both customers is very large, 387.7 

km, but a number of transportation truck is only 1 with small amounts of mass flow 

rate. For the transportation truck from upgrading plant 2 to the both customers, the 

distance is the same with one from upgrading plant 1 to the both customers, but the 

transportation truck is greater because of 504.28 𝑚3 𝑑−1 of total mass flow rate from 

upgrading plant 2 to the both customers. It is greater. The transportation truck from 

mobile pyrolyzer to the both upgrading plants is 7, greater than ones from upgrading 
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plants to customer, because of large amounts of mass flow rate; 28.35 𝑀𝑔 𝑑−1 from 

mobile pyrolyzer to upgrading plant 1 and 495.27 𝑀𝑔 𝑑−1 from mobile pyrolyzer to 

upgrading plant 2, and very long distance, 479.7 km. Moreover, the mass flow rate is 

shown as node model in Fig. 4.21. 

 

 
 

Figure 4.21  Biofuel production supply chain mass flow rate from integer case. 

 

The mass flow rate from mobile pyrolyzer to the upgrading 1 

is small amount because the demand of customer 2 (London) is large (180.54 

𝑑𝑎𝑚3 𝑦−1). The large amounts of biomasses and pyrolysis oil are transferred to the 

customer 2. Moreover, the distance from mobile pyrolyzer to upgrading plant 1 is 

greater than one to upgrading plant 2. All of the suppliers 2 (forest) are used because 

of cheap price of feedstock (25 $ 𝑀𝑔−1).  

However from results of the both solvers, the total supply 

chain net present value and the other results are the same. It indicates that this 

problem evaluated by integer evaluation is not multi-solution problem (is general 

problem). But the executing time for the both solvers is different.  

4.3.1.2  MILP Evaluation (Only Integer) For Biofuel Production 

From the results, the solver in Microsoft excel uses 8 

subproblems to find the optimum point, as shows in Fig. 4.22. 
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Figure 4.22  Subproblem from excel in integer case for biofuel production. 

 

In the same time, our algorithm which uses fathoming 

algorithm to find the optimum point and branching to make new subproblems, shows 

8 subproblems the same.  The procedure of the algorithm shows in Fig. 4.23. 

 

 
 

Figure 4.23  MILP and fathoming algorithm. 

1 

2 

3 

5 

4 
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From the algorithm in Fig. 4.23, parts 1, 2, 3 and 5 are 

fathoming and branching to new subproblem is in part 4. From flowchart of 

fathoming step in Fig. 4.17, the steps of checking non-feasible solution are part 1 and 

2 in Fig 4.23. Part 3 is step of checking integer value of integer-restricted variables in 

fathoming. And part 5 is step of checking Z value comparing with Z in current 

incumbent.  

Part 4 in Fig. 4.23 is step of branching to new subproblem of 

MILP algorithm. The integer-restricted variables that are not integer would be set to 

be ≥ the least value that is greater that it, and be ≤ the most value that is less that it. 

Then the new subproblem would be calculated by LP algorithm. 

From this MILP algorithm, the optimum point would be 

found by 8 subproblems the same as solver on Microsoft excel. The result from 

MILP algorithm for the problem shows in Fig. 4.24. 

 

 
 

Figure 4.24  MILP procedure for biofuel production supply chain. 
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From Fig. 4.24, the subproblem 4 stops branching because all 

integer-restricted variables are integers, which is current incumbent. So, the 

algorithm in part 3 in Fig. 4.23 would execute. The subproblems 5, 6 and 8 stop 

branching because its bound is less than Z of the current incumbent. So, the part 5 in 

Fig. 4.23 would execute. The subproblem 7 stops branching because it is non-

feasible solution, which is executed by part 1 and 2 in Fig. 4.23.  

This performance indicates that the MILP algorithm (only 

integer) for this non-multiple problem shows the same result and the same numbers 

of subproblems as solver on Microsoft excel. However, for multiple problem, the 

different numbers of subproblems and many solutions from our algorithm are shown. 

this is discussed in section 4.3.2 and 4.3.3 later. 

 

4.3.2  MILP Evaluation (Only Binary) For Biofuel Production Supply Chain 

In this case, 6 integer-restricted variables are considered to be 

evaluated, that are the decision variable for small scale of the fast pyrolysis plant 

(𝑦1𝑓𝑝), the decision variable for large scale of the fast pyrolysis plant (𝑦2𝑓𝑝), the 

decision variable for small scale of the upgrading plant 1 (𝑦1𝑢1), the decision 

variable for large scale of the upgrading plant 1 (𝑦2𝑢1), the decision variable for 

small scale of the upgrading plant 2 (𝑦1𝑢2), the decision variable for large scale of 

the upgrading plant 2 (𝑦2𝑢2). The 6 variables are set to be integer in the solver to use 

BIP algorithm. However, some constraints of the problem would set the 6 variables 

to be less than 1, that are equations (12) in section 4.3. 

4.3.2.1  Results Of MILP Evaluation (Only Binary) For Biofuel 

Production 

From the developed algorithm evaluation, the total annual 

gross profit is maximized to 317.18 M$ 𝑦−1. From this total annual gross profit, the 

total supply chain net present value for 10 years of plant operating is 2,722 M$. The 

results of mass flows and the decision variables show in Table 4.16.  

From Table 4.16, the decision variable for small scale of the 

fast pyrolysis plant is zero. From the equation (12) in section 4.3, it is necessary to 

choose one between the both scales of each plant (pyrolysis plant, upgrading plant 1 
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and upgrading plant 2). So the decision variable for large scale of the fast pyrolysis 

plant is 1. It indicates that the large scale of the fast pyrolysis plant is used. From the 

equations (8A) and (8B), it shows that if the throughput biomass is greater than 850 

𝑀𝑔 𝑑−1, the large plant would be chosen. From Table 4.13, the mass flow from the 

fast pyrolysis plant to the upgrading plants is about 828.71 𝑀𝑔 𝑑−1 or about 

1,079.05 𝑀𝑔 𝑑−1 of throughput biomass, so the decision variable for the large scale 

of the fast pyrolysis plant is 1.  

 

Table 4.16  Biofuel production supply chain result from binary case 

 

Variable Value Variable Value 

𝐹𝑆𝑃11  1,079.05  𝑀𝑔 𝑑−1 𝐹𝑀𝑃𝑈12  524.7       𝑀𝑔 𝑑−1 

𝐹𝑆𝑀𝑃11  900.00     𝑀𝑔 𝑑−1 𝐹𝑈𝐶11  220.0       𝑚3 𝑑−1 

𝐹𝑃𝑈11  652.80     𝑀𝑔 𝑑−1 𝐹𝑈𝐶12  124.68     𝑚3 𝑑−1 

𝐹𝑃𝑈12  175.91     𝑀𝑔 𝑑−1 𝐹𝑈𝐶21  0              𝑚3 𝑑−1 

𝐹𝑀𝑃𝑈11  0              𝑀𝑔 𝑑−1 𝐹𝑈𝐶22  369.92     𝑚3 𝑑−1 

𝑦1𝑓𝑝  0 𝑦2𝑢1  1 

𝑦2𝑓𝑝  1 𝑦1𝑢2  0 

𝑦1𝑢1  0 𝑦2𝑢2  1 

 

Moreover, from the equations (9A) and (9B), the large scale of the upgrading plants 

are used when the throughput biomass is greater than 850 𝑀𝑔 𝑑−1. From Table 4.10, 

the mass flow of biofuel from the upgrading plant1 and 2 is about 344.68 𝑚3 𝑑−1 

and 369.92 𝑚3 𝑑−1,  that are about 850 𝑀𝑔 𝑑−1 and 912.25 𝑀𝑔 𝑑−1 of the 

throughput biomass, respectively. So the decision variables for large scale of the both 

upgrading plants are 1. Besides, the mass flow rate would be shown as node model in 

Fig. 4.25. 

From Fig. 4.25, the mass flow rate from mobile pyrolyzer to 

the upgrading plant 1 is zero because of large scale of the fast pyrolysis plant. So the 

mass flow from the fast pyrolysis plant to the upgrading plant 1 is high enough. 

