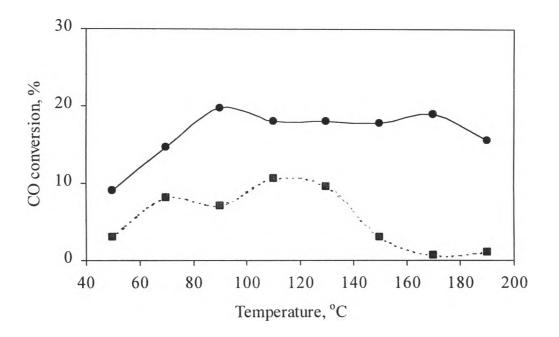
REFERENCES

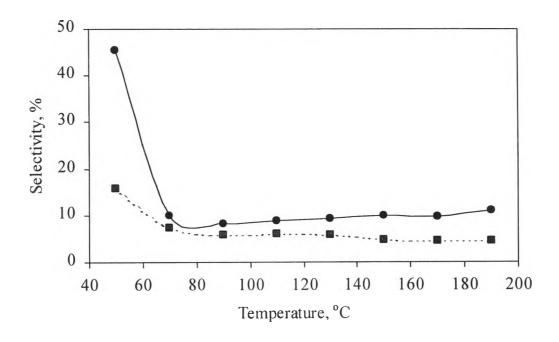
- Acres., G.J.K., Frost, J.C., Hards, G.A., Potter, R.J., Ralph, T.R., Thompsett,
 D., Brstein, G.T., and Hutchings, G.J. (1997). Electrocatalysts for
 fuel cells. <u>Catalysis Today</u>. 38, 393-400.
- Alessandro, T., Carla, L., Marta, B., and Giuliano, D. (1999). The utilization of ceria in industrial catalysis. <u>Catalysis Today</u>, 50, 353-367.
- Baiker, A. (1985). Experimental methods for the characterization of catalysts.
 II. X-ray diffraction, temperature-programmed desorption and reduction, thermogravimetry and differential thermoanalysis.
 <u>International Chemical Engineering</u>, 25(1), 30-37.
- Bekyarova, E., Fornasiero, P., and Graziani, M. (1998). CO oxidation on Pd/CeO₂-ZrO₂ catalysts. <u>Catalysis Today</u>, 45, 179-183.
- Bracchina, C., Indovina, V., Rossi, S.D., and Giorgi, L. (2000). Anodic catalysts for polymer electrolyte fuel cells: The catalytic activity of Pt/C, Ru/C, and Pt-Ru/C in oxidation of CO by O₂. <u>Catalysis Today</u>. 55, 45-49.
- Cauqui, M.A., and Rodriquez-Izquierdo, J.M. (1992). Application of the solgel methods to catalyst preparation. <u>Journal of Non-Crystalline Solids</u>, 147&148, 724-738.
- Cheng, W.H. (1996). Selective CO oxidation in the presence of H₂ over Cu/Cr/Ba catalysts. <u>Reaction Kinetic Catalyst Letter</u>, 58, 329-334.
- Cunningham, J., O'Brien, S., Sanz, J., Rojo, J.M., Soria, J., and Fierro, J.L.G. (1990). Exception susceptibility of ceria-supported rhodium catalyst to inhibitory SMSI effect including acetone hydrogenation. <u>Journal of</u> <u>Molecular Catalysis</u>, 57, 379-396.
- Fornasiero, P., Monte, R.D., Ranga Roo, G., Kaspar, J., Meriani, S., Trovarelli, A., and Graziani, M. (1995). Rh-loaded CeO₂-ZrO₂ solid solutions as highly efficient oxygen exchangers: Dependence of the

reduction behavior and the oxygen storage capacity on the structural properties. Journal of Catalysis, 151, 168-177.

