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Chapter 1
Introduction

Nondecreasing real-valued functions on R serve as a good starting point for
studying comonotonicity in the sense that if z increases then y = f(x) increases and
vice versa. This is equivalent to the statement that any two points on the graph of
f are comparable with respect to the componentwise ordering <, that is the graph
of f is <-totally ordered. This approach gives rise to a definition of comonotonicity
of two random variables via the comonotonicity of their support as studied in [1, 2]

Comonotonicity between two d-dimentional random vector is much harder to
define mainly because subsets of R? might not be totally ordered when d > 2. In
this project, three definitions of multivariate comonotonicity are studied and some
basic results are given and proved.

In the second chapter and third chapter, respectively, we give some principal
definitions of comonotonicity of 2 random variables and provide some basic prop-
erties. Later in chapter 3, we extend the definition of comonotonicity to d random
variables. Next, in chapter 4, we will study the comonotonicity of two d-dimensional
random vectors. Equivalently, we turn our attention to <-componentwise ordering
R? x R Moreover, the comonotonicity is categorized into three types: 1.) strong
comonotonicity; 2.) projection comonotonicity; and 3.) weak comonotonicity. In
final chapter, we summarize the types of comonotonicity and leave some open prob-

lems to the readers.



Chapter 2
Preliminaries

In this chapter, we will review well-known results which are used in the fol-
lowing chapters.

We give notation D :={1,2,...,d}.

2.1 Ordering Relations

First, we introduce ordering relation which is used to define comonotonicity.

Definition 2.1.1. Given two nonempty, partially ordered spaces (X', <y) and
(V,<y), we will denote by < the product partial order on X x Y: (z1,y1)

(w9, y2) <= x1 <y 22 and y; <y yo.

Note that, except when explicitly stated, we will consider the case (X, <y) =

(V,<y) = (R", <), where < is the natural component-wise order.

Example 2.1.2. In the case n = 3, we have ((1,2,1),(0,1,2)) < ((2,3,4), (5,2,4)),
((1,5,1),(0,1,2)) £ ((2,3,4),(5,2,4)) and ((1,2,1),(6,1,2)) £ ((2,3,4),(5,2,4)).

Definition 2.1.3. A relation < is a total order on a set X if the following prop-
erties hold for all a,b and ¢ in X:

(1) Reflexivity: a < a;

2) Antisymmetry: a < b and b < a implies a = b;

(2)
(3) Transitivity: @ < b and b < ¢ implies a < ¢; and
(4) Comparability: a <bor b < a.

Definition 2.1.4. (Extended Real Number System) Define R = R U {400} where

—o0 < x < oo for any x € R.



2.2 Basics of Probability

In this section, we give definitions in Probability Theory which are used in the

project.

Definition 2.2.1. Let (©2,.%#) be a measurable space. A function X : Q@ — R is

called a random variable if {w € Q: X(w) < a} € Z for all « € R.

Definition 2.2.2. Let X7, X, ..., X; be random variables. We define a d-dimensional
random vector as X = (X1, Xo,..., Xy).

Definition 2.2.3. Let (Q2,.#,P) be a probability space and X a random variable.
A function Fy : R — [0, 1] defined by Fx(z) =P({w € Q: X(w) <z}) =P(X < 2)

for all z € R is called the distribution function of X.

Definition 2.2.4. The joint distribution function of random variables X, Xo, ..., Xy

.....

Fx, x,.. x,(x1,22, ..., 2q) = P(Xq <21, Xo < 2g,.... Xgq < z4).

Definition 2.2.5. Given a distribution function /' : R — [0, 1], the generalized
inverse is the function F~!:[0,1] = R = [—00, o] defined as

F~y) :==sup{z € R: F(z) < y}.

Example 2.2.6. Let X be a random variable whose distribution function is

0 ;<0
F(r) =
1—e*;2>0.
Then F~1(y) = —log(1 —y).
Example 2.2.7. Let X be a random variable whose distribution function is

4

0 ;<0
T 0<r<1
F(z) = 09;1<ax <2

io<w<4

\1 i > 4.



Then )
V2y;0<y <05
02 ;05<y< L
Fy) = oV
42 ;\%<y<1
[ ;y = 1.
(see Fig. 2.1).
o T T \7 nl 1
sl / | | |
06| =
~— T 2* ]
~ 04 |
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0,2* 7 /Q
0f / 0f .
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Figure 2.1: An increasing function (left) and its corresponding generalized inverse
(right).

Definition 2.2.8. Let X and Y be n-dimensional random vectors (random vari-
ables). X ~ Y means that X and Y have the same joint distribution, i.e., Fx(t) =
Fy(t) for all t € R™.

Definition 2.2.9. A random variable X is said to have uniform distribution on
[0,1] (X ~ U[0,1]) if the distribution function of X is:
0;2<0
Fx(z)=qz;0<z <1
1;2>1.
Definition 2.2.10. Let (€2,.%,P) be a probability space. An event E € .# happens

almost surely if P(F) = 1.



2.3 Support

In the third section, we review the definition of support which is used to define

comonotonicity.

Definition 2.3.1. Let X3, ..., Xy be random variables. The support of (X3,..., Xy)
is the complement of [ J{O C R?: O is open and P((X, ..., X4) € O) = 0} denoted
by Supp(Xla s 7Xd)‘

Example 2.3.2. Let X be a random variable such that P(X = 0) = 0. Define
Yy = X and Yo = X3 if X # 0 but Y3 = 20 if X = 0. Then supp(X,Y;) = (X,Y))
(see Fig. 2.2) but supp(X,Ys) = {(z,2?) : © € R} (see Fig. 2.3).

6 - 6
4t 4t |
2| 2 |
S L RS 1
o] | ol |
4 . AW EN .
—0 | | | | L = L L L L !
6 —4 -2 0 2 4 6 6 4 2 0 2 4 6
X X

Figure 2.2: A random vector (X,Y;) (left) and support of random vector (X,Y))
(right).

