
Chapter 3
Isotope Effect in high temperature superconductors

3.1 Introduction
Historically the isotope effect has been in understanding the mechanism 

responsible for Cooper pair formation in conventional superconductors. It gives the 
response of Tc to an isotopic mass (M) change in the system and therefore gives 
information on how the dynamics of the ions are involved in the value of Tc. The 
experimental results [5] found that the average atomic mass M and the critical 
temperature Tc are fitted by a relation of the form MaTc = constant, where (X is the 
isotope effect coefficient. This relation can be written in the form Tc = constant. fyTa เท 
BCS theory with a pure phonon mechanism in the weak coupling limit 1the expression for 
Tc can be written in the form k BTc =  1.14hcoD e x p [ -  1 /tV(0)f ] . Since COD itself 
scales with the average atomic mass M like M’1/2 so one find that 
Tc =constant .© 0=constant .M’1/2 which cause the isotope exponent ot to the theoretical 
value of V2 .

This simple picture, however, was somewhat spoiled by more elaborate 
experiments which showed that the isotope exponent, if indeed close to value of 1/ 2 , 
nevertheless deviated markedly from this ideal value in large number of materials. Some 
scope of agreement between theory and experiment could be restored by including the 
Coulomb interaction between the electrons in a more realistic that that used by BCS. 
Calculations by Morel and Anderson [14] 1 which do not cut off the Coulomb repulsion 
arbitrarily at ficoD but rather at a much larger energy, lead to deviations from the ideal 
V2 value that are in fairly good agreement with the observations. The key point is that 
any purely electronic (pairing) interaction between the electrons in a BCS condensate, 
whether repulsive or attractive, will cause the isotope exponent to deviate from its ideal 
V2 value.

It is necessary to introduce the competition between electron-phonon 
interaction and the coulomb repulsions. This allows for negative values of cc in 
agreement with experiment but only if Tc is of order 1 K or less[31]. Such a result is
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inconsistent with the conventional electron-phonon model which was soon abandoned 
in favour of an electronic model. A joint phonon, but largely electronic mechanism is 
natural and explains the small values of ot quite directly. Many such models are now on 
the market but none are as yet completely accepted.

เท order to understand the origin of high-Tc and anomalous normal state 
properties of cuprate oxide superconductors several models have been proposed. Out 
of those the Van Hove singularity (VHS) scenario is one which is based on the phonon- 
mediated BCS pairing mechanism. Several groups [Refs.56-61] have investigated the 
role of the VHS in the density of states (DOS) on the transition temperature (Tc), the 
isotope exponent (Ot), and other properties within the BCS phonon-mediated pairing 
mechanism. Tsuei et al. [57] first tried to explain the anomalous isotope effect, observed 
in the La-214 system, on the basis of this model. Using approximate formulas for Tc 
and Ot, they obtained a minimum value of ot when Tc is maximum. The DOS used in 
Refs.56-61 however, is an approximate one and not exactly derived from a Hamiltonian 
with realistic parameters.

เท recent years it became apparent that the physics of underdoped high-Tc 
superconductors is governed by the pseudogap phenomenon. The underdoped high-Tc 
superconductors cuprates are characterized by the presence of hole correlations in the 
normal state giving rise to a pseudogap and a reduced density of states above Tc. It has 
been suggests that the isotope effect may reside wholly เท the pseudogap and not in the 
superconductivity [62],

เท the following we will study the influence of such a pseudogap on the isotope 
effect with the VHS in the electronic density of states by considering the ร- and d-wave 
symmetries of the superconducting order parameter.

3.2 The Van Hove Scenario
It is well known that the quasi-two-dimensionality of the CuO planes in high- 

temperature superconductors gives rise to the logarithmic Van Hove singularities (VHS) 
in the electronic density of states (DOS). It has been shown that the incorporation of a 
VHS to the otherwise by standard BCS theory leads to quantitatively different results 
from those obtained using a constant DOS [56-59], Moreover, this VHS model can
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explain some important features in the high-Tc oxides, such as the high critical 
temperatures and the variation of the isotope exponent with doping. Tseui et al.[57]have 
givqn recent thermodynamics data to support the existence of a VHS near Ef in 
YBa2Cu30 7. Within this scenario, Xing et al. [58] have given a good description of the 
cuprates with the weak-coupling BCS phonon-mediated pairing, of the variations in(a) 
the maximum in Tc 1 (ช) the width of the Tc maximum, and (c) the isotope-shift minimum 
with doping. Getino et al.[59] derived an exact Tc formula within the VHS scenario of the 
BCS phonon-mediated pairing theory consisting of a logarithmic singularity in the 
density of states at the Fermi energy. Sarkar and Das [60] derived an exact expression 
for the isotope-shift exponent and the pressure coefficient of the transition temperature 
from the BCS gap equation for a DOS with the VHS. The isotope-shift exponent was also 
studied by Sarkar and Das [60] within the VHS scenario.

3.3 Van Hove Singularity in the Density of States
To investigate the nature of a saddle point in the energy surface which 

provides the divergence of the electron density of states, we begin with the expression 
of the density of states

N ( E )  =  - V -  ] d 3k S { E - E { k ) ) .
พ

(3.1)

Alternatively, the number of states in the energy interval between E and E+dE 
is given by

N ( E ) d E โ d s
1 7 r d s ! c(2/r)

(3.2)

where ร is the energy surface perpendicular to 8 k .  Since the infinitesimal change of E [ k )  

with respect to 8  k  is given by
d E  =  V ï ^ E 8 k  . (3.3)

where V £ means the gradient in k  - space. Thus we obtain the electron density of states 
as :

d S  1N ( E )  =  J- (3.4)

When .£((&) 
Van Hove singularities.

