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User data has been used by many companies to understand user behaviors and 

find new business strategies. However, common techniques could not be used when it comes to 
new products that have not yet been released due to the fact that there are no prior data 
available. In this work, we propose a framework for generating realistic user data on new 
products which can then be analyzed for insights. Our model uses Conditional Generative 
Adversarial Network (CGAN) with the Straight-Through Gumbel estimator which can also 
handle discrete-valued outputs. The CGAN is conditioned on product features learned using a 
recommendation system which can better capture the relationship between products. 
Experiments using a dataset consisting of view logs from a real estate listing website shows 
that our model outperforms other baselines on four performance metrics and can effectively 
predict the finer characteristics of new products. 
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CHAPTER I  

INTRODUCTION 
1.1 Background 

 With the rapid growth of online service, website becomes one of the main channels 
where people access their favorite content. The data from these websites, often collected in web 
logs, becomes a source for mining insights about the users, which can be very valuable for 
business. Techniques such as association mining [1], sequential pattern mining [2], or clustering 
[3] can be used on web log data to improve profitability. For e-commerce websites, 
recommendation engines [4] can be trained on the logs to improve conversion rate and thus 
increase the revenue. 

Another business use case for the study of web log is for product development. Based on 
the web log data, if business can identify the characteristics of target users who are likely to be 
interested in the new product before its release, they will have more useful insights for product 
development, user targeting, marketing channel strategy and the best time to launch new 
campaigns without conducting market survey. The goal of this work is to forecast users' responses 
to novel products by learning from web log data. 

Generative Adversarial Network (GAN) [5] is a generative model for learning from such 
distribution and generating new realistic samples. It has been successfully applied to computer [6-
10] and natural language processing domains [11, 12]. The model consists of two neural 
networks: a generator and a discriminator. The generator learns to generate new (fake) samples 
which look similar to the real sample. The discriminator learns to discriminate between real data 
and fake generated sample and send the feedback to the generator so that it can generate better 
fake samples. 

Moreover, GAN can be trained to control the mode of generated output by adding some 
kinds of conditional signal, such as class label, to both the generator and the discriminator. This 
model is called a Conditional Generative Adversarial Network [6]. A relevant work [13] was 
proposed to apply CGAN for generating novel plausible orders on the e-commerce website in 
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order to forecast the demand, the seasonality, the characteristic of the customer, etc. The input to 
the model used for conditioning the order is the product name so that the model can be used to 
estimate orders of new products on the platform. However, the orders that they generated are 
embeddings that are used as inputs to a separate set of models which will convert the embedding 
into meaningful information. This is due to the limitation of GAN that it cannot handle discrete 
value generation well, thus they need to train classifiers to extract the characteristics from 
generated order representation which makes the training process sophisticated and hard to 
maintain. 

Similarly, our work also tries to generate realistic logs of user for new products, but on 
the real estate domain. Our data comes from Home.co.th, a real estate listing website in Thailand, 
which has more than one million views per month. Given a characteristic of a novel real estate, 
such as the location, the price, the size, the facilities, etc. we generate web logs which can be then 
aggregated to predict the characteristics of target users for the real estate. Our key technical 
contributions are enumerated below: 

• Recommendation based product embedding: prior works used product descriptions for 
the conditioning signal. The product description was converted into word embeddings 
which mean that it can only capture the characteristics of the products as it is explicitly 
written. It cannot capture other associations such as a person that likes condominiums 
that are closer to the public transportation system might prefer a condominium with a 
gym. In order to capture these kinds of relationship, we propose the use of recommender-
based embedding which is learned via a deep recommender system. 

• A generation approach for web log data with discrete outputs: prior works used a two-
step process in order to summarize user characteristics. On the other hand, we handle the 
limitation of discrete outputs for GAN by using Straight-Through Gumbel Estimator [14, 
15] which help simplify the pipeline and reduce error propagation of the models. 

For evaluation, it is difficult to measure the quality of generated outputs generated by 
GAN, especially in non-visual domains. We use four metrics to evaluate the results: Relative 
Similarity Measure (RSM) [13], Correlation Coefficient (CORR), Earth-Mover Distance (EMD) 
and Root Mean Squared Error (RMSE). We compare our model with two baseline generation 
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approaches: the nearest neighborhood and a Conditional Variational Autoencoder (CVAE) [16]. 
The results show that our generator generates the realistic users that are indistinguishable and 
outperforms the baseline approaches in these metrics. 

1.2   Objective 

This work aims to build a conditional generative adversarial network for generating 
realistic users who are likely to visit each project in a website in order to know the characteristic 
of target users before launch new projects. The performance of this model is better than baseline 
models. 

1.3   Scope of Work 

1. This work is trained on web log data from a real estate search engine website to 
generate users who are likely to visit each project in website. 

2. This work generates new users and summarize to the proportion of each 
characteristic. We did not cover number of visited user estimation or demand 
forecasting for each project. 

1.4   Outcomes 

1 An efficiency generation model that takes the characteristic of novel product and 
outputs the realistic users who are likely to be interested in that product. The 
generated characteristics of user can be both continuous and discrete value. This 
result can be summarized to the characteristics of targeted users. 

2. To improve the performance of generating realistic users based on particular product, 
we build the product embedding model by using recommendation system. This 
embedding model used the sequence of products which are generated by user when 
visit website so, the product embedding can capture the relation between products in 
term of similar characteristic and user preference. 

3. This framework can be applied with other industries such as retail industry. 
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3.1   Research Methodology 

1. Study the related works and related theories 
2. Data exploration  
3. Data Preprocessing 
4. Implement baseline models 
5. Design model 
6. Implement the proposed model 
7. Result analysis and tuning 

3.2   Research Paper 

“Generating Realistic Users Using Generative Adversarial Network with 
Recommendation-based Embedding” (Awaiting for reply from IEEE Access) 

 

  For the remaining parts, in chapter II, we detail the related theories which consists of 
five topics: embedding, neural network, distance metric, deep generative model, and Gumbel-
Softmax distribution. Chapter III covers literature review. We discuss related works contributed 
to product embedding and new approaches for generating realistic samples. The next chapter is 
methodology which is described the dataset and our approach. This approach is divided to two 
parts: product embedding model and generation model. The product embedding model is used to 
embed the product features into the embedding vector which capture the relationship between 
products. The generation model is used to generate realistic users given on product. Chapter V is 
experimental result. This part covers baseline approaches for both product embedding model and 
generation model, evaluation metrics, and model performance. The last chapter is conclusion and 
future work.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

CHAPTER II  

RELATED THEORIES 
 In this section, we will explain the related theories divided into 5 topics as follows: 
embedding, neural network, distance metric, deep generative model and Gumbel-Softmax 
distribution.  

2.1 Embedding 

To transform the categorical variable into continuous vector, there are 2 main methods: one-
hot encoding and embedding. The one-hot encoding is a simple mapping the categorical variable 
to a binary vector with length equal to the number of categories. This vector is assigned value of 0 
except the one index which is assigned with 1 to identify the value of that categorical variable. 
The limitation of one-hot encoding is that if we have 10,000 categories, the vector to represent 
this will be a 10,000-dimensional vector for each category. This vector is sparse and 
computationally expensive. 

An embedding is a mapping of a categorical variable into low-dimensional and continuous 
vector. An ideal embedding can capture the semantics of the input by mapping the similar inputs 
close together in the embedding space. As the Figure 1, if the words are similar, their embedding 
vectors are closer. Thus, adding and subtracting embeddings can be interpreted. An embedding is 
considered as a dense and compact representation of feature vector. 

 

 
Figure 1 Example of word embedding vector in embedding space 
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2.2 Neural Network 

A neural network is a model that imitates the human brain operation to recognize patterns 
based on training data to predict the unseen data. 

2.2.1 Perceptron 

Perceptron is a simplest type of neural network. This is a model of single neuron for 
binary classification.  

 
Figure 2 Perceptron’s component 

As Figure 2, the components of a perceptron are enumerated as: 

• Input layer: the input of a perceptron is numerical vector of all features which are 
denoted as [x1, x2, … , xn] where n is the number of input features. 

• Weight: each input has an associated weight which is learned and adjusted when 
training model. The weight of each input is relative to the important to other inputs. w0 is 
a bias that is a constant. The bias value allows to shift the decision boundary for better 
quality of model and does not depend on any input value. 