Remark 2.3.3. Let (X4,...,Xy), (Y1,...,Yy) be random vectors. If (Xy,..., Xy) ~
(}/17 cee 7Yd)7 then Supp(Xb s 7Xd) = Supp(}/la s 7Yd)‘

Proof. Since (X1,Y1) ~ (X2,Y2), we have

supp(X1, Y1) = [U{O CRI x R?: O is open and P((Xy,Y1) € O) = 0}]¢
= [U{OCR?xR?: O isopen and P((Xz,Y2) € 0)=0}c O
= supp(Xz, Y2).



20 | 3 . 20 | .
0 1 0 )
—20 | 1 =20 y
-9 0 2 -9 0 2
X X

Figure 2.3: A random vector (X,Y3) (left) and support of random vector (X,Y3)
(right).

Remark 2.3.4. Let (X, ..., Xy) bearandom vector. If (z1,...,z4) € supp(Xy, ..., Xq),
then for any € > 0 there exists w € 2 such that (z7,...,2)) = (Xi,..., X4)(w) and

(),...,2)) € B((z1,...,24q),€).

Proof. Since (z1,...,x4) € supp(Xy,...,Xy), we have P((Xy,...,Xy) € O) > 0
every open set O. Let € > 0. Then P((Xy,...,Xy) € B((z1,...,24),€) > 0, so the

necessary condition holds. O

2.4 Projection

Definition 2.4.1. Let £ C R% The (i, )" projection and i** projection of F is

denoted by m;;(E), 7} (E), respectively.

Example 2.4.2. Let A — {(al,aQ, cooaw) 0 < a; <iwhereie {1,2,..., 10}} -
RY. Then mo5(A) = {(z,y) : 0 <2 <2,0<y <5} and 75(A) ={z:0 <z <3}

2.5 Copula

Finally, we introduce copula which is a function we use in this project.

Definition 2.5.1. A function C' : [0,1]"* — [0,1] is called a copula if it is the



restriction onto [0, 1] of a distribution function of random variables Uy, . .., U, which

are uniformly distributed on (0, 1).
We write C'(u) = C(uy,...,u,) for a copula have the following properties:
1. C(u) = u; when u; =1 for all j # i
2. C'(u) = 0 when u; = 0 for some i: and

3. the n-increasing property, i.e., Vx,y € [0,1]",2; < y;, ¢ = 1, ..., n, it holds
xii€J

Z (-DVC(af,... al) >0, where o] =
JC{Ln} Yisi & J.
An equivalent definition is the distribution function of (F(X3),..., F,.(X,))

(see [3]).

Definition 2.5.2. The upper and lower Fréchet bounds C', , C"_, respectively defined
by Cy(uy,...,uq) = min(uy, ..., uq), C_(u,...,us) = max <Zf:1 u —d+ 1,0).

Example 2.5.3. For u € [0, 1]¢, define II(u) = II{_,u; € [0, 1].

Example 2.5.4. For u € [0, 1], the Farlie-Gumbel-Morgenstern (FGM) copula for
d-dimensional is .
Cw) =TLuw(1+Y 3 il = w) 0 = us) . (1= w,))

k=2 1<j1 <...<jp<d
for —1 S Hjmé .... Ik S 1 for all jl; - . 7jk-



Chapter 3
Comonotonicity

In this chapter, we will define comonotonicity and study some properties of

comonotonicity.

3.1 Comonotonicity of two random variables

Definition 3.1.1. The set I' C R x R is said to be comonotonic if it is <-totally
ordered, i.e. if for any (z1,y1), (z2,y2) € L', either (z1,41) < (29,42) or (x2,12) S

(xl, yl)'

A random vector (X,Y) is called comonotonic if its support is comonotonic.
By Example , random vectors (X, Y7), (X, Y5) are comonotonic.
Before we start with important theorem of comonotonicity, we prove the fol-

lowing lemmas.

Lemma 3.1.2. Let (X,Y) be a random vector and I' be the support of (X,Y), then
P((X,Y)eT) = 1.

Proof. Define P(xy)(B) =P((X,Y) € B). Then
supp(X,Y) = [U{O CR?: O isopen and P((X,Y) € O) = 0}
= [U{O CR?*: Oisopen and Pxy)(O) = 0}

= supp(P(x,v))
Thus, by proposition 3.20 in [4]

P((X,Y) € supp(X,Y)) = Pixy)(supp(X,Y)) = Pxy)(supp(Pxyy) = 1. U

Remark 3.1.3. Let (X,Y) be a random vector, B C R? and I" be the support of
(X,Y), then P((X,Y) € B)=P((X,Y)e BNTI).



Proof. We will show that P((X,Y) € B\(BNT)) = 0. By Lemma B.Ld, P((X,Y) €
B\ (BNT)) =P((X,Y) € BNT%) < P((X,Y) € T¢) = 0.

Next, we will define generalized inverse other than the stated definition.

Lemma 3.1.4. Let y be a real number and F : R — [0, 1] be a right continuous and

nondecreasing function, then F~'(y) = inf{z € R: F(x) > y}.

Proof. Fix y € [0,1] and let A={z € R: F(z) <y} and B={z € R: F(z) > y}.
We will prove that sup A = inf B. If A =), then B =R, so sup A = —co = inf B.
In latter case, if B =, then A =R, so sup A = oo = inf B.

Let x = F~'(y). By definition, z = sup A. If z € A, then F is continuous at x (-
F is already right continuous by assumption), so # = inf B. Consider © ¢ A. Then
F(z) >y, so x € B. Suppose = # inf B, there exists b € B such that b < z. Then
F(b) >y, so b is an upper bound of A (" F' is nondecreasing). But x = sup A, this

is a contradiction. O

Lemma 3.1.5. Let x,y be real numbers and F be a right continuous and nonde-
creasing function. If F(x) >y, then x > F~'(y). Moreover, if F~'(y) < oo, then
y < F(EHy)).

