บทที่ 4 ผลการทดลอง

4.1 ผลการขึ้นรูปชิ้นงานซิลิคอน

อัดขึ้นรูปผง silicon metal เป็นทรงกระบอกเส้นผ่านศูนย์กลาง 50 mm. สูง 17.5 mm. ที่แรง ดัน 60 kg/cm² ลักษณะดังรูปที่ 4.1 จำนวน 10 ชิ้น แล้วทำการอบไล่ความชื้นที่อุณหภูมิ 110°C เป็นเวลา 4 ชั่วโมง ได้ผลดังตาราง

ชิ้นงาน	φDxL (mm)	ปริมาตร (cm³)	น้ำหนัก (g)
No.1	50.15x17.55	34.65	49.41
No.2	50.15x17.30	34.15	48.84
No.3	50.15x17.50	34.55	49.14
No.4	50.15x17.30	34.15	49.11
No.5	50.15x17.35	34.27	49.01
No.6	50.15x17.35	34.25	49.21
No.7	50.15x17.40	34.35	48.99
No.8	50.15x17.40	34.35	49.44
No.9	50.15x17.35	34.25	49.08
No.10	50.15x17.35	34.25	49.20
Avergae	-	34.32	49.14
STDV	-	0.16	0.18

ตารางที่ 4.1 ตารางแสดงขนาด,น้ำหนักของชิ้นงานซิลิคอนที่ผ่านการอัด

ชิ้นงานที่ผ่านการอัดขึ้นรูปมีความหนาแน่นเฉลี่ย 1.43 g/cm³ คิดเป็นประมาณ 61.7 % ของ ความหนาแน่นทางทฤษฎี โดยค่าความหนาแน่นหลังจากการอัดขึ้นรูป ในงานวิจัยนี้มีค่าน้อยเมื่อ เทียบกับงานวิจัยที่ผ่าน มา (~1.5-1.6 g/cm³) [Moulson,1979] เนื่องจากในงานวิจัยนี้ต้องการศึกษา การเกิดปฏิกิริยาที่อุณหภูมิในไตรเดชั่นต่างๆ โดยกำหนดตัวแปรอื่นๆ คงที่ การที่อัดชิ้นงานจนมีความ หนาแน่นมาก อาจส่งผลให้ต้องใช้เวลาในการศึกษาอัตราการเกิดปฏิกิริยาระหว่างการไนไตรเดชั่น นานขึ้น เนื่องจากการแพร่ของไนโตรเจนเข้าไปในชิ้นงานเป็นไปได้ยากขึ้น ดังนั้นงานวิจัยนี้จึงเลือกที่ จะอัดชิ้นงานให้มีความหนาแน่นเพียงพอ สำหรับการเคลื่อนย้ายระหว่างการนำไปเผาผนึกขั้นต้น

รูปที่ 4.1 ลักษณะชิ้นงาน silicon compact ที่ผ่านการอัดขึ้นรูปด้วย hydraulic press

รูปที่ 4.2 แสดงลักษณะชิ้นงานที่ผ่านการเผาผนึกขั้นต้น (pre-sintering)

4.2.1 ผลการตรวจสอบความหนาแน่นของชิ้นงาน

ตารางที่ 4.2 แสดงผลของความหนาแน่นของชิ้นงานหลังการขึ้นรูปและเผาผนึกขั้นต้น

	Uniaxial Press		Pre-Sinter	
Sample	Bulk density	% theoretical	Bulk density	% theoretical
	(g/cm ³)	density	(g/cm ³)	density
No.1	1.42	61.45	1.48	64.16
No.2	1.42	61.62	1.49	64.59
No.3	1.42	61.29	1.46	63.31
No.4	1.43	61.96	1.49	64.63
No.5	1.43	61.63	1.47	63.38
No.6	1.43	61.91	1.49	64.43
No.7	1.42	61.46	1.47	63.59
No.8	1.43	62.02	1.50	65.02
No.9	1.43	61.75	1.50	64.82
No.10	1.43	61.90	1.49	64.37
Avergae	1.43	61.70	1.49	64.23
STDV	0.0057	0.2485	0.0014	0.6055

ตารางที่ 4.3 แสดงความหนาแน่นเฉลี่ยของซิลิคอนไนไตรด์ที่ผ่านการไนไตรเดชั่นที่อุณหภูมิต่างๆ

Temperature	True density	Bulk density	% Theoretical	% Porosity	
(°C)	(g/cm ³)	(g/cm ³)	density		
1350	2.73	2.283	72.24	16.37	
1375	2.73	2.288	72.40	16.19	
1400	3.07	2.317	73.32	24.53	
1450	3.09	2.426	76.77	21.48	
1500	3.11	2.596	82.15	16.53	
Commercial	2.99	2.669	84.46	10.73	_

ชิ้นงานที่ผ่านการเผาผนึกขั้นต้น ที่อุณหภูมิ 1200°C เป็นเวลา 10 ชั่วโมงมีความหนาแน่น เฉลี่ย 1.49 g/cm³ คิดเป็นประมาณ 64.2 % ของความหนาแน่นทางทฤษฏี (ผลของขนาดชิ้นงาน หลังการเผาผนึกขั้นต้นแสดงในภาคผนวก) โดยหลังการขึ้นรูปชิ้นงานมีปริมาตรเฉลี่ย 34.32 cm³ หลัง การเผาผนึกขั้นต้นชิ้นงานมีปริมาตรเฉลี่ย 32.42 cm³ คิดเป็นเปอร์เซนต์การหดตัว 5.53 %