• Weighted summation: This node applies a function to weighted sum of input value 
(𝑥𝑖) with associated weight (𝑤𝑖 ) of each input. The formula is denoted as: 

 𝑦 =  ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (1) 
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This output is transferred to the next layer. 
• Step function or Activation function: this function is mathematical gate between the 

input and output to the next layer. This function uses to determines whether each neuron 
should be activated or not based on the relevant for prediction and also uses to normalize 
the scale of output. The non-linear activation function can help the network learn 
complex data. The example of activation function is shown below:  

• Sigmoid function: this function normalizes the output value between 0 and 1 and 
is calculated as the below formula: 

 𝜎(𝑧) =  
1

1 + 𝑒−𝑧
 (2) 

• Softmax function: the output values bound is between 0 and 1. This is used as 
the probability of each class. Thus, the summation of this value is equal to 1 as 
the below formula: 

 𝑓(𝑧)𝑗  =  
𝑒𝑧𝑗

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 (3) 

• Tanh function: the output values bound is between -1 and 1. 

 𝑡𝑎𝑛ℎ(𝑧) =  
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (4) 

• ReLU (Rectified Linear Unit): this function is computationally efficient but 
when inputs approach zero or negative, the gradient becomes zero. That makes 
the network cannot perform backpropagation. 

 𝑅(𝑧) =  max (0, 𝑧) (5) 

• Leaky ReLU: This function fixes the problem of ReLU when the inputs are zero 
or negative. This has a small positive slope in the negative area for 
backpropagation even negative input value. 
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 𝑅(𝑧) =  max (0.1 × 𝑧, 𝑧) (6) 

To find the optimal weight of each node, the model learns from the training data to adjust the 
weight as the following equation: 

 𝑤𝑖  ←  𝑤𝑖  +  ∆𝑤𝑖  (7) 

 ∆𝑤𝑖  = ∝ (�̂�  −  𝑦)𝑥𝑖  (8) 

where 𝑦 is actual value, �̂� is the output value of model, and ∝ is learning rate that is a 
hyperparameter to control the step size for updating the weight.   

2.2.2 Feedforward Neural Network 

Feedforward neural network is the multi-layer perceptron or fully connected network that 
the connections between node do not form a loop. In Figure 3, the flow of information is forward 
from the input nodes and then feed to the next layer, and finally to the output layer. Thus, each 
node in each layer connects with every node in the following layer by weight ( 𝑤𝑖𝑗  ). 

 

 
Figure 3 Feedforward neural network’s operation 

2.2.3 Recurrent Neural Network (RNN) 

Recurrent neural network is a network for sequential data. Instead of considering only 
current input like feedforward neural network, this model takes both current input and output 
from previous state as inputs for current state. The main problem is vanishing and exploding 
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gradient during training model which always happen when the network must learn the long data 
sequences. The value of gradient is smaller and may become to zero which means that model 
does not learn anything. To handle this problem, Long Short Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) were proposed. 

2.2.1.1 Long Short Term Memory (LSTM)  

The core concepts are the cell state that transfers the relevant information to the sequence 
and gates that decided which information is important to keep or forget. This model consists of 
three gates: forget gate, input gate and output gate. 

 

 
Figure 4 LSTM’s operation 

• Forget gate uses a sigmoid function to determine what information is relevant to keep 
from the previous state. If the value is close to 1, the information is relevant to keep. 

 𝑓𝑡 =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (9) 

• Input gate is a sigmoid function to determine what information is relevant to add from the 
current state. A tanh layer creates a vector of new candidate values (�̃�𝑡). 

 𝑖𝑡 =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (10) 

 �̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (11) 

 𝐶𝑡 =  𝑓𝑡 × 𝐶𝑡−1 +  𝑖𝑡 × �̃�𝑡  (12) 
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• Output gate is a sigmoid function to determine what information is relevant to send to the 
next hidden state. 

 𝑜𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (13) 

 ℎ𝑡 =  𝑜𝑡 ∙ tanh (𝐶𝑡) (14) 
 

2.2.1.2 Gated Recurrent Unit (GRU) 

This network is similar to LSTM, but it is faster than LSTM. Instead of using the cell 
state to transfer information, GRU uses the hidden state with two gates: reset gate and update 
gate. 

 

 
Figure 5 An example of GRU’s operation 

• Reset gate is used to decide how much the previous information to forget. 

 𝑟𝑡 =  𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡]) (15) 

• Update gate is used to determine what previous information is relevant to keep and what 
new information is relevant to add to the current state. 

 𝑧𝑡 =  𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡]) (16) 

 ℎ̃𝑡 =  𝑡𝑎𝑛ℎ(𝑊 ∙ [𝑟𝑡 × ℎ𝑡−1, 𝑥𝑡]) (17) 
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 ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 × ℎ̃𝑡  (18) 

Both LSTM and GRU have gates to regulate the flow of information, keep the relevant 
information and pass along with sequences to make predictions.  

2.2.4 Optimization Algorithm 

Optimization algorithm is to minimize or maximize an objective function such as error 
function, distance function, etc.  

2.2.4.1  Stochastic Gradient Descent (SGD) 

Gradient Descent is a convex function. This algorithm is an iterative method to find the 
optimal values of parameters for finding the minimum value of cost function. At each iteration, 
the algorithm calculates the gradient and update to the new weight as the following formula: 

𝑤𝑡  =  𝑤𝑡−1 − 𝛼
𝜕𝐽

𝜕𝑤
 (19) 

where 𝑤 is weight of each node, 𝛼 is learning rate, 𝐽 is cost function and 𝜕𝐽

𝜕𝑤
 is gradient of cost 

function. Instead of using all data for calculating the gradient for each iteration, stochastic 
gradient descent randomly selects a sample to find out the gradient of the cost function at each 
iteration. SGD is usually noisier than Gradient Descent algorithm, but the computation of SGD is 
lower than Gradient Descent to reach the optimal.  

2.2.4.2  Root Mean Square Propagation (RMSProp) 

This algorithm is similar to the gradient descent algorithm with momentum that uses the 
exponentially weighted average of the gradient for fixing the local optima problem. RMSProp 
divides the learning rate by an exponentially decaying average of squared gradients as the 
following equations: 

 𝑔𝑡  =  
𝜕𝐽𝑡

𝜕𝑤
 (20) 

 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡  =  𝛾𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡−1 + (1 − 𝛾)𝑔𝑡
2 (21) 
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 𝑤𝑡  =  𝑤𝑡−1 −
𝛼

√𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡

𝑔𝑡  (22) 

where 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡  is exponential average of squared gradients and 𝛾 is hyperparameters. 

2.2.4.3  Adaptive Moment Estimation Algorithm (Adam)  

 This algorithm is an adaptive learning rate method to find the individual learning rate for 
each parameter. It combines both gradient descent with momentum and RMSProp as the 
following equations: 

 𝑔𝑡  =  
𝜕𝐽𝑡

𝜕𝑤
 (23) 

 𝑣𝑡  =  𝛽𝑣𝑡−1 + (1 − 𝛽)𝑔𝑡  (24) 

 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡  =  𝛾𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡−1 + (1 − 𝛾)𝑔𝑡
2 (25) 

 𝑤𝑡  =  𝑤𝑡−1 − 𝛼
𝑣𝑡

√𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑡

𝑔𝑡  (26) 
 

2.3 Distance Metric 

To measure the difference between two probability distributions, there are three common 
measurements used in generative model. 

2.3.1 Kullback-Leibler (KL) Divergence 

KL divergence measures how much information we lose when we choose an 
approximated distribution. The formula is defined as: 

 
𝐷𝐾𝐿(𝑃|| 𝑄) =  ∑ 𝑃(𝑥)𝑙𝑜𝑔

𝑃(𝑥)

𝑄(𝑥)

𝑛

𝑥=1

 (27) 

Where   𝑃 is the real data distribution and  𝑄 is the one estimated from the model. KL 
Divergence is not symmetric (𝐷𝐾𝐿(𝑃|| 𝑄)  ≠ 𝐷𝐾𝐿(𝑄|| 𝑃)). 