Moreover, the mass flow rate from the upgrading plant 2 to the customer 1 is zero 
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because mass flow from the large scale of the upgrading plant 1 to customer 1 is high 

enough. 

 

 
 

Figure 4.25  Biofuel production supply chain mass flow rate from binary case. 

 

Besides, the results from the both solvers are not the same. So this problem is muti-

solution problem. 

4.3.2.2  MILP Evaluation (Only Binary) For Biofuel Production 

From the results from the both solvers, it indicates that the 

problem is multi-solution problem. In section 4.1.2, the multi-solution problem 

depends on the algorithm of choosing the most negative value in the first row for the 

developed algorithm. In this case, from Fig. 4.9 the symbol (GT) is used for the 

problem, this result is obtained. For the symbol (GT), it means that the first one of all 

the most negative values is used. So, if the last one of all the most negative values is 

used (symbol (GT) become symbol (GE)), the results would change. Table 4.17 and 

Fig. 4.26 show other results of the problem. 
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Table 4.17  Other biofuel production supply chain results from binary case 

 

Variable Value Variable Value 

𝐹𝑆𝑃11  1,079.05  𝑀𝑔 𝑑−1 𝐹𝑀𝑃𝑈12  524.7       𝑀𝑔 𝑑−1 

𝐹𝑆𝑀𝑃11  900.00     𝑀𝑔 𝑑−1 𝐹𝑈𝐶11  220.0       𝑚3 𝑑−1 

𝐹𝑃𝑈11  416.67     𝑀𝑔 𝑑−1 𝐹𝑈𝐶12  0              𝑚3 𝑑−1 

𝐹𝑃𝑈12  412.04     𝑀𝑔 𝑑−1 𝐹𝑈𝐶21  0              𝑚3 𝑑−1 

𝐹𝑀𝑃𝑈11  0              𝑀𝑔 𝑑−1 𝐹𝑈𝐶22  494.6       𝑚3 𝑑−1 

𝑦1𝑓𝑝  0 𝑦2𝑢1  0 

𝑦2𝑓𝑝  1 𝑦1𝑢2  0 

𝑦1𝑢1  1 𝑦2𝑢2  1 

 

From Table 4.17, the decision variable for large scale of the 

fast pyrolysis plant is 1 because large amount of mass flow from the fast pyrolysis 

plant to the both upgrading plant, 828.71 𝑀𝑔 𝑑−1 of pyrolysis oil or 1,079.05 

𝑀𝑔 𝑑−1 of the throughput biomass. The decision for small scale of the upgrading 

plant 1 is 1 because mass flow from it to the both customers is 220 𝑚3 𝑑−1 of biofuel 

or 542.53 𝑀𝑔 𝑑−1 of the throughput biomass. So the small scale of the upgrading 

plant 1 is used. Finally, the decision variable for large scale of the upgrading plant 2 

is 1 because mass flow from it to the both customers is 494.6 𝑚3 𝑑−1 of biofuel or 

1,219.72 𝑀𝑔 𝑑−1 of the throughput biomass. Moreover, the mass flow rate could be 

shown as node model, as shows in Fig. 4.26. 
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Figure 4.26  Other Biofuel production mass flow rates from binary case. 

 

From Fig. 4.26, the mass flow rate from mobile pyrolyzer to 

the upgrading plant 1 is zero because large scale of the fast pyrolysis plant is used. 

So the mass flow from the fast pyrolysis plant to the upgrading plant 1 is high 

enough. Moreover, the mass flow rate from the upgrading plant 2 to the customer 1 is 

zero because mass flow from the large scale of the upgrading plant 2 to customer 2 is 

used in many amounts. So, all of mass flow rates from the upgrading plant 2 are used 

for the customer 2. Finally, the mass flow rate from the upgrading plant 1 to the 

customer 2 is zero because mass flow from the large scale of the upgrading plant 2 to 

customer 2 is high enough. The total annual gross profit is maximized to 317.69 

M$ 𝑦−1. From this total annual gross profit, the total supply chain net present value 

for 10 years of plant operating is 2,726.12 M$. With many ways for the solutions, it 

indicates that this problem is multi-solution problem. Fig. 4.27 shows that the 

Microsoft excel uses 8 subproblems in this problem. 
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Figure 4.27  Subproblems from excel in binary case for biofuel production. 

 

However, the subproblems used in our algorithm are 6. All subproblems show in Fig. 

4.28.  

 

 
 

Figure 4.28  Subproblems in binary case for biofuel production supply chain. 

 

The step of fathoming is the same as step in integer case. So, 

the procedure in Fig. 4.28 is descripted by using Fig. 4.23. The subproblems 1 and 2 
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are executed by the algorithm in parts 1 and 2. And the subproblems 5 and 6 are 

executed by the algorithm in part 3. 

 

4.3.3  MILP Evaluation (Both Integer And Binary) For Biofuel Production 

Supply Chain 

For this case, both integer and binary variables would be evaluated 

together. 4 integer-restricted variables are considered to be evaluated, that are 

transportation truck from supplier 1 to the upgrading plant 1 (TTfp), transportation 

truck from mobile pyrolyzer to upgrading plant 2 (TTmp), transportation truck from 

upgrading plant 1 to the both customers (TTu1) and transportation truck from 

upgrading plant 2 to the both customers (TTu2). 6 binary-restricted variables are 

considered to be evaluated, that are the decision variable for small scale of the fast 

pyrolysis plant (𝑦1𝑓𝑝), the decision variable for large scale of the fast pyrolysis plant 

(𝑦2𝑓𝑝), the decision variable for small scale of the upgrading plant 1 (𝑦1𝑢1), the 

decision variable for large scale of the upgrading plant 1 (𝑦2𝑢1), the decision 

variable for small scale of the upgrading plant 2 (𝑦1𝑢2), the decision variable for 

large scale of the upgrading plant 2 (𝑦2𝑢2). 

4.3.3.1  Results Of MILP Evaluation (Both Integer And Binary) For 

Biofuel Production  

From the developed algorithm evaluation, the total annual 

gross profit is maximized to 316.97 M$ 𝑦−1. From this total annual gross profit, the 

total supply chain net present value for 10 years of plant operating is 2,720.19 M$. 

The results of mass flows, transportation trucks and the decision variables show in 

Table 4.18.  

From Table 4.18, the transportation trucks from supplier 1 to 

the upgrading plants are 46 which are very large, because many mass flows from 

supplier 1 to the upgrading plants are about 1,908.81 𝑀𝑔 𝑑−1, very large, and 

because of a long distance from supplier 1 to the upgrading plants, 455.44 km. The 

transportation trucks from the upgrading plant 1 to the both customers are greater 

than one from the upgrading plant 2 because of higher amounts in mass flow, 371.86 

𝑚3 𝑑−1 from the upgrading plant 1, and 342.74 𝑚3 𝑑−1 from the upgrading plant 2. 
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The transportation trucks from mobile pyrolyzer to the upgrading plants are 7 with 

549.50 𝑀𝑔 𝑑−1 of mass flows and a long distance, 479.7 km. from mobile pyrolyzer 

to the upgrading plants. 

 

Table 4.18  Biofuel production supply chain result from integer and binary case 

 

Variable Value Variable Value 

𝐹𝑆𝑃11  1,079.64  𝑀𝑔 𝑑−1 𝐹𝑀𝑃𝑈12  522.32     𝑀𝑔 𝑑−1 

𝐹𝑆𝑀𝑃11  899.22     𝑀𝑔 𝑑−1 𝐹𝑈𝐶11  215.12     𝑚3 𝑑−1 

𝐹𝑃𝑈11  677.11     𝑀𝑔 𝑑−1 𝐹𝑈𝐶12  156.74     𝑚3 𝑑−1 

𝐹𝑃𝑈12  152.06     𝑀𝑔 𝑑−1 𝐹𝑈𝐶21  4.88         𝑚3 𝑑−1 

𝐹𝑀𝑃𝑈11  27.18       𝑀𝑔 𝑑−1 𝐹𝑈𝐶22  337.86     𝑚3 𝑑−1 

Integer variables 

TTfp 46 TTu2 1 

TTu1 5 TTmp 7 

Binary variables 

𝑦1𝑓𝑝  0 𝑦2𝑢1  1 

𝑦2𝑓𝑝  1 𝑦1𝑢2  1 

𝑦1𝑢1  0 𝑦2𝑢2  0 

 

Moreover, for the binary variables, the decision variable for 

large scale of the fast pyrolysis plant is 1 because the mass flow from the fast 

pyrolysis plant to the upgrading plants is 829.17 𝑀𝑔 𝑑−1 benefiting from equation 

(8B) in section 4.3. The decision variable for large scale of the upgrading plant 1 is 1 

because of benefit from equation (9B) with large amounts of biofuel from the 

upgrading plant to the customers. And the decision variable for small scale of the 

upgrading plant 2 is 1 because of small amounts of biofuel from the upgrading plant 

2 to the customers benefiting from the equation (9A). Besides, the mass flow rate 

results show in Fig. 4.29 as the node model. 
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Figure 4.29  Biofuel production mass flow rate from integer and binary case. 

