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CHAPTER 1

INTRODUCTION

The logistic model has been widely used for a long time because of its ease of use
and effectiveness. The logistic model is used in many fields such as economics, ecology,
demography, sociology and biomathematics. The logistic model [6] generally has the

form

Xy
dX; =rX, (1 — ?> dt, (1.1
where X, is the target process,

K is the carrying capacity,

r is the intrinsic growth rate.

This model is an ordinary differential equation (ODE). Here, X; represents the number

dXy
dt

means the maximum population size, and the parameter r affects the overall population

of the target population, and is the population growth rate. The carrying capacity

growth rate. A solution of this ODE has an S-shaped curve. Figure 1.1 shows an example

of a solution of the logistic model.

Logistic Growth

Carrying capacity

s S O

Population size

Time

Figure 1.1: A general form of a logistic model.

Image credit: Environmental limits to population growth: Figure 1.1, by OpenStax
College, Biology, CC BY 4.0.




The logistic model has been developed as a stochastic differential equation (SDE)
model. The so-called generalized logistic SDE (GLSDE) has the form

X m
dX, = rX, (1 - <?t) > dt + o X, dW, (1.2)

where X, is the target process,
K is the carrying capacity,
r is the intrinsic growth rate,
m and o are parameters in the model,

W, is the Wiener process.

The parameter m € (0, 0o) affects the S-shaped curve of the GLSDE model. Fig-
ure 1.2-1.4 illustrate such effect, and we can see that the higher m, the more S-shaped

curve.

8000
7000
6000 |
3000 r
» 4000 +
3000 |
2000 ¢

1000
m=1,sigma=0

0 0.5 1 1.3 2 2.5 3

Figure 1.2: A solution of GLSDE withm = 1,0 = 0, K = 10,000,r = 1.7.
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1

Figure 1.3: A solution of GLSDE with m = 3,0 = 0, K = 10,000, r = 1.7.
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9000
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0 0.5 1 1.3 2 2.5 3
t

Figure 1.4: A solution of GLSDE with m = 5,0 = 0, K = 10,000, = 1.7.



When the parameter 0 = 0, this model is just an ODE. The term o X;dW; adds stochas-
ticity to the model and is interpreted as the Ito stochastic integral. The noise in the target
process vary accordingly to the target process itself multiplied by the parameter o.

The explicit solution of the GLSDE is known [5] and has the form

o\ + —-1/m
X, = Ko, /™ { (?“) + rm/ <I>s‘1ds} , (1.3)
0

2
(—rm—l— g 2m ) t—omW;

and X, € R.

In chapter 2, we talk about the background knowledge of SDEs, numerical methods

where ®; = ¢

and weak order of convergence. In chapter 3, we simulate the GLSDE using six numer-
ical methods: Euler-Maruyama, two-point simplified weak Euler, three-point simplified
weak Euler, simplified order 2.0 weak Taylor, explicit order 2.0 weak and order 2.0 weak
predictor-corrector. We also numerically find the weak orders of convergence and run
time of these six methods for the GLSDE model by approximating the explicit solution
with harmonic mean and arithmetic mean. In chapter 4 and chapter 5, we show results

and conclusion, respectively.



CHAPTER 11

PRELIMINARIES

In this chapter, we describe the background knowledge and the concept for our
project which are stochastic differential equations, numerical methods and weak order

of convergence.

2.1 Introduction to stochastic differential equations
Definition 2.1 Standard Brownian meotion. A scalar standard Brownian motion or stan-
dard Wiener process, over (0,77 is a collection of random variables {W,};c o7 that
satisfies the following four conditions.

1. Wy = 0 (with probability 1).

2. For 0 < s <t < T, the random variable given by the increment W; — W
is normally distributed with mean zero and variance ¢ — s. This is equivalent to
W,—Ws ~ v/t — s N(0, 1), where N (0, 1) denotes a normally distributed random

variable with zero mean and unit variance.

3. For 0 < s <t <u<wv <T,the increments W, — W, and W, — W,, are

independent.

4. {W,;}+c 0,71 has continuous sample paths.

Definition 2.2 Stochastic differential equations. An SDE generally has the form

dX, = f(Xy)dt + g(Xy)dW,,  0<t<T 2.1)
XO =,

where f and g are scalar functions of X , W, is a Wiener process, and = € R.