Proof. For the first statement, if F(z) > y, we are done by Lemma . For the
second statement, assume F~l(y) < co and let A = {z € R : F(x) > y}. Since
F~1(y) is defined by sup{z € R : F'(z) <y}, A # . There exists (z,,) C A such that
(z,) — inf A = F~!(y). By the right-continuity of F', F(x,) converge monotonically
(decreasing) to F(inf A) = F(F~'(y)). Since F(x,) >y, F(F~'(y)) > v. O

Now, we will state and prove an important theorem on comonotonicity.

Theorem 3.1.6. Let X,Y be random variables. The following are equivalent:
(a) the random vector (X,Y) is comonotonic,

(0) Fixy)(z,y) = min{Fx (z), Fy (y)}, for all (z,y) € R x R;

() (X,Y) ~ (F'(U), 5, (U)), where U ~ U0, 1];
(

d) there exist a random variable Z and nondecreasing functions f1, fa such that

)
)
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<X7 Y) ~ (fl(Z>7 f2(Z>>7 and

(e) X and Y are almost surely nondecreasing functions of X + Y.

Proof. We will prove that (a) = (b) = (¢) = (d) = (a) and (a) = (e) = (d).
(a) = (b). Assume that the support I" of (X,Y") is comonotonic. Let (z,y) € R x R
and define Ay := {(u,v) €T :u <z}, Ay :={(u,v) € T : v <y}. We will show that
Ay C Ay or Ay C Ay, Suppose A; ¢ Ay and Ay ¢ A;. There exist (a,b) € Ay \ Ay
and (¢,d) € Ay \ Ay, so a < z and d < y. Since Ay, Ay C I, (a,b) < (¢,d) or
(¢,d) < (a,b). If (a,b) < (¢,d), then b < d < y. So (a,b) € Ay, which is a contra-
diction. If (¢,d) < (a,b), then ¢ < a < z. So (¢,d) € Ay, which is a contradiction.
So P((X,Y) € AN Ap) = min{P((X,Y) € A),P((X,Y) € Ay)}. Hence
Fixyy(z,y) = P(X <2,Y <y)

=P ((X, Y) € (—o0, 2] X (—o0,y] N F) (by Remark )

= P((X,Y) e AinA)

= min{P((X,Y) € 4,),P((X,Y) € A5)}

= min{Fx(x), F(y)} (by Remark B.1.3)
(b) = (c). Assume (b) holds. Let U ~ U0, 1].

By Lemma ,

P(Fy'(U) <z, Fy'(U) <y) = P(U < Fx(w), U< Fy(y)
= P(U <min{Fx(z), Fy(y)})
= min{Fx(z), Fy(y)}
= Fx vz, y)

Hence (X,Y) ~ (Fx'(U), By 1 (U)).

(c) = (d). Straightforward. Take f, = Fy', fo = Fy' and Z = U.

(d) = (a). Assume (d) holds. We will show that supp(X,Y’) is comonotonic, i.e.
supp(X,Y) is totally ordered. Clearly, the componentwise ordering is a partial
order. Next, we will show that supp(X,Y’) is comparable. Let (z1,91), (22,y2) €

supp(X,Y). By Remark 2.3.3, (1, 1), (22, y2) € supp(f1(2), fo(Z)). Suppose (1, 31) £
(2,y2) and (x2,y2) L (z1,y1). WLOG, we may assume x; < xo and yo < ;. Let

€ = min{glj2 ; xl, s ;yQ} By Remark , let (2,v}), (z5,95) be such that

(@1,941) = (fi(z1), fa(21)) € Be(wr,yn) and (23, 45) = (fi(22), f2(22)) € Be(22,y2)
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for some 21,20 € Z(Q). Then ||(f1(2), fa(z:)) — (zi,u:)|| < € for i = 1,2, Let

Ty — @
A= /(fi(z1) —21)2 + (fa(z1) — y1)%. Wehave |fi(z1)—21| < A< €< 2 !
yl;?b T1+ To andf2(21)>y1;y2

and

|fa(z1) =] S A<e<

, 80 fi(z1) <

. Similarly,
Y1+ Y2 1+ T2

5 < fi(22)

< fa(z1). Since fi, fo are nondecreasing function, z; < z and

T+ X2

we have fi(z2) >

Y1+ Yo
2
29 < z1. This is a contradiction and so (x1,41), (z2,y2) are comparable.

and fa(z9) < . Hence fi(z1) <

and f(z2) <

(a) = (e). Assume that the support I' of (X,Y") is comonotonic.
There is no (x1,y1), (22, y2) € I' such that z; < z9 and y; > ys. (1)

Let Z = X+Y bedefined on Q and A = {w : (X(w),Y (w)) € I'} C Q. Since I' is the
support of (X,Y"), we have P(A¢) = 0. Hence it suffices to consider Z = X +Y on A.
First, we will show that z € Z(A) has almost surely unique decomposition. Assume
there are (x1,41), (z9,y2) € I' such that z; +y; = 2 = 2 + yo. Then 1 — 29 =
yo — 1 = —(y1 — 92), By (), 21 = 25 and gy = yo. Define u(z) = = and v(z) = y.
Next, we will show that u,v are nondecreasing functions. Let 21,2, € Z(A) such
that z; < zo, there exist (x1,y1), (z2,y2) € I' such that xy +y1 = 21 < 20 = 23 + ¥o.
Then z1 — 29 < —(y1 — y2), By (El), r1— o9 < 0 and y; —yz < 0, So u(z1) < u(zz)

and v(z1) < v(z9). Hence X,Y are almost surely nondecreasing function of X + Y.