 

From Fig. 4.29, the mass flow rate from mobile pyrolyzer to 

the upgrading plant 1 is small because large scale of the fast pyrolysis plant is used. 

So the mass flow from the fast pyrolysis plant to the upgrading plant 1 is high 

enough. Moreover, the mass flow rate from the upgrading plant 2 to the customer 1 is 

quite zero because mass flow from the small scale of the upgrading plant 2 to 

customer 2 is used in many amounts. So, all of the mass flow rates from the 

upgrading plant 2 are used for the customer 2. Moreover from the different results of 

the both solvers, it indicates that the problem is multi-solution problem. 

4.3.3.2  MILP Evaluation (Both Integer And Binary) For Biofuel 

Production 

From multi-solution problem of this case, this problem would 

have many solutions with only one objective function value. These different 

solutions are obtained from the algorithm of choosing the most negative value in the 

first row, which are discussed in section 4.1.2. When the full MILP algorithm 

changes the symbol (GT) to the symbol (GE), other solutions would show in Table 

4.19. 
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Table 4.19  Other biofuel production result from integer and binary case 

 

Variable Value Variable Value 

𝐹𝑆𝑃11  1,099.97  𝑀𝑔 𝑑−1 𝐹𝑀𝑃𝑈12  451.59     𝑀𝑔 𝑑−1 

𝐹𝑆𝑀𝑃11  872.43     𝑀𝑔 𝑑−1 𝐹𝑈𝐶11  215.12     𝑚3 𝑑−1 

𝐹𝑃𝑈11  647.26     𝑀𝑔 𝑑−1 𝐹𝑈𝐶12  156.74     𝑚3 𝑑−1 

𝐹𝑃𝑈12  197.52     𝑀𝑔 𝑑−1 𝐹𝑈𝐶21  4.88         𝑚3 𝑑−1 

𝐹𝑀𝑃𝑈11  57.03       𝑀𝑔 𝑑−1 𝐹𝑈𝐶22  337.86     𝑚3 𝑑−1 

Integer variables 

TTfp 47 TTu2 1 

TTu1 5 TTmp 7 

Binary variables 

𝑦1𝑓𝑝  0 𝑦2𝑢1  1 

𝑦2𝑓𝑝  1 𝑦1𝑢2  1 

𝑦1𝑢1  0 𝑦2𝑢2  0 

 

From Table 4.19, all of the decision variables for small and 

large scale of the plant are the same as one from Table 4.18. But the transportation 

trucks from supplier 1 to the both upgrading plants change from 46 to 47. This shows 

the example of the different solutions of this multi-solution problem. The results of 

mass flow rate shows in Fig. 4.30. 
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Figure 4.30  Other Biofuel production mass flow rate from integer and binary case. 

 

18 subproblems are used with 1-4 trial solutions for each 

subproblem in Microsoft excel, as show in Fig. 4.31. And for our algorithm, 54 

subproblems are used. The procedures of our algorithm show in Appendix. 

 

 
 

Figure 4.31  Subproblems from Microsoft excel in integer and binary case for 

biofuel production. 
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From all results, it indicates that the solver can find many 

solutions of multi-solution problems from the algorithm of choosing the most 

negative value.  



 
 
 

CHAPTER V 

CONCLUSION 

 

The MILP algorithm is developed on Fortran 4.0, and is validated by solver 

in Microsoft excel. The algorithm is evaluated into 3 parts: (1) Simplex evaluation, 

(2) Branch-and-bound evaluation, and (3) Biofuel production supply chain. 

From simplex evaluation part, the optimum points from the algorithm and 

solver in Microsoft excel are the same, but the solution are not. This shows that this 

supply chain problem is multi-optimum problem, which can show many solutions. 

The algorithm can show many solutions by 3 ways: (1) using the non-basic variable 

that is 0 in the final LP table as entering variable to obtain new solution, (2) 

Choosing different the most negative/positive value in the first row, and (3) Adding 

some new constraints to obtain new solution.  

Moreover, the results from the algorithm and the solver show that the 

optimum points from both algorithm and solver are the same, and many solutions can 

be obtained from the algorithm also. It indicates that the algorithm has good 

efficiency to find the optimum point the same as the solver, and can show many 

solutions to be benefit for alternative solutions. Fathoming is used in the algorithm to 

increate efficiency in finding the optimum point also. 

Finally, in complex supply chain case, the biofuel production supply chain 

problem is used to evaluate the algorithm. The result shows that the algorithm has 

good efficiency in finding the optimum point and can show many solutions in 

complex problem also. It indicates that in more complex supply chain problem, the 

algorithm still has good efficiency. 
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APPENDICES 

 

Appendix A  The Developed Algorithm Evaluation 

 

The algorithm is developed on Fortran 4.0 and is divided in 2 parts, simplex 

method part and branch-and-bound part. The both parts would be descripted and 

evaluated by using the examples in section 2.1 and 2.2. 

The simplex method algorithm is shown in Fig. A1. This algorithm is 

divided to 2 parts, general simplex method and big-M method.  
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Figure A1  Simplex method algorithm. 
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From Fig. A1, the simplex method is developed by steps descripted in 

section 2.1.1 for general simplex method (≤ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) without big-M method. 

The example for simplex method with (≤ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) is descripted in section 2.1.1.  

 

Example for (≤ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) problem 

Minimize z = -3X1 – 2X2 + 5X3 

  Subject to X1 + 2X2 + X3 ≤ 430 

      3X1 + 2X3       ≤ 450 

       X1 + 4X2         ≤ 420 

  Give X1, X2, X3 ≥ 0 

 

In the first step, a number of equations and variable would be input into the 

program followed by coefficient of each variable. The result from the algorithm 

shows in Fig. A2. 

 

 
 

Figure A2  The result of ≤ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 problem from the algorithm. 

 

The simplex method algorithm for big-M method shows in Fig. A3. The 

technique to solve by big-M is descripted in section 2.1.2.  
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Figure A3  The algorithm for big-M method. 

 

From Fig. A3, the algorithm is developed for the first table of the problem 

and then the algorithm in Fig. A1 would be used to solve. The example for big-M 

method is divided to 2 cases; (= 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) problem and (≥ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) 

problem, descripted in section 2.1.2. 

 

Example for (= 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) problem 

Maximize z = 3X1 + 5X2 

  Subject to X1                  ≤ 4 

    2X2                ≤ 12 

    3X1 + 2X2       = 18 

  Give X1, X2 ≥ 0 

 

In the first step, the algorithm in Fig. A3 is used to set the first table of the 

problem and them the algorithm in Fig. A1 is used to solve. The result shows in Fig. 

A4. 
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Figure A4  The result of = 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 problem from the algorithm. 

 

Example for (≥ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) problem 

  Minimize z = 4X1 + X2 

  Subject to 3X1 + X2     = 3 

    4X1 + 3X2    ≥ 6 

    X1 + 2X2      ≤ 3 

  Give X1, X2 ≥ 0 

 

The result of the (≥ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) problem shows in Fig. A5. 

 

 
 

Figure A5  The result of ≥ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 problem from the algorithm. 

 

For branch-and-bound algorithm, it is shown in Fig. A6. The examples for 

this algorithm are divided to 3 examples; MILP problem, pure binary problem and 

BIP (mixed binary real) problem.  
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Figure A6  The algorithm for branch-and-bound. 

