CHAPTER V
 CONCLUSION

5.1 Conclusion

We define group divisible designs with two groups and three associate classes, $\operatorname{GDD}\left(m, n ; \lambda_{1}, \lambda_{1}^{\prime}, \lambda_{2}\right)$, and investigate the existence problem of such GDDs. By considering a GDD graphically, the following necessary conditions are obviously obtained:
(i) every vertex in the graph $\lambda_{1} K_{m} V_{\lambda_{2}} \lambda_{1}^{\prime} K_{n}$ has even degree,
(ii) the number of edges in the graph $\lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1}^{\prime} K_{n}$ is divisible by three and
(iii) if $\lambda_{2}=0$, then the number of edges in each of the two graphs $\lambda_{1} K_{m}$ and $\lambda_{1}^{\prime} K_{n}$ must be divisible by three.

We prove that these conditions are sufficient for the existence of GDDs when $m \neq 2, n \neq 2, \lambda_{1} \geq \lambda_{2}$ and $\lambda_{1}^{\prime} \geq \lambda_{2}$. To summarize, the construction of each case is provided in Table 5.1.

Eventually, we conclude all the constructions in the following main theorem.
Theorem 5.1. (Main Theorem) Let m and n be positive integers such that $m \neq 2$, $n \neq 2$ and $m n \neq 1$. Let $\lambda_{1}, \lambda_{1}^{\prime}$ and λ_{2} be nonnegative integers such that $\lambda_{1} \geq \lambda_{2}$ and $\lambda_{1}^{\prime} \geq \lambda_{2}$. There exists a $\operatorname{GDD}\left(m, n ; \lambda_{1}, \lambda_{1}^{\prime}, \lambda_{2}\right)$ if and only if
(i) $2 \mid\left(\lambda_{1}(m-1)+\lambda_{2} n\right)$,
(ii) $2 \mid\left(\lambda_{1}^{\prime}(n-1)+\lambda_{2} m\right)$,
(iii) $6 \mid\left(\lambda_{1} m(m-1)+\lambda_{1}^{\prime} n(n-1)+2 \lambda_{2} m n\right)$ and
(iv) if $\lambda_{2}=0$, there exists a $\operatorname{TS}\left(m ; \lambda_{1}\right)$ and a $\operatorname{TS}\left(n ; \lambda_{1}^{\prime}\right)$.

$m \backslash n$	0	1	2	3	4	5
0	$2\left\|\lambda_{1}, 2\right\| \lambda_{1}^{\prime}$ Theorem 3.3	$2 \mid\left(\lambda_{1}+\lambda_{2}\right)$ Theorem 3.2	$2\left\|\lambda_{1}, 6\right\| \lambda_{1}^{\prime}$ Theorem 3.7	$2 \mid\left(\lambda_{1}+\lambda_{2}\right)$ Theorem 3.2	$2\left\|\lambda_{1}, 2\right\| \lambda_{1}^{\prime}$ Theorem 3.3	$\begin{gathered} 3 \mid \lambda_{1}^{\prime} \\ 2 \mid\left(\lambda_{1}+\lambda_{2}\right) \end{gathered}$ Theorem 3.18
1		$6 \mid \lambda_{2}$ Theorem 3.2	$\begin{gathered} 2 \mid\left(\lambda_{1}^{\prime}+\lambda_{2}\right) \\ 3 \mid\left(\lambda_{1}^{\prime}+2 \lambda_{2}\right) \end{gathered}$ Theorem 3.2	$2 \mid \lambda_{2}$ Theorem 3.2	$\begin{gathered} 2 \mid\left(\lambda_{1}^{\prime}+\lambda_{2}\right) \\ 3 \mid \lambda_{2} \end{gathered}$ Theorem 3.2	$\begin{gathered} 3 \mid\left(\lambda_{1}^{\prime}+2 \lambda_{2}\right) \\ 2 \mid \lambda_{2} \end{gathered}$ Theorem 3.2
2			$\begin{gathered} 2\left\|\lambda_{1}, 2\right\| \lambda_{1}^{\prime} \\ 3 \mid\left(\lambda_{1}+\lambda_{1}^{\prime}+\lambda_{2}\right) \end{gathered}$ Theorem 4.3	$\begin{gathered} 3 \mid \lambda_{1} \\ 2 \mid\left(\lambda_{1}+\lambda_{2}\right) \end{gathered}$ Theorem 3.9	$\begin{gathered} 2\left\|\lambda_{1} \cdot 2\right\| \lambda_{1}^{\prime} \\ 3 \mid\left(\lambda_{1}+2 \lambda_{2}\right) \end{gathered}$ Theorem 3.12	$\begin{gathered} 2 \mid\left(\lambda_{1}+\lambda_{2}\right) \\ 3 \mid\left(\lambda_{1}+\lambda_{1}^{\prime}+\lambda_{2}\right) \end{gathered}$ Theorem 4.6
3				$2 \mid \lambda_{2}$ Theorem 3.2	$2 \mid\left(\lambda_{1}^{\prime}+\lambda_{2}\right)$ Theorem 3.2	$3\left\|\lambda_{1}^{\prime}, 2\right\| \lambda_{2}$ Theorem 3.18
4			$7 /$		$\begin{gathered} 2\left\|\lambda_{1}, 2\right\| \lambda_{1}^{\prime} \\ 3 \mid \lambda_{2} \end{gathered}$ Theorem 3.3	$\begin{gathered} 3 \mid\left(\lambda_{1}^{\prime}+2 \lambda_{2}\right) \\ 2 \mid\left(\lambda_{1}+\lambda_{2}\right) \end{gathered}$ Theorem 3.2
5						$\begin{gathered} 2 \mid \lambda_{2} \\ 3 \mid\left(\lambda_{1}+\lambda_{1}^{\prime}+\lambda_{2}\right) \end{gathered}$ Theorem 4.9