The equation (2.1) is understood to be the differential form of the integral equation

t t
X, - X / F(X)ds + / g(X.) W, 2.2)
0 0

where the first term on the right-hand side of the above equation is interpreted as the

ordinary Riemann integral, and the second term is the /1o integral [4].



2.2  Numerical Methods

Numerical methods used in this project are based on [3]. Assume that we have an SDE

dXy = f(Xy)dt + g(Xy)dW,.

2.2.1 Euler-Maruyama (EM) method

The simplest numerical approximation for solving an SDE is the Euler-Maruyama
method. We need to discretize the time domain [0,T] into N equidistance subintervals.
Lett, = nAforalln =0,1,.., N where A = % We denote x,, to be the numerical

solution at time step t,, using the Euler-Maruyama scheme
Tnt1 = Ty + f(@n)A + g(z,) AW, (2.3)

where AW, is normally distributed with mean 0 and variance A and z( = Xj.
2.2.2 Two-point simplified weak Euler (SE) method

This method is similar to the EM method but it will be much easier. We can
replace the Wiener increments AW, in (2.3) by another random variable AI;VV,Z with
similar moment properties. We can thus obtain a simpler scheme by choosing more

easily generated noise increments. This leads to the simplified weak Euler scheme
Tupt = Tn + [(n) A+ g(z,) AW, (2.4)
where AI/IN/,L satisfies the condition

5(oi)

+|B((am)’)| + |B((am)") - | < Ka? 2.5)

for some constant K. A very easy example of such AT;I\/; in (2.4) is a two-point dis-

tributed random variable with
—~ 1

We will call the scheme (2.4) with this two-point distribution Aan the two-point sim-
plified weak Euler method.



2.2.3 Three-point simplified weak Euler (WE) method

The scheme of this method is the same as the two-point simplified weak Euler
method but AVI//\n is a three-point distributed random variable. This leads to the three-

point simplified weak Euler scheme
Tpy1 = Ty + f(xn)A + 9($n> AW\TL?
where AW\n is a three-point distributed random variable with

Note that this distribution satisfies the condition (2.5).
2.2.4 Simplified order 2.0 weak Taylor (ST) method
We have the simplified order 2.0 weak Taylor scheme

T =T+ F(@) A e ) AT, + 2 glen) o () {(ATL)? — A)

—~

+ {f/(xn) 9(zn) + flzn) g (zn) + %gﬂ(xn) g(wn)Q} AW, A

+

N = N

1
{fan) @) + 5 o) gttt} o2 26)
where Aﬁ/\n satisfies the condition

£(siT)

+ ‘E((AV/V\,L)?’)’ + ’E<(AW")5)‘

+|E((aW)7) - a|+ |B((aW)") — 822 < KA* @)

for some constant K. The random variable AW, ~ N(0,A) certainly satisfies the
moment condition (2.7), and so does a three-point distributed random variable Aﬁ/\n

with

— 1 — 2



2.2.5 Explicit order 2.0 weak (EW) method

Platen proposed the following explicit order 2.0 weak scheme

taer = 2+ 5 (F(T) + () A
+ i (g(TH) + g(T7) + 2g(x,)) AW,
F16r — g {(am) - abae ey

with supporting values

and

Yt =z, + flz,) A+ gz,) VA,
T = 2, + f(@a) A — glz,) VA,

where ﬁ/\n is a three-point distributed random variable with
—~ 1 —~ 2
P(AW,, = £v3A) = 3 P(AW, =0) = 3

Note that this distribution satisfies the condition (2.7).
2.2.6  Order 2.0 weak predictor-corrector (PC) method

The order 2.0 weak predictor-corrector method has corrector scheme
1 _
Tpt1 = Tp + 5 {f(@ns1) + flza) } A+ T, (2.9)
with
—_~ 1 —_~
W, = g(@a) AW, + 5 g(wa) o (02) { (AW,)? = A}

2

b3 (F g + Jota) o)) AT,



and predictor

Pt = 0+ F) A+ W 4 3 ) o) AT,A
# 5 () @) + 5 ) atan)?) o2

where T/I//\n is a three-point distributed random variable with

P(AW, = £V38) = ¢, P(AW, =0) = 3.