 

From Fig. A6, the algorithm is used after the simplex execution. The 

procedure is descripted in section 2.2. The examples for this algorithm evaluation are 

below, descripted in section 2.2. 

 

Example for MILP problem 

Maximize Z = 4X1 – 2X2 + 7X3 – X4 

  Subject to X1 + 5X3  ≤ 10 

    X1 + X2 - X3  ≤ 1 

    6X1 - 5X2  ≤ 0 

    -X1 + 2X3 – 2X4 ≤ 3 

  X1, X2, X3, X4 ≥ 0 

X1, X2, X3 are integer. 
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In the first step, a number of equations, a number of variables and a number 

of integer-restricted variables would be input into the program followed by 

coefficient of each variable. The result of the MILP problem shows in Fig. A7. 

 

 
 

Figure A7  The result of MILP problem from the algorithm. 

 

Example for pure binary problem 

Maximize f = 86X1 + 4X2 + 40X3 

  Subject to 774X1 + 76X2 + 42X3 ≤ 875 

    67X1 + 27X2 + 53X3 ≤ 875 

  Give X1, X2, X3 = 0, 1 

 

The result of the pure binary problem shows in Fig. A8. 

 

 
 

Figure A8  The result of pure binary problem from the algorithm. 

 



121 
 

Example for BIP (mixed binary real) problem 

Maximize Z = 5X1 + 7X2 + 3X3 

  Subject to X1 ≤ 7 

    X2 ≤ 5 

    X3 ≤ 9 

    X1 – 100y1 ≤ 0 

X2 – 100y2 ≤ 0 

    X3 – 100y3 ≤ 0 

    y1 + y2 + y3 ≤ 2 

    3X1 + 4X2 + 2X3 - 100y4 ≤ 30 

    4X1 + 6X2 + 2X3 - 100y4 ≤ 4,000 

  Give X1, X2 and X3 ≥ 0 

   y1, y2, y3 and y4 are binary. 

 

The result of the BIP (mixed binary real) problem shows in Fig. A9. 

 

 
 

Figure A9  The result of BIP (mixed binary real) problem from the algorithm. 
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Appendix B  Degenerate Problem Description 

 

The solution from degenerate problem could be obtained by many ways 

with one optimal objective function solution. The graphical solutions in Fig. B1 and 

B2 show the difference between the normal problem solution and the degenerate 

problem solution, respectively.  

 

 
 

Figure B1  Graphical solution of normal problem. 

 

Fig. B1 shows that one optimal solution could occur in normal problem 

because each point of objective function line on constraint line gives different 

solution. 

However for degenerate problem, only one of optimal objective function 

solution would occur, but the many solutions can occur because many point of 

objective function line on constraint 2 line would give many solution (values of 

𝑥1 𝑎𝑛𝑑 𝑥2) in one value of objective function. 
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Figure B2  Graphical solution of degenerate problem. 
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Appendix C Simplex Evaluation For Small Supply Chain 

 

The result from the developed algorithm shows in Fig. C1. 

 

 
 

Figure C1  Simplex evaluation for small supply chain. 

 

The results from Microsoft excel show in Table C1, and Fig. C2. The 

maximum profit is 272,000$. 

 

Table C1  Results for small supply chain problem from Microsoft excel 

 

Variable Value Variable Value 

𝑥11 100 items 𝑦11 100 items 

𝑥12 200 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 0 items 

𝑥31 0 items 𝑦22 200 items 

𝑥32 200 items 𝑦23 500 items 

TC 288,000$ OPC 400,000$ 

OWC 240,000$ TI 1,200,000$ 
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Figure C2  Results for small supply chain problem from Microsoft excel. 

 

From Table C1 and Fig. C2, 𝑥21 and 𝑥31 are zero because of high 

transportation cost (and very long distance) and low capacity of warehouse 1. The 

values of 𝑦12 and 𝑦13 are zero because of limit of warehouse 1, but 𝑦21 is zero 

because of high transportation cost (4 kmile, the longest distance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 
 

Appendix D Branch-And-Bound Evaluation 

 

Result of small supply chain from developed algorithm shows in Fig. D1. 

And result from excel shows in Table D1 and Fig. D2. 

 

 
 

Figure D1  BIP evaluation of small supply chain. 

 

Table D1  Result of small supply chain from excel (validated with BIP) 

 

Variable Value Variable Value 

𝑥11 0 items 𝑦11 0 items 

𝑥12 200 items 𝑦12 0 items 

𝑥21 0 items 𝑦13 0 items 

𝑥22 300 items 𝑦21 100 items 

𝑥31 0 items 𝑦22 200 items 

𝑥32 0 items 𝑦23 200 items 

𝑍𝑥11 0 𝑍𝑦11 0 

𝑍𝑥12 1 𝑍𝑦12 0 

𝑍𝑥13 0 𝑍𝑦13 0 

𝑍𝑥14 1 𝑍𝑦14 1 

𝑍𝑥15 0 𝑍𝑦15 1 

𝑍𝑥16 0 𝑍𝑦16 1 
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Figure D2  Result of small supply chain from excel (validated with BIP). 

 
For MILP evaluation, the result from the developed algorithm shows in Fig. 

D3, and the result from excel shows in Table D2. The maximum total net present 

value is 225,000$. 

 

 
 

Figure D3  Result of the project problem from BIP algorithm. 

 

Table D2  Result of the project problem from Microsoft excel 

 

Variable Value Variable Value 

𝑥1 1 𝑥4 0 

𝑥2 0 𝑥5 1 

𝑥3 0 𝑥6 0 
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Appendix E  Nomenclature For The Variables In Biofuel Production Supply 

Chain Case Study 

 

Continuous variables 

CRM  Cost of raw material 

DP  Depreciation 

EC  Equipment cost 

FMPU  Flow of material between mobile pyrolyzer to upgrading plants 

FPU  Flow of material between pyrolysis plant to upgrading plants 

FPU1  Flow of material between small pyrolysis plant to upgrading plants 

FPU2  Flow of material between large pyrolysis plant to upgrading plants 

FSMP  Flow of material between suppliers to mobile pyrolyzer 

FSP  Flow of material between suppliers to pyrolysis plant 

FUC  Flow of material between upgrading plants to consumers 

FUC1  Flow of material between small upgrading plants to consumers 

FUC2  Flow of material between large upgrading plants to consumers 

OL  Operating labour 

TACF  Total annual cash flow 

TAGP  Total annual gross profit 

TANP  Total annual net profit 

TC  Transportation cost 

TPC  Total production cost 

UT  Utility cost 

 

Integer variables 

TT  Total number of transportation trucks 

 

Binary variables 

y1  Existence of small plant 

y2  Existence of large plant 

Parameters 

AV  Available biomass 
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bC  Biomass cost 

cf  Conversion factor 

c  Consumer 

CT  Truck capacity 

D  Demand 

df  Depreciation factor 

DS  Distance 

DY  Working days per year 

fp  Fast pyrolysis plant 

INP1  Intercept equipment cost of pyrolysis plant vs small plant capacity 

INP2  Intercept equipment cost of pyrolysis plant vs large plant capacity 

INU1  Intercept equipment cost of upgrading plant vs small plant capacity 

INU2  Intercept equipment cost of upgrading plant vs large plant capacity 

LD  Labour truck driver 

mp  Mobile pyrolyzer 

MPP  Mobile pyrolyzer price 

mSCLP Minimum scale pyrolysis plant 

mSCLU Minimum scale upgrading plant 

olf  Operating labour factor 

pwf  Present worth factor 

RMC  Raw material purchasing cost 

RP  Truck rental price 

s  Supplier 

SCLP  Scale change from small to large in pyrolysis plant 

SCLU  Scale change from small to large in upgrading plants 

SCNPV Supply Chain Net present value 

SLP1  Slope equipment cost of pyrolysis plant vs small plant capacity 

SLP2  Slope equipment cost of pyrolysis plant vs large plant capacity 

SLU1  Slope equipment cost of upgrading plant vs small plant capacity 

SLU2  Slope equipment cost of upgrading plant vs large plant capacity 

smr  Supervision, maintenance and repairs 

sp  Selling price 
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st1  Supplier type 1 

st2  Supplier type 2 

t  Year 

utf  Utility cost factor 

VC  Variable cost 

VL  Average velocity 

WH  Working hours per day 

tax  Taxation rate 

tcf  Transportation cost factor 

u  Upgrading plant 

 

Simbol 

b  Biomass 

gd  Gasoline + diesel 

o  pyrolysis oil 
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Appendix F  Result Of Biofuel Production Supply Chain 

 

Result of biofuel production from MILP algorithm shows in Fig. F1. 