(e) = (d). Straightforward by taking fi, fo to be the nondecreasing functions and
Z tobe X 4+Y. O

Remark 3.1.7. In the case of univariate marginals the following properties hold:
(1) For every pair of marginal distributions F, G, there exists a comonotonic random
vector having these marginals.

(2) The distribution of this comonotonic random vector is unique.

(3) For any random variable X, the vector (X, X) is comonotonic.

(4) If (X,Y) is comonotonic and Fx = Fy, then X =Y with propability one.

Both (1) and (2) are results of Theorem (b) and (3) comes directly from
the Definition . Finally, by Theorem (c), we find that in the special case
that marginal distribution functions Fx and Fy are identical, P(X =Y) = 1.
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3.2 Comonotonicity of d random variables

We will extend the definition of comonotonicity of two random variables to an

arbitrary(but finite) number of random variables.

Definition 3.2.1. A set I' C R? is said to be comonotonic if it is <-totally ordered,
ie. if for any (z1,...,24),(¥1,...,ya) € T, either (x1,...,24) < (y1,...,94) OF

(1,5 4a) S (21, 7a).

A random vector (X, ..., Xy) is called comonotonic if its support is comonotonic.

When d = 2, Definiton is equivalent to Definition .

Before we will show the theorem, we prove the following lemma.

Lemma 3.2.2. Fiz (11,...,74) € R 0,5 € D and let
A =A{(a1,...,aq) € ap, <z} forallk € D. Ifm;(A;) C mij(Aj), then A; C Aj.

Proof. Suppose A; € A;. There exists (by,...,bq) € A; such that (by,...,bs) € A;.
Then bz S €T; but bj > Zj, SO (bz,b]) € 7TU(A1) and (bz,bj) g Wij(Aj)' Hence
mij(Ai) € mii(A;)- =

Theorem 3.2.3. Let X1,..., X, be the random variables. The following are equiv-
alent:

(a) the random vector (Xu,...,Xa) is comonotonic;

(b) Fixy,xg) (@1, xq) = min{Fx, (1), ..., Fx,(za)}, for all (x1,...,2q4) € R
(c) (Xq,...,Xq) ~ (Fgll(U), o, F);dl(U)), where U ~ U[0, 1];

(

(

(

d) there exist a random variable Z and nondecreasing functions fi, ..., fq such that

Xl, e ,Xd> ~ (fl(Z), ce ,fd(Z)),' and

e) X1,...,Xg are almost surely nondecreasing functions of X1 + -+ + Xg.

Proof. Proof in this theorem is similar to Theorem . We will prove that (a) =

(b) = (¢) = (d) = (a) and (a) = (e) = (d).

(a) = (b). Assume that the support I' of (X7, ..., Xy) is comonotonic. Let (zy,...,24) €
R? and define A; := {(ay,...,aq) € T : a; < x;}. Since (X;, X;) is comonotonic
for all 4, j € D, by the proof of Theorem (a=b), either m;;(A;) C m;;(A4;) or
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m;j(A;) C m;(A;) and by Lemma , either A; C Aj or A; C A, for alli,j € D.
Then C is a total order on &7 = {A;,..., Ay}. Since 7 is finite, there exists n € D
d

such that A, C A, for all i € D. Thus A,, = ﬂ A;. Then
i=1

d
IP((Xl,...,Xd) e ﬂAi> = P((X,,...,X,) € A,)

= min{P((X1,...,Xa) € A, ..., P((X1,..., X4) € A}

F(X1 77777 Xd)(xl,...,xd) = P(Xl le,...,Xded>
= P((Xy,...,Xq) € L (—00,z;) NT) (by Remark )
d
- P ((Xl,...,Xd) € ﬂAZ)
i=1
= min{P((Xy,...,Xq) € A1),...,.P(Xy,...,Xy) € Ay)}
= min{Fx, (z1),..., Fx,(za)} (by Remark )

(b) = (c). Assume (b) holds. Let U ~ U]0, 1].

By Lemma , then

P(F)zll(U) S $1,...,F§;(U) S $d) = ]P)(U S FX1($1),...,U S FXd(Q:d))
= PU < min{Fx,(z1),...,Fx,(z4)})
= min{Fx, (z1),..., Fx,(zq)}
= F(Xl ..... Xd)(ﬂﬂl,---,xd)

Hence (X1,...,Xq) ~ (Fx(U), ..., Fx, (U)).

(¢) = (d). Straightforward. Take f; = Fy' foralli € D and Z =U.

(d) = (a). Assume (d) holds. We will show that supp(Xj,...,Xy) is comono-
tonic, i.e. supp(Xj, ..., Xy) is totally ordered. Clearly, the componentwise ordering

is a partial order. Next, we will show that supp(Xy,..., Xy) is comparable. Let
(xla s ,l'd), (yh ce 7yd) € Supp(Xla s 7Xd)' By Remark 7

(w1, 2a), W1, - -, ya) € supp(f1(Z), ..., fa(2)).

Suppose (x1,...,2q) L (y1,...,yq) and (y1,...,ya) L (z1,...,24). WLOG, we may

assume r; < y; and y, < xy for all & # 1. Letezmin{yl;$17$2;y2’.“7$d;yd}.

By Remark, let (a1,...,aq) = (fi(z1),..., fa(z1)) € Be(z1,...,2zq) and (by, ..., bg)
= (fi(22);-- -, fa(22)) € Be(y1, - .., ya) for some 21,2, € Z((2). Then
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Iz fa(2)) = (1, za) | < €and [[(filz2), -5 fa(22)) = (91, wa) | < e

d
Let A= |} (fi(z1) — 2:)2. We have |fi(z1) — 1| S A< e <

i=1
CFork=2,...,d, |fe(z1) —ap] < A<e<
DI and fu(z) <
n < fi(z2) and fi(z2) < T

2 2
fi,-.., fq are nondecreasing function, z; < 2o and 29 < z;, a contradiction and so

% ; 1317 so fi(z1) <

Tr + Yk

, S0 fr(z1) > 5

for some k = 2,...,d.