2.3.2 Jensen-Shannon (JS) Divergence 
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Because KL Divergence is asymmetric, JS Divergence is a symmetric version and 
smooth as the following formula: 

 𝐷𝐽𝑆(𝑃|| 𝑄) =  
1

2
𝐷𝐾𝐿(𝑃||

𝑃 + 𝑄

2
) +

1

2
𝐷𝐾𝐿(𝑄||

𝑃 + 𝑄

2
) (28) 

Instead of distance between probability distributions of each other, this is an average of distance 
between their probability distributions and average of them. 

2.3.3 Earth-Mover Distance (EMD) or Wasserstein Distance 

There is gradient vanishing problem for KL Divergence and JS Divergence when the 
distribution 𝑄 far away from the distribution 𝑃. The Wasserstein distance has a smoother 
gradient. It is the minimum cost of transporting in converting the data distribution 𝑄 to the data 
distribution 𝑃 as the following formula: 
 

 𝑊(𝑃, 𝑄) = inf
γ∈Π(𝑃,𝑄)

𝐸(𝑥,𝑦)∼γ [∥ 𝑥 − 𝑦 ∥] (29) 

Where 𝛾 is a joint probability distribution. The Figure 6 shows examples of EMD calculation. 
The yellow graph is the distribution of 𝑃 and the green graph is the distribution of 𝑄. The 
minimum cost to transform distribution 𝑃 to distribution 𝑄 is 5. At step [1], the cost of 
transforming 𝑃1   to 𝑄1  is moving 2 boxes from 𝑃1  to 𝑃2. The cost of transforming 𝑃2  to 𝑄2 is 2. 
The last one is moving 1 box from 𝑃4   to 𝑃3. Thus, the total cost is summation of all moving. 
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Figure 6 Example of Wasserstein distance calculation modified from figure 7 [17] 

 

2.4 Deep Generative Model  

For deep generative model as the Figure 1, this model learns via maximum likelihood 
estimation. Models of the left branch construct an explicit density and maximize their likelihood. 
Variational Autoencoder (VAE) is one of explicit approaches by making variational 
approximations. While Generative Adversarial Networks (GAN) is an implicit approach which 
directly sample from the distribution. 
 

 
Figure 7 Deep generative model (Reference from figure 9 [18]) 
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2.4.1 Variational Autoencoder (VAE) 

Standard Autoencoder [19] is a feed forward neural network for unsupervised learning. 
The common usage is dimensionality reduction, feature selection and feature extraction. The 
concept of model is learning to compress input (𝑥) into a latent vector that preserve the relevant 
information and distribution of input. The output of model is the reconstructed input that is 
similar to the original input. As Figure 8, the autoencoder consists of 2 neural networks: encoder 
and decoder.  

• The encoder is a neural network that takes input (𝑥) and compress it to latent vector or dense 
representation (𝑧) of data (𝑥). This is called inference network which parameterizes the 
approximate posterior of the latent variables 𝑧. The output is the distribution 𝑝∅(𝑧|𝑥). 

• The decoder is a neural network that takes the latent representation (𝑧) and learn to 
reconstruct original input. This is called generative network that outputs the likelihood 
distribution 𝑝𝜃(𝑥|𝑧).   

 

 
Figure 8 Autoencoder’s architecture 

The loss function is to minimize the mean square error (MSE) or cross-entropy between 
original inputs (𝑥) and outputs (�̂�) of the model. Thus, the representation contains the relevant 
information for decoder. The limitation of autoencoder is new data generation. After we train 
model, we get the encoder and decoder, but cannot generate any new data from this model. 

 Variational Autoencoder (VAE) [20] resembles autoencoder, but VAE is a deep 
generative model to generate new sample data. In order to use the decoder for new data 
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generation, VAE generate the variations on input before passes to the decoder for new data 
generation.  
 

 
Figure 9 Variational Autoencoder’s architecture 

 As Figure 9, VAE consists of 2 neural networks: an encoder and a decoder which are like 
the autoencoder. To generate the variation for new data generation, VAE randomly sample latent 
representations following a Gaussian distribution with mean (𝜇) and standard deviation (𝜎) that 
are outputs from the encoder. The encoder outputs the latent distribution instead of latent 
representation. The mean vector controls where the representation of an input should be centered, 
and the standard deviation controls the variation from the mean of the representation. Thus, the 
decoder can learn not only single point in latent space which refers to an input but also all nearby 
points in latent space are referred to the same input. Moreover, the latent space is stochastic node 
because of sampling. In model training, we cannot calculate the gradient via stochastic node. 
Thus, the authors in [20] proposed “Reparameterization trick”.  Instead of sampling 𝑧 from 
Gaussian distribution with 𝜇 and 𝜎, this trick converts the sampling to calculate 𝑧 from  𝜇 +

 (𝜎2 × 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)). This trick allows gradient to flow via 𝜇 and 𝜎 nodes to update for 
optimal weight. 

 The loss function of VAE is to minimize the Evidence Lower Bound (ELBO) as the 
following formula:  
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 𝐸𝐿𝐵𝑂(𝜃, ∅)  =  𝐸[𝑙𝑜𝑔 𝑝∅(𝑥|𝑧)]  −  𝐷𝐾𝐿[𝑝𝜃(𝑧|𝑥)||𝑝(𝑧)] (30) 

Where 𝑝∅(𝑥|𝑧) is the probability distribution of decoder’s output, 𝑝𝜃(𝑧|𝑥) is the probability 
distribution of decoder’s output and 𝑝(𝑧) is the probability distribution of latent representation 
which is a standard normal distribution. The first term 𝐸[𝑙𝑜𝑔 𝑝∅(𝑥|𝑧)] is the reconstruction 
loss to encourage the decoder learns to reconstruct the new data over the representation. The 
second term 𝐷𝐾𝐿[𝑝𝜃(𝑧|𝑥)||𝑝(𝑧)] is the regularization to make the distribution returned from 
the encoder closes to the standard normal distribution. Thus, this term is measured by KL 
divergence metric to calculate the distance between the encoder’s distribution and the prior 
distribution. 

2.4.2 Generative Adversarial Network (GAN)  

Generative Adversarial Network [5] is a deep generative model which can generate 
realistic samples that are similar to the training data. The model is composed of a generator ( 𝐺 )  
and a discriminator ( 𝐷 )  as Figure 10. 

• The generator takes a random noise input that is sampled from standard normal 
distribution or standard uniform distribution and learns to generate new realistic 
samples.  

• The discriminator decides whether a sample is from real or generated distribution.  

The training of GAN is done as a minimax game where the discriminator tries to maximize 
the likelihood to recognize real samples as real and generated samples as fake while the generator 
would like to minimize it. 
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Figure 10 Generative Adversarial Network’s architecture 

 GAN aims to achieve an equilibrium between the generator and the discriminator. The 
loss function of the discriminator is defined as: 
 

 𝐽𝐷  =  −
1

2
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎

[𝑙𝑜𝑔𝐷(𝑥)]  −  
1

2
𝐸𝑥~𝑝𝑧

[𝑙𝑜𝑔(1 − 𝐺(𝑥))]  (31) 

Where 𝑝𝑑𝑎𝑡𝑎  is real data distribution, 𝑝𝑧  is normal distribution (0, 1) or uniform distribution (0, 
1). This is an entropy between real and generated distribution. For the generator, the loss function 
is defined as: 

 𝐽𝐺  =  −𝐽𝐷  (32) 

There are many problems in training GAN such as non-convergence, diminished 
gradient, mode collapse when the generator produces limited varieties of samples, etc. One of 
them is vanishing gradients. The loss function of GAN is the average of distance between the real 
or generated distribution and the average of them. This is equivalent to the JS divergence. When 
the generated distribution is far away from the real distribution, the gradient for the generator will 
vanish. Moreover, there is no guarantee that JS divergence will be continuous and differentiable 
everywhere [21].  
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 Wasserstein Generative Adversarial Networks (WGAN) [21] was proposed to improve 
GAN by using new loss function. They use Wasserstein distance that has a smoother gradient 
than JS divergence as the loss function and rename the discriminator to the critic. The output of 
critic is a scalar score without sigmoid function to measure how real the input sample are. 
Computing the Wasserstein distance is hard to control. Thus, the approximation using 
Kantorovich-Rubinstein duality is defined as below: 
 

 𝑊(𝑃𝑟 , 𝑃𝑔)  =  𝑠𝑢𝑝
‖𝑓‖𝐿≤1

𝐸𝑥∼𝑃𝑟
[𝑓(𝑥)]  −  𝐸𝑥∼𝑃𝑔

[𝑓(𝑥)] (33) 

Where 𝑃𝑟  is the real data distribution, 𝑃𝑔 is the generator distribution that tries to approximate 𝑃𝑟  
and 𝑓 is a 1- Lipschitz function following the constraint: |𝑓(𝑥1) − 𝑓(𝑥2)| ≤ |𝑥1 − 𝑥2|. 
Because of the constraint of Lipschitz continuity, we need to use weight clamping. The weights ( 
𝑤 ) of the critic must be constrained within a certain range [-c, c] by clipping 𝑤 after every 
update to 𝑤. Thus, c is a hyperparameter that we need to tune.  If the 𝑊(𝑃𝑟 , 𝑃𝑔) is small, the 
output of the generator is close to the real sample. 