 

 

 
 

Figure F1  Result of biofuel production supply chain with MILP. 
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Table F1  Specification of x to supply chain variables 

 

Mass Balance 

𝑥1 𝐹𝑆𝑃11 𝑥2 𝐹𝑆𝑀𝑃11 𝑥3 𝐹𝑃𝑈11 𝑥4 𝐹𝑃𝑈12 

𝑥5 𝐹𝑀𝑃𝑈11 𝑥6 𝐹𝑀𝑃𝑈12 𝑥7 𝐹𝑈𝐶11 𝑥8 𝐹𝑈𝐶12 

𝑥9 𝐹𝑈𝐶21 𝑥10 𝐹𝑈𝐶22     

Equipment cost 

𝑥11 𝐸𝐶𝑓𝑝 𝑥12 𝐸𝐶𝑢1 𝑥13 𝐸𝐶𝑢2 𝑥14 𝐸𝐶𝑚𝑝 

Depreciation 

𝑥15 𝐷𝑃𝑓𝑝 𝑥16 𝐷𝑃𝑢1 𝑥17 𝐷𝑃𝑢2 𝑥18 𝐷𝑃𝑚𝑝 

Product price and Raw material cost 

𝑥19 𝑣𝑝𝑓𝑝 𝑥20 𝑣𝑝𝑢1 𝑥21 𝑣𝑝𝑢2 𝑥22 𝑣𝑝𝑚𝑝 

𝑥23 𝐶𝑅𝑀𝑓𝑝 𝑥24 𝐶𝑅𝑀𝑢1 𝑥25 𝐶𝑅𝑀𝑢2 𝑥26 𝐶𝑅𝑀𝑚𝑝 

Operating labour and Utility 

𝑥27 𝑂𝐿𝑓𝑝 𝑥28 𝑂𝐿𝑢1 𝑥29 𝑂𝐿𝑢2 𝑥30 𝑂𝐿𝑚𝑝 

𝑥31 𝑈𝑇𝑓𝑝 𝑥32 𝑈𝑇𝑢1 𝑥33 𝑈𝑇𝑢2 𝑥34 𝑈𝑇𝑚𝑝 

Variable cost and Total production cost 

𝑥35 𝑉𝐶𝑓𝑝 𝑥36 𝑉𝐶𝑢1 𝑥37 𝑉𝐶𝑢2 𝑥38 𝑉𝐶𝑚𝑝 

𝑥39 𝑇𝑃𝐶𝑓𝑝 𝑥40 𝑇𝑃𝐶𝑢1 𝑥41 𝑇𝑃𝐶𝑢2 𝑥42 𝑇𝑃𝐶𝑚𝑝 

Transportation truck and transportation cost 

𝑥43 𝑇𝑇𝑓𝑝 𝑥44 𝑇𝑇𝑢1 𝑥45 𝑇𝑇𝑢2 𝑥46 𝑇𝑇𝑚𝑝 

𝑥47 𝑇𝐶𝑓𝑝 𝑥48 𝑇𝐶𝑢1 𝑥49 𝑇𝐶𝑢2 𝑥50 𝑇𝐶𝑚𝑝 

Small and large scale of plant 

𝑥51 𝐹𝑃𝑈11,1 𝑥52 𝐹𝑃𝑈21,1 𝑥53 𝐹𝑃𝑈11,2 𝑥54 𝐹𝑃𝑈21,2 

𝑥55 𝐹𝑈𝐶11,1 𝑥56 𝐹𝑈𝐶21,1 𝑥57 𝐹𝑈𝐶11,2 𝑥58 𝐹𝑈𝐶21,2 

𝑥59 𝐹𝑈𝐶12,1 𝑥60 𝐹𝑈𝐶22,1 𝑥61 𝐹𝑈𝐶12,2 𝑥62 𝐹𝑈𝐶22,2 

Binary for choosing one scale  

𝑥63 𝑦1𝑓𝑝 𝑥64 𝑦2𝑓𝑝 𝑥65 𝑦1𝑢1 𝑥66 𝑦2𝑢1 

𝑥67 𝑦1𝑢2 𝑥68 𝑦2𝑢2     
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From Microsoft excel evaluation, the total annual gross profit is 317.48 

M$ 𝑦−1. The total supply chain net present value for 10 years in plant operating is 

2,723.34 M$. The results of mass flow rates and the transportation trucks show in 

Table F2 and Fig. F2.  

 

Table F2  Biofuel production result from excel (validated with MILP) 

 

Variable Value Variable Value 

𝐹𝑆𝑃11  1,080.44  𝑀𝑔 𝑑−1 𝐹𝑀𝑃𝑈12  495.27     𝑀𝑔 𝑑−1 

𝐹𝑆𝑀𝑃11  898.16     𝑀𝑔 𝑑−1 𝐹𝑈𝐶11  192.37     𝑚3 𝑑−1 

𝐹𝑃𝑈11  369.96     𝑀𝑔 𝑑−1 𝐹𝑈𝐶12  17.93       𝑚3 𝑑−1 

𝐹𝑃𝑈12  459.81     𝑀𝑔 𝑑−1 𝐹𝑈𝐶21  27.62       𝑚3 𝑑−1 

𝐹𝑀𝑃𝑈11  28.35       𝑀𝑔 𝑑−1 𝐹𝑈𝐶22  476.66     𝑚3 𝑑−1 

TTfp 47 TTu2 2 

TTu1 1 TTmp 7 

 

From Table F2 and Fig. F2, the transportation trucks from supplier 1 to the 

upgrading plants are greater than other ones because of high mass flow rate of 

biomass and pyrolysis oil. The transportation trucks from upgrading plant 1 and 2 are 

small, 1 and 2, because of low volume flow rate of biofuel. Transportation trucks 

from mobile pyrolyzer to upgrading plant are 7 trucks because of lower mass flow 

rate than one from supplier 1 to the upgrading plants, and higher mass flow rate than 

one from the both upgrading plants to the customers. 
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Figure F2  Biofuel production result from excel (validated with MILP). 
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Result of biofuel production from BIP algorithm shows in Fig. F3. 

 

 

 
 

Figure F3  Result of biofuel production supply chain with BIP. 
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From Microsoft excel evaluation, the total annual gross profit is 317.08 

M$ 𝑦−1. The total supply chain net present value for 10 years in plant operating is 

2,721.15 M$. The results of mass flow rates and the transportation trucks show in 

Table F3.  

 

Table F3  Biofuel production result from excel (validated with BIP) 

 

Variable Value Variable Value 

𝐹𝑆𝑃11  1,079.05  𝑀𝑔 𝑑−1 𝐹𝑀𝑃𝑈12  524.7       𝑀𝑔 𝑑−1 

𝐹𝑆𝑀𝑃11  900.00     𝑀𝑔 𝑑−1 𝐹𝑈𝐶11  220.0       𝑚3 𝑑−1 

𝐹𝑃𝑈11  700.6       𝑀𝑔 𝑑−1 𝐹𝑈𝐶12  149.9       𝑚3 𝑑−1 

𝐹𝑃𝑈12  128.10     𝑀𝑔 𝑑−1 𝐹𝑈𝐶21  0              𝑚3 𝑑−1 

𝐹𝑀𝑃𝑈11  0              𝑀𝑔 𝑑−1 𝐹𝑈𝐶22  344.68       𝑚3 𝑑−1 

𝑦1𝑓𝑝  0 𝑦2𝑢1  1 

𝑦2𝑓𝑝  1 𝑦1𝑢2  1 

𝑦1𝑢1  0 𝑦2𝑢2  0 

 

From Table F3, the decision variable for large scale of the fast pyrolysis 

plant is 1 because large amount of mass flow from the fast pyrolysis plant to the both 

upgrading plant, 828.70 𝑀𝑔 𝑑−1 of pyrolysis oil or 1,079.05 𝑀𝑔 𝑑−1 of the 

throughput biomass. The decision for small scale of the upgrading plant 2 is 1 

because mass flow from it to the both customers is 344.68 𝑚3 𝑑−1 of biofuel or 850 

𝑀𝑔 𝑑−1 of the throughput biomass. So the small scale of the upgrading plant 2 is 

used. Finally, the decision variable for large scale of the upgrading plant 1 is 1 

because mass flow from it to the both customers is 369.9 𝑚3 𝑑−1 of biofuel or 912.2 

𝑀𝑔 𝑑−1 of the throughput biomass. Moreover, the mass flow rate could be shown as 

node model, as shows in Fig. F4. 
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Figure F4  Biofuel production result from excel (validated with BIP). 