( 2 x r ) 3  V 1i E
approaches zero, the density of states diverges. This is known as
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Let us consider an orthorhombic lattice as ล simplified model of the high-Tc Cu- 
o  oxides. Its band structure is assumed to be modeled by ล tight-binding band [78]

E(k) =  -  2t[coskx + t b cosky) + 4*2 coskx cosky -  It'cosk, (3.5)

Here t,tb, and t’ are the hopping integrals between nearest-neighbor Cu sites, 
respectively, along the a, b, and c axes, respectively, and t2 is the hopping matrix 
element of the next-nearest-neighbor ones on the same Cu-0 planes. D.Y.Xing et al.[79] 
introduce a set of dimensionless variables: r1=tb/t, r2=2t2/t, and r' = t'/t.. For the system 
under consideration, the anisotropic parameter r’ is assumed to be much smaller than 
unity (r’« 1 ) ,  indicating that the interplanar hopping is very small compared with the 
intraplanar one. r, stands for the anisotropy within the Cu-0 planes. แร introduction 
stems from the fact [80] that the high-Tc superconducting samples are often in the 
orthorhombic phase in which there is a slight difference in length between the lattice 
parameters along the a and b axes. So we can assume that r, is very close to, but 
slightly smaller than unity. Since t2 is always much smaller than t, it is reasonable to 
assume that r2<r,.

We first neglect the interplanar hopping (letting t’=0) and study the case of a 
2D rectangular lattice. The corresponding electron density of states is given by the 
expression

N ( E )  = 7T~2 ) d k x ) d k y S (E  -  2 tw ( k x , k y )), (3.6)
0 0

where พ (k,,,ky) = -coskx-r1cosky+r2coskxcosky. We make a change of variables into v and 
พ: V = cosky and พ = พ (kx,ky). The Ô function can be integrated over พ 1 so the 
remaining integral overv is

N { E )  =
2t‘~1 i v l l - H  (l -  r2V1 ) - ( s  + r,v)2

(3.7)

with ร -  E/(2t). Here the upper and lower integration limits of the integral are

v2 = min[l,(l - s ) l ( r x + r2)}

Vj = max[- l ,- ( l  + ร )/(r, -  r2 )]
(3.8)
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It then follows that there may be three kinds of integration limits in Eq.(3.7). 
They are v,=-1, v2=(1-8)/(r,+r2) for 1+q+r2> 8  >1-r,-r2; v,=-11 v2=1 for 1-rr r2> 8 ^ -1 + rr r2; 
and. v2=1, v,=-(1+£)/(r1-r2) for -1+r,-r2> s  >-1-r,+r2, respectively. Making use of the 
integral formula (3.147.5) of 81 , we obtain the analytical expressions for N(E) as

A '(E ) = 1 V ( i + r i ) 2

2 t?r2 *Jrx + r2£ - V 4 ( r l  + r2S)

for 1+r,+r2> 8  >1 -rr r2or-1+r,-r2> 8  >-1-r,+r2, and

N ( E )  = 1 V 4 ( r l  + r2e )
t7T2 ^ ( \  + rx) 2 -  ( s - r 2 f _ V ( 1 ^ 1 )2 - ( ร - ' -2 f

(3.10)

for 1-r1-r2>S > -1+ rl-r2, where K(x) = F(TC/2,x) is the complete elliptc integral of the first 
kind[36]. According to Eqs.(3.9) and (3.10), N(E) is shown as a function of ร in Figure 1 1 
in which the N(E) exhibits two singular peaks at 8 t= 1-rr r2 and ร =-1+rr r2 . Taking into 
account the asymptotic formula K(x) ~  เก[4(า-x2)"1/2] with X ~  1, we obtain for N(E), near 
the singularities S+, the approximate expression

N ( E )  = 1

1-----
-

ไ?+1ไ?1+00

2t7Tl ^ ( \  +  r2 \ r 1 ± r 2 ) J l ( s - s ±\ \ - r x) _

. E/ 2 1

Figure 3-1a : Density of states, N(E), for r1 = 0.9 and r2 = 0.2. The singularities 
occur for ร + = 1-rr r2 = -0.1 and ร. = -1+q-r2 = -0.3.[58]
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It can be seen from Figure 3-1a that the appearance of two singularities in N(E) 
originated from the orthorhombicity of structure ( r ^ l ) ,  the distance between them being 
equal to 8+- 8_=2(1-r1). As the rectangular to square lattice transition occurs (i.e., q=1), 
double Van Hove singularities at ร+ and ธ+ merge into a single one at 84.=ธ.=-r2[82], 
which is just the most used ทาodel[57,78]. We can conclude that the orthorhombicity of 
the structure leads to two sharp peaks in N(E), but it does not change the logarithmic 
Van Hove singularity so long as the interplanar hopping is weak enough to be negligible, 

We now turn our attention to the role of the Van Hove singularity given by Eqs. 
(3.9) and (3.10) in determinning the magnitude of Tc and CL. The density of states near 
this singularity has the following form:

N { E )  = yV0 [ ln l£ F / ( £ - £ s )| +  c ]  , (3.12)

with N q 1 I 2
? (3.13)

c  =  In 16x(l -  r 22 )1/2 /  E p ? (3.14)

to II js>
 .

ร) 1+ (3.15)

To see the role of the N(E) in determining the magnitude of Tc and cx, we 
substitute Eq.(3.12) into the standard BCS gap equation, and obtain

kJc“ d yJ —  tanh
2พ 0

In 2 c27  - 5
+  2C ( 3 . 16)

where y = E-Ep, ร = Ep-Es, kBTc0 is the maximum phonon frequency, and V is a measure 
of the electron-phonon interaction strength. Since the Fermi level is located right at Van 
Hove singularity (5=0), from Eq.(3.16), an analytic expression for Tc can be obtained if 
the tanh(y/2kBTc) is approximated by the minimum between 1 and (y/2kBTc):

Tc = 1 .367> e x p f c  -  ^ 2 / ( N „ V ) - 1 + [ c  + In ( l>  ! T c0) f  ไ (3.17)

where the Fermi temperature Tp = I Ep I /kB.

The isotope-mass exponent cx as defined in the expression Tc -  M'a can be
calculated by
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a  = -  ( d \ n T c / d l n M )  = ^ { d \ n T c / d \ n T c0 ) .  (3.18)

where the relation Tc0 -  M’1/2has been used. Based on the well-known BCS formula, Tc -  
Tc0exp(-1/N0V), the BCS standard value for ct is Vi. To determine the effect of the Van 
Hove singularity on ct, we differentiate Eq.(3.16) with respect to Tc0 and perform the 
integral over y in the differential expression for dlnTc/dlnTc0 by use of the approximations: 
tanh(y/2kBTc) ~  min(1, y/2kBTc) and sech(y/2kgTc) ~  9 (2kBTc -y) 1where 9 is the usual 
unit-step function, We finally obtain the analytical expression for ct :

a  = 0.5
l k 2T~ —7 kB1co (3.19)

Figure 3-1 b: Calculated results of Tc and ct based on Eqs.(3.16) and (3.19) as 
a function of the Fermi-energy shift Ô normalized to the phonon cut off energy kBTc0[79],

It appears to US that the symmetry in ct(x) arises from the symmetry in N(E) 
with respect to the single singularity, as given by Eq.(3.12). As the orthorhombicity of the 
structure is considered, the density-of-states function N(E) has a couple of singularities. 
It has not been clear whether the asymmetry in ct(x) is related to the orthorhombicity of 
the structure.