 The difficulty in WGAN is tuning the bounds in weight clipping. If the bound is large, it 
can take a long time for the weights to converge. If the bound is small, it can lead to vanishing 
gradients when the network has many layers. To alleviate this issue, WGAN-GP [22] was 
proposed. Instead of the weight clipping, the authors added a gradient penalty term into the loss 
function to enforce the Lipschitz constraint during the training phase. The loss function of the 
both discriminator  ( 𝐽𝑊

𝐷  )  and generator (𝐽𝑊
𝐺 )  are defined as: 

 

 𝐽𝑤
𝐷 = −𝐸𝑥~𝑝𝑔

[𝐷(𝑥)] + 𝐸𝑥~𝑝𝑟
[𝐷(𝑥)] −  𝜆𝐸𝑥~𝑝𝑥′

[‖𝛻𝑥𝐷(𝑥)‖2 − 1]2 (34) 

 𝐽𝑤
𝐺  =  −𝐽𝑤

𝐷  (35) 

Where the last term is gradient penalty. 𝑝𝑥′ is a uniform distribution along the straight lines 
between pairs of points which are sampled from the data distribution 𝑝𝑟  and the generated data 
distribution 𝑝𝑔. 
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2.5 Gumbel-Softmax Distribution 

Because of the difficulty of training stochastic networks with discrete variables, the 
authors in [14, 15] proposed Gumbel-softmax trick which can be used to backpropagate through 
the softmax. We should begin with the Gumbel distribution, the Gumbel-Max trick and the 
Gumbel-Softmax trick. 

2.5.1 Gumbel Distribution 

The Gumbel distribution is proposed in [23] by Gumbel to model the extreme value 
distribution which has two parameters: 𝜇 and 𝛽. The standard Gumbel distribution is the case 
where 𝜇 = 0 and 𝛽 = 1 as the Figure 11. This distribution can be drawn by inverse transform 
sampling as the following formula: 

 𝑔 =  −𝑙𝑜𝑔(−𝑙𝑜𝑔(𝑢)) (36) 

where 𝑢 is a uniform distribution on the interval (0, 1). 
 

 
Figure 11 The standard Gumbel distribution 

2.5.2 Gumbel-Max trick  

The Gumbel-Max trick was proposed in [24] to draw a sample from a discrete 
distribution as the below formula: 
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 𝑧 =  𝑜𝑛𝑒ℎ𝑜𝑡(𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑔𝑖 + 𝑙𝑜𝑔𝜋𝑖]) (37) 

Where 𝑜𝑛𝑒ℎ𝑜𝑡 is a function to encode categorical variable into binary vector which is sparse 
matrix, 𝑎𝑟𝑔𝑚𝑎𝑥 is a function to return the maximized value, 𝑔𝑖  is a noise which is drawn from 
the standard Gumbel distribution or 𝐺𝑢𝑚𝑏𝑒𝑙(0,1), and 𝜋𝑖  is class probabilities. 

2.5.3 Gumbel-Softmax trick  

Because of the Gumbel-Max trick is not differentiable because of argmax layer, the 
Gumbel-Softmax trick was proposed in [14, 15] by using the softmax function to approximate the 
argmax as the following equation: 

 𝑦𝑖  =  
𝑒𝑥𝑝(𝑙𝑜𝑔(𝜋𝑖)  +  𝑔𝑖)/𝜏

∑ 𝑒𝑥𝑝(𝑙𝑜𝑔(𝜋𝑖)  +  𝑔𝑖)/𝜏𝑘
𝑗=1

 (38) 

Where 𝜏 is the softmax temperature parameter. When 𝜏  approaches zero, the expected value of 
the Gumbel-Softmax distribution is identical to a discrete distribution. At higher 𝜏, the expected 
value converses to a uniform distribution. The Gumbel-Softmax function yields a smooth gradient 
at high 𝜏, but can become unstable at low 𝜏. At high 𝜏 can be used at the start of the training and 
anneal to a small but non-zero value. 
 

 

Figure 12 The Gumbel-Softmax distribution when use the high temperature (𝜏) and low 
temperature (𝜏) (Reference from figure 1 [14]) 

 

2.5.4 Straight-Through Gumbel Estimator  

For scenarios that requires sampling of discrete values such as ones in GAN, the authors 
in [14] proposed the Straight-Through (ST) Gumbel Estimator. The forward pass is done by 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 32 

normal sampling, but the backward pass is done by backpropagating the Gumbel-Softmax to 
approximate the gradient which is shown in Figure 13. 

 

 
Figure 13 The Straight-Through Gumbel Estimator’s operation
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CHAPTER III  

LITERRATURE REVIEW 
In this work, we bring together elements from related works contributed to product 

embedding and generating new realistic samples approaches. We briefly review them below. 

3.1   Product Embedding 

An embedding can be considered as a dense and compact representation of feature 
vectors. Good embedding should have the property that if the features are similar in some sense, 
their embedding vectors are closer. Word2Vec, which was proposed in [25], is a popular 
embedding technique for textual data. Two words are considered similar semantically by their 
surrounding words and co-occurrence. The authors proposed two methods to learn Word2Vec 
embedding: Continuous Bag of Words (CBOW), which predict the current word based on 
surrounding words, and Skip-gram, which predict context words given the current word.   
 

 

Figure 14 The Continuous Bag of Words (CBOW) and the Skip-gram model 
(Reference from figure 3 [26]) 

 

For recommendation system, item embedding is a continuous vector which represents 
item and tries to capture the relationship of items. In [27], the authors proposed Item2Vec by 
using the Word2Vec framework. They assumed that the items which share the same basket are 
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similar in some sense regardless of the order that user generates. They predicted a item based on 
other items in the same basket. The authors in [4] applied item embedding to improve the session-
based recommendation task. They embedded an item description to its embedding by using the 
Word2Vec and the GloVe method as input to predict next clicked item in an e-commerce website. 
In [28], the authors want to represent the relation between users and content for news 
recommendation. They generated user representation by using a recurrent neural network (RNN) 
while the content embedding was learned via denoising autoencoder. They shown that the click-
through rate improved by 23% and the total duration improved by 10% over not using 
embeddings. 

3.2 Generating new realistic samples approaches 

Most works for generating new realistic samples are contributed by Variational 
Autoencoder (VAE) and Generative Adversarial Network (GAN). In 2013, VAE was proposed in 
[20]. This model is a kind of Autoencoder that can learn the distribution of the data. VAE can be 
used to generate novel data samples by sampling from the learned distribution. To control the data 
generation on VAE when we need to generate some specific data, Conditional Variational 
Autoencoder (C-VAE) [16] was proposed in the following year by adding conditional input to the 
both encoder and decoder networks. The decoder can generate new sample from based on the 
additional information.  

In application domains, VAE was used in natural language processing. [29, 30] applied 
VAE with sequential model to the task of dialogue response generation by learn the distribution 
of conversation. In [31], the authors used VAE to the latent image features and then generate 
related captions of that image. JointVAE was proposed in [32] to learn both continuous and 
discrete representations because the original VAE can learn the features with Gaussian 
distribution. So, this work proposed to apply Gumbel-Softmax trick for discrete features. 

 For recommender system, the authors in [33] applied VAE to generate new items which 
maximally satisfy the preference of a group of users. They learned the share latent representation 
between user and item features from user-item ratings. Embedding for product recommendations 
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can be generated through weighted maximum coverage in a greedy manner. The item decoder 
maps these latent representations to item features of novel items. 

However, the author in [18] said that VAE usually fails to capture multimodal 
distributions and usually generate lower quality outputs due to the gap between the lower bound 
of approximate posterior distribution and the true data distribution. On the other hand, no 
variational bound is needed in GAN. That makes GAN can generate better results. 