1+ % Trp — Yk

kT Yk

Similarly, we have fi(z2) >

Hence fi(z1) < < fx(z1) for all k # 1. Since

(1, ..., 2q), (Y1,...,yq) in supp(Xy,..., Xy) are comparable.
(a) = (e). Assume that the support I' of (X7, ..., Xy) is comonotonic.

There is no (x1,...,2q), (Y1,...,ya) € I' such that z; < y; and x; > y;
for some i € D for any j #i. (1)

Let Z = X; + ...+ X, defined on 2 and A = {w : (X;(w),..., Xy(w)) € I'} C Q.
Since I is support of (X7i,..., Xy), we have P(A°) = 0. Hence we will consider
Z = X +Y on A. First, we will show that z € Z(A) has almost surely unique
decomposition. Assume there are (x1,...,2q), (y1,...,yq) € I such that x; + ... +
g =2=1y1+ ... +ys. Then x; —y; = —[(x2 — y2) + ... + (x4 — ya)], By (m),
x; = y; for all i € D. Let i € D. Define w;(z) = x;. Next, we will show that
u; are nondecreasing function. Let 21,25 € Z(A) such that z; < 29, there exist
(x1,...,2q), (Y1,...,ya) € I such that &1 + ... + 24 = 21 < 20 = Y1 + ... + Ya.
Then 1 —y1 < —[(z2 —y2) + ...+ (za — ya)], By (m), z; —y; < 0 foralli € D.
So u;(z1) < w;(z2) for all i € D. Hence Xy, ..., X, are almost surely nondecreasing

functions of X; + ...+ X,.

(e) = (d). Straightforward by taking fi,..., f4 to be the nondecreasing functions
and Z to be X; + ...+ Xy O

In the next chapter, we will extend the definition of comonotonicity of random

variables to random vectors through componentwise ordering.
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Chapter 4
Multivariate Comonotonicity

In this chapter, we will define the comonotonicity of random vectors and study

properties similar to the previous chapter.

4.1 Strong comonotonicity

First, we provide the definition of strong comonotonicity which is similar to

Definition .

Definition 4.1.1. A set I' € R? x RY is said to be s-comonotonic if it is <-totally
ordered, Le. if for any (@1, 4,), (22, 9,) € I, either (w1, 9))S (22, 9,) or (22,9,) <
(5151, yl)

An ordered pair of d-random vectors (X,Y) is called s-comonotonic if its

support is s-comonotonic.

Definition is essentially Definition where I' C R?? and when d = 1,

Definition reduces to Definition .

Now, we give an example of s-comonotonic random vector.

Example 4.1.2. Fix d = 2 consider the marginals F’x = C,(Fx,, Fx,) and Fy =
Cy(Fy,, Fy,), for some distribution functions Fy,, Fy,, i = 1,2. If U ~ U|0,1],
then the vector <<F§1(U),F§21(U)), (FQI(U),FQI(UD) is s-comonotonic since

Fyl F;t i =1,2 are nondecreasing functions.
X; 2ty o )

Since the space R? is not totally ordered when d > 1, s-comonotonicity imposes

heavy constraints on the marginal distributions Fx and Fy.

Lemma 4.1.3. If a set T C R? x R? is s-comonotonic, then the sets i (T), i = 1,2

are <-totally ordered.
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Proof. Let x;, @, € mi ('), there exist y,,y, € R? such that (z;, y,), (2, y,) € T.
Since I' is <-totally ordered, either (z;, y;) < (22, yy) O (22, Yo) (@1, 4y ). In the first
case we have that @ < m,; in the second that xy < x;, hence 7f([') is <-totally

ordered. Similarly, we have 73(I") is <-totally ordered. O

From Lemma and Theorem (b), it follows that an s-comonotonic

random vector (X,Y) has multivariate marginals of the form

Px(z1,...,24) = Oy (FXI (1), .., de(wd)) (4.1.1a)
Fe(r, - ya) = Co (B, - Fr(u) (4.1.1b)
where Fly,,..., Fx, and Fy,, ..., Fy, are univariate distribution functions of respec-

tive random variables.
The following theorem characterizes s-comonotonicity and shows that (X,Y)
is s-comonotonic if and only if the 2d random variables X, ..., X4, Y, ..., Y, are all

pairwise comonotonic.

Theorem 4.1.4. Let X and Y be two random vectors with respective distribution
functions Fx and Fy of the form in equation ) The following are equivalent:
(a) the random vector (X, Y) is s-comonotonic;

(b) Fixv)(z, y) = min{Fx(z), Fy(y)}, for all (x,y) € R x R?;

() (X, Y) ~ ((Fg}(U), o F)};(U)), (F;ll(U), = F,gll(U))), where U ~ U[0,1];
(d) there exist a random variable Z and nondecreasing functions fi, ..., fa, 91, .., 9a

such that (X, Y) ~ ((f1(2),..., fa(Z)),(91(Z),...,94(2))); and
(e) for alli,j € D, X; andY; are almost surely nondecreasing functions of X; +Y;.

Proof. We will prove that (a) = (b) = (c) = (d) = (e) = (a).