ชิ้นงานหลังจากผ่านการเผาผนึกขั้นต้นจะนำไปทำการในไตรเดชั่นที่อุณหภูมิต่างๆ เป็นเวลา 14 ชั่วโมง ซึ่งค่าความหนาแน่นในแต่ละอุณหภูมิการในไตรเดชั่นจะแตกต่างกันไปดังแผนภูมิ

แผนภูมิแสดง bulk density ของขึ้นงานที่สภาวะต่างๆ

รูปที่ 4.3 แสดงค่าความหนาแน่นของชิ้นงานซิลิคอนไนไตรด์ที่อุณหภูมิการไนไตรเดชั่นต่างๆ

จากแผนภูมิพบว่า ค่าความหนาแน่นของชิ้นงานที่อุณหภูมิการไนไตรเดชั่นที่สูงกว่ามีแนวโน้ม ที่จะให้ค่าความหนาแน่นของชิ้นงานมากกว่าการทำไนไตรเดชั่นที่อุณหภูมิต่ำกว่า

4.2.2 ผลการวัดค่าโมดูลัสของยังด้วย Grindosonic

ตารางที่ 4.4 แสดงค่าโมดูลัสของยัง ของชิ้นงานที่ผ่านการเผาผนึกขั้นต้นและชิ้นงานที่ผ่านการ ในไตรเดชั่นที่อุณหภูมิต่างๆ เทียบกับชิ้นงานเชิงพาณิชย์จากบริษัท Tenmat

Nitridation	Average Young's	STDV	Number of
Temperature	Modulus (GPa)	(GPa)	specimens
Pre-sinter (25µm)	13.14	4.76	10
Nitride 1350°C	128.17	17.44	5
Nitride 1375°C	102.15	21.89	5
Nitride 1400 °C	68.31	2.92	3
Nitride 1450 °C	74.42	12.63	5
Nitride 1500 °C	138.59	34.65	5
Commercial	255.84	8.38	3

แผนภูมิแสดงความสัมพันธ์ของ Young 's modulus กับ %Porosity

รูปที่ 4.4 แสดงความสัมพันธ์ของค่า Young 's modulus กับ % porosity

จากภาพจะเห็นได้ว่าค่า Young 's modulus ของซิลิคอนไนไตรด์ จะแปรผกผันกับ % porosity ในชิ้นงาน

4.3 ผลการตรวจสอบสมบัติทางกลของชิ้นงาน

4.3.1 ผลการวัดค่าความแข็ง

Nitridation	Vickers Hardness	STDV	Number of
Temperature	(HV)		Testing
Pre-sinter (25µm)	26.16	7.49	16
Nitride 1350 °C	575.48	149.66	10
Nitride 1375 °C	497.17	122.05	10
Nitride 1400 °C	458.42	250.70	10
Nitride 1450 °C	545.60	202.59	10
Nitride 1500 °C	399.53	129.48	10
Commercial	780.30	263.64	10

ตารางที่ 4.5 แสดงค่าความแข็งเฉลี่ยของชิ้นงานที่ผ่านการเผาผนึกขั้นต้นและชิ้นงานที่ผ่านการ ในไตรเดชั่นที่อุณหภูมิต่างๆ เทียบกับชิ้นงานมาตรฐานจากบริษัท Tenmat

จากผลการวัดค่าความแข็งหลังการเผาผนึกขั้นต้นของขนาดอนุภาคเฉลี่ย 25 ไมครอนพบว่า ค่าความแข็งมีค่าเฉลี่ย 26.16 HV โดยมีค่าความเบี่ยงเบนมาตรฐาน 7.49 ซึ่งค่อนข้างมาก อาจเนื่อง จากชิ้นงานหลังการเผาผนึกขั้นต้นมีความหนาแน่นไม่สม่ำเสมอ และอนุภาคของซิลิคอนยังเกาะกัน อย่างหลวมๆ (จากการสังเกตด้วยกล้องจุลทรรศน์)

สำหรับชิ้นงานที่ผ่านการในไตรเดชั่นที่อุณหภูมิต่างๆ มีค่าอยู่ในช่วง 400-575 HV โดยในแต่ ละอุณหภูมิการในไตรเดชั่นจะมีค่าความเบี่ยงเบนมาตรฐานค่อนข้างมาก เนื่องจากชิ้นงานที่ทดสอบ มีรูพรุนขนาดเล็กและใหญ่กระจายอยู่ทั่วไปในโครงสร้าง จึงทำให้การตรวจสอบให้ค่าความแข็งที่ไม่ แน่นอน และค่าความแข็งไม่มีความสัมพันธ์กับอุณหภูมิการในไตรเดชั่นและตัวแปรอื่นๆ ในการ ทดลอง อย่างไรก็ตามพบว่า ค่าความแข็งของชิ้นงานเชิงพาณิชย์มีค่าสูงกว่าชิ้นงานที่ผ่านการในไตร เดชั่นที่อุณหภูมิต่างๆ อาจเนื่องมาจากรูพรุนที่มีขนาดเล็ก และปฏิกิริยาไนไตรเดชั่นที่เกิดขึ้นสมบูรณ์ กว่า ตารางที่ 4.6 แสดงค่าความแข็งแรงต่อการดัดของชิ้นงานแบบ Three-point bending ที่ผ่านการ ในไตรเดชั่นที่อุณหภูมิต่างๆ เทียบกับชิ้นงานมาตรฐานของบริษัท Tenmat