2.3 Weak order of convergence

For a numerical method with the numerical solution z,, to the exact solution X, ,
it is said to have weak order of convergence equal to «, if there exists a constant C' such

that

|E[Xe] = Elx,]| < CA®

foralln = 1,2, ..., N and for all sufficiently small A. The left-hand side is called the
weak error, e5 = |E[X,,] — F|x,]|. E[X,,] is the expected value of the exact solution
and E|[z,] is the expected value of the numerical solution.

Normally, A is a small number, so, the greater « is, the smaller e,, will be. Thus,
a high weak order of convergence indicates that the corresponding numerical method
has high accuracy. According to the theory, the EM, SE and WE methods have weak
order of convergence equal to 1. The ST, EW and PC methods have weak order of con-
vergence equal to 2. In this work, we will numerically test the performance of these six
numerical methods.

We can use the Monte Carlo approach to numerically find the weak order of con-
vergence for a numerical method. First, we select many time steps A. For each A,
we simulate numerical solutions using the numerical method. Then, we find the aver-
age of the numerical solutions to approximate F|x,] so that we can find the weak error
eX = |E[X;,] — Elx,]| provided that E[X},] is known or can be approximated. Now,

let’s consider the weak error. Taking the logarithm of both sides of the inequality
eﬁ < CA7,

we have

loges < logC + alogA.



10

In practice, « is approximately the slope of the graph between the size of logA and
the logarithm of the weak error, log eﬁ. Thus, we can find the line of best fit for the
regression model

log e,? =~ log C + alogA,

and the weak order of convergence for this numerical method is approximately the slope
of the line of best fit.



CHAPTER III

METHODOLOGY

In this chapter, we use MATLAB to simulate the GLSDE for six numerical meth-
ods: Euler-Maruyama, two-point simplified weak Euler, three-point simplified weak
Euler, simplified order 2.0 weak Taylor, explicit order 2.0 weak and order 2.0 weak
predictor-corrector. We also estimate the explicit solution by using harmonic mean and
arithmetic mean in order to find the mean value of GLSDE and weak order of conver-

gence of each method.
3.1 The simulation of the GLSDE

In this section, we set the parameters as follows X, = 200, K = 10000, r = 1.7
(these parameters are used in [1]), m = 3 and o = 0.3. For each of the ten stepsizes
A =271 9713 9=12 " 975 we generate 100,000 discretized sample paths over [0, 1].
Let N be the number of discretization intervals, so N = %. Next, we use the EM, SE,
WE, ST, EW and PC schemes described in chapter 2 to simulate sample paths for the
process X, from (1.2). For every method, we first set o = Xy. Forn =0,1,... , N —1,

we will update x,,,1 recursively according to each of the six numerical methods.
3.1.1 Euler - Maruyama (EM) method

The EM scheme for X; has the form

Tyl = Tp + 1Ty (1 - (%>m> A+ ox, AW, ,

where AW,, ~ N(0, A).
3.1.2 Two-point simplified weak Euler (SE) method

The SE scheme for X, has the form

Tpil = Tp + 7Ty (1 - (%) > A+ anAan,

where AI;I\/; is a two-point distributed random variable with

P(AW, = +VA) = %



3.1.3 Three-point simplified weak Euler (WE) method

The WE scheme for X; has the form

Tpil = Ty + 72y (1 - <%>m> A+ aa:nAﬁ/\n,

where Aﬁ/\n is a three-point distributed random variable with

3.1.4 Simplified order 2.0 weak Taylor (ST) method

flzn) =ra, (1 - (UE—[?>m> 9(@n) = oay
flxy) =1 (1 —(m+1) <%>m> g'(xn) =0,
F(wn) = %tﬁ (%)m g"(x,) = 0.