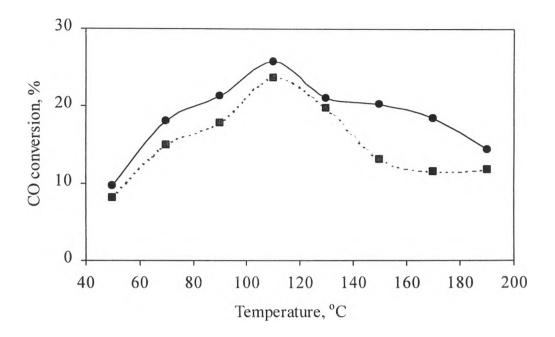
- Gil, A., Diaz, A., Gandia, L.M., and Montes, M. (1994). Influence of the preparation method and the nature of the support on the stability of nickle catalysts. <u>Applied Catalysis A: General</u>, 109, 167-179.
- Golunski, S.E., Hatcher,H.A., Rajaram,R.R., and Truex,T.J. (1995). Origins of low-temperature three-way activity in Pt/CeO₂. <u>Applied Catalysis B:</u> <u>Environmental</u>, 5, 367-376.
- Holmgrena, A., Azarnousha, F., and Fridellba, E. (1999a). Influence of pretreatment activity of Pt/ceria. <u>Applied Catalysis B: Environmental</u>, 22 (1), 49-61.
- Holmgrena, A., Andersson, B., and Duprez, D. (1999b). Interaction of CO with Pt/ceria catalysts. <u>Applied Catalysis B: Environmental</u>, 22, 215-230.
- Hutchings, G.J., Mirzaei, A.A., Joyner, R.W., Siddiqui, M.R.H., and Taylor,
 S.H. (1998). Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation.
 <u>Applied Catalysis A: General</u>, 166, 143-152.
- Igarasghi, H., Uchida, H., Suzuki, M., Sasaki, Y. and Watanabe, M. (1997). Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. <u>Applied</u> <u>Catalysis A: General</u>, 159, 159-169.
- Imamura, S., Yamada, H., and Utani, K. (2000). Combustion activity of Ag/CeO₂ composite catalyst. <u>Applied Catalysis A: General</u>, 192, 221-226.
- Ito, S.I., Fujimori, T., Nagashima, K., Yuzaki, K., and Kunimori, K. (2000). Strong Rhodium-Niobia interaction in Rh/Nb₂O₅, Rh/Nb₂O₅-Rh/SiO₂, and Rh/NbO₄/SiO₂ catalysts application to selective CO oxidation and CO hydrogenation. <u>Catalysis Today</u>, 57, 247-254.