 

From Fig. F4, the mass flow rate from mobile pyrolyzer to the upgrading plant 1 is 

zero because large scale of the fast pyrolysis plant is used. So the mass flow from the 

fast pyrolysis plant to the upgrading plant 1 is high enough. Moreover, the mass flow 

rate from the upgrading plant 2 to the customer 1 is zero because mass flow from the 

small scale of the upgrading plant 2 to customer 2 is used in many amounts. So, all of 

mass flow rates from the upgrading plant 2 are used for the customer 2. 
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Result of biofuel production from full MILP algorithm shows in Fig. F5. 

 

 

 
 

Figure F5  Result of biofuel production supply chain with full MILP. 
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From Microsoft excel evaluation, the total annual gross profit is 317.39 

M$ 𝑦−1. The total supply chain net present value for 10 years in plant operating is 

2,723.54 M$. The results of mass flows, transportation trucks and the decision 

variables show in Table F4. 

From Table F4, the transportation trucks from supplier 1 to the both 

upgrading plants are greater than the others because of high mass flow rate of 

biomass and pyrolysis oil, 1,910.22 𝑀𝑔 𝑑−1. The transportation trucks from 

upgrading plant 1 and 2 are small, 1 and 2, because of low volume flow rate of 

biofuel. Transportation trucks from mobile pyrolyzer to upgrading plant are 7 trucks 

because of lower mass flow rate than one from supplier 1 to the upgrading plants, 

and higher mass flow rate than the one from the both upgrading plants to the 

customers. Moreover, the results would be shown as node model in Fig. F6. 

 

Table F4  Biofuel production result from excel (validated with full MILP) 

 

Variable Value Variable Value 

𝐹𝑆𝑃11  1,080.44  𝑀𝑔 𝑑−1 𝐹𝑀𝑃𝑈12  495.28     𝑀𝑔 𝑑−1 

𝐹𝑆𝑀𝑃11  898.16     𝑀𝑔 𝑑−1 𝐹𝑈𝐶11  192.38     𝑚3 𝑑−1 

𝐹𝑃𝑈11  369.97     𝑀𝑔 𝑑−1 𝐹𝑈𝐶12  17.94       𝑚3 𝑑−1 

𝐹𝑃𝑈12  459.81     𝑀𝑔 𝑑−1 𝐹𝑈𝐶21  27.62       𝑚3 𝑑−1 

𝐹𝑀𝑃𝑈11  28.35       𝑀𝑔 𝑑−1 𝐹𝑈𝐶22  476.66     𝑚3 𝑑−1 

Integer variables 

TTfp 47 TTu2 2 

TTu1 1 TTmp 7 

Binary variables 

𝑦1𝑓𝑝  0 𝑦2𝑢1  0 

𝑦2𝑓𝑝  1 𝑦1𝑢2  0 

𝑦1𝑢1  1 𝑦2𝑢2  1 
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Figure F6  Biofuel production result from excel (validated with full MILP). 

 
From Fig. F6, the mass flow rate from mobile pyrolyzer to the upgrading plant 1 is 

small because the upgrading plant 1 is small scale. The mass flow rate from the 

upgrading plant 1 to the customer 2 is little because of small scale of the upgrading 

plant 1. Most of the flow rates from the upgrading plant 1 are sent to customer 1. 

Finally, the mass flow rate from the upgrading plant 2 to the customer 1 is very small 

because of high demand of customer 2. So, all of the mass flow rates from the 

upgrading plant 2 are used for the customer 2. 
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Appendix G  Additional Complex Supply Chain Case 

 

For more complex case, the complex supply chain is used to test simplex 

and MILP algorithm. The supply chain consists of 5 plants, 6 warehouse and 2 

markets, as shown in Fig. G1. 

 

 
 

Figure G1  Detail of the supply chain 5-6-2. 

 

For this case, the profit is optimized with the difference of revenue and 

transportation cost. The mass flow is identified into 𝑥𝑖,𝑗  𝑎𝑛𝑑 𝑦𝑗,𝑘, when i is number 

of plants, j is number of warehouse and k is number of markets, product price is 

1,000 $ per item and transportation cost is 90 $ per kmile per item, as shown in Fig. 

G2. 
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Figure G2  Variables of mass flow in supply chain 5-6-2. 

 

All variables will be used as ‘x’ variables, which are identified in Fig. G3. 

 

 
 

Figure G3  All ‘x’ variables of mass flow in supply chain 5-6-2. 



143 
 

Product price is 𝑥43 

Transportation cost (TC) is 𝑥44 

 

The objective function 

 

Max Profit = Revenue –  Transportation cost 

 

Constraint (supplier limit) 

 

1) 𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 + 𝑥1,5 + 𝑥1,6 ≤ 700 

2) 𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 + 𝑥2,5 + 𝑥2,6 ≤ 800 

3) 𝑥3,1 + 𝑥3,2 + 𝑥3,3 + 𝑥3,4 + 𝑥3,5 + 𝑥3,6 ≤ 900 

4) 𝑥4,1 + 𝑥4,2 + 𝑥4,3 + 𝑥4,4 + 𝑥4,5 + 𝑥4,6 ≤ 700 

5) 𝑥5,1 + 𝑥5,2 + 𝑥5,3 + 𝑥5,4 + 𝑥5,5 + 𝑥5,6 ≤ 300 

 

Constraint (Demand limit) 

 

6) 𝑦1,1 + 𝑦2,1 + 𝑦3,1 + 𝑦4,1 + 𝑦5,1 + 𝑦6,1 ≥ 1,000 

7) 𝑦1,2 + 𝑦2,2 + 𝑦3,2 + 𝑦4,2 + 𝑦5,2 + 𝑦6,2 ≥ 400 

Constraint (Warehouse limit) 

 

8)   𝑥1,1 + 𝑥2,1 + 𝑥3,1 + 𝑥4,1 + 𝑥5,1 ≤ 1,400 

9)   𝑥1,2 + 𝑥2,2 + 𝑥3,2 + 𝑥4,2 + 𝑥5,2 ≤ 300 

10) 𝑥1,3 + 𝑥2,3 + 𝑥3,3 + 𝑥4,3 + 𝑥5,3 ≤ 1,400 

11) 𝑥1,4 + 𝑥2,4 + 𝑥3,4 + 𝑥4,4 + 𝑥5,4 ≤ 300 

12) 𝑥1,5 + 𝑥2,5 + 𝑥3,5 + 𝑥4,5 + 𝑥5,5 ≤ 1,400 

13) 𝑥1,6 + 𝑥2,6 + 𝑥3,6 + 𝑥4,6 + 𝑥5,6 ≤ 300 
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Constraint (Demand and Supplier balance) 

 