£ 2 0 4  6 363 » ^
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3.4 Isotope effect in high-temperature superconductors within Van Hove 
scenario

High-Tc Cu oxides such as YBa2Cu30 7 and Bi-Sr-Ca-Cu-0 systems are 
characterized by a near-zero oxygen-isotope effect. Recents results by Crawford et al. 
[87] show that the isotope effect in the La2_xSrxCu04 system depends strongly on the 
doping level (x) and can significantly exceed the BCS limit. Within the framework of the 
BCS phonon-mediated pairing 1 Tsuei et ai.[57] studied the role of a logarithmic (2D) van 
Hove singularity in the density of states provided a basis for understanding these 
anomalous isotope effects and possibly the origin of high-temperature 
superconductivity. They assumed a logarithmic density of states,

N { E )  =  N 0 ln \E F / ( E - E F ]. (3.20)

where N0 is the density of states normalized to a flat band with a bandwidth of 2EF, For 
the essence of the van Hove-singularity effects of Tc and the isotope effect, it will suffice 
to recall the standard BCS gap equation:

2 E17 +hac
— = J tanh
V  E1.. -hcoc

where C0c is the cutoff frequency (tico0 0 ), Tcois the phonon cutoff temperature,
and V is a measure of the electron-phonon interaction strength.

From Eqs.(3.20) and (3.21), an expression for Tc can be obtained if the 
tanh[(E-Ep)/2kBTc] in Eq.(3.21) is approximated by two conditions: One is
tanh[(E-EF)/2kBTc] = (E-EF)/2kBTc for I E-EFI < 2kBTc, the other is tanh[(E-EF)/2kBTc] = 1 for 
I E-EFI > 2kBTc and we obtain :

e - e f N { E ) d E
E - E

(3.21)
F J

T 1 .3 6 7 >  exp<
N nV

+
c  k  TIn ^

—il / 2

V fico
- 1

c J
(3.22)

เท the standard BCS treatment, N(E) is assumed to be independent of energy, 
N0, and Eq.(3.21) will lead to the well-known BCS formula for Tc in the weak-coupling 
limit :

Tc ะ= 1 . 1 3 r c o e x p ( - l / i V 0F )  for 7V0 F « 1  (3.23)
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Estimate of Tc values based on Eqs.(3.22) and (3.23), using realistic 
parameters for the coupling constant, Tc0, and Tp are listed in Table 3-1

N o V Tco (K ) T f  ( K ) T c ( K )
B C S  w ith  va n  H o v e 0 .0 8 1 7 5 4 5 8 0 0 4 0

s in g u la r ity 0 .1 2 7 5 4 5 8 0 0 9 2
S ta n d a r d  B G S 0 .0 8 1 7 5 4 .  .  . 0 .0 0 4

0 .1 2 7 5 4 0 .2

Table 3-1: Tc estimates based on Eqs.(3.22) and (3.23) [57],

The effect of the Van Hove singularity on the isotope mass exponent (X as 
defined in the expression Tc ~  M ~ a  can be calculated from Eq.(3.18). If the Fermi 
level is located right at the Van Hove singularity, oc value will be [57]

= 0.5 In:c In "l.367> "
~ ~ T  ,

(3.24)

It the Fermi level is slightly off the singularity, then the Tc formula Eq.(3.22)
becomes

Tc «  1 .367 /7  e x p
N 0V

• +
(  T  \  
ln -

V TcoJ
■ 1+ 5 1 1 '

2k AT2 T2B K . 1 c 1 C O  J

M 2 \
(3.25)

and consequently, Eq.(3.24) is modified as

a 0.5
k f  -ๆ' \
In i f

V V Tco J
+ ร '1 \  K ,  ( \ m t f  ^

2 k 2T 2jLKb 1 co V
In

V T c J 8 k 2BT c2 J
(3.26)

where Ô is the Ep shift from the singularity and it is assumed that 5 < 2kBTc.
From Eqs.(3.22), (3.24), (3.25) and (3.26), one concludes that a logarithmic 

Van Hove singularity in N(E) at or very close to the Fermi level can indeed significantly 
decrease cx from its standard BCS value = 0.5. เท particular, Eqs.(3.25) and (3.26) show 
that (X is at minimum when Tc is maximum [57], This is qualitatively in agreement with
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the Œ data shown in Figure3-2. It should be pointed out that a Van Hove s ingu larity in 
N(E) can lead to the absence of the isotope effect in a weak-coupled BCS 
superconductor.

Sarkar and Das [60] investigated the isotope exponent within the Van Hove 
scenario 1 using the BCS equation for the gap energy at finite temperature for a general 
density of states N(S). The standard equation is

y  =  e' jA 1 (g ) 1 tanh^ ~ g^ 2 + A ป ี-de (3.27)

They assumed a density of states (DOS) with a van Hove singularity as

N ( s )  =  N 0 In £ p - S
ร -  (sF - ô ) (3.28)

where Ô  is the Fermi level shift.
The DOS (3.28) has some relevance in the context of high-Tc cuprate oxides. 

The success of van Hove scenario lies in the assumption that §  is zero for the optimum 
doping concentration for which Tc is maximum.

The equation for the transition temperatures for the DOS(3.28) is obtained from

Eqs. (3.27) and (3.28) using the condition A(T) =0 at T=TC,

N,v
®2 1 (  r  \  

=  f — ta n h  -------
ร ิ  l  2 T c )

In Sp  -  8
X  +  8

dx, (3.29)

where X  =  £  — £ f  .
Approximating tanh(x/2Tc) = x/2Tcfor x/2Tc <  1 and tanh(x/2Tc) = 1 for x/2Tc > 

1 in Eq.(3.29) Tseui et ai. [12] obtained an approximate formula for T , expressed in Eq.
(3.22).