Table 5.1: All possible GDDs

5.2 Open Problem

It is natural to follow through on the case when $m=2$ or $n=2$ as an open problem. This open problem has more necessary conditions. When either $m=2$ or $n=2$. each edge in the group of size two (simply called pure edge) must belong to a triangle which contains two edges between the groups (simply called cross edges). Thus, the number of edges in the group of size two must be at most half of the number of edges between two groups. In particular,
(1) if $m=2$, then $\lambda_{1} \leq \lambda_{2} n$ and
(2) if $n=2$, then $\lambda_{1}^{\prime} \leq \lambda_{2} m$.

When both $m=2$ and $n=2$, each pure edge requires two cross edges to form a triangle, and these edges are in exactly one triangle. Thus, the number of pure edges
must be at most half of the number of cross edges. That is $\lambda_{1}+\lambda_{1}^{\prime} \leq \frac{4 \lambda_{2}}{2}=2 \lambda_{2}$.
On the other hand, we note that any triangle in this case contains one pure edge and two cross edges, and these triangles are edge-disjoint. Hence, half of the number of cross edges in the graph must be at most the number of pure edges, or $2 \lambda_{2}=\frac{4 \lambda_{2}}{2} \leq \lambda_{1}+\lambda_{1}^{\prime}$. Therefore, when $m=2$ and $n=2$, we have that $\lambda_{1}+\lambda_{1}^{\prime}=2 \lambda_{2}$. We conclude these necessary conditions in the following theorem.

Theorem 5.2. (Necessary Conditions) Let m and n be positive integers. Let $\lambda_{1}, \lambda_{1}^{\prime}$ and λ_{2} be nonnegative integers such that $\lambda_{1} \geq \lambda_{2}$ and $\lambda_{1}^{\prime} \geq \lambda_{2}$. If there exists a $\operatorname{GDD}\left(m, n ; \lambda_{1}, \lambda_{1}^{\prime}, \lambda_{2}\right)$, then
(i) $2 \mid\left(\lambda_{1}(m-1)+\lambda_{2} n\right)$,
(ii) $2 \mid\left(\lambda_{1}^{\prime}(n-1)+\lambda_{2} m\right)$,
(iii) $6 \mid\left(\lambda_{1} m(m-1)+\lambda_{1}^{\prime} n(n-1)+2 \lambda_{2} m n\right)$.
(iv) if $\lambda_{2}=0$, then there exist a $\operatorname{TS}\left(m ; \lambda_{1}\right)$ and $a \operatorname{TS}\left(n ; \lambda_{1}^{\prime}\right)$.
(v) if $m=2$, then $\lambda_{1} \leq \lambda_{2} n$,
(vi) if $n=2$, then $\lambda_{1}^{\prime} \leq \lambda_{2} m$ and
(vii) if $m=2$ and $n=2$, then $\lambda_{1}+\lambda_{1}^{\prime}=2 \lambda_{2}$.