Nitridation	Mean Stress at Yield	STDV
Temperature (°C)	(Max load) (MPa)	(n=5)
1350	143.65	27.50
1375	119.28	13.60
1400	42.44	12.69
1450	55.76	12.21
1500	117.25	50.15
Commercial	196.99	8.71

แผนภูมิแสดงความสัมพันธ์ระหว่างค่า Young 's modulus กับ Flexural Strength

Young 's modulus (GPa)

รูปที่ 4.5 แสดงความสัมพันธ์ระหว่างความแข็งแรงต่อการดัดของชิ้นงานกับค่าโมดูลัสของยัง

จากกราฟพบว่าค่าความแข็งแรงต่อการดัดและค่าโมดูลัสของชิ้นงานมีความสัมพันธ์กัน แต่ค่าความแข็งแรงต่อการดัดไม่มีความสัมพันธ์กับอุณหภูมิการในไตรเดชั่น

4.4 ผลการตรวจสอบความสามารถในการเจาะและกลึงของชิ้นงานที่ผ่านการเผาผนึกขั้นต้น

4.4.1 ผลการวัดความแข็งแรงต่อการอัด

Sample	Critrical load (kN)	Cross-section area (mm ²)	Critical stress (MPa)
1	2.12	56.73	37.41
2	1.58	41.41	33.32
3	2.22	51.40	43.34
4	1.51	44.83	33.81
5	1.99	59.45	33.48
Average	-	-	36.27
STDV	-	-	4.296

ตารางที่ 4.7 แสดงผลของการวัดความแข็งแรงต่อการอัด

ค่าความแข็งแรงต่อการอัดของชิ้นงานที่ผ่านการเผาผนึกขั้นต้นมีค่าเฉลี่ย 36.27 MPa และค่า ความเบี่ยงเบนมาตรฐาน 4.29 MPa ซึ่งเป็นค่าที่มีความแข็งแรงเพียงพอต่อการนำไปตัดเจาะกลึงไส ได้ ดังแสดงในหัวข้อการเจาะและการกลึง

4.4.2 ผลการวัดค่าความเรียบผิวของชิ้นงาน

ตารางที่ 4.8 แสดงค่าความเรียบผิวของชิ้นงานที่ผ่านการกลึงที่สภาวะต่างๆ

Surface Roughness Average ,Ra (μm)				
		Speed	(rpm)	
Feed (m/min)	250	315	400	500
0.00741	4.73	4.52	4.18	3.83
0.00855	4.91	4.61	4.21	3.50
0.01010	5.37	4.40	4.49	3.89
0.01235	5.44	4.75	4.41	3.90
0.01482	5.55	5.03	4.52	3.99

แผนภาพแสดงความสัมพันธ์ระหว่างความขรุขระของผิวขึ้นงานที่ผ่านการกลึง

รูปที่ 4.6 แสดงความความขรุขระของผิวชิ้นงานที่ผ่านการกลึงที่สภาวะต่างๆ

แผนภูมิแสดงค่าแฟกเตอร์จากการกลึงที่สภาวะต่างๆ

อัตราการป้อนมีดกลึง (mm/min)

รูปที่ 4.7 แสดงอัตราการกินเนื้อชิ้นงานที่สภาวะการกลึงต่างๆ

จากรูปที่ 4.6 พบว่าที่อัตราการป้อนมีดกลึงเร็วขึ้น ค่าความเรียบผิวจะหยาบขึ้นโดยพิจารณา จากค่า Ra ที่เพิ่มขึ้น และที่ความเร็วรอบสูงค่าความเรียบผิวจะเรียบมากกว่าที่ความเร็วรอบต่ำสังเกต จากค่า Ra ที่ลดลงเมื่อความเร็วรอบสูงขึ้น

อัตราการป้อนมีดกลึงจะส่งผลต่ออัตราการกินเนื้อชิ้นงาน พบว่าที่อัตราการป้อนมีดกลึงสูง และความเร็วรอบการหมุนชิ้นงานต่ำ จะให้อัตราการกินเนื้อชิ้นงานสูง ซึ่งค่าแฟกเตอร์จากการกลึง ชิ้นงาน (MRR/V) มีค่าไม่เกิน 2.9 (จากข้อมูลการทดลองให้ความขรุขระของชิ้นงานไม่เกิน 4.5 ไมครอน) แสดงว่าถ้ากลึงชิ้นงานด้วยแฟกเตอร์การกลึงมากกว่า 2.9 จะทำให้ซิ้นงานมีความขรุขระ มากกว่า 4.5 ไมครอน และอาจเสียหายได้

4.2.3 ผลการตรวจสอบรอยเจาะและความเรียบของชิ้นงาน

เจาะรูขึ้นทดสอบโดยปรับเปลี่ยนความเร็วรอบของดอกสว่าน อัตราการป้อนดอกสว่านและ ขนาดของดอกสว่าน ตั้งแต่เส้นผ่านศูนย์กลาง 3, 4 และ 5 มิลลิเมตร โดยจะศึกษาความสามารถของ การเจาะรู จากการสังเกตลักษณะของรอยแตกที่เกิดขึ้นหลังการเจาะด้วยกล้องจุลทรรศน์กำลังขยาย ต่ำ (x10) โดยกำหนดลักษณะของรูเจาะเป็น 4 ประเภท ดังรูปที่ 4.8