14) 𝑥1,1 + 𝑥2,1 + 𝑥3,1 + 𝑥4,1 + 𝑥5,1 = 𝑦1,1 + 𝑦1,2 

15) 𝑥1,2 + 𝑥2,2 + 𝑥3,2 + 𝑥4,2 + 𝑥5,2 = 𝑦2,1 + 𝑦2,2 

16) 𝑥1,3 + 𝑥2,3 + 𝑥3,3 + 𝑥4,3 + 𝑥5,3 = 𝑦3,1 + 𝑦3,2 

17) 𝑥1,4 + 𝑥2,4 + 𝑥3,4 + 𝑥4,4 + 𝑥5,4 = 𝑦4,1 + 𝑦4,2 

18) 𝑥1,5 + 𝑥2,5 + 𝑥3,5 + 𝑥4,5 + 𝑥5,5 = 𝑦5,1 + 𝑦5,2 

19) 𝑥1,6 + 𝑥2,6 + 𝑥3,6 + 𝑥4,6 + 𝑥5,6 = 𝑦6,1 + 𝑦6,2 

 

Constraint (Product Price) 

 

20) Product price = 1,000(𝑦1,1 + 𝑦2,1 + 𝑦3,1 + 𝑦4,1 + 𝑦5,1 + 𝑦6,1 + 𝑦1,2 + 𝑦2,2 +

𝑦3,2 + 𝑦4,2 + 𝑦5,2 + 𝑦6,2) 

 

Constraint (Transportation Cost, TC) 

 

21) TC = 90𝑥1,1 + 180𝑥1,2 + 270𝑥1,3 + 360𝑥1,4 + 450𝑥1,5 + 540𝑥1,6  + 

     540𝑥2,1 + 450𝑥2,2 + 360𝑥2,3 + 270𝑥2,4 + 180𝑥2,5 + 90𝑥2,6 +  

     90𝑥3,1 + 180𝑥3,2 + 270𝑥3,3 + 360𝑥3,4 + 450𝑥3,5 + 540𝑥3,6 +  

     540𝑥4,1 + 450𝑥4,2 + 360𝑥4,3 + 270𝑥4,4 + 180𝑥4,5 + 90𝑥4,6 +  

     90𝑥5,1 + 180𝑥5,2 + 270𝑥5,3 + 360𝑥5,4 + 450𝑥5,5 + 540𝑥5,6 +  

     90𝑦1,1 + 180𝑦2,1 + 90𝑦3,1 + 180𝑦4,1 + 90𝑦5,1 + 180𝑦6,1      +  

     180𝑦1,2 + 90𝑦2,2 + 180𝑦3,2 + 90𝑦4,2 + 180𝑦5,2 + 90𝑦6,2  

 

The optimum profit is 2,617,000 $. The mass flow results are shown in Fig. G4. The 

source code used to solve show in Fig. G5 – G9 and the results shows in Fig. G10. 
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Figure G4  Results of supply chain 5-6-2 by simplex algorithm (Case 1). 
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Figure G5  Main source code of algorithm. 

 

The main source code is used to input values from notepad by using 

subroutine of inputting value. The subroutine of inputting value, values on notepad 

and simplex source code show in Fig. G6 – G8. 
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Figure G6  Subroutine of inputting values. 
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Figure G7  The values of problem 5-6-2 on notepad. 
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In the first line, number 1 means maximization and number 2 means 

minimization. The second line is number of equations (including objective function 

and constraints). And the third line is number of variables. For variable values, 

coefficient is input with its number such as constraint 1 has 6 variables and variable 

number 1 is 1 until variable number 6 is 1. The equation is less than or equal to 700. 

Then the simplex subroutine is called to solve the problem. And The result shows in 

Fig. G9.  
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Figure G8  Simplex subroutine. 



169 
 

 
 

Figure G9  Results of supply chain 5-6-2 from the program. 

 

Moreover, the alternative solutions from program show the source code in 

Fig. G10. 
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Figure G10  Subroutine source code for alternative solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 
 

From this case, 2 other solutions can be obtained from the developed 

algorithm, as shown in Fig. G11 (case 2) and G12 (case 3). The first most negative 

variable is used to show result in case 1 and the second most negative variable is 

used to show result in case 2. Finally, the zero non-basic variable is used to be 

entering variable and show result in case 3. 

 

 
 

Figure G11  Other results of supply chain 5-6-2 by simplex algorithm (Case 2). 
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Figure G12  Other results of supply chain 5-6-2 by simplex algorithm (Case 3). 

 

Moreover, this case is solved as MILP case with MILP algorithm. The 

transportation lines are minimized. Binary variables are identified as 𝑍𝑥𝑖,𝑗  𝑎𝑛𝑑 𝑍𝑦𝑗,𝑘, 

as shown in Fig. G13 and G14. 
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Figure G13  Detail of the supply chain 5-6-2 MILP. 

 

 
 

Figure G14  Binary variables in supply chain 5-6-2. 
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All binary variables will be used as ‘x’ variables, which are identified in Fig. G15. 

 

 
 

Figure G15  All ‘x’ variables of binary variables in supply chain 5-6-2. 

 

The objective function is changed to summation of transportation lines.  

 

The objective function 

 

Min Transportation line = 𝑍𝑥1,1 + 𝑍𝑥1,2 + 𝑍𝑥1,3 + 𝑍𝑥1,4 + 𝑍𝑥1,5 + 𝑍𝑥1,6 + 

                   𝑍𝑥2,1 + 𝑍𝑥2,2 + 𝑍𝑥2,3 + 𝑍𝑥2,4 + 𝑍𝑥2,5 + 𝑍𝑥2,6 + 

                          𝑍𝑥3,1 + 𝑍𝑥3,2 + 𝑍𝑥3,3 + 𝑍𝑥3,4 + 𝑍𝑥3,5 + 𝑍𝑥3,6 + 

                            𝑍𝑥4,1 + 𝑍𝑥4,2 + 𝑍𝑥4,3 + 𝑍𝑥4,4 + 𝑍𝑥4,5 + 𝑍𝑥4,6 + 

                            𝑍𝑥5,1 + 𝑍𝑥5,2 + 𝑍𝑥5,3 + 𝑍𝑥5,4 + 𝑍𝑥5,5 + 𝑍𝑥5,6 + 

                            𝑍𝑦1,1 + 𝑍𝑦2,1 + 𝑍𝑦3,1 + 𝑍𝑦4,1 + 𝑍𝑦5,1 + 𝑍𝑦6,1 + 

                              𝑍𝑦1,2 + 𝑍𝑦2,2 + 𝑍𝑦3,2 + 𝑍𝑦4,2 + 𝑍𝑦5,2 + 𝑍𝑦6,2 
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Constraint (supplier limit) 

 

1) 𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 + 𝑥1,5 + 𝑥1,6 ≤ 700 

2) 𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 + 𝑥2,5 + 𝑥2,6 ≤ 800 

3) 𝑥3,1 + 𝑥3,2 + 𝑥3,3 + 𝑥3,4 + 𝑥3,5 + 𝑥3,6 ≤ 900 

4) 𝑥4,1 + 𝑥4,2 + 𝑥4,3 + 𝑥4,4 + 𝑥4,5 + 𝑥4,6 ≤ 700 

5) 𝑥5,1 + 𝑥5,2 + 𝑥5,3 + 𝑥5,4 + 𝑥5,5 + 𝑥5,6 ≤ 300 

 

Constraint (Demand limit) 

 

6) 𝑦1,1 + 𝑦2,1 + 𝑦3,1 + 𝑦4,1 + 𝑦5,1 + 𝑦6,1 ≥ 1,000 

7) 𝑦1,2 + 𝑦2,2 + 𝑦3,2 + 𝑦4,2 + 𝑦5,2 + 𝑦6,2 ≥ 400 

Constraint (Warehouse limit) 

 

8)   𝑥1,1 + 𝑥2,1 + 𝑥3,1 + 𝑥4,1 + 𝑥5,1 ≤ 100 

9)   𝑥1,2 + 𝑥2,2 + 𝑥3,2 + 𝑥4,2 + 𝑥5,2 ≤ 300 

10) 𝑥1,3 + 𝑥2,3 + 𝑥3,3 + 𝑥4,3 + 𝑥5,3 ≤ 100 

11) 𝑥1,4 + 𝑥2,4 + 𝑥3,4 + 𝑥4,4 + 𝑥5,4 ≤ 300 

12) 𝑥1,5 + 𝑥2,5 + 𝑥3,5 + 𝑥4,5 + 𝑥5,5 ≤ 700 

13) 𝑥1,6 + 𝑥2,6 + 𝑥3,6 + 𝑥4,6 + 𝑥5,6 ≤ 300 

 