Getino et al. [59] proceeded further by integrating the right hand side of Eq. 
(3.29) by parts to obtain an intrinsic equation for Tc which has to be solved for Tc 
numerically and self-consistently.

Sarkar and Das [60] determined Tc directly from Eq. (3.29) by numerically 
integrating the right-hand side of the equation and obtain Tc values which are the same 
as those determined by Getino et al. [59] and almost 16 % lower than those obtained
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from formula (3.22) for the same set of parameters. เท Table 3-2 they have compared the 
Tc values as determined by them and from Eq. (3.25)-(3.26). The Tc versus 8 plot is 
shown เท Fig.3-2 [60], we can see that Tc is maximum at 8 = 0 and decreases as 8 
increases, i.e., as the Fermi level shifts from the energy of the VHS. Tc decreases for 8 < 
0 slightly more rapidly than for 8 > 0. It may be mentioned that Tc falls symmetrically 
about 8 = 0 within the approximate formula (3.22).

N o v V . ( K ) u o ( K ) Tc (K )  
( R e f . l l )

T c (K )
(P resen t stu d y)

a
(P resen t s tu d y )

0 .084 5800 754 4 3 .8 37 .7 0 .1 9 7
0.10 5800 754 64 .1 55.2 0 .213
0 .12 5800 754 9 1 .8 79.4 0 .231

Table3-2: Tc estimates for a DOS with a VFIS at the Fermi level (8 = 0) 1(ล) using 
the approximate Tc formula of 12, and (b) Sarkar and Das ‘ร investigation. Values of the 
isotope-shift exponent (CL) are also given.[60]

Figure 3-2: Variation of the transition temperature (Tc) with 8/C0D for different 
coupling parameters: solid line (N0V=0.12), dashed line (N0V=0.10), and dot-dashed line 
(N0V=0.084), รF=5800 K, © 0=754 K [15].

The isotope-shift exponent ot is defined as

f  d in T c  ) r  d \n co D ' = 0.5 f  d i n Tc  ไ
v<31n C0D v d l n M  y {d \n co D ;

where the relation © Dcc M’05 is used. The standard BCS theory predicts

(3.30)

' d in T c ไ
In C0D J ~
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and correspondingly ot = 0.5. To determine the isotope-shift exponent (OC) for the

density of states (3.28) one has to differentiate Eq.(3.29) with respect to © 0. An exact

expression for ot is hence obtained [60], 
a  In  r .

a  = 0.5-

1
7

s i n  CO 0

Tc ta n h CO,
V T c J

In ( ^ ) 2
2 o2CO JJ o (3.31)

where

I  -  J s e c h 2 ( x / 2 r c ) ln
-COD

ร  f  +  ร

x - â
d x (3.32)

The values of ot are determined for various 5 values and for different sets of 
parameters by numerically evaluating the integration in Eq. (3.18). The ct versus 5 plots 
are shown in Figure 3-3 for different coupling strengths, ot is minimum when 5=0, i.e., 
when the Fermi level is at the VHS and T„ is maximum. As the Fermi level shifts from the

VHS, Ot increases with where it shows a maximum and then decreases (Fig. 3-3).

The shape of the ot versus บ curve is very similar to that obtained by Tsuei et al.[12], 
but Sarkar and Das [15] obtained higher values of ct. For N0V = 0.084 Tsuei et al. 
Obtained ct ~ 0.15 whereas Sarkar and Das obtained ct = 0.192. Figures 3-2 and 3-3 
show that, although Tc is widely different for the three sets of parameters, the values of 
Ot are almost the same for the different sets except near 5=0. เท the neighborhood of 
5=0, we obtain a lower value of ot for lower value of N0V.

From Figures 3-2 and 3-3 it is seen that ct is minimum at optimum doping 
when Tc=Tcmax and ot is higher for low Tc samples (underdoped or overdoped). The 
behavior of ot within the VFIS scenario thus agrees qualitatively with the expérimentai 
results of high-Tc oxides, as pointed out by Tsuei et al. [ 12]. Flowever, the experimental 
values of ot for cuprate systems with higher Tc (e.g., Y-1:2:3, Bi-2:2:1:2) at optimum 
doping are much less than those obtained in Tsuei et al.’s study.
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Figure 3-3: Plot of the isotope exponent oc vs (0/C0D). solid line (N0V = 0.12), 
dashed line (N0V = 0.10), and dot-dashed line (N0V = 0.084), ธF = 5800 K, C0D = 754 K 
[60],

A. Gama Goicochea [86] investigated how the isotope exponent was effected 
by the influence of a logarithmic Van Hove singularity เท the electronic density of states 
within the framework of the BCS theory, he used the following 2D-VHS form for the DOS

A ' (ร) A> e F
£  + ร

+ c (3.33)

where £  is the energy, referred to £  f , N0 is the density of state at the Fermi level as a 
normalization factor and 5  is the so-called filling factor which sets the position of the 
singularity with respect to the Fermi energy. From the linearized BCS equation

V
J iV  (.ร,)  ta n h

-CO 0 V2 k BTc J

d s
ร

(3.34)

for a cutoff frequency C0D, a constant pairing potential V, and introducing Eq[(3.33) for N 
{£ ) ,one finds

kBTc = 1.366-^exp c N 0V ■ +
ๆ 2

In + c
\ (ÙD)

+ -
(2 k B T c ) 2 + ^ T

CO 0
- 1 (3.35)
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which provided significantly larger values for Tc than the standard BCS formula. Eq. 
(3.35) shows that Tc is maximum when (5=0, i.e. when the VHS is placed at the Fermi 
energy. An estimate of Tc using Eq(3.35) and the classical BCS formula,

k BTc =  1.13a)0  e x p [ -  l / N ( e F ) v ]  1 shows that T^ HS js  at least three 

orders of magnitude larger than T ç CS.