In 2014, GAN was proposed in [5] by Ian J. Goodfellow . This model is a deep 
generative model to generate new realistic samples. The generator learns how to generate realistic 
outputs which can fool the discriminator. The discriminator learns to discriminate which input 
come from real data or generated data. In [34], the authors proposed a conditional generative 
adversarial network (CGAN) to control the specific output of generator. They add some 
information (𝑦) such as class label and other modalities into both the generator and the 
discriminator as the Figure 15. The loss function is same as the original GAN. InfoGAN [35] is 
another work which conditioned the generation by adding the latent code to the generator. The 
discriminator predicts which input come from real or generated data and outputs the latent code. 
The loss function is added the mutual information between the latent code and the generator 
output as a regularization term. 

 GAN has been successfully applied in many application domains such as computer 
vision and natural language processing. In [10], the authors proposed CycleGAN to transform 
images from one domain to another domain. The authors in [7, 9] applied VAE and GAN to 
repair and fill the missing parts of images, a tasked is called image inpainting. To improve the 
quality of generated samples, there are many works that combine VAE and GAN, especially for 
computer vision [6, 8, 36, 37]. VAE is an excellent generative model for learning representations 
but generates blurry outputs, while GAN generates sharp outputs but cannot explicitly learn the 
embeddings like VAEs. In [6], the authors used two generative models to capture the latent 
spaces of hand poses and depth images for 3D hand pose estimation.  VAE embedded features to 
the share latent representation and GAN’s generator generated the 3D hand pose by latent 
representation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 36 

 
Figure 15 Architecture of CGAN and InfoGAN 

 For NLP, the limitation of GAN is in generating discrete outputs such as text because the 
gradient cannot be back propagated through the argmax function used to generate a discrete 
output. REINFORCE, a technique used in the reinforcement learning literature, can be used to 
circumvent this issue [12]. However, it can lead to slow convergence and training instability. In 
[11], the authors applied Gumbel-Softmax trick which was proposed in [14] for text generation to 
handle discrete outputs. In business applications, [13] was recently proposed to apply GAN with 
e-commerce data to generate the plausible orders related to a particular product in order to 
understand the characteristics of future orders. This model is called ec2GAN. However, the output 
of the generator is order embedding. Thus, the authors need to train classifiers to extract the 
characteristics from generated order representation which makes the training process 
sophisticated and hard to maintain. 
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Figure 16 The architecture of ec2GAN 

 

The key contributions of this work are enumerated below: 
• We applied the conditional generative adversarial network with real-estate domain to 

generate realistic logs of user for new products before its release. 
• We handled the limitation of discrete outputs generation by using the Straight-

Through Gumbel Estimator instead of a two-step process as the prior work. 
• We extracted the product embedding via the recommendation-based model. We 

trained a Gated Recurrent Unit (GRU) to predict the next product that user will click. 
Thus, the embedding can capture the similar product characteristics and also the 
similar preference of users. 
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CHAPTER IV  

METHODOLOGY 
 In this section, we describe the details of the dataset and our system for generating user 
logs. Figure 17 shows an overview of our system. First, we embed the product features with some 
embedding model. Then, we feed the product embedding to the generation model which will 
output user logs. The logs can be analyzed to extract insight about the product used as the input. 
 

 
Figure 17 The overview of our system 

 For embedding model, we compare the performance of three approaches: using ULMFiT 
with product description, using Autoencoder with product features and using recommendation 
model with product features. For generation model, we also compare three approaches: nearest 
neighbor approach (NN), conditional variational autoencoder (CVAE) and conditional generative 
adversarial network (CGAN). Our proposed approach is using recommendation-based embedding 
with CGAN. 

4.1   Dataset 

 Our web log data are from a real-estate search engine website (https://www.home.co.th) 
from January 2018 to February 2018. There are around 1.5 million records and 5,400 property 
projects. An example of the web log data is given in Table I. It consists of the user ID, the project 
that the user visited, the device that the user used to access the website, the agent or operation 
system, the referring page that the user was referred from, and the time of visit. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 39 

Table 1 An example of our web log data 

User id Project Device Agent Referring page Year Month Day Hour 
8bx-xx-xxx 5174 Mobile iPhone Google 2018 1 15 8 
8bx-xx-xxx 5476 Mobile iPhone Google 2018 1 15 8 
1ax-xx-xxx 7956 Desktop Windows Direct 2018 1 15 12 
F7x-xx-xxx 3924 Mobile Android Others 2018 1 16 21 
 

 

4.1.1 User features 

The user features (Ui) are created from the web log which contain the follow features: 

• Customer characteristics:  
• Device (Mobile, Desktop) 
• Agent or operation system (Android, iPhone, iPad, Macintosh, Windows, 

Others) 
• Customer segmentation (based on K-mean clustering) 

• Channel: 
• Referring page (Google, Facebook, Direct, Others) 

• Visit period: 
• Day of week (Mon, Tue, Wed, Thu, Fri, Sat, Sun) 
• Period (Morning, Afternoon, Evening, Night) 

An example of features constructed from each log entry is shown in Table II. 

Table 2 An example of user features that visited project in the website 

Device Agent Referring page Cluster Weekday Period 
Mobile iPhone Google 2 Mon Morning 
Mobile iPhone Google 2 Mon Night 
Desktop Windows Direct 1 Thu Afternoon 
Mobile Android Others 35 Sat Evening 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

To give a sense of our data, we show the histogram of each features in Figure 18. The 
users mostly use mobile to access website 60.6%. Most sessions were referred from Google. 
While the peak time period is during afternoon (13:00 – 18:58). The distribution of customer 
segmentation is highly imbalance. 28% of users is in customer group 13. 
 

 

 
Figure 18 The distribution of number of projects per user which visited more than 1 project. 

4.1.2 Product features 

We also use product features (Cj) which capture the characteristics of each property 
projects. The product features include: the starting price, the location, the nearest train station, the 
latitude, the longitude, the area, the district, the project type, and the facilities. The product 
feature is used to condition the generation algorithm. We grouped features to their category as 
follow: 

• Start period of project 
• Location such as latitude, longitude, and district 
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• Transportation and landmark such as train station, express way, and supermarket 
• Facility such as swimming pool, parking lots and gym 
• Project type and style such as condominium, detached house, and home office 

To reduce spurious information, the Figure 19 shows the distribution of number of users 
per project. Around 20% of projects were visited less than 50 users. Thus, we filtered out these 
projects that were visited less than 50 users which result in 4,876 projects remaining. 

 

 
Figure 19 The distribution of number of users per project 

To remove the users which can be bot, the Figure 20 shows the distribution of number of 
projects per user. At the 99.5 percentile of users, they visited over 30 projects within an hour. 
Thus, we filtered these users from our data before training model. 

 
Figure 20 The distribution of number of projects per user 
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4.2 Product Embedding 

One of the key components of our model is the product embedding. It aims to 
encapsulate each product's peculiarity so that the generator can have an easier time generating 
new visit logs.  

We extract the embedding via a trained recommendation system. The goal is to capture 
additional properties of the product that are not captured in the pattern of how users explore the 
products. Our system is similar to the recurrent neural network-based recommender. Our model 
consists of two parts: the encoder and the predictor as shown in Figure 22. The recommendation 
model takes the sequence of products visited by each user as input and tries to predict the next 
product that the same user would visit. The sequences of product are represented by their product 
features. The product features are embedded into an embedding via a three fully connected layers. 
The embedding is fed to a Gated Recurrent Unit (GRU) which is used to predict the next product. 

 

 
Figure  21 The recommendation system used to produce product embeddings 

4.2.1 Encoder 

The encoder is a concatenation of the fully connected networks of each product category 
feature. We group product features to category as we explained in the previous section and embed 
each category to its embedding before concatenating to final embedding of each product as you 
can see in the Figure 23.  
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Figure 22 The encoder of each sequence 

4.2.2 Prediction task 

The prediction task is a Gated Recurrent Unit (GRU). The input is the sequence of product 
embedding which is generated by user when visited website. We pass this embedding to 3 dense 
layers with (128, 96, 64) neurons at each layer. The last layer is a dense with sigmoid function to 
predict the next product that users will visit. 