Constraint (Demand and Supplier balance) 

 

14) 𝑥1,1 + 𝑥2,1 + 𝑥3,1 + 𝑥4,1 + 𝑥5,1 = 𝑦1,1 + 𝑦1,2 

15) 𝑥1,2 + 𝑥2,2 + 𝑥3,2 + 𝑥4,2 + 𝑥5,2 = 𝑦2,1 + 𝑦2,2 

16) 𝑥1,3 + 𝑥2,3 + 𝑥3,3 + 𝑥4,3 + 𝑥5,3 = 𝑦3,1 + 𝑦3,2 

17) 𝑥1,4 + 𝑥2,4 + 𝑥3,4 + 𝑥4,4 + 𝑥5,4 = 𝑦4,1 + 𝑦4,2 

18) 𝑥1,5 + 𝑥2,5 + 𝑥3,5 + 𝑥4,5 + 𝑥5,5 = 𝑦5,1 + 𝑦5,2 

19) 𝑥1,6 + 𝑥2,6 + 𝑥3,6 + 𝑥4,6 + 𝑥5,6 = 𝑦6,1 + 𝑦6,2 
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Constraint (Product Price) 

 

20) Product price = 1,000(𝑦1,1 + 𝑦2,1 + 𝑦3,1 + 𝑦4,1 + 𝑦5,1 + 𝑦6,1 + 𝑦1,2 + 𝑦2,2 +

𝑦3,2 + 𝑦4,2 + 𝑦5,2 + 𝑦6,2) 

 

Constraint (Transportation Cost, TC) 

 

21) TC = 90𝑥1,1 + 180𝑥1,2 + 270𝑥1,3 + 360𝑥1,4 + 450𝑥1,5 + 540𝑥1,6  + 

     540𝑥2,1 + 450𝑥2,2 + 360𝑥2,3 + 270𝑥2,4 + 180𝑥2,5 + 90𝑥2,6 +  

     90𝑥3,1 + 180𝑥3,2 + 270𝑥3,3 + 360𝑥3,4 + 450𝑥3,5 + 540𝑥3,6 +  

     540𝑥4,1 + 450𝑥4,2 + 360𝑥4,3 + 270𝑥4,4 + 180𝑥4,5 + 90𝑥4,6 +  

     90𝑥5,1 + 180𝑥5,2 + 270𝑥5,3 + 360𝑥5,4 + 450𝑥5,5 + 540𝑥5,6 +  

     90𝑦1,1 + 180𝑦2,1 + 90𝑦3,1 + 180𝑦4,1 + 90𝑦5,1 + 180𝑦6,1      +  

     180𝑦1,2 + 90𝑦2,2 + 180𝑦3,2 + 90𝑦4,2 + 180𝑦5,2 + 90𝑦6,2  

 

 

And the constraints for binary variables are added. To create the binary 

variables, the constraint must be in form 𝑥 ≤ 𝑀𝑧 and 𝑦 ≤ 𝑀𝑧, when x and y are 

continuous variables, z are binary and M is big value. 

 

22) 𝑥1,1 ≤ 10,000𝑍𝑥1,1 

23) 𝑥1,2 ≤ 10,000𝑍𝑥1,2 

24) 𝑥1,3 ≤ 10,000𝑍𝑥1,3 

25) 𝑥1,4 ≤ 10,000𝑍𝑥1,4 

26) 𝑥1,5 ≤ 10,000𝑍𝑥1,5 

27) 𝑥1,6 ≤ 10,000𝑍𝑥1,6 

 

28) 𝑥2,1 ≤ 10,000𝑍𝑥2,1 

29) 𝑥2,2 ≤ 10,000𝑍𝑥2,2 

30) 𝑥2,3 ≤ 10,000𝑍𝑥2,3 
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31) 𝑥2,4 ≤ 10,000𝑍𝑥2,4 

32) 𝑥2,5 ≤ 10,000𝑍𝑥2,5 

33) 𝑥2,6 ≤ 10,000𝑍𝑥2,6 

 

34) 𝑥3,1 ≤ 10,000𝑍𝑥3,1 

35) 𝑥3,2 ≤ 10,000𝑍𝑥3,2 

36) 𝑥3,3 ≤ 10,000𝑍𝑥3,3 

37) 𝑥3,4 ≤ 10,000𝑍𝑥3,4 

38) 𝑥3,5 ≤ 10,000𝑍𝑥3,5 

39) 𝑥3,6 ≤ 10,000𝑍𝑥3,6 

 

40) 𝑥4,1 ≤ 10,000𝑍𝑥4,1 

41) 𝑥4,2 ≤ 10,000𝑍𝑥4,2 

42) 𝑥4,3 ≤ 10,000𝑍𝑥4,3 

43) 𝑥4,4 ≤ 10,000𝑍𝑥4,4 

44) 𝑥4,5 ≤ 10,000𝑍𝑥4,5 

45) 𝑥4,6 ≤ 10,000𝑍𝑥4,6 

 

46) 𝑥5,1 ≤ 10,000𝑍𝑥5,1 

47) 𝑥5,2 ≤ 10,000𝑍𝑥5,2 

48) 𝑥5,3 ≤ 10,000𝑍𝑥5,3 

49) 𝑥5,4 ≤ 10,000𝑍𝑥5,4 

50) 𝑥5,5 ≤ 10,000𝑍𝑥5,5 

51) 𝑥5,6 ≤ 10,000𝑍𝑥5,6 

 

52) 𝑦1,1 ≤ 10,000𝑍𝑦1,1 

53) 𝑦2,1 ≤ 10,000𝑍𝑦2,1 

54) 𝑦3,1 ≤ 10,000𝑍𝑦3,1 

55) 𝑦4,1 ≤ 10,000𝑍𝑦4,1 

56) 𝑦5,1 ≤ 10,000𝑍𝑦5,1 
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57) 𝑦6,1 ≤ 10,000𝑍𝑦6,1 

 

58) 𝑦1,2 ≤ 10,000𝑍𝑦1,2 

59) 𝑦2,2 ≤ 10,000𝑍𝑦2,2 

60) 𝑦3,2 ≤ 10,000𝑍𝑦3,2 

61) 𝑦4,2 ≤ 10,000𝑍𝑦4,2 

62) 𝑦5,2 ≤ 10,000𝑍𝑦5,2 

63) 𝑦6,2 ≤ 10,000𝑍𝑦6,2 

 

From the solutions, the minimum transportation line = 8 and profit is 780,000. The 

mass flow solution is shown in Fig. G16. The source code to solve the MILP 

problem shows in Fig. G17 – G20. Finally, the result shows in Fig. G21. 

 

 
 

Figure G16  Mass flow results of supply chain 5-6-2 with binary by MILP algorithm 

(Case 1). 
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Figure G17  Main source code for MILP. 

 

The main source code is used to input values from notepad and optimize the 

solution by branch-and-bound after obtain continuous solution from simplex routine. 

The subroutine of inputting value, the values of the problem on notepad and simplex 

subroutine show in Fig. G18 – G20. 

 



190 
 

Figure G18  Subroutine of inputting value (MILP case). 
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Figure G19  The values of problem 5-6-2 MILP on notepad. 
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Figure G20  Simplex subroutine (MILP case). 
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Figure G21  Results of supply chain 5-6-2 with binary from the program (Case 1). 

 

Moreover, the alternative solutions from program show the source code in 

Fig. G22. 
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Figure G22  Subroutine source code for alternative solution (MILP case). 

 

From this case, 2 other solutions can be obtained from the developed 

algorithm, as shown in Fig. G23 and G24. The profit of case 2 and case 3 is 780,000. 

For case 1 and 2, the last most negative variable is used to solve in the program. 

However, the minimum solution shows in 3 nodes (in branch-and-bound process), 

which show in case 1, 2 and 3, respectively. 
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Figure G23  Other mass flow results of supply chain 5-6-2 with binary by MILP 

algorithm (Case 2). 

 

 
 

Figure G24  Other mass flow results of supply chain 5-6-2 with binary by MILP 

algorithm (Case 3). 
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