Consider the isotope effect exponent CL defined as 

d i n T c  CO0  Ô Ta  =  -  . (3.36)
d l n M  2 T c  CO0

where M is the isotopic mass, and the relation®£1 ~ M  1,/2has been used. Thus, 
differentiating Eq.(3.34) with respect to ®£,and then the integration over energies yields

a  =  0 .5
๒(4 / 1 0)1 - S 2\)+ 2 C  

ln ( 4 / | ( 2 Â : Br c )2 -  d 2 1)+ {ร/2 k BT'0 ) ln ร - 2kBTc
J ^ F C

(3.37)
+  2 C  +  2

A numerical calculation of Of based on Eqs. (3.34) and (3.36) is shown in 
Figure 3-4 as a function of SlCOQ, for different values of the constant background in the 
DOS, N0C. As shown by both Eq.(3.37) and Figure 3-4, cx has a minimum when Tc is 
maximum, i.e. 1 at 5 -  0. The peak in this figure corresponds to a singularity occurring 
when I ô  I =CO0, as can be easily seen in Eq.(3.37). Note that the lowest values for CL 
are achieved only when the background N0C is neglected, whereas for large ร  it is 
found that (X goes to the BCS limit, CL = 0.5. These conclusions are in agreement with 
Xing et al.[58] . Originally, Tsuei et al.[57] invoked a VHS to explain the isotope effect 
measurements by Crawford et al. [87] on the La2.xSrxCu04 system as a function of 
doping X .  However, early measurements [88] of the copper and oxygen isotope effect 
exponent in this system confirm that the minimum values of (X (~0.0-0.17) are too small 
to be accounted for by a simple VHS approach. Experiments in other 
high-Tc materials seem to support this view [89-90]. The introduction of the
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constant background N0C appears to have a strong influence, for it raises the minimum 
values of cc . Figure 3-5 shows (X as a function of Tc for a VMS with and without the 
constant background, and the results are compared to recent experiments on the 
yttrium-based compounds. [86]

Figure 3-4: Isotope effect exponent as a function of S/COD for increasing values 
of constant c [Eq.(3.33)] 1 for £ F=500 meV, COD = 65 meV, and N0V = 0.08 . [86]

Figure 3-5: Isotope effect exponent as a function of Tc. The solid line 
corresponds to c=0, while the dotted line is for c=2. The parameters are kept the same 
as เท Figure 3-4. Experimental data are taken from Franck et al. [89] (open circles)and 
Bornemann and Morris [90] (solid hexagons).

A.M. Shamuszzaman and A.K.M.A. Islam [40] studied the isotope exponent 
(OC) of some high Tc superconductors by using an exact expression for CL for an
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electronic density of state (EDOS) in the Van Hove Singularity Scenario (VHS). The 
results reproduce the general experiment trend of CL as a function of doping (x) as 
follows

a 1
7 Tc ta n h 111 ( E F - ร )

COD­ S '

where

I  =
CO

I  s e c h J f  x '

- C O , ,

In E f - S  
X  +  5

d X .

(3.38)

(3.3S)

Eq.(3.38) is used to evaluate the isotope exponent (CO and the calculated 
value of CL for YBa2Cu30 6+x as a function of doping (x) is shown in Figure 3-6. This result 
produces the general experimental trend of as a function of doping (x).

Figure 3-6: c t~ x  curve for YBa2Cu30 6+x[85].

เท Figure 3-6 the curve agrees with the experimental trend although optimum 
value (OC=0.19) is much larger than the experimental value (0t=0.02) [74], Doping 
dependence of Debye temperature, transition temperature and the variation of Fermi 
level shift (6) from the Van Hove singularity with doping(x) have been made in this work. 
5 is determined from Tc equation assuming that 8  < 2kBTc therefore the overdoped 
region is not taken under consideration since 8 < 2kBTc in this region.. The important 
features of the calculation are that 8  has a minimum at the highest Tc and increases 
ทาonotonically around Tc.
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A. Bhardwaj and ร. K. Muthu [91] studied the influence of singularities in the 
electronic density of states (DOS) on high temperature superconductors in the 
framework of the conventional BCS theory, by using a DOS with singularities at two 
different points. They could explain the asymmetry เท the isotope exponent (CC) with 
respect to the point where Tc is maximum. They considered a DOS with a Van Hove 
singularity of the form

N ( E )  = N , l n E F
e - e f - s

(3.40)

where ร  = -  ร  1

=
and 0 < ร -1, ร 2 < 2 k BTc

for E  P —hco D <  E  <  E  P . 
for E p  <  E  <  E p  + h c o D .

The BCS gap equation is given by Eq.(3.21)

V

E ,,+1i C0c
I  ta n h tv N { E ) d E  ไ

E1,-hcoc

Using Eq.(3.40) one obtains (X = N qV')

A  =  7 - + / -

y E - E p )

with / 1 =  ] ° t a n h

and / 2 =  J ta n h

f  \

\ 2 k BTc J
In

K2 k~ T c J
In

Ef d x
X - S 1 X
E Fd x

X - S 2 X

(3.41)

(3.42)

(3.43)

(3.44)

To simplify the evaluation of 11 and / 2 , we make the assumption tanh(u) =  น for น <1 
and tanh(u) =1 foru>1. A straightforward calculation yields the values of

11 and / 2  when, coupled with Eq.(3.42) lead to the equation
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2k  Tc =  eEp  e x p " 2 ( ร ,  +<52 ไ
น £ 2k B T c J

In( 2 e h BTc ) + ^ - r ( S 1 เท 5 ,  +<J2 เท A

+
V h a D  J

(  £-2ร 1 + ร 2 ) 1 I S t + s t2 Y
,1/2

V 4 k lT ?  t i2co 2A  B 1 c

+ In-
D

Tuo
- 1

D  J
(3.45)

where e ~  2.7183
Next one calculates the isotope exponent CL defined by Ct=-dlnTc/lnM and 

assuming that 0D to be proportional to M'1/21 one obtains from Eq.(3.45)

0.5
a  =

In '£
X ?  +  Â  

+  +
x x + x 2

เท 1 .3 6 ^ f e '
4 T X1 In @DX\

V พ c )

{ ท  \

\W c )
x2 เท &DX2 s

V  พ c  J

A ,
16 t } ■ (*? + x \  )

(3.46)

with X j ~ ร I / ( k f t d [) ) and X2 — Ô2 / (k ftO £) )■

For the particular case with X  = 0.081, TF = 5800 K, and 0D =754 K, these 
values have been used by Tsuei et al. [57] in their calculations and represent realistic 
values, one uses Eqs(3.45) and (3.46) to construct Table3-3 that gives the numerical 
values of Tc and CL for two different choices of X, and x2 .