(a) = (b). Assume that the support I' of (X,|Y) is s-comonotonic. Let (z,y)
€ R? x R? and define 4; := {(u,v) € T : u < x} and Ay := {(u,v) € T : v < y}.
Write (x,y) = ((x1,...,24), (Y1,...,94)). We will show that either A; C Ay or
Ay C Ay. Suppose A; ¢ Ay and Ay ¢ Ay, there exist (a,b) € Ay \ Ay and (¢, d)
€ A3\ A1, 0 a< zand d < y. Since A;, A, C T, (a,b) < (¢,d) or (¢,d) < (a,b).
If (a,b) < (¢,d), then b < d < y. So (a,b) € Ay, which is a contradiction. If
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(¢,d) < (a,b), then ¢ < a < @ So (¢,d) € A, which is a contradiction. Thus
P((X,Y) € A, N Ay) = min{P((X,Y) € A,),P((X,Y) € Ay)}. Hence
Fxw(ny) = PX<aY<y)
— P ((X,Y) e (H;l:l(—oo,x,-] X Hle(—oo,yi]> N r) (by Remark B.1.9)
— P((X,Y) € A, N A)
= min{P((X,Y) € 4,),P(X,Y) € A;)}
= min{Fx(a), Fy(y)} (by Lemma B.1.3)
(b) = (c). Assume (b) holds. Let U ~ U0, 1].
By Lemma B.1.5,
P [(F;}(U), o F;j(U)), (F;ll(U), o F;(U)> < (z, y)}
—P [F)}f(U) <wry. . Fol(U) <20, R (U) S whs . By (U) < yd]
=P |U < Fx,(z1),...,U < Fx,(24),U < Fy.(y1),....U < Fyd(yd)]
=P |U < min (min{Fx, (z)}, min{ By, (4} )
= min (‘min{ Fy, (z:)}, min{ Y, (4:)}
— min ( Fx(e), Fy(y))
= Fx.n(z,y).

(¢) = (d). Straightforward. Take f; = F);il,gi =F,'foralli€ Dand Z =U.

(d) = (e). Assume (d) holds. There is a random variable Z such that (X;,Y;) ~
(fi(2),9;(2)) for all 4,j € D. By Theorem , the random vector (X;,Y;) is

comonotonic, so (e) is true.

(e) = (a). Suppose that (X,Y) is not s-comonotonic. There exist (x;, y,), (22, y,) €
supp(X,Y) such that (z,y,), (22, ¥5) are not comparable. Write zj, = (xi,...,x%)
and yr, = (yi,...,yd) for all k € D. WLOG, we may assume that z{ < x% and
ys <yt for some 1 € D , so (X;,Y;) is not comonotonic. By Theorem , X; and

Y; are not almost surely nondecreasing functions of X; + Y. [

Remark 4.1.5. The following properties hold for d-dimensional random vectors X
and Y:
(1) Given a pair of marginal distributions Fx, Fy of random vectors X, Y, respec-

tively, there exists an s-comonotonic random vector having these marginals if and
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only if both X and Y have copula C.

(2) The distribution of this s-comonotonic random vector is unique.

(3) Given a random vector X, the vector (X, X) is s-comonotonic only if X has
copula (..

(4) If (X,Y) is s-comonotonic and Fx = Fy, then X =Y with propability one.

Both (1) and (2) are results of Theorem (b) and (3) holds since s-comonotonicity
has marginal of a copula C,. Finally, by Theorem (c), we find that in the spe-
cial case that all marginal distribution functions are identical, then P(X =Y) = 1.

We can extend the definition of strong comonotonicity of two random vectors
to an arbitrary number of random vectors(finite) where random vactors have the

same copula C. Next, we will show that (X, X) is not necessary s-comonotonic.

Example 4.1.6. Let X and Y be random variables with probability density func-
tions fx(z) = Ljp(z) and fy(y) = 21p1(y) + 1(17%](];), respectively. Suppose that

they are independent. Then the joint distribution function is

cx€0,1],y €10,1]

Fany(zy)=q%+ay—1):2€0,1],y € (1,3

S I8 Mlg

: otherwise.

Denote X = (X,Y). Then Fixx)((5,1),(1,3)) = Fixy)(min(3,1),min(1, 5)) =
F(Xy)(%, %) = 1—12 and min {FX(%, 1), Fx(1, %)} = min{i, %} = %.

Hence Fixx)((3,1), (1, 1)) # min { Fx(3, 1), P (1, 1) }.

By Theorem (b), (X, X) is not s-comonotonic.

4.2 Projection comonotonicity

We consider a weaker concept of comonotonicity according to which the
vector (X, X) is always comonotonic. For each i € D, let A;, B; be measurable
subsets of the real line. Given a set I' C <H§:1Ai> X (HleBi), for each i € D we
denote the projection of I' on the space A; x B; by 7} (T").
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Figure 4.1: Probability density function of fx and fy, respectively.

Definition 4.2.1. The set I' C (HleAi) X <H§ilei> is said to be m-comonotonic

if, for all i € D, 7}(I") is comonotonic as a subset of A; x B;.

A random vector (X, Y) is called m-comonotonic if its support is 7-comonotonic.
When d = 1, Definition is equivalent to Definitions and . When

d > 1, an s-comonotonic random vector is m-comonotonic, but not vice versa.

Example 4.2.2. Let Fx = Fy = C_ and U ~ U[0,1]. Then the random vector
(U,1-U),(U,1—"U)) has bivariate marginals Fx, Fy, and is m-comonotonic, but

not s-comonotonic since the copula of (U, 1 —U) is not C (see Fig 4.2).

U U
Figure 4.2: The random vector (X,Y) where X =Y = (U,1-U).

Next, we find the marginal of m-comonotonicity.

Lemma 4.2.3. If the random vector (X, Y) is w-comonotonic, then its marginal

distribution functions Fx and Fy have a common copula.