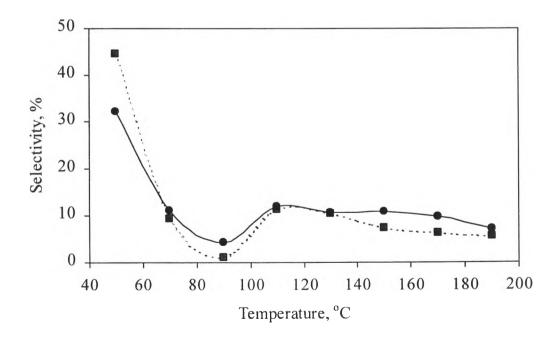

- Jen, H.W., Graham, G.W., Chun, W., McCabe, R.W., Cuif, J.P., Deutsch, S.E., and Touret, O. (1999). Characterization of model automotive exhaust catalysts: Pd on ceria and ceria-zirconia supports. <u>Catalysis</u> <u>Today</u>, 50, 309-328.
- Kahlich, M.J., Gasteiger, H.A., and Behm, R.J. (1997). Kinetics of the Selective CO Oxidation in H2-rich Gas on Pt/Al₂O₃. Journal of <u>Catalysis</u>, 171, 93-105.
- Kahlich, M.J., Gasteiger, H.A., and Behm, R.J. (1999). Kinetics of the selective low-temperature oxidation of CO in H₂-rich gas over Au/-α Fe₂O₃. Journal of Catalysis, 182, 430-440.
- Lemonidou, A.A., Goula, M.A., and Vasalos, I.A. (1998). Carbon dioxide reforming of methane over 5wt% nickel calcium aluminate catalystseffect of preparation method. <u>Catalysis Today</u>, 46, 175-183.
- Noh., J., Yang, O.B., Kim, D.H., and Woo, S. I. (1999). Characteristics of the Pd-only three-way catalysts prepared by sol-gel method. <u>Catalysis</u> <u>Today</u>, 53, 575-582.
- Purcell, K. (1997). <u>Chemistry and Chemical Reactivity</u>. New York: Academic Press.
- Sakulchaicharoen, N. (2000). Effects of oxygen addition on CO₂ reforming over Pt/ZrO₂ catalysts promoted with Ce. M.s.Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Serre, C., Garin,F., Belot,G., and Maire,G. (1993). Reactivity of Pt/Al₂O₃ and Pt-CeO₂/Al₂O₃ catalysts for the oxidation of carbon monoxide by oxygen. <u>Applied Catalysis B: Environmental</u>, 141, 9-20.
- Tanielyan, S.K., and Augustine, R.L. (1992). Effect of catalyst pretreatment on the oxidation of carbon monoxide over co-precipitated gold catalysts. <u>Applied Catalysis A: General</u>, 85, 73-87.

- Thormahlen, P., Skoglundh, M., Fridell, E., and Andersson, B. (1999). Lowtemperature CO oxidation over platinum and cobalt oxide catalysts. <u>Applied Catalysis B: Environmental</u>, 188, 300-310.
- Utaka, T., Sekizawa, K., and Eguchi, K. (2000). CO removal by oxygenassisted water gas shift reaction over supported Cu catalysts. <u>Applied</u> <u>Catalysis A: General</u>, 195, 21-26.
- Yao, M.H., Baird, R.J., Kunz, F.W., and Hoost, T.E. (1997). An XRD and TEM investigation of the structure of alumina-supported ceriazirconia. <u>Journal of Catalysis</u>, 166, 67-74.


APPENDIX

This appendix shows plots of effects of


- Catalyst pretreatment
- Support
- Ratio of Ce and Zr support
- Catalyst preparation


Figure A.1(a) Effect of pretreatment method on CO conversion of $1\%Pd/CeO_2$ -ZrO₂ (50:50) co-precipitation catalyst (•) 10% H₂ pretreatment at $300^{\circ}C$ 3 h (•) pure H₂ pretreatment at $300^{\circ}C$ 2 h.

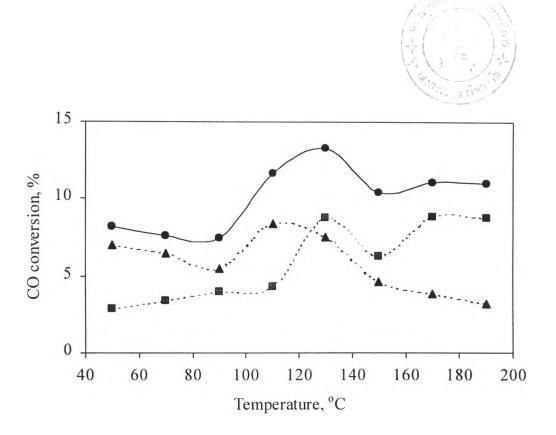

Figure A.1(b) Effect of pretreatment method on selectivity of 1%Pd/CeO₂-ZrO₂ (50:50) co-precipitation catalyst (•) 10% H₂ pretreatment at 300° C 3 h (•) pure H₂ pretreatment at 300° C 2 h.


Figure A.2(a) Effect of pretreatment method on CO conversion of $1\%Pd/CeO_2$ -ZrO₂ (75:25) co-precipitation catalyst (•) 10% H₂ pretreatment at $300\degreeC$ 3 h (•) pure H₂ pretreatment at $300\degreeC$ 2 h.

Figure A.2(b) Effect of pretreatment method on selectivity of 1%Pd/CeO₂-ZrO₂ (75:25) co-precipitation catalyst (•) 10% H₂ pretreatment at 300° C 3 h (•) pure H₂ pretreatment at 300° C 2 h.