กำหนดให้

- Rating 1 คือ รอยเจาะแตกกว้างออกนอกบริเวณขอบรูเจาะ
- Rating 2 คือ รอยเจาะแตกบริเวณขอบรูเจาะ
- Rating 3 คือ รอยเจาะมีรอยบิ่นเล็กน้อยบริเวณขอบรูเจาะ
- Rating 4 คือ รอยเจาะสมบูรณ์

(B)

100 µm

(A)

100 µm

(D)

100 µm

(C)

รูปที่ 4.8 แสดงลักษณะของรูเจาะ 4 ประเภท (เส้นผ่านศูนย์กลางดอกสว่าน 3 mm) A) rating 1 B) rating 2 C) rating 3 D) rating 4 (x10)

(A) แผนภูมิแสดงความสามารถในการเจาะรูขนาดเส้นผ่านศูนย์กลาง 3 mm กับ ชิ้นงาน Si compact ที่ความเร็วรอบ และอัตราการป้อนดอกสว่านต่างๆ

อัตราการป้อนดอกสว่าน (m/min)

(B) แผนภูมิแสดงความสามารถในการเจาะรูขนาดเส้นผ่านศูนย์กลาง 4 mm กับ ้ชิ้นงาน Si compact ที่ความเร็วรอบ และอัตราการป้อนดอกสว่านต่างๆ

รูปที่ 4.8 แสดงความสัมพันธ์ระหว่างอัตราการป้อน, ความเร็วรอบดอกสว่านกับ ความสามารถ ในการเจาะรู เส้นผ่านศูนย์กลางรูเจาะรูป (A) 3 mm (B) 4 mm (C) 5 mm

จากผลการเจาะรูพบว่า ที่อัตราการป้อนดอกสว่านสูงจะมีความสามารถในการเจาะรูต่ำใน ทุกๆ ขนาดของเส้นผ่านศูนย์กลางดอกสว่าน เช่นเดียวกับที่ความเร็วรอบของดอกสว่านต่ำ แต่เมื่อ เพิ่มความเร็วรอบดอกสว่านจะทำให้ความสามารถในการเจาะรูเพิ่มขึ้นดังรูปที่ 4.10

ตารางที่ 4.9 แสดงความเรียบของผิวรอยเจาะที่สภาวะต่างๆ เมื่อใช้ดอกสว่านขนาด **\$**3 mm

Surface Roughness Average ,Ra (µm)					
		Speed (rpm)			
.Feed (m/min)	480	685	1150		
0.08	6.86	6.78	6.98		
0.16	7.78	6.55	7.05		
0.24	7.76	7.58	7.23		
0.35	8.25	7.34	7.13		

Surface Roughness Average ,Ra $~(\mu m)$				
	Speed (rpm)			
Feed (m/min)	480	685	1150	
0.08	6.88	7.04	6.17	
0.16	7.22	6.55	6.85	
0.24	7.56	7.11	6.20	
0.35	7.47	7.23	7.17	

ตารางที่ 4.10 แสดงความเรียบของผิวรอยเจาะที่สภาวะต่างๆ เมื่อใช้ดอกสว่านขนาด **\$\$**4 mm

ตารางที่ 4.11 แสดงความเรียบของผิวรอยเจาะที่สภาวะต่างๆ เมื่อใช้ดอกสว่านขนาด ϕ 5 mm

Surface Roughness Average ,Ra (µm)				
	Speed (rpm)			
Feed (m/min)	480	685	1150	
0.08	6.05	7.21	7.02	
0.16	7.34	6.95	6.58	
0.24	6.86	7.03	7.32	
0.35	6.25	8.78	7.17	

แผนภูมิแสดงความเรียบผิวรอยเจาะ เส้นผ่านศูนย์กลาง 3 mm

แผนภูมิแสดงความเรียบผิวรอยเจาะ เส้นผ่านศูนย์กลาง 4 mm

อัตราการป้อนดอกสว่าน (m/min)

แผนภูมิแสดงความเรียบผิวรอยเจาะ เส้นผ่านศูนย์กลาง 5 mm

รูปที่ 4.10 แสดงความเรียบผิวชิ้นงานรูเจาะที่สภาวะการเจาะรูต่างๆ

แผนภูมิแสดงแฟกเตอร์จากการเจาะชิ้นงานที่ขนาดเส้นผ่านศูนย์กลางดอกสว่าน 3 mm

รูปที่ 4.10 แสดงอัตราการกินเนื้อชิ้นงานรอยเจาะที่สภาวะการเจาะต่างๆ

จากความเรียบผิวรอยเจาะเมื่อปรับเปลี่ยนอัตราการป้อนดอกสว่านและความเร็วรอบ พบว่าที่

อัตราการป้อนดอกสว่านเร็วและความเร็วรอบต่ำ จะมีแนวโน้มให้ค่าความขรุขระของผิวชิ้นงานที่มาก กว่า (Ra สูงกว่า)

จากรูปที่ 4.10 พบว่าอัตราการกินเนื้อชิ้นงานจะขึ้นอยู่กับอัตราการป้อนดอกสว่าน อัตรา การป้อนดอกสว่านเร็วจะทำให้การกินเนื้อชิ้นงานมาก แต่เมื่อเพิ่มความเร็วรอบการหมุนชิ้นงานจะทำ ให้การกินเนื้อชิ้นงานน้อยลง ซึ่งแฟกเตอร์จากการเจาะสำหรับชิ้นงานซิลิคอนที่ผ่านการเผาผนึกขั้นต้น จากการทดลองมีค่าไม่เกิน 0.13 ซึ่งถ้าทำการเจาะโดยใช้แฟกเตอร์การเจาะมากกว่า 0.13 ชิ้นงานจะ มีแนวโน้มเสียหายได้ (สังเกตจากรอยเจาะขนาดเส้นผ่านศูนย์กลาง 3 mm) ที่ขนาดเส้นผ่านศูนย์ กลางรอยเจาะ 4 mm ค่าแฟกเตอร์การเจาะมีค่ามากขึ้นเป็น 0.17 เนื่องจากอัตราการกินเนื้อชิ้นงาน เพิ่มมากขึ้น (กราฟแสดงในภาคผนวก)