Proof. By the Sklar’s theorem, for any random vector (Z1,...,Z;) there exists a

copula C such that Fz(z1,...,24) = C(Fz (21),...,Fz,(24)). Then
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Fz(z1,...,24) = C(Fz(z1),...,Fz,(za))

= P (Ui < Fala), U < Fr(za)

—p (FZ—j(Ul) <z, MU < zd)
S0 (Z1,...,Za) ~ (Fz (Uh), ..., Fz ! (Ug)). If (X1,..., Xa) ~ (Fx(T), ..., Fx!(Ua))
there is a copula C such that Fx(zy,...,24) = C(Fx,(z1),..., Fx,(z4)).
Assume that the random vector (X,Y) is m-comonotonic. Then the random vec-
tor (X;,Y;) := m(X,Y) is comonotonic. By Theorem , for each 7 € D, there
exists U; ~ U[0,1] such that (X;,Y;) ~ (F)}il(Ui),Fgl(Ui)) As a consequence
(X1, Xo) ~ (F;j(Ul),...,F);j(Ud)) and (Yi,...,Y) ~ (Fil(Ul),...,Fgl(Ud))

Hence Fx and Fy have a common copula. O

It follows from Lemma that a m-comonotonic random vector (X,Y) has

multivariate marginals of the form

Fx(z1,. .., 2q) = C’(FXI (1), de(xd)> (4.2.1a)
FY(?Jl, C 7yd) 7 d C<FY1(y1)7 o 7FYd<yd)> (421b)
for some univariate distribution functions Fx,,..., Fix,, Fy,, ..., Fy, and a copula C.

Remark 4.2.4. If X and Y are s-comonotonic, then C' in equation () is the

upper Fréchet bound C',.
Now, we will show a property which will be useful in proving the theorem.

Remark 4.2.5. Let X,Y be two random vectors in R? and for each i € D,U; ~
U[0,1]. Then

P[FelU) <o FlUD) € 20 MO Sy i U) < i

=P U, < Fy,(21),...,Us < Fx,(22), Ui < Fy, (1), ..., Ug < Fyd(yd)]

=P Uy < min{Fx, (v1), Fy; (y0)} -, Us < min{ Py, (z), F (v}

= C((min{ Fx, (21), Fa ()} min{ Fx, (va), F (5a)}).

The following theorem characterizes m-comonotonicity and shows that (X,Y)
is m-comonotonic if and only if X and Y have the same copula and every pair (X;, Y;)

1S comonotonic.
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Theorem 4.2.6. Let X and Y be two random vectors in R? with respective distri-

bution Fx and Fy of the form equation ) The following are equivalent:

(a) the random vector (X, Y) is w-comonotonic;

(b) there exists a copula C' such that

Fixon(@.y) = O min{Fy, (1), Fr (y)}, .., min{ F, (4), Fy, (ya)} )

for all (z,y) = ((x1,...,74), (y1,...,yq)) € R x R4,

() (X, Y) ~ ((F)}ll(Ul), . .,F);;(Ud)>, (Fy‘ll(Ul), .. .,F;dl(Ud))), where U = (U, ..., Uy)
is a random vector having distribution C;

(d) there exist a random wvector Z = (Zi,...,Zy) and nondecreasing functions

fh"'?fdagla <oy gd such that (Xv lf) ~ ((fl(Zl)v s 7fd(Zd))v (91(Z1), s 7gd<Zd>>;

(e) for each i € D, X; and Y; are almost surely nondecreasing functions of X; +Y;.

Proof. We will prove that (a) = (b) = (¢) = (d) = (a) and (d) < (e).
(a) = (b). Assume that the random vector (X, Y) is m-comonotonic. From the proof
of Lemma 1.2.3, there exists U; ~ U[0, 1] such that (X;,Y;) ~ (F)}il(Ui), F;l(Uz)>

for all © € D. Then
Fxv)(zy) = PX<zY<y

= ]P’[X1 <zp,...,Xqg L 2, V1 Sylw--aYdSyd]

= P[FRA0) <o FNU) S 20, B (U) < e B U) < il

= C(min{Px, (), By ()}, . min{ Py, (2a), Fr,(ya)} ) (By Remark [1.2.).
(b) = (c). Assume (b) holds. Then
P [(Fgll(Ul), . ,F);;(Ud)), <F;11(U1), k1Y F;;(Ud)> < (z, y)}
—P [F;ll(Ul) <y, P (Ug) < g, RN UY) < s By (U) < yd]

- O(min{FX1 (21), Py, (y1)}, - . ., min{ Fx, (zq), Fy, (yd)}> (By Remark [1.2.9)
= F(xy)(a), Y).

c) = (d). dtraighttorward. lake f; = Fy",g; = Iy, and 4; = U; for all v € D.
d). Straightforward. Take f; = Fy! Fytand Z; = U; for all i € D

(d) = (a). Assume (d) holds. We will show that supp(X,Y) is comonotonic, i.e.
supp(X,Y) is totally ordered. Clearly, < is a partial order on R??. Next, we will show

Y

that supp(X,Y) is comparable. Let (@1, y,), (22, ¥y,) € supp(X,Y). By Remark
234, then (@1.)). (@2,3) € suD((A(Z0), -, ful Z)). (91(Z0), . 9u( Z0)). Wit
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Ly = (leﬂ st ,I?) and yz = (yzla cee 7yzd> fOI' L= 172 Suppose (mlvyl) % (w27y2) and

(22, yy) Z (z1,9,). WLOG, we may assume z1 < 21, yi <yl but 27" < 25, ¢ <y’

for all m £ 1 Lete:mm{m%—x% g —af yi—y Y3l y‘zi—yil}
. 2 o B oA

By Remark let (@), v,), (¢, ¥,) such that
(@, 41) = ((f1(21), -, fa(2a)), (91(21), - -, ga(za))) € Be(@r, 1) and

(@5, 45) = ((1(=1), -5 Ja(20)), (91(21), - -, 9a(23))) € Be(@2, )

for some z1,...,2q4,21,...,25 € Z(2). Proof is similar to Theorem (d = a),
Y1+ Yo
2
nondecreasing function, z; < 2z and 2] < z1, a contradiction and so (1, y, ), (22, ys)

we have fi(z1) < < f1(2}) and g¢1(2]) < < g1(21). Since fi,g; are

are comparable.

(d) < (e). Note that (d) holds if and only if for each i € D, (X}, Y;) is comonotonic

if and only if X; and Y; are almost surely nondecreasing functions of X; + Y; O

Corollary 4.2.7. Let ) holds. Then (X, Y) is m-comonotonic if and only if

it 15 s-comonotonic.