(a )
X] =  —A‘2 =  X

(b )
X  2 =  -4 .V  1 =  X

X Tc <x X Tc d

- 0.105 35.12 0.206
- 0 . 0 s 39.14 0.204 - o.os 35.96 0.203
- 0.06 39.64 0.199 - 0.06 36.68 0.202
- 0.04 39 99 0.196 - 0.04 37.51 0.200
- 0.02 40.19 0.194 - 0.02 38.55 0.198

0 40.26 0.193 0 40.26 0.193
0.02 40.19 0  194 0.06 43.20 0.191
0.04 39.99 0.196 0 .12 43.40 0.202
0.06 39.64 0.199 0.18 42.00 0 2 2 7
DOS 39  14 0.204 0.24 3859 ■ว 0.293

Table 3-3: Values of Tcand CL calculated from Eqs.(3.45) and (3.46) [91],
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3.5 Effect of doping and impurities on the isotope effect in high-temperature 
superconductors

Early measurements on optimally doped samples [61-62] found an oxygen 
isotope effect coefficient almost zero, which was used as evidence that the pairing 
mechanism in the high-temperature superconductors (HTSC) is not phonon mediated. 
Later measurements revealed an oxygen isotope-effect coefficient that increased rapidly 
in going from the optimally doped (hole concentration p=0.16) to the underdoped 
region (p<0.16), reaching values greater than 0.5 [63-64], This could not be account for 
by the simple inclusion of the Coulomb interaction, because small cx values imply small 
Tc values which is the exact opposite of what is observed เท the HTSC. D.J Pringle et al. 
[65] showed that the hole-concentration and impurity-concentration-induced changes เท 
the isotope-effect coefficient can be consistently modeled by including the effect of the 
normal-state pseudogap. They have performed oxygen isotope-effect measurements on 
¥1. xCaxBa 2 c น30 7(T c1 max~90K), Bi2Sr2CaCu2Os+ร(Tcmax=90K), and YBa2(Cu,xNiJ40 8

(Tcmax=81K) and distinguish between the isotope effect in Tc 1 OtTc, and that in the 
superconducting spectral gap CCa and also showed that the normal-state pseudogap 
can account for the rapid increase in the isotope effect coefficient with increasing Ni 
substitution in YBa2(Cu1.xNix)40 8.

3.6 Physics of the pseudogap
To probe the properties of cuprates, condensed-matter physicists turned to a 

technique called angled-resolved photo-emission spectroscopy (ARPES) . Below Tc 1 
ARPES experiments reveal that the superconducting gap depends on the direction in 
which the photon is fired into the material. There is a large gap in some directions and a 
small gap in others [100-102]. This just reflects the d-wave nature of the pairs and fits เท 
well with Landau’s theoretical picture but when one heat the materials up above Tc .the 
energy gap does not go away. This anomaly is the pseudogap, and it makes a 
shambles of the conventional BCS theory. The pseudogap may provide one key, in 
1995, Vic Emery and Steve kivelson [67] pointed out that superconductivity requires 
phase coherence between those pairs, which each pair has a quantum wave associated 
with it, and for the pairs to condense into the superconducting state all the waves have



48

to be in phase with one another. As the pseudogap exists almost up to room 
temperature, it could be that some feature of cuprate structure makes it possible for 
pair? to form at high temperature, well above ■โ0, The onset of superconductivity would 
signify not the formation of pairs, but the setting in of phase coherence below Tc.เท this 
view, cuprate superconductivity may break down above Tc because the pairs have 
much thermal energy that they can no longer maintain phase coherence. Emery and 
Kivelson suggest that, just above Tc, superconductivity should therefore become 
fragmented or fluctuating, it should be possible to find evidence of superconductivity in 
the material, but only very short distances or timescales.

เท 1999, this idea won support from experiments by a team led by Joe 
Orenstein [103] studied how another type of cuprate Bi2Sr2CaCu20 8+x responded to an 
electrical field that was alternating very rapidly. They found exactly the sort of 
fluctuations that Emery and Kivelson had predicted. Above Tc, the higher levels of 
thermal energy appeared to churn up small vortices regions เท which the material 
became non-superconducting. เท August,2000 ร.Uchida and his colleagues [104] 
found further evidence for such vortices. They showed that magnetic fields generally 
will not pass through a superconductor, but they can penetrate through non- 
superconducting vortices.

3.7 Isotope effect in the presence of a pseudogap
Many different models have been advanced in order to try to understand this 

unusual doping dependence in connection with the small isotope exponent at optimal 
doping. เท recent years it became apparent that the physics of underdoped high-Tc 
superconductors is governed by the pseudogap phenomenon. A. behavior which is 
reminiscent of the presence of a pseudogap, growing upon successive underdoping, 
has been observed consistently in a large number of different experiments, e.g., nuclear 
magnetic resonance (NMR) Knight-shift and relaxation rate experiments, specific heat, 
angled-resolved photoemission spectroscopy conductivity [61-62].

To clarify the origin of this pseudogap behavior, many proposals have been 
presented. These are roughly classified into the following groups. One of the 
suggestions that the pseudogap is caused by the singlet formation of spinons which
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appears as a result of the spin-charge separation [64], The others suggest that the 
pseudogap is related to instabilities in some ordering states. One of these is the theory 
[20-21] relating the pseudogap with the antiferromagnetic phase which is reached by 
controlling the doping or the pressure. The other is the theory [65-69] relating it with the 
superconducting phase which is reached by controlling the temperature. The first one 
assumes that the system cannot be described by the Fermi liquid theory. However, 
there is no positive reason to consider the two dimensional interacting electrons system 
as a non-Fermi liquid [70],

เท the real system [63], it is observed that as temperature decreases, the 
pseudogap grows and then the pseudogap phase is connected with the 
superconducting phase but not with the antiferromagnetic phase. It is also observed in 
ARPES (angle-resolved photoemission spectroscopy) experiments that the symmetry of 
the pseudogap in the momentum space is the same as the symmetry of a Cooper pair 
[70]. Therefore it is important to investigate the phenomenon related with the pseudogap 
by taking the superconducting fluctuation into account.

On the basis of the superconducting fluctuation, the pseudogap state is 
investigated theoretically in two different ways. This difference partially originates from 
the interpretation of the superconducting phase transition. One of these theories [22-23] 
considers that the superconducting transition in these compounds is a Kosterlitz- 
Thouless transition because of the two dimensionality of the system. เท this case the 
superconducting phase has a finite superfluid density but not necessarily the order 
parameter. It is known that the real systems has a finite transfer integral between layers. 
Therefore it is reasonable to consider that the superconducting transition is 
characterized by the Thouless criterion while the transition temperature (T0) is much 
reduced from that of the mean field theory due to the strong two dimensionality. Actually 
the superconducting phase has an order parameter although its temperature 
dependence is not trivial due to the reduced Tc.