4.5 ผลการตรวจสอบโครงสร้างจุลภาค

4.5.1 ผลการตรวจสอบโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์แบบแสง

รูปที่ 4.12 แสดงโครงสร้างจุลภาคของซิลิคอนหลังจากผ่านการเผาผนึกขั้นต้น

รูปที่ 4.13 แสดงโครงสร้างจุลภาคของซิลิคอนไนไตรด์ที่ผ่านการในไตรเดชั่นที่อุณหภูมิต่างๆ A) 1350°C B) 1375 °C C) 1400 °C D) 1450 °C E) 1500 °C F) Commercial

จากการตรวจสอบโครงสร้างจุลภาคของซิลิคอนที่ผ่านการเผาผนึกขั้นต้น ที่กำลังขยายเลนส์ ใกล้วัตถุ 10 เท่า พบว่าโครงสร้างส่วนใหญ่ของซิลิคอนเป็นอนุภาคที่เชื่อมติดกันเป็นบางส่วน อนุภาค ยังเกาะกันไม่แน่นหนา เมื่อปรับระยะวัตถุจะเห็นอนุภาคซิลิคอนเป็นชั้นๆ อย่างซัดเจน

จากการตรวจสอบโครงสร้างจุลภาคของซิลิคอนไนไตรด์ที่ผ่านการไนไตรเดชั่นที่อุณหภูมิต่างๆ เทียบกับขึ้นงานเชิงพาณิชย์ พบว่าที่อุณหภูมิไนไตรเดชั่นต่ำ (1350-1375°C) จะเกิดซิลิคอนไนไตรด์ (บริเวณสีขาว) น้อยกว่าชิ้นงานที่ทำไนไตรเดชั่นที่อุณหภูมิที่สูงกว่า พบว่าชิ้นงานที่อุณหภูมิไนไตร เดชั่น 1400°C และ 1450°C มีรูพรุนขนาดใหญ่มาก (บริเวณสีดำ) กระจายอยู่ สำหรับชิ้นงานที่ อุณหภูมิการไนไตรเดชั่น 1500°C มีรูพรุนขนาดเล็กกระจายอยู่ทั่วไป และมีรูพรุนขนาดต่ำกว่า 50 μm กระจายอยู่ ซึ่งเมื่อเปรียบเทียบกับชิ้นงานเชิงพาณิชย์พบว่าชิ้นงานเชิงพาณิชย์มีรูพรุนขนาดเล็ก กระจายอยู่ทั่วไป และพบรูพรุนขนาดใหญ่ในโครงสร้างเพียงบางส่วน

4.5.2 ผลการตรวจสอบโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์แบบส่องกวาด (SEM)

 4.5.2.1 ผลการตรวจสอบโครงสร้างจุลภาคของชิ้นงานซิลิคอนในไตรด์ด้วย Scanning Electron Microscope ร่วมกับ Energy Dispersive Spectroscropy เปรียบเทียบโครงสร้าง ระหว่างผิวและภายในชิ้นงานที่อุณหภูมิการในไตรเดชั่นต่างๆ โดยการทำ mapping (รูปแสดงในภาคผนวก)

(A) N เทียบกับ Si

รูปที่ 4.14 แสดงตัวอย่างโครงสร้างจุลภาค (x50) และ mapping ของชิ้นงาน RBSN ที่อุณหภูมิไนไตรเดชั่น 1500°C (บริเวณผิวชิ้นงาน)

(A) N เทียบกับ Si

(B) O เทียบกับ Si

รูปที่ 4.15 แสดงตัวอย่างโครงสร้างจุลภาค (x50) และ maping ของขึ้นงาน RBSN ที่อุณหภูมิไนไตรเดชั่น 1500°C (บริเวณกลางชิ้นงาน) จากการเปรียบเทียบโครงสร้างจุลภาคบริเวณผิวชิ้นงานและบริเวณภายในชิ้นงาน RBSN ที่อุณหภูมิ การในไตรเดชั่นต่างๆ พบว่า