After training model, the embedding vector from the encoder is the embedding for each 
product. This product embedding vector captures the relationship between projects which is not 
only the similar characteristics but also the similar user preference. 

4.3 Generative Model 

The key of our system is the generative model which takes in a product embedding and 
outputs user logs. Our GAN-based generator is shown in Figure 24. The model is similar to [13] 
which generated the orders of novel product in e-commerce website. However, their generated 
orders are embedding due to the limitation of GAN to handle discrete output generation, they 
need to train classifiers to extract the characteristics from generated representation. Our work uses 
the Straight-Through Gumbel Estimator [14] in order to deal with discrete generation. 
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Figure 23 The GAN model for web log generation 

 

 

4.3.1 Generator (𝐺) 

The generator generates fake user features conditioned on the product embedding. In 
other words, the generator will try to generate users that are likely to interact with the particular 
product. The generator is a fully connected network with three hidden layers and uses LeakyRelu 
as activation function at each layer. The last layer, we use the Straight-Through Gumbel estimator 
to generate the discrete outputs and the tanh function to generate the continuous outputs which 
were normalized to the range of [-1, 1]. 

4.3.2 Discriminator (𝐷) 

The discriminator takes the concatenation of real or generated user features and the real 
product embedding and decides whether the user feature is real or fake. This model is a fully 
connected network with two hidden layers and uses LeakyRelu as the activation function. The last 
layer uses a linear activation function to output the score indicating how real the users are based 
on the real product embedding. This information can be used to guide the generator to generate 
better fake users via backpropagation. If this value is small, the generated users are close to the 
real data. 
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To ensure that the model learns to generate users based on the product used for 
conditioning, we also forced the model to learn about the product by adding a reconstruction loss 
(𝐿𝑝). The generator not only generates the users, but also the embedding used for conditioning. 
The reconstruction loss is the cosine distance between the input product embedding and the 
product embedding at the output. For the generated users, the loss function is the WGAN-GP loss. 
Thus, the overall loss function for the generator is the weighted sum of reconstruction loss and 
user generator loss that is defined as: 

 

 ∝ 𝐿𝑢  +  (1−∝)𝐿𝑝 (39) 

Where  ∝ is a hyperparameter that we need to tune. 𝐿𝑢  is a generation loss or loss function of 
generated users. 𝐿𝑝 is a reconstruction loss or loss of generated products. 

For hyperparameter tuning, we used grid-search to obtain the optimal configurations or 
hyperparameters of the models which provide the highest performance score for this dataset. 

• For the generator noise, we tried different vector sizes (36, 64, 96, 128) and found that 64-
dimension noise gives the highest performance for this model. 

• The generator configuration uses a structure 64 → 128 → 256 as the hidden units. The last 
layer outputs a vector of length 52+70 = 122 which is the number of user and product 
features. 

•  The discriminator has two hidden layers 128 → 64 and the last layer is linear with size 1 to 
measure how real the input users are. 

• 𝜏 in ST Gumbel Estimator, we used 0.9 to be the initial value with annealing rate of 0.005. 
The final value is 0.35.  

• The optimizers, we tried (Adam, SGD, RMSprop) and found that Adam with beta = 0.7 gave 
the best result. 

• In this work, the best ratio of number of times the generator is trained to the discriminator is 
1:5.
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CHAPTER V  

EXPERIMENTAL RESULT 
We performed experiments to verify the effectiveness of our generation system. In this 

section we will talk about the experimental setups and the results of each experiment. 

5.1   Experiment Setup 

We construct the training and test set by randomly select 50 products from the total 
products to be treated as novel products. The training set contains all products that are not 
selected for testing, meaning the test are completely unseen by the model. We repeat the selection 
10 times to construct model 10 independent training and test sets. 

5.2 Evaluation Metric 

Our goal is to have the model predict the distribution of web logs given unseen products. 
Thus, we cannot measure the performance of the web log individually. We have the model 
generate 10,000 web log per test products and then measure the statistically properties of the log 
generated with respect to the ground truth. Prior work used Relative Similarity Measure (RSM) 
which captures the characteristic of each attribute of the generated product relative to other 
products [13]. However, this measure does not capture higher order statistics. Moreover, some 
use cases might require precise knowledge of the distribution rather than relative difference. 
Thus, we also propose three other metrics that can be used to measure the quality of the generated 
logs. The four metrics can be summarized as follow: 

5.2.1 Relative Similarity Measure (RSM) 
This measure is used to measure the relative similarity between real and generated 

samples by comparing between two products. The concept of computing this measure is shown in 
Algorithm I. 
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Algorithm I RSM metric calculation 

Require: the list of testing products ( p ), the number of testing products ( 𝑛𝑝 ), the real users 
statistics ( 𝑈𝑟  ), the generated users statistics ( 𝑈𝑔  ) 
  1:   𝑛 =  0 
  2:   𝑛𝑐𝑜𝑢𝑛𝑡  =  0 
  3:   for f in referring feature do 
  4:        select 𝑢𝑟 == 𝑓 and 𝑢𝑔 == 𝑓  from 𝑈𝑟  and 𝑈𝑔 respectively      
  5:        for each product pair in (i, j) do 
  6:             select the 𝑠𝑖

𝑟  and 𝑠𝑗
𝑟  from 𝑢𝑟  

  7:             select the 𝑠𝑖
𝑔  and 𝑠𝑗

𝑔  from 𝑢𝑔  
  8:             if (𝑠𝑖

𝑟  > 𝑠𝑖
𝑟  𝑎𝑛𝑑  𝑠𝑖

𝑔
 > 𝑠𝑖

𝑔
) or (𝑠𝑖

𝑟 < 𝑠𝑖
𝑟  𝑎𝑛𝑑  𝑠𝑖

𝑔
 < 𝑠𝑖

𝑔
) or (𝑠𝑖

𝑟  = 𝑠𝑖
𝑟 𝑎𝑛𝑑  𝑠𝑖

𝑔
 = 𝑠𝑖

𝑔
)  

  9:                  𝑛𝑐𝑜𝑢𝑛𝑡  =  𝑛𝑐𝑜𝑢𝑛𝑡  + 1 
10:             end if 
11:             𝑛 =  𝑛 + 1 
12:        end for 
13:        𝑟𝑠𝑚 =  𝑛𝑐𝑜𝑢𝑛𝑡 ÷ 𝑛 
14:        return 𝑟𝑠𝑚 
15:   end for 
  

An example in Figure 25, the first low level feature of referring is Facebook. The portion 
of real users that were referred from Facebook is 30% ( 𝑠𝐴(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)

𝑟  ) and 20% ( 𝑠𝐵(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)
𝑟  

) for product A and product B respectively. The 𝑠𝐴(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)
𝑟   is 10% higher than 

𝑠𝐵(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)
𝑟 . In the same way, the product A's generated users were referred from Facebook 

50% ( 𝑠𝐴(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)
𝑔  ) and is also higher than 𝑠𝐵(𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘)

𝑔 . Thus, we count this as a relative 
similarity between real users and generated users. Similarly, the portion of real users that were 
referred from Google is 20% for product A ( 𝑠𝐴(𝑔𝑜𝑜𝑔𝑙𝑒)

𝑟  ) and 50% for product B ( 𝑠𝐵(𝑔𝑜𝑜𝑔𝑙𝑒)
𝑟  ). 