G.V.M. Williams et al.[ 71] have studied the absence of an isotope effect in the 
pseudogap in YBa2Cu40 3 as determined by the high-resolution 89Y NMR (nuclear 
magnetic resonance) and showed that an isotope effect occurs in Tc but not in the 
normal-state pseudogap. By taking account of the pseudogap, they also showed that
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isotope effect coefficient in the superconducting gap parameter (OCA) remain small (~  
0.06) and roughly constant, independent of hole concentration in spite of the large value 
of OtTc in the underdoped region.

The key issues emerge from the presence of the pseudogap is the energy 
scale for superconductivity is set by A0, not by Tc, so the fundamental isotope exponent 
is not OCTc but aA =  -d In A0 / d เท M. Indeed, it has been suggested that the isotope 
effect may reside wholly in the pseudogap and not in superconductivity [72]. Figure 3-7 
summarizes these two cases within the model of Loram et al.[73] : (a) CC/y+0 while the 
isotope effect coefficient in the pseudogap energy scale Eg (OCE ) = 0, and (b) OCA = 0

while OtEg+0.
The isotope shift in Tc was measured by the zero-field cooled magnetization 

measurements using a vibrating sample magnetometer and an applied field of 5x1 o'4 T. 
The resultant magnetization curves are plotted in the inset of Figure 3-8 for 160  (solid 
curve) and 90 % 180  (dashed curve) Y124 samples, leading to OtTc =(0.076+0.010), 
comparable to previous studies [74 ].

The presence of the pseudogap provides a simple explanation for the 
dependence of OCTc on hole concentration p, as illustrated in Figure 3-7(a). เท particular, 
the depression of Tc, in spite of the nearly constant value of A 0 on the underdoped 
side, results in a divergence of OtTc typical of what is observed [29], as shown in 
Figure3-9 for Y^P^Ba2(วน3(ว7, YBa2.xLaxCu30 7, and YBa2(Cu1.xCox)30 7 [29] This can be 
quantified using the model of Loram et al.[30] in which the spectral gap A(T) is related 
to the superconducting order parameter A ’(T) by A 2(T) = A ’2(T) + Eg2(T) and Tc is the 
temperature at which A(TC) = Eg(Tc). Thus, the experimentally observed increase in Eg 
with increasing underdoping [73,76] causes a reduction in A r and, hence, in Tc and a 
resultant increase in OCTc. The data is modeled by noting that Eg can be written as Eg/A0 
= f(Tc/Tc0) and, hence, Tc = Tc 10F(Eg/A0), where F(x) = f 1(x). Thus, taking A c = b0M‘aA 
and Tc 0 = (3A0/kB, then

(3.47)



Figure 3-7 : Schematic plots of the temperature dependence of the d-wave gap 
maximum À(T) for 1S0  isotope exchange (solid curves) and 180  exchange (dotted 
curves). The horizontal lines are the temperature-independent pseudogap energy Eg. (a) 
isotope effect only in A 00 and not in Eg. The lower pair of curves show the effect of a 
reduced A 0 due to impurity pair breaking. (ช) Isotope effect only เท Eg and not in A00 
[71].

100 200 300 400 500 600 700 800
Wavenumber (cm-1)

Figure 3-8 : Raman spectra from 160 - exchanged and 90% 180-exchanged 
Y-124. The isotpe-induced shifts in the phonon mode frequencies are shown in % for 
each mode. Inset: Magnetization plotted against temperature for the 160-exchanged 
(solid curve) and 90% 180-exchanged (dashed curve) Y124 samples [71].
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where z=2kBTc/Eg, y = Eg/A0 = f(Tc/Tc0). One can use the d-wave form of the BCS gap 
equation to obtain f(Tc/Tc0) and, hence, F(Eg/À0) and show in Figure3-9 that this model 
can'reasonably describe the data with OCa = 0.06, noting that for Tc near Tc0, the 
asymptotic form of Eq.(3.47) is a T (7c )  ~  \?“K ,0  /  Tc -  l j  1พhere Tc 0 = |3A0/kB
and p=  a0X s .here Xs is the static spin susceptibility. These results then point to an 
isotope effect OCa ~  0.06 which remains approximately independent of doping across

the superconducting phase curve. (The data in Figure 3-9 may suggest that OCa 
decreases a little with underdoping but there is little consistency among the various 
data sources at low Tc that could strongly justify this conclusion.) A similar value is 
obtained for La2.xSrxCu04 (La214) and Y124. เท the BCS model with phonon-mediated 
pairing, it would be expected that OCT0= OCa = 0.5, which is clearly not the case. But this

depends on the relevant mass used เท defining OtTc and the magnitude of Coulomb 
repulsion. If the acoustic modes were important, then the total mass might be 
approximated by the unit cell mass. Then, OCa is indeed found to be about 0.5 and 
constant more or less independent of the hole concentration. More likely, the relevant 
electron-phonon coupling is associated with the optical branches, consistent with the 
high Tc’ร. Theoretical calculations indicate that that plane-oxygen phonon modes 
enhance d-wave superconductivity [77],

T.Dahm [83] studied the influence of a phenomenological pseudogap on the 
isotope exponent in the weak-coupling limit, the linearized gap equation for an 
anisotropic pairing interaction Y0Ç  £ '^  reads

A  { k ) = T , V { k , k ' )
- ,  t a n h O - ,  H T 0)

2ร-< พ . (3.48)

Here, Sfc is the band dispersion and a (& ) the superconducting gap function. 
The pairing interaction consists of two parts: a phononic part Vp ( k , k  ) and an 
electronic part Ve( k , k  ), such that V ( k , k  ) =  Vp ( k , k  ) +  V6(k , ic  )The dominant 
contribution shall be Ve . Then, in weak-coupling approximation he used

ve(k,k)  =
K o  พ  1พ ี) พ _ ( * ' ) £k ' <CÙ,

(3.49)
0 else,
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where COe is the characteristic energy scale of the electronic part and is assumed 
to be independent of isotopic mass. is the basis function for the pairing

(& )= 1 , for d xi_  2 — wave pairing

where

sysmmetry considered. For s-wave pairing y /s \ k j = \ ,  for dxi_yi —
¥ d 1 2 ( * )  =  c o s 2 0  £ 5 and for dXy —wavepairing y/d =  s in  2 0  £ 5 

0 £  =  a r c ta n  (ky/kx)  is the angular direction of the momentum k.
The phononic part may consist of different contributions having different 

symmetries. However, since he assumed that the electronic part is dominating with a 
symmetry specified by y/ ( k)  1 only the y/ (k) component of Vp, having the same 
symmetry, will affect Tc. Therefore he assumed without loss of generality

v p ( k , k )

v p o ¥ f i ) ¥ „ d )
<

0

£ k

else 1
(3.50)

where Op is the characteristic phonon energy. เท the harmonic approximation, Op 
varies with the isotopic mass M like 1/(M)1/2, while O e is assumed to be independent of 
M.