- อุณหภูมิการไนไตรเดชั่นต่ำ (1350°) ที่กำลังขยายภาพ 50 เท่า พบว่าบริเวณผิวและบริเวณ ภายในชิ้นงานจะมีความสม่ำเสมอของโครงสร้าง จาก mapping พบไนโตรเจนเกิดขึ้นภายใน ชิ้นงานเล็กน้อย และตรวจพบออกซิเจนในชิ้นงานน้อยมาก
- อุณหภูมิการในไตรเดชั่น 1400°C พบว่าโครงสร้างบริเวณผิวและบริเวณภายในชิ้นงานไม่
 ค่อยสม่ำเสมอ จาก mapping พบไนโตรเจนเกิดขึ้นภายในชิ้นงานเล็กน้อย และตรวจพบ
 ออกซิเจนในชิ้นงานน้อยมากเช่นเดียวกับที่อุณหภูมิ 1350°C
- อุณหภูมิการในไตรเดชั่น 1450°C พบว่าโครงสร้างที่บริเวณผิวและบริเวณภายในชิ้นงานไม่ สม่ำเสมอ จึงทำการ mapping โดยแบ่งเป็น 2 ส่วน พบว่าที่บริเวณผิวชิ้นงานตรวจพบ ออกซิเจนมากกว่าบริเวณภายในชิ้นงาน บริเวณภายในชิ้นงานจะมีการกระจายตัวของ ในโตรเจนสม่ำเสมอมากกว่า และมีโครงสร้างจุลภาคที่สม่ำเสมอกว่า
- อุณหภูมิการในไตรเดชั่น 1500°C พบว่าโครงสร้างที่บริเวณผิวและบริเวณภายในชิ้นงานไม่ สม่ำเสมอ จึงทำการ mapping โดยแบ่งเป็น 2 ส่วน พบว่าที่บริเวณผิวชิ้นงานตรวจพบ ในโตรเจนน้อยกว่าบริเวณภายในชิ้นงาน แต่บริเวณผิวพบออกซิเจนกระจายตัวอยู่ทั่วไป และ บริเวณภายในชิ้นงานมีการกระจายตัวของไนโตรเจน และมีโครงสร้างจุลภาคที่สม่ำเสมอมาก กว่าบริเวณผิวชิ้นงาน
- 4.5.1.1 ผลการตรวจสอบโครงสร้างจุลภาคของชิ้นงานซิลิคอนไนไตรด์ด้วย SEM ที่อุณหภูมิ การในไตรเดชั่นต่างๆ (รูปแสดงในภาคผนวก)

(A) 1500 °C (x200)

(B) 1500 °C (x1500)

(C) Commercial (x200)

(D) Commercial (x1500)

รูปที่ 4.16 แสดงโครงสร้างจุลภาคจากกล้อง SEM ที่อุณหภูมิการไนไตรเดชั่น 1500°C เทียบกับชิ้นงานเชิงพาณิชย์ที่กำลังขยาย (x200) และ (x1500)

จากการตรวจสอบโครงสร้างจุลภาคของซิลิคอนไนไตรด์ที่ผ่านการไนไตรเดชั่นที่อุณหภูมิต่างๆ เทียบกับชิ้นงานเชิงพาณิชย์ด้วย Scanning Electron Microscope ที่กำลังขยาย x200 เท่าและ x1500 สังเกตโครงสร้างได้ดังนี้

- ที่อุณหภูมิการไนไตรเดชั่น 1350°C ชิ้นงานมีรูพรุนขนาดประมาณ 3-5 μm กระจายตัวอยู่ทั่ว
 ไปในโครงสร้าง มีบางบริเวณมีรูพรุนขนาดใหญ่ประมาณ 10-20 μm อยู่ซึ่งเป็นรูพรุนต่อเนื่อง
- ที่อุณหภูมิการในไตรเดชั่น 1375°C ชิ้นงานมีรูพรุนขนาดประมาณ 5-10 μm กระจายอยู่ทั่ว
 ไปในโครงสร้าง ส่วนใหญ่เป็นรูพรุนไม่ต่อเนื่อง โครงสร้างค่อนข้างสม่ำเสมอ
- ที่อุณหภูมิการในไตรเดชั่น 1400°C ชิ้นงานมีรูพรุนขนาดประมาณ 10 μm กระจายต่อเนื่อง
 อยู่ทั่วไปในโครงสร้าง ในบางบริเวณจะมีรูพรุนขนาดใหญ่ประมาณ 20-30 μm
- ที่อุณหภูมิการในไตรเดชั่น 1450°C ชิ้นงานมีรูพรุนน้อยลง แต่ในบางบริเวณพบรูพรุนขนาด
 ใหญ่มากประมาณ 50 μm ระหว่างรูพรุนจะพบลักษณะ fiber อยู่ในบางบริเวณ
- ที่อุณหภูมิการในไตรเดชั่น 1500°C ขึ้นงานมีรูพรุนขนาดประมาณ 10 μm กระจายอยู่ทั่วไป ในโครงสร้าง ไม่ค่อยพบรูพรุนขนาดใหญ่ในโครงสร้าง
- โครงสร้างทั่วไปในชิ้นงานเชิงพาณิชย์ พบรูพรุนขนาดประมาณ 10 μm กระจายต่อเนื่องอยู่
 ทั่วไปในโครงสร้าง บางบริเวณพบรูพรุนขนาดใหญ่ ระหว่างรูพรุนพบลักษณะ fiber อยู่ในบาง
 บริเวณ

4.5.1.1 ผลการตรวจสอบผิวรอยแตก (fracture surface) ของชิ้นงานซิลิคอนไนไตรด์ด้วย SEM ที่อุณหภูมิการในไตรเดชั่นต่างๆ (รูปแสดงในภาคผนวก)

(A) 1350°C (x500)

(B) 1350 °C (x3500)

(C) 1375°C (x500)

(D) 1375°C (x3500)

(E) 1400°C (x500)

(F) 1400°C (x3500)

(G) 1450°C (x500)

(H) 1450°C (x3500)

(I) 1500°C (x500)

(J) 1500°C (x3500)

(K) Commercial (x500)

(L) Commercial (x3500)

จากการตรวจสอบผิวหน้ารอยแตกของซิลิคอนไนไตรด์ ที่ผ่านการไนไตรเดชั่นที่อุณหภูมิต่างๆ เทียบกับชิ้นงานเชิงพาณิชย์ด้วย Scanning Electron Microscope ที่กำลังขยาย x500 เท่าและ x3500 สังเกตลักษณะได้ดังนี้