Figure A.3(a) Effect of pretreatment method on CO conversion of 1%Pd/ZrO₂ co-precipitation catalyst (•) 10% H₂ pretreatment at 300° C 3 h (•) pure H₂ pretreatment at 300° C 2 h (•) pure O₂ pretreatment at 300° C 2 h.

Figure A.3(b) Effect of pretreatment method on selectivity of 1%Pd/ZrO₂ coprecipitation catalyst (•) 10% H₂ pretreatment at 300° C 3 h (•) pure H₂ pretreatment at 300° C 2 h (•) pure O₂ pretreatment at 300° C 2 h.

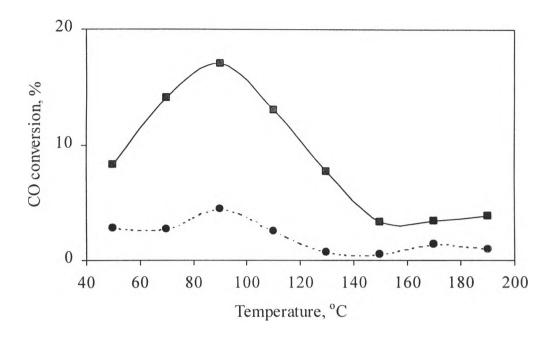
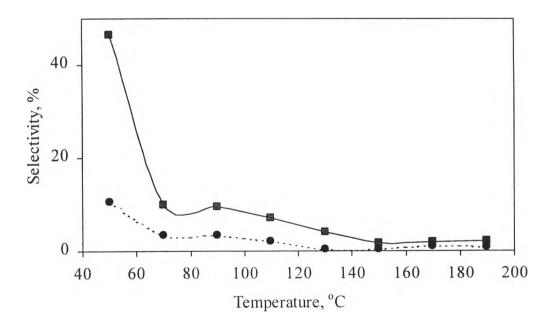



Figure A.4(a) Effect of support on CO conversion of impregnation on sol-gel catalyst, which calcined at 300° C 2h. (**a**) 1%Pd/CeO₂ (**•**) 1%Pd/ZrO₂.

Figure A.4(b) Effect of support on selectivity of impregnation on sol-gel catalyst, which calcined at 300° C 2h. (**a**) 1%Pd/CeO₂ (**•**) 1%Pd/ZrO₂.