For such an interaction the gap function can be separated into two parts:
a (a-)= A/,(^)+ Ae(£), with

A e ,p (k )

A eo,po y s r j i k ) if ร 1

0 else .

<  COe,p

(3.51)

With this condition, Eq.(3.48) becomes a 2x2 matrix equation for the two order- 
parameter components A eo and A  . Assuming a cylindrical Fermi surface with a 
constant density of states, Eq.(3.48) can be written in the form
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^ eo 
* p o

~VeoL{co 0) ve0L(coey 'K o '
y PoL(®e) V K ) . _bpo_

(3.52)

where he defined the function L(CO)

L{co)  = N ( 0 ) J  d s
0

t a n h ( £  /  I T 0 )
ร

«  JV(0) ๒
V

1.13ft>
rJ c

\
(3.53)

The last expression holds in the weak-coupling limit CO »  T. N(0) denotes the 
density of states at the Fermi level. เท deriving Eq. (3.52) he assumed CDe<  CDp. Letting 
Lp=L(COp) and Le=L(CDe) the leading eigenvalue of the matrix in Eq.(3.52) is

Mp>e,o>p■ T) = Ve°L-e y d j L  A J E J e  - vp0Lp f  + 4 Ÿ  (3.54)

and Tc is determined from the implicit equation

A(a> 0, û)p ,T0 ) =  1 . (3.55)

From this the isotope exponent cx can be calculated :

dA  d L p
^  1 d \n T c 1 (Op d L p dcop
a z z 2 d \n œ p = ~ 2  T0 ~ à Â  d Lp  dA  d L ~  3 '56)

d L p dTc d L e dT c

เท the weak coupling limit COp ,© 8 »  Tc, this gives

' = 2VP0( 1 + V M ^ - r J i - V p 1,Lp) ■

For a purely electronic interaction Vpo = 0 this expressin yields cc = 0 and for a 
purely phononic interaction Ve0 = 0 it gives oc = 0.5, as one should expect. For a mixed 
interaction CX0 will generally between 0 and 0.5. เท fact, one can easily show that for
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Now we wish to consider the influence of a pseudogap. เท the presence of a 
pseudogap we have to modify the single-particle excitation spectrum. Following 
Williams and co-workers [84], we replace

given values of 0 p and 0 e one can always choose Vpo and Ve0 เท such a way that a
given value of Tc and ot E  [0,0.5] is reached.

ร  k in Eq.(3.48) by ^ ( ร ^ 2 + ( E g {ร k ) ) 2 , (3.58)

where E g  ( k ) is the pseudogap and will be chosen to be either E g  5 ( k ) =  E g 0 =  
constant for an s-wave pseudogap or E g d ( k ) ะ= E g 0 c o s  2 0 £  for a d-wave type 
pseudogap. Note that this symmetry of the pseudogap does not necessarily have to be 
identical with the pairing symmetry. However, the study in 84 suggests that both 
symmetries are of d-wave type in underdoped high-Tc compounds. With the 
replacement Eq.(3.58) the function L becomes

L(co ) --= (3.59)

Equations (3.54) and (3.56) still remain valid, if one uses this expression for L 
(0 ). เท the weak-coupling limit, 0 p, 0 e >> Tc ,E we then find for the isotope exponent

a  =  f d e ' f d x ---------------- ----------— (3.60)
พ c 00 cosh2( ^ 2 + (£s (©))2 /2
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Figure 3-9: Weak coupling result for the isotope exponent Ct/CX0as a function
of Tc/Tc0 in the presence of a pseudogap. [83]
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here OC0 is the isotope exponent Eq.(3.57) in the absence of a pseudogap. Equation 
(3.60) shows that cx/cx0 only depends on Ego/Tc, the pairing symmetry y / (0 )  and the 
symmetry of the pseudogap. Since Tc is a function of Ego1 determined from Eq.(3.55), for 
a given symmetry of both the pseudogap and the pairing state OC/CCG is a universal 
function of Tc/Tc0. Here, Tco = ไ"0 (E =0). Figure 3-9 [84] shows CC/OC0 as a function of 
Tc/T00 for different symmetries. The solid line shows the isotope exponent for an s-wave 
pseudogap. This result is independent of the pairing symmetry, as can be seen by 
performing the angular integration in Eq.(3.60). For an anisotropic pseudogap having - 
d x 2 _ y 2 -  wave symmetry, however, the. pairing symmetry does affect the result. The 
dotted line shows the result for an s-wave superconductor with a 2 ~  wave
pseudogap, while the dashed-dotted line shows the results for a d x*_y i -  wave
superconductors with a d x 2 _ y 2 — wave pseudogap. The weakest Tc/Tc0 dependence 
is found for a d xy superconductor with a dy . 2  2 — wave pseudogap (dashed line). เท 
all cases one can see from Eq.(3.32) that พ Ot0 diverge for Tc —> 0. Thus in priciple 
arbitrarily high values of (X can be reached. As an illustration, experimental results on 
Pr-doped YBCO are shown in figure 3-9 as solid squares [71]. Certainly these 
differences need further explanation and cannot be understood solely due to the 
influence of a pseudogap, moreover the isotope exponent in Eq.(3.32) that was found in 
83 is not an exact expression 1 we therefore wish to reconsider the isotope effect in the 
presence of a pseudogap and attempt to predict the phenomenon quantitatively with 
the exact solutions. The theoretical formulation will be given and the numerical results 
will be shown in the next chapter.
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