CHAPTER V CONCLUSION

5.1 Conclusion

We define group divisible designs with two groups and three associate classes, $GDD(m, n; \lambda_1, \lambda'_1, \lambda_2)$, and investigate the existence problem of such GDDs. By considering a GDD graphically, the following necessary conditions are obviously obtained:

- (i) every vertex in the graph $\lambda_1 K_m \vee_{\lambda_2} \lambda'_1 K_n$ has even degree,
- (ii) the number of edges in the graph $\lambda_1 K_m \vee_{\lambda_2} \lambda'_1 K_n$ is divisible by three and
- (iii) if $\lambda_2 = 0$, then the number of edges in each of the two graphs $\lambda_1 K_m$ and $\lambda'_1 K_n$ must be divisible by three.

We prove that these conditions are sufficient for the existence of GDDs when $m \neq 2, n \neq 2, \lambda_1 \geq \lambda_2$ and $\lambda'_1 \geq \lambda_2$. To summarize, the construction of each case is provided in Table 5.1.

Eventually, we conclude all the constructions in the following main theorem.

Theorem 5.1. (Main Theorem) Let m and n be positive integers such that $m \neq 2$, $n \neq 2$ and $mn \neq 1$. Let λ_1, λ'_1 and λ_2 be nonnegative integers such that $\lambda_1 \geq \lambda_2$ and $\lambda'_1 \geq \lambda_2$. There exists a $GDD(m, n; \lambda_1, \lambda'_1, \lambda_2)$ if and only if

- (i) $2|(\lambda_1(m-1)+\lambda_2n),$
- (ii) $2|(\lambda'_1(n-1) + \lambda_2 m),$
- (iii) $6|(\lambda_1 m(m-1) + \lambda_1' n(n-1) + 2\lambda_2 mn)$ and
- (iv) if $\lambda_2 = 0$, there exists a $\mathsf{TS}(m; \lambda_1)$ and a $\mathsf{TS}(n; \lambda'_1)$.

mn	0	1	2	3	4	5
0	$2 \lambda_1, 2 \lambda_1'$	$2 (\lambda_1+\lambda_2) $	$2 \lambda_1,6 \lambda_1'$	$2 (\lambda_1 + \lambda_2) $	$2 \lambda_1,2 \lambda_1'$	$3 \lambda'_1 $
						$2 (\lambda_1 + \lambda_2) $
	Theorem 3.3	Theorem 3.2	Theorem 3.7	Theorem 3.2	Theorem 3.3	Theorem 3.18
1		$6 \lambda_2$	$2 (\lambda_1'+\lambda_2) $	$2 \lambda_2 $	$2 (\lambda_1'+\lambda_2)$	$3 (\lambda_1'+2\lambda_2) $
			$3 (\lambda_1'+2\lambda_2) $		$3 \lambda_2$	$2 \lambda_2$
		Theorem 3.2	Theorem 3.2	Theorem 3.2	Theorem 3.2	Theorem 3.2
2			$2 \lambda_1, 2 \lambda_1'$	$3 \lambda_1$	$2 \lambda_1, 2 \lambda_1^\ell$	$2 (\lambda_1 + \lambda_2) $
			$3 (\lambda_1+\lambda_1'+\lambda_2)$	$2 (\lambda_1 + \lambda_2) $	$3 (\lambda_1+2\lambda_2) $	$3 (\lambda_1 + \lambda_1' + \lambda_2) $
			Theorem 4.3	Theorem 3.9	Theorem 3.12	Theorem 4.6
3				$2 \lambda_2$	$2 (\lambda_1'+\lambda_2)$	$3 \lambda_1',2 \lambda_2$
				Theorem 3.2	Theorem 3.2	Theorem 3.18
4					$2 \lambda_1, 2 \lambda_1'$	$3 (\lambda_1'+2\lambda_2) $
					$3 \lambda_2$	$2 (\lambda_1+\lambda_2)$
					Theorem 3.3	Theorem 3.2
5						$2 \lambda_2$
0						$3 (\lambda_1+\lambda_1'+\lambda_2)$
						Theorem 4.9

Table 5.1: All possible GDDs

5.2 Open Problem

It is natural to follow through on the case when m = 2 or n = 2 as an open problem. This open problem has more necessary conditions. When either m = 2or n = 2, each edge in the group of size two (simply called *pure edge*) must belong to a triangle which contains two edges between the groups (simply called *cross edges*). Thus, the number of edges in the group of size two must be at most half of the number of edges between two groups. In particular,

- (1) if m = 2, then $\lambda_1 \leq \lambda_2 n$ and
- (2) if n = 2, then $\lambda'_1 \leq \lambda_2 m$.

When both m = 2 and n = 2, each pure edge requires two cross edges to form a triangle, and these edges are in exactly one triangle. Thus, the number of pure edges

must be at most half of the number of cross edges. That is $\lambda_1 + \lambda'_1 \leq \frac{4\lambda_2}{2} = 2\lambda_2$.

On the other hand, we note that any triangle in this case contains one pure edge and two cross edges, and these triangles are edge-disjoint. Hence, half of the number of cross edges in the graph must be at most the number of pure edges, or $2\lambda_2 = \frac{4\lambda_2}{2} \leq \lambda_1 + \lambda'_1$. Therefore, when m = 2 and n = 2, we have that $\lambda_1 + \lambda'_1 = 2\lambda_2$. We conclude these necessary conditions in the following theorem.

Theorem 5.2. (Necessary Conditions) Let m and n be positive integers. Let λ_1, λ'_1 and λ_2 be nonnegative integers such that $\lambda_1 \geq \lambda_2$ and $\lambda'_1 \geq \lambda_2$. If there exists a $GDD(m, n; \lambda_1, \lambda'_1, \lambda_2)$, then

- (i) $2|(\lambda_1(m-1)+\lambda_2n)|$,
- (ii) $2|(\lambda'_1(n-1) + \lambda_2 m),$
- (iii) $6|(\lambda_1 m(m-1) + \lambda'_1 n(n-1) + 2\lambda_2 mn).$
- (iv) if $\lambda_2 = 0$, then there exist a $\mathsf{TS}(m; \lambda_1)$ and a $\mathsf{TS}(n; \lambda'_1)$.
- (v) if m = 2, then $\lambda_1 \leq \lambda_2 n$,
- (vi) if n = 2, then $\lambda'_1 \leq \lambda_2 m$ and
- (vii) if m = 2 and n = 2, then $\lambda_1 + \lambda'_1 = 2\lambda_2$.