The ST scheme for X; has the form

T

Tpy1 = Tp + Ty (1— (K

—|—% [rxna (2 — (m+2) (%)mﬂ AW;A

Ty

Ao )]

1 2 Tn\™ | A2
_zrm(m+1)a Ty, (K) )A ,

where AW, is a three-point distributed random variable with

)m) A+ o2, AW, + %02$n {(AWn)? - A}

12



3.1.5 Explicit order 2.0 weak (EW) method

f(Y) =r (mn +rx, (1 - (%>m> A+ anAﬁ/\n>

Ty + 1T, <1 - <%)m) A+ anAVI//\n

m

)

1—

VS

gTH) =0 (xn +ra, (1 — (mn)m> A + 0%@) ,
gX ) =0 <:17n + rx, <1 >m> A — a:vn\/Z> ,

|
VRS

The EW scheme for X; has the form

1 T\ —
Tp+l = Tp + 3 r (xn AT (1 — (?> > A+ aanWn)

Tp F T, (1 — (ﬁ)m> A+ anAVI//\n
.(1 / K

s (i)

o (11 (2)7) )4

m

)

A

1 —_~
5% VA {(AWn)2 = A} A2,
where Aﬁ/\n is a three-point distributed random variable with

. 1 — 2

3.1.6 Order 2.0 weak predictor-corrector (PC) method

flxy) =rz), (1 - <%>m> g(xy) = ox,
) =r(1=m+1) (32)") g(@n) =0,
) = T (22 (@) =0,

U, = oz, AW, + %a%n {(AW\n)Q — A} + %arxn (1 — (—)m) AW, A,

13
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Tpil = Tp + 12, (1 — <x_[,g>m) A+V, + %am‘n (1 —(m+1) (%)m) AI//V\nA

(e (e G e ()7

1 m
—irm(m + 1)o?z, (%) )AQ,

The PC scheme for X; has the form

1 _ [fn m T\ ™
Tnal ::cn—|—§ TTpa1 (1—( I;q) )—i—mn (1— (E) )

A

+ a:rnAVI//\n + %02:1:,1 {(Aﬁ/\n)2 — A}

+ %O’T:En (1 — (%)m> AVI//\HA,

where Aﬁ/\n is a three-point distributed random variable with

3.2 Mean value of GLSDE

In this section, we will approximate the mean value of the explicit solution from
(1.3) to numerically find weak order of convergence. We use harmonic mean and arith-

metic mean to approximate the explicit solution.
3.2.1 Harmonic mean

From (1.3), we have the problem in the integral part of the solution. We can approximate

A A
1 1
—ds ~ / ———ds.
/(il)A o, (i-1)A —q)“‘”ﬁwm
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/A 1 2A 1 NA 1
= —ds—i—/ —ds—i—~--+/ —ds
0 (I)s A CI)S (N-1A <I)s

A 2A NA
~ L s+ L st L4
~ 0 ‘1>o-g<1>A o A (I)A‘;(I’QA o (N-1)A ¢’(N—1)§+‘I>NA o

A NA
—2 / lds+ + 2 / 1d

- S .- s
Py + Pa Jo Q(nv-1)a + PNna Jv-1)a

S . S S 2
Q5+ Py Pa + Poa DPop + D3 O n_1)a + Pna

N

1
=2A)Y ——— ——
Z: Qi-1a + Pia
Therefore, we can estimate the explicit solution of (1.3). Note that in this project, we
concentrate on the final time 7', so we want to find E[X7].

From (1.3), we have

A N 1 i
~ —1/m _0
Xr ~ K®; { ( = ) +2rmA Y T } ,

i=1

(—Tm+ ‘7227” ) T—omWsp

where & = ¢ and X is given; hence.

X\ " al 1 o
E[X7]~ E | K™ { (%) +2rmA Y <1>—} NGER))

3.2.2 Arithmetic mean

Also, we can approximate

/iA ids ~ /iA men —+ s ds
G-1a Ps (i-1)A 2
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/A 1 2A 1 NA 1
= —ds—i—/ —ds—i—~--+/ —ds
0 (I)s A q)s (N-1)A (I)s
1
)

1 NA 1 _1
+<1>Ad8_|_..._|_/ (p(Nfl)A—i_‘I’NAdS
2 (N-1D)A 2

(i+i>/A1ds+---+1( S )/M 1ds
Py Pa/ o 2\®n-na  Pna/) Jin-1)a
L+L)+(L+L)+...+( L 1)]
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where & = e( and X is given; hence.

—-1/m
o [ XN AL 1 1
E[X;] = E |K®," {<7°) +7’m§Z ((D(’ + <I>-A>} . (32)

3.3 Weak order of convergence

For each of the 6 numerical methods, we simulate 100,000 discretized sample
paths for the process X; with ten stepsizes A = 2714 2713 2712 975 and fixed pa-
rameters Xy = 200, K = 10,000, »r = 1.7,m = 3,0 = 0.3,T = 1. We will measure
the weak error at the final time 7. To do this, we need to approximate E[X7| and E|xy].