- ผิวรอยแตกของชิ้นงานที่อุณหภูมิการไนไตรเดชั่น 1350°C สังเกตพบซิลิคอน (ขนาด ประมาณ 30 µm) ซึ่งมีรอยแตกตามผลึก (สีเทาเข้ม) กระจายอยู่ เมื่อสังเกตที่กำลังขยายสูง พบว่าบริเวณขอบของซิลิคอนจะพบรูพรุนอยู่ (สีดำ) และมีผลึกของซิลิคอนไนไตรด์ (สีขาว) อยู่ตามขอบของอนุภาคซิลิคอน
- ผิวรอยแตกของชิ้นงานที่อุณหภูมิการในไตรเดชั่น 1375°C ที่สังเกตได้พบว่ามีลักษณะใกล้
 เคียงกับผิวรอยแตกที่อุณหภูมิ 1350°C แต่โครงสร้างทั่วไปจะสม่ำเสมอมากกว่าและพบ
 ซิลิคอน (สีเทาเข้ม) ในโครงสร้างน้อยกว่า
- ผิวรอยแตกของชิ้นงานที่อุณหภูมิการในไตรเดชั่น 1400°C จากการสังเกตพบว่าซิลิคอนมี ขนาดและปริมาณลดลง ขนาดของผลึกซิลิคอนไนไตรด์ใหญ่ขึ้นเมื่อเทียบกับที่อุณหภูมิต่ำ
 เมื่อสังเกตที่กำลังขยายสูงจะพบผลึกเบตา-ซิลิคอนไนไตรด์ (สีขาว) งอกออกมาอย่างชัดเจน
- ผิวรอยแตกของชิ้นงานที่อุณหภูมิการในไตรเดชั่น 1450°C ที่กำลังขยาย x500 พบลักษณะ ใกล้เคียงกับชิ้นงานที่อุณหภูมิ 1400°C แต่ผลึกมีขนาดใหญ่กว่า เมื่อสังเกตที่กำลังขยายสูงจะ พบผลึกของเบตา-ซิลิคอนไนไตรด์ (สีขาว) งอกออกมา และพบผลึกลักษณะ hexagonal ที่ สมบูรณ์ในโครงสร้าง
- ผิวรอยแตกของชิ้นงานที่อุณหภูมิการในไตรเดชั่น 1500°C โครงสร้างละเอียดขึ้น ไม่พบ ซิลิคอนเหลือในโครงสร้าง ผลึกของซิลิคอนไนไตรด์มีความละเอียดมากกว่าที่อุณหภูมิไนไตร เดชั่น 1450°C
- ผิวรอยแตกของชิ้นงานเชิงพาณิชย์ จะพบโครงสร้างที่ละเอียดมากอาจเกิดจากอนุภาคเริ่มต้น
 ที่มีขนาดเล็ก เมื่อสังเกตที่กำลังขยายสูง จะพบซิลิคอนไนไตรด์กระจายอยู่ทั่วไป มี 2
 ลักษณะทั้งที่เป็นแบบผลึกและที่เป็น fiber ซึ่งลักษณะ fiber จะสังเกตพบบริเวณที่เป็นรูพรุน

4.6 ผลการตรวจสอบโครงสร้างทางเคมี

- 4.6.1 ผลการตรวจสอบโครงสร้างทางเคมีด้วย X-ray Diffractometer
 - 4.6.1.1 ผลการตรวจสอบชิ้นงานด้วย X-ray Diffractometer ที่อุณหภูมิการในไตรเดชั่นต่างๆ

จากข้อมูล XRD ที่ได้จากการตรวจสอบชิ้นงานที่ผ่านการในไตรเดชั่นที่อุณหภูมิต่างๆ พบว่า ที่ อุณหภูมิในไตรเดชั่น 1350°C และ 1375°C พบ peak ส่วนใหญ่เป็น peak ของแอลฟาซิลิคอนไนไตรด์ และซิลิคอน เทียบกับข้อมูลของ Charles and Donald [1977] ที่อุณหภูมิไนไตรเดชั่นสูงกว่า 1400°C พบ peak ส่วนใหญ่เป็น peak ของแอลฟาซิลิคอนไนไตรด์ เบตาซิลิคอนไนไตรด์และซิลิคอนที่เหลือ จากการทำปฏิกิริยา

พื้นที่ใต้กราฟ (Integrated intensity) ของ peak α-Si₃N₄ ที่ peak (101), 2θ (Cuκα) เท่า กับ 20.59 เทียบกับพื้นที่ใต้กราฟของ peak silicon ที่ peak (111), 2θ (Cuκα) เท่ากับ 28.48 ได้ผล ดังตาราง

ตารางที่ 4.12 แสดง Relative integrated intensity ของ peak α-Si₃N₄ เทียบกับ peak ของ Silicon

	Relative Integrated	Relative Integrated	$I_{si(111)}$
Sample	Intensity ของ	Intensity ของ peak	$\frac{1}{I_{s}} + I_{s}$
	peak Si (111)	Q-Si ₃ N _{4 (101)}	$31(111)$ $\alpha - 31_3 N_4(101)$
Nitride1350°C	100.00	22.33	0.82
Nitride1375°C	100.00	31.44	0.76
Nitride1400°C	81.38	100.00	0.44
Nitride1450°C	26.91	100.00	0.21
Nitride1500°C	0.00	100.00	0.00
Commercial	0.00	100.00	0.00