Remark 4.2.8. The following properties hold:

(1) Given a pair of marginal distributions F, G there exists a m-comonotonic random
vectors having these marginals if and only if both X and Y have the same copula.
(2) The distribution of this m-comonotonic random vector is unique.

(3) Given a random vector X, the vector (X, X) is m-comonotonic.

(4) If (X,Y) is m-comonotonic and Fx = Fy, then X =Y with propability one.

Both (1) and (2) are a results of Theorem (b) and (3) holds since X, X
have the same copula. Finally, by Theorem (c), we have P(X =Y) = 1.

4.3 Weak comonotonicity

In this section, we will reduce condition of comonotonicity of random vec-

tors based on componentwise order.

Definition 4.3.1. A set I' € R¢ x R¢ is said to be w-comonotonic if x; < xy <=

y, < y, for any (@1, 9,), (22, y,) €.
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A random vector (X,Y) is called w-comonotonic if its support is w-comonotonic.

When d = 1, Definition is equivalent to Definitions |3.1.]J, |41]J and |42]J

When d > 1, a m-comonotonic random vector is also w-comonotonic, but not vice

versa.

Example 4.3.2. Assume that the distribution of X := (X7, X5) is a nonsymmetric
copula C, and define the linear transformation 7" : [0,1)> — [0,1]? by T'(z1,12) :=
(19, 21). For (ai,az), (by,by) € [0,1]%, (a1,a2) < (b1, b2) & (az,a1) < (by,b1) &
T(ay,as) < T(by,by). Then the vector (X,T(X)) is w-comonotonic. Denoting by
Cr the distribution of T(X) = (X3, X;), we have Cr(uy,us) = P[T(X;,Xs) <
(ug,uz)] = P[Xe < up, Xy < ug] = C(ug,uy). Since C' is nonsymmetric, we have
C # Cr. Then X,T(X) do not have the same copula, so (X,7T(X)) is not 7-

comonotonic (see Fig. 4.3).

Figure 4.3: The support of a w-comonotonic which is not m-comonotonic.

Definition still does not guarantee the existence of a w-comonotonic ran-

dom vector for an arbitrary choice of the multivariate marginals.

Remark 4.3.3. Let (X,Y) be w-comonotonic. We assume that the marginal Fx has
copula C. Then Fx(z) = C(Fx,(x1),..., Fx,(x4)) = min{Fx, (z1),..., Fx,(z4)},
so X is comonotonic, hence each element in X is comparable. By definition of w-
comonotonicity, each element in Y is comparable, so Y is comonotonic. Hence Fy

has copula C}..

Moreover, Definition does not assure uniqueness of a w-comonotonic ran-

dom vector having fixed multivariate marginals.
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Example 4.3.4. Let d = 2 and Fx = Fyv = C_. For Y = X, the random vector
(X, X) is w-comonotonic (obvious by Definition ), but it is not the only one
with marginals Fx, Fy. Moreover, for Y = 1 — X, (X,1 — X), where 1 := (1,1),
is w-comonotonic too since no pair of points in (X, 1 — X) is comparable (see Fig.

44).

Fx FY

SS

FX FY

Figure 4.4: The support of two w-comonotonic vectors having the same marginals.

Theorem 4.3.5. Suppose that (X, <xy) and (Y, <y) are two partially ordered spaces
containing at least two distinct points. If for any vy C X,y C Y it is possible to
define a w-comonotonic set I' C X x Y having v1 and 2 as its projections, then at
least one of the following statement is true:

(a) (X,<x) and (Y, <y) are totally ordered spaces;

(b) any set I' C X x Y is w-comonotonic.

Proof. Suppose that it is possible to find in one of the two spaces, say X, two points
x1, T2 with &; <y x, and in the other space ) two distinct points y,, y, such that
neither y;, < y, nor y, < y; holds.

Choose 71 := {@, 2} and 72 := {y;,¥»}. Note that v, is a totally ordered sub-
set of X', while no pairs of vectors are <j-comparable in v,. By definition of w-

comonotonicity, it is not possible to find a w-comonotonic set I' C X x Y with



25

projections v, and .

Then if X has two points x;, &, with x; <y x», then ) is totally order space and
implying X is totally order space. Hence (a) holds. In this latter case, if X has two
distinct points @;, @, such that neither @; <y a nor &, <y «;, then no pairs of

vectors in ) are comparable, so is X'. Thus any set I' C X x ) is w-comonotonic,

i.e., (b) holds. O

Remark 4.3.6. The following properties hold:

(1) Given a pair of marginal distributions Fx, Fy, the existence of a w-comonotonic
random vector having these marginals is not always assured. (see Remark )

(2) In general, the distribution of a w-comonotonic random vector with fixed marginals
is not unique. (see Example )

(3) Given a random vector X, the vector (X, X) is w-comonotonic.

(4) If (X,Y) is w-comonotonic and Fx = Fy, then X is not necessarily equal to Y
with propability one. (see Remark )
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Chapter 5
Conclusion

In our project, we have the following results:

1. If a random vector (X,Y) is strong comonotonic, then both random vectors
X,Y have copula C'y and the 2d random variables Xi,..., X4, Y7,...,Y; are

pairwise comonotonic.

2. If arandom vector (X,Y) is projection comonotonic, then both random vector
X,Y have the same copula and every pair (X;,Y;) is comonotonic for any

1€ D.

3. Every concept of comonotonicity including the definition of weak comono-
tonicity on a partially ordered space, has to drop either that partially ordered
space is totally ordered or that every subset of product of partially ordered

space is weak comonotonic.

4. Strong comonotonicity implies projection comonotonicity and projection comono-

tonicity implies weak comonotonicity.
Open Question

1. Is it possible to investigate the Comonotonicity without using componentwise

ordering?
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