As for E[xy], we can find the average value of the numerical solution at time T,
xy, from the 100,000 simulated sample paths. Regarding E[Xr|, we use the approxi-
mated formula (3.1) and (3.2) from section 3.2 to approximately find £[X|. For both
harmonic mean and arithmetic mean approximation, we can find the average value of

the approximated exact solution at time 7" from the corresponding 100,000 simulated
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Wiener sample paths. Once we have the approximated F[zy| and E[X7], we can nu-
merically find the weak order of convergence of the corresponding numerical method
for the GLSDE model.



CHAPTER IV
RESULT

This chapter presents our main results. We will divide our selected methods into 2
groups. Group A consists of the EM, SE, and WE methods whose theoretical weak order
of convergence is 1. Group B consists of the ST, EW, and PC methods whose theoretical
weak order of convergence is 2. We will compare their run time and numerical weak

orders of convergence for the process X, for each group.
4.1 The simulation of GLSDE

In this section, we would like to show some sample paths for the GLSDE using
the six numerical methods. We set X, = 200, K = 10,000, r = 1.7, m = 3, 0 = 0.3,
T =1,and A = 277. We compute 100 discretized sample path for the process X; over
[0,1] and N is the number of discretization intervals where N = N Figure 4.1 - 4.6

show results of the sample paths for the process X; using the six numerical methods.

2000 T T - |El.Ilar T lJylal.“al

1800
1600
1400
1200

s 1000
800

B00

400

200

Figure 4.1: Simulated sample paths of GLSDE using EM method.
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Two-point simplified weak Euler

2500

09

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

Figure 4.2: Simulated sample paths of GLSDE using SE method.

Threg-point simplified weak Euler

2500

Figure 4.3: Simulated sample paths of GLSDE using WE method.
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Figure 4.5: Simulated sample paths of GLSDE using EW method.
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Order 2.0 Predictor- Corrector
3000 T T T T T T Y

2500 r '

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.6: Simulated sample paths of GLSDE using PC method.

4.2 Performance comparison

In this section, we compare the performance of the six numerical methods. We set
the parameters as follows Xy = 200, K = 10,000, r = 1.7,
m = 3,0 = 0.3. We compute 100,000 discretized sample paths over [0, 1] with ten
stepsizes A = 2714 2713 9712 975 and N is the number of discretization intervals

where N = —.

A
The results of the approximation of the exact solution using the harmonic mean
and arithmetic mean are shown in Figure 4.7 - 4.13 and Figure 4.14 - 4.20, respectively.
All figures are shown in the log-log scale of A and the weak error, and the blue lines
with markers indicate the weak error for each A. Figure 4.7-4.9 and 4.14-4.16 have the
green dashed reference line with slope 1, and Figure 4.10-4.12 and 4.17-4.19 have the

blue dashed reference line with slope 2.
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Figure 4.7: The weak error plot for EM with harmonic approximation.
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Figure 4.8: The weak error plot for SE with harmonic approximation.
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Figure 4.9: The weak error plot for WE with harmonic approximation.
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Figure 4.10: The weak error plot for ST with harmonic approximation.
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Figure 4.11: The weak error plot for EW with harmonic approximation.
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Figure 4.12: The weak error plot for PC with harmonic approximation.
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Figure 4.13: The weak error plot for six methods with harmonic approximation.
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Figure 4.14: The weak error plot for EM with arithmetic approximation.
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Figure 4.15: The weak error plot for SE with arithmetic approximation.
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Figure 4.16: The weak error plot for WE with arithmetic approximation.
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Figure 4.17: The weak error plot for ST with arithmetic approximation.
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Figure 4.18: The weak error plot for EW with arithmetic approximation.
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Figure 4.20: The weak error plot for six methods with arithmetic approximation.
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Table 4.1 shows run time (in seconds), slopes and intercepts of the lines of best fit
for the corresponding results from Figure 4.7-4.12, where we use the harmonic mean to

approximate the exact solution.