4.6.1.2 ผลการสร้าง Calibration Curve ของ (α-Si₃N₄)-Silicon

รูปที่ 4.20 แสดง Calibration curve ความสัมพันธ์ระหว่าง Integrated intensity ของ Si และ α-Si₃N₄ เทียบกับ Weight fraction Si

รูปที่ 4.21 แสดง Calibration curve ความสัมพันธ์ระหว่าง Integrated intensity ของ α-Si₃N₄ และ เทียบกับ Weight fraction β-Si₃N₄ [Charles and Donald,1977]

น้ำค่า relative integrated intensity จากตารางที่ 4.12 มาเทียบกับ calibration curve จะได้ ปริมาณ weight fraction ของ silicon ที่เหลือจากการทำปฏิกิริยาเทียบกับปริมาณ α-Si₃N₄ และ ปริมาณ β-Si₃N₄ ที่เกิดขึ้นจากปฏิกิริยาไนไตรเดชั่นดังตาราง

Sample	ปริมาณ α- Si ₃ N ₄ (%)	ปริมาณ β- Si ₃ N ₄ (%)	ปริมาณ Silicon (%)
Nitride1350°C	54	12	34
Nitride1375°C	63	4	33
Nitride1400°C	73	19	8
Nitride1450°C	55	44	1
Nitride1500°C	74	26	0
Commercial	81	19	0

ตารางที่ 4.13 แสดงปริมาณของ Si₃N₄ และ Silicon จากการทำปฏิกิริยา Nitridation

แผนภูมิแสดงปริมาณ Si3N4 ที่เกิดจากปฏิกิริยาไนไตรเดชั่นที่อุณหภูมิต่างๆ

รูปที่ 4.22 แสดงปริมาณ Si₃N₄ คิดเป็นเปอร์เซนต์การเกิดปฏิกิริยา

จากแผนภาพแสดงปริมาณ α-Si₃N₄ ที่เกิดขึ้นเทียบกับปริมาณซิลิคอน จากปฏิกิริยาไนไตร เดชั่นที่อุณหภูมิต่างๆ พบว่าปริมาณ α-Si₃N₄ มีแนวโน้มที่จะเกิดมากขึ้นเมื่อเกิดปฏิกิริยาไนไตรเดชั่น ที่อุณหภูมิสูงขึ้น จากข้อมูล XRD พบ β-Si₃N₄ ในชิ้นงานที่อุณหภูมิไนไตรเดชั่นสูงกว่าจุดหลอมเหลว ของซิลิคอน คือที่อุณหภูมิสูงกว่า 1400°C ดังแสดงข้อมูลในภาคผนวก

แผนภูมิแสดงปริมาณของผลิตภัณฑ์ในแต่ละเฟส

รูปที่ 4.23 แสดงปริมาณของผลิตภัณฑ์ที่สภาวะการในไตรเดชั่นต่างๆ เทียบกับชิ้นงานเชิงพาณิชย์

4.6.2 ผลการตรวจสอบโครงสร้างทางเคมีด้วย Nuclear Magnetic Resonance (NMR)

รูปที่ 4.24 แสดงตัวอย่างข้อมูล NMR ของชิ้นงานที่ผ่านการไนไตรเดชั่นที่อุณหภูมิ 1350°C

จากข้อมูล NMR ของเฟส α-Si₃N₄ พบ peak ที่ -48.21 ppm เป็น peak หลัก ข้อมูลของ Si จะพบ peak ที่ -61.40, -79.58 และ -81.15 ppm และข้อมูลของ SiO₂ พบ peak ที่ -108.82 ppm เป็น peak หลัก (ดังแสดงในภาคผนวก)

รูปที่ 4.25 แสดงตัวอย่างข้อมูล NMR ของชิ้นงานที่ผ่านการไนไตรเดชั่นที่อุณหภูมิ 1500°C

้จากข้อมูล NMR ที่อุณหภูมิการในไตรเดชั่นต่างๆ สามารถสรุปข้อมูลดังนี้

- ที่อุณหภูมิในไตรเดชั่น 1350°C พบ peak เกิดขึ้นที่ตำแหน่ง -46.74 และ -72.78 ppm เมื่อ เทียบกับมาตรฐานพบว่าเป็นเฟสของ Si₃N₄ และ Silicon
- ที่อุณหภูมิไนไตรเดชั่น 1375°C พบ peak เกิดขึ้นที่ตำแหน่ง -48.33 และ -73.49 ppm เมื่อ เทียบกับมาตรฐานพบว่าเป็นเฟสของ Si₃N₄ และ Silicon
- ที่อุณหภูมิในไตรเดชั่น 1400°C พบ peak เกิดขึ้นที่ตำแหน่ง -48.743 ,-72.94 และ -110.35 ppm เมื่อเทียบกับมาตรฐานพบว่าเป็นเฟสของ Si₃N₄ และ Silicon และ SiO₂
- ที่อุณหภูมิในไตรเดชั่น 1450°C พบ peak เกิดขึ้นที่ตำแหน่ง -47.81 ,-60.71 และ -106.99
 ppm เมื่อเทียบกับมาตรฐานพบว่าเป็นเฟสของ Si₃N₄ และ Silicon และ SiO₂
- ที่อุณหภูมิไนไตรเดชั่น 1500°C พบ peak เกิดขึ้นที่ตำแหน่ง -48.07 ,-60.66 , -102.14 และ -132.13 ppm เมื่อเทียบกับมาตรฐานพบว่าเป็นเฟสของ Si₃N₄ และ Silicon และ SiO₂