The 𝑠𝐴(𝑔𝑜𝑜𝑔𝑙𝑒)
𝑟  is lower than the 𝑠𝐵(𝑔𝑜𝑜𝑔𝑙𝑒)

𝑟 . In comparison with generated users, the 
𝑠𝐴(𝑔𝑜𝑜𝑔𝑙𝑒)

𝑔  is also lower than the 𝑠𝐵(𝑔𝑜𝑜𝑔𝑙𝑒)
𝑔 . The last one is directing visitors. The real direct 

user is 50% ( 𝑠𝐴(𝑑𝑖𝑟𝑒𝑐𝑡)
𝑟  ) and 30% ( 𝑠𝐵(𝑑𝑖𝑟𝑒𝑐𝑡)

𝑟  ) for product A and product B respectively. The 
𝑠𝐴 (𝑑𝑖𝑟𝑒𝑐𝑡)

𝑟  is higher than 𝑠𝐵 (𝑑𝑖𝑟𝑒𝑐𝑡)
𝑟 . This is the same direction as the comparison between 

𝑠𝐴 (𝑑𝑖𝑟𝑒𝑐𝑡)
𝑔  and 𝑠𝐵 (𝑑𝑖𝑟𝑒𝑐𝑡)

𝑔 . Thus, we count the generated users as high relative similarity with 
the real users on all three low-level referring page features.   
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5.2.2 Correlation Coefficient (CORR) 
This metric measures the strength of the relationship between real and generated samples 

as the formula: 

 𝜌𝑝𝑟𝑝𝑔
 =  

𝑐𝑜𝑣(𝑝𝑟 , 𝑝𝑔)

𝜎𝑝𝑟
𝜎𝑝𝑔

 (40) 

where 𝑐𝑜𝑣(𝑝𝑟 , 𝑝𝑔) is the covariance of 𝑝𝑟  and 𝑝𝑔 . 𝜎𝑝𝑟
 is the standard deviation of 𝑝𝑟 . 𝜎𝑝𝑔

 
is the standard deviation of 𝑝𝑔 . The value of CORR is between -1 and 1 where -1 means negative 
correlation and 1 means positive correlation. An example in Figure 25, the real users were 
referred from Google 20%, Facebook 30% and direct 50%. While the generated users were from 
Google 10%, Facebook 50% and direct 40%. The correlation between [0.2, 0.3, 0.5] and [0.1, 0.5, 
0.4] is 0.58. If the correlation coefficient >= 0.85 which is defined as a high correlation in 
statistics, we count that as a high correlation between real and generated users. 

Algorithm II Correlation coefficient metric calculation 

Require: the list of testing products ( 𝑝 ), the number of testing products ( 𝑛𝑝 ), the real users 

statistics (𝑈𝑟  ), the generated users statistics ( 𝑈𝑔  ) 

  1:   𝑛 =  0 

  2:   𝑛𝑐𝑜𝑢𝑛𝑡  =  0 

  3:   for f in referring feature do 

  4:        select 𝑠𝑖
𝑟  from 𝑈𝑖

𝑟 

  5:        select 𝑠𝑖
𝑔

 from 𝑈𝑖
𝑔 

  6:        if 𝐶𝑂𝑅𝑅(𝑠𝑖
𝑟 , 𝑠𝑖

𝑔
 )  ≥  0.85 then  

  7:             𝑛𝑐𝑜𝑢𝑛𝑡  =  𝑛𝑐𝑜𝑢𝑛𝑡  +  1 

  8:        end if 

  9:   end for 

10:   𝑐𝑜𝑟𝑟 = 𝑛𝑐𝑜𝑢𝑛𝑡  ÷  𝑛 

11:   return 𝑐𝑜𝑟𝑟 
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5.2.3 Wasserstein distance or Earth mover's distance (EMD) 

This metric measures the distance between two probability distributions as the formula: 

 𝑊(𝑃𝑟 , 𝑃𝑔) = 𝑖𝑛𝑓
𝛾∈𝛱(𝑃𝑟,𝑃𝑔)

𝐸(𝑥,𝑦)∼𝛾 [∥ 𝑥 − 𝑦 ∥] (41) 

Where 𝑃𝑟  is the probability distribution of real users, 𝑃𝑔 is the probability distribution of 
generated users. 𝛱(𝑃𝑟 , 𝑃𝑔) is the set of all distributions. We use this metric to calculate the 
minimum cost of transforming the generated user distribution into the real user distribution. As 
Figure 25, the distance between real user distribution and generated user distribution is 0.2. The 
advantage of EMD is that even when two distributions are not overlaps, this measure can provide 
the distance value between two distributions. While Kullback-Leibler divergence 
( 𝐷𝐾𝐿 ) provides the infinity when two distributions are disjoint. 

5.2.4 Root Mean Square Error (RMSE) 

This metric is the average of difference between proportion of real and generated users of 
each feature as the formula: 

 
𝑅𝑀𝑆𝐸 =  √

∑ ( 𝑝𝑟  −   𝑝𝑔 )2𝑛
𝑖=1

𝑛
 

(42) 

where  𝑝
𝑟
 is the proportion of real users, 𝑝𝑔 is the proportion of generated users and n is the 

number of testing projects. RMSE measures how accurately the generated users are in the same 
unit as the data. Thus, this measure is easy for interpretation. The lower score is better. As Figure 
25, the RMSE between [0.5, 0.3, 0.2] and [0.4, 0.5, 0.1] is 0.141 or 14.1%. It means that the 
difference between real and generated users is 14.1%. 

To summarize the evaluation metrics as Figure 25, this is an example based on referring 
page feature. RSM score measures the relative similarity of real and generated users by 
comparing between two products. This example shows that the generated users are counted as 
high relative similarity with the real data. While the correlation coefficient (CORR) is used to 
measure the correlation of real and generated users within the same product. The correlation of 
this example is 0.58, we do not count as high correlation with the real data. The next one is Earth-
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Mover distance (EMD) that measure the minimum cost to transform one distribution into the 
other. This shows that the cost of converting the generated distribution to the real distribution is 
0.2. The last one is RMSE that shows the precision of the generator. These metric measures how 
close the proportion of generated users on each characteristic is to the real users. 

 

 
Figure 24 Example of our metrics 
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The metrics are measured on each feature and average. However, we can also measure 
the metrics in a multivariate manner (2 features). For example, RSM will be measure the relative 
similarity between a tuple of two features instead such as (referring page, weekday), (device, 
operation system), etc. 

5.3 Baseline Product Embedding Model 

We compare two kinds of model for learning our embeddings: ULMFiT with product 

description and Autoencoder with product features. 

5.3.1 ULMFiT with product description 

We used Universal Language Model Fine-tuning (ULMFiT) which was proposed in [38] 
to embed the product description. ULMFiT is a transfer learning for natural language processing 
(NLP) task such as text feature extraction and text classification. In Thai language, this model 
was pretrained with 60,005 embeddings by [39] which is part of pyThaiNLP. This model consists 
of 3 stages as the Figure 22. 

 

 

 
Figure 25 ULMFiT Model (Reference from figure 1 [38]) 

• Language Model pre-training: this stage is training the language model on a general-
domain corpus that captures high-level natural language features. 

• Language Model fine-tuning: this stage is fine-tuning the pre-trained language model to 
learn task-specific features. 
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• Classifier fine-tuning: this stage is fine-tuning the classifier on the target task. 

Instead of starting from random weights, we use the pre-trained language model which was 
provided in [40] and then fine-tune the language model on our product description. The last stage 
is a classifier. We use label from topic modeling which was trained by using Latent Dirichlet 
Allocation (LDA). 

5.3.2 Autoencoder (AE) 

The objective of the AE is to compress the original input and learn the best embedding 
that can be used to reconstruct the original input. The embedding is usually of lower dimension 
than the original input features so that the mapping is not trivial. We use a six-layer autoencoder 
with (256, 128, 96, 96, 128, 256) neurons at each layer, resulting in an embedding of size 64. 

 

 

 
Figure 26 The product embedding from Autoencoder 

5.4 Baseline Generation Approach 

We compare our approach with two baseline approaches: nearest neighborhood approach 
and Conditional Variational Autoencoder (CVAE). 

5.4.1 Nearest Neighbor (NN) approach 
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We apply the nearest neighbor concept to summarize the characteristics of users who are 
likely to be interested in new product. We select the user log of top 5 existing products that their 
characteristics are similar to the characteristics of new product. Thus, we know the list of possible 
values of each user feature for new product and sample based on that distribution. 