Group | Scheme | Run time (s) | Slope | Intercept
EM 223.345087 | 0.9920 | 0.0375
A SE 267.165441 | 0.9933 | 0.0307
WE 277.000700 | 0.9934 | 0.0411
ST 950.058416 | 1.8097 | 0.6273
B EW 675.070831 | 1.8105 | 0.6248
PC 1378.320298 | 1.9050 | 2.2246

Table 4.1: Run time, Slope and Intercept (harmonic mean).

In table 4.2 shows run time (in seconds), slopes and intercepts of the lines of best fit
for the corresponding results from Figure 4.14-4.19, where we use the arithmetic mean

to approximate the exact solution.

Group | Scheme | Run time (s) | Slope | Intercept
EM 207.688084 | 0.9920 | 0.0376
A SE 238.988821 | 0.9933 | 0.0307
WE 305.213606 | 0.9934 | 0.0411
ST 1184.745484 | 1.9966 | 0.0615
B EW 1104.565897 | 1.9965 | 0.0616
PC 1514.254598 | 1.9883 | 0.0536

Table 4.2: Run time, Slope and Intercept (arithmetic mean).

According to the Table 4.1 - 4.2 for group A, the run times using the EM method
are shorter than those using the SE and WE methods, respectively. In terms of the weak
order of convergence, the EM, SE and WE methods have order approximately 1. For
group B, the run times using the EW method are shorter than those using the ST and PC
methods, respectively. In terms of the weak order of convergence, the ST, EW and PC

methods have order approximately 2.



CHAPTER V

CONCLUSION

In this project, we study the GLSDE model and use six numerical methods to
simulate sample paths for the GLSDE model. The selected numerical methods are Euler-
Maruyama (EM), two-point simplified weak Euler (SE), three-point simplified weak
Euler (WE), simplified order 2.0 weak Taylor(ST), explicit order 2.0 weak (EW) and
order 2.0 weak predictor-corrector (PC) methods. We call the first three ones group A
and the other three ones group B.

From the result of this work, the EM method has the best run time in group A and
the EW method has the best run time in group B. In case of weak order of convergence,
the WE method tends to have the best weak order of convergence in group A, and the
PC method tends to have the best weak order of convergence in group B.

We can choose these numerical methods to suit our desive. For example, if we
want a method that provides the best approximation with weak order 2, we should choose
the PC method. However, if we need the fastest method with weak order 2, we should
choose the EW method. If we want the fastest and easiest to implement method, we
should choose the EM method.

As for the future work, we may try to study the sensitivity of the parameters in
the GLSDE model. Moreover, stochasticity from a jump process may be added to the

model.
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APPENDIX A

The Project Proposal of Course 2301399 Project Proposal

Academic Year 2018
Project Title (Thai) sufouin@eiavdmsusuuuladanarily GG
Project Title (English) ~ Numerical methods for a stochastic generalized logistic model
Project Advisor Raywat Tanadkithirun, Ph.D.
By Miss Duangrudee Somphan ID 5833517823

Mathematics, Department of Mathematics and Computer Science,

Faculty of science, Chulalongkorn university.

A.1 Background and Rationale

The logistic model has been used in biology and economics for a long time due to its
simplicity and effectiveness. It has been developed as a stochastic differential equation
(SDE) model. The so-called generalized logistic SDE (GLSDE) has the form

X\
dXt = TXt (1 = (?t) ) dt+UXtth (1)

where X, is the target process, K, m, r, o are parameters in the model and W, is the

Wiener process. The explicit solution of the GLSDE is known [2] and has the form

—1/m XO - ! -1 i
Xt = K(Pt ? +rm (I)s ds
0

<7rm+ "22’" ) t—omWy

and X, € R.
The easiest numerical method is the Euler-Maruyama (EM) method. To apply this
method to the SDE

whrer &, = ¢

dX; = f(Xt)dt + Q(Xt>th,
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—

we need to discretize the time domain [0, 7] into V equidistance subintervals. Let ¢,, =
nAforall: =0,1,.., N where A =

time step ¢,, using the EM scheme

. We denote z,, to be the numerical solution at

=1

Tnt1 = Tn + f(@n) A+ g(n) AW,

where AW,, is normally distributed with mean 0 and variance A and xq = Xj.
For a given family of numerical methods, we need a criterion to determine the best
one and that is the order of convergence. For a given numerical method, we say that the

weak order of convergence equal to «, if there exists a constant C' such that
E[X,,] - Eln,)| < CA®

foralln = 1,2, ..., N and for all sufficiently small A. So, the greater « is, the better the
method will be.