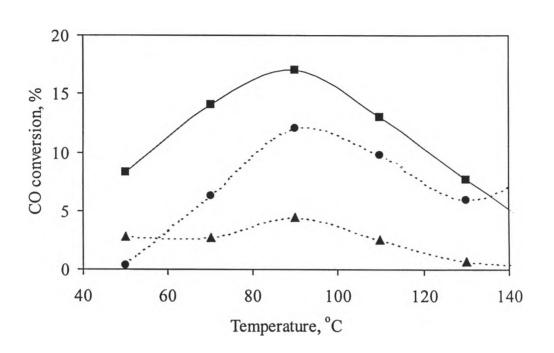
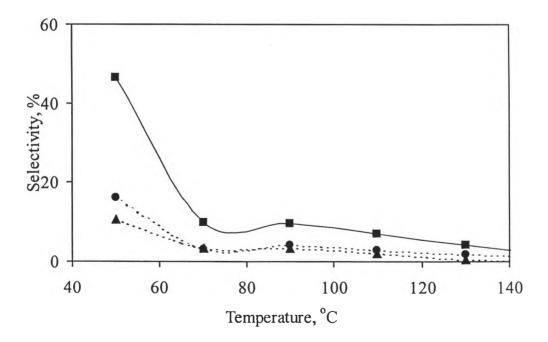
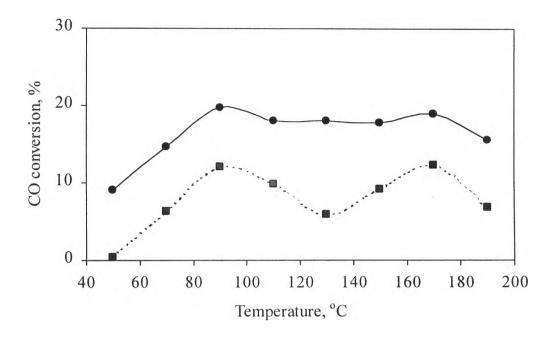
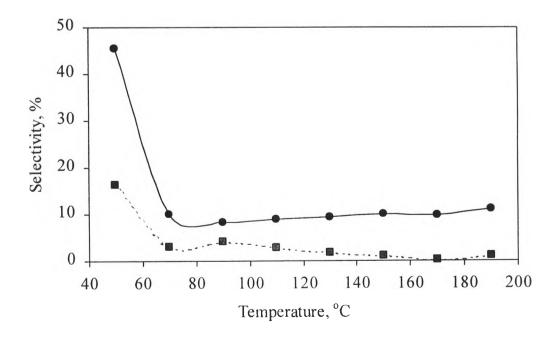
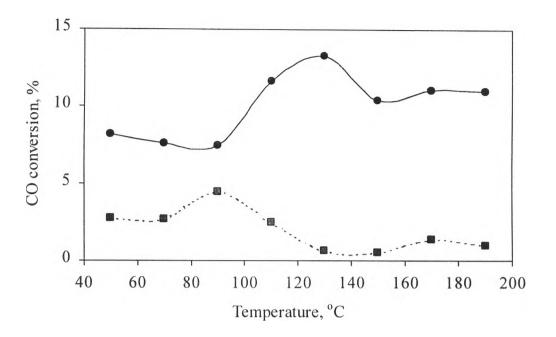


Figure A.5(a) Effect of ratio of Ce and Zr support on CO conversion of $1\%Pd/CeO_2$ -ZrO₂ impregnation on sol-gel catalyst (\blacksquare)100:0 (\bullet) 50:50 (\blacktriangle) 0:100.


Figure A.5(b) Effect of ratio of Ce and Zr support on selectivity of $1\%Pd/CeO_2$ -ZrO₂ impregnation on sol-gel catalyst (\blacksquare)100:0 (\bullet) 50:50 (\blacktriangle) 0:100.

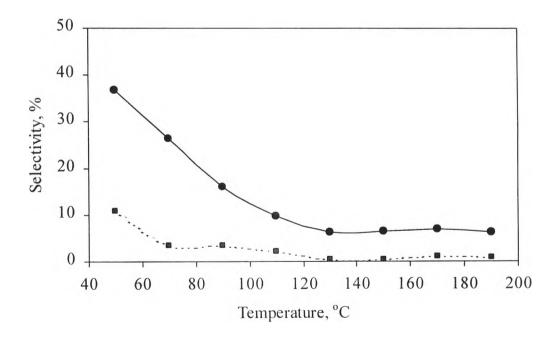

Figure A.6(a) Effect of catalyst preparation on CO conversion of $1\%Pd/CeO_2$ -ZrO₂(50:50)catalyst (•) co-precipitation method (•) impregnation on sol-gel method.

Figure A.6(b) Effect of catalyst preparation on selectivity of 1%Pd/CeO₂-ZrO₂ (50:50) catalyst (•) co-precipitation method (•) impregnation on sol-gel method.

Figure A.7(a) Effect of catalyst preparation on CO conversion of 1%Pd/ZrO₂ catalyst (●) co-precipitation method (■) impregnation on sol-gel method.

Figure A.7(b) Effect of catalyst preparation on selectivity of 1%Pd/ZrO₂ catalyst (•) co-precipitation method (•) impregnation on sol-gel method.

CURRICULUM VITAE

Name:	Ms. Kaewjai Khumvilaisak
Date of Birth:	October 12, 1978
Nationality:	Thai
University Education:	
1995-1999	Bachelor Degree of Science in Chemical
	Engineering, Chulalongkorn University, Bangkok,
	Thailand