 

 
Figure 27 A nearest neighbor approach 

5.4.2 Conditional Variational Autoencoder (CVAE) 

CVAE is a deep generative model which is an extension of Variational Autoencoder [7]. 
This model was proposed in [8] and can control on the data generation process to generate some 
specific output by adding the additional information to both encoder and decoder. We use this 
model and add the product embedding to generate the user logs of new product. 
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Figure 28 Conditional Variational Autoencoder approach 

5.5 Results and discussion  

The overall performance of our methodology (C-WGAN-GP) that is compared against 
several baseline approaches as shown in Table III and IV for 1 feature and 2 features respectively. 
Our proposed approach which used conditional GAN with embedding learned from 
recommendation system performed the best on every metrics. This shows the effectiveness of our 
approach in learning the distribution of novel products. The effectiveness of the learned 
embedding is shown when we compare different embeddings. For embedding from autoencoder, 
the original product features only improve the performance slightly on several metrics, but using 
recommendation embedding shows significant gain on all metric. While using the product 
description embedding from ULMFit is the worst performance because the product description is 
less information for capturing the relationship between products. 
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Table 3 The overall performance for 1 feature based on 4 metrics 

Model 
1 Feature 

RSM CORR EMD RMSE 

C-WGAN-GP with REC Embedding 72.5% 88.9% 0.59 16.2% 
C-WGAN-GP with AE Embedding 69.7% 87.8% 0.77 18.1% 
C-WGAN-GP with ULMFiT Embedding 32.5% 78.7% 1.76 28.2% 
C-WGAN-GP with Product Features 67.9% 86.6% 0.83 18.2% 
C-VAE with REC Embedding 65.3% 85.6% 1.23 20.3% 
NN with REC Embedding 54.7% 71.6% 1.69 28.0% 
 

Table 4 The overall performance for 2 features based on 4 metrics 

Model 
2 Feature 

RSM CORR EMD RMSE 

C-WGAN-GP with REC Embedding 81.9% 82.5% 1.17 19.4% 
C-WGAN-GP with AE Embedding 78.8% 80.1% 1.98 21.4% 
C-WGAN-GP with ULMFiT Embedding 64.5% 31.6% 6.95 15.8% 
C-WGAN-GP with Product Features 78.4% 78.4% 2.56 21.6% 
C-VAE with REC Embedding 72.2% 76.5% 3.27 23.8% 
NN with REC Embedding 62.9% 39.8% 5.81 34.3% 
 

Our simplest baseline is a nearest neighbor model (NN). The nearest products in the 
training set are used as the statistics of the novel product. This model uses cosine distance on the 
recommendation embedding to select the top 5 nearest products. Unsurprisingly, this method 
performs the worst, since for real estate there are rarely two products that are similar to each 
other. 
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We also trained another baseline based on CVAE with recommendation embedding. The 
CVAE baseline performed worse that all other GAN models, showing the effectiveness of GANs 
in learning the distribution of the customers. 

 As you can see in the Table IV, the performance of crossing two features is less than one 
feature because the model needs to capture the dependency between features. 

We also show the performance of models for each feature as shown in Table V. The most 
interest is in the customer segmentation which has 36 possibilities and are high imbalance. The 
proposed model can get 75% CORR meaning that it can be used to give some guidance on what 
kind of customer would prefer the product. On the other hands, a NN approach which is 
something a human might have done based on his limited experience, would yield abysmal 
results. 

Table 5 The performance of our approach for each feature 

Feature Model RSM CORR EMD RMSE 
Device C-WGAN-GP with REC Embedding 69.3% 84.4% 0.059 10.0% 

C-WGAN-GP with AE Embedding 54.5% 84.3% 0.081 10.5% 
C-WGAN-GP with ULMFiT Embedding 51.6% 84.3% 0.081 28.2% 
C-WGAN-GP with Product Features 55.1% 83.8% 0.085 10.5% 
C-VAE with REC Embedding 52.4% 83.4% 0.087 10.7% 
NN with REC Embedding 51.6% 83.2% 0.102 20.0% 

Operation 
System 

C-WGAN-GP with REC Embedding 68.9% 99.5% 0.261 12.6% 
C-WGAN-GP with AE Embedding 58.8% 97.9% 0.321 14.1% 
C-WGAN-GP with ULMFiT Embedding 51.9% 96.3% 0/362 22.4% 
C-WGAN-GP with Product Features 58.5% 97.9% 0.338 14.2% 
C-VAE with REC Embedding 57.7% 97.8% 0.357 14.3% 
NN with REC Embedding 49.5% 92.7% 0.431 15.9% 

Customer 
Segmentation 

C-WGAN-GP with REC Embedding 80.4% 75.1% 2.091 24.4% 
C-WGAN-GP with AE Embedding 75.6% 66.2% 3.945 51.5% 
C-WGAN-GP with ULMFiT Embedding 23.6% 22.4% 9.739 36.1% 
C-WGAN-GP with Product Features 73.1% 63.4% 4.175 52.8% 
C-VAE with REC Embedding 71.4% 60.4% 4.492 53.1% 
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Feature Model RSM CORR EMD RMSE 
NN with REC Embedding 57.2% 1.5% 8.195 85.8% 

Referring C-WGAN-GP with REC Embedding 68.8% 80.2% 0.148 19.4% 
C-WGAN-GP with AE Embedding 62.4% 76.4% 0.238 24.5% 
C-WGAN-GP with ULMFiT Embedding 45.7% 75% 0.249 37.4% 
C-WGAN-GP with Product Features 61.8% 73.9% 0.259 26.4% 
C-VAE with REC Embedding 59.6% 78.6% 0.271 26.6% 
NN with REC Embedding 50.1% 54.7% 0.341 36.1% 

Weekday C-WGAN-GP with REC Embedding 69.6% 100% 0.038 6.5% 
C-WGAN-GP with AE Embedding 53.6% 100% 0.047 7.0% 
C-WGAN-GP with ULMFiT Embedding 52.5% 100% 0.046 21.5% 
C-WGAN-GP with Product Features 51.9% 99.1% 0.049 7.0% 
C-VAE with REC Embedding 50.7% 98.5% 0.052 7.1% 
NN with REC Embedding 46.2% 99.8% 0.068 7.1% 

Time Period C-WGAN-GP with REC Embedding 73.9% 97.4% 0.094 8.7% 
C-WGAN-GP with AE Embedding 62.7% 93.1% 0.113 9.7% 
C-WGAN-GP with ULMFiT Embedding 50.2% 94.3% 0.119 21.7% 
C-WGAN-GP with Product Features 57.8% 92.6% 0.119 10.1% 
C-VAE with REC Embedding 51.8% 90.6% 0.125 10.4% 
NN with REC Embedding 50.1% 96.3% 0.185 9.0% 

 

We show one example of the generated distribution in Figure 28. Note how our model 
yields an estimate for customer segment number 15 as 1.2%, which is very close to the actual 
distribution of 1.7%. In a highly imbalance case such as this one, it is very hard for models 
besides GANs to uncover the long tail of the distribution. This shows the effectiveness of our 
model. 
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CHAPTER VI  

CONCLUSION 
6.1   Conclusion 

This work proposes a conditional generative adversarial network for generating realistic 
logs of user for novel product on the real estate domain. To improve the performance of model, 
one of key components is product embedding which we used to be an additional information to 
control the output of user generation. We propose to extract the product embedding via a trained 
recommendation system which is learned by using a Gated Recurrent Unit (GRU). The goal of 
embedding is to capture the relationship of similar product characteristic and user preference. 
Moreover, we handle the limitation of discrete outputs for GAN by using Straight-Through 
Gumbel Estimator which help simplify the pipeline and reduce error propagation of the models. 

To evaluate the performance of our model, we compare our approach with two baseline 
approaches: nearest neighborhood approach and Conditional Variational Autoencoder (CVAE) by 
using four metrics to measure the quality of the generated logs: Relative Similarity Measure 
(RSM), Correlation Coefficient (CORR), Wasserstein distance or Earth mover's distance (EMD) 
and Root Mean Squared Error (RMSE). The results show that Our approach which used 
conditional GAN with embedding learned from recommendation system (C-WGAN-GP with 
REC Embedding) performed the best on every metrics. For the effectiveness of embedding, the 
result shows that the performance of embedding from autoencoder slightly improve when 
compare with the original product features, but using recommendation embedding shows 
significant gain on all metrics. For the effectiveness of generation approach, the results show that 
GANs is the best model to learn and capture the distribution of users although data is highly 
imbalance. Nearest neighbor model performed the worst because there are rarely two products 
that are similar to each other in real-estate domain. While CVAE performed worse than all other 
GAN models.  

Our approach can generate users which are similar with the real users even highly 
imbalance case and performs better than the baselines. 
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6.2 Future work 

• Demand Forecasting 
In this work, we did not cover the demand forecasting of new product before generating 
realistic users for knowing user characteristics. If we can forecast the demand, our 
approach will be completely useful for business planning when business launches new 
product. 

• Product embedding 
In this work, the characteristics of product are separated into product features and 
product description. However, the embedding for product features and product 
descriptions are created from separated models. In future work it would be interesting to 
integrate these two embeddings into one for improving the performance.
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