In this work, we will use a number of numerical methods to simulate some sample
paths for GLSDE. The selected methods are EM, Simplified weak Euler (SE), Simplified
order 2.0 weak Taylor (ST), Explicit order 2.0 weak (EW), Implicit order 2.0 weak (IW)
and Order 2.0 weak Predictor-Corrector (PC) methods. Then, we find their weak orders

of convergence and compare them.
A.2 Objectives

1. To study how to implement some numerical methods for GLSDE.

2. Tonumerically find weak orders of convergence of the selected numerical methods
for GLSDE.

3. To rank the performances of the selected numerical methods for GLSDE in terms

of weak orders of convergence as well as the time to run each method.

A.3  Scope

1. The SDE model in this work is GLSDE which is given by the equation (1).
2. We will use only EM, SE, EW, PC, ST and IW methods.

2.1 The EM scheme is given by z,,.1 = z, + a A + DAW,
where AW,, ~ N(0,A)
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2.2 The SE scheme is given by z,,,1 =z, + a A+ b AVV\H
where VI//\n is a two-point distributed random variable with
1
"2
2.3 The WE scheme is givenby z,,1 =z, + a A+ AI/I//\H

where VI//\n is a three-point distributed random variable with

P(AW, = +VA)

2.4 The ST scheme is given by

1 _
Tuir = T, + A+ ATV, + SbY {(AWn)2 - A}

1 1 —~ 1 1
+§ (a’b+ ab’ + §b”b2) AWnA—I—§ (aa’ + 5&”62> A?

where I/I/7n is a three-point distributed random variable with
2.5 The EW scheme is given by

bt =+ L (D) 4 @) A+ 5 ((TF) + B(T) + 20) AW,

2 T ~\ 2
+411 (b(T+) — b(T-)) {(AWn> - A} A1/
with supporting values
T =z, + aA—i—bAV[//\n,

and T = 2, +aA + bVA

where W, is a three-point distributed random variable with

__ 1 _ 2
P(AW, = £V38) = ¢, P(AW, =0) = 3.

1
2.6 The PC scheme is given by z,,11 = =, + 5 {a(Zpi1) +a} A+ T,

with
U, = BATT, + = b {(Av/v\n)? - A} 41 <a b+ lb?b//) AW, A
2 2 2
and predictor

1 —~ 1 1
i'n—&—l :fL’n—FCLA‘i‘\I}n"—éCL/bAWnA‘F 5 (CLCL/ —|—§a”b2) AQ
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where I/I//\n is a three-point distributed random variable with
P(AW,, = £V3A) = 5’ P(AW, =0) = 3

3. We will search for the orders of convergence in weak sense only.

A.4  Project Activities

1. Review basic knowledge and articles on SDEs which are related to our project.
2. Find the SDE model to study.

3. Understand GLSDE and its derivation.

4. Defend the project proposal.

5. Perform simulations by using the selected six numerical methods.

6. Conclude results and write a report.

Research Plan

Project Activities Month, 2018 Month, 2019

Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr.

1. Review basic knowledge and arficles
on SDEs which are related to our

project.

2. Find the SDE model to study.

3.Understand GLSDE and its

derivation.

4 .Defend the project proposal.

5.Perform simulations by using the

selected six numerical methods.

6. Conclude results and write a report.




37

A.5 Benefits

The benefits to the student who implements this project are as follows.

1. To develop the skills to search for information and to improve thinking process.

2. To gain knowledge in SDE and know how to implement some numerical methods

for a certain SDE.

3. To be able to rank the performances of a given set of numerical methods by the

use of weak orders of convergence.
The benefits for users of this project are as follows.

1. Readers can choose a numerical method for GLSDE model suitably for their use

depending on how fast and how accurately they need.

A.6 Equipment

1. Computer

2. Paper

3. Printer

4. MATLAB, Microsoft Word

5. Journals and related books

A.7 Budget
1. Paper A4 600 Bath
2. Printer ink 2,500 Bath
3. Stationery 400 Bath

4. Photocopy 1,500  Bath
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